WorldWideScience

Sample records for boron co-doped diamond-like

  1. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    CERN Document Server

    He, X M; Peters, A M; Taylor, B; Nastasi, M

    2002-01-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C sub 2 H sub 2), diborane (B sub 2 H sub 6), and hexafluoroethane (C sub 2 F sub 6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C sub 2 H sub 2 , B sub 2 H sub 6 , and C sub 2 F sub 6 source gases. The incorporation of B sub 2 H sub 6 and C sub 2 F sub 6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition...

  2. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.L. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Tang, Y.; Yang, L.; Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y.; Cui, X. [Canadian Light Source Inc., 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada)

    2015-08-31

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B{sub 4}C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B{sub 4}C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp{sup 3} bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp{sup 3} bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp{sup 3} bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films.

  3. Characterization of boron doped diamond-like carbon film by HRTEM

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.J., E-mail: lixj@alum.imr.ac.cn [College of Material Science and Engineering, Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012 (China); He, L.L., E-mail: llhe@imr.ac.cn [Shenyang National Lab of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Y.S. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada); Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada)

    2015-12-01

    Graphical abstract: - Highlights: • The microstructure of B-DLC film is studied by HRTEM in cross-sectional observation. • Many crystalline nanoparticles dispersed in the amorphous matrix film are observed. • Through composition and structure analysis, the nanoparticles are identified as B{sub 2}O. • The work implies the doped B element exists as oxide state in the B-DLC film. - Abstract: Boron doped diamond-like carbon (B-DLC) film was synthesized on silicon (1 0 0) wafer by biased target ion beam deposition. High-resolution transmission electron microscopy (HRTEM) is employed to investigate the microstructure of the B-DLC thin film in cross-sectional observation. Many crystalline nanoparticles randomly dispersed and embedded in the amorphous matrix film are observed. Through chemical compositional analysis of the B-DLC film, some amount of O element is confirmed to be contained. And also, some nanoparticles with near zone axes are indexed, which are accordance with B{sub 2}O phase. Therefore, the contained O element causing the B element oxidized is proposed, resulting in the formation of the nanoparticles. Our work indicates that in the B-DLC film a significant amount of the doped B element exists as boron suboxide nanoparticles.

  4. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    Science.gov (United States)

    Dai, Wei; Liu, Jingmao; Geng, Dongsen; Guo, Peng; Zheng, Jun; Wang, Qimin

    2016-12-01

    DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C2H2 and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C2H2 fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C2H2 fraction. The results show that the Al and Cr contents in the films increased continuously as the C2H2 fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would cause abrasive wear and thus deteriorate the wear performance of the films.

  5. Effect of boron incorporation on the structure and electrical properties of diamond-like carbon films deposited by femtosecond and nanosecond pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, A. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Bourgeois, O. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Rouzaud, J.-N. [Laboratoire de Geologie, UMR 8538 CNRS, Ecole Normale Superieure, 45 Rue d' Ulm, 75230 Paris Cedex 05 (France); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Loir, A.-S. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Garden, J.-L. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Garrelie, F. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Donnet, C., E-mail: christophe.donnet@univ-st-etienne.f [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France)

    2009-12-31

    The influence of the incorporation of boron in diamond-like carbon (DLC) films on the microstructure of the coatings has been investigated. The boron-containing DLC films (a-C:B) have been deposited by pulsed laser deposition (PLD) at room temperature in high vacuum conditions, by ablating graphite and boron targets either with a femtosecond pulsed laser (800 nm, 150 fs, fs-DLC) or with a nanosecond pulsed laser (248 nm, 20 ns, ns-DLC). Alternative ablation of the graphite and boron targets has been carried out to deposit the a-C:B films. The film structure and composition have been highlighted by coupling Field Emission Scanning Electron Microscopy, Electron Energy Loss Spectroscopy and High Resolution Transmission Electron Microscopy. Using the B K-edge, EELS characterization reveals the boron effect on the carbon bonding. Moreover, the plasmon energy reveals a tendency of graphitization associated to the boron doping. Pure boron particles have been characterized by HRTEM and reveal that those particles are amorphous or crystallized. The nanostructures of the boron-doped ns-DLC and the boron-doped fs-DLC are thus compared. In particular, the incorporation of boron in the DLC matrix is highlighted, depending on the laser used for deposition. Electrical measurements show that some of these films have potentialities to be used in low temperature thermometry, considering their conductivity and temperature coefficient of resistance (TCR) estimated within the temperature range 160-300 K.

  6. Aluminum- and boron-co-doped ZnO ceramics: structural, morphological and electrical characterization

    Science.gov (United States)

    Liu, Shimin; Liu, Jindong; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan

    2016-10-01

    Highly dense and electrically conductive aluminum- and boron-co-doped ZnO (ABZO) ceramics were prepared by traditional pressureless sintering process. Single aluminum-doped ZnO (AZO) ceramics were synthesized with similar process and characterized for comparison. The densification behavior, crystal structure, morphology, composition and electrical properties of the ceramics were studied. Results indicated that AZO ceramics with the maximum relative density of 99.01 % were obtained only at 1350 °C for 4 h, which, however, was accompanied by electrical conductivity deterioration because of the increased insulated ZnAl2O4 phase formed in ceramics. Interestingly, the ABZO ceramics reached the maximum relative density of 98.84 % at 1100 °C, which was 250 °C lower compared with that of AZO ceramics. Moreover, the electrical conductivity of ABZO ceramics improved significantly with the increased sintering temperature and increased insulated ZnAl2O4 phase, which should be ascribed to the decreased grain boundaries and the resultant reduced carrier scattering in ceramics overcoming the influence of increased ZnAl2O4 phase due to boron doping effect.

  7. Iron-boron pairing kinetics in illuminated p-type and in boron/phosphorus co-doped n-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Möller, Christian, E-mail: cmoeller@cismst.de [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany); TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau (Germany); Bartel, Til; Gibaja, Fabien [Calisolar GmbH, Magnusstraße 11, 12489 Berlin (Germany); Lauer, Kevin [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany)

    2014-07-14

    Iron-boron (FeB) pairing is observed in the n-type region of a boron and phosphorus co-doped silicon sample which is unexpected from the FeB pair model of Kimerling and Benton. To explain the experimental data, the existing FeB pair model is extended by taking into account the electronic capture and emission rates at the interstitial iron (Fe{sub i}) trap level as a function of the charge carrier densities. According to this model, the charge state of the Fe{sub i} may be charged in n-type making FeB association possible. Further, FeB pair formation during illumination in p-type silicon is investigated. This permits the determination of the charge carrier density dependent FeB dissociation rate and in consequence allows to determine the acceptor concentration in the co-doped n-type silicon by lifetime measurement.

  8. TiO2 nanopowder co-doped with iodine and boron to enhance visible-light photocatalytic activity.

    Science.gov (United States)

    Ding, Jianqiang; Yuan, Yali; Xu, Jinsheng; Deng, Jian; Guo, Jianbo

    2009-10-01

    An iodine and boron co-doped TiO2 photocatalyst was prepared by the hydrolyzation-precipitation method. X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), and X-ray photoelectron spectroscopy (XPS) were applied to characterize the crystalline structure, light absorbing ability, and the chemical state of iodine and boron in the photocatalysts. The results of photocatalytic degradation of methyl orange demonstrated that the I-B-TiO2 catalyst prepared at 400 degrees C for 3 h exhibited the highest photocatalytic activity with a methyl orange degradation ratio of 61% under visible-light (lambda > or = 420 nm) irradiation for 120 min. The characterization results revealed that I-B-TiO2 is in conformity with the anatase TiO2 and that the doping of iodine and boron ions could efficiently inhibit the grain growth. Doped iodine was present in the multivalent forms of 17+, I- and I5+. Doped boron was present as B3+ in an as-prepared sample, forming a possible chemical environment such as B-O-Ti. Overall, the doping of I and B enhanced the ability of TiO2 to absorb visible-light, and it was observed that the photocatalytic activity of I-B-TiO2 was enhanced by the synergistic effect of I and B.

  9. First-principles study of metallic carbon nanotubes with boron/nitrogen co-doping

    Institute of Scientific and Technical Information of China (English)

    Chen Ling-Na; Ma Song-Shan; OuYang Fang-Ping; Xiao Jin; Xu Hui

    2011-01-01

    Using the first-principles calculations, we investigate the electronic band structure and the quantum transport properties of metallic carbon nanotubes (MCNTs) with B/N pair co-doping. The results about formation energy show that the B/N pair co-doping configuration is a most stable structure. We find that the electronic structure and the transport properties are very sensitive to the doping concentration of the B/N pairs in MCNTs, where the energy gaps increase with doping concentration increasing both along the tube axis and around the tube, because the mirror symmetry of MCNT is broken by doping B/N pairs. In addition, we discuss conductance dips of the transmission spectrum of doped MCNTs. These unconventional doping effects could be used to design novel nanoelectronic devices.

  10. Boron/nitrogen pairs Co-doping in metallic carbon nanotubes: a first-principle study

    Institute of Scientific and Technical Information of China (English)

    Ouyang Fang-Ping; Peng Sheng-Lin; Chen Ling-Na; Sun Shu-Yuan; Xu Hui

    2011-01-01

    By using the first-principles calculations, the electronic structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.

  11. Co-doping TiO{sub 2} with boron and/or yttrium elements: Effects on antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuzheng [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Wu, Yusheng, E-mail: henanwys@sina.com [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Yang, He; Xue, Xiangxin; Liu, Zhihua [Institute of Metallurgical Resources and Environmental Engineering, Northeastern University, Shenyang 110819 (China)

    2016-09-15

    Highlights: • B-Y/TiO{sub 2} nano materials firstly applied to the fields of antibacterial materials. • Systems analysis the existence state of boron and yttrium ion in TiO{sub 2}. • Doping B and Y greatly strengthened the antibacterial activity of TiO{sub 2}. - Abstract: Pure TiO{sub 2}, boron and/or yttrium doped TiO{sub 2} nano-materials were synthesized by a sol–gel method and characterized by XRD, SEM, XPS and PL. XRD analysis indicates that, in the pure TiO{sub 2} and B single doped TiO{sub 2} (B-TiO{sub 2}) nano-materials calcinated at 700 °C, the presence of TiO{sub 2} is a mixture of anatase and rutile; in the Y single doped (Y-TiO{sub 2}), B and Y co-doped TiO{sub 2} nano-materials (B/Y-TiO{sub 2}), the presence of TiO{sub 2} is anatase. SEM image shows the prepared materials have a common round morphology and hexagonal plate morphology caused by the agglomeration of particles. Boron atoms are partially embedded into the TiO{sub 2} interstitial structure or incorporated into the TiO{sub 2} lattice through occupying the position of the oxygen atoms. The results of antimicrobial experiment show that B/Y-TiO{sub 2} material has a remarkable antimicrobial activity. Compared with the visible light irradiation, antimicrobial activity of B/Y-TiO{sub 2} in dark is significant poor.

  12. Electrical properties of boron, phosphorus and gallium co-doped silicon

    OpenAIRE

    Fourmond, Erwann; Forster, Maxime; Einhaus, Roland; Lauvray, Hubert

    2011-01-01

    à paraître dans Energy Procedia; International audience; A number of ingots were grown from solar grade poly Silicon, to which Boron, Phosphorous and Gallium were added as dopants. The introduction of Gallium as a third dopant allowed for a better control of the resistivity and the doping type during ingot growth. Measured resistivity in this material is shown to be systematically higher than that calculated using Scheil's law for the dopants distribution and Klaassen's model for the majority...

  13. Lanthanum and boron co-doped BiVO4 with enhanced visible light photocatalytic activity for degradation of methyl orange

    Institute of Scientific and Technical Information of China (English)

    王敏; 车寅生; 牛超; 党明岩; 董多

    2013-01-01

    BiVO4 photocatalysts co-doped with La and B were prepared by sol-gel method using citric acid as chelate. The samples were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), Bru-mauer-Emmett-Teller (BET), UV-Vis diffuse reflectance spectra (DRS) and the photocatalytic activity was investigated by photo-catalytic degradation of methyl orange (MO). The results showed that boron and lanthanum ions incorporated into the lattice of BiVO4, and co-doping led to more surface oxygen vacancies, high specific surface areas, small crystallite size, narrow band gap and intense light absorbance in visible region. And the doped La(III) ions could help the separation of photogenerated electrons. Com-pared with BiVO4 and B-BiVO4, the photocatalytic activity of La-B co-doped BiVO4 was remarkably improved due to the synergistic effects of the co-doped ions. The degradation rate of MO in 60 min was 98.4%when La doping content was 0.05 mol.%, which was much higher than that of pure BiVO4(20%) and B-BiVO4(37%).

  14. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    Science.gov (United States)

    Mascarenhas, Angelo

    2015-07-07

    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  15. Efficient Photocatalytic Hydrogen Evolution over Platinum and Boron Co-doped TiO2 Photoatalysts

    Directory of Open Access Journals (Sweden)

    Zhiliang JIN

    2014-12-01

    Full Text Available In this paper, the new photocatalyst, Ptx-/TiO2-yBy was prepared by impregnation method via coupling with a inorganic water splitting system, namely, a ternary system K+,Na+/B4O72- - H2O for hydrogen evolution. The integration process of the preparation for B doping Pt/TiO2 with the significant photocatalytic hydrogen evolution in the ternary system K+,Mg2+/B4O72- - H2O and K+,Na+/B4O72- - H2O were accomplished by impregnation in situ. The photocatalyst Ptx-/TiO2-yBy synthesis and the photocatalytic hydrogen production of the isothermal solubility of the ternary system K+,Mg2+/B4O72- - H2O and K+,Na+/B4O72- - H2O at 25 ºC have been studied. Thus, the present challenge is not only to demonstrate a suitable photocatalytical system that can efficiently produce hydrogen under the borate exsited, but also research that the addition of borate to the suspensions greatly enhanced the stability of the  photocatalysts over semiconductor catalysts.The results show that borate solution is a suitable for B doped TiO2 photocatalysts preparation and a novel photocatalyst Ptx-/TiO2-yBy was successfully prepared by this way. XRD and XPS characterization showed that both anatase and rutile are coexisted and the B is incorporated into the crystal of the TiO2.So the TiO2 can be denoted as TiO2-xBx. The effect of borate on the photocatalytic properties were investigated. The results showed that the amount of hydrogen evolved is enhanced by factors of 4 with the addition of H3BO3 to the ethanol/water reaction solutions. The role of boron anion does not act as a sacrificial electron donors. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6412

  16. Synthesis, Characterization, and Tribological Evaluation of TiO2-Reinforced Boron and Nitrogen co-Doped Reduced Graphene Oxide Based Hybrid Nanomaterials as Efficient Antiwear Lubricant Additives.

    Science.gov (United States)

    Jaiswal, Vinay; Kalyani; Umrao, Sima; Rastogi, Rashmi B; Kumar, Rajesh; Srivastava, Anchal

    2016-05-11

    The microwave-synthesized reduced graphene oxide (MRG), boron-doped reduced graphene oxide (B-MRG), nitrogen-doped reduced graphene oxide (N-MRG), boron-nitrogen-co-doped reduced graphene oxide (B-N-MRG), and TiO2-reinforced B-N-MRG (TiO2-B-N-MRG) nanomaterials have been synthesized and characterized by various state-of-the-art techniques, like Raman spectroscopy, powder X-ray diffraction, scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Furthermore, the tribological properties of prepared nanomaterials as antiwear additives in neutral paraffin oil have been evaluated using a four-ball machine at an optimized additive concentration (0.15% w/v). The tribological parameters, like mean wear scar diameter, coefficient of friction, and wear rates, revealed that these nanomaterials have potential to be developed as environmentally friendly sulfated-ash-, phosphorus-, and sulfur-free antiwear lubricant additives. The friction- and wear-reducing behavior of MRG increased upon successive doping of nitrogen, boron, and both nitrogen and boron. Among these additives, B-N-co-doped MRG shows superior tribological behavior in paraffin base oil. Besides this, the load-carrying properties of B-N-co-doped MRG have significantly improved after its reinforcement with TiO2 nanoparticles. A comparative study of the surface morphology of a lubricated track in the presence of various additives has been assessed by SEM and contact-mode atomic force microscopy. The X-ray photoelectron spectroscopy studies have proved that the excellent lubrication properties of TiO2-B-N-MRG are due to the in situ formation of a tribofilm composed of boron nitride, adsorbed graphene layers, and tribosintered TiO2 nanoparticles during the tribocontact. Being sulfur-, halogen-, and phosphorus-free, these graphene-based nanomaterials act as green antiwear additives, protecting interacting

  17. Effective visible light-active boron and europium co-doped BiVO4 synthesized by sol-gel method for photodegradion of methyl orange.

    Science.gov (United States)

    Wang, Min; Che, Yinsheng; Niu, Chao; Dang, Mingyan; Dong, Duo

    2013-11-15

    Eu-B co-doped BiVO4 visible-light-driven photocatalysts have been synthesized using the sol-gel method. The resulting materials were characterized by a series of joint techniques, including XPS, XRD, SEM, BET, and UV-vis DRS analyses. Compared with BiVO4 and B-BiVO4 photocatalysts, the Eu-B-BiVO4 photocatalysts exhibited much higher photocatalytic activity for methyl orange (MO) degradation under visible light irradiation. The optimal Eu doping content is 0.8 mol%. It was revealed that boron and europium were doped into the lattice of BiVO4 and this led to more surface oxygen vacancies, high specific surface areas, small crystallite size, a narrower band gap and intense light absorbance in the visible region. The doped Eu(III) cations can help in the separation of photogenerated electrons. The synergistic effects of boron and europium in doped BiVO4 were the main reason for improving visible light photocatalytic activity.

  18. Boron/nitrogen co-doped helically unzipped multiwalled carbon nanotubes as efficient electrocatalyst for oxygen reduction.

    Science.gov (United States)

    Zehtab Yazdi, Alireza; Fei, Huilong; Ye, Ruquan; Wang, Gunuk; Tour, James; Sundararaj, Uttandaraman

    2015-04-15

    Bamboo structured nitrogen doped multiwalled carbon nanotubes have been helically unzipped, and nitrogen doped graphene oxide nanoribbons (CNx-GONRs) with a multifaceted microstructure have been obtained. CNx-GONRs have then been codoped with nitrogen and boron by simultaneous thermal annealing in ammonia and boron oxide atmospheres, respectively. The effects of the codoping time and temperature on the concentration of the dopants and their functional groups have been extensively investigated. X-ray photoelectron spectroscopy results indicate that pyridinic and BC3 are the main nitrogen and boron functional groups, respectively, in the codoped samples. The oxygen reduction reaction (ORR) properties of the samples have been measured in an alkaline electrolyte and compared with the state-of-the-art Pt/C (20%) electrocatalyst. The results show that the nitrogen/boron codoped graphene nanoribbons with helically unzipped structures (CNx/CBx-GNRs) can compete with the Pt/C (20%) electrocatalyst in all of the key ORR properties: onset potential, exchange current density, four electron pathway selectivity, kinetic current density, and stability. The development of such graphene nanoribbon-based electrocatalyst could be a harbinger of precious metal-free carbon-based nanomaterials for ORR applications.

  19. Isoelectronic co-doping

    Science.gov (United States)

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  20. Optically transparent, scratch-resistant, diamond-like carbon coatings

    Science.gov (United States)

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  1. Graphene diamond-like carbon films heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B., E-mail: r.jackman@ucl.ac.uk [London Centre for Nanotechnology, Electronic and Electrical Engineering Department, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom)

    2015-03-09

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  2. Graphene diamond-like carbon films heterostructure

    Science.gov (United States)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B.

    2015-03-01

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ˜25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  3. Flexible diamond-like carbon film coated on rubber

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Pal, J.P. van der; Martinez-Martinez, D.; Hosson, J.Th.M. De

    2013-01-01

    Dynamic rubber seals are major sources of friction of lubrication systems and bearings, which may take up to 70% of the total friction. The solution we present is to coat rubbers with diamond-like carbon (DLC) thin films by which the coefficient of friction is reduced to less than one tenth. Coating

  4. Flexible protective diamond-like carbon film on rubber

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Hosson, J.Th.M. De

    2010-01-01

    In this paper we report an experimental approach to deposit flexible diamond-like carbon (DLC) films on rubber via self-segmentation. By making use of the substantial thermal mismatch between the DLC film and rubber substrate a dense network of cracks forms in the DLC film, contributing to its flexi

  5. Stress in tungsten carbide-diamond like carbon multilayer coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.

    2007-01-01

    Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature. Peri

  6. Growth stress in tungsten carbide-diamond-like carbon coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Arnoldbik, W.M.; Sloof, W.G.; Janssen, G.C.A.M.

    2009-01-01

    Growth stress in tungsten carbide-diamond-like carbon coatings, sputter deposited in a reactive argon/acetylene plasma, has been studied as a function of the acetylene partial pressure. Stress and microstructure have been investigated by wafer curvature and transmission electron microscopy (TEM) whe

  7. Workshop on diamond and diamond-like-carbon films for the transportation industry

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, F.A.; Moores, D.K. [eds.

    1993-01-01

    Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

  8. Preparation and Thermal Characterization of Diamond-Like Carbon Films

    Institute of Scientific and Technical Information of China (English)

    BAI Su-Yuan; TANG Zhen-An; HUANG Zheng-Xing; Yu Jun; WANG Jing; LIU Gui-Chang

    2009-01-01

    Diamond-like carbon (DLC) films are prepared on silicon substrates by microwave electron cyclotron resonance plasma enhanced chemical vapor deposition. Raman spectroscopy indicates that the films have an amorphous structure and typical characteristics. The topographies of the films are presented by AFM images. Effective thermal conductivities of the films are measured using a nanosecond pulsed photothermal reflectance method. The results show that thermal conductivity is dominated by the microstructure of the films.

  9. Plasma deposited diamond-like carbon films for large neutralarrays

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Blakely, E.A.; Bjornstad, K.A.; Galvin, J.E.; Monteiro, O.R.; Sangyuenyongpipat, S.

    2004-07-15

    To understand how large systems of neurons communicate, we need to develop methods for growing patterned networks of large numbers of neurons. We have found that diamond-like carbon thin films formed by energetic deposition from a filtered vacuum arc carbon plasma can serve as ''neuron friendly'' substrates for the growth of large neural arrays. Lithographic masks can be used to form patterns of diamond-like carbon, and regions of selective neuronal attachment can form patterned neural arrays. In the work described here, we used glass microscope slides as substrates on which diamond-like carbon was deposited. PC-12 rat neurons were then cultured on the treated substrates and cell growth monitored. Neuron growth showed excellent contrast, with prolific growth on the treated surfaces and very low growth on the untreated surfaces. Here we describe the vacuum arc plasma deposition technique employed, and summarize results demonstrating that the approach can be used to form large patterns of neurons.

  10. A brief review of co-doping

    Science.gov (United States)

    Zhang, Jingzhao; Tse, Kinfai; Wong, Manhoi; Zhang, Yiou; Zhu, Junyi

    2016-12-01

    Dopants and defects are important in semiconductor and magnetic devices. Strategies for controlling doping and defects have been the focus of semiconductor physics research during the past decades and remain critical even today. Co-doping is a promising strategy that can be used for effectively tuning the dopant populations, electronic properties, and magnetic properties. It can enhance the solubility of dopants and improve the stability of desired defects. During the past 20 years, significant experimental and theoretical efforts have been devoted to studying the characteristics of co-doping. In this article, we first review the historical development of co-doping. Then, we review a variety of research performed on co-doping, based on the compensating nature of co-dopants. Finally, we review the effects of contamination and surfactants that can explain the general mechanisms of co-doping.

  11. Diamond and diamond-like films for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J.M.

    1993-01-01

    This section is a compilation of transparency templates which describe the goals of the Office of Transportation Materials (OTM) Tribology Program. The positions of personnel on the OTM are listed. The role and mission of the OTM is reviewed. The purpose of the Tribology Program is stated to be `to obtain industry input on program(s) in tribology/advanced lubricants areas of interest`. The objective addressed here is to identify opportunities for cost effective application of diamond and diamond-like carbon in transportation systems.

  12. High Energy Radial Deposition of Diamond-Like Carbon Coatings

    Directory of Open Access Journals (Sweden)

    Konrad Suschke

    2015-07-01

    Full Text Available Diamond-like carbon (DLC coatings were deposited with a new direct ion deposition system using a novel 360 degree ion source operating at acceleration voltage between 4 and 8 kV. Cross-sectional TEM images show that the coatings have a three layered structure which originates from changes in the deposition parameters taking into account ion source condition, ion current density, deposition angles, ion sputtering and ion source movement. Varying structural growth conditions can be achieved by tailoring the deposition parameters. The coatings show good promise for industrial use due to their high hardness, low friction and excellent adhesion to the surface of the samples.

  13. Diamond-Like Carbon Nanorods and Fabrication Thereof

    Science.gov (United States)

    Varshney, Deepak (Inventor); Makarov, Vladimir (Inventor); Morell, Gerardo (Inventor); Saxena, Puja (Inventor); Weiner, Brad (Inventor)

    2017-01-01

    Novel sp. (sup 3) rich diamond-like carbon (DLC) nanorod films were fabricated by hot filament chemical vapor deposition technique. The results are indicative of a bottom-up self-assembly synthesis process, which results in a hierarchical structure that consists of microscale papillae comprising numerous nanorods. The papillae have diameters ranging from 2 to 4 microns and the nanorods have diameters in the 35-45 nanometer range. A growth mechanism based on the vapor liquid-solid mechanism is proposed that accounts for the morphological aspects in the micro- and nano-scales.

  14. Study on the preparation of boron and erbium co-doped BiVO4 photocatalyst and the photocatalytic degradation of Rhodamine B%硼和铒共掺杂BiVO4光催化降解罗丹明B的研究

    Institute of Scientific and Technical Information of China (English)

    董多; 宋恩军; 车寅生; 杨长秀; 王敏; 高兴莹

    2015-01-01

    通过柠檬酸络合法合成硼和铒共掺杂BiVO4,并对其进行XRD、UV-Vis的表征以分析合成材料的物相、形貌。同时考察溶液的初始浓度、pH、催化剂投加量以及光照强度等因素在可见光的照射下对罗丹明B光催化降解的影响。实验结果表明:在50 mL罗丹明B水溶液中,初始质量浓度为10 mg/L,pH=3,催化剂投加量为0.015 g,光照距离14 cm,B-Er共掺杂BiVO4对罗丹明B有较好的光催化活性,反应50 min后,降解率可达90%以上。%Boron and erbium co-doped BiVO4 visible-light-driven photocatalysts have been synthesized by citric acid complex method. The phase,and morphology of the synthetic material are characterized by XRD and UV-Vis. Mean-while,the effects of the factors,such as solution initial concentration,pH,dosage of catalyst,and illumination inten-sity,on the degradation of Rhodamine B under visible light irradiation are investigated. The experimental results show that boron and erbium co-doped BiVO4 has better photocatalytic activity on Rhodamine B degradation under the following conditions:initial Rhodamine B concentration is 10 mg/L,the volume of solution 50 mL,pH 3 of the hydrothermal reaction, dosage of catalyst 0.015 g and light distance 14 cm. After reacted for 50 min,the degradation rate of Rhodamine B can be more than 90%.

  15. Plasma Processes : Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    D S Patil; K Ramachandran; N Venkatramani; M Pandey; R D'Cunha

    2000-11-01

    The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz, 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a wave guide single mode applicator. We have deposited DLC coatings on the substrates like stainless steel, Cu–Be, Cu and Si. The deposited coatings have been characterized by FTIR, Raman spectroscopy and ellipsometric techniques. The results show that we have achieved depositing ∼ 95% sp3 bonded carbon in the films. The films are uniform with golden yellow color. The films are found to be excellent insulators. The ellipsometric measurements of optical constant on silicon substrates indicate that the films are transparent above 900 nm.

  16. Formation of conducting nanochannels in diamond-like carbon films

    Science.gov (United States)

    Evtukh, A.; Litovchenko, V.; Semenenko, M.; Yilmazoglu, O.; Mutamba, K.; Hartnagel, H. L.; Pavlidis, D.

    2006-09-01

    A sharp increase of the emission current at high electric fields and a decrease of the threshold voltage after pre-breakdown conditioning of diamond-like carbon (DLC) films have been measured. This effect was observed for DLC-coated silicon tips and GaAs wedges. During electron field emission (EFE) at high electric fields the energy barriers caused by an sp3 phase between sp2 inclusions can be broken, resulting in the formation of conducting nanochannels between the semiconductor-DLC interface and the surface of the DLC film. At high current densities and the resulting local heating, the diamond-like sp3 phase transforms into a conducting graphite-like sp2 phase. As a result an electrical conducting nanostructured channel is formed in the DLC film. The diameter of the conducting nanochannel was estimated from the reduced threshold voltage after pre-breakdown conditioning to be in the range of 5-25 nm. The presence of this nanochannel in an insulating matrix leads to a local enhancement of the electric field and a reduced threshold voltage for EFE. Based on the observed features an efficient method of conducting nanochannel matrix formation in flat DLC films for improved EFE efficiency is proposed. It mainly uses a silicon tip array as an upper electrode in contact with the DLC film. The formation of nanochannels starts at the interface between the tips and the DLC film. This opens new possibilities of aligned and high-density conducting channel formation.

  17. Development of Diamond-like Carbon Fibre Wheel

    Institute of Scientific and Technical Information of China (English)

    魏源迁; 山口勝美; 洞口巌; 竹内雅之

    2004-01-01

    A unique diamond-like carbon (DLC) grinding wheel was developed, in which the DLC fibres were made by rolling Al sheets coated with DLC films and aligned normally to the grinding wheel surface by laminating Al sheets together with DLC fibres. In this paper, the formation process of DLC fibres and the fabrication process of a DLC fibre wheel were investigated. Many grinding experiments were also carried out on a precision NC plane milling machine using a newly developed DLC wheel. Grinding of specimens of silicon wafers, optical glasses, quartz, granites and hardened die steel SKD11 demonstrated the capabilities of nanometer surface finish. A smooth surface with a roughness value of Ra2.5nm (Ry26nm) was achieved.

  18. Advances in targetry with thin diamond-like carbon foils

    CERN Document Server

    Liechtenstein, V K; Olshanski, E D; Repnow, R; Levin, J; Hellborg, R; Persson, P; Schenkel, T

    2002-01-01

    Thin and stable diamond-like carbon (DLC) foils, which were fabricated at the Kurchatov Institute by sputter deposition, have proved recently to be advantageous for stripping and secondary electron timing of high energy heavy ions in a number of accelerator experiments. This resulted in expanding applications of these DLC foils which necessitated further development efforts directed toward the following applications of DLC targetry: (i) thin stripper foils for lower energy tandem accelerators, (ii) enlarged (up to 66 mm in diameter) stop foils for improved time-of-flight elastic recoil detection ion beam analysis, and (iii) ultra-thin (about 0.6 mu g/cm sup 2) DLC foils for some fundamental and applied physics experiments. Along with the fabrication of thin DLC stripper foils for tandem accelerators, much thicker (up to 200 mu g/cm sup 2) foils for post-stripping of heavy-ion beams in higher energy linacs, are within reach.

  19. Cell attachment on diamond-like carbon coating

    Indian Academy of Sciences (India)

    D J Li; H Q Gu

    2002-02-01

    Preliminary results of diamond-like carbon (DLC) coating with its novel properties with no toxicity have caused a strong interest of commercial manufacturers of surgical implants. DLC coatings were prepared on polymethylmethacrylate (PMMA) at room temperature using ion beam assisted deposition (IBAD). It could be shown by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and Raman spectroscopy that DLC coating prepared by 800 eV CH+ beam bombardment possessed a higher fraction of 3 bonds in the structure of mixed 3 + 2 bonding, resulting in a higher hydrophobicity. The results of the cell attachment tests indicated that DLC coatings exhibited low macrophage attachment and provided desirable surface for the normal cellular growth and morphology of the fibroblasts. At the same time, the number of both neutral granulocytes and platelets adhering to DLC coatings decreased significantly. These findings showed that DLC was a better coating with desirable tissue and blood compatibility.

  20. Advances in PSII Deposited Diamond-Like Carbon Coatings for Use as a Barrier to Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Lillard, R.S.; Butt, D.P.; Baker, N.P.; Walter, K.C.; Nastasi, M.

    1998-10-01

    Plasma source ion implantation (PSII) is a non line of sight process for implanting complex shaped targets without the need for complex fixturing. The breakdown initiation of materials coated with diamond-like carbon (DLC) produced by PSII occurs at defects in the DLC which expose the underlying material. To summarize these findings, a galvanic couple is established between the coating and exposed material at the base of the defect. Pitting and oxidation of the base and metal leads to the development of mechanical stress in the coating and eventually spallation of the coating. This paper presents our current progress in attempting to mitigate the breakdown of these coatings by implanting the parent material prior to coating with DLC. Ideally one would like to implant the parent material with chromium or molybdenum which are known to improve corrosion resistance, however, the necessary organometallics needed to implant these materials with PSII are not yet available. Here we report on the effects of carbon, nitrogen, and boron implantation on the susceptibility of PSII-DLC coated mild steel to breakdown.

  1. Boron

    Science.gov (United States)

    ... an eye wash. Boron was used as a food preservative between 1870 and 1920, and during World Wars ... chemical symbol), B (symbole chimique), Borate, Borate de Sodium, Borates, Bore, Boric Acid, Boric Anhydride, Boric Tartrate, ...

  2. Atmospheric Plasma Deposition of Diamond-like Carbon Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ladwig, Angela

    2008-01-23

    There is great demand for thin functional coatings in the semiconductor, optics, electronics, medical, automotive and aerospace industries [1-13]. As fabricated components become smaller and more complex, the properties of the materials’ surface take on greater importance. Thin coatings play a key role in tailoring surfaces to give them the desired hardness, wear resistance, chemical inertness, and electrical characteristics. Diamond-like carbon (DLC) coatings possess an array of desirable properties, including outstanding abrasion and wear resistance, chemical inertness, hardness, a low coefficient of friction and exceptionally high dielectric strength [14-22]. Diamond-like carbon is considered to be an amorphous material, containing a mixture of sp2 and sp3 bonded carbon. Based on the percentage of sp3 carbon and the hydrogen content, four different types of DLC coatings have been identified: tetrahedral carbon (ta-C), hydrogenated amorphous carbon (a-C:H) hard, a-C:H soft, and hydrogenated tetrahedral carbon (ta-C:H) [20,24,25]. Possessing the highest hardness of 80 GPa, ta-C possesses an sp3 carbon content of 80 to 88u%, and no appreciable hydrogen content whereas a-C:H soft possesses a hardness of less than 10 GPa, contains an sp3 carbon content of 60% and a hydrogen content between 30 to 50%. Methods used to deposit DLC coatings include ion beam deposition, cathodic arc spray, pulsed laser ablation, argon ion sputtering, and plasma-enhanced chemical vapor deposition [73-83]. Researchers contend that several advantages exist when depositing DLC coatings in a low-pressure environment. For example, ion beam processes are widely utilized since the ion bombardment is thought to promote denser sp3-bonded carbon networks. Other processes, such as sputtering, are better suited for coating large parts [29,30,44]. However, the deposition of DLC in a vacuum system has several disadvantages, including high equipment cost and restrictions on the size and shape of

  3. Electronic Power System Application of Diamond-Like Carbon Films

    Science.gov (United States)

    Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.

    2003-01-01

    A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.

  4. The irradiation studies on diamond-like carbon films

    CERN Document Server

    LiuGuIang; Xie Er Qin

    2002-01-01

    Diamond-like carbon (DLC) films have been deposited on glass substrates using radio-frequency (r.f.) plasma deposition method. gamma-ray, ultraviolet (UV) ray and neutron beam were used to irradiate the DLC films. Raman spectroscopy and infrared (IR) spectroscopy were used to characterize the changing characteristics of SP sup 3 C-H bond and hydrogen content in the films due to the irradiations. It showed that, the damage degrees of the gamma-ray, UV ray and neutron beam on the SP sup 3 C-H bonds are different. Among them, the damage of gamma-ray on the SP sup 3 C-H bond is the weakest. When the irradiation dose of gamma-ray reaches 10x10 sup 4 Gy, the SP sup 3 C-H bond reduces about 50% in number. The square resistance of the films is reduced due to the irradiation of UV ray and this is caused by severe oxidation of the films. Compared with that of the as-deposited one, the IR transmittance of the films irradiated by both gamma-ray and neutron beam is increased to some extent. By using the results on optical...

  5. Low voltage electrodeposition of diamond like carbon (DLC)

    Science.gov (United States)

    Sreejith, K.; Nuwad, J.; Pillai, C. G. S.

    2005-10-01

    Attempt has been made to deposit diamond like carbon (DLC) films from ethanol through electrodeposition at low voltages (80-300 V) at 1 mm interelectrode separation. The films were characterized by atomic force microscopy (AFM), Scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and Auger electron Spectroscopy (AES). AFM investigations revealed the grain sizes are of tens of nanometers. The films were found to be continuous, smooth and close packed. Presence of peaks at 2958, 2929 and 2869 cm -1 in FTIR spectrum indicates the bonding states to be of predominantly sp 3 type (C-H). Raman spectroscopy analysis revealed two broad bands at ˜1350 and ˜1570 cm -1. The downshift of the G-band of graphite is indicative of presence of DLC. Analysis of the Raman spectra for the samples revealed an improvement in the film quality with increase in the voltage. Micro Raman investigations indicate the formation of diamond phase at the deposition potential of 80 V. The sp 2 contents the films calculated from Auger electron spectra were calculated and were found to be 31, 19 and 7.8% for the samples prepared at 80, 150 and 300 V, respectively. A tentative mechanism for the formation of DLC has been proposed. These results indicate the possibility of deposition of DLC at low voltage.

  6. Low voltage electrodeposition of diamond like carbon (DLC)

    Energy Technology Data Exchange (ETDEWEB)

    Sreejith, K. [Novel Materials and Structural Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Nuwad, J. [Novel Materials and Structural Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Pillai, C.G.S. [Novel Materials and Structural Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)]. E-mail: cgspil@apsara.barc.ernet.in

    2005-10-15

    Attempt has been made to deposit diamond like carbon (DLC) films from ethanol through electrodeposition at low voltages (80-300 V) at 1 mm interelectrode separation. The films were characterized by atomic force microscopy (AFM), Scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and Auger electron Spectroscopy (AES). AFM investigations revealed the grain sizes are of tens of nanometers. The films were found to be continuous, smooth and close packed. Presence of peaks at 2958, 2929 and 2869 cm{sup -1} in FTIR spectrum indicates the bonding states to be of predominantly sp{sup 3} type (C-H). Raman spectroscopy analysis revealed two broad bands at {approx}1350 and {approx}1570 cm{sup -1}. The downshift of the G-band of graphite is indicative of presence of DLC. Analysis of the Raman spectra for the samples revealed an improvement in the film quality with increase in the voltage. Micro Raman investigations indicate the formation of diamond phase at the deposition potential of 80 V. The sp{sup 2} contents the films calculated from Auger electron spectra were calculated and were found to be 31, 19 and 7.8% for the samples prepared at 80, 150 and 300 V, respectively. A tentative mechanism for the formation of DLC has been proposed. These results indicate the possibility of deposition of DLC at low voltage.

  7. STUDY OF RAY IRRADIATION ON DIAMOND-LIKE CARBON FILMS

    Institute of Scientific and Technical Information of China (English)

    G.A.Liu; T.M.Wang; E.Q.Xie

    2002-01-01

    Diamond-like carbon (DLC) films have been deposited on glass substrates using radio-frequency (rf) plasma deposition method, γ-ray, ultraviolet (UV) ray were used toirradiate the DLC films. Raman spectroscopy and infrared (IR) spectroscopy were usedto characterize the changing characteristics of SP3 C-H bond and hydrogen content inthe films due to the irradiations. The results show that, the damage degrees induced bythe UV ray on the SP3 C-H bonds are much stronger than that by the γ-ray. When theirradiation dose of γ-ray reaches 10× 104Gy, the SP3 C-H bond reduces about 50% innumber. The square electrical resistance of the films is reduced due to the irradiationof UV ray and this is caused by severe oxidation of the films. By using the results onoptical gap of the films and the fully constrained network theory, the hydrogen contentin the as-deposited films is estimated to be 10-25at.%.

  8. Electrical conditioning of diamond-like carbon films for the formation of coated field emission cathodes

    Science.gov (United States)

    Semenenko, M.; Okrepka, G.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2010-11-01

    Diamond-like carbon (DLC) films deposited on different substrates by plasma enhanced chemical vapour deposition were investigated. Bonding states and film quality were characterized by FT-IR spectroscopy. The influence of the power of plasma and the deposition time on the sp2/sp3 ratio as well as the concentration of CHn bonds was studied. The influence of sp2/sp3 ratio on the formation process of conducting channels in diamond-like carbon films as a result of electrical breakdown was determined. Reproducible increase of diamond-like carbon film conductivity, with initial sp2/sp3 ratio larger than 0.16, was observed after electrical breakdown.

  9. Preparation and photocatalytic activity of nonmetal Co-doped titanium dioxide photocatalyst

    Science.gov (United States)

    Sun, Xiaogang; Xing, Jun; Qiu, Jingping

    2016-06-01

    A series of boron and sulfur co-doped titanium dioxide (TiO2) photocatalysts were prepared by a sol-gel method using boric acid, thiourea and tetrabutyl titanate [Ti(OC4H9)4] as precursors. The photoabsorbance of as-prepared photocatalysts was measured by UV-Vis diffuse reflectance spectroscopy (DRS), and its microstructure was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and N2 adsorption-desorption measurements. The prepared photocatalysts consisted of the anatase phase mainly in the form of spherical particles. The photocatalytic performance was studied by photodegradation of methyl blue (MB) in water under UV and visible light irradiation. The calcination temperature and the codoping content influenced the photoactivity. The synergistic effect of boron and sulfur co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of codoped TiO2 was also confirmed, the photocatalytic activity of TiO2 remained above 91% of that of the fresh sample after being used four times. It was shown that the co-doped TiO2 could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants.

  10. Characterization of Diamond Like Carbon Film%DLC膜的表征方法

    Institute of Scientific and Technical Information of China (English)

    孙艳明

    2012-01-01

    DLC(Diamond like carbon)薄膜的表征方法很多,发展的很快,在实验中我们经常采用多种性能测试方法,综合分析,得到较可靠的信息。%Diamond like carbon film has many characterization,growing fast.In the experiment,we often use a variety of performance test,comprehensive analysis,to obtain more reliable information.

  11. Superlow friction behavior of diamond-like carbon coatings: Time and speed effects

    Science.gov (United States)

    Heimberg, J. A.; Wahl, K. J.; Singer, I. L.; Erdemir, A.

    2001-04-01

    The friction behavior of a diamond-like carbon coating was studied in reciprocating sliding contact at speeds from 0.01 to 5 mm/s, in dry nitrogen. "Superlow" friction coefficients of 0.003-0.008 were obtained in continuous sliding at the higher speeds (>1 mm/s). However, friction coefficients rose to values typical of diamond-like carbon in dry and ambient air (0.01-0.1) at lower speeds (sustained, suppressed, and recovered as a function of exposure time, demonstrating that duty cycle cannot be ignored when predicting performance of superlow friction coatings in devices.

  12. On the quantification of unbound hydrogen in diamond-like carbon-based thin films

    NARCIS (Netherlands)

    Pei, Y.T.; Chechenin, N.G.; Chernykh, P.N.; Turkin, A; Vainchtein, David; Hosson, J.Th.M. De

    2009-01-01

    This paper presents a new and straightforward approach to quantify the content of unbound hydrogen in diamond-like carbon-based films. In the case of TiC/a-C:H nanocomposite films it is shown that the content of unbound and bound hydrogen can be deconvoluted via thermal release and elastic recoil de

  13. Modification of rubber surface with hydrogenated diamond-like carbon thin films

    NARCIS (Netherlands)

    Pei, Y. T.; Bui, X. L.; De Hosson, J. Th. M.; Laudon, M; Romanowicz, B

    2009-01-01

    Thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) for reduction of friction and enhancement of wear resistance of dynamic rubber seals, by sputtering graphite targets in C(2)H(2)/Ar plasma. The wax removal and pre-deposition plas

  14. Flexible diamond-like carbon thin film coated rubbers: fundamentals and applications

    NARCIS (Netherlands)

    Pei, Y.T.

    2015-01-01

    Dynamic rubber seals are major sources of friction of lubrication systems and bearings, which may take up to 75% of the total friction. The solution we present is to coat rubbers with diamond-like carbon (DLC) thin film, by which the coefficient of friction is reduced to less than one tenth. Coating

  15. Flexible diamond-like carbon thin film coated on rubbers: fundamentals and applications

    NARCIS (Netherlands)

    Pei, Yutao

    2015-01-01

    Dynamic rubber seals are the major source of friction in lubrication systems and bearings, which may take up to 70% of the total friction. Our solution is to coat rubbers with flexible diamond-like carbon (DLC) thin film by which the coefficient of friction is reduced from above 1.5 to below 0.15. C

  16. Microstructure and tribological performance of diamond-like carbon films deposited on hydrogenated rubber

    NARCIS (Netherlands)

    Pal, J.P. van der; Martinez Martinez, Diego; Pei, Y.T.; Rudolf, P.; Hosson, J.Th.M. De

    2012-01-01

    In this paper, the microstructure and tribological performance of diamond-like carbon (DLC) films prepared by plasma chemical vapor deposition on hydrogenated nitrile butadiene rubbers (HNBR) are studied. Different negative variations of temperature during film growth were selected by proper changes

  17. Investigation on the formation of tungsten carbide in tungsten-containing diamond like carbon coatings

    NARCIS (Netherlands)

    Strondl, C.; Carvalho, N.M.; Hosson, J.Th.M. De; Kolk, G.J. van der

    2003-01-01

    A series of tungsten-containing diamond-like carbon (Me-DLC) coatings have been produced by unbalanced magnetron sputtering using a Hauzer HTC-1000 production PVD system. Sputtering from WC targets has been used to form W-C:H coatings. The metal to carbon ratio has been varied to study changes in th

  18. Deposition and characterization of hydrogenated diamond-like carbon thin films on rubber seals

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Hosson, J.Th.M. De

    2010-01-01

    Thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) for reduction of friction and enhancement of wear resistance of dynamic rubber seals. The wax removal and pre-deposition plasma treatment of HNBR substrates are proven to be cruci

  19. Bacterial Adhesion to Diamond-like Carbon as Compared to Stainless Steel

    NARCIS (Netherlands)

    Soininen, Antti; Tiainen, Veli-Matti; Konttinen, Yrjo T.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    2009-01-01

    Recent studies suggest that diamond-like carbon (DLC) coatings are suitable candidates for application on biomedical devices and implants, due to their high hardness, low friction, high wear and corrosion resistance, chemical inertness, smoothness, and tissue and blood compatibility. However, most s

  20. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Drera, G. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Mozzati, M.C. [CNISM, Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia (Italy); Colombi, P. [CSMT Gestione s.c.a.r.l, Via Branze 45, 25123 Brescia (Italy); Salvinelli, G.; Pagliara, S.; Visentin, D. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Sangaletti, L., E-mail: sangalet@dmf.unicatt.it [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy)

    2015-09-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al{sub 2}O{sub 3} substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al{sub 2}O{sub 3} substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions.

  1. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Seong Shan Yap

    2015-01-01

    Full Text Available Nanostructured diamond-like carbon (DLC films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional deposition. The Raman spectra of the films confirmed that the films were diamond-like/amorphous in nature. Although grown at an angle, ion energy of >35 eV was obtained at the off-axis position. This was proposed to be responsible for subplantation growth of sp3 hybridized carbon. The condensation of energetic clusters and oblique angle deposition correspondingly gave rise to the formation of nanostructured DLC in this study.

  2. Plasmonic Properties of Nanostructured Diamond Like Carbon/Silver Nanocomposite Films with Nanohole Arrays

    Directory of Open Access Journals (Sweden)

    Šarūnas MEŠKINIS

    2016-11-01

    Full Text Available Plasmonic properties of the diamond like carbon nanocomposite films with embedded silver nanoparticles with patterned nanohole arrays were analyzed in this study. The films were deposited by unbalanced reactive magnetron sputtering of silver target. Nanopatterning of the films was performed by combining electron beam nanolithography and ion beam etching techniques. Modeling of plasmonic properties was done using the classical Maxwell-Garnett theory. Modeling data and experimental results were in good accordance. Formation of the nanohole pattern in diamond like carbon films doped with silver resulted in decreased intensity of the surface plasmon resonance absorbance peak. No new absorbance or transmittance peaks were observed after the nanopattering. It was explained by extraordinary transmission effect in nanostructured DLC : Ag film films due to plasmon polariton resonance inside of the nanoholes.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13193

  3. Irradiation Effect of γ Rays on Diamond-Like Carbon Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Diamond-like carbon films, prepared by RF glow discharge on glasssubstrates, were irradiated by γ rays. The as-deposited and irradiated films were characterized by Raman spectroscopy, electrical resistivity, and infrared transmittance. It is shown that the irradiation of the γ rays can lead to the breaking of SP3C-H and SP2C-H bonds, slight increasing of SP3C-C bonds, and induced hydrogen recombination with H2 molecules, subsequently diffusing to the surface of the films. When the γ rays irradiation dose reached 10×104 Gy, the numbers of SP3C-H bonds was decreased by about 50%, the resistivity of irradiated DLC films was increased, and the diamond-like character of the films became more obvious. The structure of DLC films was modified when irradiated by γ rays. The irradiation mechanisms are briefly discussed.

  4. Diamond-like carbon formation for various positions by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Seong-Shan [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia)]. E-mail: ssyap@mmu.edu.my; Tou, Teck-Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia)

    2005-07-30

    Pulsed laser ablation of pyrolytic graphite target was carried out by an Nd-YAG laser with {lambda} = 1064 nm and fluence in the range of 1-10 J/cm{sup 2}. The plume was produced by focusing the laser beam and rastering over a 6.5 mm x 6.5 mm area on the graphite target. The substrates were placed at two positions: on-axis position facing the target and off-axis position in the target plane with 2 mm offset from the ablation site. Diamond-like carbon was formed on the substrates at both positions and on the ablated area as detected by Raman spectroscopy. Rough and granular surface was observed for the samples placed in the target plane and smooth diamond-like carbon films for the samples placed facing the target as observed by SEM and optical microscopy.

  5. Ultimate strength of crystals, nanoparticles and nano-ceramics having diamond-like structure

    Directory of Open Access Journals (Sweden)

    Dora Zakarian

    2016-11-01

    Full Text Available A mathematical model for calculating the interplanar interaction energy of diamond-like structure ceramics at free surface of stock material in pseudopotential method has been developed. We have considered uniaxial [111] deformation of materials and obtained the “inverse Hall–Petch’s law” for strength. It is shown that nanoceramics has higher strength than the nanoparticles included in its composition.

  6. A New Empirical Model for Estimation of sp3 Fraction in Diamond-Like Carbon Films

    Institute of Scientific and Technical Information of China (English)

    DAI Hai-Yang; WANG Li-Wu; JIANG Hui; HUANG Ning-Kang

    2007-01-01

    A new empirical model to estimate the content of sp3 in diamond-like carbon (DLC) films is presented, based on the conventional Raman spectra excited by 488nm or 514nm visible light for different carbons. It is found that bandwidth of the G peak is related to the sp3 fraction. A wider bandwidth of the G peak shows a higher sp3 fraction in DLC films.

  7. Julia sets and complex singularities in diamond-like hierarchical Potts models

    Institute of Scientific and Technical Information of China (English)

    QIAO; Jianyong

    2005-01-01

    We study the phase transition of the Potts model on diamond-like hierarchical lattices. It is shown that the set of the complex singularities is the Julia set of a rational mapping. An interesting problem is how are these singularities continued to the complex plane. In this paper, by the method of complex dynamics, we give a complete description about the connectivity of the set of the complex singularities.

  8. Optical and morphological properties of porous diamond-like-carbon films deposited by magnetron sputtering

    OpenAIRE

    Baroni, M. P. M. A.; Conceição, M. Ventura; Rosa, R. R.; Persson, C.; Arwin, H.; Silva Jr., E.F. da; Roman, L.S.; Nakamura, O.; I. Pepe; Silva, A. Ferreira da

    2006-01-01

    RESTRITO Porous diamond-like-carbon (PDLC) thin films obtained on silicon substrate by DC low energy magnetron sputtering have been investigated by photoluminescence, transmission and reflection spectroscopy, photoacoustic and spectroscopic ellipsometry. The absorption features observed for these films show similarities with those of porous silicon (PS) as well as in the performed gradient structural pattern classification of the SFM porosity, by means of the computational GPA-flyby enviro...

  9. Tricolor white emitting phosphor co-doped with Eu, Dy in SiO2 matrix

    Institute of Scientific and Technical Information of China (English)

    HU XiaoYun; FAN Jun; ZHANG DeKai; MA YiPing; BAI JinTao; REN ZhaoYu; HOU Xun

    2008-01-01

    A Eu, Dy co-doped SiO2 matrix, white emitting phosphor was prepared by the sol-gel technique. Strong red, green and blue emissions located at 618 nm, 573 nm and 400-550 nm were observed under UV laser excitation at room temperature. Such techniques as FT-IR and TGA-DSC were used to measure the microstructure of the luminescent material. The influence of the preparation techniques on the lu-minescence property of the Eu, Dy co-doped SiO2 matrix, such as anneal temperature, anneal time, dried atmosphere and the components of the matrix, was systematically studied, and the luminescence mechanism was interpreted. The red emission is the strongest when annealed at 750℃. However, blue emission appears when annealed at 700℃ and is the intensest at 900℃. For the samples dried in vac-uum, Eu3+ is more easily deoxidized to Eu2+ at lower temperatures, because the samples dried in the air compared with that dried in vacuum need higher temperature to form network structures. Only the SA and SAB matrix annealed at 850℃ had blue emission in the four matrices (SA, SAB, SB, S) xerogel and the emission in the SAB matrix was stronger than that in the SA matrix. This may be due to the eutectic phase formed by the oxide boron, alkaline oxide and alumina in the SAB matrix, which constructs network structures and stabilizes the emission center and enhances the blue emission.

  10. Photocatalysis Activity and Physicochemical Structure of Titanium Dioxide Co-doped with N and B

    Institute of Scientific and Technical Information of China (English)

    YAN Gui-Yang; ZHENG Liu-Ping; LIN Shen; YE Jin-Hua

    2008-01-01

    Titanium dioxide co-doped with N and B was prepared by sol-gel method. The photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light. Its physicochemical properties were characterized by means of UV-Vis DRS, XRD, FT-IR, and XPS. The results indicated that N-B-TiO2 has good activity to the photodegradation of MB. Its decolourizing rate of methylene blue solution goes up to 98.4% under the visible light irradiation with 5 h. The doping nitrogen forms N-Ti-O and boron primarily existing in oxide appears in the N-B-TiO2 sample. They response for visible light of TiO2 was also exploited.

  11. Study of facing target sputtered diamond-like carbon overcoats for hard disk drive media

    Energy Technology Data Exchange (ETDEWEB)

    Seet, H.L., E-mail: SEET_Hang_Li@dsi.a-star.edu.sg [Data Storage Institute, A*STAR Agency for Science, Technology and Research, 5 Engineering Drive 1, 117608 (Singapore); Ng, K.K.; Chen, X.Y. [Data Storage Institute, A*STAR Agency for Science, Technology and Research, 5 Engineering Drive 1, 117608 (Singapore); Yang, P. [Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, 117603 (Singapore); Shen, L. [Institute of Materials Research and Engineering, A*STAR Agency for Science, Technology and Research, 3 Research Link, 117602 (Singapore); Ji, R.; Ng, H.X.; Lim, C.B. [Data Storage Institute, A*STAR Agency for Science, Technology and Research, 5 Engineering Drive 1, 117608 (Singapore)

    2015-07-01

    The demand for higher areal density in the hard disk drive industry has fuelled extensive research efforts and focuses on magnetic spacing reduction. In the head–disk interface arena, one of the key focuses is to reduce the carbon overcoat thickness without compromising the overcoat protection performance. Thus, in the search for alternative methods to reduce the carbon overcoat thickness, the facing target sputtering (FTS) process for diamond-like carbon deposition has been investigated. The resulting properties have been presented in this paper, with comparison to conventional diamond-like carbon (DLC) layers by other processes such as chemical vapor deposition and reactive sputtering with nitrogen. X-ray reflectometry results showed that facing target sputtered DLC samples displayed significantly higher density, at 2.87 g/cm{sup 3}, as compared to hydrogenated and nitrogenated DLC samples. This was attributed to the higher sp{sup 3} content, as obtained by X-ray photoelectron spectroscopy measurements. As a result of the high sp{sup 3} content, hardness of the FTS deposited samples was higher than that of the hydrogenated and nitrogenated DLC samples. In addition, the surface energy of FTS samples was observed to be comparable, but lower, than that of nitrogenated DLC samples through contact angle measurements. Clearances comparable to that of conventional DLC samples were achieved and the sample disks were flyable. Wear performance tests also revealed more wear resistance for the FTS deposited DLC samples, but also higher head wear. - Highlights: • Facing target sputtered (FTS) diamond-like carbon (DLC) samples were studied. • FTS DLC samples possess higher density and hardness. • Surface conditions and flyability performances for FTS DLC samples were comparable. • Wear tests on FTS DLC samples showed lower media wear, but higher head wear.

  12. Panel 2 - properties of diamond and diamond-like-carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.; Clausing, R.E. [Oak Ridge National Lab., TN (United States); Ajayi, O.O.; Liu, Y.Y.; Purohit, A. [Argonne National Lab., IL (United States); Bartelt, P.F. [Deere & Co., Moline, IL (United States); Baughman, R.H. [Allied Signal, Morristown, NJ (United States); Bhushan, B. [Ohio State Univ., Columbus (United States); Cooper, C.V. [United Technologies Research Center, East Hartford, CT (United States); Dugger, M.T. [Sandia National Laboratories, Albuquerque, NM (United States); Freedman, A. [Aerodyne Research, Inc., Billerica, MA (United States); Larsen-Basse, J. [National Science Foundation, Washington, DC (United States); McGuire, N.R. [Caterpillar, Peoria, IL (United States); Messier, R.F. [Pennsylvania State Univ., University Park (United States); Noble, G.L.; Ostrowki, M.H. [John Crane, Inc., Morton Grove, IL (United States); Sartwell, B.D. [Naval Research Lab., Washington, DC (United States); Wei, R. [Colorado State Univ., Fort Collins (United States)

    1993-01-01

    This panel attempted to identify and prioritize research and development needs in determining the physical, mechanical and chemical properties of diamond and diamond-like-carbon films (D/DLCF). Three specific goals were established. They were: (1) To identify problem areas which produce concern and require a better knowledge of D/DLCF properties. (2) To identify and prioritize key properties of D/DLCF to promote transportation applications. (3) To identify needs for improvement in properties-measurement methods. Each of these goals is addressed subsequently.

  13. Preparation and Characteristics of Nanoscale Diamond-Like Carbon Films for Resistive Memory Applications

    Institute of Scientific and Technical Information of China (English)

    FU Di; XIE Dan; ZHANG Chen-Hui; ZHANG Di; NIU Jie-Bin; QIAN He; LIU Li-Tian

    2010-01-01

    @@ We propose diamond-like carbon(DLC)as the resistance change material for nonvolatile memory applications.Nanoscale DLC films are prepared by filtered cathodic vacuum arc technique and integrated to W/DLC/W structure devices.The deposited DLC film has a thickness of about 2O nm and high sp3 fraction content.Reversible bistable resistive switching from a high resistance state to a low resistance state,and vice versa,is observed under appropriate unipolar stimulation pulses.

  14. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...... obtained by means of a single short and intensive carbon plasma deposition pulse. The deposited DLC coating was characterized by micro-Raman spectroscopy measurements. The DLC coating process gave rise to wide potential possibilities in micro-devices manufacturing productions....

  15. Compilation of diamond-like carbon properties for barriers and hard coatings

    Energy Technology Data Exchange (ETDEWEB)

    Outka, D.A.; Hsu, Wen L.; Phillips, K.; Boehme, D.R.; Yang, N.Y.C.; Ottesen, D.K.; Johnsen, H.A.; Clift, W.M. [Sandia National Labs., Livermore, CA (United States); Headley, T.J. [Sandia National Labs., Albuquerque, NM (United States)

    1994-05-01

    Diamond-like carbon (DLC) is an amorphous form of carbon which resembles diamond in its hardness, lubricity, and resistance to chemical attack. Such properties make DLC of interest for use in barrier and hard coating technology. This report examines a variety of properties of DLC coatings. This includes examining substrates on which DLC coatings can be deposited; the resistance of DLC coatings to various chemical agents; adhension of DLC coatings; and characterization of DLC coatings by electron microscopy, FTIR, sputter depth profiling, stress measurements and nanoindentation.

  16. ANALYSIS OF THE FUNDAMENTAL CHARACTERISTICS OF DIAMOND-LIKE CRYSTALS AND LOW-DIMENSIONAL STRUCTURES

    Directory of Open Access Journals (Sweden)

    V.G.Litovchenko

    2004-01-01

    Full Text Available The principle has been developed for systematizing the diamond-like crystals with tetrahedral structure of the elementary cells and with valence chemical bonds, based on the calculation of the lattice constant. The approach proposed permits to predict basic parameters such as energy gap Eg, electron affinity (optical work function X, mechanical hardness H, melting temperature Tm, optical phonon frequency etc. These parameters have been calculated and the table is presented for a number of chemical compositions. For materials with mixed chemical bonds (valence and ionic the corrections can be calculated using Pouling electronegativity conception. The comparison with experiment demonstrates good agreement between the latter and the proposed procedure.

  17. Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)

    Energy Technology Data Exchange (ETDEWEB)

    Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

    2009-01-06

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  18. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  19. Advances in multi-spectral Diamond-Like Carbon (DLC) coatings

    Science.gov (United States)

    Keck, Jason; Karp, Christopher

    2014-05-01

    We discuss the development and applications of a new approach to Diamond-Like Carbon (DLC) coating that provides the durability of traditional DLC coatings, with the addition of significantly more transmission at visible wavelengths and greater transmission in the IR. We developed a deposition system design that incorporates multiple coating technologies, allowing for multiple material design approaches. This has enabled the manufacture of DLC coatings with improved extended spectral properties, suitable for applications in which the coating must withstand airborne particulate impacts, corrosive fluids, environmental extremes, and abrasive physical handling, while offering better than typical transmission in the visible or infrared wavelength regions, or both.

  20. Modulation polarimetry of full internal reflection, broken by diamond-like films

    Directory of Open Access Journals (Sweden)

    Maksimenko L. S.

    2013-02-01

    Full Text Available This article presents research results on diamond-like films produced under different technological conditions. The parameter ρ — polarization difference — has been introduced. It has been found from spectral features of the parameter ρ that the interaction of electromagnetic radiation with the electronic system of specimens, which occurs in the used spectral range, consists of local and polariton surface resonances, differing in frequencies and times of relaxations. The autors concluded that the correlation in resonance intensity is defined by the structural characteristics of the specimens. These results show that modulation polarimetry is a perspective technique for diagnostics of the structural homogeneity of composite nanocluster films.

  1. Study of relationship between structure and transmittance of diamond-like carbon (DLC) films

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this paper, the transparent hard diamond-like carbon (DLC) films were deposited on glass substrate by magnetic confined radio-frequency plasma chemical vapor deposition. The structure of films was studied by Raman spectra and X-ray photoelectron spectra (XPS), the transmittance of films by Spectrophotometer. The mechanism of the influence of films structure on transmittance of the films was discussed. The results show that the thickness of films was lower than 100nm, and the transmittance was over 90% in 380-780 nm region. Discussion in theory on the influence of film structure on transmittance was correspondence to experiment results.

  2. Absence of dipolar ordering in Co doped CuO

    Science.gov (United States)

    Chaudhary, N. Vijay Prakash; Murthy, J. Krishna; Venimadhav, A.

    2016-12-01

    Polycrystalline CuO samples with Co doping were prepared by solid state method with flowing oxygen condition and examined their structural and multiferroic properties. Structural studies have confirmed single phase monoclinic crystal structure of all samples, however, in Co doped samples a decrease in volume with an increase in monoclinic distortion is found. For pristine sample, temperature dependent magnetization has confirmed two antiferromagnetic (AFM) transitions at 213 K and 230 K and frequency independent dielectric peaks at these AFM transitions suggesting the ferroelectric nature. Magnetization of the Co doped samples has showed a marginal increase in ordering temperature of the high-temperature AFM transition and decrease in low temperature AFM ordering temperature. Further, doped samples have shown giant dielectric constant with no signature of ferroelectricity. The X-ray photoelectric spectroscopy study has revealed multiple valance states for both Co and Cu in the doped samples that simultaneously explain the giant dielectric constant and suppression of ferroelectric order.

  3. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  4. Dual-ion-beam deposition of carbon films with diamond-like properties

    Science.gov (United States)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1985-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.

  5. Architectural design of diamond-like carbon coatings for long-lasting joint replacements.

    Science.gov (United States)

    Liu, Yujing; Zhao, Xiaoli; Zhang, Lai-Chang; Habibi, Daryoush; Xie, Zonghan

    2013-07-01

    Surface engineering through the application of super-hard, low-friction coatings as a potential approach for increasing the durability of metal-on-metal replacements is attracting significant attention. In this study innovative design strategies are proposed for the development of diamond-like-carbon (DLC) coatings against the damage caused by wear particles on the joint replacements. Finite element modeling is used to analyze stress distributions induced by wear particles of different sizes in the newly-designed coating in comparison to its conventional monolithic counterpart. The critical roles of architectural design in regulating stress concentrations and suppressing crack initiation within the coatings is elucidated. Notably, the introduction of multilayer structure with graded modulus is effective in modifying the stress field and reducing the magnitude and size of stress concentrations in the DLC diamond-like-carbon coatings. The new design is expected to greatly improve the load-carrying ability of surface coatings on prosthetic implants, in addition to the provision of damage tolerance through crack arrest.

  6. Surface characterization and orientation interaction between diamond- like carbon layer structure and dimeric liquid crystals

    Science.gov (United States)

    Naradikian, H.; Petrov, M.; Katranchev, B.; Milenov, T.; Tinchev, S.

    2017-01-01

    Diamond-like carbon (DLC) and amorphous carbon films are very promising type of semiconductor materials. Depending on the hybridization sp2/sp3 ratio, the material’s band gap varies between 0.8 and 3 eV. Moreover carbon films possess different interesting for practice properties: comparable to the Silicon, Diamond like structure has 22-time better thermal conductivity etc. Here we present one type of implementation of such type nanostructure. That is one attempt for orientation of dimeric LC by using of pre-deposited DLC layer with different ratio of sp2/sp3 hybridized carbon content. It could be expected a pronounced π1-π2interaction between s and p orbital levels on the surface and the dimeric ring of LC. We present comparison of surface anchoring strengths of both orientation inter-surfaces DLC/dimeric LC and single wall carbon nanotubes (SWCNT)/dimeric LC. The mechanism of interaction of dimeric LC and activated surfaces with DLC or SWCNT will be discussed. In both cases we have π-π interaction, which in combination with hydrogen bonding, typical for the dimeric LCs, influence the LC alignment. The Raman spectroscopy data evidenced the presence of charge transfer between contacting hexagonal rings of DLC and the C = O groups of the LC molecules.

  7. Influence of thermal heating on diamond-like carbon film properties prepared by filtered cathodic arc

    Energy Technology Data Exchange (ETDEWEB)

    Khamnualthong, N., E-mail: nattapornkh@gmail.com [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); Western Digital Thailand Co. Ltd, Ayutthaya, 13160 (Thailand); Siangchaew, K. [Western Digital Thailand Co. Ltd, Ayutthaya, 13160 (Thailand); Limsuwan, P. [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand)

    2013-10-01

    Tetrahedral amorphous diamond-like carbon (ta-DLC) films were deposited on magnetic recording heads using the filtered cathodic arc method. The deposited film thickness was on the order of several nanometers. The DLC films were then annealed to 100 °C–300 °C for 30 and 60 min, and the structure of the ta-DLC films was investigated using Raman spectroscopy, where the gross changes were observed in the Raman D and G peaks. Detailed interpretation concluded that there was sp{sup 2} clustering as a function of temperature, and there was no sp{sup 3}-to-sp{sup 2} conversion after heating up to 300 °C. Furthermore, X-ray photoelectron spectroscopy suggested that oxidation of both the ta-DLC film and the adhesion layer occurs at 300 °C. Additionally, more film wear was observed with heating as measured by a nanoindenter. - Highlights: • Tetrahedral-amorphous diamond-like carbon (ta-DLC) by filtered cathodic arc • ta-DLC used in magnetic recording head as head overcoat • ta-DLC thickness range of less than 2 nm • ta-DLC property dependence on heating • Temperature effect range of up to 300 °C.

  8. Kinetics of diamond-like film growth using filament-assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gorsuch, G.; Jin, Y.; Ingle, N.K.; Mountziaris, T.J.; Yu, W.Y.; Petrou, A. [State Univ. of New York, Buffalo, NY (United States)

    1995-08-01

    A detailed kinetic model of diamond-like film growth from methane diluted in hydrogen using low-pressure, filament-assisted chemical vapor deposition (FACVD) has been developed. The model includes both gas-phase and surface reactions. The surface kinetics include adsorption of CH{sub 3}{center_dot} and H{center_dot}, abstraction reactions by gas phase radicals, desorption, and two pathways for diamond (sp{sup 3}) and graphitic carbon (sp{sup 2}) growth. It is postulated that adsorbed CH{sub 2}{center_dot} species are the major film precursors. The proposed kinetic model was incorporated into a transport model describing flow, heat and mass transfer in stagnation flow FACVD reactors. Diamond-like films were deposited on preceded Si substrates in such a reactor as a pressure of 26 Torr, inlet gas composition ranging from 0.5% to 1.5% methane in hydrogen and substrate temperatures ranging from 600 to 950 C. The best films were obtained at low methane concentrations and substrate temperature of 700 C. The films were characterized using Scanning Electron Microscopy (SEM) and Raman spectroscopy. Observations from their experiments and growth rates, compositions and stable species distributions in the gas phase. It is the first complete model of FACVD that includes gas-phase and surface kinetics coupled with transport phenomena.

  9. Characterization of the Diamond-like Carbon Based Functionally Gradient Film

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Diamond-like carbon coatings have been used as solid lubricating coatings in vacuum technology for their goodphysical and chemical properties. In this paper, the hybrid technique of unbalanced magnetron sputtering and plasmaimmersion ion implantation (PIll) was adopted to fabricate diamond-like carbon-based functionally gradient film,N/TiN/Ti(N,C)/DLC, on the 304 stainless steel substrate. The film was characterized by using Raman spectroscopyand glancing X-ray diffraction (GXRD), and the topography and surface roughness of the film was observed usingAFM. The mechanical properties of the film were evaluated by nano-indentation. The results showed that the surfaceroughness of the film was approximately 0.732 nm. The hardness and elastic modulus, fracture toughness andinterfacial fracture toughness of N/TiN/Ti(N,C)/DLC functionally gradient film were about 19.84 GPa, 190.03 GPa,3.75 MPa.m1/2 and 5.68 MPa@m1/2, respectively. Compared with that of DLC monolayer and C/TiC/DLC multilayer,this DLC gradient film has better qualities as a solid lubricating coating.

  10. Photocatalytic enhancement of TiO{sub 2} by B and Zr co-doping and modulation of microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Chengxin; Gong, Yinyan, E-mail: ygong2007@gmail.com; Wu, Yitao; Liu, Jiaqi; Zhang, Zhen; Li, Can; Niu, Lengyuan, E-mail: niulengyuan@163.com

    2016-08-30

    Graphical abstract: B and Zr codoped sample was prepared by a sol–gel method, which exhibits the best photocatalytic performance on degradation of methylene blue solution under a simulated solar light source in comparison with undoped and singly doped TiO{sub 2} nanocrystals. The enhancement was tentatively attributed to: (1) The incorporation of interstitial boron dopants creates oxygen vacancies (Ov··) and reduce Ti{sup 4+} to Ti{sup 3+} to form [Ov··-Ti{sup 3+}]{sup +}, which traps the carriers and prolongs carrier lifetime; (2) Zr{sup 4+} ions replace Ti{sup 4+} ions and form impurity levels, which could improve visible light response, and (3) reduction of average crystallite size. - Highlights: • B and Zr co-doping can effectively improve the visible-light photocatalytic activity of TiO{sub 2} by more than twice. • XRD, Raman, and XPS measurements demonstrated that all the samples are anatase phase of TiO{sub 2} and Zr{sup 4+} ions replace the Ti{sup 4+} ions while the B{sup 3+} ions occupy the interstitial sites. • The incorporation of interstitial boron dopants creates oxygen vacancies (Ov··) and reduce Ti{sup 4+} to Ti{sup 3+} to form [Ov··-Ti{sup 3+}]{sup +}, which traps the carriers and prolongs carrier lifetime. • Zr{sup 4+} ions replace Ti{sup 4+} ions and form impurity levels, which could improve visible light response. • The co-doped samples are benefited from both B interstitials and Zr substitutes. - Abstract: Visible-light photodegradation test revealed that B and Zr co-doping can raise the photocatalytic ability of the undoped TiO{sub 2} by a fold. XRD crystallography and Raman phonon spectroscopy measurements suggest that the Zr{sup 4+} ions replace the Ti{sup 4+} ions while the B{sup 3+} ions occupy the interstitial sites, expanding the unit-cell volume and reducing crystallite size. The incorporation of interstitial boron dopants creates oxygen vacancies (Ov··) and reduce Ti{sup 4+} to Ti{sup 3+} to form [Ov··-Ti{sup 3

  11. Photoluminescence properties of Co-doped ZnO nanocrystals

    DEFF Research Database (Denmark)

    Lommens, P.; Smet, P.F.; De Mello Donega, C.

    2006-01-01

    We performed photoluminescence experiments on colloidal, Co -doped ZnO nanocrystals in order to study the electronic properties of Co in a ZnO host. Room temperature measurements showed, next to the ZnO exciton and trap emission, an additional emission related to the Co dopant. The spectral posit...

  12. New nanoforms of carbon and boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Pokropivny, V V [Institute for Problems of Materials Science of National Academy of Sciences of Ukraine (Ukraine); Ivanovskii, A L [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation)], e-mail: Ivanovskii@ihim.uran.ru

    2008-10-31

    Data on new carbon nanostructures including those based on fullerenes, nanotubes as well monolithic diamond-like nanoparticles, nanofibres, various nanocomposites, etc., published in the last decade are generalised. The experimental and theoretical data on their atomic and electronic structures, the nature of chemical bonds and physicochemical properties are discussed. These data are compared with the results obtained in studies of nanoforms of boron nitride, an isoelectronic analogue of carbon. Potential fields of applications of the new nanostructures are considered.

  13. New nanoforms of carbon and boron nitride

    Science.gov (United States)

    Pokropivny, V. V.; Ivanovskii, A. L.

    2008-10-01

    Data on new carbon nanostructures including those based on fullerenes, nanotubes as well monolithic diamond-like nanoparticles, nanofibres, various nanocomposites, etc., published in the last decade are generalised. The experimental and theoretical data on their atomic and electronic structures, the nature of chemical bonds and physicochemical properties are discussed. These data are compared with the results obtained in studies of nanoforms of boron nitride, an isoelectronic analogue of carbon. Potential fields of applications of the new nanostructures are considered.

  14. Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2015-01-01

    Full Text Available Structure and properties of Cu-doped diamond-like carbon films (DLC were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.% on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.

  15. Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaowei; Ke, Peiling; Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-01-15

    Structure and properties of Cu-doped diamond-like carbon films (DLC) were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.%) on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.

  16. Tribological Characteristic of Diamond-like Carbon Films Investigated by Lateral Force Microscope

    Institute of Scientific and Technical Information of China (English)

    DINGJian-ning; ZHUShou-xing; FANZhen; LIChang-sheng; CAILan; YANGJi-chang

    2004-01-01

    Tribological characteristic of different thick diamond- like carbon (DLC) fihns was stymied. A geometrical method was applied to calibrate the cantilever spring constant and to calculate tbe normal and lateral forces, respectively. Experimental results show that the lateral force under different applied loads is proportional to the normal force for the DLC films with the thickness of 153.4nm and 64.9nm. However, for the thickness of 4.48nm and 2.78nm DLC films, lateral force is nonlinear to normal force, which is opposed to the Amonton's law. The single asperity regime and the DMT model were put forward to predict the possible nanotribological mecb-anism between the probe and DLC film.

  17. Properties of Diamond-Like Carbon Films Synthesized by Dual-Target Unbalanced Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    LIU Cui; LI Guo-Qing; GOU Wei; MU Zong-Xin; ZHANG Cheng-Wu

    2004-01-01

    @@ Smooth, dense and uniform diamond-like carbon films (DLC films) for industrial applications have successfully been prepared by dual-target unbalanced magnetron sputtering and the DLC characteristics of the films are confirmed by Raman spectra. It is found that the sputtering current of target plays an important role in the DLC film deposition. Deposition rate of 3.5μm/h is obtained by using the sputtering current of 30 A. The friction coefficient of the films is 0.2-0.225 measured by using a pin-on-disc microtribometer. The structure of the films tends to have a growth of sp3 bonds content at high sputtering current. The compressive residual stress in the films increases with the increasing sputtering current of the target.

  18. Diamond-Like Carbon Film Deposition Using DC Ion Source with Cold Hollow Cathode

    Directory of Open Access Journals (Sweden)

    E. F. Shevchenko

    2014-01-01

    Full Text Available Carbon diamond-like thin films on a silicon substrate were deposited by direct reactive ion beam method with an ion source based on Penning direct-current discharge system with cold hollow cathode. Deposition was performed under various conditions. The pressure (12–200 mPa and the plasma-forming gas composition consisting of different organic compounds and hydrogen (C3H8, CH4, Si(CH32Cl2, H2, the voltage of accelerating gap in the range 0.5–5 kV, and the substrate temperature in the range 20–850°C were varied. Synthesized films were researched using nanoindentation, Raman, and FTIR spectroscopy methods. Analysis of the experimental results was made in accordance with a developed model describing processes of growth of the amorphous and crystalline carbon materials.

  19. Role of atomic transverse migration in growth of diamond-like carbon films

    Institute of Scientific and Technical Information of China (English)

    Ma Tian-Bao; Hu Yuan-Zhong; Wang Hui

    2007-01-01

    The growth of diamond-like carbon (DLC) films is studied using molecular dynamics simulations. The effect of impact angle on film structure is carefully studied, which shows that the transverse migration of the incident atoms is the main channel of film relaxation. A transverse-migration-induced film relaxation model is presented to elucidate the process of film relaxation which advances the original model of subplantation. The process of DLC film growth on a rough surface is also investigated, as well as the evolution of microstructure and surface morphology of the film. A preferential-to-homogeneous growth mode and a smoothing of the film are observed, which are due to the transverse migration of the incident atoms.

  20. Fabrication of Diamond-like Carbon Films by Ion Assisted Middle Frequency Unbalanced Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi-chen; SUN Shao-ni; ZHOU Yi; MA Sheng-ge; BA De-chun

    2006-01-01

    Diamond-like carbon (DLC) films are deposited by the Hall ion source assisted by the mid-frequency unbalanced magnetron sputtering technique. The effects of the substrate voltage bias, the substrate temperature, the Hall discharging current and the argon/nitrogen ratio on the DLC film's performance were studied. The experimental results show that the film's surface roughness, the hardness and the Young's modulus increase firstly and then decrease with the bias voltage incrementally increases. Also when the substrate temperature rises, the surface roughness of the film varies slightly, but its hardness and Young's modulus firstly increase followed by a sharp decrease when the temperature surpassing 120 ℃. With the Hall discharging current incrementally rising, the hardness and Young's modulus of the film decrease and the surface roughness of the film on 316L stainless steel firstly decreased and then remains constant.

  1. Electron-beam induced diamond-like-carbon passivation of plasmonic devices

    Science.gov (United States)

    Balaur, Eugeniu; Sadatnajafi, Catherine; Langley, Daniel; Lin, Jiao; Kou, Shan Shan; Abbey, Brian

    2015-12-01

    Engineered materials with feature sizes on the order of a few nanometres offer the potential for producing metamaterials with properties which may differ significantly from their bulk counterpart. Here we describe the production of plasmonic colour filters using periodic arrays of nanoscale cross shaped apertures fabricated in optically opaque silver films. Due to its relatively low loss in the visible and near infrared range, silver is a popular choice for plasmonic devices, however it is also unstable in wet or even ambient conditions. Here we show that ultra-thin layers of Diamond-Like Carbon (DLC) can be used to prevent degradation due to oxidative stress, ageing and corrosion. We demonstrate that DLC effectively protects the sub-micron features which make up the plasmonic colour filter under both atmospheric conditions and accelerated aging using iodine gas. Through a systematic study we confirm that the nanometre thick DLC layers have no effect on the device functionality or performance.

  2. Optical and Electrical Properties Evolution of Diamond-Like Carbon Thin Films with Deposition Temperature

    Institute of Scientific and Technical Information of China (English)

    DING Xu-Li; LI Qing-Shan; KONG Xiang-He

    2009-01-01

    Optical and electrical properties of diamond-like carbon (DLC) films deposited by pulsed laser ablation of graphite target at different substrate temperatures are reported. By varying the deposition temperature from 400 to 25℃, the film optical transparency and electrical resistivity increase severely. Most importantly, the transparency and resistivity properties of the DLC films can be tailored to approaching diamond by adjusting the deposition temperature, which is critical to many applications. DLC films deposited at low temperatures show excellent optical transmittance and high resistivity. Over the same temperature regime an increase of the spa bonded C content is observed using visible Raman spectroscopy, which is responsible for the enhanced transparency and resistivity properties.

  3. Diamond like carbon coatings deposited by microwave plasma CVD: XPS and ellipsometric studies

    Indian Academy of Sciences (India)

    R M Dey; M Pandey; D Bhattacharyya; D S Patil; S K Kulkarni

    2007-12-01

    Diamond-like carbon (DLC) films were deposited by microwave assisted chemical vapour deposition system using d.c. bias voltage ranging from –100 V to –300 V. These films were characterized by X-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry techniques for estimating 3/2 ratio. The 3/2 ratio obtained by XPS is found to have an opposite trend to that obtained by spectroscopic ellipsometry. These results are explained using sub-plantation picture of DLC growth. Our results clearly indicate that the film is composed of two different layers, having entirely different properties in terms of void percentage and 3/2 ratio. The upper layer is relatively thinner as compared to the bottom layer.

  4. Oxygen plasma etching of silver-incorporated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, F.R., E-mail: fernanda@las.inpe.b [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil); Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Bonetti, L.F. [Clorovale Diamantes Industria e Comercio Ltda, Estr. do Torrao de Ouro, 500-Sao Jose dos Campos, 12229-390, SP (Brazil); Pessoa, R.S.; Massi, M. [Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Santos, L.V.; Trava-Airoldi, V.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil)

    2009-08-03

    Diamond-like carbon (DLC) film as a solid lubricant coating represents an important area of investigation related to space devices. The environment for such devices involves high vacuum and high concentration of atomic oxygen. The purpose of this paper is to study the behavior of silver-incorporated DLC thin films against oxygen plasma etching. Silver nanoparticles were produced through an electrochemical process and incorporated into DLC bulk during the deposition process using plasma enhanced chemical vapor deposition technique. The presence of silver does not affect significantly DLC quality and reduces by more than 50% the oxygen plasma etching. Our results demonstrated that silver nanoparticles protect DLC films against etching process, which may increase their lifetime in low earth orbit environment.

  5. In Vitro Durability - Pivot bearing with Diamond Like Carbon for Ventricular Assist Devices

    CERN Document Server

    de Sá, Rosa Corrêa Leoncio; Leão, Tarcísio Fernandes; da Silva, Evandro Drigo; da Fonseca, Jeison Willian Gomes; da Silva, Bruno Utiyama; Leal, Edir Branzoni; Moro, João Roberto; de Andrade, Aron José Pazin; Bock, Eduardo Guy Perpétuo

    2015-01-01

    Institute Dante Pazzanese of Cardiology (IDPC) develops Ventricular Assist Devices (VAD) that can stabilize the hemodynamics of patients with severe heart failure before, during and/or after the medical practice; can be temporary or permanent. The ADV's centrifugal basically consist of a rotor suspended for system pivoting bearing; the PIVOT is the axis with movement of rotational and the bearing is the bearing surface. As a whole system of an implantable VAD should be made of long-life biomaterial so that there is no degradation or deformation during application time; surface modification techniques have been widely studied and implemented to improve properties such as biocompatibility and durability of applicable materials. The Chemical Vapour Deposition technique allows substrates having melting point higher than 300 {\\deg}C to be coated, encapsulated, with a diamond like carbon film (DLC); The test simulated the actual conditions in which the system of support remains while applying a ADV. The results hav...

  6. Velocity dependence of coefficient of friction of diamond like carbon coatings

    Science.gov (United States)

    Sharma, Neha; Kumar, Niranjan; Dash, S.; Tyagi, A. K.

    2012-06-01

    The velocity dependence of coefficient of friction (CoF) of hydrogen-free and hydrogenated Diamond Like Carbon (DLC) coatings was studied on sliding. In low velocity regime, CoF of hydrogen-free DLC was found to increase which may be linked to a thermally activated pre-mature breaking of the surface asperities. However, CoF of hydrogenated DLC was found to decrease due to formation of graphite like lubricious layer and sustainability of cross-linked network of H-bonded atoms. In high velocity regime, CoF of hydrogen free DLC increases marginally due to an inefficient transfer of thermal energy while that of hydrogenated DLC increases due to rapid formation and rupture of atomic bonds.

  7. Mechanical stability of the diamond-like carbon film on nitinol vascular stents under cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Jong [Department of Materials Science and Engineering, Seoul National University, Kwan-ak, Seoul 151-744 (Korea, Republic of); Advanced Functional Materials Research Center, Korea Institute of Science and Technology, Seung-buk, Seoul 136-791 (Korea, Republic of); Moon, Myoung-Woon [Future Fusion Technology Laboratory, Korea Institute of Science and Technology, Seung-buk, Seoul 136-791 (Korea, Republic of)], E-mail: mwmoon@kist.re.kr; Lee, Kwang-Ryeol [Future Fusion Technology Laboratory, Korea Institute of Science and Technology, Seung-buk, Seoul 136-791 (Korea, Republic of); Seok, Hyun-Kwang; Han, Seung-Hee [Advanced Functional Materials Research Center, Korea Institute of Science and Technology, Seung-buk, Seoul 136-791 (Korea, Republic of); Ryu, Jae-Woo; Shin, Kyong-Min [Taewoong Medical Inc. Ltd, Gimpo, Gyeonggi 415-873 (Korea, Republic of); Oh, Kyu Hwan [Department of Materials Science and Engineering, Seoul National University, Kwan-ak, Seoul 151-744 (Korea, Republic of)

    2008-12-01

    The mechanical stability of diamond-like carbon (DLC) films coated on nitinol vascular stents was investigated under cyclic loading condition by employing a stent crimping system. DLC films were coated on the vascular stent of a three dimensional structure by using a hybrid ion beam system with rotating jig. The cracking or delamination of the DLC coating occurred dominantly near the hinge connecting the V-shaped segments of the stent where the maximum strain was induced by a cyclic loading of contraction and extension. However the failures were significantly suppressed as the amorphous Si (a-Si) buffer layer thickness increased. Interfacial adhesion strength was estimated from the spalled crack size in the DLC coating for various values of the a-Si buffer layer thickness.

  8. Kinetics and thermodynamics of human serum albumin adsorption on silicon doped diamond like carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Mukhtar H., E-mail: ahmed-m@email.ulster.ac.uk; Byrne, John A.; McLaughlin, James

    2015-03-15

    To gain a better understanding of protein adsorption onto biomaterial surfaces is required for the control of biocompatibility and bioactivity. Various samples of diamond like carbon (DLC) and silicon-doped DLC were synthesised using plasma enhanced chemical vapour deposition (PECVD). The effects of surface morphology on the interaction of human serum albumin (HSA) with doped and undoped DLC films was investigated using spectroscopic ellipsometry (SE) and other surface analysis techniques. The results highlighted an increase in both contact angle and hydrophobicity with increasing silicon dopant levels. A reduction on the contact angle values. After adsorption of HSA, the films showed a reduction in the contact angle with a significant change in the cosΔ and this gap increased with increasing surface coverage of HSA. The adsorption kinetics of HSA were also investigated and revealed that the maximum adsorption occurred at pH 5.0 and the process involved chemisorption. The experimental isotherm data were analysed using the Langmuir and Freundlich‎ models. The amount of HSA adsorbed increased with contact time and reached saturation ‎after 30 min. The adsorption ‎process was found to be pseudo first order with respect to the bulk concentration and was dependent on both the concentration of protein and surface characteristics of the samples. The amount of adsorbed HSA was higher with higher levels of silicon doping of the DLC. Therefore, doping DLC may provide an approach to controlling the protein adsorption. - Graphical abstract: The average thickness layer of HSA measurement onto surfaces of DLC and Si-DLC. - Highlights: • Diamond Like Carbon (DLC) and Silicon doped DLC were synthesised and characterised. • Si-DLC increases the hydrophobicity and decreases the surface free energy. • Adsorption study using human serum albumin (HSA). • The adsorbed amount of HSA increases with increasing of Silicon content DLC. • Adsorption process follow pseudo

  9. Modification of diamond-like carbon films by nitrogen incorporation via plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Flege, S., E-mail: flege@ca.tu-darmstadt.de [Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany); Hatada, R.; Hoefling, M.; Hanauer, A.; Abel, A. [Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany); Baba, K. [Industrial Technology Center of Nagasaki, Applied Technology Division, Omura, Nagasaki 856-0026 (Japan); Ensinger, W. [Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany)

    2015-12-15

    Highlights: • Nitrogen containing diamond-like carbon films were prepared by a plasma ignited by a high voltage. • Variation of preparation method (N{sub 2} implantation, N{sub 2} and C{sub 2}H{sub 4} co-deposition). • Maximum nitrogen content similar for co-deposition and implantation. • Electrical resistivity decreases for small nitrogen contents, increases again for higher contents. - Abstract: The addition of nitrogen to diamond-like carbon films affects properties such as the inner stress of the film, the conductivity, biocompatibility and wettability. The nitrogen content is limited, though, and the maximum concentration depends on the preparation method. Here, plasma immersion ion implantation was used for the deposition of the films, without the use of a separate plasma source, i.e. the plasma was generated by a high voltage applied to the samples. The plasma gas consisted of a mixture of C{sub 2}H{sub 4} and N{sub 2}, the substrates were silicon and glass. By changing the experimental parameters (high voltage, pulse length and repetition rate and gas flow ratio) layers with different N content were prepared. Additionally, some samples were prepared using a DC voltage. The nitrogen content and bonding was investigated with SIMS, AES, XPS, FTIR and Raman spectroscopy. Their influence on the electrical resistivity of the films was investigated. Depending on the preparation conditions different nitrogen contents were realized with maximum contents around 11 at.%. Those values were compared with the nitrogen concentration that can be achieved by implantation of nitrogen into a DLC film.

  10. Diamond-like nanocomposite coatings for LIGA-fabricated nickel alloy parts.

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Somuri V.; Scharf, Thomas W.

    2005-03-01

    A commercial plasma enhanced chemical vapor deposition (PECVD) technique with planetary substrate rotation was used to apply a thin (200-400 nm thick) conformal diamond-like carbon (DLC) coating (known as a diamond-like nanocomposite (DLN)) on LIGA fabricated Ni-Mn alloy parts. The PECVD technique is known to overcome the drawbacks associated with the line-of-sight nature of physical vapor deposition (PVD) and substrate heating inherent with traditional chemical vapor deposition (CVD). The purpose of the present study is to characterize the coverage, adhesion, and tribological (friction and wear) behavior of DLN coatings applied to planar and sidewall surfaces of small featured LIGA Ni-Mn fabricated parts, e.g. 280 {micro}m thick sidewalls. Friction and wear tests were performed in dry nitrogen, dry air, and air with 50% RH at Hertzian contact pressures ranging from 0.3 to 0.6 GPa. The friction coefficient of bare Ni-Mn alloy was determined to be 0.9. In contrast, low friction coefficients ({approx}0.02 in dry nitrogen and {approx}0.2 in 50% RH air) and minimal amount of wear were exhibited for the DLN coated LIGA Ni-Mn alloy parts and test coupons. This behavior was due to the ability of the coating to transfer to the rubbing counterface providing low interfacial shear at the sliding contact; resultantly, coating one surface was adequate for low friction and wear. In addition, a 30 nm thick titanium bond layer was determined to be necessary for good adhesion of DLN coating to Ni-Mn alloy substrates. Raman spectroscopy and cross-sectional SEM with energy dispersive x-ray analysis revealed that the DLN coatings deposited by the PECVD with planetary substrate rotation covered both the planar and sidewall surfaces of LIGA fabricated parts, as well as narrow holes of 300 {micro}m (0.012 inch) diameter.

  11. Flexible diamond-like carbon films on rubber : On the origin of self-acting segmentation and film flexibility

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Pal, J.P. van der; Martinez-Martinez, D.; Zhou, X.B.; Hosson, J.Th.M. De

    2012-01-01

    This paper reports an experimental approach to deposit flexible diamond-like carbon (DLC) films on hydrogenated nitrile butadiene rubber (HNBR) with plasma-assisted chemical vapor deposition and an analytical model to describe the self-segmentation mechanism of the DLC films. By making use of the su

  12. Flexible diamond-like carbon films on rubber : Friction and the effect of viscoelastic deformation of rubber substrates

    NARCIS (Netherlands)

    Pei, Y. T.; Martinez-Martinez, D.; van der Pal, J. P.; Bui, X. L.; Zhou, X. B.; De Hosson, J. Th. M.

    2012-01-01

    This paper focuses on the frictional behavior of flexible diamond-like carbon (DLC) film-coated hydrogenated nitrile butadiene rubber. By making use of the substantial thermal mismatch between DLC film and rubber substrate, a dense network of cracks forms in the DLC films and contributes to flexibil

  13. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    of cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved....

  14. Adhesion improvement of hydrogenated diamond-like carbon thin films by pre-deposition plasma treatment of rubber substrate

    NARCIS (Netherlands)

    Bui, X.L.; Pei, Y.T.; Mulder, E.D.G.; Hosson, J.Th.M. De

    2009-01-01

    For reduction of friction and enhancement of wear resistance of dynamic rubber seals, thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) via magnetron-enhanced plasma chemical vapor deposition (ME-PCVD). Pre-deposition plasma trea

  15. Influence of load on the dry frictional performance of alkyl acrylate copolymer elastomers coated with diamond-like carbon films

    NARCIS (Netherlands)

    Martinez, D. Martinez; Nohava, Jiri; De Hosson, J. Th. M.

    2015-01-01

    In this work, the influence of applied load on the frictional behavior of alkyl acrylate copolymer elastomers coated with diamond- like carbon films is studied at dry conditions. The performance of two coatings with very different microstructure (patched vs. continuous film) is compared with the unc

  16. On the nature of the coefficient of friction of diamond-like carbon films deposited on rubber

    NARCIS (Netherlands)

    Martinez-Martinez, D.; van der Pal, J. P.; Schenkel, M.; Shaha, K. P.; Pei, Y. T.; De Hosson, J. Th M.

    2012-01-01

    In this paper, the nature of the coefficient of friction (CoF) of diamond-like carbon (DLC)-protected rubbers is studied. The relative importance of the viscoelastic and adhesive contributions to the overall friction is evaluated experimentally by modifying the contact load and the adhesive strength

  17. Yellow luminescence of co-doped gadolinium oxyhydroxide

    Institute of Scientific and Technical Information of China (English)

    Hiroaki Samata; Shungo Imanaka; Masashi Hanioka; Tadashi C Ozawa

    2015-01-01

    Crystals of co-doped gadolinium oxyhydroxide (GdOOH), Gd0.98Eu0.02−xTbxOOH and Gd1−y−zDyyBizOOH, were synthe-sized by a flux method. The color coordinates in the Commission Internationale de I’Eclairage (CIE) chromaticity diagram of Gd0.98Eu0.02−xTbxOOH, obtained under 254 nm irradiation, shifted along a straight line with the changing values ofxto include the yellow region. The CIE coordinates of Dy3+ doped in GdOOH were located in the yellow region, while the emission intensity of Dy3+ under 286 nm irradiation increased by more than 40 times when co-doped with Bi3+.

  18. Influence of Third Particle on the Tribological Behaviors of Diamond-like Carbon Films

    Science.gov (United States)

    Bai, Lichun; Srikanth, Narasimalu; Kang, Guozheng; Zhou, Kun

    2016-12-01

    Tribological mechanisms of diamond-like carbon (DLC) films in a sand-dust environment are commonly unclear due to the complicated three-body abrasion caused by sand particles. This study investigates the three-body abrasion of the DLC film via molecular dynamics simulations. The influence factors such as the load, velocity, shape of the particle and its size are considered. It has been found that the friction and wear of the DLC film are determined by adhesion at a small load but dominated by both adhesion and plowing at a large load. A high velocity can increase the friction of the DLC film but decrease its wear, due to the response of its networks to a high strain rate indicated by such velocity. The shape of the particle highly affects its movement mode and thus changes the friction and wear of the DLC film. It is found that a small-sized particle can increase the friction and wear of the DLC film by enhancing plowing. These unique tribological mechanisms of the DLC film can help to promote its wide applications in a sand-dust environment.

  19. Mechanical Properties and Atomic Explanation of Plastic Deformation for Diamond-Like BC2

    Directory of Open Access Journals (Sweden)

    Baobing Zheng

    2016-06-01

    Full Text Available Motivated by a recently predicted structure of diamond-like BC2 with a high claimed hardness of 56 GPa (J. Phys. Chem. C 2010, 114, 22688–22690, we focus on whether this tetragonal BC2 (t-BC2 is superhard or not in spite of such an ultrahigh theoretical hardness. The mechanical properties of t-BC2 were thus further extended by using the first principles in the framework of density functional theory. Our results suggest that the Young’s and shear moduli of t-BC2 exhibit a high degree of anisotropy. For the weakest shear direction, t-BC2 undergoes an electronic instability and structural collapse upon a shear strain of about 0.11, with its theoretically ideal strength of only 36.2 GPa. Specifically, the plastic deformation under shear strain along the (110[001] direction can be attributed to the breaking of d1 B–C bonds.

  20. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Science.gov (United States)

    Gupta, P.; Becker, H.-W.; Williams, G. V. M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.

    2017-03-01

    Hydrogenated diamond-like carbon films produced by C3H6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  1. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng; Jiang, Shuyun, E-mail: jiangshy@seu.edu.cn

    2014-02-15

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (−200 V/80 A, labeled DLC-1, and −100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  2. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES Membrane

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-09-01

    Full Text Available A nano porous polyethersulfone (PES membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems.

  3. Iron, nitrogen and silicon doped diamond like carbon (DLC) thin films: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Sekhar C., E-mail: Raysc@unisa.ac.za [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, Science Campus, Christiaan de Wet and Pioneer Avenue, Florida Park, Johannesburg (South Africa); Pong, W.F. [Department of Physics, Tamkang University, Tamsui 251, New Taipei City, Taiwan (China); Papakonstantinou, P. [Nanotechnology and Integrated Bio-Engineering Centre, University of Ulster, Shore Road, Newtownabbey BT37 0QB (United Kingdom)

    2016-07-01

    The X-ray absorption near edge structure (XANES), X-ray photoelectron spectroscopy (XPS), valence band photoemission (VB-PES) and Raman spectroscopy results show that the incorporation of nitrogen in pulsed laser deposited diamond like carbon (DLC) thin films, reverts the sp{sup 3} network to sp{sup 2} as evidenced by an increase of the sp{sup 2} cluster and I{sub D}/I{sub G} ratio in C K-edge XANES and Raman spectra respectively which reduces the hardness/Young's modulus into the film network. Si-doped DLC film deposited in a plasma enhanced chemical vapour deposition process reduces the sp{sup 2} cluster and I{sub D}/I{sub G} ratio that causes the decrease of hardness/Young's modulus of the film structure. The Fe-doped DLC films deposited by dip coating technique increase the hardness/Young's modulus with an increase of sp{sup 3}-content in DLC film structure. - Highlights: • Fe, N and Si doped DLC films deposited by dip, PLD and PECVD methods respectively • DLC:Fe thin films have higher hardness/Young's modulus than DLC:N(:Si) thin films. • sp{sup 3} and sp{sup 2} contents are estimated from C K-edge XANES and VB-PES measurements.

  4. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  5. INFLUENCE OF THE SILICON INTERLAYER ON DIAMOND-LIKE CARBON FILMS DEPOSITED ON GLASS SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Deiler Antonio Lima Oliveira

    2012-06-01

    Full Text Available Diamond-like carbon (DLC films as a hard protective coating have achieved great success in a diversity of technological applications. However, adhesion of DLC films to substrates can restrict their applications. The influence of a silicon interlayer in order to improve DLC adhesion on glass substrates was investigated. Amorphous silicon interlayer and DLC films were deposited using plasma enhanced chemical vapor deposition from silane and methane, respectively. The bonding structure, transmittance, refraction index, and adherence of the films were also evaluated regarding the thickness of the silicon interlayer. Raman scattering spectroscopy did not show any substantial difference in DLC structure due to the interlayer thickness of the silicon. Optical measurements showed a sharp decrease of transmittance in the ultra-violet region caused by the fundamental absorption of the light. In addition, the absorption edge of transmittance shifted toward longer wavelength side in the ultra-violet region as the thickness of the silicon interlayer increased. The tribological results showed an increase of DLC adherence as the silicon interlayer increased, which was characterized by less cracks around the grooves.

  6. Effect of composition on mechanical behaviour of diamond-like carbon coatings modified with titanium

    Energy Technology Data Exchange (ETDEWEB)

    Caschera, D., E-mail: daniela.caschera@ismn.cnr.i [Institute for the Study of Nanostructured Materials, ISMN - CNR, P.O. Box 10, 00015 Monterotondo Stazione (Italy); Federici, F.; Pandolfi, L.; Kaciulis, S. [Institute for the Study of Nanostructured Materials, ISMN - CNR, P.O. Box 10, 00015 Monterotondo Stazione (Italy); Sebastiani, M.; Bemporad, E. [Dip.to di Ingegneria Industriale e Meccanica, Universita di Roma Tre, Via Vasca Navale 84, 00146 Roma (Italy); Padeletti, G. [Institute for the Study of Nanostructured Materials, ISMN - CNR, P.O. Box 10, 00015 Monterotondo Stazione (Italy)

    2011-03-01

    In this study, diamond-like carbon (DLC) films modified with titanium were deposited by plasma decomposition of metallorganic precursor, titanium isopropoxide in CH{sub 4}/H{sub 2}/Ar gas atmosphere. The obtained films were composed of amorphous titanium oxide and nanocrystalline titanium carbide, embedded in an amorphous hydrogenated (a-C:H) matrix. The TiC/TiO{sub 2} ratio in the DLC matrix was found to be dependent on the deposition parameters. The dependence of the films chemical composition on gas mixture and substrate temperature was investigated by X-ray photoelectron spectroscopy, whereas the crystallinity of TiC nanoparticles and their dimension were evaluated by X-ray diffraction. The size of TiC crystallites varied from 10 to 35 nm, depending on the process parameters. The intrinsic hardness of 10-13 GPa, elastic modulus of 170-200 GPa and hardness-to-modulus ratio of obtained coatings were measured by the nanoindentation technique. Obtained results demonstrated a correlation of mechanical properties with the chemical composition and the ratio of amorphous/crystalline phases in the films. In particular, the formation of nanocrystalline TiC with atomic concentration not exceeding 10% and with grain size between 10 nm and 15 nm resulted in significantly enhanced mechanical properties of composite material in comparison with ordinary DLC films.

  7. Optical and mechanical properties of diamond like carbon films deposited by microwave ECR plasma CVD

    Indian Academy of Sciences (India)

    S B Singh; M Pandey; N Chand; A Biswas; D Bhattacharya; S Dash; A K Tyagi; R M Dey; S K Kulkarni; D S Patil

    2008-10-01

    Diamond like carbon (DLC) films were deposited on Si (111) substrates by microwave electron cyclotron resonance (ECR) plasma chemical vapour deposition (CVD) process using plasma of argon and methane gases. During deposition, a d.c. self-bias was applied to the substrates by application of 13.56 MHz rf power. DLC films deposited at three different bias voltages (–60 V, –100 V and –150 V) were characterized by FTIR, Raman spectroscopy and spectroscopic ellipsometry to study the variation in the bonding and optical properties of the deposited coatings with process parameters. The mechanical properties such as hardness and elastic modulus were measured by load depth sensing indentation technique. The DLC film deposited at –100 V bias exhibit high hardness (∼ 19 GPa), high elastic modulus (∼ 160 GPa) and high refractive index (∼ 2.16–2.26) as compared to films deposited at –60 V and –150 V substrate bias. This study clearly shows the significance of substrate bias in controlling the optical and mechanical properties of DLC films.

  8. The Influence of Titanium Dioxide on Diamond-Like Carbon Biocompatibility for Dental Applications

    Directory of Open Access Journals (Sweden)

    C. C. Wachesk

    2016-01-01

    Full Text Available The physical and chemical characteristics of diamond-like carbon (DLC films make them suitable for implantable medical and odontological interests. Despite their good interactions with biological environment, incorporated nanoparticles can significantly enhance DLC properties. This manuscript studies the potential of titanium dioxide (TiO2 incorporated-DLC films in dental applications. In this scene, both osteoblasts attachment and spreading on the coatings and their corrosion characteristics in artificial saliva were investigated. The films were grown on 304 stainless steel substrates using plasma enhanced chemical vapor deposition. Raman scattering spectroscopy characterized the film structure. As the concentration of TiO2 increased, the films increased the osteoblast viability (MTT assay, becoming more thermodynamically favorable to cell spreading (WAd values became more negative. The increasing number of osteoblast nuclei indicates a higher adhesion between the cells and the films. The potentiodynamic polarization test in artificial saliva shows an increase in corrosion protection when TiO2 are present. These results show the potential use of TiO2-DLC films in implantable surfaces.

  9. Structural and mechanical properties of diamond-like carbon films deposited by direct current magnetron sputtering

    Science.gov (United States)

    Broitman, E.; Hellgren, N.; Czigány, Zs.; Twesten, R. D.; Luning, J.; Petrov, I.; Hultman, L.; Holloway, B. C.

    2003-07-01

    The microstructure, morphology, and mechanical properties of diamond-like carbon (DLC) films deposited by direct current magnetron sputtering were investigated for microelectromechanical systems applications. Film properties were found to vary markedly with the ion energy (Eion) and ion-to-carbon flux ratio (Jion/JC). Cross-sectional high-resolution transmission electron microscopy revealed an amorphous microstructure. However, the presence of nanometer-sized domains at Eion~85 eV was detected. Film stresses, σ, which were compressive in all cases, ranged from 0.5 to 3.5 GPa and depended on the flux ratio as well as ion energy. The hardness (H), Young's moduli (ɛ), and elastic recovery (R) increased with Eion to maximum values of H=27 GPa, ɛ=250 GPa, and R=68% at Eion=85 eV and Jion/JC=4.4. However, near edge x-ray absorption fine structure and electron energy-loss spectrum analysis showed that the sp2/sp3 content of the films does not change with Eion or Jion/JC. The measured change in mechanical properties without a corresponding change in sp2/sp3 ratio is not consistent with any previously published models. We suggest that, in the ranges 5 eV <=Eion<=85 eV and 1.1 <=Jion/JC<=6.8, the presence of defective graphite formed by subplanted C and Ar atoms has the dominant influence on the mechanical properties of DLC films.

  10. Graphite-like and Diamond-like Carbon Coatings with Exceptional Tribological Properties

    Institute of Scientific and Technical Information of China (English)

    M.Jarratt; S.K.Field; S.Yang; D.G.Teer

    2004-01-01

    Two hard, carbon-based solid lubricant coatings, Graphit-iCTM and Dymon-iCTM, have been developed that offer considerable benefits for industry. Both of these new coatings have a high tribological load-bearing capacity, exceptional wear resistance and very low friction, even in dry or lubricant-starved contact. This is in contrast to many commercial diamond-like carbon, DLC coatings, which tend to be highly stressed and therefore brittle, making them unsuitable for high load bearing industrial applications. The development of the new solid lubricant coatings is described, and details of their tribological performance in dry, water and oil-lubricated environments are given. The structure of the coatings has been investigated and related to the tribological properties, and the mechanism for the low friction and wea rrates is discussed. The coatings have been used to successfully improve the lifetime and efficiency of many highly loaded mechanical parts, including automotive fuel injection components, gears, bearings, tappets (cam followers), gudgeon (wrist) pins, etc. They also offer benefits for tooling and are widely used in forming or machining of non-ferrous alloys, and extensively on dies and moulds. Other industrial application areas include electrical devices that require either high conductivity or insulation, optical devices requiring abrasion resistance and surgical tools and implants.

  11. Graphite-like and Diamond-like Carbon Coatings with Exceptional Tribological Properties

    Institute of Scientific and Technical Information of China (English)

    M. Jarratt; S. K. Field; S. Yang; D.G. Teer

    2004-01-01

    Two hard, carbon-based solid lubricant coatings, Graphit-iCTM and Dymon-iCTM, have been developed that offer considerable benefits for industry. Both of these new coatings have a high tribological load-bearing capacity,exceptional wear resistance and very low friction, even in dry or lubricant-starved contact. This is in contrast to many commercial diamond-like carbon, DLC coatings, which tend to be highly stressed and therefore brittle, making them unsuitable for high load bearing industrial applications. The development of the new solid lubricant coatings is described,and details of their tribological performance in dry, water and oil-lubricated environments are given. The structure of the coatings has been investigated and related to the tribological properties, and the mechanism for the low friction and wear rates is discussed. The coatings have been used to successfully improve the lifetime and efficiency of many highly loaded mechanical parts, including automotive fuel injection components, gears, bearings, tappets (cam followers), gudgeon (wrist)pins, etc. They also offer benefits for tooling and are widely used in forming or machining of non-ferrous alloys, and extensively on dies and moulds. Other industrial application areas include electrical devices that require either high conductivity or insulation, optical devices requiring abrasion resistance and surgical tools and implants.

  12. Surface properties of diamond-like carbon films prepared by CVD and PVD methods

    Institute of Scientific and Technical Information of China (English)

    Liu Dong-Ping; Liu Yan-Hong; Chen Bao-Xiang

    2006-01-01

    Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance-plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) filtered-pulsed cathodic arc discharge. The surface and mechanical properties of these films are compared using atomic force microscopebased tests. The experimental results show that hydrogenated DLC films are covered with soft surface layers enriched with hydrogen and sp3 hybridized carbon while the soft surface layers of tetrahedral amorphous carbon (ta-C) films have graphite-like structure. The formation of soft surface layers can be associated with the surface diffusion and growth induced by the low-energy deposition process. For typical CVD methods, the atomic hydrogen in the plasmas can contribute to the formation of hydrogen and sp3 hybridized carbon enriched surface layers. The high-energy ion implantation causes the rearrangement of atoms beneath the surface layer and leads to an increase in film density. The ta-C films can be deposited using the medium energy carbon ions in the highly-ionized plasma.

  13. Strength and Fracture Resistance of Amorphous Diamond-Like Carbon Films for MEMS

    Directory of Open Access Journals (Sweden)

    K. N. Jonnalagadda

    2009-01-01

    Full Text Available The mechanical strength and mixed mode I/II fracture toughness of hydrogen-free tetrahedral amorphous diamond-like carbon (ta-C films, grown by pulsed laser deposition, are discussed in connection to material flaws and its microstructure. The failure properties of ta-C were obtained from films with thicknesses 0.5–3 μm and specimen widths 10–20 μm. The smallest test samples with 10 μm gage section averaged a strength of 7.3 ± 1.2 GPa, while the strength of 20-μm specimens with thicknesses 0.5–3 μm varied between 2.2–5.7 GPa. The scaling of the mechanical strength with specimen thickness and dimensions was owed to deposition-induced surface flaws, and, only in the smallest specimens, RIE patterning generated specimen sidewall flaws. The mode I fracture toughness of ta-C films is KIc=4.4±0.4 MPam, while the results from mixed mode I/II fracture experiments with cracks arbitrarily oriented in the plane of the film compared very well with theoretical predictions.

  14. Effects of diamond-like carbon thin film in organic light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Seong-Shan; Yong, Thian-Khok [Faculty of Engineering, Multimedia University, Cyberjaya, 63100 Selangor (Malaysia); Tou, Teck-Yong, E-mail: tytou@mmu.edu.m [Faculty of Engineering, Multimedia University, Cyberjaya, 63100 Selangor (Malaysia)

    2009-07-01

    Ultrathin diamond-like carbon (DLC) was deposited by pulsed Nd:YAG laserablation of graphite target on the indium tin oxide (ITO) surface that functioned as the buffered anode for single-layer organic light emitting devices (OLEDs). Deposited by 355 nm Nd:YAG laser, DLC films were characterized by the Raman spectroscopy and the bulk resistivity measurement. Insertion of DLC in the hole-transport ITO/DLC/TPD/Al device slightly increased the injection current density and reduced the turn-on voltage. But DLC insertion in the electron-transport ITO/DLC/Alq{sub 3}/Al device greatly decreased the injection current density and increased the turn-on voltage. For the ITO/DLC/(TPD + Alq{sub 3} + PVK)/Al device, that was doped with Alq{sub 3} and TPD, improved performance with a higher current density and brightness were consistently obtained. Possible mechanisms for the DLC effect in these single-layer devices were discussed.

  15. Target-plane deposition of diamond-like carbon in pulsed laser ablation of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Yap, S.S. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Tou, T.Y. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia)], E-mail: tytou@mmu.edu.my

    2007-10-15

    In pulsed Nd:YAG laser ablation of highly oriented pyrolytic graphite (HOPG) at 10{sup -6} Torr, diamond-like carbon (DLC) are deposited at laser wavelengths of 1064, 532, and 355 nm on substrates placed in the target-plane. These target-plane samples are found to contain varying sp{sup 3} content and composed of nanostructures of 40-200 nm in size depending on the laser wavelength and laser fluence. The material and origin of sp{sup 3} in the target-plane samples is closely correlated to that in the laser-modified HOPG surface layer, and hardly from the backward deposition of ablated carbon plume. The surface morphology of the target-plane samples shows the columnar growth and with a tendency for agglomeration between nanograins, in particular for long laser wavelength at 1064 nm. It is also proposed that DLC formation mechanism at the laser-ablated HOPG is possibly via the laser-induced subsurface melting and resolidification.

  16. X-ray reflectivity study of bias graded diamond like carbon film synthesized by ECR plasma

    Indian Academy of Sciences (India)

    R M Dey; S K Deshpande; S B Singh; N Chand; D S Patil; S K Kulkarni

    2013-02-01

    Diamond like carbon (DLC) coatings were deposited on silicon substrates by microwave electron cyclotron resonance (ECR) plasma CVD process using plasma of Ar and CH4 gases under the influence of negative d.c. self bias generated on the substrates by application of RF (13.56 MHz) power. The negative bias voltage was varied from −60 V to −150 V during deposition of DLC films on Si substrate. Detailed X-ray reflectivity (XRR) study was carried out to find out film properties like surface roughness, thickness and density of the films as a function of variation of negative bias voltage. The study shows that the DLC films constituted of composite layer i.e. the upper sub surface layer followed by denser bottom layer representing the bulk of the film. The upper layer is relatively thinner as compared to the bottom layer. The XRR study was an attempt to substantiate the sub-plantation model for DLC film growth.

  17. Synthesis and Characteristics of Diamond-like Carbon Films Deposited on Quartz Substrate

    Institute of Scientific and Technical Information of China (English)

    黄卫东; 丁鼎; 詹如娟

    2004-01-01

    Diamond-like carbon (DLC) films are deposited on quartz substrate using pure CH4 in the surface wave plasma equipment. A direct current negative bias up to -90 V is applied to the substrate to investigate the bias effect on the film characteristics. Deposited films are characterized by Raman spectroscopy, infrared (IR) and ultraviolet-visible absorption techniques.There are two broad Raman peaks around 1340 cm-1 and 1600 cm-1 and the first one has a greater sp3 component with an increased bias. Infrared spectroscopy has three sp3 C-H modes at 2852 cm-1, 2926 cm- 1 and 2962 cm-1, respectively and also shows an intensity increase with the negative bias. Optical band gap is calculated from the ultraviolet-visible absorption spectroscopy and the increased values with negative bias and deposition time are obtained. After a thermal anneal at about 500 ℃ for an hour to the film deposited under the bias of-90 V, we get an almost unchanged Raman spectrum and a peak intensity-reduced IR signal, which indicates a reduced H-content in the film. Meanwhile the optical band gap changed from 0.85 eV to 1.5 eV.

  18. Electrochemical performance of porous diamond-like carbon electrodes for sensing hormones, neurotransmitters, and endocrine disruptors.

    Science.gov (United States)

    Silva, Tiago A; Zanin, Hudson; May, Paul W; Corat, Evaldo J; Fatibello-Filho, Orlando

    2014-12-10

    Porous diamond-like carbon (DLC) electrodes have been prepared, and their electrochemical performance was explored. For electrode preparation, a thin DLC film was deposited onto a densely packed forest of highly porous, vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the carbon nanotubes to clump together to form a microstructured surface with an enlarged surface area. DLC:VACNT electrodes show fast charge transfer, which is promising for several electrochemical applications, including electroanalysis. DLC:VACNT electrodes were applied to the determination of targeted molecules such as dopamine (DA) and epinephrine (EP), which are neurotransmitters/hormones, and acetaminophen (AC), an endocrine disruptor. Using simple and low-cost techniques, such as cyclic voltammetry, analytical curves in the concentration range from 10 to 100 μmol L(-1) were obtained and excellent analytical parameters achieved, including high analytical sensitivity, good response stability, and low limits of detection of 2.9, 4.5, and 2.3 μmol L(-1) for DA, EP, and AC, respectively.

  19. The nano-scratch behaviour of different diamond-like carbon film-substrate systems

    Energy Technology Data Exchange (ETDEWEB)

    Huang Liye [State-Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an, 710049 (China); Lu Jian [LASMIS, Universite de Technologie de Troyes, 10010 Troyes (France); Xu Kewei [State-Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an, 710049 (China)

    2004-08-07

    The nano-scratch behaviour of diamond-like carbon films on a Ti alloy and Si substrate was evaluated. For both samples, three processes-fully elastic recovery, plastic deformation, and delamination and pulling-off of the films, occur successively with increasing load during scratching. The loads (Lc{sub L}) corresponding to the peeling-off of the films during the up-loading were 75 and 70 mN for Ti alloy and Si. However, the films on Si were delaminated during unloading, and the relevant load (Lc{sub U}) was only 45 mN. This probably originates from the distribution status of the plastic deformation both in the films and the substrates. Therefore, the nano-scratch test can be applied not only to obtain the cracking resistance (Lc{sub L}) characterizing the cohesion strength of films during up-loading but also to determine the delamination resistance (Lc{sub U}) related to the adhesion strength of the film-substrate during unloading.

  20. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    Science.gov (United States)

    Cheng, Feng; Jiang, Shuyun

    2014-02-01

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (-200 V/80 A, labeled DLC-1, and -100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  1. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Santra, T. S.; Liu, C. H.; Bhattacharyya, T. K.; Patel, P.; Barik, T. K.

    2010-06-01

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of CC, CH, SiC, and SiH bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio ID/IG. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  2. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, K., E-mail: ozeki@mx.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Toukai, Ibaraki 319-1106 (Japan); Hirakuri, K.K. [Applied Systems Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama 350-0394 (Japan); Masuzawa, T. [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan)

    2011-04-15

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO{sub 2}) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO{sub 2} films and DLC/TiO{sub 2}/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO{sub 2}-coated and the DLC/TiO{sub 2}/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO{sub 2} coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO{sub 2}/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO{sub 2}/DLC film had a photocatalytic effect even though the TiO{sub 2} film was covered with the DLC film.

  3. Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver.

    Science.gov (United States)

    Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2016-12-01

    In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.

  4. Molecular dynamics simulation of the deposition process of hydrogenated diamond-like carbon (DLC) films

    Institute of Scientific and Technical Information of China (English)

    ZHANG YuJun; DONG GuangNeng; MAO JunHong; XIE YouBai

    2008-01-01

    The deposition process of hydrogenated diamond-like carbon (DLC) film greatly affects its frictional properties. In this study, CH3 radicals are selected as source species to deposit hydrogenated DLC films for molecular dynamics simulation. The growth and structural properties of hydrogenated DLC films are investigated and elucidated in detail. By comparison and statistical analysis, the authors find that the ratio of carbon to hydrogen in the films generally shows a monotonously increasing trend with the increase of impact energy. Carbon atoms are more reactive during deposition and more liable to bond with substrate atoms than hydrogen atoms. In addition, there exists a peak value of the number of hydrogen atoms deposited in hydrogenated DLC films. The trends of the variation are opposite on the two sides of this peak point, and itbecomes stable when impact energy is greater than 80 eV. The average relative density also indicates a rising trend along with the increment of impact energy, while it does not reach the saturation value until impact energy comes to 50 eV. The hydrogen content in source species is a key factor to determine the hydrogen content in hydrogenated DLC films. When the hydrogen content in source species is high, the hydrogen content in hydrogenated DLC films is accordingly high.

  5. Porous Silicon Coated with Ultrathin Diamond-Like Carbon Film Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Evtukh, A A; Litovchenko, V G; Litvin, Y M; Fedin, D V; Rassamakin, Y V; Sarikov, A V; Chakhovskoi, A G; Felter, T E

    2001-04-01

    The main requirements to electron field emission cathodes are their efficiency, stability and uniformity. In this work we combined the properties of porous silicon layers and diamond-like carbon (DLC) film to obtain emission cathodes with improved parameters. The layered structures of porous silicon and DLC film were formed both on flat n-Si surface and silicon tips created by chemical etching. The conditions of the anodic and stain etching of silicon in HF containing solution under the illumination have been widely changed. The influence of thin ({le} 10nm) DLC film coating of the porous silicon layer on electron emission has been investigated. The parameters of emission efficiency such as field enhancement coefficient, effective emission areas and threshold voltages have been estimated from current-voltage dependencies to compare and characterize different layered structures. The improvement of the emission efficiency of silicon tip arrays with porous layers coated with thin DLC film has been observed. These silicon-based structures are promising for flat panel display applications.

  6. Negative Resistance Effect and Charge Transfer Mechanisms in the lon Beam Deposited Diamond Like Carbon Superlattices

    Directory of Open Access Journals (Sweden)

    Andrius VASILIAUSKAS

    2011-03-01

    Full Text Available In the present study DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures were fabricated by ion beam deposition using a closed drift ion source. Current-voltage (I-V characteristics of the multilayer samples were measured at room temperature. The main charge transfer mechanisms were considered. Unstable negative resistance effect was observed for some DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures. In the case of the diamond like carbon superlattices fabricated on nSi it was observed only during the first measurement. In the case of the some DLC:SiOx/DLC/DLC:SiOx/pSi negative resistance "withstood" several measurements. Changes of the charge carrier mechanisms were observed along with the dissapear of the negative resistance peaks. It seems, that in such a case influence of the bulk related charge transfer mechanisms such as Poole-Frenkel emission increased, while the influence of the contact limited charge transfer mechanisms such as Schottky emission decreased. Observed results were be explained by current flow through the local microconducting channels and subsequent destruction of the localized current pathways as a result of the heating by flowing electric current.http://dx.doi.org/10.5755/j01.ms.17.1.240

  7. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Thema, F.T.; Beukes, P.; Ngom, B.D. [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Manikandan, E., E-mail: mani@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital (SBMCH), Chrompet, Bharath University, Chennai, 600044 (India); Maaza, M., E-mail: maaza@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa)

    2015-11-05

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range.

  8. Dry And Ringer Solution Lubricated Tribology Of Thin Osseoconductive Metal Oxides And Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Waldhauser W.

    2015-09-01

    Full Text Available Achieving fast and strong adhesion to jawbone is essential for dental implants. Thin deposited films may improve osseointegration, but they are prone to cohesive and adhesive fracture due to high stresses while screwing the implant into the bone, leading to bared, less osteoconductive substrate surfaces and nano- and micro-particles in the bone. Aim of this work is the investigation of the cohesion and adhesion failure stresses of osteoconductive tantalum, titanium, silicon, zirconium and aluminium oxide and diamond-like carbon films. The tribological behaviour under dry and lubricated conditions (Ringer solution reveals best results for diamond-like carbon, while cohesion and adhesion of zirconium oxide films is highest.

  9. Intertwisted fibrillar diamond-like carbon films prepared by electron cyclotron resonance microwave plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    杨武保; 王久丽; 张谷令; 范松华; 刘赤子; 杨思泽

    2003-01-01

    In this paper, the structures, optical and mechanical properties of diamond-like carbon films are studied, which are prepared by a self-fabricated electron cyclotron resonance microwave plasma chemical vapour deposition method at room temperature in the ambient gases of mixed acetylene and nitrogen. The morphology and microstructure of the processed film are characterized by the atomic force microscope image, Raman spectra and middle Fourier transform infrared transmittance spectra, which reveal that there is an intertwisted fibrillar diamond-like structure in the film and the film is mainly composed of sp3 CH, sp3 C-C, sp2 C=C, C=N and C60. The film micro-hardness and bulk modulus are measured by a nano-indenter and the refractive constant and deposition rate are also calculated.

  10. Fabrication of ZnO nanoparticles-embedded hydrogenated diamond-like carbon films by electrochemical deposition technique

    Institute of Scientific and Technical Information of China (English)

    Zhang Pei-Zeng; Li Rui-Shan; Pan Xiao-Jun; Xie Er-Qing

    2013-01-01

    ZnO nanoparticles-embedded hydrogenated diamond-like carbon (ZnO-DLC) films have been prepared by electrochemical deposition in ambient conditions.The morphology,composition,and microstructure of the films have been investigated.The results show that the resultant films are hydrogenated diamond-like carbon films embedded with ZnO nanoparticles in wurtzite structure,and the content and size of the ZnO nanoparticles increase with increasing deposition voltage,which are confirmed by X-ray photoelectron spectroscopy (XPS),Raman,and transmission electron microscope (TEM).Furthermore,a possible mechanism used to describe the growth process of ZnO-DLC films by electrochemical deposition is also discussed.

  11. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    Energy Technology Data Exchange (ETDEWEB)

    Oosterbeek, Reece N., E-mail: reece.oosterbeek@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand); Seal, Christopher K. [Light Metals Research Centre, The University of Auckland, Private Bag 92019 (New Zealand); Hyland, Margaret M. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand)

    2014-12-01

    Highlights: • DLC coatings were modified by Ar{sup +} ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp{sup 2} content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar{sup +} ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ{sub S}{sup p})

  12. The Comparison of Biocompatibility Properties between Ti Alloys and Fluorinated Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Chavin Jongwannasiri

    2012-01-01

    Full Text Available Titanium and titanium alloys have found several applications in the biomedical field due to their unique biocompatibility. However, there are problems associated with these materials in applications in which there is direct contact with blood, for instance, thrombogenesis and protein adsorption. Surface modification is one of the effective methods used to improve the performance of Ti and Ti alloys in these circumstances. In this study, fluorinated diamond-like carbon (F-DLC films are chosen to take into account the biocompatible properties compared with Ti alloys. F-DLC films were prepared on NiTi substrates by a plasma-based ion implantation (PBII technique using acetylene (C2H2 and tetrafluoromethane (CF4 as plasma sources. The structure of the films was characterized by Raman spectroscopy. The contact angle and surface energy were also measured. Protein adsorption was performed by treating the films with bovine serum albumin and fibrinogen. The electrochemical corrosion behavior was investigated in Hanks’ solution by means of a potentiodynamic polarization technique. Cytotoxicity tests were performed using MTT assay and dyed fluorescence. The results indicate that F-DLC films present their hydrophobic surfaces due to a high contact angle and low surface energy. These films can support the higher albumin-to-fibrinogen ratio as compared to Ti alloys. They tend to suppress the platelet adhesion. Furthermore, F-DLC films exhibit better corrosion resistance and less cytotoxicity on their surfaces. It can be concluded that F-DLC films can improve the biocompatibility properties of Ti alloys.

  13. Electrical and magnetic properties of electrodeposited nickel incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B., E-mail: pandey.beauty@yahoo.com [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India); Das, D. [UGC-DAE CSR, Sector III/LB-8, Bidhan Nagar, Kolkata 700098 (India); Kar, A.K. [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India)

    2015-05-15

    Highlights: • Electrical and magnetic properties of DLC and Ni-DLC thin films are studied. • The ohmicity and conductivity of DLC films rise with nickel addition. • The ohmicity of Ni-DLC is enhanced with increase in dilution of electrolyte. • Dielectric loss is high for Ni-DLC and decreases with frequency till 100 kHz. • (m–H) and (m–T) curves of Ni-DLC indicate superparamagnetic behavior. - Abstract: Nanocomposite diamond-like carbon (DLC) thin films have been synthesized by incorporating nickel (Ni) nanoparticles in DLC matrix with varying concentration of nickel. DLC and Ni-DLC thin films have been deposited on ITO coated glass substrates employing low voltage electrodeposition method. Electrical properties of the samples were studied by measuring current–voltage characteristics and dielectric properties. The current approaches toward an ohmic behavior with metal addition. This tendency of increasing ohmicity is enhanced with increase in dilution of the electrolyte. The conductivity increases with Ni addition and interestingly it continues to increase with dilution of Ni concentration in the electrolyte in the range of our study. Magnetic properties for DLC and Ni-DLC thin film samples were examined by electron paramagnetic resonance (EPR) measurements and Super Conducting Quantum Interference Device (SQUID) measurements. g-Value for DLC is 2.074, whereas it decreases to 2.055 with Ni addition in the electrolyte. This decrement arises from the increased sp{sup 2} content in DLC matrix. The magnetic moment vs. magnetic field (m–H) curves of Ni-DLC indicate superparamagnetic behavior which may be due to ferromagnetic contribution from the incorporated nickel nanoparticles in the DLC matrix. The ZFC curve of Ni-DLC after the blocking temperature shows a combined contribution of ferromagnetic, superparamagnetic and paramagnetic nature of the materials persisting up to 300 K.

  14. Microstructure and tribological performance of diamond-like carbon films deposited on hydrogenated rubber

    Energy Technology Data Exchange (ETDEWEB)

    Pal, J.P. van der [Materials Innovation Institute M2i, Department of Applied Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Martinez-Martinez, D., E-mail: d.martinez.martinez@rug.nl [Materials Innovation Institute M2i, Department of Applied Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Pei, Y.T., E-mail: y.pei@rug.nl [Materials Innovation Institute M2i, Department of Applied Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Rudolf, P. [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); De Hosson, J.Th.M. [Materials Innovation Institute M2i, Department of Applied Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2012-12-01

    In this paper, the microstructure and tribological performance of diamond-like carbon (DLC) films prepared by plasma chemical vapor deposition on hydrogenated nitrile butadiene rubbers (HNBR) are studied. Different negative variations of temperature during film growth were selected by proper changes of the bias voltage. Raman measurements show a similar bonding regardless of the voltages used. A columnar growth and a tile-like microstructure of the DLC films were identified by scanning electron microscopy. Patch sizes can be correlated with the deposition conditions. The coefficient of friction (CoF) of DLC film coated HNBR was found to be much lower than that of the unprotected rubber, and more reduced for the DLC films with smaller patch sizes, which is explained by a better flexibility and conformity of the film during testing. In one of the samples, unexpected low CoF was observed, which was attributed to a modification of the mechanical properties of the rubber during the plasma treatment at high voltage. This issue was confirmed by X-ray photoelectron spectroscopy, which indicated a modification of the cross linking in the rubber. - Highlights: Black-Right-Pointing-Pointer Bias voltage does not vary the chemical bonding and surface morphology of films. Black-Right-Pointing-Pointer Film structure is patched, whose size depends on the etching and deposition voltages. Black-Right-Pointing-Pointer The frictional behavior can be correlated with the patch size of the films. Black-Right-Pointing-Pointer Surface analysis showed that rubber x-linking is modified by etching at high voltage. Black-Right-Pointing-Pointer Modification of rubber x-linking leads to a different frictional behavior.

  15. Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires.

    Science.gov (United States)

    Kobayashi, Shinya; Ohgoe, Yasuharu; Ozeki, Kazuhide; Hirakuri, Kenji; Aoki, Hideki

    2007-12-01

    Nickel-titanium (NiTi) has been used for implants in orthodontics due to the unique properties such as shape memory effect and superelasticity. However, NiTi alloys are eroded in the oral cavity because they are immersed by saliva with enzymolysis. Their reactions lead corrosion and nickel release into the body. The higher concentrations of Ni release may generate harmful reactions. Ni release causes allergenic, toxic and carcinogenic reactions. It is well known that diamond-like carbon (DLC) films have excellent properties, such as extreme hardness, low friction coefficients, high wear resistance. In addition, DLC film has many other superior properties as a protective coating for biomedical applications such as biocompatibility and chemical inertness. Therefore, DLC film has received enormous attention as a biocompatible coating. In this study, DLC film coated NiTi orthodontic archwires to protect Ni release into the oral cavity. Each wire was immersed in physiological saline at the temperature 37 degrees C for 6 months. The release concentration of Ni ions was detected using microwave induced plasma mass spectrometry (MIP-MS) with the resolution of ppb level. The toxic effect of Ni release was studied the cell growth using squamous carcinoma cells. These cells were seeded in 24 well culture plates and materials were immersed in each well directly. The concentration of Ni ions in the solutions had been reduced one-sixth by DLC films when compared with non-coated wire. This study indicated that DLC films have the protective effect of the diffusion and the non-cytotoxicity in corrosive environment.

  16. Copper-based diamond-like ternary semiconductors for thermoelectric applications

    Science.gov (United States)

    Skoug, Eric John

    Heightened global concern over greenhouse gas emissions has led to an increased demand for clean energy conversion technologies. Thermoelectric materials convert directly between thermal and electrical energy and can increase the efficiency of existing processes via waste heat recovery and solid-state climate control applications. The conversion efficiency of available thermoelectric materials and the devices comprised of them is unfortunately quite low, and thus new materials must be developed in order for thermoelectrics to keep pace with competing technologies. One approach to increasing the conversion efficiency of a given material is to decrease its lattice thermal conductivity, which has traditionally been accomplished by introducing phonon scattering centers into the material. These scattering centers also tend to degrade electronic transport in the material, thereby minimizing the overall effect on the thermoelectric performance. The purpose of this work is to develop materials with inherently low lattice thermal conductivity such that no extrinsic modifications are required. A novel approach in which complex ternary semiconductors are derived from well-known binary or elemental semiconductors is employed to identify candidate materials. Ternary diamond-like compounds, namely Cu2SnSe 3 and Cu3SbSe4, are synthesized, characterized, and optimized for thermoelectric applications. It is found that sample-to-sample variations in hole concentration limits the plausibility of Cu2SnSe3 as a thermoelectric material. Cu3SbSe 4 is found to be a promising material that can achieve thermoelectric performance comparable to state-of-the-art materials when optimized. This work uncovers anomalous thermal conductivity in several Cu-Sb-Se ternary compounds, which is used to develop a set of guidelines relating crystal structure to inherently low lattice thermal conductivity.

  17. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Qiwen, E-mail: fanqiwen0926@163.com [Department of Nuclear Physics, China Institute of Atomic Energy, P.O. Box 275(62), Beijing 102413 (China); Du, Yinghui; Zhang, Rong; Xu, Guoji [Department of Nuclear Physics, China Institute of Atomic Energy, P.O. Box 275(62), Beijing 102413 (China)

    2013-04-21

    Thin diamond-like carbon (DLC) stripper foils ∼5μg/cm{sup 2} in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ∼4μg/cm{sup 2} in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine–saccharose as releasing agent, which were previously covered with evaporated carbon layers ∼1μg/cm{sup 2} in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4 for the {sup 197}Au{sup −} (∼9MeV, ∼1μA) and {sup 63}Cu{sup −} (∼9MeV, ∼1μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp{sup 3} bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (I{sub D}/I{sub G}) measured by the Raman spectroscopy is 0.78.

  18. Cathodoluminescence of Cr-doped diamond-like carbon film by filtered cathodic vacuum arc plasma

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Meng-Wen; Jao, Jui-Yun [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan (China); Lin, Chun-Chun; Hsieh, Wei-Jen; Yang, Yu-Hsiang [Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300, Taiwan (China); Cheng, Li-Shin; Shieu, F.S. [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan (China); Shih, Han C., E-mail: hcshih@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan (China); Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300, Taiwan (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, 55 Hwa Kang Road, Yang Ming Shan, Taipei 111, Taiwan (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The formation of the DLC:Cr films dependent on the flow rates of C{sub 2}H{sub 2}/Ar have been achieved in our FCVA plasma. Black-Right-Pointing-Pointer The amorphous DLC:Cr have high sp{sup 2} content can be completely converted to nanocrystalline Cr{sub 3}C{sub 2}. Black-Right-Pointing-Pointer The effect of doping with Cr is apparently to change the band structure of the DLC and its consequent cathodoluminescence property. - Abstract: Cr doped diamond-like carbon (DLC:Cr) film was synthesized in various flow rates of C{sub 2}H{sub 2}/Ar under a substrate voltage of -50 V at 500 Degree-Sign C by a filtered cathodic vacuum arc plasma. This work has found that the structure of the films was correlated to the flow rate of C{sub 2}H{sub 2}/Ar but the luminescence properties are similar. The cathodoluminescence spectra of DLC:Cr films obtained at 1.9-2.4 eV verifies that the luminescence from the films is in the visible region. The incorporation of Cr into the carbon network results in red emission shifted to 1.99 eV and the orange emission (2.03 eV) also appeared due to the transitions between chromium-related electron levels and {sigma}* states. The peak at 2.10 eV may result from the defects of the structures in DLC:Cr films.

  19. Diamond-like carbon coatings for the protection of metallic artefacts: effect on the aesthetic appearance

    Science.gov (United States)

    Faraldi, Federica; Angelini, Emma; Caschera, Daniela; Mezzi, Alessio; Riccucci, Cristina; Caro, Tilde De

    2014-03-01

    Plasma-enhanced chemical vapour deposition (PECVD) is an environmentally friendly process used to deposit a variety of nano-structured coatings for the protection or the surface modification of metallic artefacts like the SiO2-like films that have been successfully tested on ancient silver, bronze and iron artefacts as barriers against aggressive agents. This paper deals with the preliminary results of a wider investigation aimed to the development of eco-sustainable coatings for the protection of Cu and Ag-based artefacts of archaeological and historic interest. Diamond-like carbon (DLC) coatings have been deposited by PECVD in different experimental conditions, in a capacitively coupled asymmetric plasma reactor, placing the substrates either on electrically powered electrode (cathodic mode) or grounded electrode (anodic mode) with and without hydrogen addition in the gas mixture. The final goal is to develop a coating with good protective effectiveness against aggressive atmospheres and contemporarily with negligible effects on the aesthetic appearance of the artefacts. The evaluation of possible colour changes of the surface patinas, due to coating process, was performed by optical microscopy and colorimetric measurements. Furthermore, to evaluate the reversibility of the thin DLC layer, an etching treatment in oxygen plasma has been successfully carried out and optimized. The chemical-physical characterization of the deposited DLC coatings was performed by means of the combined use of micro-Raman and XPS spectroscopies. The results show that the DLC films obtained in the anodic mode, may be proposed as a viable alternative to polymeric coatings for the protection of metallic ancient objects.

  20. Adhesion improvement of hydrogenated diamond-like carbon thin films by pre-deposition plasma treatment of rubber substrate

    OpenAIRE

    Bui, X. L.; Pei, Y.T.; Mulder, E.D.G.; De Hosson, J. Th. M.

    2009-01-01

    For reduction of friction and enhancement of wear resistance of dynamic rubber seals, thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) via magnetron-enhanced plasma chemical vapor deposition (ME-PCVD). Pre-deposition plasma treatment of HNBR substrate is proved to be crucial for the improvement of film performance due to enhanced interfacial adhesion. The columnar structure and the crack network formed during deposition e...

  1. Preparation of Diamond-like Carbon Films on the Surface of Ti Alloy by Electro-deposition

    Institute of Scientific and Technical Information of China (English)

    Fenglei SHEN; Hongwei WANG; Dijiang WEN

    2004-01-01

    In this paper, diamond-like carbon (DLC) fi[ms were deposited on Ti alloy by electro-deposition. DLC films were brown and composed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main composition of the films was carbon. In the Raman spectrum, there were a broad peak at 1350 cm-1 and a broad peak at 1600 cm-1, which indicated that the films were DLC films.

  2. Effect of synergy on the visible light activity of B, N and Fe co-doped TiO2 for the degradation of MO.

    Science.gov (United States)

    Xing, Mingyang; Wu, Yongmei; Zhang, Jinlong; Chen, Feng

    2010-07-01

    Single doped, co-doped and tri-doped TiO(2) with B, N and Fe are successfully synthesized by using the hydrothermal method. The samples are characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples are evaluated for degradation of methyl-orange (MO, 20 mg L(-1)) in aqueous solutions under visible light (lambda > 420 nm). The results of XRD suggest that all the catalysts present anatase crystal. All the doping catalysts show higher photoactivities than pure TiO(2) under visible light irradiation. In the single nonmetal doped TiO(2), the localized dopant levels near the valence band (VB) are responsible for the enhancement of photoactivies. Fe(3+) impurity level formed under the conduction band (CB) induces the high photocatalytic activities of iron doped TiO(2). In the co-doped and tri-doped catalysts, the B 2p and N 2p acceptor states contribute to the band gap narrowing by mixing with O 2p states combined with the overlapping of the conduction band by the iron "d" orbital, resulting in improvement of the photo-performance under visible light irradiation. Iron co-doped with boron catalyst shows low photoactivity under visible light due to the absence of Fe(3+) impurity levels at the bottom of the conduction band. In addition, the XPS results indicate the presence of synergistic effects in co-doped and tri-doped catalysts, which contribute to the enhancement of photocatalytic activities.

  3. Controlled fabrication of oriented co-doped ZnO clustered nanoassemblies.

    Science.gov (United States)

    Barick, K C; Aslam, M; Dravid, Vinayak P; Bahadur, D

    2010-09-01

    Clustered nanoassemblies of Mn doped ZnO and co-doped ZnO (Mn, Sn co-doped ZnO; Mn, Sb co-doped ZnO; and Mn, Bi co-doped ZnO) were prepared by refluxing their respective precursors in diethylene glycol medium. The co-doping elements, Sn, Sb and Bi exist in multi oxidation states by forming Zn-O-M (M=Sb, Bi and Sn) bonds in hexagonal wurtzite nanostructure. The analyses of detailed structural characterization performed by XRD, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM), show that co-doping ions are successfully incorporated into the ZnO nanostructure and do not appear as precipitates or secondary phases. HRTEM analysis also confirmed the oriented attachment of nanocrystals as well as their defect structures. The formation/activation of higher amount of intrinsic host defects, for instance, oxygen vacancies in co-doped ZnO as compared to Mn doped ZnO sample is evident from Raman spectra. The doped and co-doped samples exhibit ferromagnetic like behavior at room temperature presumably due to the presence of defects. Specifically, it has been observed that the incorporation of dopant and co-dopants into ZnO structure can modulate the local electronic structure due to the formation/activation of defects and hence, cause significant changes in their structural, vibrational, optical and magnetic properties.

  4. Special electronic structures and quantum conduction of B/P co-doping carbon nanotubes under electric field using the first principle

    Energy Technology Data Exchange (ETDEWEB)

    Chen Aqing; Shao Qingyi, E-mail: qyshao@163.com; Li Zhen [South China Normal University, Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering (China)

    2011-06-15

    Boron (B)/phosphorus (P)-doped single-wall carbon nanotubes (B-PSWNTs) are studied by using the first-principle method based on density function theory. Mayer bond order, band structure, electrons density and density of states are calculated. It concludes that the B-PSWNTs have special band structure, which is quite different from BN nanotubes, and that metallic carbon nanotubes will be converted to semiconductor due to boron/phosphorus co-doping, which breaks the symmetrical structure. The bonding forms in B-PSWNTs are investigated in detail. Besides, Mulliken charge population and the quantum conductance are also calculated to study the quantum transport characteristics of B-PSWNT hetero-junction. It is found that the position of p-n junction in this hetero-junction will be changed as the applied electric field increase and it performs the characteristics of diode.

  5. Superconductivity in Co-doped SmFeAsO

    Energy Technology Data Exchange (ETDEWEB)

    Qi Yanpeng; Gao Zhaoshun; Wang Lei; Wang Dongliang; Zhang Xianping; Ma Yanwei [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, PO Box 2703, Beijing 100190 (China)], E-mail: ywma@mail.iee.ac.cn

    2008-11-15

    Here we report the synthesis and characterizations of SmFe{sub 1-x}Co{sub x}AsO (x = 0.10, 0.15) for the first time. The parent compound SmFeAsO itself is not superconducting but shows an antiferromagnetic order near 150 K, which must be suppressed by doping before superconductivity emerges. With Co doping in the FeAs planes, antiferromagnetic order is destroyed and superconductivity occurs at 15.2 K. Similar to LaFe{sub 1-x}Co{sub x}AsO, the SmFe{sub 1-x}Co{sub x}AsO system appears to tolerate considerable disorder in the FeAs planes. This result is important, suggesting a different mechanism for cuprate superconductors compared to the iron-based arsenide ones.

  6. Exact Realization of a Quantum-Dimer Model in Heisenberg Antiferromagnets on a Diamond-Like Decorated Lattice

    Science.gov (United States)

    Hirose, Yuhei; Oguchi, Akihide; Fukumoto, Yoshiyuki

    2016-09-01

    We study Heisenberg antiferromagnets on a diamond-like decorated square lattice perturbed by further neighbor couplings. The second-order effective Hamiltonian is calculated and the resultant Hamiltonian is found to be a square-lattice quantum-dimer model with a finite hopping amplitude and no repulsion, which suggests the stabilization of the plaquette phase. Our recipe for constructing quantum-dimer models can be adopted for other lattices and provides a route for the experimental realization of quantum-dimer models.

  7. The Structure and Characteristics of Tribological Systems with Diamond Like Carbon Coatings under Ionic Liquid Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Madej M.

    2016-06-01

    Full Text Available The results from the tests on tribological a-C:H diamond coatings deposited by PACVD (plasma assisted chemical vapour deposition on 100Cr6 steel components are presented in this work. Mechanical properties - nanohardness and Young’s modulus - were assessed by instrumented indentation. Tribological tests were conducted with T-01M tester in a ball-on-disc test under dry and boundary friction conditions. Selected ionic liquids - synthetic new generation lubricants - were used for lubrication. The results from the experiments indicate that diamond-like coatings improved tribological characteristics of the friction pairs tested, with the ionic liquids intensifying this effect.

  8. Diamond-like carbon films synthesized on bearing steel surface by plasma immersion ion implantation and deposition

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-xi; TANG Bao-yin; WANG Lang-ping; WANG Xiao-feng; YU Yong-hao; SUN Tao; HU Li-guo

    2004-01-01

    Diamond-like carbon (DLC) films were synthesized by plasma immersion ion implantation and deposition (PIIID) on 9Cr18 bearing steel surface. Influences of working gas pressure and pulse width of the bias voltage on properties of the thin film were investigated. The chemical compositions of the as-deposited films were characterized by Raman spectroscopy. The micro-hardness, friction and wear behavior, corrosion resistance of the samples were evaluated, respectively. Compared with uncoated substrates, micro-hardness results reveal that the maximum is increased by 88.7%. In addition, the friction coefficient decreases to about 0.1, and the corrosion resistance of treated coupons surface are improved significantly.

  9. Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Wei, E-mail: wei.ren@helsinki.fi; Avchaciov, Konstantin; Nordlund, Kai [Department of Physics, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland); Iyer, Ajai; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, P.O. Box 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, 00076 Aalto (Finland)

    2015-11-21

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether the quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp{sup 3} bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp{sup 3}-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40–70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity.

  10. Electrodeposition of diamond-like carbon films on titanium alloy using organic liquids: Corrosion and wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Falcade, Tiago, E-mail: tiago.falcade@ufrgs.br [Federal University of Rio Grande do Sul, 9500 Bento Goncalves Ave. Sector 4, Building 75, 2nd floor, Porto Alegre, RS (Brazil); Shmitzhaus, Tobias Eduardo, E-mail: tobiasschmitzhaus@gmail.com [Federal University of Rio Grande do Sul, Porto Alegre, RS (Brazil); Gomes dos Reis, Otavio, E-mail: otavio_gomes214@hotmail.com [Federal University of Rio Grande do Sul, Porto Alegre, RS (Brazil); Vargas, Andre Luis Marin; Huebler, Roberto [Pontificia Universidade Catolica do Rio Grande do Sul (Brazil); Mueller, Iduvirges Lourdes, E-mail: ilmuller@ufrgs.br [Federal University of Rio Grande do Sul, Porto Alegre, RS (Brazil); Fraga Malfatti, Celia de, E-mail: celia.malfatti@ufrgs.br [Federal University of Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The electrodeposition may be conducted at room temperature. Black-Right-Pointing-Pointer The DLC films have good resistance to corrosion in saline environments. Black-Right-Pointing-Pointer The films have lower coefficient of friction than the uncoated substrate. Black-Right-Pointing-Pointer The abrasive wear protection is evident in coated systems. - Abstract: Diamond-like carbon (DLC) films have been studied as coatings for corrosion protection and wear resistance because they have excellent chemical inertness in traditional corrosive environments, besides presenting a significant reduction in coefficient of friction. Diamond-like carbon (DLC) films obtained by electrochemical deposition techniques have attracted a lot of interest, regarding their potential in relation to the vapor phase deposition techniques. The electrochemical deposition techniques are carried out at room temperature and do not need vacuum system, making easier this way the technological transfer. At high electric fields, the organic molecules polarize and react on the electrode surface, forming carbon films. The aim of this work was to obtain DLC films onto Ti6Al4V substrate using as electrolyte: acetonitrile (ACN) and N,N-dimethylformamide (DMF). The films were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman spectroscopy, potentiodynamic polarization and wear tests. The results show that these films can improve, significantly, the corrosion resistance of titanium and its alloys and their wear resistance.

  11. Gas Permeation, Mechanical Behavior and Cytocompatibility of Ultrathin Pure and Doped Diamond-Like Carbon and Silicon Oxide Films

    Directory of Open Access Journals (Sweden)

    Juergen M. Lackner

    2013-12-01

    Full Text Available Protective ultra-thin barrier films gather increasing economic interest for controlling permeation and diffusion from the biological surrounding in implanted sensor and electronic devices in future medicine. Thus, the aim of this work was a benchmarking of the mechanical oxygen permeation barrier, cytocompatibility, and microbiological properties of inorganic ~25 nm thin films, deposited by vacuum deposition techniques on 50 µm thin polyetheretherketone (PEEK foils. Plasma-activated chemical vapor deposition (direct deposition from an ion source was applied to deposit pure and nitrogen doped diamond-like carbon films, while physical vapor deposition (magnetron sputtering in pulsed DC mode was used for the formation of silicon as well as titanium doped diamond-like carbon films. Silicon oxide films were deposited by radio frequency magnetron sputtering. The results indicate a strong influence of nanoporosity on the oxygen transmission rate for all coating types, while the low content of microporosity (particulates, etc. is shown to be of lesser importance. Due to the low thickness of the foil substrates, being easily bent, the toughness as a measure of tendency to film fracture together with the elasticity index of the thin films influence the oxygen barrier. All investigated coatings are non-pyrogenic, cause no cytotoxic effects and do not influence bacterial growth.

  12. Composition and morphology of metal-containing diamond-like carbon films obtained by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C. [FEMAN Group, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E08028 Barcelona (Spain)]. E-mail: corbella@ub.edu; Pascual, E. [FEMAN Group, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E08028 Barcelona (Spain); Oncins, G. [Serveis Cientificotecnics, Universitat de Barcelona, PCB, c/ Josep Samitier 1-5, E08028 Barcelona (Spain); Canal, C. [Departamento de Tecnologia de Tensioactivos IQAB-CSIC, c/ Jordi Girona 18-26, E08034 Barcelona (Spain); Andujar, J.L. [FEMAN Group, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E08028 Barcelona (Spain); Bertran, E. [FEMAN Group, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E08028 Barcelona (Spain)

    2005-06-22

    The addition of metal atoms within the matrix of diamond-like carbon films leads to the improvement of their mechanical properties. The present paper discusses the relationship between the composition and morphology of metal-containing (W, Nb, Mo, Ti) diamond-like carbon thin films deposited at room temperature by reactive magnetron sputtering from a metal target in an argon and methane atmosphere. Composition was measured either by electron microprobe technique or by X-ray photoelectron spectroscopy and shows a smooth variation with relative methane flow. High relative methane flows lead to a bulk saturation of carbon atoms, which leads to a lack of homogeneity in the films as confirmed by secondary ion mass spectrometry. Cross-section micrographs were observed by transmission electron microscopy and revealed a structure strongly influenced by the metal inserted and its abundance. The surface pattern obtained by scanning electrochemical potential microscopy provided the metallicity distribution. These measurements were completed with atomic force microscopy of the surface. Selected area electron diffraction and X-ray diffraction measurements provided data of the crystalline structure along with nano-crystallite size. High-resolution transmission electron microscopy provided images of these crystallites.

  13. Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials

    Science.gov (United States)

    Ren, Wei; Iyer, Ajai; Koskinen, Jari; Kaskela, Antti; Kauppinen, Esko I.; Avchaciov, Konstantin; Nordlund, Kai

    2015-11-01

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether the quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp3 bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp3-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40-70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity.

  14. Ground States of Spin-1/2 Heisenberg Antiferromagnets with Frustration on a Diamond-Like-Decorated Square Lattice

    Science.gov (United States)

    Hirose, Yuhei; Oguchi, Akihide; Fukumoto, Yoshiyuki

    2017-01-01

    We study the ground-state phase diagram of a Heisenberg model with spin S = 1/2 on a diamond-like-decorated square lattice. A diamond unit has two types of antiferromagnetic exchange interactions, and the ratio λ of the length of the diagonal bond to that of the other four edges determines the strength of frustration. It has been pointed out [https://doi.org/10.7566/JPSJ.85.033705" xlink:type="simple">J. Phys. Soc. Jpn 85, 033705 (2016)] that the so-called tetramer-dimer states, which are expected to be stabilized in an intermediate region of λc < λ < 2, are identical to the square-lattice dimer-covering states, which ignited renewed interest in high-dimensional diamond-like-decorated lattices. In order to determine the phase boundary λc, we employ the modified spin wave method to estimate the energy of the ferrimagnetic state and obtain λc = 0.974. Furthermore, our numerical diagonalization study suggests that other cluster states do not appear in the ground-state phase diagram.

  15. Development of a radio frequency atmospheric pressure plasma jet for diamond-like carbon coatings on stainless steel substrates

    Science.gov (United States)

    Sohbatzadeh, F.; Samadi, O.; Siadati, S. N.; Etaati, G. R.; Asadi, E.; Safari, R.

    2016-10-01

    In this paper, an atmospheric pressure plasma jet with capacitively coupled radio frequency discharge was developed for diamond-like carbon (DLC) coatings on stainless steel substrates. The plasma jet was generated by argon-methane mixture and its physical parameters were investigated. Relation between the plasma jet length and width of the powered electrode was discussed. Optical and electrical characteristics were studied by optical emission spectroscopy, voltage and current probes, respectively. The evolutions of various species like ArI, C2 and CH along the jet axis were investigated. Electron temperature and density were estimated by Boltzmann plot method and Saha-Boltzmann equation, respectively. Finally, a diamond-like carbon coating was deposited on stainless steel-304 substrates by the atmospheric pressure radio frequency plasma jet in ambient air. Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy and Vickers hardness test were used to study the deposited films. The length of the jet was increased by increasing the width of the powered electrode. The estimated electron temperature and density were 1.43 eV and 1.39 × 1015 cm-3, respectively. Averaged Vicker's hardness of the coated sample was three times greater than that of the substrate. The SEM images of the deposited thin films revealed a 4.5 μm DLC coated for 20 min.

  16. Dynamics of iron-acceptor-pair formation in co-doped silicon

    Energy Technology Data Exchange (ETDEWEB)

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F. [Calisolar GmbH, Magnusstrasse 11, 12489 Berlin (Germany); Möller, C. [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany); TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau (Germany); Lauer, K. [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany)

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  17. Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO

    Institute of Scientific and Technical Information of China (English)

    Weng Zhen-Zhen; Zhang Jian-Min; Huang Zhi-Gao; Lin Wen-Xiong

    2011-01-01

    The influence of oxygen vacancy on the magnetism of Co-doped ZnO has been investigated by the first-principles calculations. It is suggested that oxygen vacancy and its location play crucial roles on the magnetic properties of Co-doped ZnO. The exchange coupling mechanism should account for the magnetism in Co-doped ZnO with oxygen vacancy and the oxygen vacancy is likely to be close to the Co atom. The oxygen vacancy (doping electrons) might be available for carrier mediation but is localized with a certain length and can strengthen the ferromagnetic exchange interaction between Co atoms.

  18. Electrochemical Properties for Co-Doped Pyrite with High Conductivity

    Directory of Open Access Journals (Sweden)

    Yongchao Liu

    2015-09-01

    Full Text Available In this paper, the hydrothermal method was adopted to synthesize nanostructure Co-doped pyrite (FeS2. The structural properties and morphology of the synthesized materials were characterized using X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. Co in the crystal lattice of FeS2 could change the growth rate of different crystal planes of the crystal particles, which resulted in various polyhedrons with clear faces and sharp outlines. In addition, the electrochemical performance of the doping pyrite in Li/FeS2 batteries was evaluated using the galvanostatic discharge test, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the discharge capacity of the doped material (801.8 mAh·g−1 with a doping ratio of 7% was significantly higher than that of the original FeS2 (574.6 mAh·g−1 because of the enhanced conductivity. Therefore, the doping method is potentially effective for improving the electrochemical performance of FeS2.

  19. Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Idil Uysal

    2014-08-01

    Full Text Available Hydroxyapatite (HA co-doped with Zn2+ and F− ions was synthesized by precipitation method for the first time in this study. FTIR spectroscopy revealed Zn2+ and F− ions incorporation into HA structure. Co-doping of Zn2+ and F− ions decreased unit cell volume of HA and decreased grain sizes. Zn2+ or 5 mol% F− addition into HA significantly improved its density. Microhardness was increased with Zn2+ addition and further increase was detected with F− co-doping. Zn2+ and F− co-doped samples had higher fracture toughness than pure HA. Zn2+ incorporation to the structure resulted in an increase in cell proliferation and ALP activity of cells, and further increase was observed with 1 mol% F− addition. With superior mechanical properties and biological response 2Zn1F is a good candidate for biomedical applications.

  20. Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    Idil Uysal; Feride Severcana; Aysen Tezcanera; Zafer Evisa

    2014-01-01

    Hydroxyapatite (HA) co-doped with Zn2+ and F- ions was synthesized by precipitation method for the first time in this study. FTIR spectroscopy revealed Zn2+ and F- ions incorporation into HA structure. Co-doping of Zn2 + and F- ions decreased unit cell volume of HA and decreased grain sizes. Zn2+ or 5 mol% F- addition into HA significantly improved its density. Microhardness was increased with Zn2 + addition and further increase was detected with F- co-doping. Zn2+ and F- co-doped samples had higher fracture toughness than pure HA. Zn2+incorporation to the structure resulted in an increase in cell proliferation and ALP activity of cells, and further increase was observed with 1 mol%F- addition. With superior mechanical properties and biological response 2Zn1F is a good candidate for biomedical applications.

  1. Effect of shallow donors on Curie–Weiss temperature of Co-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shuxia, E-mail: gsx0391@sina.com [Department of Physics, Jiaozuo Teachers College, Jiaozuo 454001 (China); Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Li, Jiwu [Department of Physics, Jiaozuo Teachers College, Jiaozuo 454001 (China); Du, Zuliang [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China)

    2014-12-15

    Co-doped ZnO and Al, Co co-doped ZnO polycrystalline powders were synthesized by co-precipitation method. The magnetization curves measured at 2 K show no hysteresis neither remanence for all samples. ZnO:Co grown at low temperature has a positive Curie–Weiss temperature Θ, and ZnO:Co grown at high temperature has a negative Θ. But Al-doped ZnO:Co grown at high temperature has a positive Θ. Positive Curie–Weiss temperature Θ was considered to have relation to the presence of shallow donors in the samples. - Highlights: • Co-doped ZnO and Al, Co co-doped ZnO polycrystalline powders were synthesized. • No hysteresis is observed for all samples. • The Curie–Weiss temperature Θ changes its sign by Al doping. • Positive Θ should be related to shallow donors.

  2. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com [Institute of Basic Sciences, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); Song, T.K., E-mail: tksong@changwon.ac.kr [School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); Gautam, Sanjeev; Chae, K.H. [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, S.S.; Jang, K.W. [Institute of Basic Sciences, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of)

    2015-06-15

    Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L{sub 3,2} NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L{sub 3,2} edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles.

  3. Effect of Fe ion implantation on tribological properties and Raman spectra characteristics of diamond-like carbon film

    Institute of Scientific and Technical Information of China (English)

    JIA Wen-Bao; SUN Zhuo

    2004-01-01

    Fe ions in the fluence range of 2 × 1015 to 1×1017 cm -2 were implanted into diamond-like carbon (DLC) thin film of 100 nm thick, which were deposited on silicon substrate by plasma enhanced chemical vapor deposition.Effects of Fe ion implantation on microstructure and friction coefficient of the DLC were studied. With increasing Fe ion fluence, friction coefficient of the DLC film increased as compared with that of DLC without implantation, and then decreased. The Raman spectra characteristics also show a dependence on the Fe ion fluence. With increasing the ion fluence, the sp2 bonding increased in the DLC film, resulting in the decrease of friction coefficient of the film after implantation. Substantial surface roughness was also measured.

  4. Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC-coated Si probe

    Directory of Open Access Journals (Sweden)

    Zhou Jingfang

    2011-01-01

    Full Text Available Abstract Atomic force microscope (AFM equipped with diamond-like carbon (DLC-coated Si probe has been used for scratch nanolithography on Si surfaces. The effect of scratch direction, applied tip force, scratch speed, and number of scratches on the size of the scratched geometry has been investigated. The size of the groove differs with scratch direction, which increases with the applied tip force and number of scratches but decreases slightly with scratch speed. Complex nanostructures of arrays of parallel lines and square arrays are further fabricated uniformly and precisely on Si substrates at relatively high scratch speed. DLC-coated Si probe has the potential to be an alternative in AFM-based scratch nanofabrication on hard surfaces.

  5. Investigation of Physical Properties and Electrochemical Behavior of Nitrogen-Doped Diamond-Like Carbon Thin Films

    Directory of Open Access Journals (Sweden)

    Rattanakorn Saensak

    2014-03-01

    Full Text Available This work reports characterizations of diamond-like carbon (DLC films used as electrodes for electrochemical applications. DLC thin films are prepared on glass slides and silicon substrates by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD using a gas mixture of methane and hydrogen. In addition, the DLC films are doped with nitrogen in order to reduce electrical resistivity. Compared to the undoped DLC films, the electrical resistivity of nitrogen-doped (N-doped DLC films is decreased by three orders of magnitude. Raman spectroscopy and UV/Vis spectroscopy analyses show the structural transformation in N-doped DLC films that causes the reduction of band gap energy. Contact angle measurement at N-doped DLC films indicates increased hydrophobicity. The results obtained from the cyclic voltammetry measurements with Fe(CN63-/Fe(CN64- redox species exhibit the correlation between the physical properties and electrochemical behavior of DLC films.

  6. Dynamic optical properties of amorphous diamond-like carbon nanocomposite films doped with Cu and Ag nanoparticles

    Science.gov (United States)

    Tamulevičius, Tomas; Peckus, Domantas; Tamulevičiene, Asta; Vasiliauskas, Andrius; Čiegis, Arvydas; Meškinis, Šarūnas; Tamulevičius, Sigitas

    2014-09-01

    The investigation of relaxation processes in noble metal nanoparticles upon ultrafast excitations by femtosecond laser pulses is useful to understand the origin and the enhancement mechanism of the nonlinear optical properties for metaldielectric nanocomposites. In the current work we analyze diamond like carbon (DLC) film based copper and silver nanocomposites with different metal content synthesized employing unbalanced magnetron sputtering of metal targets with argon ions in acetylene gas atmosphere. Surface morphology and nanoparticle sizes were analyzed employing scanning electron and atomic force microscopy. Optical properties of the nanocomposite films were analyzed employing UV-VIS-NIR spectrometry. Transient absorption measurements were obtained employing Yb:KGW femtosecond laser spectroscopic system (HARPIA, Light Conversion Ltd.). Energy relaxation dynamics in Cu nanoparticles showed some significant differences from Ag nanoparticles. The increase of excitation intensity hasn't show additional nonlinear effects for the excited state relaxation dynamics for both kinds of samples.

  7. Characteristics of Nitrogen Doped Diamond-Like Carbon Films Prepared by Unbalanced Magnetron Sputtering for Electronic Devices.

    Science.gov (United States)

    Lee, Jaehyeong; Choi, Byung Hui; Yun, Jung-Hyun; Park, Yong Seob

    2016-05-01

    Synthetic diamond-like carbon (DLC) is a carbon-based material used mainly in cutting tool coatings and as an abrasive material. The market for DLC has expanded into electronics, optics, and acoustics because of its distinct electrical and optical properties. In this work, n-doped DLC (N:DLC) films were deposited on p-type silicon substrates using an unbalanced magnetron sputtering (UBMS) method. We investigated the effect of the working pressure on the microstructure and electrical properties of n-doped DLC films. The structural properties of N:DLC films were investigated by Raman spectroscopy and SEM-EDX, and the electrical properties of films were investigated by observing the changes in the resistivity and current-voltage (I-V) properties. The N:DLC films prepared by UBMS in this study demonstrated good conducting and physical properties with n-doping.

  8. Hydrophobic and high transparent honeycomb diamond-like carbon thin film fabricated by facile self-assembled nanosphere lithography

    Science.gov (United States)

    Peng, Kai-Yu; Wei, Da-Hua; Lin, Chii-Ruey; Yu, Yueh-Chung; Yao, Yeong-Der; Lin, Hong-Ming

    2014-01-01

    In this paper, we take advantage of a facile fabrication technique called self-assembled nanosphere lithography (SANSL) combining with proper two-step reactive ion etching (RIE) method and radio frequency (RF) sputtering deposition process for manufacturing honeycomb diamond-like carbon (DLC) thin film structures with hydrophobic and high transparent properties. It is found that the DLC thin films deposited on clean glass substrates at the RF power of 100 W with the surface roughness (Ra) of 2.08 nm and the ID/IG ratio of 1.96 are realized. With a fill-factor of 0.691, the honeycomb DLC patterned thin film shows the best transmittance performance of 87% in the wavelength of visible light, and the optimized contact angle measurement is ˜108°. Compared with the pure DLC thin film and original glass substrate, the hydrophobic property of the patterned DLC films is significantly improved by 80 and 160%, respectively.

  9. Deposition of Diamond-Like carbon Films by High-Intensity Pulsed Ion Beam Ablation at Various Substrate Temperatures

    Institute of Scientific and Technical Information of China (English)

    梅显秀; 刘振民; 马腾才; 董闯

    2003-01-01

    Diamond-like carbon (DLC) films have been deposited on to Si substrates at substrate temperatures from 25℃to 400 ℃ by a high-intensity pulsed-ion-beam (HIPIB) ablation deposition technique. The formation of DLC is confirmed by Raman spectroscopy. According to an x-ray photoelectron spectroscopy analysis, the concentration of spa carbon in the films is about 40% when the substrate temperature is below 300 ℃. With increasing substrate temperature from 25 ℃ to 400 ℃, the concentration of sp3 carbon decreases from 43% to 8%. In other words,sp3 carbon is graphitized into sp2 carbon when the substrate temperature is above 300 ℃. The results of xray diffraction and atomic force microscopy show that, with increasing the substrate temperature, the surface roughness and the friction coefficient increase, and the microhardness and the residual stress of the films decrease.

  10. Reduction in static friction by deposition of a homogeneous diamond-like carbon (DLC) coating on orthodontic brackets.

    Science.gov (United States)

    Akaike, Shun; Hayakawa, Tohru; Kobayashi, Daishiro; Aono, Yuko; Hirata, Atsushi; Hiratsuka, Masanori; Nakamura, Yoshiki

    2015-01-01

    In orthodontics, a reduction in static friction between the brackets and wire is important to enable easy tooth movement. The aim of this study was to examine the effects of a homogeneous diamond-like carbon (DLC) coating on the whole surfaces of slots in stainless steel orthodontic brackets on reducing the static friction between the brackets and the wire. The DLC coating was characterized using Raman spectroscopy, surface roughness and contact angle measurements, and SEM observations. Rectangular stainless steel and titanium-molybdenum alloy wires with two different sizes were employed, and the static friction between the brackets and wire was measured under dry and wet conditions. The DLC coating had a thickness of approximately 1.0 μm and an amorphous structure was identified. The results indicated that the DLC coating always led to a reduction in static friction.

  11. Thermal effects on structure and photoluminescence properties of diamond-like carbon films prepared by pulsed laser deposition

    Institute of Scientific and Technical Information of China (English)

    CHEN Da; LI Qing-shan; WANG Jing-jing; ZHENG Xue-gang

    2006-01-01

    Un-hydrogenated Diamond-like Carbon (DLC) films were prepared by pulsed laser deposition technique at different substrate temperature.The Raman spectra,the absorption and the photoluminescence spectra were measured.The dependence of structure and photoluminescence properties on deposition temperature were studied in detail.The experimental results indicate that the sp2 sites form small clusters that consist of both olefinic chains and aromatic ring groups within the sp3 matrix.With raising deposition temperature,the optical band gaps increase from 1.87 to 2.85 eV.The main band of photoluminescence centered at around 700nm shifts to short wavelength,and the intensity of this band increases.The photoluminescence can be attributed to carrier localization within an increasing sp2 clusters.It was clarified that the DLC films are ordered with increasing deposition temperature.

  12. Structural characteristics of surface-functionalized nitrogen-doped diamond-like carbon films and effective adjustment to cell attachment

    Science.gov (United States)

    Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua

    2015-05-01

    Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).

  13. Structural and electronic properties study on B-N co-doped (4,3) carbon nanotubes through first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuechao; Shi, Jianhao; Zhao, Tong [Department of Materials Physics and Chemistry, Kunming University of Science & Technology, Kunming, Yunnan 650093 (China); Wan, Rundong, E-mail: rdwan@kmust.edu.cn [Department of Materials Physics and Chemistry, Kunming University of Science & Technology, Kunming, Yunnan 650093 (China); Leng, Chongyan [Department of Materials Physics and Chemistry, Kunming University of Science & Technology, Kunming, Yunnan 650093 (China); Lei, Ying [Department of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243002 (China)

    2016-06-01

    Abstracts: We carry out theoretical studies for both the pristine and boron-nitrogen co-doped (4,3) single-walled carbon nanotubes (SWCNTs). We first acquire the optimized geometries using a pure functional. We then obtain the electronic structures with a relatively accurate hybrid functional. We systematically study four different patterns for doping along different chain directions. Our calculated results reveal that the energy band splits, and many new states appear in the gap after doping. The band gap gradually decreases with the increasing number of dopants, while it begins to expand when the doping concentration is larger. Through projected density of states analyses, we find that the individual atoms make different contribution to the valence states, gap region states, and conduction states. These findings are expected to provide some reliable theoretical supports with the following research on the modification of carbon nanotubes.

  14. Effect of Co doping on structural, optical, magnetic and dielectric properties of Bi2Fe4O9

    Science.gov (United States)

    Mohapatra, S. R.; Sahu, B.; Kaushik, S. D.; Singh, A. K.

    2015-06-01

    Polycrystalline Bi2Fe4O9 and 2% Co doped Bi2Fe4O9 were prepared by solid state reaction route. X-ray diffraction (XRD) result reveals that there is no change in the crystal structure due to Co doping and the compound has orthorhombic structure. UV-visible spectroscopy confirms the decrease in band gap due Co doping. Zero field cooled magnetization measurement at 100 Oe magnetic field shows substantial decrease in the magnetic transition temperature. Room temperature frequency dependent dielectric permittivity at 1V DC bias shows ˜10% increase in Co doped sample with respect to pure Bi2Fe4O9.

  15. Visible-Light Photodegradation of Dye on Co-Doped Titania Nanotubes Prepared by Hydrothermal Synthesis

    Directory of Open Access Journals (Sweden)

    Jung-Pin Wang

    2012-01-01

    Full Text Available Highly porous Co-doped TiO2 nanotubes synthesized from a hydrothermal treatment were used to photodecompose methylene blue (MB in liquid phase under visible light irradiation. The anatase-type titania nanotubes were found to have high specific surface areas of about 289–379 m2/g. These tubes were shown to be hollow scrolls with outer diameter of about 10–15 nm and length of several micrometers. UV absorption confirmed that Co doping makes the light absorption of nanotubes shift to visible light region. With increasing the dopant concentration, the optical band gap of nanotubes became narrower, ranging from 2.4 eV to 1.8 eV, determined by Kubelka-Munk plot. The Co-doped nanotubes exhibit not only liquid-phase adsorption ability, but also visible-light-derived photodegradation of MB in aqueous solution. The synergetic effect involves two key factors in affecting the photocatalytic activity of Co-doped titania nanotubes under fluorescent lamp, that is, high porosity and optical band gap. The merit of the present work is to provide an efficient route for preparing Co-doped TiO2 nanotubes and to clarifying their adsorption and photocatalytic activity under fluorescent lamp.

  16. Characterization of co-doped (In, N): ZnO by indigenous thermopower measurement system

    Science.gov (United States)

    Kedia, Sanjay Kumar; Singh, Anil; Chaudhary, Sujeet

    2016-05-01

    The thermopower measurement of (In, N) co-doped ZnO thin films have been carried out using indigenous high and low temperature thermopower measurement system. The compact thermopower measurement system has been designed, developed, tested in house. The sensitivity and accuracy of indigenous thermopower system have been investigated by measuring thermopower of standard samples like Cu, Ni, Sb etc. It has been also investigated by the comparison of carrier concentration using Hall Effect and Thermopower measurement of these (In, N) co-doped ZnO thin films. The constant temperature gradient between hot and cold junction has been maintained by using the temperature controller. The room temperature and low temperature Seebeck coefficient measurements were performed on these co-doped ZnO samples. A series of experiments have been performed to detect the p-type conductivity in co-doped ZnO thin films, particularly at low temperature. The negative Seebeck coefficient observed down to 40 K established the n-type behavior in these co-doped samples.

  17. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sreelekha, N.; Subramanyam, K. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Department of Physics, Raghu Engineering College, Visakhapatnam, Andrapradesh 531162 (India); Amaranatha Reddy, D. [Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609735 (Korea, Republic of); Murali, G. [Department of BIN Fusion Technology & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk (Korea, Republic of); Ramu, S. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Rahul Varma, K. [Department of Mechanical Engineering, University of California, Berkeley (United States); Vijayalakshmi, R.P., E-mail: vijayaraguru@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2016-08-15

    Highlights: • Cu{sub 1−x}Co{sub x}S nanoparticles were synthesized via chemical co-precipitation method. • Structural, band gap, magnetization and photocatalysis studies were carried out. • All the doped samples exhibited intrinsic room temperature ferromagnetism. • Effect of magnetic properties on photocatalytic activity was analyzed. • CuS:Co nanoparticles may find applications in photocatalytic and spintronic devices. - Abstract: Pristine and Co doped covellite CuS nanoparticles were synthesized in aqueous solution by facile chemical co-precipitation method with Ethylene Diamine Tetra Acetic Acid (EDTA) as a stabilizing agent. EDAX measurements confirmed the presence of Co in the CuS host lattice. Hexagonal crystal structure of pure and Co doped CuS nanoparticles were authenticated by XRD patterns. TEM images indicated that sphere-shape of nanoparticles through a size ranging from 5 to 8 nm. The optical absorption edge moved to higher energies with increase in Co concentration as indicated by UV–vis spectroscopy. Magnetic measurements revealed that bare CuS sample show sign of diamagnetic character where as in Co doped nanoparticles augmentation of room temperature ferromagnetism was observed with increasing doping precursor concentrations. Photocatalytic performance of the pure and Co doped CuS nanoparticles were assessed by evaluating the degradation rate of rhodamine B solution under sun light irradiation. The 5% Co doped CuS nanoparticles provide evidence for high-quality photocatalytic activity.

  18. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles

    Science.gov (United States)

    Sreelekha, N.; Subramanyam, K.; Amaranatha Reddy, D.; Murali, G.; Ramu, S.; Rahul Varma, K.; Vijayalakshmi, R. P.

    2016-08-01

    Pristine and Co doped covellite CuS nanoparticles were synthesized in aqueous solution by facile chemical co-precipitation method with Ethylene Diamine Tetra Acetic Acid (EDTA) as a stabilizing agent. EDAX measurements confirmed the presence of Co in the CuS host lattice. Hexagonal crystal structure of pure and Co doped CuS nanoparticles were authenticated by XRD patterns. TEM images indicated that sphere-shape of nanoparticles through a size ranging from 5 to 8 nm. The optical absorption edge moved to higher energies with increase in Co concentration as indicated by UV-vis spectroscopy. Magnetic measurements revealed that bare CuS sample show sign of diamagnetic character where as in Co doped nanoparticles augmentation of room temperature ferromagnetism was observed with increasing doping precursor concentrations. Photocatalytic performance of the pure and Co doped CuS nanoparticles were assessed by evaluating the degradation rate of rhodamine B solution under sun light irradiation. The 5% Co doped CuS nanoparticles provide evidence for high-quality photocatalytic activity.

  19. Band gap tuning and room temperature ferromagnetism in Co doped Zinc stannate nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sumithra, S., E-mail: ssmithra@gmail.com; Victor Jaya, N.

    2016-07-15

    The effect of Co doping on structural, optical and magnetic behavior of pure and Co doped Zinc stannate (ZTO) nanostructures was investigated. Pure and Co (1%, 3% & 5%) doped Zn{sub 2}SnO{sub 4} compounds were prepared through simple precipitation route. Formation of cubic inverse spinel structure and metal oxide vibrations of the samples were investigated using XRD and FTIR. Co doping influences the crystallite size producing micro strain in ZTO lattice. Poly dispersed rod like shape of the particles was examined by FESEM. Elemental composition of prepared samples was identified by EDAX analysis. Optical Absorption spectra shows significant red shift on increasing the dopant concentration which indicates the reduction in optical band gap. Visible luminescence observed from photoluminescence studies confirms the presence of oxygen vacancies and trap sites in the lattice. Magnetization analysis reveals the enhanced ferromagnetic behavior in all Co doped ZTO samples. The amplified ferromagnetic ordering in Co doped ZTO compounds has been explained in terms of defects serving as free spin polarized prophetic carriers.

  20. Investigation of electronic structure and thermodynamic properties of quaternary Li-containing chalcogenide diamond-like semiconductors

    Science.gov (United States)

    Berarma, K.; Charifi, Z.; Soyalp, F.; Baaziz, H.; Uğur, G.; Uğur, Ş.

    2016-12-01

    Using first-principles calculations based on density functional theory, the structural, electronic and thermodynamic properties of Li2CdGeS4 and Li2CdSnS4 compounds are investigated. We confirmed that both Li2CdGeS4 and Li2CdSnS4 are diamond-like semiconductors of the wurtz-stannite structure type based on that of diamond in terms of tetrahedra volume. All the tetrahedra are almost regular with major distortion from the ideal occurring in the LiS4 tetrahedron, with values for S-Li-S ranging from 105.69° to 112.84° in the Li2CdGeS4 compound. Furthermore, the Cd-S bond possesses a stronger covalent bonding strength than the Li/Ge-S bonds. In addition, the inter-distances in Li2CdSnS4 show a larger spread than the distances in the Li2CdGeS4 compound. The electronic structures have been calculated to understand the bonding mechanism in quaternary Li-containing chalcogenide diamond-like semiconductors. Our results show that Li2CdGeS4 and Li2CdSnS4 are semiconductors with a direct band gap of 2.79 and 2.42 eV and exhibit mixed ionic-covalent bonding. It is also noted that replacing Ge by Sn leads to a decrease in the band gap; this behavior is explained in terms of bond lengths and electronegativity differences between atoms. Optical properties, including the dielectric function, reflectivity, and absorption coefficient, each as a function of photon energy are calculated and show an optical anisotropy for Li2CdGeS4 and Li2CdSnS4. The static dielectric constant {\\varepsilon }1(0) and static refractive index n(0) decrease when Ge is replaced by Sn. The influence of pressures and temperatures on the thermodynamic properties like the specific heat at constant volume {C}v, and at constant pressure {C}p, the Debye temperature {{{\\Theta }}}{{D}}, the entropy S and the Grüneisen parameter γ have been predicted at enlarged pressure and temperature ranges. The principal aspect from the obtained results is the close similarity of both compounds.

  1. Performance Study of CdS/Co-Doped-CdSe Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Xiaoping Zou

    2014-01-01

    Full Text Available In order to optimize the charge transfer path in quantum dot sensitized solar cells (QDSCs, we employed successive ionic layer adsorption and reaction method to dope CdSe with Co for fabricating CdS/Co-doped-CdSe QDSCs constructed with CdS/Co-doped-CdSe deposited on mesoscopic TiO2 film as photoanode, Pt counter electrode, and sulfide/polysulfide electrolyte. After Co doping, the bandgap of CdSe quantum dot decreases, and the conduction band and valence band all improve, forming a cascade energy level which is more conducive to charge transport inside the solar cell and reducing the recombination of electron-hole thus improving the photocurrent and ultimately improving the power conversion efficiency. This work has not been found in the literature.

  2. Further improvement of mechanical and tribological properties of Cr-doped diamond-like carbon nanocomposite coatings by N codoping

    Science.gov (United States)

    Zou, Changwei; Xie, Wei; Tang, Xiaoshan

    2016-11-01

    In this study, the effects of nitrogen codoping on the microstructure and mechanical properties of Cr-doped diamond-like carbon (DLC) nanocomposite coatings were investigated in detail. Compared with undoped DLC coatings, the Cr-DLC and N/Cr-DLC coatings showed higher root-mean-square (RMS) roughness values. However, from the X-ray photoelectron spectroscopy (XPS) and Raman results, the fraction of sp2 carbon bonds of N/Cr-DLC coatings increased with increasing N content, which indicated the graphitization of the coatings. The hardness and elastic modulus of N/Cr-DLC coatings with 1.8 at. % N were about 26.8 and 218 GPa, respectively. The observed hardness increase with N codoping was attributed to the incorporation of N in the C network along with the formation of CrC(N) nanoparticles, as confirmed from the transmission electron microscopy (TEM) results. The internal stress markedly decreased from 0.93 to 0.32 GPa as the N content increased from 0 to 10.3 at. %. Furthermore, N doping significantly improved the high-temperature dry friction behavior of DLC coatings. The friction coefficient of N/Cr-DLC coatings with 8.0 and 10.3 at. % N was kept at about 0.2 during the overall sliding test at 500 °C. These results showed that appropriate N doping could promote the mechanical and tribological properties of Cr-DLC nanocomposite coatings.

  3. Synthesis of flat sticky hydrophobic carbon diamond-like films using atmospheric pressure Ar/CH4 dielectric barrier discharge

    Science.gov (United States)

    Rincón, R.; Hendaoui, A.; de Matos, J.; Chaker, M.

    2016-06-01

    An Ar/CH4 atmospheric pressure dielectric barrier discharge (AP-DBD) was used to synthesize sticky hydrophobic diamond-like carbon (DLC) films on glass surface. The film is formed with plasma treatment duration shorter than 30 s, and water contact angles larger than 90° together with contact angle hysteresis larger than 10° can be achieved. According to Fourier transform infrared spectroscopy and atomic force microscopy analysis, hydrocarbon functional groups are created on the glass substrate, producing coatings with low surface energy (˜35 mJ m-2) with no modification of the surface roughness. To infer the plasma processes leading to the formation of low energy DLC surfaces, optical emission spectroscopy was used. From the results, a direct relationship between the CH species present in the plasma and the carbon concentration in the hydrophobic layer was found, which suggests that the CH species are the precursors of DLC film growth. Additionally, the plasma gas temperature was measured to be below 350 K which highlights the suitability of using AP-DBD to treat thermo-sensitive surfaces.

  4. Tribological behaviors of diamond-like carbon coatings on plasma nitrided steel using three BN-containing lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Jia Zhengfeng [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 73000 (China); College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Graduate School of the Chinese Academy of Sciences, Beijing 10039 (China); Wang Peng [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 73000 (China); Xia Yanqiu, E-mail: xiayanqiu@yahoo.com [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 73000 (China); Zhang Haobo; Pang Xianjuan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 73000 (China); Graduate School of the Chinese Academy of Sciences, Beijing 10039 (China); Li Bin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 73000 (China)

    2009-04-15

    In this work, diamond-like carbon (DLC) coatings were deposited on plasma nitrided AISI 1045 steel by magnetron sputtering. Three BN-containing additives and molybdenum dithiocarbamate (MoDTC) were added to poly-alpha-olefin (PAO) as additives. The additive content (mass fraction) in PAO was fixed at 0.5 wt%. The friction and wear characters of DLC coatings on nitrided steel discs sliding against AISI 52100 steel balls were tested under the lubricated conditions. It was found that borate esters have a higher load carrying capacity and much better anti-wear and friction-reducing ability than that of MoDTC. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were employed to explore the properties of the worn surface and the mechanism of friction and wear. According to the XPS analysis, the adsorbed organic N-containing compounds and BN are, possibly, the primary reason for the novel borate esters to possess a relatively constant coefficient of friction and lower wear rate. On the other hand, possibly, the MoDTC molecules break down during sliding and produce many Mo-oxides, and then the Mo-oxides destroy the DLC coating because of its sharp edge crystalline solid structure. After destroying the DLC coating, the MoDTC react with metals and form MoS{sub 2} tribofilm, and decrease coefficient of friction of rubbing pairs.

  5. Preparation and Properties of Ag-Containing Diamond-Like Carbon Films by Magnetron Plasma Source Ion Implantation

    Directory of Open Access Journals (Sweden)

    K. Baba

    2012-01-01

    Full Text Available The doping effect of silver on the structure and properties of diamond-like carbon (DLC films was investigated. The samples were prepared by a process combining acetylene plasma source ion implantation (high-voltage pulses of −10 kV with reactive magnetron sputtering of an Ag disc. A mixture of two gases, argon, and acetylene was introduced into the discharge chamber as working gas for plasma formation. A negative high-voltage pulse was applied to the substrate holder, thus, accelerating ions towards the substrate. The chemical composition of the deposited films was modified by the respective gas flows and determined using X-ray photoelectron spectroscopy and secondary ion mass spectrometry. The silver concentration within the DLC films influenced the structure and the tribological properties. The surface roughness, as observed by scanning electron microscopy, increased with silver concentration. The film structure was characterized by Raman spectroscopy and X-ray diffractometry (XRD. The DLC films were mainly amorphous, containing crystalline silver, with the amount of silver depending on the process conditions. The tribological properties of the films were improved by the silver doping. The lowest friction coefficient of around 0.06 was derived at a low silver content.

  6. Transition Metal Ion Implantation into Diamond-Like Carbon Coatings: Development of a Base Material for Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Andreas Markwitz

    2015-01-01

    Full Text Available Micrometre thick diamond-like carbon (DLC coatings produced by direct ion deposition were implanted with 30 keV Ar+ and transition metal ions in the lower percentage (<10 at.% range. Theoretical calculations showed that the ions are implanted just beneath the surface, which was confirmed with RBS measurements. Atomic force microscope scans revealed that the surface roughness increases when implanted with Ar+ and Cu+ ions, whereas a smoothing of the surface from 5.2 to 2.7 nm and a grain size reduction from 175 to 93 nm are measured for Ag+ implanted coatings with a fluence of 1.24×1016 at. cm−2. Calculated hydrogen and carbon depth profiles showed surprisingly significant changes in concentrations in the near-surface region of the DLC coatings, particularly when implanted with Ag+ ions. Hydrogen accumulates up to 32 at.% and the minimum of the carbon distribution is shifted towards the surface which may be the cause of the surface smoothing effect. The ion implantations caused an increase in electrical conductivity of the DLC coatings, which is important for the development of solid-state gas sensors based on DLC coatings.

  7. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.Y. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Zhang, G.F. [School of Materials Science and Engineering, Dalian University of Technology, 116024, Dalian China (China); Zhao, Y.; Liu, D.D. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Cong, Y., E-mail: congyan@ciomp.ac.cn [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Buck, V. [Thin Film Technology Group, Faculty of Physics, University Duisburg-Essen and CeNIDE, 47057 Duisburg (Germany)

    2015-09-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect.

  8. Surface Structure of Hydrogenated Diamond-like Carbon: Origin of Run-In Behavior Prior to Superlubricious Interfacial Shear

    Energy Technology Data Exchange (ETDEWEB)

    Al-Azizi, Ala A; Eryilmaz, Osman; Erdemir, Ali; Kim, Seong H.

    2015-01-01

    The oxidized layers at the surface of hydrogenated diamond-like carbon (H-DLC) were studied with X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure, and Raman spectroscopy. The structure of these layers was correlated with the friction and wear behavior observed on H-DLC. H-DLC is well-known for its ultralow friction in inert environments, but the steady superlubricious state is always preceded by a run-in period with a high friction. It was hypothesized that the run-in period is related to the surface oxide layer formed naturally upon exposure of the sample to air. To test this hypothesis, thermal oxide layers were grown, and their structures were analyzed and compared with the native oxide layer on a pristine sample. It was found that the Raman spectra of the surface oxide layers of H-DLC have higher D/G band ratio than the bulk, indicating a larger amount of aromatic clusters compared to the bulk film. Thick oxide layers grown at 300 °C showed a run-in friction behavior that resembled the friction of graphite. The run-in periods were found to become longer when the thickness of the oxide layers increased, indicating that the run-in behavior of H-DLC is attributed to the removal of the surface oxide layers.

  9. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    Directory of Open Access Journals (Sweden)

    Tadas Juknius

    2016-05-01

    Full Text Available In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique. The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile.

  10. STRUCTURE, MECHANICAL PROPERTIES AND THERMAL STABILITY OF DIAMOND-LIKE CARBON FILMS PREPARED BY ARC ION PLATING

    Institute of Scientific and Technical Information of China (English)

    Y.S. Zou; J.D. Zheng; J. Gong; C. Sun; R.F. Huang; L.S. Wen

    2005-01-01

    Diamond-like Carbon (DLC) films have been prepared on Si(100) substrates by arc ion plating in conjunction with pulse bias voltage under H2 atmosphere. The deposited films have been characterized by scanning electron microscopy and atomic force microscopy. The results show that the surface of the film is smooth and dense without any cracks, and the surface roughness is low. The bonding characteristic of the films has been studied by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It shows the sp3 bond content of the film deposited at -200V is 26.7%. The hardness and elastic modulus of the film determined by nanoindentation technique are 30.8 and 250.1GPa, respectively. The tribological characteristic of the films reveals that they have low friction coefficient and good wear-resistance. After deposition, the films have been annealed in the range of 350-700℃ for 1h in vacuum to investigate the thermal stability. Raman spectra indicate that the ID/IG ratio and G peak position have few detectable changes below 500℃. Further increasing the annealing temperature, the hydrogen can be released, the structure rearranges, and the phase transition of sp3 configured carbon to sp2 configured carbon appears.

  11. Functionalization of Hydrogen-free Diamond-like Carbon Films using Open-air Dielectric Barrier Discharge Atmospheric Plasma Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid, Spain; Instituto de Quimica-Fisica" Rocasolano" C.S.I.C., 28006 Madrid, Spain; Mahasarakham University, Mahasarakham 44150, Thailand; CASTI, CNR-INFM Regional Laboratory, L' Aquila 67100, Italy; SUNY Upstate Medical University, Syracuse, NY 13210, USA; Endrino, Jose; Endrino, J. L.; Marco, J. F.; Poolcharuansin, P.; Phani, A.R.; Allen, M.; Albella, J. M.; Anders, A.

    2007-12-28

    A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N2 gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N2 DBD plasma treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N2 atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC coated devices.

  12. Study of Fluorine Addition Influence in the Dielectric Constant of Diamond-Like Carbon Thin Film Deposited by Reactive Sputtering

    Science.gov (United States)

    Trippe, S. C.; Mansano, R. D.

    The hydrogenated amorphous carbon films (a-C:H) or DLC (Diamond-Like Carbon) films are well known for exhibiting high electrical resistivity, low dielectric constant, high mechanical hardness, low friction coefficient, low superficial roughness and also for being inert. In this paper, we produced fluorinated DLC films (a-C:F), and studied the effect of adding CF4 on the above-mentioned properties of DLC films. These films were produced by a reactive RF magnetron sputtering system using a target of pure carbon in stable graphite allotrope. We performed measurements of electrical characteristic curves of capacitance as a function of applied tension (C-V) and current as a function of the applied tension (I-V). We showed the dielectric constant (k) and the resistivity (ρ) as functions of the CF4 concentration. On films with 65% CF4, we found that k = 2.7, and on films with 70% CF4, ρ = 12.3 × 1011 Ω cm. The value of the electrical breakdown field to films with 70% CF4 is 5.3 × 106 V/cm.

  13. On the performances and wear of WC-diamond like carbon coated tools in drilling of CFRP/Titanium stacks

    Science.gov (United States)

    Boccarusso, L.; Durante, M.; Impero, F.; Minutolo, F. Memola Capece; Scherillo, F.; Squillace, A.

    2016-10-01

    The use of hybrid structures made of CFRP and titanium alloys is growing more and more in the last years in the aerospace industry due to the high strength to weight ratio. Because of their very different characteristics, the mechanical fastening represent the most effective joining technique for these materials. As a consequence, drilling process plays a key role in the assembly. The one shot drilling, i.e. the contemporary drilling of the stack of the two materials, seems to be the best option both in terms of time saving and assembly accuracy. Nevertheless, due to the considerable different machinability of fiber reinforced plastics and metallic materials, the one shot drilling is a critical process both for the holes quality and for the tools wear. This research was carried out to study the effectiveness of new generation tools in the drilling of CFRP/Titanium stacks. The tools are made of sintered grains of tungsten carbide (WC) in a binder of cobalt and coated with Diamond like carbon (DLC), and are characterized by a patented geometry; they mainly differ in parent WC grain size and binder percentage. Both the cutting forces and the wear phenomena were accurately investigated and the results were analyzed as a function of number of holes and their quality. The results show a clear increase of the cutting forces with the number of holes for all the used drilling tools. Moreover, abrasive wear phenomena that affect initially the tools coating layer were observed.

  14. Molecular dynamics simulations on the frictional behavior of a perfluoropolyether film sandwiched between diamond-like-carbon coatings.

    Science.gov (United States)

    Dai, L; Sorkin, V; Sha, Z D; Pei, Q X; Branicio, P S; Zhang, Y W

    2014-02-18

    We perform molecular dynamics simulations to investigate the nanoscale frictional behavior of a perfluoropolyether (PFPE) film sandwiched between two diamond-like-carbon (DLC) coatings. We show that the PFPE films behave like a solid and can perform either a motion-station movement or a continuous motion with fluctuating velocities. The former movement is caused by the alternating stick and slip at the two individual interfaces, while the latter is due to the dynamic sliding motions simultaneously occurring at both interfaces. We reveal that these motion characteristics are governed by the competition between the two interfacial adhesion energies, which are strongly affected by the thermal vibrations and interface roughness fluctuations. We also find that the Amonton's law modified by incorporating the adhesion effect can be used to describe the mean friction traction vs normal pressure relation, but large fluctuations are present at low contact pressures. The magnitude of atomic level friction forces at the interface is found to be highly nonuniform. The directions of atomic level friction forces can even be opposite. With increasing the normal pressure, the nonuniformity of atomic level friction forces decreases first and then increases again. This change can be explained by the concurrent effects from the large difference in material stiffness and the changes in surface roughness under normal pressure. The present work reveals interesting insights into the sliding mechanisms in sandwiched structures and provides useful guidelines for the design of nanoscale lubricant systems.

  15. Design of a 3D photonic band gap cavity in a diamond-like inverse woodpile photonic crystal

    CERN Document Server

    Woldering, Léon A; Vos, Willem L

    2014-01-01

    We theoretically investigate the design of cavities in a three-dimensional (3D) inverse woodpile photonic crystal. This class of cubic diamond-like crystals has a very broad photonic band gap and consists of two perpendicular arrays of pores with a rectangular structure. The point defect that acts as a cavity is centred on the intersection of two intersecting perpendicular pores with a radius that differs from the ones in the bulk of the crystal. We have performed supercell bandstructure calculations with up to $5 \\times 5 \\times 5$ unit cells. We find that up to five isolated and dispersionless bands appear within the 3D photonic band gap. For each isolated band, the electric-field energy is localized in a volume centred on the point defect, hence the point defect acts as a 3D photonic band gap cavity. The mode volume of the cavities resonances is as small as 0.8 $\\lambda^{3}$ (resonance wavelength cubed), indicating a strong confinement of the light. By varying the radius of the defect pores we found that o...

  16. Debris reduction for copper and diamond-like carbon thin films produced by magnetically guided pulsed laser deposition

    CERN Document Server

    Tsui, Y Y; Vick, D; Fedosejevs, R

    2002-01-01

    The effectiveness of debris reduction using magnetically guided pulsed laser deposition (MGPLD) is reported here. KrF laser pulses (248 nm) of 100 mJ energy were focused to intensities of 6x10 sup 9 W/cm sup 2 onto the surface of a copper or a carbon source target and a magnetic field of 0.3 T as used to steer the plasma around a curved arc of 0.5 m length to the deposition substrate. Debris counts were compared for films produced by the MGPLD and conventional PLD (nonguided) techniques. A significant reduction in particulates of size greater than 0.1 mu m was achieved using MGPLD. For the copper films, particulate count was reduced from 150 000 particles/cm sup 2 /nm to 50 particulates/cm sup 2 /nm and for diamond-like carbon thin films particulate count was reduced from 25 000 particles/cm sup 2 /nm to 1200 particles/cm sup 2 /nm.

  17. Influence of Hydrogen Content on Optical and Mechanical Performances of Diamond-Like Carbon Films on Glass Substrate

    Science.gov (United States)

    Sun, Yao; Huang, Xing-Ye; Wang, Hong

    2016-04-01

    The protective layer for cover glass of touch panel screen for electronic mobile devices is required to have good mechanical properties and decent optical transparency simultaneously. The hydrogenated diamond-like carbon (a-C:H) films were deposited on glass substrate by RF-PECVD in the negative stage potential mode (NP mode), as well as the ground stage potential mode (GP mode). The impact of hydrogen content, affected by stage potential and RF power, on optical and mechanical properties was investigated. The results show that hydrogen content decreases with increasing RF power, due to the dehydrogenation effect. Higher hydrogen content in films results in lower refractive index, lower extinction coefficient, lower optical absorptions, larger optical band gap and higher transmittance, but lower hardness and wearing resistance. Therefore, although the GP mode DLC is optically favorable because of higher hydrogen content, the NP mode one is far more superior from mechanical standpoint. A compromise can be reached to deposit an ultrathin layer of DLC in NP mode, which offers a good combination of properties to meet the requirement for the protective layer of cover glass.

  18. Effects of nitrogen content on structure and electrical properties of nitrogen-doped fluorinated diamond-like carbon films

    Institute of Scientific and Technical Information of China (English)

    XIAO Jian-rong; LI Xin-hai; WANG Zhi-xing

    2009-01-01

    Nitrogen-doped fluorinated diamond-like carbon (FN-DLC) films were prepared on single crystal silicon substrate by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) under different deposited conditions with CF4,CH4 and nitrogen as source gases.The influence of nitrogen content on the structure and electrical properties of the films was studied.The films were investigated in terms of surface morphology,microstructure,chemical composition and electrical properties.Atomic force microscopy (AFM) results revealed that the surface morphology of the films became smooth due to doping nitrogen.Fourier transform infrared absorption spectrometry (FTIR) results showed that amouts of C=N and C≡N bonds increased gradually with increasing nitrogen partial pressure r (r=p(N_2)/p(N_2+CF_4+CH_4)).Gaussian fit results of C 1s and N 1s in X-ray photoelectron spectra (XPS) showed that the incorporation of nitrogen presented mainly in the forms of β-C_3N_4 and a-CN_x (x=1,2,3) in the films.The current-voltage (I-V) measurement results showed that the electrical conductivity of the films increased with increasing nitrogen content.

  19. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Indian Academy of Sciences (India)

    Awadesh Kr Mallik; Nanadadulal Dandapat; Prajit Ghosh; Utpal Ganguly; Sukhendu Jana; Sayan Das; Kaustav Guha; Garfield Rebello; Samir Kumar Lahiri; Someswar Datta

    2013-04-01

    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0.6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14.4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10-7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

  20. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  1. Diamond-like a-C:H coatings deposited in a non-self-sustained discharge with plasma cathode

    Science.gov (United States)

    Gavrilov, N. V.; Mamaev, A. S.; Kaĭigorodov, A. S.

    2009-01-01

    Hydrogenated amorphous carbon (a-C:H) coatings have been obtained by means of acetylene decomposition in a non-self-sustained periodic pulse discharge (2A, 50 kHz, 10 μs) with hollow cathode. The discharge operation was maintained by plasma cathode emission with grid stabilization based on dc glow discharge. Using the proposed method, it is possible to control the deposition conditions (total pressure of the Ar + C2H2 mixture, partial pressure of C2H2, ion current density, carbon ion energy) within broad limits, to apply a-C:H coatings onto large-area articles, and to perform deposition in one technological cycle with ion etching and ion implantation treatments aimed at improving the adhesion of coatings to substrates (Ti, Al, stainless steel, VK8 hard alloy) at temperatures below 150°C. Results of determining the deposition rate (1-8 μm), the nanohardness of coatings (up to 70 GPa), and the fraction of sp 3 bonds (25-70%) in the diamond-like coating material are presented.

  2. Structural and optical properties of Co-doped NiO films prepared by SILAR method

    Science.gov (United States)

    Taşköprü, T.; Bayansal, F.; Şahin, B.; Zor, M.

    2015-01-01

    In this study, transparent thin films of un-doped and Co-doped nickel oxide were deposited onto microscopic glass substrates using the successive ionic layer adsorption and reaction (SILAR) method. The effect of cobalt doping on structural, morphological and optical properties was investigated. XRD studies reveal that all the films are polycrystalline with cubic structure and exhibit (1 1 1) and (2 2 2) preferential orientations. Co is well incorporated in the host lattice without altering the structure. All films retain high transparency throughout the visible spectral regime. No significant shift in Raman spectra was observed due to the Co doping.

  3. Preparation and photocatalytic activity of B, Y co-doped nanosized TiO_2 catalyst

    Institute of Scientific and Technical Information of China (English)

    石中亮; 刘富梅; 姚淑华

    2010-01-01

    The catalysts of un-doped, single-doped and co-doped titanium dioxide (TiO2) powders were prepared by sol-gel method with Ti(OC4H9)4 as a raw material. The photocatalytic decomposition of phenol in aqueous solution under UV light was used as a probe reaction to evaluate their photocatalytic activities. The effects of B, Y co-doping on the crystallite sizes, crystal pattern, surface composition, and optical property of the catalyst were investigated by thermogravimetric differential thermal analysis, X-ray d...

  4. Enhanced magnetic and dielectric behavior in Co doped BiFeO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Kaushik; Sarkar, Babusona; Ashok, Vishal Dev [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India); Chaudhuri, Sheli Sinha [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata-700032 (India); De, S.K., E-mail: msskd@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

    2015-05-01

    Magnetic and dielectric properties of Co doped BiFeO{sub 3} (BFO) nanoparticles (13 nm) have been investigated. The dopant Co{sup 2+} converts spherical morphology to cubic nanostructures. The significant changes in temperature dependence of magnetization may be due to magnetic disorder phase induced by divalent Co. The substitution of Fe by Co disrupts cycloidal spin structure of BFO and improves the ferromagnetic property. Enhancement of the saturation magnetization and coercivity by about 10 times in doped BFO are due to changes in morphology. High dielectric constant of about 670 and low loss at room temperature show Co doped BFO as promising material for multifunctional devices.

  5. Ferromagnetism from Co-Doped ZnO Nanocantilevers above Room Temperature

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shao-Min; WANG Peng; LI Sheng; ZHANG Bin; GONG He-Chun; DU Zu-Liang

    2008-01-01

    @@ At low temperature (400° C), chemical vapour deposition (CVD) is employed to make comb-like Co-doped ZnO nanocantilever arrays (NAs). The magnetization curves of the as-synthesized Co-doped ZnO NAs indicate the existence of above-room-temperature ferromagnetism (ARTFM) (Curie temperature, Tc > 300 K) whereas un-doped ZnO NAs does not. The corresponding ferromagnetic source mechanism is discussed, in which defects play an important role due to the strong green light emission.

  6. Effect of Co doping concentration on structural properties and optical parameters of Co-doped ZnO thin films by sol-gel dip-coating method.

    Science.gov (United States)

    Nam, Giwoong; Yoon, Hyunsik; Kim, Byunggu; Lee, Dong-Yul; Kim, Jong Su; Leem, Jae-Young

    2014-11-01

    The structural and optical properties of Co-doped ZnO thin films prepared by a sol-gel dip-coating method were investigated. X-ray diffraction analysis showed that the thin films were grown with a c-axis preferred orientation. The position of the (002) peak was almost the same in all samples, irrespective of the Co concentration. It is thus clear that Co doping had little effect on the position of the (002) peak. To confirm that Co2+ was substituted for Zn2+ in the wurtzite structure, optical measurements were conducted at room temperature by a UV-visible spectrometer. Three absorption peaks are apparent in the Co-doped ZnO thin films that do not appear for the undoped ZnO thin film. As the Co concentration was increased, absorption related to characteristic Co2+ transitions increased because three absorption band intensities and the area underneath the absorption wells between 500 and 700 nm increased with increasing Co concentration. The optical band gap and static dielectric constant decreased and the Urbach energy and extinction coefficient increased with increasing Co concentration.

  7. (Al, Er) co-doped ZnO nanoparticles for photodegradation of rhodamine blue

    Science.gov (United States)

    Ghomri, R.; Shaikh, M. Nasiruzzaman; Ahmed, M. I.; Bououdina, M.; Ghers, M.

    2016-10-01

    Pure and co-doped (Al, Er) ZnO nanoparticles (NPs) have been synthesized by hydrothermal method using (Zn, Er and Al) nitrates. X-ray diffraction patterns reveal the formation of single phase of ZnO würtzite-type structure. The crystallite size for pure ZnO is in the order of 26.5 nm which decreases up to the range 14.2-22.0 nm after (Al, Er) co-doping. SEM micrographs show that the specimen is composed of regular spherical particles in the nanoscale regime with homogeneous size distribution and high tendency to agglomeration. FTIR spectra exhibit absorption lines located at wavenumbers corresponding to vibration modes between the constituent atoms. Raman spectra recorded under excitation ( λ exc = 632.8 nm) reveal peaks related to modes of transverse and longitudinal optical phonons of the würtzite ZnO structure. The energy band gap E g of ZnO:(Al, Er) NPs ranges in 3.264-3.251 eV. The photocatalytic activity of pure and co-doped (Al, Er) ZnO NPs was evaluated by the photodegradation of rhodamine blue under an irradiation of wavelength 554 nm. It is found that a photodegradation rate above 90 % could be achieved for a period of time of 40 min for pure ZnO and 120 min for (Al, Er) co-doped ZnO. A photodegradation mechanism is proposed.

  8. Re-dispersible Li+ and Eu3+ co-doped CdS nanoparticles: Luminescence studies

    Indian Academy of Sciences (India)

    N S Gajbhiye; Raghumani Singh Ninghoujam; Asar Ahmed; D K Panda; S S Umare; S J Sharma

    2008-02-01

    Re-dispersible CdS, 5 at.% Eu3+-doped CdS, 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS nanoparticles in organic solvent are prepared by urea hydrolysis in ethylene glycol medium at a low temperature of 170°C. CdS nanoparticles have spherical shape with a diameter of ∼ 80 nm. The asymmetric ratio (21) of the integrated intensities of the electrical dipole transition to the magnetic dipole transition for 5 at.% Eu3+-doped CdS is found to be 3.8 and this ratio is significantly decreased for 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS (21 = 2.6). It establishes that the symmetry environment of Eu3+ ion is more favored by Li-doping. Extra peak at 550 nm (green emission) could be seen for 2 and 5 at.% Eu3+ co-doped CdS. Also, the significant energy transfer from host CdS to Eu3+ is found for 5 at.% Eu3+-doped CdS compared to that for 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS.

  9. Ferromagnetism at room temperature in Co-doped KNbO{sub 3} bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Astudillo, A., E-mail: jaastudillo@unicauca.edu.co [Low Temperature Laboratory, Department of Physics, University of Cauca, Calle 5 No. 4-70, Popayán (Colombia); Izquierdo, J.L. [Universidad Nacional de Colombia, Campus Medellín, Departamento de Física, Laboratorio de Materiales Cerámicos y Vítreos, A.A. 568, Medellín (Colombia); Gómez, A. [Universidad Nacional de Colombia, Campus Medellín, Facultad de Minas, Laboratorio de Caracterización de Materiales, A.A. 568, Medellín (Colombia); Bolaños, G. [Low Temperature Laboratory, Department of Physics, University of Cauca, Calle 5 No. 4-70, Popayán (Colombia); Morán, O. [Universidad Nacional de Colombia, Campus Medellín, Departamento de Física, Laboratorio de Materiales Cerámicos y Vítreos, A.A. 568, Medellín (Colombia)

    2015-01-01

    In this work, polycrystalline KNb{sub 1−x}Co{sub x}O{sub 3} (x=0, 0.05 and 0.1) samples were synthesized through standard solid-state reaction, and their structural and magnetic properties were carefully studied. The X-ray powder diffraction (XRD) patterns show reflections of a pure orthorhombic structure (space group Bmm2) with lattice parameters being very close to those reported in the literature. The most important point here is that all the samples ended up being single-phase with no affectation by impurities or segregates. The XRD peaks of Co-doped samples are broadened and shifted to the right side as compared to those of the pristine compound (x=0) suggesting effective substitution of Nb by Co ions. The Co-doped samples exhibit ferromagnetic properties at room temperature, which contrasts starkly with the paramagnetic behavior exhibited by the undoped sample. Interactions between bound magnetic polarons are considered as a possible scenario to explain the appearance of the ferromagnetic signal in the Co-doped samples. - Highlights: • Polycrystalline KNb{sub 1−x}Co{sub x}O{sub 3} (x=0, 0.05 and 0.1) is synthesized by physical route. • XRD patterns show reflections of a pure orthorhombic structure. • No affectation by impurities or segregates is verified by XRD analysis. • The Co-doped samples exhibit ferromagnetic properties at room temperature.

  10. Wideband Erbium-Ytterbium Co-Doped Phosphate Glass Waveguide Amplifier

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new '(?)' type of wideband erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with medium thin film filter is proposed, Average gain about 15.5dB between 1530nm and 1570nm with gain difference of below 2 dB is obtained.

  11. Transient Dynamics of Fluoride-Based High Concentration Erbium/Cerium Co-Doped Fiber Amplifier

    Institute of Scientific and Technical Information of China (English)

    S. S-H. Yam; Y. Akasaka; Y. Kubota; R. Huang; D. L. Harris; J. Pan

    2003-01-01

    We designed and evaluated a fluoride-based high concentration erbium/ cerium co-doped fiber amplifier. It is suitable for Metropolitan Area Networks due to faster transient, flatter (unfiltered) gain, smaller footprint and gain excursion than its silica-based counterpart.

  12. Influence of defects on electrical properties of electrodeposited co-doped ZnO nanocoatings

    Science.gov (United States)

    Simimol, A.; Anappara, Aji A.; Barshilia, Harish C.

    2017-01-01

    We present a systematic investigation of the electrical properties of undoped and Co-doped ZnO nanostructures at room temperature as an extensive study of the role of defects in ZnO. The ZnO nanostructures were fabricated by the electrodeposition method at low bath temperature (80 °C) and the Co concentration was varied from 0.01 to 0.2 mM. Electrical properties of the undoped and Co-doped ZnO nanostructures were studied in detail. The carrier concentration increases while the mobility reduces with increase in Co-concentration. The resistivity increases with an increase in Co-concentration and the reason is correlated with the defects in ZnO. In order to understand more details of the role of defects in the present I-V characteristic behavior of the Co-doped ZnO, high temperature vacuum annealing of ZnO sample was carried out. Electrical, optical and magnetic properties of the high temperature vacuum annealed ZnO were studied in detail. Photoluminescence spectroscopy (PL) results revealed more information of the defect levels which act as scattering centers for the carriers. Co-doping as well as annealing at high temperature in vacuum environment tunes the defects in ZnO and which influence the optical, magnetic and electrical behavior of the ZnO nanostructures.

  13. Strain-dependent electronic and magnetic of Co-doped monolayer of WSe2

    Science.gov (United States)

    Wu, Ninghua; Zhao, Xu; Wang, Tianxing

    2016-10-01

    We perform first-principles calculation to investigate electronic and magnetic properties of Co-doped WSe2 monolayer with strains from -10% to 10%. We find that Co can induce magnetic moment about 0.894 μB, the Co-doped WSe2 monolayer is a magnetic semiconductor material without strain. The doped system shows half-metallic properties under tensile strain, and the largest half-metal gap is 0.147 eV at 8% strain. The magnetic moment (0.894 μB) increases slightly from 0% to 6%, and jumps into about 3 μB at 8% and 10%, which presents high-spin state configurations. When we applied compressive strain, the doped system shows a half-metallic feature at -2% strain, and the magnetic moment jumps into 1.623 μB at -4% strain, almost two times as the original moment 0.894 μB at 0% strain. The magnetic moment vanishes at -7% strain. The Co-doped WSe2 can endure strain from -6% to 10%. Strain changes the redistribution of charges and magnetic moment. Our calculation results show that the Co-doped WSe2 monolayer can transform from magnetic semiconductor to half-metallic material under strain.

  14. Studies of diamond-like carbon (DLC) films deposited on stainless steel substrate with Si/SiC intermediate layers

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Liu Gui-Chang; Wang Li-Da; Deng Xin-Lü; Xu Jun

    2008-01-01

    In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and thesp3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp3 bonding and reduced the hardness. The incorporated Si atoms substituted sp2- bond carbon atoms in ring structures, which promoted the formation of sp3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power.

  15. Investigation of superfast deposition of metal oxide and Diamond-Like Carbon thin films by nanosecond Ytterbium (Yb+) fiber laser

    Science.gov (United States)

    Serbezov, V.; Sotirov, S.; Benkhouja, K.; Zawadzka, A.; Sahraoui, B.

    2013-11-01

    Metal oxide (MOx, M: titanium, magnesium) and Diamond-Like Carbon (DLC) thin films were synthesized by Pulsed Laser Deposition (PLD) at room temperature and low vacuum of 2 Pa for MOx and vacuum of 4 × 10-3 Pa for DLC films. A fiber based Ytterbium (Yb+) laser operating in the nanosecond regime at a repetition rate of 20 kHz was used as an ablation source. Dense and smooth thin films with a thickness from 120 to 360 nm and an area of up to 10 cm2 were deposited on glass and stainless steel substrates at high growth rates up to 2 nm/s for a laser intensity of 10-12 J/cm2. The thin films synthesis was compared for two fiber laser modes of operation, at a repetition rate of 20 kHz and with an additional modulation at 1 kHz. The morphology, chemical composition and structure of the obtained thin films were evaluated using optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and Raman spectroscopy. The morphology of the MOx thin films and the deposition rate strongly depend on the fiber laser mode of operation. Very smooth surfaces were obtained for the metal oxide thin films deposited at lower deposition rates in the modulation mode at 1 kHz. The effect of the substrate on the DLC film structure was studied. The films deposited on dielectric substrates were identified as typical tetrahedral (ta-C) DLC with high sp3 content. DLC films on metal substrates were found typical a-C amorphous carbon films with mixing sp2/sp3 bonds.

  16. In vitro Cyto and Blood Compatibility of Titanium Containing Diamond-Like Carbon Prepared by Hybrid Sputtering Method

    Institute of Scientific and Technical Information of China (English)

    Krishnasamy NAVANEETHA PANDIYARAJ; Jan HEEG; Andreas LAMPKA; Fabian JUNGE; Torsten BARFELS; Marion WIENECKE; Young Ha RHEE; Hyoung Woo KIM

    2012-01-01

    In recent years, diamond-like carbon films (DLC) have been given more attention in research in the biomedical industry due to their potential application as surface coating on biomedical materials such as metals and polymer substrates. There are many ways to prepare metal containing DLC films deposited on polymeric film substrates, such as coatings from car- bonaceous precursors and some means that incorporate other elements. In this study, we in- vestigated both the surface and biocompatible properties of titanium containing DLC (Ti-DLC) films. The Ti-DLC films were prepared on the surface of poly (ethylene terephthalate) (PET) film as a function of the deposition power level using reactive sputtering technique. The films' hydrophilicity was studied by contact angle and surface energy tests. Their surface morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental chemical composition was analyzed using energy dispersive X-spectra (EDX) and X-ray photoelectron spectroscopy (XPS). Their blood and cell compatibility was studied by in vitro tests, including tests on platelet adhesion, thrombus formation, whole blood clotting time and osteoblast cell compatibility. Significant changes in the morphological and chemical composition of the Ti-DLC films were observed and found to be a function of the deposition level. These morphological and chemical changes reduced the interfacial tension between Ti-DLC and blood proteins as well as resisted the adhesion and activation of platelets on the surface of the Ti-DLC films. The cell compatibility results exhibited significant growth of osteoblast cells on the surface of Ti incorporated DLC film compared with that of DLC film surface.

  17. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  18. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Miksovsky, J. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Voss, A. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Kozarova, R. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kocourek, T.; Pisarik, P. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Ceccone, G. [Unit Nanobiosciences, European Commission Joint Research Centre, Ispra (Italy); Kulisch, W. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Jelinek, M. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Apostolova, M.D. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Reithmaier, J.P. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Popov, C., E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany)

    2014-04-01

    Graphical abstract: - Highlights: • UNCD and DLC films were modified by UV/O{sub 3} treatments, O{sub 2} or NH{sub 3}-containing plasmas. • Surface composition, wettability and surface energy change upon modifications. • Higher efficiency of UNCD modifications was observed. • Cell attachment and growth were influenced by the surface termination and roughness. - Abstract: Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O{sub 2} or NH{sub 3}/N{sub 2} plasmas and UV/O{sub 3} treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.

  19. Influence of flow rate on different properties of diamond-like nanocomposite thin films grown by PECVD

    Directory of Open Access Journals (Sweden)

    T. S. Santra

    2012-06-01

    Full Text Available Diamond-like nanocomposite (DLN thin films were deposited on pyrex glass substrate using different flow rate of haxamethyldisiloxane (HMDSO based liquid precursor with nitrogen gas as a glow discharged decomposition by plasma enhanced chemical vapor deposition (PECVD technique. The significant influence of different precursor flow rates on refractive index and thickness of the DLN films was measured by using spectroscopic filmatrics and DEKTAK profilometer. Optical transparency of the DLN thin films was analyzed by UV-VIS-NIR spectrometer. FTIR spectroscopy, provides the information about shifted bonds like SiC2, Si-C, Si-O, C-C, Si-H, C-H, N-H, and O-H with different precursor flow rate. We have estimated the hardness of the DLN films from Raman spectroscopy using Gaussian deconvolution method and tried to investigate the correlation between hardness, refractive index and thickness of the films with different precursor flow rates. The composition and surface morphology of the DLN films were investigated by X-ray photo electron spectroscopy (XPS and atomic force microscopy (AFM respectively. We have analyzed the hardness by intensity ratio (ID/IG of D and G peaks and correlates with hardness measurement by nanoindentation test where hardness increases from 27.8 μl/min to 80.6μl/min and then decreases with increase of flow rate from 80.6μl/min to 149.5μl/min. Finally, we correlates different parameters of structural, optical and tribological properties like film-thickness, refractive index, light transmission, hardness, surface roughness, modulus of elasticity, contact angle etc. with different precursor flow rates of DLN films.

  20. Influence of flow rate on different properties of diamond-like nanocomposite thin films grown by PECVD

    Science.gov (United States)

    Santra, T. S.; Bhattacharyya, T. K.; Tseng, F. G.; Barik, T. K.

    2012-06-01

    Diamond-like nanocomposite (DLN) thin films were deposited on pyrex glass substrate using different flow rate of haxamethyldisiloxane (HMDSO) based liquid precursor with nitrogen gas as a glow discharged decomposition by plasma enhanced chemical vapor deposition (PECVD) technique. The significant influence of different precursor flow rates on refractive index and thickness of the DLN films was measured by using spectroscopic filmatrics and DEKTAK profilometer. Optical transparency of the DLN thin films was analyzed by UV-VIS-NIR spectrometer. FTIR spectroscopy, provides the information about shifted bonds like SiC2, Si-C, Si-O, C-C, Si-H, C-H, N-H, and O-H with different precursor flow rate. We have estimated the hardness of the DLN films from Raman spectroscopy using Gaussian deconvolution method and tried to investigate the correlation between hardness, refractive index and thickness of the films with different precursor flow rates. The composition and surface morphology of the DLN films were investigated by X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM) respectively. We have analyzed the hardness by intensity ratio (ID/IG) of D and G peaks and correlates with hardness measurement by nanoindentation test where hardness increases from 27.8 μl/min to 80.6μl/min and then decreases with increase of flow rate from 80.6μl/min to 149.5μl/min. Finally, we correlates different parameters of structural, optical and tribological properties like film-thickness, refractive index, light transmission, hardness, surface roughness, modulus of elasticity, contact angle etc. with different precursor flow rates of DLN films.

  1. Diamond-like carbon coatings enhance the hardness and resilience of bearing surfaces for use in joint arthroplasty.

    Science.gov (United States)

    Roy, M E; Whiteside, L A; Xu, J; Katerberg, B J

    2010-04-01

    The purpose of this study was to evaluate the potential of a hard diamond-like carbon (DLC) coating to enhance the hardness and resilience of a bearing surface in joint replacement. The greater hardness of a magnesium-stabilized zirconium (Mg-PSZ) substrate was expected to provide a harder coating-substrate composite microhardness than the cobalt-chromium alloy (CoCr) also used in arthroplasty. Three femoral heads of each type (CoCr, Mg-PSZ, DLC-CoCr and DLC-Mg-PSZ) were examined. Baseline (non-coated) and composite coating/substrate hardness was measured by Vickers microhardness tests, while nanoindentation tests measured the hardness and elastic modulus of the DLC coating independent of the Mg-PSZ and CoCr substrates. Non-coated Mg-PSZ heads were considerably harder than non-coated CoCr heads, while DLC coating greatly increased the microhardness of the CoCr and Mg-PSZ substrates. On the nanoscale the non-coated heads were much harder than on the microscale, with CoCr exhibiting twice as much plastic deformation as Mg-PSZ. The mechanical properties of the DLC coatings were not significantly different for both the CoCr and Mg-PSZ substrates, producing similar moduli of resilience and plastic resistance ratios. DLC coatings greatly increased hardness on both the micro and nano levels and significantly improved resilience and resistance to plastic deformation compared with non-coated heads. Because Mg-PSZ allows less plastic deformation than CoCr and provides a greater composite microhardness, DLC-Mg-PSZ will likely be more durable for use as a bearing surface in vivo.

  2. Synergistic effects of F and Fe in co-doped TiO2 nanoparticles

    Science.gov (United States)

    Zhang, Yufei; Shen, Huiyuan; Liu, Yanhua

    2016-03-01

    TiO2 photocatalysts co-doped with F and Fe were synthesized by a sol-gel method. Synergistic effects of F and Fe in the co-doped TiO2 were verified by NH3 decomposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible (UV-Vis) absorption spectroscopy, and was analyzed by the simulation based on the density functional theory (DFT). The results from NH3 decomposition confirmed that the cooperation of F and Fe broadened the optical response of TiO2 to visible light region and also enhanced the photocatalytic activity of TiO2 under ultraviolet light. XRD patterns, SEM and HRTEM images showed that the co-doped samples were nanometric anatase with an average particle size of 25 nm. Co-doping with F and Fe inhibited the grain growth of TiO2 from anatase to rutile and resulted in a larger lattice defect. XPS analysis exhibited that the doped F and Fe atoms were into the TiO2 lattice. UV-Vis absorption spectra showed that its optical absorption edge was moved up to approximately 617 nm and its ultraviolet absorption was also enhanced. The DFT results indicated that the cooperation of Fe 3d and O 2p orbits narrowed the band gap of TiO2 and F 2p orbit widened the upper valence bands. The synergistic electron density around F and Fe in co-doped TiO2 was capable to enhance the photo-chemical stability of TiO2.

  3. Influence of Co doping on combined photocatalytic and antibacterial activity of ZnO nanoparticles

    Science.gov (United States)

    Anandan, M.; Dinesh, S.; Krishnakumar, N.; Balamurugan, K.

    2016-11-01

    The present work aims to investigate the structural, optical, photocatalyst and antibacterial properties of bare and cobalt doped ZnO nanoparticles (NPs) with different concentrations Zn1-x Co x O (x = 0, 0.03, 0.06 and 0.09) synthesized by co-precipitation method. The XRD patterns confirmed that all samples of cobalt doped ZnO nanostructures revealed the formation of single phase having hexagonal wurtzite structure with crystallite size in the range of 31-41 nm. Further, the decreasing trend in lattice parameters and grain sizes were also seen with increasing doping concentrations which confirms the incorporation of Co ions into the ZnO lattice. This result was further supported by the FT-IR data. HR-TEM images demonstrated the distinct hexagonal like morphology with small agglomeration. The UV-visible absorption spectra exhibits red shift with increase in Co doping concentration in ZnO while corresponding bandgap energy of cobalt doped ZnO NPs decreased with increased Co doping concentration. PL spectra showed a weak UV and visible emission band which may be ascribed to the reduction in oxygen vacancy and defects by cobalt doping. XPS and EDX spectral results confirm the composition and the purity of Co doped ZnO NPs. Furthermore, the Co doped ZnO NPs were found to exhibit lesser photocatalytic activity for the degradation of methyl green dye under UV light illumination in comparison with the bare ZnO NPs. Moreover, anti-bacterial studies reveals that the Co doped ZnO NPs possess more antibacterial effect against gram positive Basillus subtills and gram negative Klebsiella pneumoniae bacterial strains than the bare ZnO NPs.

  4. Plasma deposition of diamond-like carbon and fluorinated amorphous carbon and the resultant properties and structure

    Science.gov (United States)

    Glew, Alexander David

    Researchers first created diamondlike carbon (DLC) 50 years ago, but it has only been the subject of intense research for the last decade. DLC is a highly stressed thin film that exists as a mixture of diamond like sp 3 and graphite like sp2 bonded carbon, with 0--50% H. Many believe that high intrinsic stress states are necessary to stabilize the carbon spa content responsible for the high hardness of DLC. This author's goals include fabricating high quality fluorinated amorphous carbon (FLAC) films by plasma enhanced chemical vapor deposition (PECVD), exploring the relationships between the processing parameters and the dielectric value, as well as the related material properties which limit the useful application of FLAC. An improved understanding of the fundamentals behind FLAC processing may allow workers to improve upon the properties limiting its use, such as intrinsic stress, thermal stability, and thermal conductivity. DLC and FLAC film hardness ranged from 14--16 GP and 16--18 GPa respectively. Their film stress ranged from 800 MPa to a 10 GPa. A study of the thickness dependent properties showed that only films thicker than 200 nm were able to achieve stresses greater than approximately 1.6 GPa, the room temperature transition pressure of graphite to diamond. X-ray photoelectron spectroscopy measurements also yielded different C sp3 contents for films of varying thickness deposited under the same conditions, helping to confirm a thickness dependence of film properties greater than 200 nm. Observation of the stress in real time during annealing of the films on Si wafers yielded activation energy values for the stress relief of DLC and FLAC as 0.11 and 0.24 eV respectively, and the CTE of DLC as 10.6 x 10-6 C-1. The stress relief mechanism consists of kinetically limited network arrangements that occur in highly stressed zones due heating, which are also the cause of the reduction in dielectric constant that occurs during rapid thermal annealing. Thermal

  5. Anomalous enhancement of the thermoelectric figure of merit by V co-doping of Nb-SrTiO3

    KAUST Repository

    Ozdogan, K.

    2012-05-10

    The effect of V co-doping of Nb-SrTiO3 is studied by full-potential density functional theory. We obtain a stronger increase of the carrier density for V than for Nbdopants. While in Nb-SrTiO3 a high carrier density counteracts a high thermoelectric figure of merit, the trend is inverted by V co-doping. The mechanism leading to this behavior is explained in terms of a local spin-polarization introduced by the V ions. Our results indicate that magnetic co-doping can be a prominent tool for improving the thermoelectric figure of merit.

  6. Structural Analysis of Planar sp3 and sp2 Films: Diamond-Like Carbon and Graphene Overlayers

    KAUST Repository

    Mansour, Ahmed

    2011-07-07

    The special electronic configuration of carbon enables the existence of wide ranging allotropes taking all possible dimensionalities. The allotropes of carbon are characterized by the type of hybridized bonding forming its structure, ranging from pure sp2 as in graphene, carbon nanotubes and fullerenes, to pure sp3 as in diamond. Amorphous and diamond-like carbon consists of a mixture of both hybridizations. This variation in hybridization in carbon materials enables a wide spectrum of properties, ranging from high bulk mechanical hardness, tribological properties and chemical inertness made possible by moving towards pure sp3 bonding to the extraordinary electrical conductivity, optical properties and in-plane mechanical strength resulting from pure sp2 bonding. Two allotropes at the extremes of this spectrum, diamond like carbon (DLC) and graphene, are investigated in this thesis; the former is investigated as a protective coating in hard drive applications, while the latter is investigated in the context of chemically derived graphene as material for transparent conducting electrode applications. DLC thin films are a main component in computer hard drives, acting as a protective coating against corrosion and mechanical wear of the magnetic layer and read-write head. The thickness of DLC films greatly affects the storage density in such devices, as larger separation between the read/write head and the magnetic layer decreases the storage density. A targeted DLC thickness of 2 nm would increase the storage density towards 1 Tbits/inch2. However, difficulty achieving continuous films at such thicknesses by commonly used sputtering methods challenges the industry to investigate alternative methods. Filtered cathodic vacuum arc (FCVA) has been proposed as an efficient technique to provide continuous, smooth and ultra-thin DLC films. We investigate the influence of deposition angle, deposition time, and substrate biasing to define the optimum process window to obtain

  7. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  8. Enhancement of carrier mobility in thin Ge layer by Sn co-doping

    Science.gov (United States)

    Prucnal, S.; Liu, F.; Berencén, Y.; Vines, L.; Bischoff, L.; Grenzer, J.; Andric, S.; Tiagulskyi, S.; Pyszniak, K.; Turek, M.; Drozdziel, A.; Helm, M.; Zhou, S.; Skorupa, W.

    2016-10-01

    We present the development, optimization and fabrication of high carrier mobility materials based on GeOI wafers co-doped with Sn and P. The Ge thin films were fabricated using plasma-enhanced chemical vapour deposition followed by ion implantation and explosive solid phase epitaxy, which is induced by millisecond flash lamp annealing. The influence of the recrystallization mechanism and co-doping of Sn on the carrier distribution and carrier mobility both in n-type and p-type GeOI wafers is discussed in detail. This finding significantly contributes to the state-of-the-art of high carrier mobility-GeOI wafers since the results are comparable with GeOI commercial wafers fabricated by epitaxial layer transfer or SmartCut technology.

  9. Co-doping of Potassium and Bromine in Carbon Nanotubes: A Density Functional Theory Study

    Institute of Scientific and Technical Information of China (English)

    XIAO Yong; YAN xiao-Hong; DING Jian-Wen

    2007-01-01

    We investigate the co-doping of potassium and bromine in singlewalled carbon nanotubes (SWCNTs)and doublewalled carbon nanotubes(DWCNTs)based on density functional theory.In the co-doped(6,O)SWCNTs,the 4s electron of potassium is transferred to nanotube and Br,leading to the n-type feature of SWCNTs.When potassium is intercalated into inner tube and bromine is put on outer tube,the positive and negative charges reside on the outer and inner tubes of the(7.0)@(16,0)DWCNT,respectively.It is expected that DWCNTs would be an ideal candidate for p-n junction and diode applications.

  10. Electronic structure, magnetic and superconducting properties of co-doped iron-arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, Helge; Schnelle, Walter; Nicklas, Michael; Leithe-Jasper, Andreas [MPI CPfS Dresden (Germany); Weikert, Franziska [Los Alamos National Laboratory, New Mexico (United States); HLD Dresden Rossendorf (Germany); Wosnitza, Joachim [HLD Dresden Rossendorf (Germany)

    2013-07-01

    We present a joint experimental and theoretical study of co-doped iron-arsenide superconductors of the 122 family A{sub 1-x}K{sub x}Fe{sub 2-y}T{sub y}As{sub 2} (A = Ba,Sr,Eu; T = Co,Ru,Rh). In these systems, the co-doping enables the separation of different parameters - like electron count, disorder or the specific geometry of the FeAs layer - with respect to the position of the respective compounds in the general 122 phase diagram. For a series of compounds, we investigate the relevance of the different parameters for the magnetic, thermodynamic and superconducting properties. Our experimental investigations are supported by density functional electronic structure calculations applying different approximations for doping and disorder.

  11. Nuclear magnetic resonance study of pure and Ni/Co doped LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, Hans-Joachim; Baek, Seung-Ho; Hammerath, Franziska; Graefe, Uwe; Utz, Yannic; Harnagea, L.; Nacke, Claudia; Aswartham, Saicharan; Wurmehl, Sabine; Buechner, Bernd [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Dresden (Germany)

    2011-07-01

    We present Nuclear Magnetic and Nuclear Quadrupole Resonance (NMR/NQR) measurements on pure, Ni and Co doped LiFeAs single crystals. The parent compound LiFeAs exhibits unconventional superconductivity with a transition temperature of about 17 K. Unlike other Fe based superconductors, where superconductivity is induced or stabilized by Co or Ni doping, replacement of Fe by these elements leads to a suppression of the superconducting transition temperature in LiFeAs. In case of Ni doping, a bulk magnetic order is induced below about 160 K. In contrast, for Co doping, the superconducting transition temperature is only reduced, but no magnetic order is observed. We discuss the nature and the origin of this magnetic order and its relation to unconventional superconductivity in pure LiFeAs.

  12. Influence of Co Content on Raman and Photoluminescence Spectra of Co Doped ZnO Nanowires

    Institute of Scientific and Technical Information of China (English)

    Y.Q. Chang; P.W. Wang; S.L. Ni; Y. Long; X.D. Li

    2012-01-01

    Co doped ZnO nanowires with different Co contents have been fabricated by a chemical vapor deposition method. X-ray diffraction results show that all the samples are of single phase and crystallize in wurtzite ZnO structure. The lattice parameter a increases with increasing Co content, while the parameter c has no obvious change with increasing Co. Raman spectra show that the nonpolar E2(High) mode becomes broad and weak with the doping of Co, which indicates that the incorporation of Co causes structural disorder in the crystalline columnar ZnO lattice. The photolurninescence spectra exhibit that the position of the ultraviolet emission shifts to short wavelength and the intensity decreases with increasing Co. The green emission is affected by two contrary factors. It is increased by the introduced defects, but suppressed by the interaction between Co doping and native defects and the later affects it more significantly.

  13. Long Lasting Phosphorescence in Eu2+ and Ce3+ Co-Doped Strontium Borate Glasses

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Long lasting phosphorescence (LLP) was observed in Eu2+, Ce3+ co-doped strontium borate glasses prepared under the reducing atmosphere due to the emission of both Eu2+ and Ce3+. The methods of photoluminescence, thermoluminescence and phosphorescence were used to study the samples, and possible mechanism was suggested. The co-doping of Ce3+ ions poisoned the phosphorescence emission of Eu2+ because of the competition to obtain the trapped electron. The phosphorescence of Ce3+ in the sample decays more quickly than that of Eu2+, which is suggested for the reason that the emission energy of Ce3+ is higher or the distance between Ce3+ and electron traps of the glasses is longer.

  14. First Principles Study of Electronic and Magnetic Properties of Co-Doped Armchair Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Biao Li

    2015-01-01

    Full Text Available Using the first principles calculations, we have studied the atomic and electronic structures of single Co atom incorporated with divacancy in armchair graphene nanoribbon (AGNR. Our calculated results show that the Co atom embedded in AGNR gives rise to significant impacts on the band structures and the FM spin configuration is the ground state. The presence of the Co doping could introduce magnetic properties. The calculated results revealed the arising of spin gapless semiconductor characteristics with doping near the edge in both ferromagnetic (FM and antiferromagnetic (AFM magnetic configurations, suggesting the robustness for potential application of spintronics. Moreover, the electronic structures of the Co-doped AGNRs are strongly dependent on the doping sites and the edge configurations.

  15. Enhanced electrical activation in In-implanted Ge by C co-doping

    Energy Technology Data Exchange (ETDEWEB)

    Feng, R., E-mail: ruixing.feng@anu.edu.au; Kremer, F.; Mirzaei, S.; Medling, S. A.; Ridgway, M. C. [Department of Electronic Materials Engineering, Australian National University, Canberra ACT 0200 (Australia); Sprouster, D. J. [Nuclear Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Decoster, S.; Pereira, L. M. C. [KU Leuven, Instituut voor Kern-en Stralingsfysica, 3001 Leuven (Belgium); Glover, C. J. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Russo, S. P. [Applied Physics, School Applied Sciences, RMIT University, Melbourne 3001 (Australia)

    2015-11-23

    At high dopant concentrations in Ge, electrically activating all implanted dopants is a major obstacle in the fulfillment of high-performance Ge-channel complementary metal oxide semiconductor devices. In this letter, we demonstrate a significant increase in the electrically-active dopant fraction in In-implanted Ge by co-doping with the isovalent element C. Electrical measurements have been correlated with x-ray absorption spectroscopy and transmission electron microscopy results in addition to density functional theory simulations. With C + In co-doping, the electrically active fraction was doubled and tripled at In concentrations of 0.2 and 0.7 at. %, respectively. This marked improvement was the result of C-In pair formation such that In-induced strain in the Ge lattice was reduced while the precipitation of In and the formation of In-V clusters were both suppressed.

  16. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    Science.gov (United States)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C. S.; de Moura, Ana P.; Freire, Poliana G.; da Silva, Luis F.; Longo, Elson; Munoz, Rodrigo A. A.; Lima, Renata C.

    2015-10-01

    We report for the first time a rapid preparation of Zn1-2xCoxNixO nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green-orange-red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO.

  17. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Moura, Ana P. de [LIEC, Instituto de Química, Universidade Estadual Paulista, 14800-900 Araraquara, SP (Brazil); Freire, Poliana G. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Silva, Luis F. da; Longo, Elson [LIEC, Instituto de Química, Universidade Estadual Paulista, 14800-900 Araraquara, SP (Brazil); Munoz, Rodrigo A.A. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Lima, Renata C., E-mail: rclima@iqufu.ufu.br [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil)

    2015-10-15

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.

  18. Hydrophilic Nitrogen and Sulfur Co-doped Molybdenum Carbide Nanosheets for Electrochemical Hydrogen Evolution.

    Science.gov (United States)

    Ang, Huixiang; Tan, Hui Teng; Luo, Zhi Min; Zhang, Yu; Guo, Yuan Yuan; Guo, Guilue; Zhang, Hua; Yan, Qingyu

    2015-12-16

    Nitrogen and sulfur dual-doped Mo2 C nanosheets provide low operating potential (-86 mV for driving 10 mA cm(-2) of current density). Co-doping of N and S heteroatoms can improve the wetting property of the Mo2C electrocatalyst in aqueous solution and induce synergistic effects via σ-donation and π-back donation with hydronium cation.

  19. Influence of the chromium and ytterbium co-doping on the photoluminescence of zinc selenide crystals

    Institute of Scientific and Technical Information of China (English)

    I Radevici

    2014-01-01

    The luminescent properties of ZnSe, ZnSe:Cr (0.05 at.%Cr), ZnSe:Yb (0.03 at.%Yb) and ZnSe:Cr:Yb (0.05 at.%Cr, 0.05 at.%Yb) crystals, doped during the growth process by the chemical vapor transport method, were studied within the temperature in-terval of 6-300 K. At the 6 K temperature in the visible spectral range 2 bands were observed:a band in the excitonic spectral region and a band of self-activated luminescence. It was shown that co-doping of zinc selenide crystals with the chromium and ytterbium led to the combination of the impurities influence on the photoluminescent properties. At the liquid helium temperature in the middle in-frared range of the spectra of the ytterbium and chromium co-doped crystal a band with the maximum localized at 1.7 µm was ob-served, which was overlapped with a complex band in the middle-IR spectral range, characteristic for the chromium doped ZnSe crys-tals. On the basis of obtained data an interaction mechanism of the chromium and ytterbium co-doping impurities was proposed. Guided by the existent model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compen-sating clusters, was made. It was assumed that the resonant energy transfer from one chromium ion to another, which led to the con-centration quenching of the IR emission in the ZnSe:Cr PL spectra, would lead to the broadening of the IR emission in the spectra of ytterbium and chromium co-doped zinc selenide crystals.

  20. Structural, optical and magnetic properties of pulsed laser deposited Co-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Karzazi, O., E-mail: ouiame_karzazi@hotmail.fr [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); LPS, Physics Department, Faculty of Sciences, BP 1796, Fes (Morocco); Sekhar, K.C. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); El Amiri, A. [LPTA, Université Hassan II-Casablanca, Faculté des Sciences, B.P. 5366, Maârif (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université J. Fourier, BP 166, 38042 Grenoble (France); Conde, O. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa and CeFEMA, Campo Grande, 1749-016 Lisboa (Portugal); Levichev, S. [Research Institute for Chemistry, Nizhni Novgorod State University, 603950 Nizhni Novgorod (Russian Federation); Agostinho Moreira, J. [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto (Portugal); Chahboun, A. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); FST Tanger, Physics Department, BP 416, Tangier (Morocco); Almeida, A. [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto (Portugal); Gomes, M.J.M. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-12-01

    Zn{sub 1−x}Co{sub x}O films with different Co concentrations (with x=0.00, 0.10, 0.15, and 0.30) were grown by pulsed laser deposition (PLD) technique. The structural and optical properties of the films were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and photoluminescence (PL). The magnetic properties were measured by conventional magnetometry using a SQUID and simulated by ab-initio calculations using Korring–Khon–Rostoker (KKR) method combined with coherent potential approximation (CPA). The effect of Co-doping on the GIXRD and Raman peaks positions, shape and intensity is discussed. PL studies demonstrate that Co-doping induces a decrease of the bandgap energy and quenching of the UV emission. They also suggest the presence of Zn interstitials when x≥0.15. The 10% Co-doped ZnO film shows ferromagnetism at 390 K with a spontaneous magnetic moment ≈4×10{sup −5} emu and coercive field ≈0.17 kOe. The origin of ferromagnetism is explained based on the calculations using KKR method. - Highlights: • Zn{sub 1−x}Co{sub x}O films (x=0.00, 0.10, 0.15, and 0.30) were grown by (PLD) technique. • Zn{sub 0.9}Co{sub 0.1}O film shows ferromagnetism above room temperature. • The origin of ferromagnetism behavior is attributed to the p-d hybridization. • Co-doping induces a decrease of the bandgap energy of the films.

  1. Sb/Mn co-doped oxyfluoride silicate glasses for potential applications in photosynthesis

    OpenAIRE

    Zhu, Chaofeng; ZHANG, XIANGHUA; Ma, Hongli

    2016-01-01

    International audience; A series of Sb/Mn co-doped oxyfluoride silicate glasses were prepared via the melt-quenching method to explore red luminescent materials for potential applications in photosynthesis of green plants, and these glasses are investigated by means of luminescence decay curves, absorption, emission, and excitation spectra. We find that the as-prepared glasses are transparent in the visible region and can emit strong red light under ultraviolet, purple, and green light excita...

  2. Structural, optical and dielectric property of Co doped Bi{sub 2}Fe{sub 4}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Smita, E-mail: singhanil@nitrkl.ac.in; Mohapatra, S. R., E-mail: singhanil@nitrkl.ac.in; Sahoo, B., E-mail: singhanil@nitrkl.ac.in; Singh, A. K., E-mail: singhanil@nitrkl.ac.in [Department of Physics, National Institute of Technology, Rourkela -769008, Odisha (India)

    2014-04-24

    Multiferroic Bi{sub 2}Fe{sub 4}O{sub 9} and Co doped Bi{sub 2}Fe{sub 4}O{sub 9} are prepared by solid state route reaction method using bismuth oxide(Bi{sub 2}O{sub 3}), iron oxide(Fe{sub 2}O{sub 3}) and cobalt oxide (Co{sub 3}O{sub 4}). Their structural optical and dielectric properties are studied and compared. X-ray diffraction (XRD) results confirm that there is no change in crystal structure due to Co doping. From dielectric constant measurement we conclude that dielectric constant increases due to Co doping. UV-Visible plot shows due to Co doping bang gap energy increases.

  3. Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method.

    Science.gov (United States)

    Kuriakose, Sini; Satpati, Biswarup; Mohapatra, Satyabrata

    2014-07-07

    Cobalt doped ZnO nanodisks and nanorods were synthesized by a facile wet chemical method and well characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) with energy dispersive X-ray spectroscopy, photoluminescence spectroscopy, Raman spectroscopy and UV-visible absorption spectroscopy. The photocatalytic activities were evaluated for sunlight driven degradation of an aqueous methylene blue (MB) solution. The results showed that Co doped ZnO nanodisks and nanorods exhibit highly enhanced photocatalytic activity, as compared to pure ZnO nanodisks and nanorods. The enhanced photocatalytic activities of Co doped ZnO nanostructures were attributed to the combined effects of enhanced surface area of ZnO nanodisks and improved charge separation efficiency due to optimal Co doping which inhibit recombination of photogenerated charge carriers. The possible mechanism for the enhanced photocatalytic activity of Co doped ZnO nanostructures is tentatively proposed.

  4. Preparation and photoluminescence enhancement of Li+ and Eu3+ co-doped YPO4 hollow microspheres

    Institute of Scientific and Technical Information of China (English)

    ZHAG Lixin; JIU Hongfang; FU Yuehua; SUN Yixin; WANG Yuanzhong

    2013-01-01

    Li+ and Eu3+ co-doped YPO4 hollow microspheres were successfully synthesized by a sacrificial template method using polystyrene (PS) as template.Techniques of X-ray diffraction (XRD),scanning electron microscopy (SEM),as well as transmission electron microscopy (TEM) were employed to characterize the as-synthesized sample.Furthermore,the photoluminescence (PL)characterization of the Li+ and Eu3+ co-doped YPO4 microsphere was carried out and the effects of the doping concentration of Li+ and Eu3+ active center concentration as well as calcination temperature on the PL properties were studied in detail.The results showed that the incorporation of Li+ ions into the YPO4∶Eu3+ lattice could induce a remarkable improvement of the PL intensity.The highest emission intensity was observed with the compound of 5%Li+ and 5%Eu3+ co-doped YPO4,whose brightness was increased by a factor of more than 2.2 in comparison with that of the YPOa:5%Eu3+.

  5. Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles.

    Science.gov (United States)

    Pal, Bappaditya; Giri, P K

    2011-10-01

    Structural, optical and magnetic studies have been carried out for the Co-doped ZnO nanoparticles (NPs). ZnO NPs are doped with 3% and 5% Co using ball milling and ferromagnetism (FM) is studied at room temperature and above. A high Curie temperature (Tc) has been observed from the Co doped ZnO NPs. X-ray diffraction and high resolution transmission electron microscopy analysis confirm the absence of metallic Co clusters or any other phase different from würtzite-type ZnO. UV-visible absorption and photoluminescence studies on the doped samples show change in band structure and oxygen vacancy defects, respectively. Micro-Raman studies of doped samples shows defect related additional strong bands at 547 and 574 cm(-1) confirming the presence of oxygen vacancy defects in ZnO lattice. The field dependence of magnetization (M-H curve) measured at room temperature exhibits the clear M-H loop with saturation magnetization and coercive field of the order of 4-6 emu/g and 260 G, respectively. Temperature dependence of magnetization measurement shows sharp ferromagnetic to paramagnetic transition with a high Tc = 791 K for 3% Co doped ZnO NPs. Ferromagnetic ordering is interpreted in terms of overlapping of polarons mediated through oxygen vacancy defects based on the bound magnetic polaron (BMP) model. We show that the observed FM data fits well with the BMP model involving localised carriers and magnetic cations.

  6. Color tunable ZnO nanorods by Eu and Tb co-doping for optoelectronic applications

    Science.gov (United States)

    Pal, Partha P.; Manam, J.

    2014-07-01

    Eu/Tb co-doped ZnO nanorods were prepared by co-precipitation method and the effect of Eu-Tb co-doping was studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy, Fourier transform infrared spectroscopy (FTIR), UV-Vis-NIR diffuse reflectance (DR) and photoluminescence (PL) spectroscopy. The XRD pattern shows typical peak pattern for pure hexagonal wurtzite structure to match with the JCPDS data. The samples are found to be consisting of nanorods of diameter 20-30 nm as revealed by the TEM image. The FTIR pattern confirms the formation of the compounds. The DR study was carried to show the variation of absorption edge and the variation in band gap values, which showed the crystal size effect in the co-doped sample of different rare-earth ratios. The room temperature PL study shows bright emission spectra for the samples with different rare-earth ratios. It shows a very good energy transfer from Tb to Eu ions. The energy transfer mechanism and color tunability were discussed thoroughly.

  7. Charge transport in conducting polyaniline co-doped with sulfosalicylic acid and dodecylbenzoyl sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    MA Li; YAN Jun; GAN Meng-Yu; HE Ling; LI Jian-Feng

    2009-01-01

    We prepared conducting polyaniline (PAn) co-doped with sulfosalicylic acid (SSA) and dodecylbenzoyl sulfonic acid (DBSA) in micro-emulsive polymerization, and studied its charge transport behaviors based on the measurement of its electrical conductivity in the temperature range between 203 K and 298 K. The conductivity was found to increase with temperature, similar to the case in semiconductors. Analyzing the experimental data with three models, namely the charge-energy-limited-tunneling model, Kivelson model and the three-dimensional variable range hopping (3D-VRH) model demonstrated that these models all describe well the charge transport behaviors of PAn co-doped with SSA and DBSA within the mentioned temperature range. From calculation with the 3D-VRH model, the hopping distance of the conducting PAn is obviously larger than its localization length. The PAn doped with SSA and DBSA enjoys desirable crystallinity due to the co-doping of two functional sulfonic acids. The macroscopic conductivity may correspond to three-dimensional transport in the network of the bundles, and the metallic islands may be attributed to quasi-one-dimensional bundles.

  8. Visible upconversion in Er3+/Yb3+ co-doped LaAlO3 phosphors

    Science.gov (United States)

    Singh, Vijay; Rai, V. K.; Singh, N.; Pathak, M. S.; Rathaiah, M.; Venkatramu, V.; Patel, Rahul V.; Singh, Pramod K.; Dhoble, S. J.

    2017-01-01

    The Er3+ doped and Er3+/Yb3+ co-doped LaAlO3 phosphors have been synthesized by the combustion method and characterized their structural, morphological, elemental, vibrational and optical properties. The optical absorption and upconversion properties of the synthesized phosphors have been studied. Upon co-doping Yb3+ ions into Er3+:LaAlO3, the blue, green and red upconversion emissions of Er3+ ions have been enhanced about 20, 54 and 22 times, under 978 nm laser excitation. The observed upconversion emissions could be due to excited state absorption in Er3+:LaAlO3, whereas energy transfer is dominant mechanism in Er3+/Yb3+:LaAlO3 phosphors. The tuning in the color emitted from the synthesized phosphors towards the green region has been found due to incorporation of the Yb3+ ions. With increase in the pump power, the color emitted from the co-doped phosphor is not tuned significantly, showing its applicability in making the green display devices.

  9. Catalytic wet air oxidation of phenol over Co-doped Fe3O4 nanoparticles

    Science.gov (United States)

    Song, Xu Chun; Zheng, Yi Fan; Yin, Hao Yong

    2013-08-01

    The Fe3O4 nanoparticles doped with cobalt ions have been successfully synthesized by the co-precipitation process. The X-ray diffraction, inductively coupled plasma, scanning electron microscopy, and transmission electron microscopy were used to characterize the as-prepared nanoparticles. The results show that the phase structure of the nanoparticles is spinel structure of pure Fe3O4 with the particle size ranging from 40 to 50 nm. The Co-doping concentration can be controlled by changing the atomic ratio of the stock materials. The catalytic activity of the Co-doped Fe3O4 was further investigated by decomposing the phenol in liquid phase. The results show that cobalt ions doping can improve the catalytic efficiency of Fe3O4 nanoparticles in phenol degradation with catalytic reaction fitting the first-order kinetics. According to the estimated reaction rate of Co-doped Fe3O4 nanoparticles at different temperatures, the activation energy was calculated to be 45.63 kJ/mol.

  10. Physical mechanism of resistance switching in the co-doped RRAM

    Science.gov (United States)

    Yang, Jin; Dai, Yuehua; Lu, Shibin; Jiang, Xianwei; Wang, Feifei; Chen, Junning

    2017-01-01

    The physical mechanism of the resistance switching for RRAM with co-doped defects (Ag and oxygen vacancy) is studied based on the first principle calculations and the simulation tool VASP. The interaction energy, formation energy and density of states of Ag and oxygen vacancy defect (VO) are calculated. The calculated results reveal that the co-doped system is more stable than the system only doped either Ag or VO defect and the impurity energy levels in the band gap are contributed by Ag and VO defects. The obtained partial charge density confirmed further that the clusters are obvious in the direction of Ag to Hf ions, which means that it is Ag but VO plays a role of conductive paths. For the formation mechanism, the modified electron affinity and the partial charge density difference are calculated. The results show that the ability of electron donors of Ag is stronger than VO In conclusion, the conductivity of the physical mechanism of resistance switching in the co-doped system mainly depends on the doped Ag. Project supported by the National Natural Science Foundation of China (No. 61376106), the Research Foundation of Education Bureau of Anhui Province, China (Nos. KJ2015A276, KJ2016A574, KJ2014A208), and the Special Foundation for Young Scientists of Hefei Normal University (No. 2015rcjj02).

  11. Novel trichromatic phosphor Co-doped with Eu, Tb in SiO2 gel matrix

    Institute of Scientific and Technical Information of China (English)

    HU XiaoYun; FAN Jun; LI Ting; ZHANG DeKai; BAI JinTao; REN ZhaoYu; HOU Xun

    2007-01-01

    The Eu, Tb co-doped SiO2 matrix tricolor fluorescence system was prepared by sol-gel technique. Red emission at 618 nm, green emission at 543 nm and blue emission at 350-500 nm were observed in the PL spectra of the sample, indicating that Eu3+, Eu2+ and Tb3+ ions coexisted in the matrix. In the co-doped sample, the blue emission of Eu2+ was much stronger than that of the sample single doped with Eu, which implied that the electron transfer between Eu3+ and Tb3+ maybe happened in the SiO2 matrix. The influences of the annealing temperature and Tb concentration on the PL spectra of the samples were investigated. The optimal doped concentration of Tb was determined to be 0.2% and the optimal annealing temperature 850℃. Annealed at 600℃, Tb3+ had a sensitizing effect on Eu3+ in the SiO2 matrix, and the emission intensity of Eu3+ in the Eu, Tb co-doped sample was more than four times that of the single doped sample, which could be attributed to the energy transfer from Tb3+ to Eu3+.

  12. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Harish, G.S.; Sreedhara Reddy, P., E-mail: psreddy4@gmail.com

    2015-09-15

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2–3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm{sup −1}) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  13. Luminescence Properties of Sm3+/Eu3+ Co-Doped ZnO Quantum Dots.

    Science.gov (United States)

    Liu, Fengyi; Li, Hong; Hu, Yajing; Na, Jin; Mou, Yun; Yang, Kun; Ye, Zuhu; Li, Mingyue; Xie, Ya-Hong

    2016-04-01

    In order to improve luminescence properties of semiconductor ZnO quantum dots (QDs), Sm3+/Eu3+ co-doped ZnO QDs have been controllably synthesized by sol-gel method in this paper. ZnO QDs have a spherical shape with mean diameter at about 5-6 nm, which was characterized by high-resolution transmission electron microscopy (HRTEM). ZnO QDs have hexagonal wurtzite structure with parts of Sm3+ and Eu3+ incorporated into the lattice, which was demonstrated by X-ray Diffraction (XRD). Luminescence properties at room temperature (RT) of different amount of Sm3+ and 2 mol% Eu3+ doped ZnO QDs were examined in-depth by optical spectra. In contrast to the Pr3+/Eu3+ co-doped fluorescent performance researched in our previous study, the photoluminescence (PL) spectra indicates the unique luminescence properties of Sm3+/Eu3+ co-doped ZnO QDs. In addition, fluorescence lifetimes were obtained to illustrate the luminous mechanism.

  14. Co-doped branched ZnO nanowires for ultraselective and sensitive detection of xylene.

    Science.gov (United States)

    Woo, Hyung-Sik; Kwak, Chang-Hoon; Chung, Jae-Ho; Lee, Jong-Heun

    2014-12-24

    Co-doped branched ZnO nanowires were prepared by multistep vapor-phase reactions for the ultraselective and sensitive detection of p-xylene. Highly crystalline ZnO NWs were transformed into CoO NWs by thermal evaporation of CoCl2 powder at 700 °C. The Co-doped ZnO branches were grown subsequently by thermal evaporation of Zn metal powder at 500 °C using CoO NWs as catalyst. The response (resistance ratio) of the Co-doped branched ZnO NW network sensor to 5 ppm p-xylene at 400 °C was 19.55, which was significantly higher than those to 5 ppm toluene, C2H5OH, and other interference gases. The sensitive and selective detection of p-xylene, particularly distinguishing among benzene, toluene, and xylene with lower cross-responses to C2H5OH, can be attributed to the tuned catalytic activity of Co components, which induces preferential dissociation of p-xylene into more active species, as well as the increase of chemiresistive variation due to the abundant formation of Schottky barriers between the branches.

  15. Improved Methane Sensing Properties of Co-Doped SnO2 Electrospun Nanofibers

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2013-01-01

    Full Text Available Co-doped SnO2 nanofibers were successfully synthesized via electrospinning method, and Co-doped SnO2 nanospheres were also prepared with traditional hydrothermal synthesis route for comparison. The synthesized SnO2 nanostructures were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectra. Planar-type chemical gas sensors were fabricated and their sensing properties to methane were investigated in detail. Gas sensors based on these two samples demonstrate the highest CH4 sensing response at an operating temperature of 300°C. Compared with traditional SnO2 nanospheres, the nanofiber sensor shows obviously enhanced gas response, higher saturated detection concentration, and quicker response-recovery time to methane. Moreover, good stability, prominent reproducibility, and excellent selectivity are also observed based on the nanofibers. These results demonstrate the potential application of Co-doped SnO2 nanofibers for fabricating high performance methane sensors.

  16. Observation of low field microwave absorption in co-doped ZnO system

    Science.gov (United States)

    Mahule, Tebogo S.; Srinivasu, Vijaya V.; Das, Jayashree

    2016-10-01

    Room temperature low field microwave absorption (LFMA) in magnetic materials find application in microwave absorbers and low field sensors. However not all the magnetic materials show LFMA and the phenomenon is not fully understood. We report on the observation of low field microwave absorption (LFMA) or the non-resonant microwave absorption (NRMA) in the transition metal (TM) co-doped ZnO samples of the composition Zn1-x(TM:TM)xO synthesized by solid state reaction technique. LFMA peaks and hysteresis matches very well with that of the magnetization hysteresis loop and the anisotropy fields at room temperature similar to the reports in the literature for other magnetic systems. However we show through our careful experiments that such a correlation between LFMA and the magnetization does not survive at low temperatures and particularly at 10 K the LFMA hysteresis collapses in our TM co-doped ZnO system; whereas the magnetization hysteresis loop becomes very big and anisotropy field becomes bigger in the range of kOe. We interpret the LFMA as field dependent surface impedance or eddy current losses, in terms of a possible role of anomalous hall resistivity that follows magnetization and the ordinary hall resistivity that only follows the applied field. We then argue that LFMA accordingly follows magnetization or applied field when AHE or OHE dominates respectively. Also we confirm the absence of LFMA signals in the rare earth co-doped ZnO system.

  17. Carbon Nitrogen Co-Doped P25: Parameter Study on Photodegradation of Reactive Red 4

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available Photocatalytic degradation rate of reactive red 4 (RR4 using carbon coated nitrogen doped TiO2 (C N co-doped TiO2 in photocatalysis process is main goal on this research. The main operating the parameters such as effect of initial dye concentration, catalyst loading, aeration flow rate and initial pH on degradation of RR4 under 45 W fluorescent lamp was investigated. photocatalytic activity of RR4 dye decreased with increasing RR4 dye concentration. The optimum loading is around 0.04 g and optimum aeration rate is about 25 mL min-1 of C N co-doped TiO2. Effect of pH was conducted based on the optimum loading and conclude that the photocatalytic degradation of RR4 became faster at pH 2 - 7. For the future work, the modification of doping with others element like non-metal or metal with C N co-doped TiO2 can be enhanced toward the higher efficieny of photodegradation under visible light. Moreover, the immobilized technique can be used in future to overcome the difficulty of filtration on suspension.

  18. Photocatalytic Degradation of Dicofol and Pyrethrum with Boric and Cerous Co-doped TiO2 under Light Irradiation

    Institute of Scientific and Technical Information of China (English)

    GONG Lifen; ZOU Jing; ZENG Jinbin; CHEN Wenfeng; CHEN Xi; WANG Xiaoru

    2009-01-01

    Boric and cerous co-doped nano titanium dioxide (B/Ce co-doped TiO2) was synthesized using a sol-gel tech-nique, which involved the hydrolyzation of tetrabutyl titanate with the addition of boric acid and cerous nitrate. The B/Ce co-doped TiO2 was employed for the photocatalytic degradation of dicofol, cyfluthrin and fenvalerate under light irradiation. XRD, TEM, Fr-IR and UV-Vis DRS methods were used to characterize the crystalline structure. Experimental results showed that only the anatase signal phase was found for B/Ce co-doped TiO2, but multiplicate phases, including anatase, rutile and less brookite phases, were identified both in the pure TiO2 nanoparticles and Ce-doped TiO2 nanoparticles. The band gap value of B/Ce co-doped nano TiO2 was narrower than that of undoped nano TiO2. Compared to undoped TiO2, a stronger absorption in the range of 420 to 850 nm was found for B/Ce co-doped nano TiO2, which presented a higher photocatalytic activity in the degradation of dicofol, cyfluthrin and fenvalerate than both Ce doped nano TiO2 and pure nano TiO2 under the same light irradiation.

  19. Thermoelectric performance of intermetallic FeGa{sub 3} with Co doping

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, B.; Syu, K.Z. [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Kuo, Y.K., E-mail: ykkuo@mail.ndhu.edu.tw [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Gippius, A.A. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Shevelkov, A.V.; Verchenko, V.Yu. [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Lue, C.S. [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-09-01

    Highlights: • From the resistivity study of Fe{sub 1−x}Co{sub x}Ga{sub 3} (0.005 ⩽ x ⩽ 0.5), the metallic behavior is observed for the compounds with Co content of x ⩾ 0.125. • The Seebeck coefficient of these compounds has contribution from both diffusion thermoelectric power and phonon-drag effect. • A reduction in Seebeck coefficient with Co doping is observed, due to the modification in band gap and density of states at the Fermi level. • Low-temperature lattice thermal conductivity of FeGa{sub 3} is suppressed significantly by Co doping due to the phonon-point-defect scattering. • The maximum ZT value of ∼0.05 is achieved for Fe{sub 0.95}Co{sub 0.05}Ga{sub 3} at 400 K, ten times higher than that of the parent FeGa{sub 3}. - Abstract: Investigation on temperature-dependent electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) of intermetallic Fe{sub 1−x}Co{sub x}Ga{sub 3} (0.005 ⩽ x ⩽ 0.5) compounds are carried out to probe their thermoelectric performance. From resistivity study, it is observed that increase in number of valence electrons introduced by Co doping leads to a change from semiconducting to metallic behavior, which occurs between x = 0.05 and 0.125. The characteristics of the Seebeck coefficient show a substantial decrease with the Co doping, due to the modifications in the band gap and the Fermi-level density of states. Analyses of thermal conductivity of the Co doped FeGa{sub 3} compounds reveal that thermal transport is essentially due to the lattice phonons. It is also noticed that the low-temperature peak in the lattice thermal conductivity of these compounds is reduced significantly with the increase in Co content, attributing to the enhanced scattering of phonons by point-defects. The value of the figure-of-merit, ZT = (S{sup 2}/ρκ)T, is estimated for all compounds, and the maximum room-temperature ZT value of about 0.02 was achieved for Fe{sub 0.95}Co{sub 0.05}Ga{sub 3}, and

  20. Patterning of diamond like carbon films for sensor applications using silicon containing thermoplastic resist (SiPol) as a hard mask

    Energy Technology Data Exchange (ETDEWEB)

    Virganavičius, D. [Paul Scherrer Institute, Laboratory for Micro- and Nanotechnology, 5232 Villigen PSI (Switzerland); Kaunas University of Technology, Institute of Materials Science, 51423 Kaunas (Lithuania); Cadarso, V.J.; Kirchner, R. [Paul Scherrer Institute, Laboratory for Micro- and Nanotechnology, 5232 Villigen PSI (Switzerland); Stankevičius, L.; Tamulevičius, T.; Tamulevičius, S. [Kaunas University of Technology, Institute of Materials Science, 51423 Kaunas (Lithuania); Schift, H., E-mail: helmut.schift@psi.ch [Paul Scherrer Institute, Laboratory for Micro- and Nanotechnology, 5232 Villigen PSI (Switzerland)

    2016-11-01

    Highlights: • Nanopatterning of thin diamond-like carbon (DLC) films and silver containing DLC composites. • Nanoimprint lithography with thermoplastic silicon containing resist. • Zero-residual layer imprinting and pattern transfer by reactive ion etching. • Robust leaky waveguide sensors with sensitivity up to 319 nm/RIU. - Abstract: Patterning of diamond-like carbon (DLC) and DLC:metal nanocomposites is of interest for an increasing number of applications. We demonstrate a nanoimprint lithography process based on silicon containing thermoplastic resist combined with plasma etching for straightforward patterning of such films. A variety of different structures with few hundred nanometer feature size and moderate aspect ratios were successfully realized. The quality of produced patterns was directly investigated by the means of optical and scanning electron microscopy (SEM). Such structures were further assessed by employing them in the development of gratings for guided mode resonance (GMR) effect. Optical characterization of such leaky waveguide was compared with numerical simulations based on rigorous coupled wave analysis method with good agreement. The use of such structures as refractive index variation sensors is demonstrated with sensitivity up to 319 nm/RIU, achieving an improvement close to 450% in sensitivity compared to previously reported similar sensors. This pronounced GMR signal fully validates the employed DLC material, the technology to pattern it and the possibility to develop DLC based gratings as corrosion and wear resistant refractometry sensors that are able to operate under harsh conditions providing great value and versatility.

  1. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  2. Preparation of Ag-containing diamond-like carbon films on the interior surface of tubes by a combined method of plasma source ion implantation and DC sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hatada, R., E-mail: hatada@ca.tu-darmstadt.de [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Flege, S.; Bobrich, A.; Ensinger, W.; Dietz, C. [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Baba, K. [Industrial Technology Center of Nagasaki, Applied Technology Division, Omura, Nagasaki 856-0026 (Japan); Sawase, T.; Watamoto, T. [Nagasaki University, Department of Applied Prosthodontics, Nagasaki 852-8523 (Japan); Matsutani, T. [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Kinki University, Department of Electric and Electronic Engineering, Higashi-osaka 577-2332 (Japan)

    2014-08-15

    Highlights: • Deposition of Ag-containing diamond-like carbon films inside of tubes. • Combination of plasma source ion implantation and DC sputtering. • Antibacterial effect against S. aureus bacteria. - Abstract: Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C{sub 2}H{sub 4} plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C{sub 2}H{sub 4} was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria.

  3. Structure and properties of Mo-containing diamond-like carbon films produced by ion source assisted cathodic arc ion-plating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.L. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 China (China); Wang, R.Y. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Yan, S.J.; Zhang, R. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 China (China); Yang, B. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Zhang, Z.D.; Huang, Z.H. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 China (China); Fu, D.J., E-mail: djfu@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 China (China)

    2013-12-01

    Ion source assisted cathodic arc ion-plating was used to synthesize molybdenum containing diamond-like carbon films. The element of molybdenum is uniformly distributed in our sample as analyzed by Rutherford backscattering spectroscopy. The surface morphology of the films was analyzed by scanning electron microscope and atomic force microscope. The structure and bond state of the molybdenum containing diamond-like carbon films were characterized by X-ray diffraction, high resolution transmission electron microscopy, Raman spectra, and X-ray photoelectron spectroscopy. The Mo content in the films was controlled by varying of the acetylene gas flow rates. The root-mean square roughness of the as-deposited sample was found in the range of 1.5 nm. The hardness of 35 GPa has been achieved at the optimum conditions of synthesis. This can be attributed to formation multilayer structure during deposition process and the formation of hard molybdenum carbide phase with C=Mo bonding. The results show that ion source assisted cathodic arc ion-plating is an effective technique to fabricate metal-containing carbon films with controlled metal contents.

  4. A comparative investigation on structure and multiferroic properties of bismuth ferrite thin films by multielement co-doping

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guohua; Tan, Guoqiang, E-mail: tan3114@163.com; Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun

    2014-12-15

    Highlights: • Multielement (Tb, Cr and Mn) co-doped BiFeO{sub 3} films were fabricated by CSD method. • Multielement co-doping induces a structural transition. • It is found effective to stabilize the valence of Fe ions at +3 by the strategy. • The co-doping at A/B-sites gives rise to the superior multiferroic properties. - Abstract: (Tb, Cr and Mn) multielement co-doped BiFeO{sub 3} (BTFCMO) thin films were prepared by the chemical solution deposition method on fluorine doped tin oxide (FTO) substrates. X-ray diffraction, Rietveld refinement and Raman analyses revealed that a phase transition from rhombohedral to triclinic structure occurs in the multielement co-doped BiFeO{sub 3} films. It is found that the doping is conducive to stabilizing the valence of Fe ions and reducing leakage current. In addition, the highly enhanced ferroelectric properties with a huge remanent polarization (2P{sub r}) of 239.6 μC/cm{sup 2} and a low coercive field (2E{sub c}) of 615.6 kV/cm are ascribed to the well film texture, the structure transition and the reduced leakage current by the co-doping. Moreover, the structure transition is the dominant factor resulting in the significant enhancement observed in magnetization (M{sub s} ∼ 10.5 emu/cm{sup 3}), owing to the collapse of the space-modulated spin structure. In this contribution, these results demonstrate that the multielement co-doping is in favor of the enhanced multiferroic properties of the BFO films for possible multifunctional applications.

  5. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ya-Wen [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Ma, De-Kun, E-mail: dkma@wzu.edu.cn [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Wang, Wei; Chen, Jing-Jing; Zhou, Lin; Zheng, Yi-Zhou [Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 (China); Yu, Kang, E-mail: yukang62@126.com [Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 (China); Huang, Shao-Ming, E-mail: smhuang@wzu.edu.cn [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China)

    2015-07-01

    Graphical abstract: N, S co-doped CDs with orange luminescence were synthesized through one-pot polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. - Highlights: • N, S co-doped CDs were synthesized by one-pot carbonization reactions, using two different amino acids as raw materials. • The as-obtained N, S co-doped CDs showed unique orange fluorescence under excitation at room temperature. • The products could be applied in the imaging of peritoneal macrophages of mice without any functionalization. - Abstract: For practical application, it is highly desirable to obtain carbon dots (CDs) through environmentally benign synthetic route, using green raw materials. On the other hand, at present, most of CDs reported in the literature showed blue, green and yellow emission. Therefore it is still necessary to develop new strategy to obtain CDs with longer wavelength emission in order to expand their application range. Toward this end, in this study, N, S co-doped CDs were synthesized through one-pot condensation polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. Taking the reaction of L-serine with L-cystine as an example, the as-obtained products were characterized by various techniques such as transmission electron microscopy, elemental analysis, Fourier-transform infrared spectrum, X-ray photoelectron spectra, and so on. Interestingly, N, S co-doped CDs displayed unique orange emission at room temperature. The possible photoluminescence mechanism of N, S co-doped CDs was proposed. Furthermore, the as-synthesized N, S co-doped CDs were directly applied in the imaging of peritoneal macrophages of mice.

  6. Europium and potassium co-doped strontium metaborate single crystals grown by the Czochralski method

    Science.gov (United States)

    Głowacki, Michał; Solarz, Piotr; Ryba-Romanowski, Witold; Martín, Inocencio R.; Diduszko, Ryszard; Berkowski, Marek

    2017-01-01

    Strontium metaborate (SrB2O4) is a suitable material for use as a matrix for luminescent dopant ions. Similarity of ionic radii of strontium and divalent europium makes it an excellent host for Eu dopant. This paper reports on the Czochralski growth and spectroscopic study of SrB2O4 single crystals doped with europium and co-doped with europium and potassium. Based on recorded luminescence spectra it was found that both Eu3+ and Eu2+ ions occur in this host. Trivalent europium ions give rise to a narrow-band long-lived red luminescence that is not affected by incorporation of potassium ions. Divalent europium ions emit a UV-blue luminescence, consisting of a large spectral band centered at ca 430 nm. In the absence of potassium ions the decay of this luminescence deviates slightly from a single exponential time dependence with a mean lifetime value of 2.0 ns. In potassium-co-doped sample a strong deviation from a single exponential decay was observed for longer stages of decay, beginning at ca 2.5 ns. This phenomenon was attributed to dissimilarity of relaxation rates of a fraction of europium ions distributed in different lattice sites that are distorted by the presence of big potassium ions. By co-doping the host with alkali ions one can influence the oxidation state of europium ions thereby enhancing the emission of trivalent europium ions. It was concluded that the material under study is a promising phosphor for visible light emission applications.

  7. Ferromagnetism in Co-doped (La,Sr)TiO3

    Energy Technology Data Exchange (ETDEWEB)

    Fix, T.; Liberati, M.; Aubriet, H.; Sahonta, S.-L.; Bali, R.; Becker, C.; Ruch, D.; MacManus-Driscoll, J.L.; Arenholz, E.; Blamire, M.G.

    2009-04-21

    The origin of ferromagnetism in Co-doped (La,Sr)TiO{sub 3} epitaxial thin films is discussed. While the as-grown samples are not ferromagnetic at room temperature or at 10 K, ferromagnetism at room temperature appears after annealing the films in reducing conditions and disappears after annealing in oxidizing conditions. Magnetic measurements, x-ray absorption spectroscopy, x-ray photoemission spectroscopy and transmission electron microscopy experiments indicate that within the resolution of the instruments the activation of the ferromagnetism is not due to the presence of pure Co.

  8. Enhanced Luminescent Properties in Tm3+/Dy3+ Co-doped Transparent Phosphate Glass Ceramic

    Directory of Open Access Journals (Sweden)

    Yao L. Q.

    2016-01-01

    Full Text Available Novel Tm3+/Dy3+ co-doped phosphate glass and glass ceramic samples for white light emitting diodes were prepared by melt quenching method. Under 353 nm excitation, the colors of the luminescence of the glass and glass ceramic samples are white. The CIE chromaticity coordinates (0.338, 0.328 of the emission from the glass ceramic is close to the standard white-light illumination (0.333, 0.333. Compared to the glass, the fluorescence intensity in the glass ceramic is greatly enhanced.

  9. Ionic conductivity of co-doped Sc2O3-ZrO2 ceramics

    DEFF Research Database (Denmark)

    Omar, Shobit; bin Najib, Waqas; Chen, Weiwu

    2012-01-01

    The oxide ionic conductivity of Sc0.18Zr0.82O1.91 doped with 0.5 mol.% of both Yb2O3 and In2O3 is evaluated at various temperatures in air. Among various co-doped compositions, In0.02Sc0.18Zr0.80O1.90 exhibits the highest grain ionic conductivity followed by Yb0.02Sc0.18Zr0.80O1.90 at 500°C. Howe...

  10. Superconductivity in fluorine and yttrium co-doped SmFeAsO

    Science.gov (United States)

    Lai, K. T.; Kwong, F. L.; Ng, Dickon H. L.

    2012-05-01

    Polycrystalline fluorine and yttrium co-doped SmFeAsO samples are synthesized by solid state sintering and their physical properties are studied. The lattice parameters of the Sm1-yYyFeAsO0.8F0.2 samples decrease with the increasing y due to the smaller Y ions and the stiffness of the Y-O bond. The maximum critical temperature Tc of the samples is at y = 0.05. This may be due to the fact that the strong interaction between Sm and Fe of the Fe-As bond is being re-disturbed by the doped Y ions.

  11. Structural, chemical and magnetic properties of secondary phases in Co-doped ZnO

    DEFF Research Database (Denmark)

    Ney, A; Kovács, András; Ney, V;

    2011-01-01

    , chemical and magnetic properties of Co-doped ZnO samples. It can be established on a quantitative basis that the superparamagnetic (SPM) behavior observed by integral superconducting quantum interference device magnetometry is not an intrinsic property of the material but stems from precipitations...... of metallic Co. Their presence is revealed by TEM as well as XAS. Annealing procedures for these SPM samples were also studied, and the observed changes in the magnetic properties found to be due to a chemical reduction or oxidation of the metallic Co species....

  12. Co-doping with antimony to control phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.

    2013-02-15

    In germanium, phosphorous and antimony diffuse quickly and as such their transport must be controlled in order to design efficient n-typed doped regions. Here, density functional theory based calculations are used to predict the influence of double donor co-doping on the migration activation energies of vacancy-mediated diffusion processes. The migration energy barriers for phosphorous and antimony were found to be increased significantly when larger clusters involving two donor atoms and a vacancy were formed. These clusters are energetically stable and can lead to the formation of even larger clusters involving a number of donor atoms around a vacancy, thereby affecting the properties of devices.

  13. Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF{sub 6} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Kentaro, E-mail: ken-fukuda@tokuyama.co.jp [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196 (Japan)

    2015-06-01

    Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF{sub 6} crystal. Eu doped and Eu, Y co-doped LiCaAlF{sub 6} were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded.

  14. Co-doping effects on luminescence and scintillation properties of Ce doped Lu{sub 3}Al{sub 5}O{sub 12} scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kei, E-mail: kamada@imr.tohoku.ac.jp [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); C& A Corporation, T-Biz, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Nikl, Martin [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Kurosawa, Shunsuke [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Beitlerova, Alena [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Nagura, Aya [Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Shoji, Yasuhiro [C& A Corporation, T-Biz, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Pejchal, Jan [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Ohashi, Yuji [Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Yokota, Yuui [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Yoshikawa, Akira [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); C& A Corporation, T-Biz, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan)

    2015-05-11

    The Mg, Ca, Sr and Ba 200 ppm co-doped Ce:Lu{sub 3}Al{sub 5}O{sub 12} single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of the co-doping. The scintillation decays were accelerated by both Mg and Ca co-dopants. The Mg co-doped samples showed the fastest decay and the highest light yield among the co-doped samples.

  15. The effect of CO-doped on the room-temperature ferromagnetism of CeO{sub 2} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.F, E-mail: xuhaifeng@ahsztc.edu.cn [School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000 (China); Li, H [School of Information Engineering, Suzhou University, Suzhou 234000 (China)

    2015-03-01

    Co-doped CeO{sub 2} nanorods of 10–20 nm in diameter and 200–600 nm or more in length have been synthesized by a simple co-precipitation method. The results of XRD and SADE analysis indicate that the as-synthesized CeO{sub 2} samples have the fluorite structure. X-ray photoelectron spectroscopy and Raman spectra show that Ce{sup 4+} and Ce{sup 3+} ions coexist at the surface of non-doped CeO{sub 2} nanorods. The magnetic measurements indicated that Co-doped CeO{sub 2} nanorods exhibit stronger ferromagnetism at room temperature, and while increasing the amount of Co ions, the ferromagnetism increase more, which can be associated with the presence of Ce{sup 3+} and Co{sup 2+}. - Highlights: • Co-doped CeO{sub 2} nanorods are synthesized by a simple hydrothermal method. • The synthesized Co-doped CeO{sub 2} nanorods show excellent RTFM. • The controllable morphology and RTFM should make the Co-doped CeO{sub 2} nanorods excellent candidates for applications in related areas.

  16. First principles study on the spin dependent electronic behavior of Co doped ZnO structures joining the Al electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Caliskan, S., E-mail: scaliskan@fatih.edu.tr; Guner, S.

    2015-01-15

    Highlights: • An atomic configuration joining the electrodes can govern spin resolved transport. • Co position and concentration in ZnO have a crucial effect on electronic behavior. • It is possible to obtain high spin polarization in Al–Co doped ZnO–Al systems. • Al–Co doped ZnO–Al device structures reveal Schottky-like contact at the interface. - Abstract: Employing first principles, Co doped ZnO systems between the Al electrodes were investigated through the Density Functional Theory combined with Non Equilibrium Green’s Function Formalism. Electronic transport properties of these systems, in the presence of spin property, were revealed using substitutional Co atoms in a supercell. Spin resolved electronic behavior was observed to be crucially governed by atomic configuration, defined by doping position and concentration, of the system joining the electrodes. Using this feature, one can manipulate both the electronic transport and magnetic properties of an Al–Co doped ZnO–Al device structure. A nonlinearity was exhibited in current–voltage characteristics for Co doped ZnO systems attached to the Al electrodes, which implies a Schottky-like contact at the interface. The induced magnetic moment and spin polarization in the system, yielding the spin dependent transport, were elucidated.

  17. Visible light induced photodegradation of organic pollutants on nitrogen and fluorine co-doped TiO2 photocatalyst

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-peng; XU Jun; CAI Wei-min; ZHOU Bao-xue; HE Zheng-guang; CAI Chun-guang; HONG Xiao-ting

    2005-01-01

    The nitrogen and fluorine co-doped TiO2 polycrystalline powder was synthesized by calcinations of the hydrolysis product of tetrabutyl titanate with ammonium fluoride. Nitrogen and fluorine co-doping causes the absorption edge of TiO2 to shift to a lower energy region.The photocatalytic activity of co-doped TiO2 with anatase phases was found to be 2.4 times higher than that of the commercial TiO2photocatalyst Degussa P25 for phenol decomposition under visible light irradiation. The co-doped TiO2 powders only contain anatase phases even at 1000℃. Apparently, ammonium fluoride added retarded phase transformation of the TiO2 powders from anatase to rutile.The substitutional fluorine and interstitial nitrogen atoms in co-doped TiO2 polycrystalline powder were responsible for the vis light response and caused the absorption edge of TiO2 to shift to a lower energy region.

  18. Preparation of Metal-Containing Diamond-Like Carbon Films by Magnetron Sputtering and Plasma Source Ion Implantation and Their Properties

    Directory of Open Access Journals (Sweden)

    Stefan Flege

    2017-01-01

    Full Text Available Metal-containing diamond-like carbon (Me-DLC films were prepared by a combination of plasma source ion implantation (PSII and reactive magnetron sputtering. Two metals were used that differ in their tendency to form carbide and possess a different sputter yield, that is, Cu with a relatively high sputter yield and Ti with a comparatively low one. The DLC film preparation was based on the hydrocarbon gas ethylene (C2H4. The preparation technique is described and the parameters influencing the metal content within the film are discussed. Film properties that are changed by the metal addition, such as structure, electrical resistivity, and friction coefficient, were evaluated and compared with those of pure DLC films as well as with literature values for Me-DLC films prepared with a different hydrocarbon gas or containing other metals.

  19. Thermal Characteristics of InGaN/GaN Flip-Chip Light Emitting Diodes with Diamond-Like Carbon Heat-Spreading Layers

    Directory of Open Access Journals (Sweden)

    Pai-Yang Tsai

    2014-01-01

    Full Text Available The temperature-dependent optical, electrical, and thermal properties of flip-chip light emitting diodes (FCLEDs with diamond-like carbon (DLC heat-spreading layers were investigated. On the basis of the measured results in the 20°C to 100°C temperature range, a significant performance improvement can be achieved for FCLEDs with DLC heat-spreading layers (DLC-FCLED compared with FCLEDs without DLC heat-spreading layers (non-DLC-FCLED. The external quantum efficiency (EQE of the DLC-FCLED improves by 9% at an injection current of 1000 mA and a temperature of 100°C. The forward voltage and spectra variations are smaller than those of non-DLC-FCLEDs. The DLC-FCLED provides high efficiency and high stability performance for high-power and high-temperature applications.

  20. XPS, XRD and laser Raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Silva, William de Melo; Carneiro, Jose Rubens Goncalves, E-mail: williammelosilva@gmail.com [Pontificia Universidade Catolica de Minas Gerais (PUC-MG), Belo Horizonte (Brazil). Dept. de Engenharia Mecanica; Trava-Airoldi, Vladimir Jesus [Associate Laboratory of Sensors and Materials, National Institute for Space Research, Sao Jose dos Campos, SP (Brazil)

    2013-11-01

    Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment. (author)

  1. Phase transitions of geometrically frustrated mixed spin-1/2 and spin-1 Ising-Heisenberg model on diamond-like decorated planar lattices

    Directory of Open Access Journals (Sweden)

    L. Gálisová

    2011-03-01

    Full Text Available Phase transitions of the mixed spin-1/2 and spin-1 Ising-Heisenberg model on several decorated planar lattices consisting of interconnected diamonds are investigated within the framework of the generalized decoration-iteration transformation. The main attention is paid to the systematic study of the finite-temperature phase diagrams in dependence on the lattice topology. The critical behaviour of the hybrid quantum-classical Ising-Heisenberg model is compared with the relevant behaviour of its semi-classical Ising analogue. It is shown that both models on diamond-like decorated planar lattices exhibit a striking critical behaviour including reentrant phase transitions. The higher the lattice coordination number is, the more pronounced reentrance may be detected.

  2. In vitro evaluation of diamond-like carbon coatings with a Si/SiC {sub x} interlayer on surgical NiTi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk; Yang, D.Z. [State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China)

    2007-04-15

    Diamond-like carbon (DLC) coatings were produced with a Si/SiC {sub x} interlayer by a hybrid plasma immersion ion implantation and deposition process to improve the adhesion between the carbon layer and surgical NiTi alloy substrate. The structure, mechanical properties, corrosion resistance and biocompatibility of the coatings were evaluated in vitro by Raman spectroscopy, pin-on-disk tests, potentiodynamic polarization tests and simulated fluid immersion tests. The DLC coatings with a Si/SiC {sub x} interlayer of a suitable thickness have better adhesion, lower friction coefficients and enhanced corrosion resistance. In the simulated body fluid tests, the coatings exhibit effective corrosion protection and good biocompatibility as indicated by PC12 cell cultures. DLC films fabricated on a Si/SiC {sub x} interlayer have high potential as protective coatings for biomedical NiTi materials.

  3. XPS, XRD and laser raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Directory of Open Access Journals (Sweden)

    William de Melo Silva

    2013-06-01

    Full Text Available Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment.

  4. Low reflection and high transmission by a layered structure containing diamond-like carbon, porous silicon, and left-handed material

    Science.gov (United States)

    Ubeid, Muin F.; Shabat, Mohammed M.; Altanany, Sameh M.

    2017-03-01

    In this paper, we propose and theoretically analyze a stratified waveguide structure comprised of diamond-like carbon (DLC), porous silicon (PS), and left-handed material (LHM) subjected to incident light in order to achieve low reflection and high transmission. The proposed waveguide structure is situated between two half free spaces and a TE polarized plane wave incident on it. The main parameters of each material are given and the required equations for the electromagnetic plane wave propagation are presented. Transfer matrix method is implemented to find out the characteristics of the reflected and transmitted powers. In the numerical results, the mentioned powers are computed and illustrated as a function of the incidence angle, the frequency, and the slab thickness to demonstrate the main parameters for low reflection and high transmission. These theoretical parameters could be useful to the researchers and designers working in the area of solar cells and optical sensors.

  5. Thickness Effects of TiC Interlayer on Tribological Properties of Diamond-Like Carbon Prepared by Unbalanced Magnetron Sputtering Method.

    Science.gov (United States)

    Park, Chulmin; Lee, Jaehyeong; Park, Yong Seob

    2015-11-01

    We investigated the tribological properties of diamond-like carbon (DLC) films prepared with TiC interlayer of various thicknesses as the adhesive layer. DLC and TiC thin films were prepared using unbalanced magnetron (UBM) sputtering method using graphite and titanium as targets. TiC films as the interlayer were deposited under DLC films and various physical, tribological, and structural properties of the films fabricated with various TiC interlayer thicknesses were investigated. With various TiC interlayer thicknesses under DLC films, the tribological properties of films were improved with increasing thickness and the DLC/TiC layer fabricated by unbalanced magnetron sputtering method are exhibited maximum high hardness over 27 GPa and high elastic modulus over 242 GPa, and a smooth surface below 0.09 nm.

  6. Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics

    Science.gov (United States)

    Chen, Daqin; Wang, Yuansheng; Bao, Feng; Yu, Yunlong

    2007-06-01

    Transparent SiO2-Al2O3-NaF-YF3 glass ceramics co-doped with Er3+ and Tm3+ were prepared by melt quenching and subsequent heating. X-ray diffraction and transmission electron microscopy experiments revealed that β-YF3 nanocrystals incorporated with Er3+ and Tm3+ were precipitated homogeneously among the oxide glass matrix. An integrated broad near-infrared emission band in the wavelength region of 1300-1700 nm, consisting of Tm3+ emissions around 1472 nm (H34→F34) and 1626 nm (F34→H36), and Er3+ emission around 1543 nm (I413/2→I415/2), was obtained under 792 nm laser excitation. The full width at half maximum of this integrated band increased with the increasing of [Tm]/[Er] ratio, and it reached as large as 175 nm for the 0.1 mol% Er3+ and 0.8 mol% Tm3+ co-doped sample. The energy transfers between Er3+ and Tm3+ were proposed to play an important role in tailoring the emission bandwidth of the sample.

  7. Co-doping effects of Gd and Ag on YBCO films derived by metalorganic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Meijuan; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Lu, Yuming; Fan, Feng; Cai, Chuanbing, E-mail: cbcai@t.shu.edu.cn

    2015-12-15

    Highlights: • MOD was employed to fabricate (YGd)BaCuO films together with Ag addition for the first time. • Better connectivity of grains was obtained by Ag addition. • Pyrolysis rate and surface morphology were able to be improved by Ag addition. • Gd substitution and relevant ion defects are emerged in the studied (YGd)BaCuO films. • Better c-axis orientation, superior surface microstructure and improved superconducting performance are obtained by co-doping of Gd and Ag. - Abstract: Y{sub 1–x}Gd{sub x}Ba{sub 2}Cu{sub 3}O{sub 7–δ}-Ag (x = 0, 0.25, 0.5, 0.75, 1) thin films were prepared on oxide buffered Hastelloy substrates by low fluorine metalorganic depostion (MOD) process. The effects of co-doping of Ag and Gd on the microstructures and superconducting properties of YBCO thin films are investigated with respect to improvement on texture and superconducting performance in case of optimized doping content. It is found that optimum addition of Ag and Gd may lead to better c-axis orientation, superior surface microstructure and finally give rise to much improvement of superconducting performance.

  8. Magnetic properties of gadolinium and carbon co-doped gallium nitride

    Science.gov (United States)

    Syed Kaleemullah, N.; Ramsubramanian, S.; Mohankumar, R.; Munawar Basha, S.; Rajagopalan, M.; Kumar, J.

    2017-01-01

    Investigations have been carried out to study the ferromagnetic properties of Gadolinium (Gd) Carbon (C) co-doped wurtzite Gallium Nitride (GaN) using full-potential linear augmented plane wave (FP-LAPW) method within the density functional theory. The system shows half-metallic nature when single Gd is substituted in Ga36N36 supercell. The presence of carbon in GaN supercell is found to generate weak magnetic moment (Ms) in the neighbouring atoms. When Carbon is codoped in the Gd-GaN, it increased the total magnetic moment of the system (Mtot). The cause of ferromagnetism in the Gd and C co-doped GaN has been explained by Zener's p-d exchange mechanism. The role of defects in the magnetic property of this system is also investigated. The results indicate the gallium vacancy influences the magnetic moment of the Gd and C codoped GaN more than the nitrogen vacancy. The presence of holes is effective than electrons in achieving the ferromagnetism in the considered system.

  9. YellowupconversionluminescenceinHo3+/Yb3+co-dopedGd2Mo3O9phosphor

    Institute of Scientific and Technical Information of China (English)

    孙家跃; 薛兵; 孙广超; 崔殿鹏

    2013-01-01

    The strong yellow upconversion (UC) light emission was observed in Ho3+/Yb3+co-doped Gd2Mo3O9 phosphor under the excitation of 980 nm diode laser. The phosphors were synthesized by the traditional solid-state reaction method. The structures of the samples were characterized by X-ray diffraction (XRD). Under 980 nm excitation, Ho3+/Yb3+co-doped Gd2Mo3O9 exhibited strong yellow UC emission based on the green emission near 541 nm generated by 5F4,5S2→5I8 transition and the strong red emission around 660 nm generated by 5F5→5I8 transition, which assigned to the intra-4f transitions of Ho3+ions. The doping concentrations of Ho3+and Yb3+were determined to be 0.01 mol Ho3+and 0.2 mol Yb3+for the strongest yellow emission. Then the dependence of UC emis-sion intensity on excitation power density showed that the green and red UC emissions were involved in two-photon process. The possible UC mechanisms for the strong yellow emission were also investigated. The result indicated that this material was a promis-ing candidate for the application in the yellow display field.

  10. Enhanced stability of Eu in GaN nanoparticles: Effects of Si co-doping

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Prabhsharan [Dr. Vijay Kumar Foundation, 1969 Sector 4, Gurgaon 122001, Haryana (India); Department of Physics, Guru Nanak Dev University, Amritsar 143005, Punjab (India); Sekhon, S. S. [Department of Physics, Guru Nanak Dev University, Amritsar 143005, Punjab (India); Department of Physics, The University of the West Indies, St. Augustine (Trinidad and Tobago); Zavada, J. M. [Department of Electrical and Computer Engineering, NYU Polytechnic School of Engineering, Brooklyn, New York 11201 (United States); Kumar, Vijay [Dr. Vijay Kumar Foundation, 1969 Sector 4, Gurgaon 122001, Haryana (India); Center for Informatics, School of Natural Sciences, Shiv Nadar University, NH91, Tehsil Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh (India)

    2015-06-14

    Ab initio calculations on Eu doped (GaN){sub n} (n = 12, 13, and 32) nanoparticles show that Eu doping in nanoparticles is favorable compared with bulk GaN as a large fraction of atoms lie on the surface where strain can be released compared with bulk where often Eu doping is associated with a N vacancy. Co-doping of Si further facilitates Eu doping as strain from an oversized Eu atom and an undersized Si atom is compensated. These results along with low symmetry sites in nanoparticles make them attractive for developing strongly luminescent nanomaterials. The atomic and electronic structures are discussed using generalized gradient approximation (GGA) for the exchange-correlation energy as well as GGA + U formalism. In all cases of Eu (Eu + Si) doping, the magnetic moments are localized on the Eu site with a large value of 6μ{sub B} (7μ{sub B}). Our results suggest that co-doping can be a very useful way to achieve rare-earth doping in different hosts for optoelectronic materials.

  11. Electronic and optical properties study on Fesbnd B co-doped anatase TiO2

    Science.gov (United States)

    Li, Xuechao; Shi, Jianhao; Chen, Hao; Wan, Rundong; Leng, Chongyan; Lei, Ying

    2016-09-01

    We investigate the density of states and optical properties for Fe, 2B and (Fe, 2B) doped TiO2 with DFT calculations. The calculated results reveal mono-doping introduces midgap states which are half-occupied and easy to become the recombination centers of charge carriers, thus inhibiting the enhancement of photocatalystic activity. The coupling of 2p-3d states in the (Fe, 2B) compensated co-doped TiO2 makes gap states couple with the valence bands edge, thus greatly causing the band gap narrowing and higher visible light absorption. Moreover, the gap states cannot become recombination centers of the photoexcited carriers, thus promoting the separation of electron-hole pairs, prolonging the lifetime of carriers. The analysis of electron density indicates more electrons from Fe transfer to adjacent B, realizing the charge compensation and forming a stronger Fesbnd B bond. Therefore, the (Fe, 2B) compensated co-doped TiO2 exhibits the higher visible-light photocatalystic activity than those of pure and solely doped TiO2.

  12. Investigation of Co-doped PZT films deposited by rf-magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Felicia Gheorghiu

    2014-09-01

    Full Text Available The focus of the present paper is to describe the preparation procedure and to investigate the microstructural characteristics and the electrical properties of Co-doped PZT films deposited by rf-sputtering by using a “mixture” target system onto Au-electroded Al2O3 ceramic substrates. The X-ray diffraction patterns of the Co-doped PZT thin films as a function of the annealing temperature confirmed the formation of pure perovskite phase started with temperatures of 600 °C, but a perfect crystallization was achieved at a temperature of ∼700 °C. The microstructures strongly depend on the thermal treatment temperature and indicated a discontinuous surface without large pores and with a bimodal grain size distribution. The XPS analysis demonstrated that the dopant element is present mainly in its Co2+ state. The macroscopic P(E hysteresis loops were recorded in different locations of the films surface and demonstrated ferroelectric behaviour with a resistive leakage contribution.

  13. W/Mo co-doped BiVO4 for photocatalytic treatment of polymer-containing wastewater in oilfield

    Science.gov (United States)

    Zhou, Ying; Li, Wei; Wan, Wenchao; Zhang, Ruiyang; Lin, Yuanhua

    2015-06-01

    Polymer flooding is an effective way to enhance oil recovery (EOR). However, the treatment of the oily wastewater becomes an urgent issue. Photocatalysis is a promising approach for this purpose. In this report, W/Mo co-doped BiVO4 particles are synthesized by hydrothermal method. W/Mo co-doping could promote an effective separation of photogenerated carriers reflecting from the 6 times higher photocurrent density compared to pure BiVO4. The photodegradation of partially hydrolyzed polyacrylamide (HPAM) over 0.5 at.% W and 1.5 at.% Mo co-doped BiVO4 is 43% under UV-vis light irradiation for 3 h, which is much higher than that of pure BiVO4 (18%).

  14. The effect of K-na co-doping on the formation and particle size of Bi-2212 phase

    Science.gov (United States)

    Kır, M. Ebru; Özkurt, Berdan; Aytekin, M. Ersin

    2016-06-01

    Superconducting K-Na co-doped Bi2Sr2KxCa1Cu1.75Na0.25Oy (x=0, 0.05, 0.1 and 0.25) ceramics are prepared by a solid-state reaction method. It is clearly determined from XRD data that the characteristic peaks of Bi-2212 phase are observed in all samples. The resistivity measurements show that Tc (onset) values is gradually increasing as K content is increased. It is also found that K-Na co-doping influence the grain sizes for Bi-2212 phase significantly. The critical current densities as a function of magnetic field have been calculated from M-H hysteresis loops of samples according to Bean's critical model, indicating that K-Na co-doping cause higher Jc values than the pure ones.

  15. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    Science.gov (United States)

    Sasani, Alireza; Baktash, Ardeshir; Mirabbaszadeh, Kavoos; Khoshnevisan, Bahram

    2016-10-01

    In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO2 anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO2 surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase JSC of the surface while slightly decreasing VOC compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  16. Enhanced dopant solubility and visible-light absorption in Cr-N co-doped TiO2 nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Chiodi, Dr Mirco [University of Brescia (UNIBS); Cheney, Christine [ORNL; Vilmercati, Paolo [ORNL; Cavaliere, Emanuele [University of Brescia (UNIBS); Mannella, Norman [ORNL; Gavioli, Luca [University of Brescia (UNIBS); Weitering, Harm H [ORNL

    2012-01-01

    A major obstacle toward employing TiO2 as an efficient photoactive material is related to its large optical band gap, strongly limiting visible light absorption. Substitutional doping with both donors and acceptors (co-doping) potentially leads to a significant band gap reduction, but the effectiveness of the co-doping approach remains limited by the low solubility of dopants inside TiO2. Here we show that nanostructured Cr and N co-doped TiO2 thin films can be obtained by Supersonic Cluster Beam Deposition (SCBD) with a high concentration of dopants and a strongly reduced band gap. Complementary spectroscopic investigations show that doping effectively occurs into substitutional lattice sites, inducing dopant levels in the gap that are remarkably delocalized. The high surface-to-volume ratio, typical of SCBD nanostructured films, likely facilitates the dopant incorporation. The present results indicate that SCBD films are highly promising photoactive nanophase materials.

  17. Fabrication and photoelectric properties of Er3+ and Yb3+ co-doped ZnO films

    Science.gov (United States)

    Feng, Wei; Wang, Xiangfu; Meng, Lan; Yan, Xiaohong

    2016-01-01

    In this paper, the Er3+ and Yb3+ co-doped ZnO films deposited by a novel thermal decomposition method under different annealing temperature process have been reported. The effects of annealing temperature on the morphology and properties of the films are systematically studied. The resulting spectra demonstrate that the Er3+ and Yb3+ co-doped ZnO films possessed the property of up-conversion, converting IR light into visible light that can be absorbed by amorphous silicon solar cell. After all, inner photoelectric effect of the Er3+ and Yb3+ co-doped ZnO films in the amorphous as a light scattering layer are also found with an infrared 980 nm laser as excitation source.

  18. Novel band gap-tunable K–Na co-doped graphitic carbon nitride prepared by molten salt method

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiannan [Institute of Eco-environmental Sciences, Liaoning Shihua University, Fushun 113001 (China); School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun 113001 (China); Ma, Lin [School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001 (China); Wang, Haoying; Zhao, Yanfeng [School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun 113001 (China); Zhang, Jian [School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001 (China); Hu, Shaozheng, E-mail: hushaozhenglnpu@163.com [Institute of Eco-environmental Sciences, Liaoning Shihua University, Fushun 113001 (China)

    2015-03-30

    Graphical abstract: K and Na ions co-doped into g-C{sub 3}N{sub 4} crystal lattice can tune the position of CB and VB potentials, influence the structural and optical properties, and thus improve the photocatalytic degradation and mineralization ability. - Highlights: • K, Na co-doped g-C{sub 3}N{sub 4} was prepared in KCl/NaCl molten salt system. • The structural and optical properties of g-C{sub 3}N{sub 4} were greatly influenced by co-doping. • The position of VB and CB can be tuned by controlling the weight ratio of eutectic salts to melamine. • Co-doped g-C{sub 3}N{sub 4} showed outstanding photodegradation ability, mineralization ability, and catalytic stability. - Abstract: Novel band gap-tunable K–Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N{sub 2} adsorption, Scanning electron microscope (SEM), UV–vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from −1.09 and +1.55 eV to −0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K–Na co-doping.

  19. Effects on the optical properties and conductivity of Ag-N co-doped ZnO

    Science.gov (United States)

    Xu, Zhenchao; Hou, Qingyu; Qu, Lingfeng

    2017-01-01

    Nowadays, the studies of the effects on the optical bandgap, absorption spectrum, and electrical properties of Ag-N co-doped ZnO have been extensively investigated. However, Ag and N atoms in doped systems are randomly doped, and the asymmetric structure of ZnO is yet to be explored. In this paper, the geometric structure, stability, density of states, absorption spectra and conductivity of pure and Ag-N co-doped Zn1‑xAgxO1‑xNx(x=0.03125, 0.0417 and 0.0625) in different orientations are calculated by using plane-wave ultrasoft pseudopotential on the basis of density functional theory with GGA+U method. Results show that the volume, equivalent total energy and formation energy of the doped system increase as the concentration of Ag-N co-doped Zn1‑xAgxO1‑xNx increases at the same doping mode. The doped systems also become unstable, and difficulty in doping. At the same concentration of Ag-N co-doped Zn1‑xAgxO1‑xNx, the systems with Ag-N along the c-axis orientation is unstable, and doping is difficult. The optical bandgap of Ag-N co-doped systems is narrower than that of the pure ZnO. At the same doping mode, the optical bandgap of the systems with Ag-N perpendicular to the c-axis orientation becomes narrow as the concentration of Ag-N co-doped Zn1‑xAgxO1‑xNx increases. The absorption spectra of the doped systems exhibit a red shift, and this red shift becomes increasingly significant as the concentration of Ag-N co-doped Zn1‑xAgxO1‑xNx increases. Under the same condition, the relative hole concentrations of the doped systems increases, the hole effective mass in valence band maximum decreases, the hole mobility decreases, the ionization energy decreases, Bohr radius increases, the conductance increases and the conductivity become better. Our results may be used as a basis for the designing and preparation of new optical and electrical materials for Ag-N co-doped ZnO applied in low temperature end of temperature difference battery.

  20. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts

    Science.gov (United States)

    Qu, Dan; Zheng, Min; Du, Peng; Zhou, Yue; Zhang, Ligong; Li, Di; Tan, Huaqiao; Zhao, Zhao; Xie, Zhigang; Sun, Zaicheng

    2013-11-01

    A facile hydrothermal synthesis route to N and S, N co-doped graphene quantum dots (GQDs) was developed by using citric acid as the C source and urea or thiourea as N and S sources. Both N and S, N doped GQDs showed high quantum yield (78% and 71%), excitation independent under excitation of 340-400 nm and single exponential decay under UV excitation. A broad absorption band in the visible region appeared in S, N co-doped GQDs due to doping with sulfur, which alters the surface state of GQDs. However, S, N co-doped GQDs show different color emission under excitation of 420-520 nm due to their absorption in the visible region. The excellent photocatalytic performance of the S, N co-doped GQD/TiO2 composites was demonstrated by degradation of rhodamine B under visible light. The apparent rate of S, N:GQD/TiO2 is 3 and 10 times higher than that of N:GQD/TiO2 and P25 TiO2 under visible light irradiation, respectively.A facile hydrothermal synthesis route to N and S, N co-doped graphene quantum dots (GQDs) was developed by using citric acid as the C source and urea or thiourea as N and S sources. Both N and S, N doped GQDs showed high quantum yield (78% and 71%), excitation independent under excitation of 340-400 nm and single exponential decay under UV excitation. A broad absorption band in the visible region appeared in S, N co-doped GQDs due to doping with sulfur, which alters the surface state of GQDs. However, S, N co-doped GQDs show different color emission under excitation of 420-520 nm due to their absorption in the visible region. The excellent photocatalytic performance of the S, N co-doped GQD/TiO2 composites was demonstrated by degradation of rhodamine B under visible light. The apparent rate of S, N:GQD/TiO2 is 3 and 10 times higher than that of N:GQD/TiO2 and P25 TiO2 under visible light irradiation, respectively. Electronic supplementary information (ESI) available: More XPS and UV-Vis spectra. See DOI: 10.1039/c3nr04402e

  1. Direct Sensitization Up-conversion Mechanism in Er3+∶Yb3+ Co-doped Fluoride Materials

    Institute of Scientific and Technical Information of China (English)

    肖思国; 阳效良; 刘政威; 佘仲明; 陈春先

    2002-01-01

    Up-conversion luminescence have been studied on Yb3+-Er3+ co-doped fluoride samples. Two infrared lasers with wavelength of 930 nm and 858 nm are carefully chosen as excitation sources. The experimental results suggest direct cooperation sensitization up-conversion rather than two-step sensitization up-conversion is responsible for the increased population of 2H11/2 (Er3+) and thus the increased green emission in the region 514~574 nm in Yb3+-Er3+ co-doped system.

  2. Structural, Optical, and Magnetic Properties of Co Doped CdTe Alloy Powders Prepared by Solid-State Reaction Method

    Directory of Open Access Journals (Sweden)

    M. Rigana Begam

    2013-01-01

    Full Text Available Co doped CdTe powder samples were prepared by solid-state reaction method. In the present work effect of Co doping on structural, optical, and magnetic properties has been studied. X-ray diffraction studies confirm zinc blend structure for all the samples. The lattice parameter showed linear increase with the increase in Co content. The elemental constituents were characterized by EDAX. Optical studies showed the increase in band gap with increase in Co level. The samples were diluted magnetic semiconductors and exhibited clear hysteresis loop showing room temperature ferromagnetism as confirmed by vibrating sample magnetometer.

  3. Analysis of structure origin and luminescence properties of Yb(3+)-Er(3+) co-doped fluorophosphate glass.

    Science.gov (United States)

    Chen, Fangze; Jing, Xufeng; Wei, Tao; Wang, Fengchao; Tian, Ying; Xu, Shiqing

    2014-08-14

    The near infrared luminescence properties of Yb(3+)-Er(3+) co-doped fluorophosphate glasses have been investigated. The various effects on structure and 1.53 μm emission were analyzed as a function of Yb(3+) concentration. The energy transfer mechanism was proposed. High measured lifetime (10.75 ms), large effective full widths at half maximum (73.71 nm) and large gain per unit length (62.8 × 10(-)(24)cm(2)s) have been achieved in prepared glass. The present glass co-doped with 6mol% YbF3 and 2 mol% ErF3 showed magnificent luminescence properties for telecommunication application.

  4. Investigation on Mg and Sc co-doped Ceria electrolyte for IT-SOFC

    Directory of Open Access Journals (Sweden)

    P.Ravi Chandran

    2014-07-01

    Full Text Available Nanocrystalline form of pure ceria (CeO2 and metal (Mg or Sc doped ceria was attempted for 10 mol %. Also, Mg and Sc co-doped ceria with Ce1-x(Mg0.5Sc0.5xO2 (x=0-0.24 was prepared as an electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs by co-precipitation method. The synthesized different compositions of pure and doped nanocrystalline powders were then subjected to powder X-ray diffraction (XRD for phase and structural identification. All the nanocrystalline samples were found to be ceria based solid solutions of fluorite type structures. A.C. impedance spectroscopy measurements in the frequency range of 50Hz to 5MHz was carried out to study the grain, grain boundary and ionic conductivity of doped ceria samples in the temperature range of 400-600oC. The sample Ce0.84(Mg0.5Sc0.50.16O2 composition showed highest ionic conductivity i.e., 1.923 x 10-2 S/cm at 500oC. Its morphology and composition was investigated using scanning electron microscopic analysis (SEM and energy dispersive X-ray spectrometry (EDS and conductivity behavior was compared with those of pure ceria and singly doped ceria electrolytes namely Ce0.9Mg0.1O2 and Ce0.9Sc0.1O2. The impedance analysis reveals that the sample Ce0.9Mg0.1O2 was found to have higher ionic conductivity compared to Ce0.9Sc0.1O2 in the temperature range of 400–600°C. The co-doped ceria showed a much higher conductivity in air at 500oC in comparison to that of singly doped ceria. Therefore, these co-doped ceria are also the more ideal electrolyte materials for IT-SOFCs. Nyquist plot shows the major contributions were due to the grain boundary resistance contributions which accounts for the higher ionic conductivity in case of the dopants. These dopant effect on the ceria is discussed in detail.

  5. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    Science.gov (United States)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  6. Ferromagnetism in co-doped zno particles prepared by vaporization condensation in a solar image furnace

    Science.gov (United States)

    Martínez, B.; Sandiumenge, F.; Balcells, Ll.; Fontcuberta, J.; Sibieude, F.; Monty, C.

    2005-04-01

    We report on the structural and magnetic properties of Co-doped ZnO particles prepared by vaporization-condensation in the solar furnace in Odeillo. X-ray diffraction data show no traces of Co segregation or any other phase different from ZnO. High-resolution electron microscopy (HREM) and transmision electron microscopy (TEM) techniques have also been used to characterize particles. Irrespective of their composition, the shape and size of the obtained particles, as well as their magnetic properties, clearly depend on the preparation conditions. The samples prepared in vacuum exhibit hysteretic behavior with low coercivity (about 100 Oe) at T = 5 K and saturation magnetization well below that expecte for Co2+ in a tetrahedral crystal field. On the other hand, samples prepared at high pressure (70-100 Torr inside the balloon) are paramagnetic.

  7. Phase diagram of F- and Co-doped CeFeAsO

    Energy Technology Data Exchange (ETDEWEB)

    Vakaliuk, Oleksii; Wurmehl, Sabine; Malbrich, Christine; Bruening, Eva; Grafe, Hans-Joachim; Hess, Christian; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden (Germany)

    2013-07-01

    We carried out an experimental systematic electronic resistivity investigation of CeFeAsO system in a wide Co-doping range (0-0.12) and compare it to F-doped (0-0.10) CeFeAsO. The resistivity of the pristine compound: i) exhibits a pronounced peak at approximately 150 K, followed by a steep decrease and ii) an inflection point which are clear signatures of the tetragonal to orthorhombic structural transition, and the antiferromagnetic spin density wave transition, respectively. iii) At low temperature the resistivity shows a kink-like anomaly due to ordering of Ce magnetic moments. Upon doping these anomalies shifts to lower temperature, and become suppressed and broadened. From these observations we construct the magnetic/superconducting phase diagrams for both compounds. Furthermore, NMR/NQR studies reveal a new type of microscopic order in the underdoped normal state regime.

  8. Local distortion in Co-doped LSMO from entropy-maximized charge density distribution

    Energy Technology Data Exchange (ETDEWEB)

    Syed Ali, K.S. [Department of Physics, The Madura College, Madurai 625011 (India); Saravanan, R., E-mail: saragow@dataone.i [Department of Physics, The Madura College, Madurai 625011 (India); Pashchenko, A.V.; Pashchenko, V.P. [Galkin Donetsk Institute of Physics and Technology, National Academy of Sciences of Ukraine, Donetsk 83114 (Ukraine)

    2010-07-09

    Perovskite structure manganites La{sub 0.67}Sr{sub 0.22}Mn{sub 1.11-x}Co{sub x}O{sub 3} were prepared by the solid state reaction method. An X-ray analysis of the structure was undertaken using the Rietveld technique on the experimental powder X-ray diffraction data and, then, a charge density distribution study was undertaken, using the maximum entropy method (MEM). The charge density in the unit cell was reconstructed and the effect of Co{sup 3+} doping in the Mn-O matrix was studied. Local distortions due to Co doping were analyzed and the results are now discussed.

  9. Hydrothermal synthesis and characterization of fluorine & manganese co-doped PZT based cuboidal shaped powder

    Science.gov (United States)

    Nawaz, H.; Shuaib, M.; Saleem, M.; Rauf, A.; Aleem, A.

    2016-08-01

    Cuboidal shaped PZT powder particles based composition Pb0.89(Ba, Sr)0.11(Zr0.52Ti0.48)O3 co- doped with 1 mol% manganese and 2 mol% fluorine was prepared through hydrothermal route. 200-250nm size cuboidal particles were observed under FE-SEM. XRD technique revealed that the perovskite type ceramic structure has a dominant rhombohedral phase. The resultant powder particles were then spray dried, uniaxially pressed and sintered at different temperatures to achieve maximum theoretical density. 98% density was obtained in the pellets at a sintering temperature of 1190°C with an average grain size of 1-3um. The electrical properties of sintered samples were also measured before and after poling to evaluate the effect of dopants on piezoelectric properties.

  10. Crystallization studies on rare-earth co-doped fluorozirconate-based glasses.

    Science.gov (United States)

    Paßlick, C; Johnson, J A; Schweizer, S

    2013-07-01

    This work focuses on the structural changes of barium chloride (BaCl2) nanoparticles in fluorochlorozirconate-based glass ceramics when doped with two different luminescent activators, in this case rare-earth (RE) ions, and thermally processed using a differential scanning calorimeter. In a first step, only europium in its divalent and trivalent oxidation states, Eu(2+) and Eu(3+), is investigated, which shows no significant influence on the crystallization of hexagonal phase BaCl2. However, higher amounts of Eu(2+) increase the activation energy of the phase transition to an orthorhombic crystal structure. In a second step, nucleation and nanocrystal growth are influenced by changing the structural environment of the glasses by co-doping with Eu(2+) and trivalent Gd(3+), Nd(3+), Yb(3+), or Tb(3+), due to the different atomic radii and electro-negativity of the co-dopants.

  11. Synthesis, characterization and antimicrobial activity of zinc and cerium co-doped α-zirconium phosphate

    Institute of Scientific and Technical Information of China (English)

    DAI Guangjian; YU Aili; CAI Xiang; SHI Qingshan; OUYANG Yousheng; TAN Shaozao

    2012-01-01

    A series of zinc ions or/and cerium ions co-doped a-zirconium phosphate (Zn-Ce@ZrPs) were prepared.The novel Zn-Ce@ZrPs were characterized and the antibacterial activity on Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were tested.The results showed that zinc ions (Zn2+) or/and cerium ions (Ce3+) were combined with ZrP,and the Ce3+ was adsorbed on the surface of ZrP through hydrogen bonds,while Zn2+ intercalated into the interlayer of ZrP.Zn-Ce@ZrPs showed excellent synergistic antibacterial activity.When Zn2+/Ce3+ atomic ratio was 0.6,the Zn-Ce@ZrP3 showed the highest synergistic antibacterial efficiency,suggesting great potential application as antibacterial agents in microbial control.

  12. Nickel Oxide and Nickel Co-doped Graphitic Carbon Nitride Nanocomposites and its Octylphenol Sensing Application

    KAUST Repository

    Gong, Wanyun

    2015-11-16

    Nickel oxide and nickel co-doped graphitic carbon nitride (NiO-Ni-GCN) nanocomposites were successfully prepared by thermal treatment of melamine and NiCl2 6H2O. NiO-Ni-GCN nanocomposites showed superior electrochemical catalytic activity for the oxidation of octylphenol to pure GCN. A detection method of octylphenol in environmental water samples was developed based at NiO-Ni-GCN nanocomposites modified electrode under infrared light irradiation. Differential pulse voltammetry was used as the analytic technique of octylphenol, exhibiting stable and specific concentration-dependent oxidation signal in the presence of octylphenol in the range of 10nM to 1μM and 1μM to 50μM, with a detection limit of 3.3nM (3S/N). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cooperative energy transfer in Tm3+ and Yb3+ co-doped phosphate glasses

    Institute of Scientific and Technical Information of China (English)

    XU Bo; YANG Bin; ZHANG Yuepin; XIA Haiping; WANG Jinhao

    2013-01-01

    An efficient near-infrared (NIR) quantum cutting (QC) in Tm3+ and Yb3+ co-doped phosphate glasses was demonstrated,which involved the emission of two NIR photons from an absorbed visible photon via a cooperative energy transfer (CET) from Tm3+to Yb3+ ions.Judd-Ofelt (J-O) theory was used to calculate the intensity parameters (Ω2,Ω4,Ω6),the radiative transition rates (Ar),and radiative transition lifetime (τrad) of Tm3+.Based on Inokuti-Hirayama's model,the energy transfer processes were studied and results indicated that the energy transfer of the electric dipole-dipole (Edd) was dominant in this system.Quantum efficiency related to Yb3+concentration was calculated,and the maximum QE efficiency reached 169.8%.

  14. Structural, chemical and magnetic properties of secondary phases in Co-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Ney, A; Ney, V; Ye, S; Ollefs, K; Kammermeier, T [Fakultaet fuer Physik and CeNIDE, Universitaet Duisburg-Essen, Lotharstrasse 1, D-47057 Duisburg (Germany); Kovacs, A; Dunin-Borkowski, R E [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs Lyngby (Denmark); Wilhelm, F; Rogalev, A, E-mail: andreas.ney@uni-due.de [European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, BP 220, 38043 Grenoble Cedex (France)

    2011-10-15

    We have utilized a comprehensive set of experimental techniques such as transmission electron microscopy (TEM) and synchrotron-based x-ray absorption spectroscopy (XAS) and the respective x-ray linear dichroism and x-ray magnetic circular dichroism to characterize the correlation of structural, chemical and magnetic properties of Co-doped ZnO samples. It can be established on a quantitative basis that the superparamagnetic (SPM) behavior observed by integral superconducting quantum interference device magnetometry is not an intrinsic property of the material but stems from precipitations of metallic Co. Their presence is revealed by TEM as well as XAS. Annealing procedures for these SPM samples were also studied, and the observed changes in the magnetic properties found to be due to a chemical reduction or oxidation of the metallic Co species. (paper)

  15. Deposition of Co-doped TiO2 Thin Films by sol-gel method

    Science.gov (United States)

    Boutlala, A.; Bourfaa, F.; Mahtili, M.; Bouaballou, A.

    2016-03-01

    Cobalt doped TiO2 thin films have been prepared by sol-gel method onto glass substrate at room temperature. in this present work, we are interesting to study the effect of Cobalt doped TiO2 thin films.the concentration of Co was varied from 0 to 6%at .The obtained films have been annealed at 500°C for 2 hours. X-ray diffraction patterns showed that Co: TiO2 films are polycrystalline with a tetragonal anatase and orthorhombic brookite types structures. The surface morphologies of the TiO2 doped with cobalt thin films were evaluated by Atomic Force Microscopy (AFM). The optical properties were studied by mean of UV-visible and near infrared spectroscopy.The calculated optical band gap decreases from 3.30 to 2.96 eV with increasing Co doping.

  16. Aqueous synthesis and characterization of Ni, Zn co-doped CdSe QDs

    Science.gov (United States)

    Thirugnanam, N.; Govindarajan, D.

    2016-01-01

    Ni, Zn co-doped CdSe quantum dots (QDs) were synthesized by chemical precipitation method through aqueous route. The prepared QDs were characterized by X-ray diffraction (XRD) technique, UV-Vis absorption spectroscopy, photoluminescence (PL) spectroscopy and high resolution transmission electron microscopy (HRTEM). XRD technique results indicate that the prepared samples have a zinc blende cubic phase. From UV-Vis absorption spectroscopy technique, the prepared samples were blue shifted with respect to their bulk counter part due to quantum confinement effect. Among different doping ratios examined, a maximum PL emission intensity was observed for CdSe:Ni(1 %):Zn(1 %) QDs. HRTEM pictures show that the prepared QDs were in spherical shape.

  17. Local fields in Co and Mn Co-doped ZnO

    Science.gov (United States)

    Sato, W.; Kano, Y.; Suzuki, T.; Nakagawa, M.; Kobayashi, Y.

    2016-12-01

    The magnetic properties of ZnO co-doped with 5 at. % Co and 5 at. % Mn(Zn0.90Co0.05Mn0.05O) synthesized by a solid-state reaction were investigated by means of 57Co emission Mössbauer spectroscopy. The majority of the probe ions (80 %) residing in defect-free substitutional Zn sites take the oxidation state of 57Fe 2+, and the others presumably form local defects taking the state of 57Fe 3+ at room temperature. Both components show doublets, and RT ferromagnetism was thus absent in the sample. For the measurement at 10 K, spectral broadening was observed, implying a possible presence of a weak magnetic component.

  18. Influence of Input Pulse Durations on Properties of Er3+/Yb3+ Co-doped DCFA

    Institute of Scientific and Technical Information of China (English)

    ZHAN Sheng-bao; ZHAO Shang-hong; SHI Lei; XU Jie; ZHAO Xiao-ming

    2006-01-01

    Based on propagation-rate equations,the influence of different input pulse durations on the properties of Er3+/Yb3+ co-doped double-clad fiber amplifier at dynamic equilibrium was analyzed. The change characteristic of output power sag with pulse duration and repetition rate was shown. Whether single or multi-channel input pulses are amplified,the shorter the input pulse duration is,the smaller the power sags of output pulse will be. At low repetition rate,upper gain values(Gupper) of gain swing are almost the same for different input pulse durations,which tend to the small signal gain,but lower gain value(Glower) of short input pulse is larger than that of long input pulse. At high repetition rate,lower gain value(Glower) approaches to upper gain value(Gupper).

  19. Direct Synthesis of Co-doped Graphene on Dielectric Substrates Using Solid Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    Qi Wang; Pingping Zhang; Qiqi Zhuo; Xiaoxin Lv; Jiwei Wang; Xuhui Sun

    2015-01-01

    Direct synthesis of high-quality doped graphene on dielectric substrates without transfer is highly desired for simplified device processing in electronic applications. However, graphene synthesis directly on substrates suitable for device applications, though highly demanded, remains unattainable and challenging. Here, a simple and transfer-free synthesis of high-quality doped graphene on the dielectric substrate has been developed using a thin Cu layer as the top catalyst and polycyclic aromatic hydrocarbons as both carbon precursors and doping sources. N-doped and N, F-co-doped graphene have been achieved using TPB and F16CuPc as solid carbon sources, respectively. The growth conditions were systematically optimized and the as-grown doped graphene were well characterized. The growth strategy provides a controllable transfer-free route for high-quality doped graphene synthesis, which will facilitate the practical applications of graphene.

  20. Co-doped sodium chloride crystals exposed to different irradiation temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Morales, A. [Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, IPN, Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico D.F., Mexico and Unidad de Irradiacion y Segurid (Mexico); Cruz-Zaragoza, E.; Furetta, C. [Unidad de Irradiacion y Seguridad Radiologica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F (Mexico); Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Flores J, C.; Hernandez A, J.; Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP. 20-364, 01000 Mexico D.F (Mexico)

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  1. EPR investigation of pure and Co-doped ZnO oriented nanocrystals

    Science.gov (United States)

    Savoyant, A.; Alnoor, H.; Bertaina, S.; Nur, O.; Willander, M.

    2017-01-01

    Pure and cobalt-doped zinc oxide aligned nanorods have been grown by the low-temperature (90 °C) aqueous chemical method on amorphous ZnO seed layer, deposited on a sapphire substrate. High crystallinity of these objects is demonstrated by the electron paramagnetic resonance investigation at liquid helium temperature. The successful incorporation of Co2+ ions in substitution of Zn2+ ones in the ZnO matrix has also been confirmed. A drastic reduction of intrinsic ZnO nanorods core defects is observed in the Co-doped samples, which enhances the structural quality of the NRs. The quantification of substitutional Co2+ ions in the ZnO matrix is achieved by comparison with a reference sample. The findings in this study indicate the potential of using the low-temperature aqueous chemical approach for synthesizing material for spintronics applications.

  2. Encapsulation of Fe3O4 Nanoparticles into N, S co-Doped Graphene Sheets with Greatly Enhanced Electrochemical Performance

    Science.gov (United States)

    Yang, Zunxian; Qian, Kun; Lv, Jun; Yan, Wenhuan; Liu, Jiahui; Ai, Jingwei; Zhang, Yuxiang; Guo, Tailiang; Zhou, Xiongtu; Xu, Sheng; Guo, Zaiping

    2016-06-01

    Particular N, S co-doped graphene/Fe3O4 hybrids have been successfully synthesized by the combination of a simple hydrothermal process and a subsequent carbonization heat treatment. The nanostructures exhibit a unique composite architecture, with uniformly dispersed Fe3O4 nanoparticles and N, S co-doped graphene encapsulant. The particular porous characteristics with many meso/micro holes/pores, the highly conductive N, S co-doped graphene, as well as the encapsulating N, S co-doped graphene with the high-level nitrogen and sulfur doping, lead to excellent electrochemical performance of the electrode. The N-S-G/Fe3O4 composite electrode exhibits a high initial reversible capacity of 1362.2 mAhg‑1, a high reversible specific capacity of 1055.20 mAhg‑1 after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 556.69 mAhg‑1 when cycled at the current density of 1000 mAg‑1, indicating that the N-S-G/Fe3O4 composite is a promising anode candidate for Li-ion batteries.

  3. Photocatalytic Activity of Nanosized TiO2 Enhanced by co-doping with Fe3+ and Nd3+ Ions

    Institute of Scientific and Technical Information of China (English)

    Fu Pingfeng; Zhao Zhuo; Wang Jingxin

    2007-01-01

    In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was evaluated by degrading methylene blue (MB) solution. The results indicated that TiO2 crystalline size was reduced and phase transformation of anatase to rutile was suppressed as the content of doped Nd3+ ion increased in the co-doped TiO2. The UV-vis spectra of co-doped TiO2 seemed to simply overlay two spectra of single metal doped TiO2, and had significantly increased absorbance in the ranges of 400~500 nm, 565~600 nm and 730~765 nm as compared to pure TiO2. The photocatalytic activity of co-doped TiO2 was obviously enhanced, and raised about 30% compared to that of pure TiO2 as doped Nd3+ content was 0.15% and Fe3+ content was 0.05%, respectively. The enhanced catalytic activity was attributed to a synergistic effect of two doped ions, where doped Fe3+ ion inhibited the recombination of photogenerated electron and hole, and Nd3+ ion brought more surface carboxyl to promote the degradation reaction.

  4. Pr and Cr co-doped BiFeO3 nanotubes: an advance multiferroic oxide material

    Directory of Open Access Journals (Sweden)

    Mandal Kalyan

    2013-01-01

    Full Text Available Arrays of single phase pure and Pr-Cr co-doped BiFeO3 (BFO nanotubes (NTs with compositions BiFeO3 and Bi0.9Pr0.1Fe0.9Cr0.1O3 have been synthesized using Anodic Aluminium Oxide (AAO template (pore diameter ~250 nm by wet chemical liquid phase deposition technique. All the NTs show ferromagnetic nature at room temperature (RT. Better magnetic properties are observed in the co-doped BFO NTs with the value of saturation magnetization (MS ~49 memu/g, magnetization at the remanence (MR ~12 memu/g and coercive field (HC ~103 Oe. Increase of ferromagnetic signature in the co-doped BFO NTs is believed to be due to the collapse of the space-modulated spin structure. Significant increase in the dielectric characteristics in co-doped BFO NTs suggests lowering of leakage current due to the reduction of the oxygen vacancies in the structure. Strong Magnetodielectric effect (MD, expressed by [εr(H-εr(0]/εr(0 is observed in doped BFO NTs, where the increase of the dielectric constant is noticeable with the increase in the applied magnetic field. The codoped BFO NTs show noticeable increase in MD effect at a lower field (1-2 kOe.

  5. Exploring the dielectric behavior of Co doped ZnO nanoparticles synthesized by wet chemical route using impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arshad, Mohd, E-mail: arshad_632000@yahoo.com [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Aligarh Muslim University, Aligarh (India); Ahmed, Arham S. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Aligarh Muslim University, Aligarh (India); Azam, Ameer [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Aligarh Muslim University, Aligarh (India); Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Naqvi, A.H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Aligarh Muslim University, Aligarh (India)

    2013-11-15

    Highlights: •Co doped ZnO nanoparticles were synthesized using wet chemical route. •Particle size and lattice parameters decreased with Co doping. •Dominance of grain boundary contribution was observed in doped samples. •Dielectric constant and loss tangent reduced with Co doping. -- Abstract: In the present investigation, we report the synthesis of Co doped ZnO nanoparticles by wet chemical method with dopant content varying from 0% to 5%. The structural and dielectric properties of the samples were studied. Crystallite sizes were calculated from the X-ray diffraction (XRD) patterns, which were found to decrease with the increase in Co content. The XRD analysis also ensures that ZnO has a hexagonal (wurtzite) crystal structure and Co{sup 2+} ions were successfully incorporated into the lattice sites of Zn{sup 2+} ions. Dielectric constant was found to decrease with frequency and dopant concentration. Loss tangent results show the decrease in the hopping frequency of charge carriers between metal ions with doping.

  6. Temperature dependence anomalous dielectric relaxation in Co doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Sajid Ali; Nisar, Ambreen; Fatma, Bushara [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. and Tech., Aligarh Muslim University, Aligarh 202 002 (India); Khan, Wasi, E-mail: wasiamu@gmail.com [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. and Tech., Aligarh Muslim University, Aligarh 202 002 (India); Chaman, M. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. and Tech., Aligarh Muslim University, Aligarh 202 002 (India); Mewat Engg. College (Wakf) Mewat, Haryana (India); Azam, Ameer [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. and Tech., Aligarh Muslim University, Aligarh 202 002 (India); Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Naqvi, A.H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. and Tech., Aligarh Muslim University, Aligarh 202 002 (India)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► We prepared Co doped ZnO by facile gel-combustion method. ► Studied temperature dependent dielectric properties in detail. ► Relaxation time shifts toward the higher temperature as increase in Co content. ► SEM analysis shows formation and agglomeration of nanoparticles. ► Dielectric constants, loss and ac conductivity increases with rise in temperature. ► The dielectric constant, loss and ac conductivity decreases as Co ion increases. -- Abstract: We have reported temperature and frequency dependence of dielectric behavior of nanocrystalline Zn{sub 1−x}Co{sub x}O (x = 0.0, 0.01, 0.05 and 0.1) samples prepared by gel-combustion method. The synthesized samples were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and LCR-meter, respectively. The XRD analysis reveals that ZnO has a hexagonal (wurtzite) crystal structure. The morphology and size of the nanoparticles (∼10–25 nm) were observed by SEM for 5% Co doped ZnO sample. In dielectric properties, complex permittivity (ε{sup *} = ε′ − jε″), loss tangent (tan δ) and ac conductivity (σ{sub ac}) in the frequency range 75 kHz to 5 MHz were analyzed with temperature range 150–400 °C. The experimental results indicate that ε′, ε″, tan δ and σ{sub ac} decreases with increase in frequency and temperature. The transition temperature as obtained in dispersion curve of dielectric constant shifts toward higher temperature with increase Co content.

  7. Optical properties of diamond like carbon films containing copper, grown by high power pulsed magnetron sputtering and direct current magnetron sputtering: Structure and composition effects

    Energy Technology Data Exchange (ETDEWEB)

    Meškinis, Š., E-mail: sarunas.meskinis@ktu.lt; Čiegis, A.; Vasiliauskas, A.; Šlapikas, K.; Tamulevičius, T.; Tamulevičienė, A.; Tamulevičius, S.

    2015-04-30

    In the present study chemical composition, structure and optical properties of hydrogenated diamond like carbon films containing copper (DLC:Cu films) deposited by reactive magnetron sputtering were studied. Different modes of deposition — direct current (DC) sputtering and high power pulsed magnetron sputtering (HIPIMS) as well as two configurations of the magnetron magnetic field (balanced and unbalanced) were applied. X-ray diffractometry, Raman scattering spectroscopy, energy-dispersive X-ray spectroscopy and atomic force microscopy were used to study the structure and composition of the films. It was shown that by using HIPIMS mode contamination of the cathode during the deposition of DLC:Cu films can be suppressed. In all cases oxygen atomic concentration in the films was in 5–10 at.% range and it increased with the copper atomic concentration. The highest oxygen content was observed in the films deposited employing low ion/neutral ratio balanced DC magnetron sputtering process. According to the analysis of the parameters of Raman scattering spectra, sp{sup 3}/sp{sup 2} bond ratio decreased with the increase of Cu atomic concentration in the DLC films. Clear dependence of the extinction, absorbance and reflectance spectra on copper atomic concentration in the films was observed independently of the method of deposition. Surface plasmon resonance effect was observed only when Cu atomic concentration in DLC:Cu film was at least 15 at.%. The maximum of the surface plasmon resonance peak of the absorbance spectra of DLC:Cu films was in 600–700 nm range and redshifted with the increase of Cu amount. The ratio between the intensities of the plasmonic peak and hydrogenated amorphous carbon related peak at ~ 220 nm both in the extinction and absorbance spectra as well as peak to background ratio of DLC:Cu films increased linearly with Cu amount in the investigated 0–40 at.% range. Reflectance of the plasmonic DLC:Cu films was in 30–50% range that could be

  8. Multimodal emissions from Tb3+/Yb3+ co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    Science.gov (United States)

    Bahadur, A.; Yadav, R. S.; Yadav, R. V.; Rai, S. B.

    2017-02-01

    This paper reports the optical properties of Tb3+/Yb3+ co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb3+ doped LB glass contains intense NIR band centered at 976 nm due to 2F7/2→2F5/2 transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb3+ doped glass emits a broad NIR band centered at 976 nm whereas the Tb3+ doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb3+ and Yb3+ ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb3+ to Yb3+ ions. The quantum cutting efficiency for Tb3+/Yb3+ co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb3+/Yb3+ co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb3+/Yb3+ co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material.

  9. Tuning the near-gap electronic structure of Cu2O by anion-cation co-doping for enhanced solar energy conversion

    Science.gov (United States)

    Si, Yuan; Yang, Hao-Ming; Wu, Hong-Yu; Huang, Wei-Qing; Yang, Ke; Peng, Ping; Huang, Gui-Fang

    2017-01-01

    Doping is an effective strategy to tune the electronic properties of semiconductors, but some side effects caused by mono-doping degrade the specific performance of matrixes. As a model system to minimize photoproduced electron-hole pairs recombination by anion-cation co-doping, we investigate the electronic structures and optical properties of (Fe+N) co-doped Cu2O using the first-principles calculations. Compared to the case of mono-doping, the FeCuNO (a Fe (N) atom substituting a Cu (O) atom) co-doping reduces the energy cost of doping as a consequence of the charge compensation between the iron and nitrogen impurities, which eliminates the isolated levels (induced by mono-dopant) in the band gap. Interestingly, it is found that the contributions of different host atoms (Cu and O) away from anion (N) and cation (Fe) dopants to the variation of near band gap electronic structure of the co-doped Cu2O are different. Moreover, co-doping reduces the band gap and increases the visible-light absorption of Cu2O. Both band gap reduction and low recombination rate are critical elements for efficient light-to-current conversion in co-doped semiconductor photocatalysts. These findings raise the prospect of using co-doped Cu2O with specifically engineered electronic properties in a variety of solar applications.

  10. Tribological properties and thermal stability of hydrogenated, silicon/nitrogen-coincorporated diamond-like carbon films prepared by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Nakazawa, Hideki; Okuno, Saori; Magara, Kohei; Nakamura, Kazuki; Miura, Soushi; Enta, Yoshiharu

    2016-12-01

    We have deposited hydrogenated, silicon/nitrogen-incorporated diamond-like carbon (Si-N-DLC) films by plasma-enhanced chemical vapor deposition using hexamethyldisilazane [((CH3)3Si)2NH; HMDS] as the Si and N source, and compared the tribological performance and thermal stability of the Si-N-DLC films with those of hydrogenated, Si-incorporated DLC (Si-DLC) films prepared using dimethylsilane [SiH2(CH3)2] as the Si source. The deposited films were annealed at 723-873 K in air atmosphere. The friction coefficients of hydrogenated DLC films after annealing significantly increased at the initial stages of friction tests. On the other hand, the friction coefficients of the Si-N-DLC films deposited at an HMDS flow ratio [HMDS/(HMDS+CH4)] of 2.27% remained low after the annealing even at 873 K. We found that the wear rate of the Si-N-DLC film deposited at 2.27% and -1000 V remained almost unchanged after the annealing at 873 K, whereas that of the Si-DLC film with a similar Si fraction deposited at -1000 V significantly increased after the annealing at 773 K.

  11. Electron Cyclotron Resonance-Sputtered Nanocarbon Film Electrode Compared with Diamond-Like Carbon and Glassy Carbon Electrodes as Regards Electrochemical Properties and Biomolecule Adsorption

    Science.gov (United States)

    Xue, Qiang; Kato, Dai; Kamata, Tomoyuki; Umemura, Shigeru; Hirono, Shigeru; Niwa, Osamu

    2012-09-01

    The electrochemical properties and biocompatible characteristics at an electron cyclotron resonance (ECR)-sputtered nanocarbon film electrode, a diamond-like carbon (DLC) electrode and a glassy carbon (GC) electrode have been studied. The three carbon electrodes show significant current reductions with increased peak separations as a result of protein fouling before oxygen plasma treatment, but the current reductions of the ECR-sputtered nanocarbon and DLC film electrodes are smaller than that of the GC electrode due to their superior surface flatness. The oxygen plasma pretreated ECR-sputtered nanocarbon film electrode exhibits a significant improvement in anti-fouling performance with an improved electron transfer. This is because the pretreated ECR-sputtered nanocarbon film enabled the surface to introduce surface oxygen functionalities that not only improve the interaction between the analytes and the electrode surface but also make the film surface more hydrophilic, which is important for the suppression of biomolecule adsorption. At the same time, the pretreated ECR-sputtered nanocarbon film also retained an ultraflat surface even after pretreatment as a result of the low background current. This excellent performance can only be achieved with our ECR-sputtered nanocarbon film, indicating that our film is promising for application to electrochemical detectors for various biomolecular analytes.

  12. Fabrication of High Transparency Diamond-Like Carbon Film Coating on D263T Glass at Room Temperature as an Antireflection Layer

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2013-01-01

    Full Text Available This study intends to deposit high transmittance diamond-like carbon (DLC thin films on D263T glass substrate at room temperature via a diamond powder target using the radio frequency (RF magnetron sputtering technique. Moreover, various process parameters were used to tune the properties of the thin films by using the Taguchi method. Experimental results show that the content of sp3 bonded carbon decreases in accordance with the effect of the substrate temperature. In addition, the hardness of all as-deposited single-layer DLC films ranges from 13.2 to 22.5 GPa, and the RMS surface roughness was improved significantly with the decrease in sputtering pressure. The water repellent of the deposited DLC films improved significantly with the increase of the sp3 content, and its contact angle was larger than that of the noncoated one by 1.45 times. Furthermore, the refraction index (n of all as-deposited DLC films ranges from 1.95 to 2.1 at λ = 600 nm. These results demonstrate that the thickness increased as the reflectance increased. DLC film under an RF power of 150 W possesses high transmissive ability (>81% and low average reflectance ability (<9.5% in the visible wavelengths (at λ = 400–700 nm.

  13. The Effect of Bias Voltage and Gas Pressure on the Structure, Adhesion and Wear Behavior of Diamond Like Carbon (DLC Coatings With Si Interlayers

    Directory of Open Access Journals (Sweden)

    Liam Ward

    2014-04-01

    Full Text Available In this study diamond like carbon (DLC coatings with Si interlayers were deposited on 316L stainless steel with varying gas pressure and substrate bias voltage using plasma enhanced chemical vapor deposition (PECVD technology. Coating and interlayer thickness values were determined using X-ray photoelectron spectroscopy (XPS which also revealed the presence of a gradient layer at the coating substrate interface. Coatings were evaluated in terms of the hardness, elastic modulus, wear behavior and adhesion. Deposition rate generally increased with increasing bias voltage and increasing gas pressure. At low working gas pressures, hardness and modulus of elasticity increased with increasing bias voltage. Reduced hardness and modulus of elasticity were observed at higher gas pressures. Increased adhesion was generally observed at lower bias voltages and higher gas pressures. All DLC coatings significantly improved the overall wear resistance of the base material. Lower wear rates were observed for coatings deposited with lower bias voltages. For coatings that showed wear tracks considerably deeper than the coating thickness but without spallation, the wear behavior was largely attributed to deformation of both the coating and substrate with some cracks at the wear track edges. This suggests that coatings deposited under certain conditions can exhibit ultra high flexible properties.

  14. Investigation of the microstructure, mechanical properties and tribological behaviors of Ti-containing diamond-like carbon films fabricated by a hybrid ion beam method

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wei [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Future Convergence Technology Division, Korea Institute of Science and Technology, Seoul, 130-650 (Korea, Republic of); Ke, Peiling [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Moon, Myoung-Woon; Lee, Kwang-Ryeol [Future Convergence Technology Division, Korea Institute of Science and Technology, Seoul, 130-650 (Korea, Republic of); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2012-07-31

    Diamond-like carbon (DLC) films with various titanium contents were investigated using a hybrid ion beam system comprising an anode-layer linear ion beam source and a DC magnetron sputtering unit. The film composition and microstructure were characterized carefully by X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy, revealing that the doped Ti atoms had high solubility in the DLC films. The maximum solubility was found to lie between about 7 and 13 at.%. When the Ti content was lower than this solubility, the doped Ti atoms dissolved in the DLC matrix and the films exhibited the typical features of the amorphous DLC structure and displayed low compressive stresses, friction coefficients and wear rates. However, as the doped content exceeded the solubility, Ti atoms bonded with C atoms, resulting in the formation of carbide nano-particles embedded in the DLC matrix. Although the emergence of the carbide nano-particles promoted graphitizing due to a catalysis effect, the film hardness was enhanced to a great extent. On the other hand, the hard carbides particles caused abrasive wear behavior, inducing a high friction coefficient and wear rate. - Highlights: Black-Right-Pointing-Pointer Ti doped DLC films (Ti {approx} 24 at.% )were deposited by a hybrid ion beam system. Black-Right-Pointing-Pointer Solubility of the Ti atoms in the DLC films was found around 7 {approx} 13 at .%. Black-Right-Pointing-Pointer Microstructure evolution from DLC to nanocomposite played key role in film behaviors.

  15. Surface treatment of diamond-like carbon films by reactive Ar/CF{sub 4} high-power pulsed magnetron sputtering plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Takashi, E-mail: t-kimura@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nishimura, Ryotaro [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Azuma, Kingo [Department of Electrical Engineering and Computer Sciences, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Nakao, Setsuo; Sonoda, Tsutomu; Kusumori, Takeshi; Ozaki, Kimihiro [National Institute of Advanced Industrial Science and Technology (AIST) - Chubu, 2266-98 Anagahora, Moriyama, Nagoya 463-8560 (Japan)

    2015-12-15

    Surface modification of diamond-like carbon films deposited by a high-power pulsed magnetron sputtering (HPPMS) of Ar was carried out by a HPPMS of Ar/CF{sub 4} mixture, changing a CF{sub 4} fraction from 2.5% to 20%. The hardness of the modified films markedly decreased from about 13 to about 3.5 GPa with increasing CF{sub 4} fraction, whereas the water contact angle of the modified films increased from 68° to 109° owing to the increase in the CF{sub x} content on the film surface. C 1s spectra in X-ray photoelectron spectroscopy indicated that a graphitic structure of modified films was formed at CF{sub 4} fractions less than 5%, above which the modified films possessed a polymer-like structure. Influence of treatment time on the properties of the modified films was also investigated in the range of treatment time from 5 to 30 min. The properties of the modified films did not depend on the treatment time in the range of treatment time longer than 10 min, whereas the water contact angle was not sensitive to the treatment time at any treatment time.

  16. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles; Ioneninduzierte Umwandlung von Polymerschichten zu diamantaehnlichem Kohlenstoff mit darin enthaltenen Silber-Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Florian P.

    2010-03-26

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  17. Patterning of diamond like carbon films for sensor applications using silicon containing thermoplastic resist (SiPol) as a hard mask

    Science.gov (United States)

    Virganavičius, D.; Cadarso, V. J.; Kirchner, R.; Stankevičius, L.; Tamulevičius, T.; Tamulevičius, S.; Schift, H.

    2016-11-01

    Patterning of diamond-like carbon (DLC) and DLC:metal nanocomposites is of interest for an increasing number of applications. We demonstrate a nanoimprint lithography process based on silicon containing thermoplastic resist combined with plasma etching for straightforward patterning of such films. A variety of different structures with few hundred nanometer feature size and moderate aspect ratios were successfully realized. The quality of produced patterns was directly investigated by the means of optical and scanning electron microscopy (SEM). Such structures were further assessed by employing them in the development of gratings for guided mode resonance (GMR) effect. Optical characterization of such leaky waveguide was compared with numerical simulations based on rigorous coupled wave analysis method with good agreement. The use of such structures as refractive index variation sensors is demonstrated with sensitivity up to 319 nm/RIU, achieving an improvement close to 450% in sensitivity compared to previously reported similar sensors. This pronounced GMR signal fully validates the employed DLC material, the technology to pattern it and the possibility to develop DLC based gratings as corrosion and wear resistant refractometry sensors that are able to operate under harsh conditions providing great value and versatility.

  18. Preparation of Ag-containing diamond-like carbon films on the interior surface of tubes by a combined method of plasma source ion implantation and DC sputtering

    Science.gov (United States)

    Hatada, R.; Flege, S.; Bobrich, A.; Ensinger, W.; Dietz, C.; Baba, K.; Sawase, T.; Watamoto, T.; Matsutani, T.

    2014-08-01

    Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C2H4 plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C2H4 was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria.

  19. Incorporation of Si and SiO(x) into diamond-like carbon films: impact on surface properties and osteoblast adhesion.

    Science.gov (United States)

    Randeniya, L K; Bendavid, A; Martin, P J; Amin, Md S; Preston, E W; Magdon Ismail, F S; Coe, S

    2009-06-01

    The interaction of human osteoblast cells with diamond-like carbon films incorporating silicon and silicon oxide (SiO(x), 1 activated chemical vapour deposition method was investigated. Cell culture studies were performed for films with Si contents ranging from approximately 4 at.% to 15 at.%. Substantial differences between Si-incorporated and SiO(x)-incorporated films were found for the bonding environments of Si atoms and the hybridization of underlying carbon structures. However, osteoblast-attachment studies did not show statistically significant trends in properties of cell growth (count, area and morphology) that can be attributed either to the Si content of the films or to the chemical structure of the films. The surface energy decreased by 40% as the Si content of the SiO(x) incorporated DLC films increased to 13 at.%. The cell adhesion properties however did not change in response to lowering of the surface energy. The incorporation of both Si and SiO(x) leads to a beneficial reduction in the residual stress of the films. The average roughness of the films increases and the hardness decreases when Si and SiO(x) are added to DLC films. The impact of these changes for load-bearing biomedical applications can be determined only by carefully controlled experiments using anatomic simulators.

  20. Electronic, optical and lattice dynamic properties of the novel diamond-like semiconductors Li2CdGeS4 and Li2CdSnS4

    Science.gov (United States)

    Li, Yanlu; Fan, Weiliu; Sun, Honggang; Cheng, Xiufeng; Li, Pan; Zhao, Xian

    2011-06-01

    Li2CdGeS4 and Li2CdSnS4 are novel quaternary diamond-like semiconductors (DLSs) which have been synthesized recently. We present first-principles calculations of their electronic, optical and lattice dynamic properties with the plane-wave pseudopotential method. We have found an indirect band gap of 2.78 eV for Li2CdGeS4 and a direct band gap of 2.50 eV for Li2CdSnS4. The serious stretching vibrations of the Ge/Sn-S and Li-S bonds may enhance their phonon energies, and cause them to exhibit high heat capacities and Debye temperatures, which are promising for nonlinear optical applications. Compared with Cu-based DLSs, Li plays a key role in enlarging the band gaps and increasing the lattice phonon energies, which would increase the thermal conductivity accompanied by an increase of the optical damage threshold.

  1. Co-co-doping Effect on Superconducting Properties of 112-Type Ca0.8La0.2FeAs2 Single Crystals

    Science.gov (United States)

    Xing, Xiangzhuo; Zhou, Wei; Xu, Baozhang; Li, Na; Sun, Yiran; Zhang, Yufeng; Shi, Zhixiang

    2015-07-01

    We systematically investigated the Co-co-doping effects in Ca0.8La0.2FeAs2 superconductors. The superconducting transition temperature (Tc) decreases almost linearly with increasing Co content. Simultaneously, it is found that the (Ca,La)112 phase is so sensitive to the Co doping level that chemical phase separation becomes more and more apparent as a result of formation of the (Ca,La)122 phase. The maximum Co doping level for 112 phase seems very low, indicating a quite cruel growth condition for 112 compared with other IBSs.

  2. Electronic, optical and photocatalytic behavior of Mn, N doped and co-doped TiO2: Experiment and simulation

    Science.gov (United States)

    Zhao, Ya Fei; Li, Can; Lu, Song; Liu, Ru Xi; Hu, Ji Yuan; Gong, Yin Yan; Niu, Leng Yuan

    2016-03-01

    The crystal phase structure, surface morphology, chemical states and optical properties of Mn, N mono-doped and co-doped TiO2 nanoparticles were investigated by X-ray powder diffractometry, Raman spectra, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. Meanwhile, geometry structures, formation energies, electronic and optical properties of all systems have been also analyzed by density functional theory. The results showed that the band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO2. The number and the carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light. Especially, the photocatalytic activity of Mn-2N co-doped TiO2 beyond three-fold than that of pure TiO2 under visible-light.

  3. Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol.

    Science.gov (United States)

    Siddiqa, Asima; Masih, Dilshad; Anjum, Dalaver; Siddiq, Muhammad

    2015-11-01

    Various compositions of cobalt and sulfur co-doped titania nano-photocatalyst are synthesized via sol-gel method. A number of techniques including X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Rutherford backscattering spectrometry (RBS), thermal gravimetric analysis (TGA), Raman, N2 sorption, electron microscopy are used to examine composition, crystalline phase, morphology, distribution of dopants, surface area and optical properties of synthesized materials. The synthesized materials consisted of quasispherical nanoparticles of anatase phase exhibiting a high surface area and homogeneous distribution of dopants. Cobalt and sulfur co-doped titania demonstrated remarkable structural and optical properties leading to an efficient photocatalytic activity for degradation of dyes and phenol under visible light irradiations. Moreover, the effect of dye concentration, catalyst dose and pH on photodegradation behavior of environmental pollutants and recyclability of the catalyst is also examined to optimize the activity of nano-photocatalyst and gain a better understanding of the process.

  4. Electronic Structure Magnetic Properties and Optical Properties of Co-doped AlN from First Principles

    Institute of Scientific and Technical Information of China (English)

    ZHAO Long; LU Peng-Fei; YU Zhong-Yuan; GUO Xiao-Tao; YE Han; YUAN Gui-Fang; SHEN Yue; LIU Yu-Min

    2011-01-01

    The electronic structure, magnetic properties, and optical properties of Co-doped AlN are investigated based upon the Perdew-Burke-Ernzerhof form of generalized gradient approximation within the density functional theory. The band gaps narrowing of Al1-xCoxN are found with the increase of Co concentrations. The analyses of the band structures and density of states show that Al1-xCoxN alloys exhibit a half-metallic character. Moreover, we have succeeded in demonstrating that Co doped AlN system in x = 0.125 is always antiferromagnetic, which is in good agreement with the experimental results. Besides, it is shown that the insertion of Co atom leads to redshift of the optical absorption edge.Finally, the optical constants of pure AlN and Al1-xCoxN alloy, such as loss function, refractive index and reflectivity,are discussed.

  5. Passive mode locking of a Nd:YAG laser with co-doped Nd, Cr:YAG as saturable absorber

    Institute of Scientific and Technical Information of China (English)

    Yang Lin(杨林); Feng Bao-Hua(冯宝华); Zhang Zhi-Guo(张治国); Gaebler Volker; Liu Bai-Ning(刘百宁); Eichler Hans

    2003-01-01

    We demonstrate the characteristics of relatively low saturation intensity using co-doped Nd, Cr:YAG as saturable absorber for passively mode locking the Nd:YAG laser. The difference of the saturation intensity between Q-switched and mode-locked operation in co-doped Nd, Cr:YAG was only one to two orders of magnitude, while Cr:YAG was generally reported at a difference of five orders of magnitude. More than 80% mode locking modulation depth was achieved at an incident pump power of 4.4W, corresponding to an intracavity intensity of 6 × 104W/cma2, using a 68cm long plano-concave cavity.

  6. The effect of CO-doped on the room-temperature ferromagnetism of CeO2 nanorods

    Science.gov (United States)

    Xu, H. F.; Li, H.

    2015-03-01

    Co-doped CeO2 nanorods of 10-20 nm in diameter and 200-600 nm or more in length have been synthesized by a simple co-precipitation method. The results of XRD and SADE analysis indicate that the as-synthesized CeO2 samples have the fluorite structure. X-ray photoelectron spectroscopy and Raman spectra show that Ce4+ and Ce3+ ions coexist at the surface of non-doped CeO2 nanorods. The magnetic measurements indicated that Co-doped CeO2 nanorods exhibit stronger ferromagnetism at room temperature, and while increasing the amount of Co ions, the ferromagnetism increase more, which can be associated with the presence of Ce3+ and Co2+.

  7. Local structure analysis of diluted magnetic semiconductor Co and Al co-doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, K.; Morimoto, S.; Yamazaki, T.; Ishikawa, T.; Ichiyanagi, Y. [Department of Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501 (Japan); Utsumi, J. [Engineering Department Machine Tool Division, Machinery, Equipment & Infrastructure, Mitsubishi Heavy Industries, Ltd., Ritto, Shiga 520-3080 (Japan)

    2016-02-01

    In this study, Co and Al ions co-doped ZnO nanoparticles (Zn(Al, Co)O NPs) were prepared by our original chemical preparation method. The obtained samples prepared by this method, were encapsulated in amorphous SiO{sub 2}. X-ray diffraction (XRD) results showed Zn(Al, Co)O NPs had a single-phase nature with hexagonal wurtzite structure. These particle sizes could be controlled to be approximately 30 nm. We investigate the effect that the increase in the carrier has on the magnetization by doping Al to Co-doped ZnO NPs. The local structures were qualitatively analyzed using X-ray absorption fine structure (XAFS) measurements.

  8. Improvement on the Luminescence Property of Y, Sb Co-doped PbWO4 Single Crystal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of Y and Sb co-doping on the luminescence property of PbWO4 crystals has been investigated. Compared with undoped PbWO4, the transmittance and emission peak intensity of Y∶Sb∶PbWO4 crystals were obviously improved. In addition, its transmittance cutoff wavelength and emission peak shifted to the shorter one. The mechanism of effect of Y and Sb on the transmittance spectra was briefly discussed. The light yield of Y∶Sb∶PbWO4 crystals was 25p.e./MeV, which was two times of that of undoped PbWO4. Our experiments showed that Y and Sb co-doping was a selectable method to improve the luminescence property of PbWO4.

  9. Enhanced magnetocaloric effect in a Co-doped Heusler Mn50Ni37Co3In10 unidirectional crystal

    Science.gov (United States)

    Ren, Jian; Feng, Shutong; Fang, Yue; Zhai, Qijie; Luo, Zhiping; Zheng, Hongxing

    2016-11-01

    A high-pressure optical zone-melting technique was employed to grow a Mn-rich Heusler Mn50Ni37Co3In10 unidirectional crystal in the present study. It was found that the Co-doped Mn50Ni37Co3In10 unidirectional crystal showed a low magnetic hysteretic loss and a widened working temperature interval in the vicinity of the martensitic transformation. The inverse magnetic entropy change (∆SM) reached 7.84 Jkg-1K-1 around 237.5 K under a magnetic field change of 30 kOe, and the corresponding effective refrigeration capacity (RCeff) was about 127.2 Jkg-1. The experimental results demonstrated a high potential to develop high-performance Mn-rich Heusler Mn-Ni-In magnetocaloric materials by means of Co doping in combination with the high-pressure optical zone-melting fabrication technique.

  10. Photocatalytic degradation of coking wastewater by nanocrystalline (Fe,N) co-doped TiO2 powders

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The yellowish nitrogen and iron co-doped nanocrystalline titanium dioxide ((Fe,N) co-doped TiO2) powders have been prepared by hydrothermal method using TiOSO4 and CO(NH2)2 as starting materials.The grain size of the synthesized powders was estimated as 11 nm by Scherrer’s method.The UV-Vis diffuse reflectance spectra indicated that the light absorption edge of the powders was red-shifted up to 605 nm.And the doped TiO2 powders exhibited good photocatalytic activities during the photo-degradation of coking wastewater under sunshine irradiation.The biotreatability of the coking wasterwater after photocatalytic degradation was improved greatly and it is more suitable to be further treated by biochemical method.

  11. Optical Properties of Mg, Fe, Co-Doped Near-Stoichiometric LiTaO3 Single Crystals

    Directory of Open Access Journals (Sweden)

    Chung Wen Lan

    2012-01-01

    Full Text Available Mg, Fe co-doped near-stoichiometric lithium tantalite (SLT single crystals were grown by employing the zone-leveling Czochralski (ZLCz technique. The optical properties, holographic parameters, as well as the composition of the grown crystals were measured. It was found that the Li/Ta ratio decreased with the doping of Mg and Fe ions. A red shift was observed in absorption spectrum for the Mg, Fe co-doped crystals compared to the undoped and Mg-doped ones. The effect of the iron ions (Fe2+ and Fe3+ was further discussed based on the specified absorption bands. Moreover, the occupation mechanism for the defects was discussed by using the IR absorption spectrum, which was attributed to the FeTa3− defects in the highly Fe-doped crystal. In addition, the holographic parameters were also found to be improved with a higher Fe/Ta ratio in the crystals.

  12. Epitaxial Properties of Co-Doped ZnO Thin Films Grown by Plasma Assisted Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    CAO Qiang; DENG Jiang-Xia; LIU Guo-Lei; CHEN Yan-Xue; YAN Shi-Shen

    2007-01-01

    High quality Co-doped ZnO thin films are grown on single crystalline Al2O3(0001) and ZnO(0001) substrates by oxygen plasma assisted molecular beam epitaxy at a relatively lower substrate temperature of 450 ℃. The epitaxial conditions are examined with in-situ reflection high energy electron diffraction (RHEED) and ex-situ high resolution x-ray diffraction (HRXRD). The epitaxial thin films are single crystal at film thickness smaller than 500nm and nominal concentration of Co dopant up to 20%. It is indicated that the Co cation is incorporated into the ZnO matrix as Co2+ substituting Zn2+ ions. Atomic force microscopy shows smooth surfaces with rms roughness of 1.9nm. Room-temperature magnetization measurements reveal that the Co-doped ZnO thin films are ferromagnetic with Curie temperatures TC above room temperature.

  13. Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol

    KAUST Repository

    Siddiqa, Asima

    2015-11-01

    Various compositions of cobalt and sulfur co-doped titania nano-photocatalyst are synthesized via sol–gel method. A number of techniques including X-ray diffraction (XRD), ultraviolet–visible (UV–Vis), Rutherford backscattering spectrometry (RBS), thermal gravimetric analysis (TGA), Raman, N2 sorption, electron microscopy are used to examine composition, crystalline phase, morphology, distribution of dopants, surface area and optical properties of synthesized materials. The synthesized materials consisted of quasispherical nanoparticles of anatase phase exhibiting a high surface area and homogeneous distribution of dopants. Cobalt and sulfur co-doped titania demonstrated remarkable structural and optical properties leading to an efficient photocatalytic activity for degradation of dyes and phenol under visible light irradiations. Moreover, the effect of dye concentration, catalyst dose and pH on photodegradation behavior of environmental pollutants and recyclability of the catalyst is also examined to optimize the activity of nano-photocatalyst and gain a better understanding of the process.

  14. Theoretical study of hydrogen dissociation and diffusion on Nb and Ni co-doped Mg(0001): A synergistic effect

    Science.gov (United States)

    Chen, Ming; Cai, Zhen-Zhun; Yang, Xiao-Bao; Zhu, Min; Zhao, Yu-Jun

    2012-07-01

    The interaction of H2 with clean, Ni and Nb doped Mg(0001) surface are investigated by first-principles calculations. Individual Ni and Nb atoms within the outermost surface can reduce the dissociation barrier of the hydrogen molecule. They, however, prefers to substitute for the Mg atoms within the second layer, leading to a weaker catalytic effect for the dissociation of H2, a bottleneck for the hydriding of MgH2. Interestingly, co-doping of Ni and Nb stabilizes Ni at the first layer, and results in a significant reduction of the dissociation barrier of H2 on the Mg surface, coupled with an increase of the diffusion barrier of H. Although codoped Ni and Nb shows no remarkable advantage over single Nb here, it implies that the catalytic effect could be optimized by co-doping of "modest" transition metals with balanced barriers for dissociation of H2 and diffusion of H on Mg surfaces.

  15. Structural, electronic, and magnetic properties of Co-doped ZnO

    Institute of Scientific and Technical Information of China (English)

    Bakhtiar Ul Haq; A. Afaq; R. Ahmed; S. Naseem

    2012-01-01

    Density functional theory based calculations have been carried out to study structural,electronic,and magnetic properties of Zn1-xCoxO (x = 0,0.25,0.50,0.75) in the zinc-blende phase,and the generalized gradient approximation proposed by Wu and Cohen has been used.Our calculated lattice constants decrease while the bulk moduli increase with the increase of Co2+ concentration.The calculated spin polarized band structures show the metallic behavior of Co-doped ZnO for both the up and the down spin cases with various doping concentrations.Moreover,the electron population is found to shift from the Zn-O bond to the Co-O bond with the increase of Co2+ concentration.The total magnetic moment,the interstitial magnetic moment,the valence and the conduction band edge spin splitting energies,and the exchange constants decrease,while the local magnetic moments of Zn,Co,O,the exchange spin splitting energies,and crystal field splitting energies increase with the increase of dopant concentration.

  16. Structural, linear and nonlinear optical properties of co-doped ZnO thin films

    Science.gov (United States)

    Shaaban, E. R.; El-Hagary, M.; Moustafa, El Sayed; Hassan, H. Shokry; Ismail, Yasser A. M.; Emam-Ismail, M.; Ali, A. S.

    2016-01-01

    Different compositions of Co-doped zinc oxide [(Zn(1- x)Co x O) ( x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10)] thin films were evaporated onto highly clean glass substrates by thermal evaporation technique using a modified source. The structural properties investigated by X-ray diffraction revealed hexagonal wurtzite ZnO-type structure. The crystallite size of the films was found to decrease with increasing Co content. The optical characterization of the films has been carried out using spectral transmittance and reflectance obtained in the wavelength range from 300 to 2500 nm. The refractive index has been found to increase with increasing Co content. It was further found that optical energy gap decreases from 3.28 to 3.03 eV with increasing Co content from x = 0 to x = 0.10, respectively. The dispersion of refractive index has been analyzed in terms of Wemple-DiDomenico (WDD) single-oscillator model. The oscillator parameters, the single-oscillator energy ( E o), the dispersion energy ( E d), and the static refractive index ( n 0), were determined. The nonlinear refractive index of the Zn(1- x)Co x O thin films was calculated and revealed well correlation with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system.

  17. Novel erbia-yttria co-doped zirconia fluorescent thermal history sensor

    Science.gov (United States)

    Copin, E. B.; Massol, X.; Amiel, S.; Sentenac, T.; Le Maoult, Y.; Lours, P.

    2017-01-01

    Thermochromic pigments are commonly used for off-line temperature mapping on components from systems operating at a temperature higher than 1073 K. However, their temperature resolution is often limited by the discrete number of color transitions they offer. This paper investigates the potential of erbia-yttria co-doped zirconia as a florescent thermal history sensor alternative to thermochromic pigments. Samples of yttria-stabilized zirconia powder (YSZ, 8.3 mol% YO1.5) doped with 1.5 mol% ErO1.5 and synthesized by a sol-gel route are calcined for 15 minutes under isothermal conditions between 1173 and 1423 K. The effects of temperature on their crystal structure and room temperature fluorescence properties are then studied. Results show a steady increase of the crystallinity of the powders with temperature, causing a significant and permanent increase of the emission intensity and fluorescence lifetime which could be used to determine temperature with a calculated theoretical resolution lower than 1 K for intensity. The intensity ratio obtained using a temperature insensitive YSZ:Eu3+ reference phosphor is proposed as a more robust parameter regarding experimental conditions for determining thermal history. Finally, the possibilities for integrating this fluorescent marker into sol-gel deposited coatings for future practical thermal history sensing applications is also discussed.

  18. A first-principles study of co-doping in lanthanum bromide

    Science.gov (United States)

    Aberg, Daniel; Sadigh, Babak; Schleife, Andre; Erhart, Paul

    2015-03-01

    It was recently shown that the energy resolution of Ce-doped LaBr3 scintillator radiation detectors can be crucially improved by co-doping with Sr, Ca, or Ba. Here we outline a mechanism for this enhancement on the basis of electronic structure calculations. We show that Sr dopants create and bind to Br vacancies, resulting in stable neutral complexes. The association with Sr causes the deep vacancy level to move toward the conduction band edge. This is essential for reducing the effective carrier density available for Auger quenching during thermalization of hot carriers. Subsequent de-trapping of electrons from the complexes can activate Ce dopants that have previously captured a hole leading to luminescence. This mechanism implies an overall reduction of Auger quenching of free carriers, which is expected to improve the linearity of the photon light yield with respect to the energy of incident electron or photon. Optical properties of the Ce-Sr-vacancy triple complex are discussed and compared to experiment. Prepared by LLNL under Contract DE-AC52-07NA27344. Support from the National Nuclear Security Administration Office of Nonproliferation Research and Development (NA-22) is acknowledged.

  19. Combinatorial optimization of La, Ce-co-doped pyrosilicate phosphors as potential scintillator materials.

    Science.gov (United States)

    Wei, Qinhua; Wan, Jieqiong; Liu, Guanghui; Zhou, Zhenzhen; Yang, Hua; Wang, Jiacheng; Liu, Qian

    2015-04-13

    A combinatorial method was employed to rapidly screen the effects of La, Ce-co-doping on the luminescent properties of Gd2Si2O7 pyrosilicate using an 8 × 8 library. The candidate formulations (Gd1-x-yLax)2Si2O7:Ce2y were evaluated by luminescence pictures under ultraviolet excitation. The optimal composition was found to be (Gd0.89La0.1)2Si2O7:Ce0.02 after scaled-up preparation and detailed characterization of powder samples, which shows an excellent light output under both ultraviolet and X-ray excitation (about 5.43 times of commercial YAG:Ce powders). The XRD results indicate that the phase structure sequence is tetragonal-orthorhombic-triclinic for different calcination temperatures and doping ions. The (Gd0.89La0.1)2Si2O7:Ce0.02 powder sample also demonstrated excellent temperature stability of luminescence up to 200 °C and a short decay time of several tens of nanoseconds, suggesting that this may represent a new kind of scintillation material, such as single crystals, ceramics, glass, or phosphors.

  20. Flux pinning behaviors of Ti and C co-doped MgB{sub 2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.; Zhao, D.; Shen, T.M.; Li, G.; Zhang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Feng, Y. [Northwest Institute for Nonferrous Metal Research, P.O. Box 51, Xian, Shaanxi 710016 (China); Western Superconductivity Technology Company, Xian (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia); Zhang, Y.P. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)], E-mail: yzhao@swjtu.edu.cn

    2008-09-15

    Flux pinning behavior of carbon and titanium concurrently doped MgB{sub 2} alloys has been studied by ac susceptibility and dc magnetization measurements. It is found that critical current density and irreversibility field of MgB{sub 2} have been significantly improved by doping C and Ti concurrently, sharply contrasted to the situation of C-only-doped or Ti-only-doped MgB{sub 2} samples. AC susceptibility measurement reveals that the dependence of the pinning potential on the dc applied field of Mg{sub 0.95}Ti{sub 0.05}B{sub 1.95}C{sub 0.05} has been determined to be U(B{sub dc}){proportional_to}B{sub dc}{sup -1} compared to that of MgB{sub 2}U(B{sub dc}){proportional_to}B{sub dc}{sup -1.5}. As to the U(J) behavior, a relationship of U(J) {proportional_to} J{sup -0.17} is found fitting well for Mg{sub 0.95}Ti{sub 0.05}B{sub 1.95}C{sub 0.05} with respect to U(J) {proportional_to} J{sup -0.21} for MgB{sub 2}. All the results reveal a strong enhancement of the high field pinning potential in C and Ti co-doped MgB{sub 2}.

  1. Coalescence-driven magnetic order of the uncompensated antiferromagnetic Co doped ZnO

    Science.gov (United States)

    Ney, V.; Henne, B.; Lumetzberger, J.; Wilhelm, F.; Ollefs, K.; Rogalev, A.; Kovacs, A.; Kieschnick, M.; Ney, A.

    2016-12-01

    The evolution of the structural and magnetic properties of Co doped ZnO has been investigated over an unprecedented concentration range above the coalescence limit. ZnO films with Co concentrations from 20% to 60% of the cationic lattice have been grown by reactive magnetron sputtering. The wurtzite crystal structure was maintained even for these high dopant concentrations. By measuring the x-ray absorption at the near edge and the linear and circular dichroism of the films at the Zn and Co K edge, it could be shown that Co substitutes predominantly for Zn in the lattice. No indications of metallic Co have been found in the samples. At low Co concentrations, the films are paramagnetic, but with increasing Co content, the films become antiferromagnetically ordered with increasing order temperature. Uncompensated spins, coupled to the antiferromagnetic dopant configurations, lead to a vertical exchange-bias-like effect, which increases with increasing Co concentration. In parallel, the single-ion anisotropy is gradually lost.

  2. Visible light carrier generation in co-doped epitaxial titanate films

    Energy Technology Data Exchange (ETDEWEB)

    Comes, Ryan B.; Smolin, Sergey Y.; Kaspar, Tiffany C.; Gao, Ran; Apgar, Brent A.; Martin, Lane W.; Bowden, Mark E.; Baxter, Jason; Chambers, Scott A.

    2015-03-02

    Perovskite titanates such as SrTiO3 (STO) exhibit a wide range of important functional properties, including high electron mobility, ferroelectricity—which may be valuable in photovoltaic applications—and excellent photocatalytic performance. The wide optical band gap of titanates limits their use in these applications, however, making them ill-suited for integration into solar energy harvesting technologies. Our recent work has shown that by doping STO with equal concentrations of La and Cr we can enhance visible light absorption in epitaxial thin films while avoiding any compensating defects. In this work, we explore the optical properties of photoexcited carriers in these films. Using spectroscopic ellipsometry, we show that the Cr3+ dopants, which produce electronic states immediately above the top of the O 2p valence band in STO reduce the direct band gap of the material from 3.75 eV to between 2.4 and 2.7 eV depending on doping levels. Transient reflectance measurements confirm that optically generated carriers have a recombination lifetime comparable to that of STO and are in agreement with the observations from ellipsometry. Finally, through photoelectrochemical yield measurements, we show that these co-doped films exhibit enhanced visible light photocatalysis when compared to pure STO.

  3. Visible light carrier generation in co-doped epitaxial titanate films

    Energy Technology Data Exchange (ETDEWEB)

    Comes, Ryan B., E-mail: ryan.comes@pnnl.gov; Kaspar, Tiffany C.; Chambers, Scott A. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Smolin, Sergey Y.; Baxter, Jason B. [Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Gao, Ran [Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720 (United States); Apgar, Brent A. [Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801 (United States); Martin, Lane W. [Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720 (United States); Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Bowden, Mark E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)

    2015-03-02

    Perovskite titanates such as SrTiO{sub 3} (STO) exhibit a wide range of important functional properties, including ferroelectricity and excellent photocatalytic performance. The wide optical band gap of titanates limits their use in these applications; however, making them ill-suited for integration into solar energy harvesting technologies. Our recent work has shown that by doping STO with equal concentrations of La and Cr, we can enhance visible light absorption in epitaxial thin films while avoiding any compensating defects. In this work, we explore the optical properties of photoexcited carriers in these films. Using spectroscopic ellipsometry, we show that the Cr{sup 3+} dopants, which produce electronic states immediately above the top of the O 2p valence band in STO reduce the direct band gap of the material from 3.75 eV to 2.4–2.7 eV depending on doping levels. Transient reflectance spectroscopy measurements are in agreement with the observations from ellipsometry and confirm that optically generated carriers are present for longer than 2 ns. Finally, through photoelectrochemical methylene blue degradation measurements, we show that these co-doped films exhibit enhanced visible light photocatalysis when compared to pure STO.

  4. Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology.

    Science.gov (United States)

    Mohammadi, Sanaz; Sohrabi, Maryam; Golikand, Ahmad Nozad; Fakhri, Ali

    2016-08-01

    In this study, pure, Zn, Cu, Zn,Cu co-doped WO3 nanoparticles samples were prepared by precipitation and co-precipitation methods. These nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDX), Dynamic light scattering (DLS), UV-visible and photoluminescence (PL) spectroscopy. The synthesized pure, Zn, Cu, Zn,Cu co-doped WO3 nanoparticles have smart optical properties and average sizes with 3.2, 3.12, 3.08 and 2.97eV of band-gap, 18.1, 23.2, 25.7 and 30.2nm, respectively. Photocatalytic activity of four nanoparticles was studying towards degradation of gentamicin antibiotic under ultraviolet and visible light irradiation. The result showed that Zn,Cu co-doped WO3 possessed high photocatalytic activity. The photocatalytic activity of WO3 nanoparticles could be remarkably increased by doping the Zn and Cu impurity. This can be attributed to the fact that the red shift of absorption edge and the trapping effect of the mono and co-doped WO3 nanoparticles. The research result presents a general and effective way to prepare different photocatalysts with enhanced visible and UV light-driven photocatalytic performance. Antibacterial activity of four different WO3 nanoparticles against Escherichia coli bacterium has been assessed by the agar disc method under light irradiation and dark medium. It is concluded from the present findings that WO3 nanoparticles can be used as an efficient antibacterial agent.

  5. Paramagnetic behavior of Co doped TiO{sub 2} nanocrystals controlled by self-purification mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Anitha, B. [Centre for Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram 695 581 (India); Khadar, M. Abdul, E-mail: mabdulkhadar@rediffmail.com [Centre for Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram 695 581 (India); Banerjee, Alok [UGC-DAE Consortium for Scientific Research (CSR), Khandwa Road, Indore 452 001 (India)

    2016-07-15

    Doping in nanocrystals is a challenging process because of the self- purification mechanism which tends to segregate out the dopants resulting in a greater dopant concentration near the surface than at the interior of nanocrystals. In the present work nanocrystals of TiO{sub 2} doped with different atom % of Co were synthesized by peroxide gel method. XRD analysis confirmed the tetragonal anatase structure and HRTEM images showed the rod-like morphology of the samples. Raman modes of anatase phase of TiO{sub 2} along with weak intensity peaks of Co{sub 3}O{sub 4} for higher Co dopant concentrations were observed for the samples. EPR measurements revealed the presence of cobalt in +2 oxidation state in the TiO{sub 2} matrix. SQUID measurements indicated paramagnetic behavior of the Co doped TiO{sub 2} nanocrystals. The paramagnetic behavior is attributed to an increased concentration of Co{sup 2+} ions and an increased presence of Co{sub 3}O{sub 4} phase near the surface of the TiO{sub 2} nanocrystals due to self-purification mechanism. - Graphical abstract: Variation of the intensity ratios of XRD peaks as a function of atomic ratio of Co. Inset: variation of structure factor for (101) reflection as a function of atomic ratio of Co. Display Omitted - Highlights: • Co doped TiO{sub 2} nanocrystals were synthesized by peroxide gel method. • HRTEM images showed Co doped TiO{sub 2} nanocrystals to be rod-like. • EPR spectra showed +2 oxidation states for Co in the samples. • Co doped TiO{sub 2} nanocrystals showed paramagnetic behavior.

  6. Fabrication of ZnO Bi-crystals with twist boundaries using Co doped ZnO single crystals

    CERN Document Server

    Ohashi, N; Ohgaki, T; Tsurumi, T; Fukunaga, O; Haneda, H; Tanaka, J

    1999-01-01

    Zn O single crystals doped with Co were grown by using a flux method and their electrical properties were investigated by Hall effect. Then, these crystals were polished with diamond paste and bonded to form bi-crystal by hot pressing under a pressure of 10 MPa at 1000 .deg. C. The bi-crystals showed nonlinear I-V curves, and the curvature of I-V relation agreed with that for Co-doped polycrystalline ZnO.

  7. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    Energy Technology Data Exchange (ETDEWEB)

    Sasani, Alireza [Department of Science, Karaj Islamic Azad University, Karaj, Alborz, P.O. Box 31485-313 (Iran, Islamic Republic of); Baktash, Ardeshir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Mirabbaszadeh, Kavoos, E-mail: mirabbas@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, P. O. Box 15875-4413 (Iran, Islamic Republic of); Khoshnevisan, Bahram [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2016-10-30

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO{sub 2} anatase surface (101) is studied. • Effect of Mg defect to the TiO{sub 2} anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO{sub 2} anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO{sub 2} anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO{sub 2} surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J{sub SC} of the surface while slightly decreasing V{sub OC} compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  8. Dependences on RE of superconducting properties of transition metal co-doped (Ca, RE)FeAs2 with RE = La-Gd

    Science.gov (United States)

    Yakita, H.; Ogino, H.; Sala, A.; Okada, T.; Yamamoto, A.; Kishio, K.; Iyo, A.; Eisaki, H.; Shimoyama, J.

    2015-11-01

    Dependence of superconducting properties of (Ca, RE)(Fe, TM)As2 [(Ca, RE)112, TM: Co, Ni)] on RE elements (RE = La-Gd) was systematically investigated. Improvement of superconducting properties by Co or Ni co-doping was observed for all (Ca, RE)112, which is similar to Co-co-doped (Ca, La)112 or (Ca, Pr)112. Tc of Co-co-doped samples decreased from 38 K for RE = La to 29 K for RE = Gd with decreasing ionic radii of RE3+. However, Co-co-doped (Ca, Eu)112 showed exceptionally low Tc = 21 K probably due to the co-existence of Eu3+ and Eu2+ suggested by longer interlayer distance dFe-Fe of (Ca, Eu)112 than other (Ca, RE)112.

  9. First-principle study on the effect of high Ag–2N co-doping on the conductivity of ZnO

    Indian Academy of Sciences (India)

    Wenxue Zhang; Yuxing Bai; Cheng He; Xiaolei Wu

    2015-06-01

    The geometric structure, band structure (BS) and density of state (DOS) of pure and p-type co-doping wurtzite ZnO have been investigated by the first-principle ultrasoft pseudopotential method with the generalized gradient approximation. These structures induce fully occupied defect states above the valence-band maximum of doped ZnO. The calculation results show that in the range of high doping concentration, when the co-doping concentration is more than a certain value, the conductivity decreased with the increase of co-doping concentration of Ag–2N in ZnO. Our findings suggest that co-doping of Ag–2N could efficiently enhance the N dopant solubility and is likely to yield better p-type conductivity.

  10. Effect of Co doping on structural, optical, magnetic and dielectric properties of Bi{sub 2}Fe{sub 4}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, S. R.; Sahu, B.; Singh, A. K., E-mail: singhanil@nitrkl.ac.in [Department of Physics and Astronomy, National Institute of Technology, Rourkela-769008 (India); Kaushik, S. D. [UGC-DAE Consortium for Scientific Research Mumbai Centre, R-5 Shed, BARC, Mumbai-400085 (India)

    2015-06-24

    Polycrystalline Bi{sub 2}Fe{sub 4}O{sub 9} and 2% Co doped Bi{sub 2}Fe{sub 4}O{sub 9} were prepared by solid state reaction route. X-ray diffraction (XRD) result reveals that there is no change in the crystal structure due to Co doping and the compound has orthorhombic structure. UV-visible spectroscopy confirms the decrease in band gap due Co doping. Zero field cooled magnetization measurement at 100 Oe magnetic field shows substantial decrease in the magnetic transition temperature. Room temperature frequency dependent dielectric permittivity at 1V DC bias shows ∼10% increase in Co doped sample with respect to pure Bi{sub 2}Fe{sub 4}O{sub 9}.

  11. Effects of acceptor-donor complexes on electronic structure properties in co-doped TiO2: A first-principles study

    Science.gov (United States)

    Zhang, L.; Cai, L. L.; Yuan, X. B.; Hu, G. C.; Ren, J. F.

    2016-07-01

    We theoretically investigate the doping effects induced by impurity complexes on the electronic structures of anatase TiO2 based on the density functional theory. Mono-doping and co-doping effects are discussed separately. The results show that the impurity doping can make the band-edges shift. The induced defect levels in the band gaps by impurity doping reduce the band gap predominantly. The compensated acceptor-donor pairs in the co-doped TiO2 will improve the photoelectrochemical activity. From the calculations, it is also found that (S+Zr)-co-doped TiO2 has the ideal band gap and band edge, at the same time, the binding energy is higher than other systems, so (S+Zr)-co-doping in TiO2 is more promise in photoelectrochemical experiments.

  12. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  13. A novel zinc(ii) metal-organic framework with a diamond-like structure: synthesis, study of thermal robustness and gas adsorption properties.

    Science.gov (United States)

    Almáši, Miroslav; Zeleňák, Vladimír; Zukal, Arnošt; Kuchár, Juraj; Čejka, Jiří

    2016-01-21

    A solvothermal reaction of Zn(ii) salt with methanetetrabenzoic acid (H4MTB) and 1,4,8,11-tetraazacyclotetradecane (cyclam, CYC) created a new microporous metal-organic framework {[Zn2(μ4-MTB)(κ(4)-CYC)2]·2DMF·7H2O}n (DMF = N,N'-dimethylformamide). Single crystal X-ray diffraction showed that the complex exhibits a four-fold interpenetrated diamond-like structure topology with 1D jar-like channels with sizes about 14.1 × 14.1 and 2.4 × 2.4 Å(2). The stability of the framework and activation conditions of the compound have been studied by high-energy powder X-ray diffraction during in situ heating, thermogravimetric analysis coupled with mass spectrometry and infrared spectroscopy performed at different temperatures. The gas adsorption behaviour of {[Zn2(μ4-MTB)(κ(4)-CYC)2]·2DMF·7H2O}n was studied by adsorption of Ar, N2, CO2 and H2. Nitrogen and argon adsorption showed that the activated sample exhibits Brunauer-Emmet-Teller (BET) specific surface areas of 644 m(2) g(-1) (N2) and 562 m(2) g(-1) (Ar). The complex adsorbs carbon dioxide with a maximum storage capacity of 10.5 wt% at 273 K and 101 kPa. The observed hydrogen uptake was 1.27 wt% at 77 K and 800 Torr, which is the highest value reported for the compounds containing a MTB(4-) linker. The adsorption heats of carbon dioxide and hydrogen, calculated according to the Clausius-Clapeyron equation, were in the range 22.8-22.4 kJ mol(-1) for CO2 and 8.9-3.2 kJ mol(-1) for H2, indicating weak interactions of the gases with the framework.

  14. Prospective multi-center registry to evaluate efficacy and safety of the newly developed diamond-like carbon-coated cobalt-chromium coronary stent system.

    Science.gov (United States)

    Ando, Kenji; Ishii, Katsuhisa; Tada, Eiji; Kataoka, Kazuaki; Hirohata, Atsushi; Goto, Kenji; Kobayashi, Katsuyuki; Tsutsui, Hiroshi; Nakahama, Makoto; Nakashima, Hitoshi; Uchikawa, Shinichiroh; Kanda, Junji; Yasuda, Satoshi; Yajima, Junji; Kitabayashi, Hiroshi; Sakurai, Shumpei; Nakanishi, Keita; Inoue, Naoto; Noike, Hirofumi; Hasebe, Terumitsu; Sato, Tetsuya; Yamasaki, Masao; Kimura, Takeshi

    2016-07-22

    The purpose of this multi-center, non-randomized, and open-label clinical trial was to determine the non-inferiority of diamond-like carbon (DLC)-coated cobalt-chromium coronary stent, the MOMO DLC coronary stent, relative to commercially available bare-metal stents (MULTI-LINK VISION(®)). Nineteen centers in Japan participated. The study cohort consisted of 99 patients from 19 Japanese centers with single or double native coronary vessel disease with de novo and restenosis lesions who met the study eligibility criteria. This cohort formed the safety analysis set. The efficacy analysis set consisted of 98 patients (one case was excluded for violating the eligibility criteria). The primary endpoint was target vessel failure (TVF) rate at 9 months after stent placement. Of the 98 efficacy analysis set patients, TVF occurred in 11 patients (11.2 %, 95 % confidence interval 5.7-19.2 %) at 9 months after the index stent implantation. The upper 95 % confidence interval for TVF of the study stent was lower than that previously reported for the commercially available MULTI-LINK VISION(®) (19.6 %), demonstrating non-inferiority of the study stent to MULTI-LINK VISION(®). All the TVF cases were related to target vascular revascularization. None of the cases developed in-stent thrombosis or myocardial infarction. The average in-stent late loss and binary restenosis rate at the 6-month follow-up angiography were 0.69 mm and 10.5 %, respectively, which are lower than the reported values for commercially available bare-metal stents. In conclusion, the current pivotal clinical study evaluating the new MOMO DLC-coated coronary stent suggested its low rates of TVF and angiographic binary restenosis, and small in-stent late loss, although the data were considered preliminary considering the small sample size and single arm study design.

  15. Diamond-like carbon (DLC) thin film bioelectrodes: Effect of thermal post-treatments and the use of Ti adhesion layer

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, Tomi, E-mail: tomi.laurila@aalto.fi [Department of Electronics, School of Electrical Engineering, Aalto University, Espoo (Finland); Rautiainen, Antti [Department of Electronics, School of Electrical Engineering, Aalto University, Espoo (Finland); Sintonen, Sakari [Department of Micro- and Nanotechnology, School of Electrical Engineering, Aalto University, Espoo (Finland); Jiang, Hua [Department of Applied Physics, School of Science, Aalto University, Espoo (Finland); Kaivosoja, Emilia [Department of Electronics, School of Electrical Engineering, Aalto University, Espoo (Finland); Helsinki University Central Hospital, Institute of Clinical Medicine (Finland); Koskinen, Jari [Department of Materials Science, School of Chemical Technology, Aalto University, Espoo (Finland)

    2014-01-01

    The effect of thermal post-treatments and the use of Ti adhesion layer on the performance of thin film diamond like carbon bioelectrodes (DLC) have been investigated in this work. The following results were obtained: (i) The microstructure of the DLC layer after the deposition was amorphous and thermal annealing had no marked effect on the structure, (ii) formation of oxygen containing SiO{sub x} and Ti[O,C] layers were detected at the Si/Ti and Ti/DLC interfaces with the help of transmission electron microscope (TEM), (iii) thermal post-treatments increased the polar fraction of the surface energy, (iv) cyclic voltammetry (CV) measurements showed that the DLC films had wide water windows and were stable in contact with dilute sulphuric acid and phosphate buffered saline (PBS) solutions, (v) use of Ti interlayer between Pt(Ir) microwire and DLC layer was crucial for the electrodes to survive the electrochemical measurements without the loss of adhesion of the DLC layer, (vi) DLC electrodes with small exposed Pt areas were an order of magnitude more sensitive towards dopamine than Pt electrodes and (vii) thermal post-treatments did not markedly change the electrochemical behavior of the electrodes despite the significant increase in the polar nature of the surfaces. It can be concluded that thin DLC bioelectrodes are stable under physiological conditions and can detect dopamine in micro molar range, but their sensitivity must be further improved. - Highlights: • Crucial effect of Ti adhesion layer on the performance of DLC bioelectrodes is shown. • Amorphous SiOx and Ti[C,O]x are shown to form at the Si/Ti and Ti/DLC interfaces. • Thermal annealing can be used to oxidize the surface of DLC films. • However, there is no change in the sensitivity of the electrodes towards dopamine. • DLC/Pt composite electrodes have improved sensitivity.

  16. FABRICATION AND PHOTOCATALYTIC PROPERTIES OF TiO2 NANOFILMS CO-DOPED WITH Fe3+ AND Bi3+ IONS

    Science.gov (United States)

    Gao, Qiongzhi; Liu, Xin; Liu, Wei; Liu, Fang; Fang, Yueping; Zhang, Shiying; Zhou, Wuyi

    2016-12-01

    In this work, the titanium dioxide (TiO2) nanofilms co-doped with Fe3+ and Bi3+ ions were successfully fabricated by the sol-gel method with dip-coating process. Methylene blue was used as the target degradation chemical to study the photocatalytic properties affected by different doping contents of Fe3+ and Bi3+ ions. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and infrared (IR) spectroscopy. The results indicated that both pure TiO2 nanofilms and single-doped samples possessed the photocatalytic activity in degradation of methylene blue. However, when the nanofilms co-doped with Fe3+ and Bi3+ ions were fabricated at the molar ratio of 3:1 (Fe3+:Bi3+), they exhibited the best photocatalytic activity after the heat treatment at 500∘C for 2h. The wettability property test indicated that the TiO2 nanofilms co-doped with Fe3+ and Bi3+ ions in the molar ratio 3:1 owned an excellent hydrophilic property.

  17. Photocatalytic Activity of Lanthanum and Sulfur Co-doped TiO2 Photocatalyst under Visible Light

    Institute of Scientific and Technical Information of China (English)

    XIA Huili; ZHUANG HUISHENG; XIAO Dongchang; ZHANG Tao

    2008-01-01

    A novel lanthanum and sulfur co-doped TiO2,photocatalyst was synthesized by precipitation-dipping method,and characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and UV-Vis diffuse reflectance spectroscopy.Compared with the S-doped TiO2,La-doped TiO2 and the standard Degussa P25 photocatalysts,the lanthanum and sulfur co-doped TiO2 photocatalyst(the molar percentage of La is 3.O%) calcined at 450℃for 2 h showed the strongest absorption for visible light and highest activities for degradation of reactive blue 19 dye in aqueous solution under visible light(?>400 nm)irradiation.It was also discovered that the co-doping of lanthanum and sulfur hindered the aggregation and growth of TiO2 particles,and the doping of lanthanum reduced slightly the phase transition temperature of TiO2 from anatase to rutile.

  18. Influence of Fe Buffer Layer on Co-Doped BaFe2As2 Superconducting Thin Films

    Directory of Open Access Journals (Sweden)

    C. Bonavolontà

    2015-01-01

    Full Text Available A systematic characterization of Co-doped BaFe2As2 (Ba-122 thin films has been carried out. Two samples were available, one grown on CaF2 substrate and the other on MgO with an Fe buffer layer. The goal was to investigate films’ magnetic and superconducting properties, their reciprocal interplay, and the role played by the Fe buffer layer in modifying them. Morphological characterization and Energy Dispersive X-ray analyses on the Fe-buffered sample demonstrate the presence of diffused Fe close to the Co-doped Ba-122 outer surface as well as irregular holes in the overlying superconducting film. These results account for hysteresis loops obtained with magneto-optic Kerr effect measurements and observed at both room and low temperatures. The magnetic pattern was visualized by magneto-optical imaging with an indicator film. Moreover, we investigated the onset of superconductivity through a measure of the superconducting energy gap. The latter is strictly related to the decay time of the excitation produced by an ultrashort laser pulse and has been determined in a pump-probe transient reflectivity experiment. A comparison of results relative to Co-doped Ba-122 thin films with and without Fe buffer layer is finally reported.

  19. The effect of K-na co-doping on the formation and particle size of Bi-2212 phase

    Energy Technology Data Exchange (ETDEWEB)

    Kır, M. Ebru [Department of Physics, Faculty of Arts and Sciences, Mersin University, Çiftlikköy, 33343 Mersin (Turkey); Özkurt, Berdan, E-mail: berdanozkurt@mersin.edu.tr [Department of Physics, Faculty of Arts and Sciences, Mersin University, Çiftlikköy, 33343 Mersin (Turkey); Department of Energy Systems Engineering, Faculty of Tarsus Technology, Mersin University, Mersin (Turkey); Advanced Technology Research and Application Center, Mersin University, Yenişehir, TR-33343 Mersin (Turkey); Aytekin, M. Ersin [Advanced Technology Research and Application Center, Mersin University, Yenişehir, TR-33343 Mersin (Turkey)

    2016-06-01

    Superconducting K-Na co-doped Bi{sub 2}Sr{sub 2}K{sub x}Ca{sub 1}Cu{sub 1.75}Na{sub 0.25}O{sub y} (x=0, 0.05, 0.1 and 0.25) ceramics are prepared by a solid-state reaction method. It is clearly determined from XRD data that the characteristic peaks of Bi-2212 phase are observed in all samples. The resistivity measurements show that T{sub c} (onset) values is gradually increasing as K content is increased. It is also found that K-Na co-doping influence the grain sizes for Bi-2212 phase significantly. The critical current densities as a function of magnetic field have been calculated from M–H hysteresis loops of samples according to Bean's critical model, indicating that K-Na co-doping cause higher J{sub c} values than the pure ones.

  20. Intense up-conversion luminescence in Er3+/Yb3+ co-doped CeO2 powders.

    Science.gov (United States)

    Singh, Vijay; Rathaiah, M; Venkatramu, V; Haase, Markus; Kim, S H

    2014-03-25

    The Er(3+) and Er(3+)/Yb(3+) co-doped CeO2 powders have been prepared by a urea combustion route. The structural, morphological, compositional and vibrational analysis of the Er(3+):CeO2 and Er(3+)/Yb(3+):CeO2 powders have been studied by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and Fourier transform infrared spectroscopy. The optical and luminescence properties of Er(3+):CeO2 and Er(3+)/Yb(3+):CeO2 powders have been studied by using laser excited spectroscopy. The effects of Yb(3+) doping on up-conversion luminescence of Er(3+) co-doped CeO2 powders were studied. The ratio of red to green intensity is decreased in Er(3+):CeO2 whereas the ratio is increased in Er(3+)/Yb(3+):CeO2 powders with increase of power. The effect of co-doping with the Yb(3+) ions on the visible luminescence of Er(3+) and the energy transfer mechanism responsible for the variation in the green and red intensity are discussed. The results indicate that these materials may be suitable for display and light emitting devices.

  1. Channeling and resonant backscattering investigations of Co doped diluted magnetic oxide films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, V.N. E-mail: vnk@iitk.ac.in; vnk@squid.umd.edu; Shinde, S.R.; Zhao, Y.G.; Choudhary, R.J.; Ogale, S.B.; Greene, R.L.; Venkatesan, T

    2004-06-01

    We present the results of ion channeling and 3.045 MeV He{sup +} oxygen resonant backscattering along with the results of magnetic and electric characterization experiments performed on thin films of Co doped TiO{sub 2} and La{sub 0.5}Sr{sub 0.5}TiO{sub 3} oxides deposited on (0 0 1) LaAlO{sub 3} substrates using the pulsed laser deposition technique. These films exhibit Curie temperature well above 300 K and hence offer potential use for spintronic devices. In the case of Co doped TiO{sub 2} films the magnetic data have been understood in the light of channeling results, which showed non-substitutionality of Co atoms for the films deposited at 700 deg. C, and their incorporation in the matrix by either annealing at a higher temperature of 875 deg. C or deposition at this temperature. In the case of the Co doped La{sub 0.5}Sr{sub 0.5}TiO{sub 3}, the resistivity data for the films deposited at different oxygen pressures correlate well with the oxygen contents of the films obtained by resonant backscattering.

  2. Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.

    Science.gov (United States)

    Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima

    2014-03-01

    In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.

  3. Effect of Ti co-doping on photoluminescence characteristics of Eu:BaAl{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, H. [Korea Research Institute of Chemical Technology, Yuseong, Daejeon 305-600 (Korea, Republic of); Bartwal, K.S., E-mail: bartwalks@yahoo.co.in [Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2013-10-15

    Highlights: •BaAl{sub 2}O{sub 4}:Eu{sup 2+}, Ti{sup 3+}, green phosphor with varying Ti concentrations were prepared by solid-state reaction method. •Powder XRD analysis shows the prepared compositions are single phase with hexagonal structure. •High emission efficiency was observed for the Ti co-doped samples compared to the parent phosphor. •This study shows that this materials has a potential for green phosphor. -- Abstract: The effect of Ti co-doping in BaAl{sub 2}O{sub 4}:Eu{sup 2+} phosphor material on crystalline quality, morphology and photoluminescence (PL) characteristics was investigated. The co-doped green phosphor compositions (BaAl{sub 2}O{sub 4}:Eu{sup 2+}, Ti{sup 3+}) with varying concentrations of Ti were prepared by solid-state synthesis method. These compositions were characterized for their phase, morphology and crystallinity by powder X-ray diffraction, SEM and TEM techniques. The photoluminescence properties were investigated measuring PL and decay time. Broad band UV excited luminescence was observed for BaAl{sub 2}O{sub 4}:Eu{sup 2+}, Ti{sup 3+} in the green region (λ{sub max} = 500 nm) due to transitions from 4f{sup 6} 5d{sup 1} to the 4f{sup 7} configuration of the Eu{sup 2+} ion.

  4. RETRACTED: Investigation of structural, optical and electronic properties in Al-Sn co-doped ZnO thin films

    Science.gov (United States)

    Pan, Zhanchang; Tian, Xinlong; Wu, Shoukun; Yu, Xia; Li, Zhuliang; Deng, Jianfeng; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2013-01-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Figures 3 and 4 of this paper have also been presented as belonging to other materials in other publications. This observation is evidence of fraud and therefore it is not certain that the described research and conclusions of this paper belong to the presented images. Figures 3 and 4 of this paper can also be found in: Effect of annealing on the structures and properties of Al and F co-doped ZnO nanostructures, Materials Science in Semiconductor Processing, 2014, 17, 162-167, http://dx.doi.org/10.1016/j.mssp.2013.09.023 Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol-gel method, Journal of Alloys and Compounds, 2014,583, 32-38, http://dx.doi.org/10.1016/j.jallcom.2013.06.192 Properties of fluorine and tin co-doped ZnO thin films deposited by sol-gel method, Journal of Alloys and Compounds, 2013,576, 31-37, http://dx.doi.org/10.1016/j.jallcom.2013.04.132

  5. Preparation and photocatalytic activity of TiO2 nanoparticles co-doped with Fe and La

    Institute of Scientific and Technical Information of China (English)

    Zhongliang Shi; Xiaoxia Zhang; Shuhua Yao

    2011-01-01

    The catalysts of un-doped, single-doped and co-doped titanium dioxide (TiO2) nanoparticles were prepared by a sol-gel method with Ti(OC4H9)4 as a Ti source material. The photo-absorbance of the obtained nanoparticles was measured by UV-vis diffusive reflectance spectroscopy (UV-vis DRS), and the photocatalytic activity of the prepared samples under UV and visible light was estimated by measuring the degradation rate of phenol (50 mg/L) in an aqueous solution. The effect of Fe and La co-dopants on the material properties was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM)and N2 adsorption-desorption isotherm measurement. It was shown that the co-doped TiO2 could be activated by visible light and could thus be used as an effective catalyst in photo-oxidation reactions.The photocatalytic activity of TiO2 co-doped with Fe and La is markedly improved due to the synergistic actions of the two dopants.

  6. Structural, electrical and magnetic properties of rare-earth and transition element co-doped bismuth ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vivek, E-mail: vermavivek.neel@gmail.com

    2015-08-25

    Highlights: • Sm-doping increases the symmetry and decreases the second phase formation. • Ferromagnetic, ferroelectric and dielectric properties enhanced with doping. • M–H loops represents weak ferromagnetic (FM) behavior. • A modification in dielectric constant is observed due to doping of Mn, Co and Cr. • Saturation polarization (P{sub s}), remnant polarization (P{sub r}) and coercive field (E{sub c}) increased with doping. - Abstract: Pure and doped multiferroic samples of bismuth ferrites (BFO) were successfully synthesized by the sol–gel technique. Detailed investigations were made on the influence of (Sm and Mn, Co, Cr) co-doping on structural, electrical, ferroelectric and magnetic properties of the BFO. A structural phase transformation from rhombohedral to orthorhombic with co-doping is confirmed through XRD. It is also observed that Sm-doping increases the symmetry and decreases the second phases noticeably. Microstructure investigation using the scanning electron microscope showed a reduction of grain size with doping in BFO. Magnetic hysteresis loops showed that retentivity (Mr), coercivity (Hc) and saturation magnetization (Ms) of the doped samples were improved. Furthermore, the co-doping enhances the dielectric properties as a result of the reduction in the Fe{sup 2+} ions and oxygen vacancies. The room temperature P–E loop study shows that ferroelectric properties are strongly depend on doping.

  7. Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors

    Science.gov (United States)

    Liu, Bei; Liu, Yijiang; Chen, Hongbiao; Yang, Mei; Li, Huaming

    2017-02-01

    Biomass-derived O/N-co-doped porous carbons have become the most competitive electrode materials for supercapacitors because of their renewability and sustainability. We herein present a simple approach to fabricate O/N-co-doped porous carbon nanosheets by the direct pyrolysis of Perilla frutescens (PF) leaves. Under optimum pyrolysis temperature (700 °C), the PF leaf-derived carbon nanosheets (PFC-700) having O, N contents of 18.76 at.% and 1.70 at.%, respectively, exhibit a hierarchical pore structure with a moderate BET surface area (655 m2 g-1) and a relatively low pore volume (0.44 cm3 g-1). Such O/N-co-doped porous carbon nanosheets display both high gravimetric capacitance (270 F g-1 at 0.5 A g-1) and high volumetric capacitance (287 F cm-3 at 0.5 A g-1). In addition, the PFC-700-based symmetric supercapacitor offers a high volumetric energy density (14.8 Wh L-1 at 490 W L-1) as well as a high stability (about 96.1% of capacitance retention after 10000 cycles at 2 A g-1).

  8. Effect of Mg{sup 2+} co-doping on the scintillation performance of LuAG:Ce ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuping [Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Feng, Xiqi; Zhou, Zhiwei; Shi, Yun; Pan, Yubai [Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Nikl, Martin [Institute of Physics, ASCR, Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic)

    2014-01-15

    Ce-doped Lu{sub 3}Al{sub 5}O{sub 12} optical ceramics co-doped with Mg{sup 2+} are fabricated by solid-state reaction method and further optimized by an air-annealing process. Mg{sup 2+} co-doping leads to a significant decrease of thermoluminescence intensity above room temperature and an increase of scintillation light yield (LY) value and fast component content even if the overall scintillation efficiency decreases. Scintillation LY of {proportional_to}21900 ph/MeV has been achieved with a short shaping time of 1 {mu}s, and the ratio of LY values for 1 {mu}s and 10 {mu}s shaping times was as high as 79%. The acceleration of scintillation response induced by Mg{sup 2+} co-doping and the role of Ce{sup 4+} ions in the scintillation mechanism are discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Structural, Optical, and Magnetic Properties of Solution-Processed Co-Doped ZnS Thin Films

    Science.gov (United States)

    Goktas, A.; Mutlu, İ. H.

    2016-11-01

    Co-doped ZnS thin films have been grown on glass substrates using solution-processing and dip-coating techniques, and the impact of the Co doping level (0% to 5%) and film thickness on certain characteristics examined. X-ray diffraction study revealed that all the films possessed hexagonal crystal structure. Energy-dispersive x-ray analysis confirmed presence of Zn, Co, and S in the samples. Scanning electron microscopy showed that the film surface was homogeneous and dense with some cracks and spots. X-ray photoelectron spectroscopy confirmed introduction and integration of Co2+ ions into the ZnS thin films. Compared with undoped ZnS, optical studies indicated a reduction in optical bandgap energy ( E g) while the refractive index ( n), extinction coefficient ( k), and dielectric constants ( ɛ 1, ɛ 2) increased with film thickness ( t) and Co doping level (except for 5%). Photoluminescence spectra showed enhanced luminescence intensity as the Co concentration was increased, while the dependence on t showed an initial increase followed by a decrease. The origin of the observed low-temperature (5 K and 100 K) ferromagnetic order may be related to point defects such as zinc vacancies, zinc interstitials, and sulfide vacancies or to the grain-boundary effect.

  10. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  11. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  12. Charge defects and highly enhanced multiferroic properties in Mn and Cu co-doped BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guohua; Tan, Guoqiang, E-mail: tan3114@163.com; Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun

    2014-06-01

    Pure BiFeO{sub 3} (BFO) and Mn, Cu co-doped BiFeO{sub 3} (BFMCO) thin films were deposited on fluorine doped tin oxide (FTO) substrates by a chemical solution deposition method. Detailed investigations were made on the effects of Mn and Cu co-doping on the crystal structure, the defect chemistry, multiferroic properties of the BFO thin films. With the co-doping of Mn and Cu, a structural transition from the rhombohedral (R3c:H) to the biphasic structure (R3c:H + P1) is confirmed by XRD, Rietveld refinement and Raman analysis. X-ray photoelectron spectroscopy (XPS) analysis shows that the coexistence of Fe{sup 2+}/Fe{sup 3+} and Mn{sup 2+}/Mn{sup 3+} ions in the co-doping films are demonstrated. Meanwhile, the way of the co-doping at B-sits is conducive to suppress Fe valence state of volatility and to decrease oxygen vacancies and leakage current. It's worth noting that the co-doping can induce the superior ferroelectric properties (a huge remanent polarization, 2P{sub r} ∼ 220 μC/cm{sup 2} and a relatively low coercive field, 2E{sub c} ∼ 614 kV/cm). The introduction of Mn{sup 2+} and Cu{sup 2+} ions optimizes the magnetic properties of BFO thin films by the biphasic structure and the destruction of spin cycloid.

  13. The synergetic effect of V and Fe-co-doping in TiO2 studied from the DFT + U first-principle calculation

    Science.gov (United States)

    Liu, Baoshun; Zhao, Xiujian

    2017-03-01

    Based on the density functional theory (DFT + U), a detailed study on the energetic, electronic, and optical properties of Fe-, V-, and Fe & V-co-doping anatase and rutile TiO2 was performed The synergetic effect of Fe & V bimetal co-doping on the optical absorption was discussed on electronic level. Two kinds of co-dopants were considered, which included edge-shared and corner-shared co-doping. It was shown that Fe and V atoms prefer to replace Ti atom in the O-rich contions than in the Ti-rich conditions. Co-doping in anatase reduces the formation energies in both cases, while the formation energies for rutile cannot be decreased. The Bader charge analysis indicates the +3 of Fe atom and +4 of V atom, and the obvious electron exchange between Fe and V atom in co-doping cases can be identified, which indicates the presence of synergetic effect induced by co-doping. The cooperation of Fe & V co-dopants was also supported by the result of projected density of states and spin charge density differences, as the hybridization of Fe3d with V3d orbitals was seen within the TiO2 forbidden band. Different from single-dopant systems, the V3d-Fe3d co-interaction leads to the formation of some spin mid-gap states, which have an obvious effect on the optical absorptions.

  14. Energy transfer and luminescence studies of Pr 3+ , Yb 3+ co-doped lead borate glass

    Science.gov (United States)

    Wen, Hongli; Tanner, Peter A.

    2011-09-01

    Lead borate glass samples doped with the tripositive lanthanide ions Pr 3+ and Yb 3+ were synthesized by the conventional melting-quenching method. The luminescence properties and energy transfer process from Pr 3+ to Yb 3+ were investigated. Upon ultraviolet excitation, the room temperature luminescence decay curve of a sample containing only a low concentration of Pr 3+ exhibited monoexponential decay from 1D 2 with the lifetime 37 μs, without emission from 3P 0. The room temperature Pr 3+ emission intensity decreased with the increase of Yb 3+ mole ratio in the glass. Under the excitation of 454.5 nm at 10 K, a broad red emission band centered at 605 nm, and an NIR emission band at 995 nm were observed in the co-doped lead borate glass, originating from Pr 3+ and Yb 3+ ions, respectively. The decay curves of the 1D 2 emission from Pr 3+ with addition of Yb 3+ in lead borate glass show non-monoexponential character, and are best described by a stretched exponential function. The average 1D 2 decay time decreases considerably with the addition of Yb 3+ in the glass. Decay curve fitting using a modified Inokuti-Hirayama expression indicates dipole-dipole energy transfer from Pr 3+ to Yb 3+, which is consistent with the expected cross-relaxation scheme. There is a good agreement of the estimated overall energy transfer efficiency obtained from the integrals under the normalized decay curves, or from the lifetimes fitted by the stretched exponential function, or from the average decay times.

  15. Novel tannin-based Si, P co-doped carbon for supercapacitor applications

    Science.gov (United States)

    Ramasahayam, Sunil Kumar; Nasini, Udaya B.; Shaikh, Ali U.; Viswanathan, Tito

    2015-02-01

    Increasing environmental pollution and population compounded by a decrease in the availability of non-renewable resources and fossil fuels has propelled the need for sustainable alternate energy storage technologies particularly in the last two decades. An attempt to meet this crisis was carried out by a unique, microwave-assisted method which has enabled the generation of a novel Si, P co-doped carbon (SiPDC) for supercapacitor applications. The microwave-assisted method is useful in developing SiPDC at a rapid and economical fashion that does not employ any inert or reducing gases, but is high yielding. Varying proportions of precursor materials were utilized to generate four SiPDCs (SiPDC-1, SiPDC-2, SiPDC-3 and SiPDC-4) with varying contents of dopants as evidenced by X-ray photoelectron spectroscopic (XPS) results. Surface area and pore size analysis revealed that SiPDC-2 has a surface area of 641.51 m2 g-1, abundant micropores, mesopores and macropores which are critical for electrical double layer capacitance (EDLC). Of all the SiPDCs, SiPDC-2 exhibited highest capacitance of 276 F g-1 in 1 M H2SO4 and 244 F g-1 in 6 M KOH at a scan rate of 5 mV s-1. Galvanostatic charge-discharge studies performed in 6 M KOH establish the high capacitance of SiPDC-2. SiPDC-2 also exhibited excellent electrochemical stability in 1 M H2SO4 and 6 M KOH.

  16. N,S-co-doped TiO2 nanophotocatalyst: synthesis, electronic structure and photocatalysis.

    Science.gov (United States)

    Sathish, M; Viswanath, R P; Gopinath, Chinnakonda S

    2009-01-01

    N,S-co-doped anatase-phase TiO2 (N,S-TiO2) nanophotocatalysts were prepared from either benzothiazoline or aminothiol with titanium isopropoxide followed by a systematic thermal decomposition. The chemical nature of S and N in N,S-TiO2 have been identified by XPS to be sulfate and NO-like, respectively. A significant band broadening and red-shift in the UV-visible absorption spectrum of N,S-TiO2 suggests a band gap reduction compared to TiO2. A maximum band-gap narrowing of 0.22 +/- 0.02 eV was observed on N,S-TiO2. Higher energy width observed on N,S-TiO, is in contrast to 0.13 eV from N-doped TiO2 indicating the sulfate-like species might play a major role in narrowing the band-gap to a higher level. It is confirmed that the oxidation of N and S to NO and SO4(2-) occurs in the final stage of preparation of N,S-TiO2, during calcination in air. It is predicted that the oxygen associated with sulfate and NO structural features could be crucial in bringing down the energy gap and red shift in optical absorption and the role of sulfur is to facilitate the above. Photocatalytic decomposition of methylene blue has been carried out on N,S-TiO2 shows higher activity than the commercial TiO2 in the visible region. However, sulfate species seems to enhance the activity of N,S-TiO2 marginally compared to N-TiO2, and possible suggestions are given to improve the same.

  17. Effects of Co doping on the metamagnetic states of the ferromagnetic fcc Fe-Co alloy.

    Science.gov (United States)

    Ortiz-Chi, Filiberto; Aguayo, Aarón; de Coss, Romeo

    2013-01-16

    The evolution of the metamagnetic states in the ferromagnetic face centered cubic (fcc) Fe(1-x)Co(x) alloy as a function of Co concentration has been studied by means of first-principles calculations. The ground state properties were obtained using the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The alloying was modeled using the virtual crystal approximation and the magnetic states were obtained from the calculations of the total energy as a function of the spin moment, using the fixed spin moment method. For ferromagnetic fcc Fe, the binding-energy curve shows metamagnetic behavior, with two minima corresponding to a small-volume, low-spin (LS) state and a large-volume, high-spin (HS) state, which are separated by a small energy (E(LS) ≲ E(HS)). The evolution of the magnetic moment, the exchange integral (J), and the binding-energy curve is analyzed in the whole range of Co concentrations (x). The magnetic moment corresponding to the HS state decreases monotonically from 2.6 μ(B)/atom in fcc Fe to 1.7 μ(B)/atom in fcc Co. In contrast, the exchange integral for the HS state shows a maximum at around x = 0.45. The thermal dependence of the lattice parameter is evaluated with a method based on statistical mechanics using the binding-energy curve as an effective potential. It is observed that the behavior of the lattice parameter with temperature is tuned by Co doping, from negative thermal expansion in fcc Fe to positive thermal expansion in fcc Co, through the modification of the energetics of the metamagnetic states.

  18. H2 evolution on Lanthanum and Carbon co-doped NaTaO3 Photocatalyst

    Directory of Open Access Journals (Sweden)

    Husni Husin

    2014-07-01

    Full Text Available We report a carbon-modify lanthanum doped sodium tantalum oxide powders (La-C-NaTaO3 by sol-gel process. The resultant materials are characterized by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The X ray diffraction of La-C-NaTaO3 show a single phases with a good crystallinity and without any impurity. The samples is exactly indexed as NaTaO3 monoclinic structure with the space group P2/m. The SEM measurements give a smaller particle size of doped NaTaO3 than pure NaTaO3. The effect of dopant on the photocatalytic activity of La-C-NaTaO3 in the photocatalytic of hydrogen generation is studied and compared with pure NaTaO3. The results show that the rate of hydrogen evolution over La-C-NaTaO3 is higher as compared to that of pure NaTaO3. The enhancement of photocatalytic activity of La-C-NaTaO3 nanocrystalline is mainly due to their capability for reducing the electron hole pair recombination. The La-C-dopant is believed to play a key role in the enhancement of photocatalytic properties of La-C-NaTaO3 crystalline.Submitted: 28th September 2013; Revised: 16th February 2014; Accepted: 28th February 2014[How to Cite: Husin, H., Mahidin, M., Zuhra, Z., Hafita, F. (2014. H2 evolution on Lanthanum and Carbon co-doped NaTaO3 Photocatalyst . Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2:81-86. (doi:10.9767/bcrec.9.2.5530.81-86][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.5530.81-86] 

  19. Characterization of Co-doped birnessites and application for removal of lead and arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Yin Hui; Feng Xionghan; Qiu Guohong; Tan Wenfeng [Key Laboratory of Subtropical Agriculture Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Nanhu Shizishan Street, Wuhan, 430070 (China); Liu Fan, E-mail: liufan@mail.hzau.edu.cn [Key Laboratory of Subtropical Agriculture Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Nanhu Shizishan Street, Wuhan, 430070 (China)

    2011-04-15

    Nanostructured Co-doped birnessites were successfully synthesized, and their application for the removal of Pb{sup 2+} and As(III) from aquatic systems was investigated. Powder X-ray diffraction, chemical analysis, nitrogen physical adsorption, field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the crystal structure, chemical composition, micromorphologies and surface properties of the birnessites. Doping cobalt into the layer of birnessite had little effect on its crystal structure and micromorphology. Both chemical and XPS analyses showed that the manganese average oxidation state (Mn AOS) decreased after cobalt doping. The Co dopant existed mainly in the form of Co(III)OOH in the birnessite structure. Part of the doped Co{sup 3+} substituted for Mn{sup 4+}, resulting in the gain of negative charge of the layer and an increase in the content of the hydroxyl group, which accounted for the improved Pb{sup 2+} adsorption capacity. The maximum capacity of Pb{sup 2+} adsorption on HB, CoB5, CoB10 and CoB20 was 2538 mmol kg{sup -1}, 2798 mmol kg{sup -1}, 2932 mmol kg{sup -1} and 3146 mmol kg{sup -1}, respectively. The total As(III) removal from solution was 94.30% for CoB5 and 100% for both CoB10 and CoB20, compared to 92.03% for undoped HB, by oxidation, adsorption and fixation, simultaneously.

  20. Methods of forming boron nitride

    Science.gov (United States)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  1. Study of Diamond like Carbon as template for nanoimprint lithography and as a filler material for vertically aligned carbon nanotube forests

    Science.gov (United States)

    Ramachandran, Seetharaman

    Due to its tunable properties like hardness, optical gap, chemical inertness, electrical resistivity, biocompatibility etc., coatings of the material Diamond like Carbon (DLC) have been used as protective layers for various applications. In this research effort, we add to the growing list of its potential applications by proposing them as a template material for the emerging field of nanoimprint lithography. Using capacitive and inductive plasmas, we demonstrate the possibility of depositing DLC films of reasonable hardness (10-25 GPa) and wear resistance (2X that of Si and 3X that of Quartz). We have successfully used these films as a mold material to obtain feature sizes as small as 40 nm. In addition, to further the understanding of the effect of the gas phase chemistry on the film properties, the Methane discharge used for obtaining these films has been studied using techniques like Fourier Transform Infrared Spectroscopy and Optical Emission Spectroscopy. The higher degree of dissociation (up to 70%) of the precursor in case of inductive plasmas leads to selected conditions under which hard DLC films are obtained. We also show that for the same deposition conditions, films deposited on the insulating Quartz substrates are softer and more polymeric than those deposited on Si substrates. Carbon nanotubes with their unique physical properties are seen as ideal candidates for applications like field effect transistors, supercapacitors, AFM tips and electronic devices. One of the chief challenges in using them for these applications is obtaining them in a form that is easier to handle, thus enabling them to withstand the various post-processing steps. The second part of this dissertation focuses on the possibility of obtaining a Carbon-Carbon composite structure by subjecting vertically aligned Carbon nanotube forests to a PECVD based process. The distance from the top of the CNT forest that is coated with the deposited film (termed as the depth of infusion) shows

  2. Influence of zinc dialkyldithiophosphate tribofilm formation on the tribological performance of self-mated diamond-like carbon contacts under boundary lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah Tasdemir, H., E-mail: habdullah46@gmail.com [Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Tokoroyama, Takayuki; Kousaka, Hiroyuki; Umehara, Noritsugu [Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Mabuchi, Yutaka [Nissan Motor Co. (Japan)

    2014-07-01

    Diamond-like carbon (DLC) coatings offer excellent mechanical and tribological properties that make them suitable protective coatings for various industrial applications. In recent years, several engine and power train components in passenger cars, which work under boundary lubricated conditions, have been coated with DLC coatings. Since conventional lubricants and lubricant additives are formulated for metal surfaces, there are still controversial questions concerning chemical reactivity between DLC surfaces and common lubricant additives owing to the chemical inertness of DLC coatings. In this work, we present the influence of zinc dialkyldithiophosphate (ZnDTP) anti-wear additives on the tribological performance of various self-mated DLC coatings under boundary lubrication conditions. The effects of hydrogen, doping elements, and surface morphology on the reactivity of DLC coatings to form a ZnDTP-derived tribofilm were investigated by atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirmed that ZnDTP-derived pad-like or patchy tribofilm forms on the surfaces depending on the DLC coating. It is seen that hydrogen content and doping elements increase pad-like tribofilm formation. Doped DLC coatings are found to give better wear resistance than non-doped DLC coatings. Furthermore, the addition of ZnDTP additives to the base oil significantly improves the wear resistance of hydrogenated DLC, silicon-doped hydrogenated DLC, and chromium-doped hydrogenated DLC. Hydrogen-free tetrahedral amorphous DLC coatings provide the lowest friction coefficient both in PAO (poly-alpha-olefin) and PAO + ZnDTP oils. - Highlights: • Zinc dialkyldithiophosphate (DTP) tribofilm formation on various DLC surfaces was evidenced. • Pad-like tribofilm was found on a-C:H, a-C, Si-DLC and Cr-DLC. • Pad-like tribofilm on DLC surfaces greatly increased the wear resistance. • Hydrogenated and doped DLC coatings are

  3. Elastic and mechanical softening in boron-doped diamond

    Science.gov (United States)

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.

    2017-01-01

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50–3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials. PMID:28233808

  4. Elastic and mechanical softening in boron-doped diamond.

    Science.gov (United States)

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N; Bina, Craig R; Jacobsen, Steven D

    2017-02-24

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh's modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50-3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials.

  5. Elastic and mechanical softening in boron-doped diamond

    Science.gov (United States)

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.

    2017-02-01

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50–3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials.

  6. Lanthanide–lanthanide and lanthanide–defect interactions in co-doped ceria revealed by luminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Avram, Daniel; Gheorghe, Cristina [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG-36, RO 76900 Bucharest-Magurele (Romania); Rotaru, Codruta; Cojocaru, Bogdan; Florea, Mihaela; Parvulescu, Vasile [University of Bucharest, Department of Chemical Technology and Catalysis, 4–12 Regina Elisabeta Bvd., Bucharest (Romania); Tiseanu, Carmen, E-mail: tiseanuc@yahoo.com [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG-36, RO 76900 Bucharest-Magurele (Romania)

    2014-12-15

    Highlights: • (Sm, Nd) and (Sm, Eu) co-doped CeO{sub 2} are investigated by luminescence spectroscopy. • Local structure at Sm sites is not changed by Nd or Eu co-dopant. • Sm is not involved in non-radiative energy transfer to Nd or Eu co-dopant. • The excitation mode of perturbed Eu centre is modified by Sm co-dopant. - Abstract: Here, we present a first study on the local structure properties, lanthanide–lanthanide and lanthanide–defect interactions in lanthanide (Sm{sup 3+}/Nd{sup 3+} and Sm{sup 3+}/Eu{sup 3+}) co-doped CeO{sub 2} nanoparticles by use of luminescence spectroscopy. By comparing the emission/excitation spectra and decays measured with the single doped and co-doped ceria, it is established that the local structure at Sm{sup 3+} sites is not affected by the presence of the Nd{sup 3+} or Eu{sup 3+} co-dopant irrespective of concentration. The results suggest that the excess of oxygen vacancies generated by the co-dopant is not associated with Sm{sup 3+}, being more probably associated with the Nd{sup 3+}/Eu{sup 3+} or/and Ce{sup 4+} cations. It is also observed that Sm{sup 3+} is not involved in significant non-radiative energy transfer to Nd{sup 3+} or Eu{sup 3+} while the relative strong shortening of Nd{sup 3+} luminescence decay with concentration is most probably related to cross-relaxation in Nd{sup 3+}–Nd{sup 3+} pairs.

  7. Preparation and characterization of visible-light-driven TiO2 photocatalyst Co-doped with nitrogen and erbium.

    Science.gov (United States)

    Chen, Guihua; Wang, Yong; Zhang, Juihui; Wu, Chenglin; Liang, Huading; Yang, Hui

    2012-05-01

    A series of nitrogen and erbium co-doped TiO2 photocatalyst was prepared by sol-hydrothermal method. The structure and properties of the photocatalyst were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra (DRS). The XRD and BET results showed that co-doping inhibited the increase of crystallite size and enlarged specific surface areas. XPS spectroscopy indicated nitrogen atoms were incorporated into TiO2 lattice, and erbium atoms mostly existed in the forms of Er2O3. A shift of the absorption edge to the lower energy and four absorption bands located at 654, 544, 524 and 489 nm attributed to the 4f transitions of 4I15/2 --> 4F2/9, 4I15/2 --> 4S3/2, 4I15/2 --> 2H11/2, 4I15/2 --> 4F7/2 of Er3+ were observed using DRS spectroscopy. The catalytic efficency was evaluated by the photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results showed that the photocatalytic performance of the co-doped TiO2 was related with the hydrothermal temperature and the molar ratio of N/Ti, and they showed higher acitivites than pure TiO2. Results determined by fluorescence technique revealed that irradiation (lambda > 400 nm) of TiO2 photocatalyst dispersed in MO solution induces the generation of the highly active hydroxyl radicals (OH). It indicated the photocatalytic activities of TiO2 photocatalyst were correlation with the formation rate of hydroxyl radicals (OH) and other active oxygen species.

  8. Luminescent properties of Ce3+/Tb3+co-doped glass ceramics containing YPO4 nanocrystals for W-LEDs

    Institute of Scientific and Technical Information of China (English)

    张志雄; 张约品; 冯治刚; 王成; 夏海平; 张新民

    2016-01-01

    Ce3+/Tb3+ co-doped transparent glass ceramics containing YPO4 nanocrystals were prepared using high temperature melt-ing method, and their structural and luminous properties were investigated. XRD analysis and TEM images confirmed the existence of YPO4 nanocrystals in glass ceramics. The transmission spectra proved that the glass ceramics specimens still maintained a high transparency. Then the excitation and emission spectra of the Ce3+ and Tb3+ single-doped and co-doped glass and glass ceramics were discussed, which proved that the glass ceramics had better luminescent properties. Under the near ultraviolet (331 nm) excitation, the broadband emission located at 385 nm was observed which was ascribed to 5d→2F5/2 and2F7/2 transition of Ce3+ ions. Several char-acteristic sharp peaks centered at 489, 543, 578 and 620 nm originated from the5D4 to7FJ (J=6, 5, 4, 3) of Tb3+ ions. The decay time of Tb3+ ions at 543 nm and the relevant energy levels of Ce3+ ions and Tb3+ ions illustrated the transfer process from Ce3+ ions to Tb3+ ions. The best CIE chromaticity coordinate of the glass ceramics specimen was calculated as (x=0.3201,y=0.3749), which was close to the NTSC standard values for white (x=0.333,y=0.333). All the results suggested that the YPO4-based Ce3+/Tb3+ co-doped glass ceramics could act as potential luminescent materials for white light-emitting diodes.

  9. Investigation of Pt-Dy co-doping effects on isothermal oxidation behavior of (Co,Ni)-based alloy

    Institute of Scientific and Technical Information of China (English)

    LAN Hao; ZHANG Weigang; YANG Zhigang

    2012-01-01

    A Co32Ni21Cr8A10.6Y (wt.%) alloy with and without doping 3 wt.% platinum,or co-doping 3 wt.% platinum and 0.1 wt.% dysprosium was produced by arc melting.The hardness of both base alloy and composition-modified alloy was measured by using a Vickers hardness tester.Isothermal oxidation tests at 1000 ℃ in static air atmosphere were conducted to assess the isothermal oxidation behavior of the alloys.The microstructure and composition of the tested alloys before and after oxidation were investigated by means of X-ray diffraction (XRD),field emission-scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDS) and back scatter detector.Results showed that platinum had significant influence on microstructure of the tested alloy by the formation of β-(Ni,Pt)Al phase.Addition of 3 wt.% platinum could slightly increase the hardness of the tested alloy.Platinum accelerated phase transformation of alumina from metastable θ-Al2O3 to stable α-Al2O3 and suppressed the consumption of β-phase.Co-doping both 3 wt.% platinum and 0.1 wt.% dysprosium induced the fastest transformation of θ- to α- alumina and the formation of a fine-grained oxide scales.The most effective reduction of oxidation rate was achieved by the Pt-Dy co-doping effects.

  10. TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application.

    Science.gov (United States)

    Yuan, Yali; Ding, Jianqiang; Xu, Jinsheng; Deng, Jian; Guo, Jianbo

    2010-08-01

    We have prepared a series of TiO2 nanoparticles for antibacterial applications. These TiO2 nanoparticles were prepared by the hydrolysis precipitation method with Ti(OBu)4, silver nitrate and ammonia. Crystal structure, particle size, interfacial structure and UV-visible light response of the prepared nanoparticles were characterized by X-ray diffraction measurements (XRD), Transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRs). The XRD spectra showed that all samples were anatase structure calcined at 450 degrees C for 3 hours. The Ag doping made the peak of diffraction wider. The results of TEM showed that the nanoparticles of TiO2, N-TiO2 and 1% Ag-N-TiO2 were all spherical in shape and well distributed with a mean size of 19.8 nm, 39.2 nm and 20.7 nm, respectively. N doping caused the nanoparticle size to increase, while, when the doped amount of Ag+ increased, the TiO2 particle size decreased. The FTIR revealed that Ag and N doping of TiO2 appeared to have strong absorption by -OH group and showed the characteristic absorption band of NH4+ and Ag. The UV-Vis-DRs indicated that the absorption band of Ag-N co-doped TiO2 had red shift and that the optical absorption response (between 400 nm and 700 nm) had obvious enhancement. The antibacterial properties of nanoparticles were investigated by agar diffusion method toward Escherichia coli and Bacillus subtilis. The results indicated that both Ag- and N-doped TiO2 could increase the antibacterial properties of TiO2 nanoparticles under fluorescent light irradiation. A 1% Ag-N-TiO2 had the highest antibacterial activity with a clear antibacterial circle of 33.0 mm toward Escherichia coli and 22.8 mm toward Bacillus subtilis after cultivation for 24 hours.

  11. The microstructure of erbium-ytterbium co-doped oxyfluoride glass-ceramic optical fibers

    Science.gov (United States)

    Augustyn, Elżbieta; Żelechower, Michał; Stróż, Danuta; Chrapoński, Jacek

    2012-04-01

    Oxyfluoride transparent glass-ceramics combine some features of glasses (easier shaping or lower than single crystals cost of fabrication) and some advantages of rare-earth doped single crystals (narrow absorption/emission lines and longer lifetimes of luminescent levels). Since the material seems to be promising candidate for efficient fiber amplifiers, the manufacturing as well as structural and optical examination of the oxyfluoride glass-ceramic fibers doped with rare-earth ions seems to be a serious challenge. In the first stage oxyfluoride glasses of the following compositions 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-11PbF2-3ErF3 and 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-10PbF2-3YbF3-1ErF3 (in molar%) were fabricated from high purity commercial chemicals (Sigma-Aldrich). The fabricated glass preforms were drawn into glass fibers using the mini-tower. Finally, the transparent Er3+ doped and Er3+/Yb3+ co-doped oxyfluoride glass-ceramic fibers were obtained by controlled heat treatment of glass fibers. The preceding differential thermal analysis (DTA) studies allowed estimating both the fiber drawing temperature and the controlled crystallization temperature of glass fibers. X-ray diffraction examination (XRD) at each stage of the glass-ceramic fibers fabrication confirmed the undesirable crystallization of preforms and glass fibers has been avoided. The fibers shown their mixed amorphous-crystalline microstructure with nano-crystals of size even below 10 nm distributed in the glassy host. The crystal structure of the grown nano-crystals has been determined by XRD and confirmed by electron diffraction (SAED). Results obtained by both techniques seem to be compatible: Er3FO10Si3 (monoclinic; ICSD 92512), Pb5Al3F19 (triclinic; ICSD 91325) and Er4F2O11Si3 (triclinic; ICSD 51510) against to initially expected PbF2 crystals.

  12. Spectroscopic investigation of an intrinsic room temperature ferromagnetism in Co doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    N, Srinatha [Department of Physics, JB Campus, Bangalore University, Bangalore 560056 (India); Angadi, Basavaraj, E-mail: brangadi@gmail.com [Department of Physics, JB Campus, Bangalore University, Bangalore 560056 (India); Nair, K.G.M. [UGC-DAE-CSR, Kalpakkam Node, Kalpakkam, Kokilamedu 603 102 (India); Deshpande, Nishad G.; Shao, Y.C.; Pong, Way-Faung [Department of Physics, Tamkang University, Tamsui, Taipei 251, Taiwan (China)

    2014-08-15

    Highlights: • For the first time L-Valine was used as a fuel to synthesize Co:ZnO nanoparticles by solution combustion method. • Single phase and ferromagnetic nature were confirmed through XRD, SQUID, NEXAFS and XMCD. • Through NEXAFS and XMCD, the effect of ‘Co’ substitution at O K-edge, Co L{sub 3,2} edge, Zn L{sub 3,2} edge have been investigated. • Spectral features of NEXAFS and XMCD confirms an intrinsic RTFM by substitution of ‘Co{sup 2+}’ at ‘Zn{sup 2+}’ site and rules out the presence of secondary phases. - Abstract: Pure and Co substituted ZnO nano crystalline particles were prepared by solution combustion technique using L-Valine as a fuel. As synthesized powder samples were characterized by X-ray diffractometer and SQUID magnetometer to confirm the formation of single phase wurtzite structure and to study the bulk magnetic response of the sample, respectively. Magnetic studies show that Co doped ZnO nanoparticles exhibit ferromagnetism (FM) at room temperature (RT). Furthermore, the electronic structure and element specific magnetic properties were investigated by near-edge X-ray absorption fine structure (NEXAFS) and X-ray magnetic circular dichroism (XMCD) measurements, respectively. The effect of Co substitution on the spectral features of Co–ZnO at O K-edge, Co L{sub 3,2} edge, Zn L{sub 3,2} edge have been investigated. The spectral features of NEXAFS at Co L{sub 3,2} edge is entirely different from the spectral features of metallic clusters and other impurity phases, which rules out the presence of impurity phases. The valence state of ‘Co’ ion is found to be in +2 state. The FM nature of the sample was confirmed through XMCD spectra, which is due to the incorporation of divalent ‘Co’ ions. Hence the presented results confirm the substitution of ‘Co’ ions at ‘Zn’ site in the host lattice, which is responsible for the RTFM.

  13. Planar waveguides formed in a new chemically stable Er3+/Yb3+ co-doped phosphate glass

    Institute of Scientific and Technical Information of China (English)

    Shilong Zhao; Baoyu Chen; Junjiang Hu; Lili Hu

    2005-01-01

    @@ A new Er3+/Yb3+ co-doped phosphate glass has been prepared, which exhibits good chemical durability and spectral properties. Planar graded index waveguides have been fabricated in the glass by Ag+-Na+ ion exchange in a mixed melt of silver nitrate and potassium nitrate. Ion exchange is carried out by varying the process parameters such as temperature, diffusion time, and molten salt compositions. The diffusion parameters, diffusion coefficients, and activation energy are determined by the guidelines of fabricated waveguides, which are determined by the input prism coupling technique.

  14. Performance comparison of bismuth/erbium co-doped optical fibre by 830 nm and 980 nm pumping

    Science.gov (United States)

    Yan, Binbin; Luo, Yanhua; Zareanborji, Amirhassan; Xiao, Gui; Peng, Gang-Ding; Wen, Jianxiang

    2016-10-01

    The performance of bismuth/erbium co-doped fibre (BEDF) by 830 nm and 980 nm pumping has been studied in detail, including the small signal absorption, pump absorption, emission, gain and excited state absorption (ESA). Based on the study, energy transition diagrams of BEDF under 830 nm or 980 nm pumping are proposed to clarify the spectroscopic properties. The results demonstrate the advantages of 830 nm pumping for BEDF over 980 nm pumping when considering the absorption, pumping efficiency, excited state absorption and optical amplification.

  15. Synthesis of La~(3+) and Nd~(3+) co-doped yttria nanopowder for transparent ceramics by oxalate precipitation method

    Institute of Scientific and Technical Information of China (English)

    王能利; 张希艳; 邱关明; 孙海鹰; 刘全生; 米晓云; 王晓春

    2010-01-01

    Polycrystalline Nd3+ and La3+ co-doped yttria nanopowder Nd3+:Y1.90La0.10O3 for transparent ceramics was synthesized by co-precipitation method using oxalate acid as the precipitant and(NH4)2SO4 as the electrical stabilizer under ultrasonic radiation.Nanopowders calcined at different temperatures were characterized with thermal gravimetric-differential thermal analysis(TG/DTA),X-ray diffraction(XRD),transmitting electron microscopy(TEM),energy dispersive spectrometry(EDS) and spectral analysis techniques.Th...

  16. Experimental Studies on Doped and Co-Doped ZnO Thin Films Prepared by RF Diode Sputtering

    OpenAIRE

    2009-01-01

    Our research on the growing and characterizing of p-type ZnO thin films, prepared by radio frequency (RF) diode sputtering, mono-doped with nitrogen, and co-doped with aluminium and nitrogen, is a response of the need from p-type ZnO thin films for device applications. The dopants determine the conductivity type of the film and its physical properties. We obtained p-type ZnO thin films by RF diode sputtering and using a nitrogen dopant source. The novelty in our approach is in the use of a pl...

  17. Slow evaporation method and enhancement in photoluminescence properties of YPO$_4$ : Eu$^{3+}$ co-doped with Bi$_{3+}$ ions

    Indian Academy of Sciences (India)

    K A KOPARKAR; S K OMANWAR

    2016-08-01

    The series of Bi$^{3+}$ co-doped YPO$_{4}:Eu$^{3+}$ nanophosphors were successfully synthesized by the slow evaporation method. Bi$^{3+}$-doped and un-doped YPO$_4$:Eu$^{3+}$ phosphors were characterized by using powder X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Photoluminescence (PL) properties and decay time of phosphors were studied at room temperature. The YPO$_4$:Eu$^{3+}$ and Bi$^{3+}$ exhibit enhancement in PL intensity and quenched at 0.5 mol% of Bi$^{3+}$ ions.

  18. Preparation and Scintillating Properties of Sol-Gel Eu3+, Tb3+ Co-Doped Lu2O3 Nanopowders

    OpenAIRE

    Joel Moreno Palmerin; Rosario Ruiz Guerrero; Margarita García Hernández; Ángel de Jesús Morales Ramírez; Antonieta García Murillo; Felipe de Jesús Carrillo Romo

    2011-01-01

    Nanocrystalline Eu3+, Tb3+ co-doped Lu2O3 powders with a maximum size of 25.5 nm were prepared by the sol-gel process, using lutetium, europium and terbium nitrates as precursors, and ethanol as a solvent. Differential thermal analysis (DTA) and infrared spectroscopy (IR) were used to study the chemical changes during the xerogel annealing. After the sol evaporation at 100 °C, the formed gel was annealed from 300 to 900 °C for 30 min under a rich O2 atmosphere, and the yielded product was ana...

  19. Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhanchang, E-mail: panzhanchang@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Luo, Junming [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Tian, Xinlong, E-mail: tianxinlong2010@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wu, Shoukun; Chen, Chun; Deng, Jianfeng [Huizhou King Brother Electronic Technology Co., Ltd, Huizhou 516083 (China); Xiao, Chumin [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Hu, Guanghui, E-mail: qhxy123@126.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wei, Zhigang [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China)

    2014-01-15

    Highlights: • F/Sn and Al co-doped ZnO thin films were synthesized by sol–gel method. • The co-doped nanocrystals exhibit good crystal quality. • The origin of the photoluminescence emissions was discussed. • The films showed high transmittance and low resistivity. -- Abstract: Al doped ZnO, Al–Sn co-doped ZnO and Al–F co-doped ZnO nanocrystals were successfully synthesized onto glass substrates by the sol–gel method. The structure and morphology of the films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The results indicated that all the films were polycrystalline with a hexagonal wurtzite structure and exhibited a c-axis preferred orientation. The electrical and optical properties were also investigated by 4-point probe device and Uv–vis spectroscopy, room temperature photoluminescence (PL) and Raman spectrum (Raman), respectively. The PL and Raman results suggested that the co-doped films with a very low defect concentration and exhibit a better crystallinity than AZO thin films. The XPS study confirmed the incorporation of Al, Sn and F ions in the ZnO lattice.

  20. Photocatalytic performance of nitrogen, osmium co-doped TiO2 for removal of eosin yellow in water under simulated solar radiation.

    Science.gov (United States)

    Kuvarega, Alex T; Krause, Rui W M; Mamba, Bhekie B

    2013-07-01

    Nitrogen, osmium co-doped TiO2 photocatalysts were prepared by a modified sol-gel method using ammonia as the nitrogen source and osmium tetroxide as the source of osmium. The role of rutile phase OsO2 in enhancing the photocatalytic activity of rutile TiO2 towards the degradation of Eosin Yellow was investigated. The materials were characterised by various techniques that include FTIR, Raman, XRD, SEM, EDS, TEM, TGA and DRUV-Vis. The amorphous, oven dried sample was transformed to the anatase and then the rutile phase with increasing calcination temperature. DRUV-Vis analysis revealed a red shift in absorption with increasing calcination temperature, confirmed by a decrease in the band gap of the material. The photocatalytic activity of N, Os co-doped TiO2 was evaluated using eosin yellow degradation and activity increased with increase in calcination temperature under simulated solar irradiation. The rutile phase of the co-doped TiO2 was found to be more effective in degrading the dye (k(a) = 1.84 x 10(-2) min(-1)) compared to the anatase co-doped phase (k(a) = 9.90 x 10(-3) min(-1)). The enhanced photocatalytic activity was ascribed to the synergistic effects of rutile TiO2 and rutile OsO2 in the N, Os co-doped TiO2.

  1. Influence of La{sup 3+} and Fe{sup 3+} co-doping to nano-TiO{sub 2} prepared by graded calcination

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhe [The State Key Laboratory of Heavy Oil, China University of Petroleum, Dongying, Shandong 257061 (China); Zheng, Jing-tang, E-mail: jtzheng03@163.com [The State Key Laboratory of Heavy Oil, China University of Petroleum, Dongying, Shandong 257061 (China); Wu, Ming-bo [The State Key Laboratory of Heavy Oil, China University of Petroleum, Dongying, Shandong 257061 (China)

    2012-11-25

    Highlights: Black-Right-Pointing-Pointer La{sup 3+} and Fe{sup 3+} co-doped TiO{sub 2} sample was prepared by a new process. Black-Right-Pointing-Pointer The gelatinizing time is obviously shortened. Black-Right-Pointing-Pointer The grain size of co-doped TiO{sub 2} sample is decreased. Black-Right-Pointing-Pointer The photocatalytic activity of co-doped TiO{sub 2} under visible light is improved. - Abstract: The un-doping, single-doping and co-doping TiO{sub 2} nanoparticles have been prepared through the graded calcination method with Ti(OC{sub 4}H{sub 9}){sub 4} as raw material and characterized by X-ray diffraction (XRD) and UV-vis reflection spectra. Their photocatalytic activities have been investigated by the photocatalytic oxidation of methyl orange. It is indicated that Fe{sup 3+}-doping makes the reflection profile narrow, improves photoutilization of TiO{sub 2}, and then generates more electron-hole pairs. La{sup 3+}-doping restrains the increase of grain size, leads to crystal expansion plus matrix distortion and retards the recombination of the photoexcited charge carriers. The photocatalytic activity of TiO{sub 2} co-doped with La{sup 3+} and Fe{sup 3+} is notably improved due to the cooperative actions of the two dopants.

  2. Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility

    Science.gov (United States)

    Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao

    2017-01-01

    Abstract Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices. PMID:28179961

  3. Boron nitride converted carbon fiber

    Science.gov (United States)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  4. Co doping induced structural and optical properties of sol–gel prepared ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, Ebru, E-mail: egungor@mehmetakif.edu.tr [Energy Systems Engineering Department, Mehmet Akif Ersoy University, Burdur 15030 (Turkey); Gungor, Tayyar [Energy Systems Engineering Department, Mehmet Akif Ersoy University, Burdur 15030 (Turkey); Caliskan, Deniz [Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Ceylan, Abdullah [SNTG Laboratory, Physics Engineering Department, Hacettepe University, Ankara 06800 (Turkey); Ozbay, Ekmel [Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey)

    2014-11-01

    Highlights: • Transparent metal oxides are related to ZnO. • Optical transmission spectrum of Co doped ZnO thin films. • Determination of optical band gap using photoluminescence measurement. • Deposition thin film by using ultrasonic spray pyrolysis. - Abstract: The preparation conditions for Co doping process into the ZnO structure were studied by the ultrasonic spray pyrolysis technique. Structural and optical properties of the Co:ZnO thin films as a function of Co concentrations were examined. It was observed that hexagonal wurtzite structure of ZnO is dominant up to the critical value, and after the value, the cubic structural phase of the cobalt oxide appears in the X-ray diffraction patterns. Every band-edge of Co:ZnO films shifts to the lower energies and all are confirmed with the PL measurements. Co substitution in ZnO lattice has been proved by the optical transmittance measurement which is observed as the loss of transmission appearing in specific region due to Co{sup 2+} characteristic transitions.

  5. N, S co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity

    Science.gov (United States)

    Lv, Jun; Sheng, Tong; Su, Lili; Xu, Guangqing; Wang, Dongmei; Zheng, Zhixiang; Wu, Yucheng

    2013-11-01

    Using TiCl4 as the titanium source, urea as the precipitating agent, nano-TiO2/fly ash beads composite materials were prepared by hydrolysis-precipitation method. Using (NH2)2CO and (NH2)2SC as the N and S source respectively, N and S co-doped TiO2/fly ash beads composite materials were prepared by grinding them together according to a certain proportion and calcined at 500 °C for 2 h. The composite materials were characterized by SEM, EDS, XPS, and UV-vis spectrophotometer methods. The UV-vis absorption spectra results show that the absorption edge of un-doped composites is 390 nm while that of doped composites red-shifts to 500 nm. The photocatalytic activity of composite materials was evaluated by degradation of methyl orange under visible light irradiation (halogen lamp, 250 W). The results showed that after irradiation for 1 h, degradation rate of N, S co-doped-TiO2/fly ash beads composite material can reach 65%, while the degradation rate of un-doped sample and P25 were just 10% and 6%, respectively. The composite material also showed excellent recycling properties.

  6. Influence of La-Mn-Al Co-Doping on Dielectric Properties and Structure of BST Thick Film

    Institute of Scientific and Technical Information of China (English)

    Mao-Yan Fan; Sheng-Lin Jiang

    2009-01-01

    A new sol-gel process is applied to fabricate the BST (BaxSr1(xTiO3) sol and nano-powder of La-Mn-Al co-doping with Ba/Sr ratio 65/35, and the BST thick film is prepared in the Pt/Ti/SiO2/Si substrate. The powder and thick film are characterized by X-ray diffraction and transmission electron microscope. The influence of La-Mn-Al co-doping on the dielectric properties and micro-structure of BST thick film is analyzed. The results show that the La, Mn, and Al ions can take an obvious restraint on the growth of BaSrTiO3 grains. The polycrystalline particles come into being during the crystallization of thick film, which may improve the uniformity and compactness of thick film. The influence of unequal-valence and doping amount on the leakage current, dielectric loss, and dielectric property are mainly discussed. The dielectric constant and dielectric loss of thick film are 1200 and 0.03, respectively, in the case of 1mol% La doping, 2mol% Mn doping, and 1mol% Al doping.

  7. Y/Eu co-doped TiO2:synthesis and photocatalytic activities under UV-light

    Institute of Scientific and Technical Information of China (English)

    王瑞芬; 王福明; 安胜利; 宋金玲; 张胤

    2015-01-01

    Y and Eu co-doped nano-TiO2 photocatalysts were successfully prepared via a sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible spectrophotometry (UV-vis), photoluminescence (PL) and Fourier transform infrared (FT-IR) spectra. Experimental results indicated that Y and Eu doping inhibited the growth of crystal-line size and the transformation from anatase to rutile phase and had the function of reducing particle reunion. At the same time, co-doping could also enhance the absorption in visible region and then narrowed the band gap. The photocatalytic activities of the samples were evaluated by the degradation of methylene blue (MB) under ultraviolet (UV) light irradiation, which showed much en-hanced photocatalytic activities over un-doped TiO2. The degradation rate of 1.5%Y/Eu-TiO2 of methylene blue was 86%, which was about 5 times of that of un-doped TiO2, and the possible reasons for the improvement of photocatalytic activities were analyzed. In this experiment, the dopant amount of rare earth was 1.5%and the ratio of Y:Eu was 2:3 for the maximum photocatalytic degrada-tion, and the sample calcined at 500 ºC showed the best reactivity. For the best samples above, the removal rate of phenol under visble light was 53%whthin 2 h.

  8. Doping levels, trap density of states and the performance of co-doped CdTe(As,Cl) photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, Y.Y.; Durose, K.; Major, J.D.; Al Turkestani, M.K. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Barrioz, V.; Irvine, S.J.C.; Jones, E.W. [Bangor University, School of Chemistry, Bangor, Gwynedd LL57 2UW (United Kingdom)

    2009-09-15

    Doping, compensation and photovoltaic performance have been investigated in all-metal-organic vapour-phase deposition (MOCVD) grown CdTe/CdS solar cells that were co-doped with arsenic and chlorine. Although arsenic chemical concentration is in the range of 10{sup 17}-1.5 x 10{sup 19} cm{sup -3}, the maximum net acceptor concentration is only in the order of 10{sup 14} cm{sup -3}, as determined by capacitance-voltage characteristics. Admittance spectroscopy revealed shallow traps at 0.055 eV which were attributed to As{sub Te}; its compensation by Cd{sub i} is discussed. Formation of the alloy CdS{sub x}Te{sub 1-x} is linked to deep levels at E{sub V}+{proportional_to}0.55 eV and E{sub V}+{proportional_to}0.65 eV. Limits to the diffusion of photo-generated carriers were considered to be important in determining photovoltaic performance rather than carrier lifetime. Prospects for optimizing the performance of such co-doped MOCVD-grown devices are discussed. (author)

  9. Intense frequency upconversion fluorescence of Er3+/Yb3+ co-doped lithium-strontium-lead-bismuth glasses

    Institute of Scientific and Technical Information of China (English)

    Hongtao Sun; Shiqing Xu; Baoyu Chen; Shixun Dai; Shilong Zhao; Lili Hu; Zhonghong Jiang

    2005-01-01

    @@ Infrared-to-visible upconversion fluorescence of Er3+/Yb3+ co-doped lithium-strontium-lead-bismuth (LSPB) glasses for developing potential upconversion lasers has been studied under 975-nm excitation.Based on the results of energy transfer efficiency and upconversion spectra, the optimal Yb3+-Er3+ concentration ratio is found to be 5∶1. Intense green and red emissions centered at 525, 546, and 657 nm,corresponding to the transitions 2H11/2→4I15/2, 4S3/2→4I15/2, and 4F9/2 → 4I15/2, respectively, were observed. The quadratic dependence of the 525-, 546-, and 657-nm emissions on excitation power indicates that a two-photon absorption process occurs under 975-nm excitation. The high-populated 4I11/2 level is supposed to serve as the intermediate state responsible for the upconversion processes. The intense upconversion luminescence of Er3+/Yb3+ co-doped LSPB glasses may be a potentially useful material for developing upconversion optical devices.

  10. Up conversion processes in yttrium-lithium-flouride crystals co-doped with erbium and ytterbium ions

    Science.gov (United States)

    Spinger, B.; Danilov, Valery P.; Prokhorov, Alexander M.; Schwan, L. O.; Schmid, D.

    2002-07-01

    We report on studies of the up-conversion process in YLiF4 single crystals co-doped with Er3+ and with Yb3+. Er3+ has a well known complicated energy level system within the 4f shell which gives rise to the up- conversion process. Yb3+ with a broad absorption band int eh regime 940 nm co-doped with Er3+ and with Yb3+ may be considered as suitable candidates for diode-laser-pumped displays and for solid state laser system int eh visible and near UV region.

  11. Study of energy transfer and spectral downshifting in Ce, RE (RE = Nd and Yb) co-doped lanthanum phosphate

    Science.gov (United States)

    Sawala, N. S.; Omanwar, S. K.

    2017-03-01

    The phosphors LaPO4 (Lanthanum phosphate) doped with Ce(III)/Ce3+ and co-doped with Ce3+-Nd3+ and Ce3+-Yb3+ were effectively synthesized by conventional solid state reaction method. The prepared samples were characterized by powder X-ray diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied by spectrophotometers in near infrared (NIR) and ultraviolet visible (UV-VIS) region. Additionally the luminescence time decay curves of samples were investigated to confirm energy transfer (ET) process. The Ce3+-Nd3+ ion co-doped LaPO4 phosphors can convert a photon of UV region (278 nm) into photons of NIR region (1058 nm). While Ce3+-Yb3+ ion doped LaPO4 phosphors convert photons of UV region (278 nm) into photons of NIR region (979 nm). The Ce3+ ion acts like sensitizer and Nd3+/Yb3+ ions act as activators. Both kinds of emissions are suitable for improving spectral response of solar cells.

  12. Study on relaxation oscillation of Er~(3+)/Yb~(3+) co-doped phosphate glass optical waveguide laser

    Institute of Scientific and Technical Information of China (English)

    LIU HuaDong; ZHANG XiaoXia; WU XianLi; ZHANG Qin; LIU YongZhi

    2009-01-01

    Based on the principle and fabrication of the optical waveguide laser, and through the configuration of the energy level of Er~(3+)/Yb~(3+) co-doped system, the time-dependent rate equations are formed and then solved by Runge-Kutta algorithm. The dynamic characteristic of the waveguide laser pumped unidirec-tionally by 980 nm LD is analyzed. The curves of the relaxation oscillation are drawn, showing that the photon number and inverted population vary alternately. The attenuation characteristic of the peak power is studied. It is gained that time constant changes with pump power, length of waveguide and the reflectivity of output mirror. Furthermore, the impact of the above three parameters on the frequency and end-time of relaxation oscillation is discussed. The frequency of relaxation oscillation is propor-tional to the pump power. Under high reflectivity conditions, the length of waveguide has a weak impact on the frequency. The end-time decreases as the three parameters increase. These features and results provide a theoretical basis for designing the Er~(3+)/Yb~(3+) co-doped phosphate optical waveguide laser.

  13. Yellow laser performance of Dy$^{3+}$ in co-doped Dy,Tb:LiLuF$_4$

    CERN Document Server

    Bolognesi, Giacomo; Calonico, Davide; Costanzo, Giovanni Antonio; Levi, Filippo; Metz, Philip Werner; Kränkel, Christian; Huber, Günter; Tonelli, Mauro

    2015-01-01

    We present laser results obtained from a Dy$^{3+}$-Tb$^{3+}$ co-doped LiLuF$_{4}$ crystal, pumped by a blue emitting InGaN laser diode, aiming for the generation of a compact 578 nm source. We exploit the yellow Dy$^{3+}$ transition $^{4}$F$_{9/2}$ $\\Longrightarrow$ $^{6}$H$_{13/2}$ to generate yellow laser emission. The lifetime of the lower laser level is quenched via energy transfer to co-doped Tb$^{3+}$ ions in the fluoride crystal. We report the growth technique, spectroscopic study and room temperature continuous wave (cw) laser results in a hemispherical cavity at 574 nm and with a highly reflective output coupler at 578 nm. A yellow laser at 578 nm is very relevant for metrological applications, in particular for pumping of the forbidden $^{1}$S$_{0} \\Longrightarrow ^{3}$P$_{0}$ Ytterbium clock transition, which is recommended as a secondary representation of the second in the international system (SI) of units. This paper was published in Optics Letters and is made available as an electronic reprint ...

  14. Effect of Zr and C Co-doping on the Optical Properties and Electronic Structure of TiO_2

    Institute of Scientific and Technical Information of China (English)

    LIU Gang; LI De-Hua; ZHANG Ru

    2011-01-01

    The systematic trends and effect introduced by Zr and C co-doping to TiO2 of electronic structure and optical properties of anatase TiO2 have been calculated by the plane-wave ultra-soft pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for the exchange-correlation potential. Through the current calculations, the density of states (DOS), energy band structure and optical absorption coefficients have been obtained for TiO2 and compared with the doped TiO2, and the influence of electronic structure and optical properties caused by Zr and C co-doping has been presented qualitatively together. The results revealed that the energy band gap has been decreased owing to the doped Zr and C, whereas the optical absorption coefficients have been increased in the region of 400~800 nm and a red shift of absorption band can be found. Accordingly, photo catalytic activity of TiO2 has been enhanced. The current calculations are in good agreement with the experimental data.

  15. Energetics and magnetism of Co-doped GaN(0001) surfaces: A first-principles study

    CERN Document Server

    Qin, Zhenzhen; Chen, Guangzhao Qin Lanli

    2014-01-01

    A comprehensive first-principles study of the energetics, electronic and magnetic properties of Co-doped GaN(0001) thin films are presented and the effect of surface structure on the magnetic coupling between Co atoms is demonstrated. It is found that Co atoms prefer to substitute the surface Ga sites in different growth conditions. In particular, a CoN/GaN interface structure with Co atoms replacing the first Ga layer is preferred under N-rich and moderately Ga-rich conditions, while CoGa$_x$/GaN interface is found to be energetically stable under extremely Ga-rich conditions. It's worth noting that the AFM coupling between Co atoms is favorable in clean GaN(0001) surface, but the existence of FM would be expected to occur as Co concentration increased in Ga-bilayer GaN(0001) surface. Our study provides the theoretical understanding for experimental research on Co-doped GaN films and might promise the Co:GaN system potential applications in spin injection devices.

  16. ZnO nanoparticles co-doped with Fe3+ and Eu3+ ions for solar assisted photocatalysis.

    Science.gov (United States)

    Yin, Dongguang; Zhang, Le; Song, Kailin; Ou, Yangjuan; Wang, Chengcheng; Liu, Bing; Wu, Minghong

    2014-08-01

    In this study, ZnO nanoparticles co-doped with Fe3+ and Eu3+ were prepared by a facile co-precipitation method. The structure and morphology of the as-prepared nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance absorption spectra, respectively. The photocatalytic activities of the prepared catalysts were evaluated by photocatalytic degradation of methyl orange in aqueous solution with solar light irradiation. The co-doped Fe3+ and Eu3+ showed a synergistic effect, which significantly increased the photocatalytic activity of ZnO. The influences of calcination time, photocatalytic reaction temperature and catalyst loading on the photocatalytic activity of the catalyst were also investigated. It was found that there were an optimum photocatalytic reaction temperature and an optimum catalyst loading for high photocatalytic efficiency, and the photocatalytic efficiency decreased with increase in calcination time. The results of this study demonstrate that the as-prepared product of Eu3+/Fe3+/ZnO is a promising photocatalyst for solar assisted degradation of organic pollutions.

  17. Preparation and property of spinel LiMn2O4 material by co-doping anti-electricity ions

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin; ZHU Hua-li; CHEN Zhao-yong; PENG Zhong-dong; HU Guo-rong

    2006-01-01

    LiMn2-xMxO4-yFy(x=0.05; y=0.05; M=Al, Co, Cr and Mg, separately), as the cathode material, was synthesized by the method of high temperature solid-state reaction in laboratory. The results of charge-discharge test show that the properties of LiMn1.95M0.05O3.95F0.05(M= Al, Mg) are obviously superior to those of LiMn2O4. Through the condition experiments on sintering temperature, it is found that the materials present the integrate crystal structure and favorable cycle performance at 800 ℃. The research on the effects of different Mg2+ sources on the properties of LiMn2-xMgxO4-y Fy shows that, with Mg(OH)2 and LiF as the reagents respectively offering Mg2+ and F-, LiMn1.95Mg0.05O3.95F0.05 synthesized has integrate crystal structure and its capacity hardly fades. The results of cyclic voltammetry indicate that the shape of two couples of redox peaks of the material synthesized by co-doping anti-electricity ions is more integrate and symmetrical than that of pure spinel LiMn2O4, which reveals that the co-doping material possesses preferable electrochemical reversibility.

  18. A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles.

    Science.gov (United States)

    Li, Hongbo; Qiao, Yunfei; Li, Jing; Fang, Hailin; Fan, Dahe; Wang, Wei

    2016-03-15

    Co-doped ZnO diluted magnetic semiconductor as a novel photoelectric beacon was first constructed for photoelectrochemical (PEC) aptasensor of acetamiprid. The fabricated PEC sensing is based on the specific binding of acetamiprid and its aptamer, which induces the decreasement of enhanced photocurrent produced by the electron donor of quercetin. Co(2+) doping has a beneficial effect in extending the band width of light absorption of ZnO into the visible region and to promote the separation of the photoinduced carriers due to the sp-d exchange interactions existing between the band electrons and the localized d electrons of Co(2+). The fabricated aptasensor was linear with the concentration of acetamiprid in the range of 0.5-800 nmolL(-1) with the detection limit of 0.18 nmolL(-1). The presence of same concentration of other conventional pesticides did not interfere in the detection of acetamiprid and the recovery is between 96.2% and 103.7%. This novel PEC aptasensor has good performances with high sensitivity, good selectivity, low cost and portable features. The strategy of Co-doped ZnO diluted magnetic semiconductor paves a new way to improve the performances of PEC aptasensor.

  19. Nitrogen and carbon co-doped Ni-TiO2 spindles for high performance electrochemical capacitor electrodes

    Science.gov (United States)

    Liu, Yu; Cai, Xiaoyu; Jiang, Jinhui; Yan, Ming; Shi, Weidong

    2017-02-01

    Nitrogen and carbon co-doped Ni-TiO2 (nickel-titanium dioxide) spindles with hollow inner and good structural stability were facilely prepared by a direct precipitation method followed by annealing treatment. The unique composite shows a remarkably high capacitivity (223.7 F g-1 at 2 mV/s) and good rate capability (132.2 F g-1 at 100 mV s-1) when used as supercapacitor electrodes. In addition, the nitrogen and carbon co-doped Ni-TiO2 spindles also demonstrate good cycling stability (91.5% retention of the initial capacitance after 4000 cycles). The unique structure and seamlessly integration between different components generate synergistic effect to boost high performance and high electrical conductivity. The hollow inner also allows efficient diffusion of electrolyte and provides a more favorable path for charge penetration and transportation, which makes the good rate capability. The attractive performances make them potentially promising alternatives for the electrode materials of future energy storage devices.

  20. The origin of ferromagnetism of Co-doped TiO2 nanoparticles: Experiments and theory investigation

    Science.gov (United States)

    Zhang, Suyin; Zhou, Zhongpo; Xiong, Rui; Shi, Jing; Lu, Zhihong; Wang, Haiying

    2016-11-01

    A series of Ti1-xCoxO2-δ (x = 0.01, 0.03, 0.05, 0.07) nanoparticles were synthesized by sol-gel method. The X-ray diffraction, transmission electron microscopy, Raman analysis and X-ray photoelectron spectroscopy ruled out the signatures of Ti3+, Co-clusters or any other oxides of Co. The ferromagnetic behavior was clearly observed at room temperature in doped samples with saturation magnetization (Ms) of the order of 0.008-0.035 emu/g depending on doping concentrations. The saturation magnetization is found to be increased with the Co contents increasing from 1% to 7%. From the plot of the M-T curve, we obtain the Tc as ˜515 K for 5% Co-doped TiO2. Oxygen vacancies were detected from the photoluminescence (PL) measurement. Magnetic properties analyses and PL analyses showed that oxygen vacancies probably played a major role in ferromagnetism of the Ti1-xCoxO2 system with Co substituting for Ti. The first-principles calculation was performed to investigate the magnetic properties of Co-doped TiO2 nanoparticles. It can be found that the major magnetic moment is from the 3d electron of Co. The experiment results are consistent with the first-principles calculation. The ferromagnetism derived from the spin-split of O-2p and Co-3d electron states caused by p-d orbit hybridization.

  1. Efficient 2 μm emission in Nd3+/Ho3+ co-doped silicate-germanate glass pumped by common 808 nm LD

    Science.gov (United States)

    Chen, Rong; Tian, Ying; Li, Bingpeng; Huang, Feifei; Wang, Caizhi; Jing, Xufeng; Zhang, Junjie; Xu, Shiqing

    2017-03-01

    Nd3+/Ho3+ co-doped silicate-germanate glass has been synthesized by high temperature melt-quenching method. Near infrared emission centered at 2 μm has been successfully obtained by incorporating Nd3+ and Ho3+ in present glass. The Judd-Ofelt intensity parameters Ωt (t=2, 4, 6), and radiative properties of Ho3+ were calculated and discussed by using the Judd-Ofelt theory. The energy transfer processes and luminescence properties of Nd3+/Ho3+ co-doped glasses were analyzed pumped by a conventional 808 nm laser diode. Desirable spectroscopic characteristics indicates that Nd3+/Ho3+ co-doped silicate-germanate glass might be a good alternative matrix for 2 μm band mid-infrared laser.

  2. Effects of Yttrium and Iron co-doping on the high temperature thermoelectric properties of Ca{sub 3}Co{sub 4}O{sub 9+δ}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, NingYu, E-mail: niwu@dtu.dk; Van Nong, Ngo; Pryds, Nini; Linderoth, Søren

    2015-07-25

    Highlights: • The Fe and Fe/Y doping at the Co- and Ca-sites of Ca{sub 3}Co{sub 4}O{sub 9+δ} were investigated. • The rising ρ by Y doping can be mitigated by the coupled Fe doping. • The increased Seebeck coefficient by Y doping can be maintained in co-doped system. • The co-doped system leads to an improvement of the thermoelectric performance. • The co-doped system may preserve the merits from each component doping. - Abstract: A series of Y and Fe co-doped Ca{sub 3−x}Y{sub x}Co{sub 4−y}Fe{sub y}O{sub 9+δ} (0 ⩽ x ⩽ 0.3, 0 ⩽ y ⩽ 0.1) samples synthesized by auto-combustion reaction and followed by a spark plasma sintering (SPS) processing with the effects of Fe and Y doping on the high temperature (RT to 800 °C) thermoelectric properties were systematically investigated. For the Fe-doped system (x = 0, y ⩽ 0.1), the electrical resistivity (ρ) decreased over the whole measured temperature range, while the Seebeck coefficient (S) remained almost the same. For the co-doped system, at any fixed Fe doping content, both ρ and S tended to increase with increasing Y dopants, however, the effect is more substantial on ρ than on S, particularly in the low temperature regime. In contrast to ρ and S, the in-plane thermal conductivity (κ) is only slightly influenced by Y and Fe substitutions. Among all the investigated samples, the co-doped sample with x = 0.1 and y = 0.03 showed a decrease of ρ, enhanced power factor over the measured temperature range, and improved ZT at 800 °C as compared to un-doped Ca{sub 3}Co{sub 4}O{sub 9+δ}.

  3. Erbium and nitrogen co-doped SrTiO{sub 3} with highly visible light photocatalytic activity and stability by solvothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jing [Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen 361021 (China); Wei, Yuelin, E-mail: ylwei@hqu.edu.cn [Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen 361021 (China); Huang, Yunfang; Wang, Jing; Zheng, Xuanqing [Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen 361021 (China); College of Chemical Engineering, Huaqiao University, Xiamen 361021 (China); Sun, Zhixian [Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen 361021 (China); Wu, Ying [Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen 361021 (China); College of Chemical Engineering, Huaqiao University, Xiamen 361021 (China); Tao, Xinling [College of Chemical Engineering, Huaqiao University, Xiamen 361021 (China); Fan, Leqing; Wu, Jihuai [Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen 361021 (China)

    2015-10-15

    Highlights: • Er/N co-doped SrTiO{sub 3} was prepared by a solvothermal process at low temperature. • The co-doping induces the band gap narrowing and prominent absorbance in visible light region. • The samples show excellent catalytic activity and stability under visible light irradiation. - Abstract: Erbium–nitrogen co-doped SrTiO{sub 3} photocatalysts have been synthesized by a facile solvothermal method. The resulting samples were analyzed by FE-SEM, XRD, BET-surface area and UV–vis. The UV–vis absorption spectra of these powders indicated that erbium–nitrogen co-doped SrTiO{sub 3} possessed stronger absorption bands in the visible light region in comparison with that of pure SrTiO{sub 3}. The occurrence of the erbium–nitrogen co-doped cubic SrTiO{sub 3} induced the higher photocatalytic activities for the degradation of methyl orange (MO) under irradiation by ultraviolet light and visible light, respectively, being superior to that of pure SrTiO{sub 3} and commercial TiO{sub 2} (P-25) powders. In addition, the Er–N co-doped SrTiO{sub 3} (initial molar ratios of Sr/Er/N = 1:0.015:0.1, designated as S5) sample showed the best photocatalytic activity with the degradation rate as high as 98% after 30 min under the visible light irradiation. After five cycles, the photocatalytic activity of the S5 catalyst showed no significant decrease, which indicated that the photocatalysts were stable under visible light irradiation.

  4. Tuneable Giant Magnetocaloric Effect in (Mn,Fe)2(P,Si) Materials by Co-B and Ni-B Co-Doping

    OpenAIRE

    Nguyen Thang; Niels Harmen van Dijk; Ekkes Brück

    2016-01-01

    The influence of Co (Ni) and B co-doping on the structural, magnetic and magnetocaloric properties of (Mn,Fe) 2 (P,Si) compounds is investigated by X-ray diffraction (XRD), differential scanning calorimetry, magnetic and direct temperature change measurements. It is found that Co (Ni) and B co-doping is an effective approach to tune both the Curie temperature and the thermal hysteresis of (Mn,Fe) 2 (P,Si) materials without losing either the giant magnetocaloric effect or the pos...

  5. 含硅类金刚石膜硬度压痕测试的有限元模拟%Finite Element Simulation of Indentation Testing for Hardness of Si-Containing Diamond-Like Carbon Film

    Institute of Scientific and Technical Information of China (English)

    刘璨; 兰惠清

    2012-01-01

    使用Abaqus有限元软件通过加载荷与加载位移两种方法对含硅类金刚石膜进行了压痕测试模拟,得到了不同硅含量类金刚石膜的硬度曲线。结果表明:两种方法的模拟结果较吻合,其中加载位移的方法较稳定,速度较快,含硅类金刚石膜的硬度随着硅含量的增加而减小;模拟结果得到了相关试验的验证。%The simulation for indentation testing of Si-containing diamond-like carbon(Si-DLC) film was carried out by infinite element simulation software Abaqus using loading and displacement methods,and the hardness of the diamond-like carbon film with different silicon contents was obtained.The results show that the two methods fit fairly well,the displacement method was fairly stable and its speed also was fairly quick,and the hardness of Si-DLC film decreased with the increase of the silicon content.The finite element simulation was in agreement with correlative experiments.

  6. Rutile-type Co doped SnO{sub 2} diluted magnetic semiconductor nanoparticles: Structural, dielectric and ferromagnetic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Mehraj, Sumaira, E-mail: sumairamehraj07@gmail.com [Department of Applied Physics, Aligarh Muslim University, Aligarh-202002 (India); Shahnawaze Ansari, M. [Center of Nanotechnology, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Alimuddin [Department of Applied Physics, Aligarh Muslim University, Aligarh-202002 (India)

    2013-12-01

    Nanoparticles of basic composition Sn{sub 1−x}Co{sub x}O{sub 2} (x=0.00, 0.01, 0.03, 0.05 and 0.1) were synthesized through the citrate-gel method and were characterized for structural properties using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR). XRD analysis of the powder samples sintered at 500 °C for 12 h showed single phase rutile type tetragonal structure and the crystallite size decreased as the cobalt content was increased. FT-IR spectrum displayed various bands that came due to fundamental overtones and combination of O–H, Sn–O and Sn–O–Sn entities. The effect of Co doping on the electrical and magnetic properties was studied using dielectric spectroscopy and vibrating sample magnetometer (VSM) at room temperature. The dielectric parameters (ε, tan δ and σ{sub ac}) show their maximum value for 10% Co doping. The dielectric loss shows anomalous behavior with frequency where it exhibits the Debye relaxation. The variation of dielectric properties and ac conductivity with frequency reveals that the dispersion is due to the Maxwell–Wagner type of interfacial polarization in general and hopping of charge between Sn{sup 2+} and Sn{sup 4+} as well as between Co{sup 2+} and Co{sup 3+} ions. The complex impedance analysis was used to separate the grain and grain boundary contributions in the system which shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. Hysteresis loops were observed clearly in M–H curves from 0.01 to 0.1% Co doped SnO{sub 2} samples. The saturation magnetization of the doped samples increased slightly with increase of Co concentration. However pure SnO{sub 2} displayed paramagnetism which vanished at higher values of magnetic field.

  7. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  8. Optimized flat supercontinuum generation in high nonlinear fibers pumped by a nanosecond Er/Yb Co-doped fiber amplifier

    Science.gov (United States)

    Ouyang, D. Q.; Guo, C. Y.; Ruan, S. C.; Yan, P. G.; Wei, H. F.; Luo, J.

    2014-04-01

    Flat supercontinuum generation has been demonstrated in high nonlinear fibers with zero dispersion wavelengths at 1480 and 1500 nm, which were pumped by a MOPA structured Er/Yb co-doped fiber amplifier based on a modulated nanosecond seed laser with the wavelength of 1552 nm. The spectra and output powers affected by the zero dispersion wavelengths, fiber lengths and pump pulse widths were investigated experimentally. A flat spectrum with 5 dB bandwidth from 1220 nm to beyond 1700 nm (assuming the pump peak was filtered) in the optical spectrum analyzer detectable range was finally obtained by optimizing the fiber length and pump pulse width. The maximum output power was 1.02 W, including the peaks near 1550 nm.

  9. Color tuning of Eu-Tb co-doped borophosphate glasses for white light through valence state adjustment

    Institute of Scientific and Technical Information of China (English)

    XU Suo-cheng; ZHENG Xi; TIAN Hua; LV Tian-shuai; WANG Peng; WANG Da-jian

    2011-01-01

    The dependence of color points of white light on the composition of borophosphate glasses co-doped with europium (Eu) and terbium (Tb) has been investigated in terms of valence change of rare earth ions.Under ultraviolet (UV) excitation,the white light is observed to be from a combination of 4f65d → 4f7band transition emission at 425 nm for Eu2+,5D0 → 7FJ (J=-l,2) lineemissions at 593 nm and 611 nm for Eu3+,and 5D4 → 7F5 band transition emission at 545 nm for Tb3+.By varying the glass composition,the resultant emission color can be tuned efficiently.Eventually,the optimized white light with commission intemational de l'Eclairage (CIE) coordinate of (0.3382,0.2763) and the correlate color temperature (CCT) at 5010 K are achieved.

  10. Ferromagnetism in co-doped zno particles prepared by vaporization-condensation in a solar image furnace

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, B. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, Bellaterra 08193 (Spain)]. E-mail: ben.martinez@icmab.es; Sandiumenge, F. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, Bellaterra 08193 (Spain); Balcells, Ll. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, Bellaterra 08193 (Spain); Fontcuberta, J. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, Bellaterra 08193 (Spain); Sibieude, F. [CNRS/Institut de science et genie des Materiaux et Procedes, BP5 Odeillo, 66125-cedex Font Romeu (France); Monty, C. [CNRS/Institut de science et genie des Materiaux et Procedes, BP5 Odeillo, 66125-cedex Font Romeu (France)

    2005-04-15

    We report on the structural and magnetic properties of Co-doped ZnO particles prepared by vaporization-condensation in the solar furnace in Odeillo. X-ray diffraction data show no traces of Co segregation or any other phase different from ZnO. High-resolution electron microscopy (HREM) and transmision electron microscopy (TEM) techniques have also been used to characterize particles. Irrespective of their composition, the shape and size of the obtained particles, as well as their magnetic properties, clearly depend on the preparation conditions. The samples prepared in vacuum exhibit hysteretic behavior with low coercivity (about 100Oe) at T=5K and saturation magnetization well below that expecte for Co{sup 2+} in a tetrahedral crystal field. On the other hand, samples prepared at high pressure (70-100Torr inside the balloon) are paramagnetic.

  11. Yb3+ and Er3+ co-doped Y2Ce2O7 nanoparticles: synthesis and spectroscopic properties

    Indian Academy of Sciences (India)

    Honghui Jiang; Weixiong You; Xiaolin Liu; Jinsheng Liao; Ping Wang; Bin Yang

    2013-12-01

    Yb3+ and Er3+ co-doped Y2Ce2O7 nanoparticles sintered at different temperatures were prepared by homogeneous co-precipitation method. The products were characterized by X-ray powder diffraction (XRD), energy-dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The results indicated that the particle sizes and morphologies of the samples were heavily influenced by the sintering temperature. As temperature increased, the particle sizes became gradually larger and more agglomerate. The emissions including green and red upconversion emissions were investigated under 980 nm excitation. The emission intensities of the samples also depended on the sintering temperature. Two photon processes were mainly responsible for green and red upconversion emissions.

  12. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe

    Directory of Open Access Journals (Sweden)

    Jesús-Alejandro Peña-Jiménez

    2016-09-01

    Full Text Available The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.

  13. Phosphate modified N/Si co-doped rutile TiO2 nanorods for photoelectrochemical water oxidation

    Science.gov (United States)

    Zhang, Xiaofan; Zhang, Bingyan; Luo, Yanping; Lv, Xiaowei; Shen, Yan

    2017-01-01

    Surface modification of TiO2 film provides possibilities to improve photoelectrochemical (PEC) activity. In this study, we report on phosphate modified N/Si co-doped TiO2 nanorods films (Pi-N/Si-TiO2 NRs) for PEC water oxidation. Compared to the pristine TiO2 NRs, the Pi-N/Si-TiO2 NRs photoanode shows a 4.65-fold enhanced photocurrent density (1.44 mA cm-2) under light illumination. This significant improvement can be attributed to the synergistic effect of phosphate modification and the N and Si co-dopants. In addition to the improvement of ultraviolet and visible light response by N and Si co-dopants, phosphate modification is mainly responsible for charge transfer at the interface of the photoanode/electrolyte.

  14. [Direct upconversion sensitization luminescence comparison of the ErYb co-doped oxyfluoride fluoride pentaphosphate glass].

    Science.gov (United States)

    Chen, Xiao-bo; Chen, Luan; Zhao, Chen-yi; Sawanobori, N; Ma, Hui; Song, Zeng-fu

    2003-02-01

    This paper investigates the direct upconversion sensitization luminescence of the ErYb co-doped oxyfluoride glass (ErYb: FOG), fluoride glass (ErYb: ZBLAN) and pentaphosphate noncrystalline (ErYb: PP) excited by a 966 nm diode laser. The splendid upconversion luminescence phenomenon is found. It is resulted from that the Yb3+ concentration in rather high, the energy transfer among Er(3+)-Yb3+ and Yb(3+)-Yb3+ ions is rather strong. An important fact is found that the direct upconversion sensitization luminescence of ErYb: FOG is about 100-100,000 times greater than that of ErYb: PP. And meanwhile it is interesting that the upconversion luminescence intensity of ErYb: FOG is near to that of ErYb: ZBLAN. It is significant to enhance the comprehensive level of up-conversion luminescence.

  15. Ion-exchanged Er3+/Yb3+ co-doped waveguide amplifiers longitudinally pumped by broad area lasers.

    Science.gov (United States)

    Donzella, V; Toccafondo, V; Faralli, S; Di Pasquale, F; Cassagnettes, C; Barbier, D; Figueroa, H Hernandez

    2010-06-07

    A multimode pumping scheme for Er(3+)/Yb(3+) co-doped waveguide amplifiers based on broad area lasers at around 980 nm is presented. The proposed amplifier is fabricated by ion-exchange (IE) technique on silicate and phosphate glasses. The highly efficient energy transfer from Yb(3+) to Er(3+) ions, combined with the use of low cost and high power broad area laser, allows the realization of high performance and cost-effective integrated amplifiers. The structure has been designed and numerically studied using a 3D finite element modelling tool, and over 3 dB/cm small signal gain has been predicted for an optimized amplifier. Preliminary characterization of an amplifier structure provides a first experimental evidence of the novel multimode longitudinal pumping.

  16. Thermal barrier coating by electron beam-physical vapor deposition of zirconia co-doped with yttria and niobia

    Directory of Open Access Journals (Sweden)

    Daniel Soares de Almeida

    2010-08-01

    Full Text Available The most usual ceramic material for coating turbine blades is yttria doped zirconia. Addition of niobia, as a co-dopant in the Y2O3-ZrO2 system, can reduce the thermal conductivity and improve mechanical properties of the coating. The purpose of this work was to evaluate the influence of the addition of niobia on the microstructure and thermal properties of the ceramic coatings. SEM on coatings fractured cross-section shows a columnar structure and the results of XRD show only zirconia tetragonal phase in the ceramic coating for the chemical composition range studied. As the difference NbO2,5-YO1,5 mol percent increases, the tetragonality increases. A significant reduction of the thermal conductivity, measured by laser flash technique in the zirconia coating co-doped with yttria and niobia when compared with zirconia-yttria coating was observed.

  17. Al and Fe co-doped transparent conducting ZnO thin film for mediator-less biosensing application

    Directory of Open Access Journals (Sweden)

    Shibu Saha

    2011-12-01

    Full Text Available Highly c-axis oriented Al and Fe co-doped ZnO (ZAF thin film is prepared by pulsed laser deposition. Fe introduces redox centre along with shallow donor level while Al doping enhances conductivity of ZnO, thus removing the requirement of both mediator and bottom conducting layer in bioelectrode. Model enzyme (glucose oxidase, was immobilized on surface of ZAF matrix. Cyclic voltammetry and photometric assay show that prepared bio-electrode is sensitive to glucose concentration with enhanced response of 0.18 μAmM-1cm-2 and low Km ∼ 2.01 mM. The results illustrate that ZAF is an attractive matrix for realization of miniaturized mediator-less solid state biosensor.

  18. Twin grain boundary mediated ferromagnetic coupling in Co-doped ZnO: First-principles calculations

    Science.gov (United States)

    Wu, Jingjing; Tang, Xin; Pu, Chunying; Long, Fei; Tang, Biyu

    2017-01-01

    First principle calculation, based on density functional theory, is applied to study the electronic and magnetic properties of Co-doped ZnO ∑7 (12 3 ̅0) twin grain boundary. Co atoms substituting Zn at the threefold-coordination sites have the lowest formation energy, compared with other sites. More importantly, the configuration can result in the stable formation of ferromagnetic state (FM). Meanwhile, the strong Co-Co interaction is found to be responsible for the ferromagnetic state. Due to the structural character of the twin grain boundary, periodical defects can be offered, which favors the macroscopic FM ordering. The result also gives us a new thinking to understand the origin of FM in transition metal doped ZnO.

  19. Combinatorial approach to MgHf co-doped AlN thin films for Vibrational Energy Harvesters

    Science.gov (United States)

    Nguyen, H. H.; Oguchi, H.; Kuwano, H.

    2016-11-01

    In this report, we studied MgHf co-doped AlN ((Mg,Hf)xA11-xN) aiming for developing an AlN-based dielectric material with the large piezoelectric coefficient. To rapidly screen the wide range of composition, we applied combinatorial film growth approach. To get continuous composition gradient on a single substrate, films were deposited on Si (100) substrates by sputtering AlN and Mg-Hf targets simultaneously. Crystal structure was investigated by X-ray diffractometer equipped with a two-dimensional detector (2D-XRD). Composition was determined by Energy Dispersive Spectroscopy (EDS). These studies revealed that we successfully covered the widest ever composition range of 0 x x = 0.24, which will lead to the highest enhancement in the piezoelectric coefficient. The results of this study opened the way for high-throughput development of the dielectric materials.

  20. Hydrothermal fabrication of multi-functional Eu3+ and Tb3+ co-doped BiPO4: Photocatalytic activity and tunable luminescence properties

    Science.gov (United States)

    Wang, Yao; Huang, Hongwei; Quan, Chaoming; Tian, Na; Zhang, Yihe

    2016-01-01

    We demonstrated for first time the tunable photoluminescence (PL) properties and photocatalytic activity of the Tb3+ and Eu3+ co-doped BiPO4 assemblies. They are fabricated via a facile hydrothermal approach. Through co-doping of Eu3+ and Tb3+ ions and changing the doping ratio, the emission color of the co-doped BiPO4 phosphors can be tuned precisely from green to yellow and red. Meanwhile, a very efficient energy transfer from Tb3+ to Eu3+ can be observed. Fascinatingly, a warmwhite color has been realized in the co-doped sample by tuning the ratio of Tb3+/Eu3+ to a certain value as displayed in the CIE chromaticity diagram. The doped BiPO4 samples also exhibit significantly enhanced photocatalytic activity compared to the pristine BiPO4 pertaining to Rhodamine (RhB) degradation under UV light. This enhancement should be attributed to the trapping electron effect induced by ion doping that endows BiPO4 with high separation of photoinduced electron-hole pairs, thereby greatly promoting the photocatalytic reactivity. It was corroborated by the electrochemical impedance spectra (EIS). Moreover, the crystal structure, microstructure and optical properties of as-prepared samples were investigated in details.

  1. Significant enhancement in the photocatalytic activity of N, W co-doped TiO2 nanomaterials for promising environmental applications.

    Science.gov (United States)

    Thind, Sapanbir S; Wu, Guosheng; Tian, Min; Chen, Aicheng

    2012-11-30

    In this work, a mesoporous N, W co-doped TiO(2) photocatalyst was synthesized via a one-step solution combustion method, which utilized urea as the nitrogen source and sodium tungstate as the tungsten source. The photocatalytic activity of the N, W co-doped TiO(2) photocatalyst was significantly enhanced by a facile UV pretreatment approach and was evaluated by measuring the rate of photodegradation of Rhodamine B under both UV and visible (λ > 420) light. Following the UV pretreatment, the UV photocatalytic activity of the N, W co-doped TiO(2) was doubled. In terms of visible light activity, the UV pretreatment resulted in an extraordinary >12 fold improvement. In order to gain insight into this substantial enhancement, the N, W co-doped TiO(2) photocatalysts were studied using x-ray diffraction, transmission electron microscopy, N(2) physisorption, UV-vis absorbance spectroscopy and x-ray photoelectron spectroscopy prior to and following the UV pretreatment. Our experimental results have revealed that this significant augmentation of photocatalytic activity may be attributed to several synergetic factors, including increase of the specific surface area, reduction of the band gap energy and the removal of carbon impurities.

  2. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator.

    Science.gov (United States)

    Singh, Rahul; Shukla, K K; Kumar, A; Okram, G S; Singh, D; Ganeshan, V; Lakhani, Archana; Ghosh, A K; Chatterjee, Sandip

    2016-09-21

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  3. Nonlinear optical property and fluorescence quenching behavior of PVP capped ZnS nanoparticles co-doped with Mn{sup 2+} and Sm{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Prasanth, S.; Irshad, P.; Raj, D. Rithesh; Vineeshkumar, T.V. [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686562 (India); Philip, Reji [Optics group, Raman Research Institute, C.V. Raman Avenue, Bangalore 560080 (India); Sudarsanakumar, C., E-mail: c.sudarsan.mgu@gmail.com [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686562 (India)

    2015-10-15

    ZnS nanoparticles co-doped with different percentages of Mn{sup 2+} and Sm{sup 3+} were synthesized by the chemical co-precipitation method using polyvinylpyrrolidone (PVP) as capping agent. Cubic zinc blende phase of the samples was confirmed from X-ray diffraction. The strong interaction between PVP and ZnS nanoparticles was studied from Fourier Transform Infrared (FTIR) spectrum. The band gap values of ZnS and co-doped ZnS nanoparticles were calculated from UV‐Visible spectra. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 436 nm and when doped with Mn{sup 2+} and Sm{sup 3+} an extra peak with high intensity was observed at 596 nm. On increasing the mole percentage of dopants the intensity of the extra peak showed an enhancement until a certain concentration and then a reduction with further increase in concentration. The binding parameters were determined by Stern‐Volmer relation. The nonlinear absorption coefficients of the doped and undoped samples were calculated using Z-scan technique. - Highlights: • PVP capped ZnS nanoparticles co-doped with Mn{sup 2+} and Sm{sup 3+} were synthesized. • The band gap of ZnS and co-doped ZnS nanoparticles were determined. • On increasing the percentage of dopants quenching of PL intensity was observed. • The nonlinear absorption coefficients of the samples were investigated.

  4. Photocatalytic hydrogen generation enhanced by band gap narrowing and improved charge carrier mobility in AgTaO3 by compensated co-doping.

    Science.gov (United States)

    Li, Min; Zhang, Junying; Dang, Wenqiang; Cushing, Scott K; Guo, Dong; Wu, Nianqiang; Yin, Penggang

    2013-10-14

    The correlation of the electronic band structure with the photocatalytic activity of AgTaO3 has been studied by simulation and experiments. Doping wide band gap oxide semiconductors usually introduces discrete mid-gap states, which extends the light absorption but has limited benefit for photocatalytic activity. Density functional theory (DFT) calculations show that compensated co-doping in AgTaO3 can overcome this problem by increasing the light absorption and simultaneously improving the charge carrier mobility. N/H and N/F co-doping can delocalize the discrete mid-gap states created by sole N doping in AgTaO3, which increases the band curvature and the electron-to-hole effective mass ratio. In particular, N/F co-doping creates a continuum of states that extend the valence band of AgTaO3. N/F co-doping thus improves the light absorption without creating the mid-gap states, maintaining the necessary redox potentials for water splitting and preventing from charge carrier trapping. The experimental results have confirmed that the N/F-codoped AgTaO3 exhibits a red-shift of the absorption edge in comparison with the undoped AgTaO3, leading to remarkable enhancement of photocatalytic activity toward hydrogen generation from water.

  5. Co-doped LaLa1-xSrxTiO3-d : A Diluted Magnetic Oxide System with High Curie Temperature

    OpenAIRE

    2002-01-01

    Ferromagnetism is observed at and above room temperature in pulsed laser deposited epitaxial films of Co-doped Ti-based oxide perovskite (La1-xSrxTiO3-d). The system has the characteristics of an intrinsic diluted magnetic semiconductor (metal) at low concentrations (

  6. Energy transfer based photoluminescence properties of co-doped (Er3+ + Pr3+): PEO + PVP blended polymer composites for photonic applications

    Science.gov (United States)

    Naveen Kumar, K.; Kang, Misook; Bhaskar Kumar, G.; Ratnakaram, Y. C.

    2016-04-01

    Er3+, Pr3+ singly doped and co-doped PEO + PVP polymer composites have been synthesized by conventional solution casting method. The structural analysis has been carried out for all these polymer composites from XRD analysis. Raman spectral studies confirm the ion-polymer interactions and polymer complex formation. Thermal properties of pure polymer film has also been clearly elucidated by TG/DTA profiles. Well defined optical absorption bands pertaining to Er3+ and Pr3+ are observed in the absorption spectral profile and these bands are assigned with corresponding electronic transitions. The polymer films containing singly doped Er3+ and Pr3+ ions have displayed green and red emissions at 510 nm (2H11/2 → 4I15/2) and 688 nm (3P0 → 3F3) respectively under UV excitation source. Comparing the emission spectra of singly Er3+ and co-doped Er3+ + Pr3+: PEO + PVP polymer films, a significant red emission pertaining to Pr3+ions is remarkably enhanced in co-doped polymer system. This could be ascribed to possible energy transfer from Er3+ to Pr3+ in co-doped polymer system. The energy transfer mechanism is clearly demonstrated using their emission performances, overlapped spectral profiles and also life time decay dynamics. Thus, it could be suggested that Er3+: PEO + PVP, Pr3+: PEO + PVP and (Er3+ + Pr3+): PEO + PVP blended polymer films are potential materials for several photonic applications.

  7. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator

    Science.gov (United States)

    Singh, Rahul; Shukla, K. K.; Kumar, A.; Okram, G. S.; Singh, D.; Ganeshan, V.; Lakhani, Archana; Ghosh, A. K.; Chatterjee, Sandip

    2016-09-01

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  8. Computational investigation of the co-doping effect of sulphur and nitrogen on the electronics of CsTaWO6

    Directory of Open Access Journals (Sweden)

    Liuxie Liu

    2017-03-01

    Full Text Available CsTaWO6 is a typical AMWO6-type compound and the photocatalysis of the pure and doped phases has been extensively studied experimentally. In this work, the electronic structures of sulphur (S and nitrogen (N co-doped CsTaWO6 have been studied in the framework of density functional theory, in particular the S/N co-doping effect has been investigated. It is found that, (i S/N co-dopants prefer to be separated; (ii middle-gap states are introduced by N and S-dopant at the edges of valence band and conduction band; and (iii Co-doping not only narrows the band gap, but also promotes the separation of photo-excited electrons and holes. Feature (iii has been identified as a key reason why S/N co-doped CsTaWO6 is more efficient in photocatalytic water-splitting. A general doping strategy has been further suggested: co-dopants which can dominate the frontier states and favour to be separated can offer excellent photocatalysis performance.

  9. Defects induced in Yb3+/Ce3+ co-doped aluminosilicate fiber glass preforms under UV and γ-ray irradiation

    DEFF Research Database (Denmark)

    Chiesa, Mario; Mattsson, Kent Erik; Taccheo, Stefano;

    2014-01-01

    A set of Ce-/Yb-co-doped silica optical fiber preform cores, differing in terms of dopant concentrations are studied by Electron Paramagnetic Resonance (EPR) spectroscopy before and after irradiation of the samples with excimer UV laser light and γ-rays. Evidence of Yb3+ clustering in the case of...

  10. Effective visible light-active nitrogen and samarium co-doped BiVO{sub 4} for the degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min; Niu, Chao [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China); Liu, Jun, E-mail: minwang62@msn.com [Shenyang Military General Hospital, Shenyang 110016 (China); Wang, Qianwu; Yang, Changxiu; Zheng, Haoyan [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China)

    2015-11-05

    Nitrogen and samarium co-doped BiVO{sub 4} (N–xSm–BiVO{sub 4}) nanoparticles were synthesized using a sol–gel method with a corn stem template. The physicochemical properties of the resultant N–xSm–BiVO{sub 4} particles were characterized using various methods: XPS, XRD, SEM, BET, and UV–Vis DRS analyses. The visible-light photocatalytic activity was successfully demonstrated by degrading a model dye, namely, methyl orange. The dopant content was optimized, and the nitrogen and samarium co-doped BiVO{sub 4} extended the light absorption spectrum toward the visible region, significantly enhancing the photodegradation of the model dye. The Sm and N co-doped BiVO{sub 4} exhibited the highest photocatalytic activity compared to materials with a single dopant or no dopant. The significantly enhanced photocatalytic activity of the N–Sm co-doped BiVO{sub 4} under visible-light irradiation can be attributed to the synergistic effects of the nitrogen and samarium. - Highlights: • The N–Sm codoped BiVO{sub 4} were synthesized using a sol–gel method with a corn stem template. • The N and Sm codoped BiVO{sub 4} has excellent photocatalytic activity of methyl orange degradation. • The maximum activity was observed when the molar ratio of Sm/Bi was 1.0. • The high photocatalytic activity was caused by the synergistic effects between N doping and Sm doping.

  11. Enhanced photocatalytic degradation of dye under visible light on mesoporous microspheres by defects in manganese- and nitrogen-co-doped TiO2

    Science.gov (United States)

    Feng, Lu; Jiang, Heng; Zou, Mingming; Xiong, Fengqiang; Ganeshraja, Ayyakannu Sundaram; Pervaiz, Erum; Liu, Yinan; Zou, Shunying; Yang, Minghui

    2016-09-01

    Manganese- and nitrogen-co-doped mesoporous TiO2 microsphere photocatalysts are prepared by a simple sol-gel method with controllable sizes in the range of 400-500 nm and high surface area of 112 m2 g-1. Manganous acetate is the Mn source, and ammonia gas is the nitrogen source used. The dopants are found to be uniformly distributed in the TiO2 matrix. Interestingly, in (Mn,N)-co-doped TiO2, we observe an effective indirect band gap of 2.58 eV. (Mn,N)-co-doped mesoporous TiO2 microspheres show higher photocatalytic activity than Mn-TiO2 microspheres under visible light irradiation. Among the samples reported in this work, 0.2 at.% Mn doping and 500 °C 2-h nitriding condition give the highest photocatalytic activity. The observed photocatalytic activity in the (Mn,N)-co-doped TiO2 is attributed to the contribution from improved absorption due to trap levels of Mn, oxygen vacancies and N doping.

  12. Increased fluorescence intensity in CaTiO3:Pr3+ phosphor due to NH3 treatment and Nb Co-doping

    Science.gov (United States)

    Holliday, K. S.; Kohlgruber, T. A.; Tran, I. C.; Åberg, D.; Seeley, Z. M.; Bagge-Hansen, M.; Srivastava, A. M.; Cherepy, N. J.; Payne, S. A.

    2016-10-01

    Development of next generation red phosphors for commercial lighting requires understanding of how increased luminescence is achieved by various treatment strategies. In this work, we compare co-doping with Nb to NH3 treatment of CaTiO3:Pr phosphors to reveal a general mechanism responsible for the increased luminescence. The phosphors were synthesized using standard solid-state synthesis techniques and the fluorescence was characterized for potential use in fluorescent lighting, with 254 nm excitation. The lifetime of the fluorescence was determined and used to identify a change in a trap state by the co-doping of Nb5+ in the phosphor. The oxidation state of the Pr was probed by NEXAFS and revealed that both Nb5+ co-doping and NH3 treatment reduced the number of non-fluorescing Pr4+ centers. Calculations were performed to determine the energetically favorable defects. Vacuum annealing was also used to further probe the nature of the trap state. It was determined that NH3 treatments reduce the number of Pr4+ non-fluorescing centers, while Nb5+ co-doping additionally reduces the number of excess oxygen trap states that quench the fluorescence.

  13. Improved flux-pinning properties of REBa{sub 2}Cu{sub 3}O{sub 7-z} films by low-level Co doping

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wentao; Pu, Minghua; Wang, Weiwei; Lei, Ming [Key Laboratory of Magnetic Levitation and Maglev Trains, Ministry of Education of China, Superconductivity R and D Centre (SRDC), Southwest Jiaotong University, Erhuanlu Beiyiduan 111, 610031 Chengdu (China); Cheng, Cuihua [Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, 2052 NSW, Sydney (Australia); Zhao, Yong [Key Laboratory of Magnetic Levitation and Maglev Trains, Ministry of Education of China, Superconductivity R and D Centre (SRDC), Southwest Jiaotong University, Erhuanlu Beiyiduan 111, 610031 Chengdu (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, 2052 NSW, Sydney (Australia)

    2011-09-15

    Biaxially textured REBa{sub 2}Cu{sub 3-x}Co{sub x}O{sub 7-z} (RE = Gd,Y) films were prepared on (00l) LaAlO{sub 3} substrate using self-developed fluorine-free chemical solution deposition (CSD) approach. The in-field J{sub c} values are significantly improved for REBa{sub 2}Cu{sub 3-x}Co{sub x}O{sub 7-z} films through low-level Co doping. Co-doped GdBa{sub 2}Cu{sub 3}O{sub 7-z} film shows the highest J{sub c} values at higher temperatures and fields, whereas the J{sub c} values of Co-doped YBa{sub 2}Cu{sub 3}O{sub 7-z} film surpass that of other films at lower temperatures and fields. In addition, the volume pinning force densities of films with Co doping have been distinctly enhanced in the applied fields, indicating improved flux-pinning properties. The possible reasons are discussed in detail. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Boron in sillimanite.

    Science.gov (United States)

    Grew, E S; Hinthorne, J R

    1983-08-05

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite.

  15. Downconversion in Pr{sup 3+}–Yb{sup 3+} co-doped ZBLA fluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Maalej, O. [Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine, Av. O. Messiaen, 72085 Le Mans cedex 09 (France); Laboratoire de Chimie Inorganique, Université de Sfax, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax (Tunisia); Boulard, B., E-mail: brigitte.boulard@univ-lemans.fr [Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine, Av. O. Messiaen, 72085 Le Mans cedex 09 (France); Dieudonné, B. [Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine, Av. O. Messiaen, 72085 Le Mans cedex 09 (France); Ferrari, M. [Institute of Photonics and Nanotechnology (CNR), CSMFO Lab., Via alla Cascata 56/C Povo, 38123 Trento (Italy); Dammak, M. [Laboratoire de Physique Appliquée, Groupe des Matériaux Luminescents, Université de Sfax, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax (Tunisia); Dammak, M. [Laboratoire de Chimie Inorganique, Université de Sfax, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax (Tunisia)

    2015-05-15

    Fluorozirconate ZBLA glasses with molar composition 57ZrF{sub 4}–34BaF{sub 2}–5LaF{sub 3}–4AlF{sub 3}–0.5PrF{sub 3}–xYbF{sub 3} (from x=0 to 10) were synthesized to evaluate the rate of the conversion of visible photons into infrared photons. The emission spectra in the near infrared (NIR) at 950–1100 nm and the luminescence decays in the visible and NIR indicate an energy transfer from Pr{sup 3+} to Yb{sup 3+} upon blue excitation of Pr{sup 3+} at 440 nm. The energy transfer efficiency increases with Yb{sup 3+} concentration to reach 86% with 0.5Pr{sup 3+}–10Yb{sup 3+} co-doping (in mol%). However, the quenching of the Yb{sup 3+} emission strongly reduces the efficiency of the downconversion process: the decay time values decrease from 600 µs (x=0.5 mol%) to 85 µs (x=10 mol%). - Highlights: • We synthesized 0.5Pr{sup 3+}–xYb{sup 3+} co-doped ZBLA glasses (from x=0 to 10 mol %). • Photoluminescence of Yb{sup 3+} was observed at 980 nm under blue excitation. • Time resolved measurements have been performed in the visible and near infrared. • Energy transfer efficiency from Pr{sup 3+} to Yb{sup 3+} reaches 86% in 0.5 Pr{sup 3+}–10Yb{sup 3+} glass.

  16. Lanthanum and zirconium co-doped ZnO nanocomposites: synthesis, characterization and study of photocatalytic activity.

    Science.gov (United States)

    Moafi, Hadi Fallah; Zanjanchi, Mohammad Ali; Shojaie, Abdollah Fallah

    2014-09-01

    Nanocomposits of zinc oxide co-doped with lanthanum and zirconium were prepared using the modified sol-gel method. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), diffuse reflectance spectroscopy (DRS), and BET surface area measurement. For comparison, the La and Zr mono doped ZnO have also been prepared under the same conditions. The XRD results revealed that all the materials showed a hexagonal wurtzite crystal structure. It was found that the particle size of La-Zr-doped ZnO is much smaller as compared to that of pure ZnO. The effect of operational parameters such as, doping concentration, catalyst loading, pH and initial concentration of methylene blue on the extent of degradation was investigated. The photocatalytic activity of the undoped ZnO, mono-doped and La-Zr-ZnO photocatalysts was evaluated by the photocatalytic degradation of methylene blue in aqueous solution. The presence of lanthanium and/or zirconium causes a red shift in the absorption band of ZnO. The results show that the photocatalytic activity of the La-Zr-ZnO photocatalyst is much higher than that of undoped and mono-doped ZnO, resulting from the La and Zr synergistic effect. The co-operation of the lanthanum and zirconium ion leads to the narrowing of the band gap and greatly improves the photocatalytic activity. The photocatalyst co-doped with lanthanum and zirconium 4 mol% shows the best photoactivity and photodecomposition efficiencies were improved by 92% under UV-Vis irradiation at the end of 30 min, compared with the pure and mono doped samples.

  17. The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics.

    Science.gov (United States)

    Samodurova, Anastasia; Kocjan, Andraž; Swain, Michael V; Kosmač, Tomaž

    2015-01-01

    The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics was investigated. In order to differentiate between the distinct contributions of two dopants to the overall resistance to low-temperature degradation (LTD), specimens were prepared by infiltration of silica sol into pre-sintered 3Y-TZP pellets, produced from commercially available powders, which were alumina-free or contained 0.05 and 0.25 wt.%. After sintering, specimens were exposed to accelerated ageing in distilled water at 134°C for 6-48 h. X-ray diffraction was applied to quantify the tetragonal-to-monoclinic (t-m) phase transformation associated with the LTD, while a focused ion beam-scanning electron microscopy technique was employed to study the microstructural features in the transformed layer. The results showed that the minor alumina and/or silica additions did not drastically change the densities, grain sizes or mechanical properties of 3Y-TZP, but they did significantly reduce LTD. The addition of either alumina or silica has the potential to influence both the nucleation and the propagation of moisture-induced transformation, but in different ways and to different extents. The co-doped ceramics exhibited predominantly transgranular fracture, reflecting strong grain boundaries (limiting microcracking of the transformed layer), for alumina doping, and rounded grains with a glassy phase at multiple grain junctions (reducing internal stresses) for silica-doped material. These two additives evidently have different dominant mechanisms associated with the deceleration of LTD of 3Y-TZP, but their combination increases resistance to ageing, importantly, without reducing the fracture toughness of this popular biomaterial.

  18. Structure and properties of Co-doped ZnO films prepared by thermal oxidization under a high magnetic field.

    Science.gov (United States)

    Li, Guojian; Wang, Huimin; Wang, Qiang; Zhao, Yue; Wang, Zhen; Du, Jiaojiao; Ma, Yonghui

    2015-01-01

    The effect of a high magnetic field applied during oxidation on the structure, optical transmittance, resistivity, and magnetism of cobalt (Co)-doped zinc oxide (ZnO) thin films prepared by oxidizing evaporated Zn/Co bilayer thin films in open air was studied. The relationship between the structure and properties of films oxidized with and without an applied magnetic field was analyzed. The results show that the high magnetic field obviously changed the structure and properties of the Co-doped ZnO films. The Lorentz force of the high magnetic field suppressed the oxidation growth on nanowhiskers. As a result, ZnO nanowires were formed without a magnetic field, whereas polyhedral particles formed under a 6 T magnetic field. This morphology variation from dendrite to polyhedron caused the transmittance below 1,200 nm of the film oxidized under a magnetic field of 6 T to be much lower than that of the film oxidized without a magnetic field. X-ray photoemission spectroscopy indicated that the high magnetic field suppressed Co substitution in the ZnO lattice, increased the concentration of oxygen vacancies, and changed the chemical state of Co. The increased concentration of oxygen vacancies affected the temperature dependence of the resistivity of the film oxidized under a magnetic field of 6 T compared with that of the film oxidized without a magnetic field. The changes of oxygen vacancy concentration and Co state caused by the application of the high magnetic field also increase the ferromagnetism of the film at room temperature. All of these results indicate that a high magnetic field is an effective tool to modify the structure and properties of ZnO thin films.

  19. Visible light-responded C, N and S co-doped anatase TiO{sub 2} for photocatalytic reduction of Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Lei, X.F., E-mail: leixuefei69@163.com [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Institute of Metallurgical Resource and Environmental Engineering, Northeastern University, Shenyang 110819 (China); Liaoning Key Laboratory of Metallurgical Resource Recycling Science, Shenyang 110819 (China); Liaoning Engineering and Technology Research Center of Boron Resource, Comprehensive, Utilization, Shenyang 110819 (China); Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological, Utilization, Technology and Boron Materials, Shenyang 110819 (China); Xue, X.X.; Yang, H. [Institute of Metallurgical Resource and Environmental Engineering, Northeastern University, Shenyang 110819 (China); Liaoning Key Laboratory of Metallurgical Resource Recycling Science, Shenyang 110819 (China); Liaoning Engineering and Technology Research Center of Boron Resource, Comprehensive, Utilization, Shenyang 110819 (China); Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological, Utilization, Technology and Boron Materials, Shenyang 110819 (China); Chen, C.; Li, X.; Pei, J.X.; Niu, M.C.; Yang, Y.T.; Gao, X.Y. [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2015-10-15

    The (C, N and S) co-doped TiO{sub 2} (TH-TiO{sub 2}) samples were synthesized by a sol-gel method calcined at 500 °C, employing butyl titanate as the titanium source and thiourea as the dopant. The structures of TH-TiO{sub 2} samples were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS), photoluminescence (PL) spectroscopy, Thermo gravimetry and differential thermal analysis (TG-DTA), Scanning electron microscopy (SEM) and nitrogen adsorption–desorption isotherms. The photocatalytic activities were checked through the photocatalytic reduction of Cr(VI) as a model compound under visible light irradiation. The results showed that the thiourea content played an important role on the microstructure and photocatalytic activity of the samples. According to XPS results, (C, N and S) atoms were successfully co-doped into the nanostructures of TH-TiO{sub 2} samples. TH-TiO{sub 2} samples with thiourea: Ti molar ratio of 1.5 exhibits higher photocatalytic activity than that of the other samples under visible light irradiation, which can be attributed to the synergic effect of the pure anatase structure, the higher light absorption characteristics in visible regions, separation efficiency of electron–hole pairs, the specific surface area and the optimum (C, N and S) content. - Graphical abstract: (C, N and S) co-doped TiO{sub 2} samples show good photocatalytic activity for Cr (VI) reduction under visible light irradiation. - Highlights: • (C, N and S) co-doping in TH-TiO{sub 2} samples can promote the formation of the pure anatase structure. • (C, N and S) atoms were successfully co-doped into the nanostructures of TH-TiO{sub 2} samples. • The band gap energy of TH-TiO{sub 2} samples reduced after (C, N and S) co-doping. • (C, N and S) co-doped TiO{sub 2} samples were effective for the photocatalytic reduction of Cr(VI) under visible light

  20. Tuning the metal-insulator transition via epitaxial strain and Co doping in NdNiO3 thin films grown by polymer-assisted deposition

    Science.gov (United States)

    Yao, Dan; Shi, Lei; Zhou, Shiming; Liu, Haifeng; Zhao, Jiyin; Li, Yang; Wang, Yang

    2016-01-01

    The epitaxial NdNi1-xCoxO3 (0 ≤ x ≤ 0.10) thin films on (001) LaAlO3 and (001) SrTiO3 substrates were grown by a simple polymer-assisted deposition technique. The co-function of the epitaxial strain and Co doping on the metal-insulator transition in perovskite nickelate NdNiO3 thin films is investigated. X-ray diffraction and scanning electron microscopy reveal that the as-prepared thin films exhibit good crystallinity and heteroepitaxy. The temperature dependent resistivities of the thin films indicate that both the epitaxial strain and Co doping lower the metal-insulator (MI) transition temperature, which can be treated as a way to tune the MI transition. Furthermore, under the investigated Co-doping levels, the MI transition temperature (TMI) shifts to low temperatures with Co content increasing under both compressive and tensile strain, and the more distinction is in the former situation. When x is increased up to 0.10, the insulating phase is completely suppressed under the compressive strain. With the strain increases from compression to tension, the resistivities are enhanced both in the metal and insulating regions. However, the Co-doping effect on the resistivity shows a more complex situation. As Co content x increases from zero to 0.10, the resistivities are reduced both in the metal and insulating regions under the tensile strain, whereas they are enhanced in the high-temperature metal region under the compressive strain. Based on the temperature dependent resistivity in the metal regions, it is suggested that the electron-phonon coupling in the films becomes weaker with the increase of both the strain and Co-doping.