WorldWideScience

Sample records for boron co-doped diamond-like

  1. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    CERN Document Server

    He, X M; Peters, A M; Taylor, B; Nastasi, M

    2002-01-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C sub 2 H sub 2), diborane (B sub 2 H sub 6), and hexafluoroethane (C sub 2 F sub 6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C sub 2 H sub 2 , B sub 2 H sub 6 , and C sub 2 F sub 6 source gases. The incorporation of B sub 2 H sub 6 and C sub 2 F sub 6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition...

  2. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.L. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Tang, Y.; Yang, L.; Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y.; Cui, X. [Canadian Light Source Inc., 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada)

    2015-08-31

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B{sub 4}C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B{sub 4}C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp{sup 3} bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp{sup 3} bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp{sup 3} bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films.

  3. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    International Nuclear Information System (INIS)

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B4C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B4C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp3 bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp3 bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp3 bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films

  4. Structure and properties of fluorine and boron co-alloyed diamond-like carbon films

    International Nuclear Information System (INIS)

    Fluorine (F) and boron (B) co-alloyed diamond-like carbon (FB-DLC) films were prepared on polymethyl methacrylate (PMMA), polycarbonate, glass, silicon and Mo sheets by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C2H2), diborane (B2H6), and hexafluoroethane (C2F6) gas. The composition of FB-DLC films was measured by using the ion beam analysis techniques, and the bonding structure was characterized by IR and Raman spectroscopies. The co-alloying of F and B into DLC films resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations affected the composition, chemical bonding and properties as was evident from the changes observed in hydrogen concentration, optical gap energy, hardness, friction coefficient, and contact angle of water on films. Compared to B-alloyed or F-alloyed DLC films, the F and B co-alloyed DLC films exhibited a reduced hydrogen concentration, high hardness and optical gap energy, and improved hydrophobic and tribological properties

  5. Elastic properties, sp3 fraction, and Raman scattering in low and high pressure synthesized diamond-like boron rich carbides

    International Nuclear Information System (INIS)

    Dense BCx phases with high boron concentration are predicted to be metastable, superhard, and conductors or superconductors depending on boron concentration. However, up to this point, diamond-like boron rich carbides BCx (dl-BCx) phases have been thought obtainable only through high pressure and high temperature treatment, necessitating small specimen volume. Here, we use electron energy loss spectroscopy combined with transmission electron microscopy, Raman spectroscopy, surface Brillouin scattering, laser ultrasonics (LU) technique, and analysis of elastic properties to demonstrate that low pressure synthesis (chemical vapor deposition) of BCx phases may also lead to the creation of diamond-like boron rich carbides. The elastic properties of the dl-BCx phases depend on the carbon sp2 versus sp3 content, which decreases with increasing boron concentration, while the boron bonds determine the shape of the Raman spectra of the dl-BCx after high pressure-high temperature treatment. Using the estimation of the density value based on the sp3 fraction, the shear modulus μ of dl-BC4, containing 10% carbon atoms with sp3 bonds, and dl-B3C2, containing 38% carbon atoms with sp3 bonds, were found to be μ = 19.3 GPa and μ = 170 GPa, respectively. The presented experimental data also imply that boron atoms lead to a creation of sp3 bonds during the deposition processes.

  6. Preparation of diamond-like carbon and boron nitirde films by high-intensity pulsed ion beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rej, D.J.; Davis, H.A. [Los Alamos National Lab., NM (United States); Remnev, G.E. [Tomsk Polytechnic Univ., Tomsk (Russian Federation). Nuclear Physics Institute.] [and others

    1995-05-01

    Intense ion beams (300-keV C{sup +}, O{sup +}, and H{sup +}, 20--30 kA, 50 to 400-ns pulsewidth, up to 0.3-Hz repetition rate) were used to prepare diamond-like carbon (DLC) and boron nitride (BN) films. Deposition rates of up to 25{plus_minus}5 nm/pulse were obtained with instantaneous rates exceeding 1 mm/s. Most films were uniform, light brown, translucent, and nonporous with some micron-size particulates. Raman and parallel electron energy loss spectroscopy indicated the presence of DLC. The films possessed favorable electron field-emission characteristics desirable for cold-cathode displays. Transmission electron microscopy (TEM) and transmission electron diffraction (TED) revealed that the C films contained diamond crystals with 25 to 125-nm grain size. BN films were composed of hexagonal, cubic and wurtzite phases.

  7. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  8. Preparation and characterization of visible-light-driven titania photocatalyst co-doped with boron and nitrogen

    International Nuclear Information System (INIS)

    In order to improve the photocatalytic performance of titania under visible light, a boron and nitrogen co-doped titania photocatalyst was prepared. Its photoabsorbance was measured by UV-vis diffusive reflectance spectroscopy (DRS). The microstructure of photocatalyst was characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The microcrystal of the co-doped photocatalyst consisted of anatase phase and was approximately present in the form of spherical particle. The particle size was in correlation with the calcination temperature. Degradation of phenol under visible light illumination was used to evaluate the photocatalytic performance. The calcination temperature and the component influenced the photoactivity. The results showed that the co-doping of boron and nitrogen played an important role in the band gap decrease, which led to the rise of the photocatalytic activity

  9. Iron-boron pairing kinetics in illuminated p-type and in boron/phosphorus co-doped n-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Möller, Christian, E-mail: cmoeller@cismst.de [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany); TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau (Germany); Bartel, Til; Gibaja, Fabien [Calisolar GmbH, Magnusstraße 11, 12489 Berlin (Germany); Lauer, Kevin [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany)

    2014-07-14

    Iron-boron (FeB) pairing is observed in the n-type region of a boron and phosphorus co-doped silicon sample which is unexpected from the FeB pair model of Kimerling and Benton. To explain the experimental data, the existing FeB pair model is extended by taking into account the electronic capture and emission rates at the interstitial iron (Fe{sub i}) trap level as a function of the charge carrier densities. According to this model, the charge state of the Fe{sub i} may be charged in n-type making FeB association possible. Further, FeB pair formation during illumination in p-type silicon is investigated. This permits the determination of the charge carrier density dependent FeB dissociation rate and in consequence allows to determine the acceptor concentration in the co-doped n-type silicon by lifetime measurement.

  10. Comparative study of the photocatalytic performance of boron-iron Co-doped and boron-doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    A series of nanosized boron-doped and boron-iron co-doped anatase TiO2 represented as Bx,Fey-TiO2 (x = 1, 3, 5, y = 0, 0.5, 1, 3, 5 in wt%) were synthesized by a modified sol-gel method, and characterized by various spectroscopic and analytical techniques. The presence of boron and/or iron causes a red shift in the absorption band of TiO2. The Bx,Fey-TiO2 systems are very effective catalysts for the degradation of toluene under UV or visible light. All reactions follow pseudo-first-order kinetics with the rate being a function of either the dopants or the light source (UV or visible light). The relative quantity and most importantly the position occupied by dopant were found to be the crucial factors in co-doping with respect to the properties and activity of the final product. In general, boron-doping enhances the reactivity while iron-doping works in an opposite manner, thus to show the following order of reactivity regardless of the light source: Bx-TiO2 > TiO2 > Bx,Fey-TiO2. Under the visible light, however, a reversal in this trend is made depending on the relative amount of iron. Thus, for instance, when y ≤ 5, the trend becomes as follows: Bx-TiO2 > Bx,Fey-TiO2 > TiO2

  11. Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution

    International Nuclear Information System (INIS)

    A visible-light boron and nitrogen co-doped titania (B-N-TiO2) photocatalyst was prepared by sol-gel method with titanium tetra-n-butyl oxide, urea and boric acid as precursors. The photocatalyst was characterized by Fourier Transform Infrared (FT-IR), UV-vis diffusive reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), BET and electrochemistry method. Photocatalytic activity for hydrogen production over platinized B-N-TiO2 under visible-light (λ ≥ 420 nm) irradiation was investigated. In nitrogen doped titania (N-TiO2) N-Ti-O bond is formed, which extends the absorption edge to the visible-light region. A part of doping boron enters into titania lattice and most of the boron exists at the surface of the catalyst. The crystallite size of B-N-TiO2 decreases compared to N-TiO2, while its photocurrent and the surface hydroxyl group increase. Furthermore, doping boron could act as shallow traps for photoinduced electrons to prolong the life of the electrons and holes. Therefore, the visible-light activity of B-N-iO2 increases greatly compared with that of N-TiO2

  12. First-principles study of metallic carbon nanotubes with boron/nitrogen co-doping

    Institute of Scientific and Technical Information of China (English)

    Chen Ling-Na; Ma Song-Shan; OuYang Fang-Ping; Xiao Jin; Xu Hui

    2011-01-01

    Using the first-principles calculations, we investigate the electronic band structure and the quantum transport properties of metallic carbon nanotubes (MCNTs) with B/N pair co-doping. The results about formation energy show that the B/N pair co-doping configuration is a most stable structure. We find that the electronic structure and the transport properties are very sensitive to the doping concentration of the B/N pairs in MCNTs, where the energy gaps increase with doping concentration increasing both along the tube axis and around the tube, because the mirror symmetry of MCNT is broken by doping B/N pairs. In addition, we discuss conductance dips of the transmission spectrum of doped MCNTs. These unconventional doping effects could be used to design novel nanoelectronic devices.

  13. Boron/nitrogen pairs Co-doping in metallic carbon nanotubes: a first-principle study

    Institute of Scientific and Technical Information of China (English)

    Ouyang Fang-Ping; Peng Sheng-Lin; Chen Ling-Na; Sun Shu-Yuan; Xu Hui

    2011-01-01

    By using the first-principles calculations, the electronic structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.

  14. Highly sensitive pressure sensor based on long-period gratings written in a boron co-doped optical fiber

    International Nuclear Information System (INIS)

    The paper presents a novel pressure sensor based on long-period gratings (LPGs) written with an arc-induced method in a boron co-doped photosensitive fiber. The achieved pressure sensitivity for these gratings is at least four to eight times higher than for gratings written in other fibers which have been presented to date. The sensitivity is strongly dependent on the investigated order of modes, and for the 7th cladding mode can reach δλ/δp = 78 pm bar−1. It was found that the incorporation of B2O3 in the core of the fiber is responsible for the higher pressure sensitivity of these LPGs. This conclusion is based on consideration of variations in the elastic properties of the glass versus its composition. According to our simulations, the pressure-optic coefficient of the B/Ge-doped core of the fiber is 2.03 RIU bar−1. The sensitivity of the structure to temperature and to external refractive index is discussed from the point of view of the possible indirect influence of these conditions on the pressure response. It is proven that the experiment was conducted in such a way that the measured pressure sensitivity was not significantly affected by variations in either the temperature or the external refractive index

  15. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    Science.gov (United States)

    Mascarenhas, Angelo

    2015-07-07

    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  16. Efficient Photocatalytic Hydrogen Evolution over Platinum and Boron Co-doped TiO2 Photoatalysts

    Directory of Open Access Journals (Sweden)

    Zhiliang JIN

    2014-12-01

    Full Text Available In this paper, the new photocatalyst, Ptx-/TiO2-yBy was prepared by impregnation method via coupling with a inorganic water splitting system, namely, a ternary system K+,Na+/B4O72- - H2O for hydrogen evolution. The integration process of the preparation for B doping Pt/TiO2 with the significant photocatalytic hydrogen evolution in the ternary system K+,Mg2+/B4O72- - H2O and K+,Na+/B4O72- - H2O were accomplished by impregnation in situ. The photocatalyst Ptx-/TiO2-yBy synthesis and the photocatalytic hydrogen production of the isothermal solubility of the ternary system K+,Mg2+/B4O72- - H2O and K+,Na+/B4O72- - H2O at 25 ºC have been studied. Thus, the present challenge is not only to demonstrate a suitable photocatalytical system that can efficiently produce hydrogen under the borate exsited, but also research that the addition of borate to the suspensions greatly enhanced the stability of the  photocatalysts over semiconductor catalysts.The results show that borate solution is a suitable for B doped TiO2 photocatalysts preparation and a novel photocatalyst Ptx-/TiO2-yBy was successfully prepared by this way. XRD and XPS characterization showed that both anatase and rutile are coexisted and the B is incorporated into the crystal of the TiO2.So the TiO2 can be denoted as TiO2-xBx. The effect of borate on the photocatalytic properties were investigated. The results showed that the amount of hydrogen evolved is enhanced by factors of 4 with the addition of H3BO3 to the ethanol/water reaction solutions. The role of boron anion does not act as a sacrificial electron donors. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6412

  17. Synthesis, Characterization, and Tribological Evaluation of TiO2-Reinforced Boron and Nitrogen co-Doped Reduced Graphene Oxide Based Hybrid Nanomaterials as Efficient Antiwear Lubricant Additives.

    Science.gov (United States)

    Jaiswal, Vinay; Kalyani; Umrao, Sima; Rastogi, Rashmi B; Kumar, Rajesh; Srivastava, Anchal

    2016-05-11

    The microwave-synthesized reduced graphene oxide (MRG), boron-doped reduced graphene oxide (B-MRG), nitrogen-doped reduced graphene oxide (N-MRG), boron-nitrogen-co-doped reduced graphene oxide (B-N-MRG), and TiO2-reinforced B-N-MRG (TiO2-B-N-MRG) nanomaterials have been synthesized and characterized by various state-of-the-art techniques, like Raman spectroscopy, powder X-ray diffraction, scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Furthermore, the tribological properties of prepared nanomaterials as antiwear additives in neutral paraffin oil have been evaluated using a four-ball machine at an optimized additive concentration (0.15% w/v). The tribological parameters, like mean wear scar diameter, coefficient of friction, and wear rates, revealed that these nanomaterials have potential to be developed as environmentally friendly sulfated-ash-, phosphorus-, and sulfur-free antiwear lubricant additives. The friction- and wear-reducing behavior of MRG increased upon successive doping of nitrogen, boron, and both nitrogen and boron. Among these additives, B-N-co-doped MRG shows superior tribological behavior in paraffin base oil. Besides this, the load-carrying properties of B-N-co-doped MRG have significantly improved after its reinforcement with TiO2 nanoparticles. A comparative study of the surface morphology of a lubricated track in the presence of various additives has been assessed by SEM and contact-mode atomic force microscopy. The X-ray photoelectron spectroscopy studies have proved that the excellent lubrication properties of TiO2-B-N-MRG are due to the in situ formation of a tribofilm composed of boron nitride, adsorbed graphene layers, and tribosintered TiO2 nanoparticles during the tribocontact. Being sulfur-, halogen-, and phosphorus-free, these graphene-based nanomaterials act as green antiwear additives, protecting interacting

  18. In situ fabrication of three-dimensional nitrogen and boron co-doped porous carbon nanofibers for high performance lithium-ion batteries

    Science.gov (United States)

    Zhang, Lijun; Xia, Guanglin; Guo, Zaiping; Sun, Dalin; Li, Xingguo; Yu, Xuebin

    2016-08-01

    This paper reports the fabrication of three-dimensional porous carbon nanofibers network with high doping level of nitrogen (N, 5.17 at.%) and boron (B, 6.87 at.%) through a general electrospinning strategy followed by a calcination process. The employed ammonia borane (NH3BH3, denote as AB) not only functions as a porogen reagent to generate porous structures but also as the heteroatoms source to induce N and B co-doping. Such highly unique nanoarchitectures offer remarkably improved Li storage performance including high reversible capacity (∼910 mAh g-1 at a current density of 100 mA g-1) with good cycling and rate performances.

  19. Direct assessment of the mechanical modulus of graphene co-doped with low concentrations of boron-nitrogen by a non-contact approach

    Science.gov (United States)

    Pan, Shun-Hsien; Medina, Henry; Wang, Sheng-Bo; Chou, Li-Jen; Wang, Zhiming M.; Chen, Kuei-Hsien; Chen, Li-Chyong; Chueh, Yu-Lun

    2014-07-01

    Boron and nitrogen co-doping has been shown to be an effective way to induce a band gap in graphene for electrical applications but only a few theoretical studies have been done to understand the elastic and mechanical properties of the modified graphene. Until now, no experimental assessment of the mechanical modulus of boron-nitrogen-doped graphene (BNG) has been reported in the literature. Here, we demonstrate a novel non-contact approach to determine the in-plane stiffness of BNG at low BN concentrations. The in-plane stiffness of BNG with 2 at% BN concentration was estimated to be about 309 N m-1, which is lower than that of pristine graphene, in good agreement with some theoretical studies. Moreover, we correlated the conductivity of BNG with induced strain and found the BNG to be more sensitive than pristine graphene in response to externally applied strain. This result indicates that BNG is a more suitable material than graphene for strain sensor applications.Boron and nitrogen co-doping has been shown to be an effective way to induce a band gap in graphene for electrical applications but only a few theoretical studies have been done to understand the elastic and mechanical properties of the modified graphene. Until now, no experimental assessment of the mechanical modulus of boron-nitrogen-doped graphene (BNG) has been reported in the literature. Here, we demonstrate a novel non-contact approach to determine the in-plane stiffness of BNG at low BN concentrations. The in-plane stiffness of BNG with 2 at% BN concentration was estimated to be about 309 N m-1, which is lower than that of pristine graphene, in good agreement with some theoretical studies. Moreover, we correlated the conductivity of BNG with induced strain and found the BNG to be more sensitive than pristine graphene in response to externally applied strain. This result indicates that BNG is a more suitable material than graphene for strain sensor applications. Electronic supplementary

  20. Comparative study of long-period gratings written in a boron co-doped fiber by an electric arc and UV irradiation

    International Nuclear Information System (INIS)

    The paper presents for the first time a comparative study of long-period gratings (LPGs) written by point-by-point UV irradiation and by electrical arc discharges. These gratings were inscribed in a highly photosensitive boron co-doped fiber that can be considered as a suitable platform for LPG writing using either technology. The experimental transmission data for the manufactured LPG devices fit well when compared to the simulations we carried out in parallel. As a result of each of these writing processes, we were able to obtain a remarkably good quality of grating. Two reasons could explain the observed small differences between the spectra: a slight mismatch of the period of the gratings and an unintentional tapering of the fiber during the arc-based processes. We also found that the UV irradiation at λ = 248 nm can cause clearly visible damage to the fiber's surface. As a result of the UV writing, a coupling to the asymmetrical cladding modes can take place. Moreover, the gratings written using the two technologies show a very similar refractive index and temperature-sensing properties. The only differences between them can come from a physical deformation of the fiber induced by the electric arc discharges

  1. Preparation of extremely smooth and boron-fluorine co-doped TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic performance

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Highly ordered TNTs are prepared by first using NH4BF4 based electrolyte. • Ripple-free tube walls are obtained due to the mildness of the BF4–. • B, F originate from the decomposition of BF4–are co-doped into BF-TNTs. • BF-TNTs exhibit better PEC and PC performance than those of TNTs. - Abstract: Highly ordered TiO2 nanotube arrays (BF-TNTs) are prepared by anodization method in the unique NH4BF4 based electrolyte. The results show that the tube walls of the BF-TNTs, by first using NH4BF4 based electrolyte, are much smoother than that of TiO2 nanotube arrays (F-TNTs) fabricated with a conventional fluoride containing electrolyte. In the NH4BF4 electrolyte, boron and fluorine elements are simultaneously doped into the obtained BF-TNTs during the anodization process. The BF-TNTs exhibit better photoelectrochemical (PEC) properties and photocatalytic (PC) performance than those of F-TNTs

  2. Isoelectronic co-doping

    Science.gov (United States)

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  3. Efficiency improvement of crystalline silicon solar cells with a back-surface field produced by boron and aluminum co-doping

    International Nuclear Information System (INIS)

    By combining the doping process of Al alloying with the higher solubility of B in Si, a B/Al co-doped shallow back-surface field (B/Al-BSF) layer was created for fabrication of Si solar cells. The increased carrier concentration in the B/Al-BSF facilitates the modulation of BSF strength. The back-surface recombination velocity exhibits a U-shape function of carrier concentration, and reaches a minimum at a carrier concentration of 1019 cm−3. As a result, the solar cell efficiency can be improved by 0.5%.

  4. Optically transparent, scratch-resistant, diamond-like carbon coatings

    Science.gov (United States)

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  5. Microwave-Assisted Synthesis of Boron and Nitrogen co-doped Reduced Graphene Oxide for the Protection of Electromagnetic Radiation in Ku-Band.

    Science.gov (United States)

    Umrao, Sima; Gupta, Tejendra K; Kumar, Shiv; Singh, Vijay K; Sultania, Manish K; Jung, Jung Hwan; Oh, Il-Kwon; Srivastava, Anchal

    2015-09-01

    The electromagnetic interference (EMI) shielding of reduced graphene oxide (MRG), B-doped MRG (B-MRG), N-doped MRG (N-MRG), and B-N co-doped MRG (B-N-MRG) have been studied in the Ku-band frequency range (12.8-18 GHz). We have developed a green, fast, and cost-effective microwave assisted route for synthesis of doped MRG. B-N-MRG shows high electrical conductivity in comparison to MRG, B-MRG and N-MRG, which results better electromagnetic interference (EMI) shielding ability. The co-doping of B and N significantly enhances the electrical conductivity of MRG from 21.4 to 124.4 Sm(-1) because N introduces electrons and B provides holes in the system and may form a nanojunction inside the material. Their temperature-dependent electrical conductivity follows 2D-variable range hopping (2D-VRH) and Efros-Shklovskii-VRH (ES-VRH) conduction model in a low temperature range (Taircraft, defense industries, communication systems, and stealth technology. PMID:26287816

  6. Plasma spraying method for forming diamond and diamond-like coatings

    Science.gov (United States)

    Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  7. Graphene diamond-like carbon films heterostructure

    Science.gov (United States)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B.

    2015-03-01

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ˜25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  8. Graphene diamond-like carbon films heterostructure

    International Nuclear Information System (INIS)

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications

  9. Graphene diamond-like carbon films heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B., E-mail: r.jackman@ucl.ac.uk [London Centre for Nanotechnology, Electronic and Electrical Engineering Department, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom)

    2015-03-09

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  10. Diamond-like carbon coated ultracold neutron guides

    Energy Technology Data Exchange (ETDEWEB)

    Heule, S. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland) and Physik-Institut der Universitaet Zuerich (Switzerland)]. E-mail: stefan.heule@psi.ch; Atchison, F. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Daum, M. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Foelske, A. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Henneck, R. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Kasprzak, M. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Stefan Meyer Institut fuer subatomare Physik, Austrian Academy of Sciences, Vienna (Austria); Kirch, K. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Knecht, A. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Physik-Institut der Universitaet Zuerich (Switzerland); Kuzniak, M. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Jagellonian University, Cracow (Poland); Lippert, T. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Meier, M. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Pichlmaier, A. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Straumann, U. [Physik-Institut der Universitaet Zuerich (Switzerland)

    2007-07-31

    It has been shown recently that diamond-like carbon (DLC) with a sp{sup 3} fraction above 60% is a better wall coating material for ultracold neutron applications than beryllium. We report on results of Raman spectroscopic and XPS measurements obtained for diamond-like carbon coated neutron guides produced in a new facility, which is based on pulsed laser deposition at 193 nm. For diamond-like carbon coatings on small stainless steel substrates we find sp{sup 3} fractions in the range from 60 to 70% and showing slightly increasing values with laser pulse energy and pulse repetition rate.

  11. Raman spectra of electrochemically hydrogenated diamond like carbon surface

    OpenAIRE

    Biswas, Hari Shankar; Datta, Jagannath; Sen, Pintu; Ghosh, Uday Chand; Ray, Nihar Ranjan

    2013-01-01

    Raman spectroscopy has been employed to distinguish between the Raman spectrum of pristine hydrogenated diamond like carbon (PHDLC) and that of electrochemically hydrogenated diamond like carbon (ECHDLC). The enhancement of the background photoluminescence (PL) in the Raman spectrum and broadening of PL spectrum of ECHDLC are identified to be due to increase of sp3 C-H density onto the PHDLC surface, during novel electrochemical process of hydrogenation of sp2 C=C into sp3 C-H.

  12. Diamond and Diamond-Like Materials as Hydrogen Isotope Barriers

    International Nuclear Information System (INIS)

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project was to develop diamond and diamond-like thin-films as hydrogen isotope permeation barriers. Hydrogen embrittlement limits the life of boost systems which otherwise might be increased to 25 years with a successful non-reactive barrier. Applications in tritium processing such as bottle filling processes, tritium recovery processes, and target filling processes could benefit from an effective barrier. Diamond-like films used for low permeability shells for ICF and HEDP targets were also investigated. Unacceptable high permeabilities for hydrogen were obtained for plasma-CVD diamond-like-carbon films

  13. Diamond-like phases formed from fullerene-like clusters

    Science.gov (United States)

    Belenkov, E. A.; Greshnyakov, V. A.

    2015-11-01

    The geometrically optimized structure and properties of thirteen diamond-like carbon phases formed by linking or combining fullerene-like clusters (C4, C6, C8, C12, C16, C24, or C48) have been investigated. Atoms in the structures of these phases are located in crystallographically equivalent positions. The calculations have been performed using the density functional theory in the generalized gradient approximation. The calculated values of the structural characteristics and properties (sublimation energies, bulk moduli, band gaps, X-ray diffraction patterns) of the studied diamond-like phases differ significantly from the corresponding values for cubic diamond.

  14. Preparation of TiC, TiN, Al/sub 2/O/sub 3/ and diamond-like carbon by a glow discharge technique

    International Nuclear Information System (INIS)

    TiC, TiN, and Al/sub 2/O/sub 3/ were deposited by means of modified plasma CVD, and diamond-like carbon as deposited by cracking hydrocarbon gas in a glow discharge atmosphere. Structural and compositional analyses were done for these thin films by SEM, AES, ESCA, X-ray, optical microscope and other techniques. It was found that the TiC, TiN or Al/sub 2/O/sub 3/ film had almost the same characteristics as those of the corresponding bulk materials. Diamond-like carbon film turned to be electrically conductive when doped with boron during the deposition process

  15. Workshop on diamond and diamond-like-carbon films for the transportation industry

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, F.A.; Moores, D.K. [eds.

    1993-01-01

    Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

  16. High Energy Radial Deposition of Diamond-Like Carbon Coatings

    OpenAIRE

    Konrad Suschke; René Hübner; Peter Paul Murmu; Prasanth Gupta; John Futter; Andreas Markwitz

    2015-01-01

    Diamond-like carbon (DLC) coatings were deposited with a new direct ion deposition system using a novel 360 degree ion source operating at acceleration voltage between 4 and 8 kV. Cross-sectional TEM images show that the coatings have a three layered structure which originates from changes in the deposition parameters taking into account ion source condition, ion current density, deposition angles, ion sputtering and ion source movement. Varying structural growth conditions can be achieved by...

  17. High Energy Radial Deposition of Diamond-Like Carbon Coatings

    Directory of Open Access Journals (Sweden)

    Konrad Suschke

    2015-07-01

    Full Text Available Diamond-like carbon (DLC coatings were deposited with a new direct ion deposition system using a novel 360 degree ion source operating at acceleration voltage between 4 and 8 kV. Cross-sectional TEM images show that the coatings have a three layered structure which originates from changes in the deposition parameters taking into account ion source condition, ion current density, deposition angles, ion sputtering and ion source movement. Varying structural growth conditions can be achieved by tailoring the deposition parameters. The coatings show good promise for industrial use due to their high hardness, low friction and excellent adhesion to the surface of the samples.

  18. Diamond and diamond-like films for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J.M.

    1993-01-01

    This section is a compilation of transparency templates which describe the goals of the Office of Transportation Materials (OTM) Tribology Program. The positions of personnel on the OTM are listed. The role and mission of the OTM is reviewed. The purpose of the Tribology Program is stated to be `to obtain industry input on program(s) in tribology/advanced lubricants areas of interest`. The objective addressed here is to identify opportunities for cost effective application of diamond and diamond-like carbon in transportation systems.

  19. Properties of nitrogen containing diamond-like carbon films

    International Nuclear Information System (INIS)

    Optical and mechanical properties of nitrogen containing diamond- like carbon (NC-DLC) films deposited by RF plasma decomposition of CH4:H2:N2 gas mixture were investigated. Nitrogen was incorporated into DLC films both during film growth and after deposition of film by implantation of nitrogen ions. It was shown that both optical and mechanical properties of the films strongly depend on nitrogen content in the films. In some cases the mechanical properties of nitrogen implanted films were improved in comparison with unimplanted samples. (author). 7 refs., 2 figs

  20. Method and apparatus for making diamond-like carbon films

    Science.gov (United States)

    Pern, Fu-Jann; Touryan, Kenell J.; Panosyan, Zhozef Retevos; Gippius, Aleksey Alekseyevich

    2008-12-02

    Ion-assisted plasma enhanced deposition of diamond-like carbon (DLC) films on the surface of photovoltaic solar cells is accomplished with a method and apparatus for controlling ion energy. The quality of DLC layers is fine-tuned by a properly biased system of special electrodes and by exact control of the feed gas mixture compositions. Uniform (with degree of non-uniformity of optical parameters less than 5%) large area (more than 110 cm.sup.2) DLC films with optical parameters varied within the given range and with stability against harmful effects of the environment are achieved.

  1. Tribocorrosion of Diamond Like Carbon (DLC) coatings for biomedical applications

    OpenAIRE

    Sanchez Adam, Jorge

    2015-01-01

    Tribocorrosion has arisen as one of the most important material degradation processes in biomedical applications; thus, the improvement of the materials used in hip or knee prosthesis is very relevant. The aim of this project is to test the outstanding properties of the diamond like carbon material as a coating; a comparison between CoCrMo with several types of DLC as ta-C, a-C:H and metal doped with Ti and Si. Also different deposition methods will be compared like Physical Vapour Deposit...

  2. Plasma Processes : Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    D S Patil; K Ramachandran; N Venkatramani; M Pandey; R D'Cunha

    2000-11-01

    The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz, 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a wave guide single mode applicator. We have deposited DLC coatings on the substrates like stainless steel, Cu–Be, Cu and Si. The deposited coatings have been characterized by FTIR, Raman spectroscopy and ellipsometric techniques. The results show that we have achieved depositing ∼ 95% sp3 bonded carbon in the films. The films are uniform with golden yellow color. The films are found to be excellent insulators. The ellipsometric measurements of optical constant on silicon substrates indicate that the films are transparent above 900 nm.

  3. Advances in targetry with thin diamond-like carbon foils

    CERN Document Server

    Liechtenstein, V K; Olshanski, E D; Repnow, R; Levin, J; Hellborg, R; Persson, P; Schenkel, T

    2002-01-01

    Thin and stable diamond-like carbon (DLC) foils, which were fabricated at the Kurchatov Institute by sputter deposition, have proved recently to be advantageous for stripping and secondary electron timing of high energy heavy ions in a number of accelerator experiments. This resulted in expanding applications of these DLC foils which necessitated further development efforts directed toward the following applications of DLC targetry: (i) thin stripper foils for lower energy tandem accelerators, (ii) enlarged (up to 66 mm in diameter) stop foils for improved time-of-flight elastic recoil detection ion beam analysis, and (iii) ultra-thin (about 0.6 mu g/cm sup 2) DLC foils for some fundamental and applied physics experiments. Along with the fabrication of thin DLC stripper foils for tandem accelerators, much thicker (up to 200 mu g/cm sup 2) foils for post-stripping of heavy-ion beams in higher energy linacs, are within reach.

  4. Superhard and superconductive polymorphs of diamond-like BC3

    International Nuclear Information System (INIS)

    We have explored the crystal structures of synthesized diamond-like BC3 (d-BC3) with particle swarm optimization (PSO) algorithm combined with first-principles structural optimizations. Three intriguing metallic low-energy structures are uncovered: (i) orthorhombic Pmma-a consisting of a sandwich-like 'B-layer' between C layers, (ii) orthorhombic Pmma-b with novel B-B bondings, and (iii) tetragonal P-4m2. The simulated Raman modes of Pmma-b phase are in agreement with experiments. Further hardness and electron-phonon calculations revealed that all the three candidate d-BC3 phases are superhard (>40 GPa) and superconductive materials with the superconducting critical temperature reaching at 16.6-23.4 K for Pmma-a phase.

  5. Modification of diamond-like carbon by ion irradiation

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were irradiated with swift heavy ion beams of varying energy and angles of incidence. The irradiation created electrically conducting tracks in the DLC-films by transforming sp3 into sp2 bonds. The DLC-films were analyzed by conductive atomic force microscopy. The images were used to identify ion impact sites, and I-V-Spectroscopy was applied to determine the conductivity of the tracks. High energy ions (2.2 GeV, Au25+) created tracks with ohmic conductivity in the case of perpendicular bombardment, whereas grazing irradiation results in tracks that show mainly tunneling behavior. Low energy ions (100 MeV, Xe23+) created tracks which exhibit tunneling behaviour after perpendicular incidence irradiation, but irradiation under 1 did not result in conductive tracks.

  6. Cell attachment on diamond-like carbon coating

    Indian Academy of Sciences (India)

    D J Li; H Q Gu

    2002-02-01

    Preliminary results of diamond-like carbon (DLC) coating with its novel properties with no toxicity have caused a strong interest of commercial manufacturers of surgical implants. DLC coatings were prepared on polymethylmethacrylate (PMMA) at room temperature using ion beam assisted deposition (IBAD). It could be shown by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and Raman spectroscopy that DLC coating prepared by 800 eV CH+ beam bombardment possessed a higher fraction of 3 bonds in the structure of mixed 3 + 2 bonding, resulting in a higher hydrophobicity. The results of the cell attachment tests indicated that DLC coatings exhibited low macrophage attachment and provided desirable surface for the normal cellular growth and morphology of the fibroblasts. At the same time, the number of both neutral granulocytes and platelets adhering to DLC coatings decreased significantly. These findings showed that DLC was a better coating with desirable tissue and blood compatibility.

  7. Electronic Power System Application of Diamond-Like Carbon Films

    Science.gov (United States)

    Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.

    2003-01-01

    A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.

  8. Biomedical applications of diamond-like carbon coatings: a review.

    Science.gov (United States)

    Roy, Ritwik Kumar; Lee, Kwang-Ryeol

    2007-10-01

    Owing to its superior tribological and mechanical properties with corrosion resistance, biocompatibility, and hemocompatibility, diamond-like carbon (DLC) has emerged as a promising material for biomedical applications. DLC films with various atomic bond structures and compositions are finding places in orthopedic, cardiovascular, and dental applications. Cells grew on to DLC coating without any cytotoxity and inflammation. DLC coatings in orthopedic applications reduced wear, corrosion, and debris formation. DLC coating also reduced thrombogenicity by minimizing the platelet adhesion and activation. However, some contradictory results (Airoldi et al., Am J Cardiol 2004;93:474-477, Taeger et al., Mat-wiss u Werkstofftech 2003;34:1094-1100) were also reported that no significant improvement was observed in the performance of DLC-coated stainless stent or DLC-coated femoral head. This controversy should be discussed based on the detailed information of the coating such as atomic bond structure, composition, and/or electronic structure. In addition, instability of the DLC coating caused by its high level of residual stress and poor adhesion in aqueous environment should be carefully considered. Further in vitro and in vivo studies are thus required to confirm its use for medical devices. PMID:17285609

  9. Growth stress in tungsten carbide-diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Growth stress in tungsten carbide-diamond-like carbon coatings, sputter deposited in a reactive argon/acetylene plasma, has been studied as a function of the acetylene partial pressure. Stress and microstructure have been investigated by wafer curvature and transmission electron microscopy (TEM) whereas composition and energy distribution functions of positive ions were obtained by electron probe microanalyzer, elastic recoil detection analysis, and mass-energy analyzer (MEA). It has been observed that the compressive stress decreases with increasing acetylene partial pressure, showing an abrupt change from -5.0 to -1.6 GPa at an acetylene partial pressure of 0.012 Pa. TEM micrographs show that by increasing the acetylene partial pressure in the plasma from 0 to 0.012 Pa, the microstructure of the coating changes from polycrystalline to amorphous. MEA results show that the most probable energy of positive ions bombarding the substrate during deposition in pure argon and argon/acetylene atmosphere is the same. Based on the results, it is concluded that the huge variation in the compressive stress at low acetylene partial pressures is due to a change in the microstructure of the coating from polycrystalline to amorphous and not to the energy of positive ions bombarding the film

  10. Friction of diamond-like carbon films in different atmospheres

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films constitute a class of new materials with a wide range of compositions, properties, and performance. In particular, the tribological properties of these films are rather intriguing and can be strongly influenced by the test conditions and environment. In this paper, we performed a series of model experiments in high vacuum and with various added gases to elucidate the influence of different test environments on the tribological behavior of three DLC films. Specifically, we studied the behavior of a hydrogen-free film produced by a cathodic arc process and two highly hydrogenated films produced by plasma-enhanced chemical-vapor deposition. Flats and balls used in our experiments were coated with DLC and tested in a pin-on-disc machine under a load of 1 N and at constant rotational frequency. With a low background pressure, in the 10(sup -6) Pa range, the highly hydrogenated films exhibited a friction coefficient of less than 0.01, whereas the hydrogen-free film gave a friction coefficient of approximately 0.6. Adding oxygen or hydrogen to the experimental environment changed the friction to some extent. However, admission of water vapor into the test chamber caused large changes: the friction coefficient decreased drastically for the hydrogen-free DLC film whereas it increased a bit for one of the highly hydrogenated films. These results indicate that water molecules play a prominent role in the frictional behavior of DLC films-most notably for hydrogen-free films but also for highly hydrogenated films

  11. Diamond-like carbon/epoxy low-friction coatings to replace electroplated chromium

    OpenAIRE

    Podgoric, S; Jones, Benjamin; Bulpett, R; Troisi, G.; Franks, J

    2009-01-01

    A series of layered structures based on epoxy-resins coated with diamond-like carbon (DLC) are examined as potential replacements for electroplated chromium in aerospace applications. Diamond-like carbon coatings can offer superior mechanical properties and tribological performance; however, in some applications high internal stresses and poor adhesion limit their practical use. A DLC / epoxy system is developed and studied utilising pin-on-disk testing, analysis with scanning electron micr...

  12. Endovascular treatment of superficial femoral artery occlusive disease with stents coated with diamond-like carbon

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, O. E-mail: schaefer@mrs1.ukl.uni-freiburg.de; Lohrmann, C.; Winterer, J.; Kotter, E.; Langer, M

    2004-12-01

    A major consideration in the reduction of early stent thrombosis and in-stent restenosis is the improvement of biocompatibility of the devices. Diamond-like carbon is a novel material for coating stent surfaces in order to increase biocompatibility. The authors report on the endovascular treatment of two individuals with superficial femoral artery occlusions, using stents coated with diamond-like carbon. Technical and clinical success was achieved in both cases, with primary patency rates of 100% 12 months after intervention.

  13. Endovascular treatment of superficial femoral artery occlusive disease with stents coated with diamond-like carbon

    International Nuclear Information System (INIS)

    A major consideration in the reduction of early stent thrombosis and in-stent restenosis is the improvement of biocompatibility of the devices. Diamond-like carbon is a novel material for coating stent surfaces in order to increase biocompatibility. The authors report on the endovascular treatment of two individuals with superficial femoral artery occlusions, using stents coated with diamond-like carbon. Technical and clinical success was achieved in both cases, with primary patency rates of 100% 12 months after intervention

  14. Preparation and photocatalytic activity of nonmetal Co-doped titanium dioxide photocatalyst

    Science.gov (United States)

    Sun, Xiaogang; Xing, Jun; Qiu, Jingping

    2016-06-01

    A series of boron and sulfur co-doped titanium dioxide (TiO2) photocatalysts were prepared by a sol-gel method using boric acid, thiourea and tetrabutyl titanate [Ti(OC4H9)4] as precursors. The photoabsorbance of as-prepared photocatalysts was measured by UV-Vis diffuse reflectance spectroscopy (DRS), and its microstructure was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and N2 adsorption-desorption measurements. The prepared photocatalysts consisted of the anatase phase mainly in the form of spherical particles. The photocatalytic performance was studied by photodegradation of methyl blue (MB) in water under UV and visible light irradiation. The calcination temperature and the codoping content influenced the photoactivity. The synergistic effect of boron and sulfur co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of codoped TiO2 was also confirmed, the photocatalytic activity of TiO2 remained above 91% of that of the fresh sample after being used four times. It was shown that the co-doped TiO2 could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants.

  15. Deposition And Characterization Of Ultra Thin Diamond Like Carbon Films

    Science.gov (United States)

    Tomcik, B.

    2010-07-01

    Amorphous hydrogenated and/or nitrogenated carbon films, a-C:H/a-C:N, in overall thickness up to 2 nm are materials of choice as a mechanical and corrosion protection layer of the magnetic media in modern hard disk drive disks. In order to obtain high density and void-free films the sputtering technology has been replaced by different plasma and ion beam deposition techniques. Hydrocarbon gas precursors, like C2H2 or CH4 with H2 and N2 as reactive gases are commonly used in Kaufman DC ion and RF plasma beam sources. Optimum incident energy of carbon ions, C+, is up to 100 eV while the typical ion current densities during the film formation are in the mA/cm2 range. Other carbon deposition techniques, like filtered cathodic arc, still suffer from co-deposition of fine nanosized carbon clusters (nano dust) and their improvements are moving toward arc excitation in the kHz and MHz frequency range. Non-destructive film analysis like μ-Raman optical spectroscopy, spectroscopic ellipsometry, FTIR and optical surface analysis are mainly used in the carbon film characterization. Due to extreme low film thicknesses the surface enhanced Raman spectroscopy (SERS) with pre-deposited layer of Au can reduce the signal collection time and minimize photon-induced damage during the spectra acquisition. Standard approach in the μ-Raman film evaluation is the measurement of the position (shift) and area of D and G-peaks under the deconvoluted overall carbon spectrum. Also, a slope of the carbon spectrum in the 1000-2000 cm-1 wavenumber range is used as a measure of the hydrogen intake within a film. Diamond like carbon (DLC) film should possess elasticity and self-healing properties during the occasional crash of the read-write head flying only couple of nanometers above the spinning film. Film corrosion protection capabilities are mostly evaluated by electrochemical tests, potentio-dynamic and linear polarization method and by business environmental method. Corrosion mechanism

  16. Mechanical and Surface Characterization of Diamond-Like Carbon Coatings onto Polymeric Substrate

    OpenAIRE

    Martí-González, Joan; Bertran, Enric

    2015-01-01

    In this master thesis, diamond-like carbon DLC/Cr bilayer systems, with thickness up to 1278 nm were formed on ABS, glass and Si substrates. Substrates surface were prepared by oxygen plasma cleaning process. The chromium thin film, which acts as a buffer layer, was grown by magnetron sputtering deposition. Diamond-like carbon was deposited by pulsed-DC PECVD, with methane and hydrogen as reactants. A Plackett-Burman experimental design was carried out in order to determine the influence of t...

  17. Boron

    International Nuclear Information System (INIS)

    The trace element boron (B) is of interest in reclamation situations for several reasons. It plays an essential through largely unidentified role in the growth of higher plants. In argronomic situations B deficiencies are common, and deficiencies in reclamation situations have been suggested but not documented. Among micronutrients, B is unique because the range from deficient concentrations to toxic concentrations either in the soil solution or in plant tissue is narrower than for any other micronutrient. In reclamation situations excessive amounts of B can occur in the soil or in near-surface mining wastes and thus interfere with reclamation objectives, especially in arid and semiarid regions. Also, B is mobile and appears subject to both upward transport (and possible contamination of overlying material) and downward transport (and possible contamination of surface water and groundwater)

  18. Diamond-like carbon coatings for orthopaedic applications: an evaluation of tribological performance.

    Science.gov (United States)

    Xu, T; Pruitt, L

    1999-02-01

    A detailed investigation of the tribological behaviour of vacuum arc diamond-like carbon coated Ti-6Al-4V against a medical grade ultra-high molecular weight polyethylene is conducted in this work in order to investigate the potential use of diamond-like carbon coatings for orthopaedic appplications. Lubricated and non-lubricated wear experiments are performed using a standard pin-on-disc wear tester. The coefficient of friction is monitored continuously during testing and wear rate calculations are performed using surface profilometry measurements of worn disc surfaces. Sliding wear tests show the existence of two distinct friction and wear regimes distinguished by physically different mechanisms. In the first stages of wear, adhesion and abrasion are the dominant mechanisms of wear while fatigue processes are activated later in the tests. The effects of diamond-like carbon coating structure, surface roughness and lubrication on tribological behaviour are presented. Optimal process-structure-property design for vacuum arc plasma deposition is utilized in order to obtain strong adhesion to the titanium alloy substrate. Diamond-like carbon coatings significantly improve the friction and wear performance of the orthopaedic bearing pair and show exceptional promise for biomedical applications. PMID:15347929

  19. Chromium-doped diamond-like carbon films deposited by dual-pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Písařík, Petr; Jelínek, Miroslav; Kocourek, Tomáš; Zezulová, M.; Remsa, Jan; Jurek, Karel

    2014-01-01

    Roč. 117, č. 1 (2014), s. 83-88. ISSN 0947-8396 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : diamond like carbon * chromium * contact angle * surface free energy * dual laser deposition * zeta potential Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2014

  20. Studies of diamond-like carbon and diamond-like carbon polymer hybrid coatings deposited with filtered pulsed arc discharge method for biomedical applications

    OpenAIRE

    Soininen, Antti

    2015-01-01

    Hydrogen free diamond-like carbon (DLC) coatings have been the subject of investigation all around the world for the last 30 years. One of the major problems in producing of thick high-quality DLC coatings has been the inadequate adhesion of the deposited film to the substrate. This obstacle is finally overcome by depositing an intermediate adhesion layer produced with high energy (>2 keV) carbon plasma before application of a high-quality coating produced with a low energy unit. To the best ...

  1. β-irradiation effect in alumino-borosilicate glasses: the role of RE co-doping (RE = Sm, Gd)

    International Nuclear Information System (INIS)

    The effect of Sm and Gd co-doping on the structural modifications of β-irradiated alumino-borosilicate glasses has been studied by electron paramagnetic resonance (ESR) and Raman spectroscopy. The ESR spectra showed that the relative amount of Gd3+ ions occupying network former positions (Gd[n.f.]3+) follows a nonlinear behavior as a function of the Sm/Gd ratio. This suggests that co-doping favors the occupation by Gd3+ ions of the network former positions rather than the modifier positions in alumino-borosilicate glasses. The appearance of a super-hyperfine structure of ESR lines attributed to boron-oxygen hole centers (BOHC) with increasing Sm/Gd ratio was observed. This suggests that Gd3+ ions are diluted in the vicinity of the BOHC defects. The concentration of defects created by irradiation reveals a nonlinear dependence on Sm and Gd co-doping for the lowest irradiation dose (105 Gy). Therefore, co-doping also affects the defect creation processes at least at the lowest irradiation dose. Raman spectroscopy measurements suggest that the irradiation-induced structural changes vary nonlinearly with the Sm/Gd ratio. In fact, the shift of the Si-O-Si bending vibration modes reveals a clear minimum for samples containing equal amounts of Sm and Gd (1: 1) in the investigated glasses. (authors)

  2. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Seong Shan Yap

    2015-01-01

    Full Text Available Nanostructured diamond-like carbon (DLC films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional deposition. The Raman spectra of the films confirmed that the films were diamond-like/amorphous in nature. Although grown at an angle, ion energy of >35 eV was obtained at the off-axis position. This was proposed to be responsible for subplantation growth of sp3 hybridized carbon. The condensation of energetic clusters and oblique angle deposition correspondingly gave rise to the formation of nanostructured DLC in this study.

  3. Measurement of the Fermi potential of diamond-like carbon and other materials

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Blau, B. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Daum, M. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland)]. E-mail: manfred.daum@psi.ch; Fierlinger, P. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Physik-Institut, Universitaet Zuerich (Switzerland); Geltenbort, P. [ILL, Institut Laue-Langevin, Grenoble (France); Gupta, M. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Henneck, R. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Heule, S. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Physik-Institut, Universitaet Zuerich (Switzerland); Kasprzak, M. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); SMI, Stefan-Meyer-Institut, Vienna (Austria); Knecht, A. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Physik-Institut, Universitaet Zuerich (Switzerland); Kuzniak, M. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Jagiellonian University, Cracow (Poland); Kirch, K. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Meier, M. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Pichlmaier, A. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Reiser, R. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Theiler, B. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Zimmer, O. [Physik-Department E18, Technische Universitaet Muenchen (Germany); Zsigmond, G. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland)

    2007-07-15

    The Fermi potential V {sub f} of diamond-like carbon (DLC) coatings produced with laser-controlled vacuum arc deposition and that of diamond, Al, Si, Be, Cu, Fe and Ni was measured using two different methods, (i) transmission of slow neutrons through foils in a time-of-flight experiment and (ii) cold neutron reflectometry (CNR). For diamond-like carbon in transmission we obtain V {sub f} = (249 {+-} 14) neV. This is approximately the same as for beryllium and consistent with the theoretical expectations for the measured diamond (sp{sup 3}) content of 45%. For an sp{sup 3}-content of 67%, we find V {sub f} (271 {+-} 13) neV from reflectometry, again in agreement with theory. These findings open new perspectives in using DLC as storage volume and neutron guide coatings for ultracold neutron sources.

  4. Fast deposition of diamond-like carbon films by radio frequency hollow cathode method

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) thin films were deposited on p-type Si (100) substrates by RF hollow cathode method under different RF power and pressure, using ethane as the precursor gas. The deposition rate of 45 nm/min was achieved, almost 4 times higher than by conventional radio frequency plasma enhanced chemical vapor deposition. The mechanism of fast DLC films deposition is attributed to high plasma density in RF hollow cathode method, discussed in this paper. Scanning electron microscopy and Raman spectroscopy were used to investigate the microstructure of DLC films. The film hardness and Young's modulus were measured by nanoindentation. - Highlights: • Diamond-like carbon thin films were deposited by RF hollow cathode method. • The deposition rate of 45 nm/min was achieved. • A higher plasma density results in a higher deposition rate

  5. Diamond-like coating-orientant as a promising tribological material

    International Nuclear Information System (INIS)

    Efficacy of carbon diamond-like coating (DLC) using for rubbing surfaces of lubricated friction units is analyzed. The problems connected with the effect of DLC structure on tribological behavior under lubricated conditions, as well as specific character of interaction between carbon coating and active components of tube oils are considered. A separate type of carbon coatings - coatings-orientants what provides formation of stronger boundary lube layers resulting in widening of temperature ranges of lube materials operation is also considered

  6. PROPERTIES OF DIAMOND-LIKE CARBON COATINGS DEPOSITED ON CoCrMo ALLOYS

    OpenAIRE

    Madej, Monika; Ozimina, Dariusz; Kurzydłowski, Krzysztof; Płociński, Tomasz; Wieciński, Piotr; Styp-Rekowski, Michał; Matuszewski, Maciej

    2015-01-01

    This paper presents results of the structure analysis and tribological testing of a-C:H type diamond-like carbon (DLC) coatings produced by the Plasma Assisted Chemical Vapour Deposition (PACVD) technology on CoCrMo specimens. The DLC coating structure was studied by observing the surface topography using a scanning electron microscope (SEM) in the SE and STEM modes and a profilometer. Raman spectroscopy provided information on hybridized covalent bonds. The structural analysis involved obser...

  7. Improved wear performance of ultra high molecular weight polyethylene coated with hydrogenated diamond like carbon

    OpenAIRE

    Puértolas, J. A.; Martínez-Nogués, V.; Martínez-Morlanes, M. J.; Mariscal, M. D.; Medel, F. J.; López-Santos, Carmen; Yubero, Francisco

    2010-01-01

    Hydrogenated diamond like carbon (DLCH) thin films were deposited on medical grade ultra high molecular weight polyethylene (UHMWPE) by radio frequency plasma enhanced chemical vapor deposition. The DLCH coating thicknesses ranged from 250 to 700. nm. The substrates were disks made of UHMWPEs typically used for soft components in artificial joints, namely virgin GUR 1050 and highly crosslinked (gamma irradiated in air to 100. kGy) UHMWPEs. Mechanical and tribological properties under bovine s...

  8. Characterisation of nanostructured diamond-like carbon coatings deposited in single and dual frequency capacitive discharges

    Czech Academy of Sciences Publication Activity Database

    Buršíková, V.; Peřina, Vratislav; Sobota, Jaroslav; Grossman, Jan; Klapetek, P.; Buršík, Jiří; Franta, D.; Ohlídal, I.; Zajíčková, L.; Havel, J.; Janča, J.

    Taipei : IAMS Academia Sinica, 2008, s. 414. ISBN N. [New Diamond and Nano Carbons /2./ - NDNC 2008. Taipei (TW), 26.05.2008-29.05.2008] R&D Projects: GA ČR GA202/07/1669 Institutional research plan: CEZ:AV0Z20650511; CEZ:AV0Z10480505; CEZ:AV0Z20410507 Keywords : characterization * nanostructured diamond-like carbon coatings * single * dual frequency capacitive discharge Subject RIV: JI - Composite Materials

  9. Field emission from hybrid diamond-like carbon and carbon nanotube composite structures.

    Science.gov (United States)

    Zanin, H; May, P W; Hamanaka, M H M O; Corat, E J

    2013-12-11

    A thin diamond-like carbon (DLC) film was deposited onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the CNTs to clump together to form a microstructured surface. Field-emission tests of this new composite material show the typical low threshold voltages for carbon nanotube structures (2 V μm(-1)) but with greatly increased emission current, better stability, and longer lifetime. PMID:24224845

  10. Three-layer antireflection diamond-like carbon films on glass

    International Nuclear Information System (INIS)

    Three-layered diamond-like carbon films were grown on the glass from decomposition of toluene and nitrogen by Plasma Enhanced Chemical Vapor Deposition technique. Using the generalized transfer-matrix technique, the optimal parameters of three-layered structures, for which the reflection in the range of 400-750 nm has a minimum, were calculated theoretically. A dependence of the grown films refractive index on the plasma power and nitrogen concentration in the gas mixture was investigated

  11. Wear modelling of diamond-like carbon coatings against steel in deionised water

    OpenAIRE

    Sutton, Daniel Christopher

    2014-01-01

    Diamond-Like Carbon (DLC) coatings are thin protective surface coatings used to reduce friction and minimise wear in a wide range of applications. The focus of this work is the use of DLC coatings within Rolls-Royce’s pressurised water reactors. A strong understanding of material behaviour in this environment is compulsory due to the stringent safety requirements of the nuclear industry. Wear testing of a range of commercial DLC coatings against steel in water, and the dependence of the tribo...

  12. Nanocomposite Diamond-Like Carbon Coatings Studied by AEM and Depth Sensing Indentation Test

    Czech Academy of Sciences Publication Activity Database

    Buršíková, V.; Buršík, Jiří

    Karlsruhe : ECJRC-ITE, 2006, s. 311-311. [EMAS Regional Workshop on Electron Probe Microanalysis of Materials Today - EMAS 2006 /7./. Karlsruhe (DE), 13.05.2006-16.05.2006] R&D Projects: GA ČR(CZ) GA202/05/0607 Institutional research plan: CEZ:AV0Z20410507 Keywords : Nanocomposite Diamond-Like Carbon * AEM * Depth Sensing Indentation Test Subject RIV: BL - Plasma and Gas Discharge Physics

  13. Julia sets and complex singularities in diamond-like hierarchical Potts models

    Institute of Scientific and Technical Information of China (English)

    QIAO; Jianyong

    2005-01-01

    We study the phase transition of the Potts model on diamond-like hierarchical lattices. It is shown that the set of the complex singularities is the Julia set of a rational mapping. An interesting problem is how are these singularities continued to the complex plane. In this paper, by the method of complex dynamics, we give a complete description about the connectivity of the set of the complex singularities.

  14. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    OpenAIRE

    Seong Shan Yap; Chen Hon Nee; Seong Ling Yap; Teck Yong Tou

    2015-01-01

    Nanostructured diamond-like carbon (DLC) films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional depos...

  15. Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were deposited on a Si substrate by electrolysis in a methanol solution at ambient pressure and low temperature. The morphology and microstructure of the resulting DLC films were analysed using atomic force microscopy, Raman spectroscopy, Fourier transformation infrared spectrometry, x-ray photoelectron spectroscopy (XPS), and x-ray excited Auger electron spectroscopy (XAES). The surface energy and mechanical properties of the DLC films were examined, and the growth mechanism of the DLC films in liquid phase electro-deposition is discussed as well. The results of the study show that the hydrogenated diamond-like carbon films are smooth and compact. The percentage of sp3 carbon in the DLC films is determined as 55-60%, based on the corresponding XPS and first-derivative XAES spectra of graphite, diamond, and the tested films. The DLC films show low surface free energy, good mechanical properties, excellent friction-reduction and wear-resistance. It is suggested that methanol dissociates to generate the active species of CH3+ and C2H4 at high voltage applied to the electrode, followed by the generation of the alkyl chain [-CH2-CH2-]n whose C-C and C-H bond lengths and C-C-C and H-C-H bond angles are close to that of diamond. Subsequently, a diamond-like structure was formed by the ordered dehydrogenation of a short-chain [-CH2-CH2-]n in the electrolysis process

  16. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    International Nuclear Information System (INIS)

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al2O3 substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al2O3 substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions

  17. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  18. Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring

    Science.gov (United States)

    Yasumaru, Naoki; Miyazaki, Kenzo; Kiuchi, Junsuke

    2008-02-01

    This paper reports tribological properties of diamond-like carbon (DLC) films nanostructured by femtosecond (fs) laser ablation. The nanostructure was formed in an area of more than 15 mm × 15 mm on the DLC surface, using a precise target-scan system developed for the fs-laser processing. The frictional properties of the DLC film are greatly improved by coating a MoS 2 layer on the nanostructured surface, while the friction coefficient can be increased by surface texturing of the nanostructured zone in a net-like patterning. The results demonstrate that the tribological properties of a DLC surface can be controlled using fs-laser-induced nanostructuring.

  19. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    OpenAIRE

    De Barros Bouchet, M. I.; Matta, C.; Le-Mogne, Th.; Martin, J. Michel; Zhang, Q.; Goddard, W., III; Kano, M; Mabuchi, Y.; J Ye

    2007-01-01

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and 13C glycerol. This was complemented by first-principles-based computer simulations us...

  20. Diamond-like carbon coatings deposited by vacuum arc in artificial hip joints

    OpenAIRE

    Ren, Ying

    2014-01-01

         For biomedical application in the field of artificial hip joints diamond-like carbon (DLC) coatings have been widely studied due to their excellent mechanical, tribological and biological properties. At present the lifetime of such joints is just about 15 years and some (10%) of patients require second replacementent. In consequence, it is currently an urgent need to extend the life expectancy especially for younger patients under 50 years old. As is well known, the wear particles as the...

  1. The effect of RF power on tribological properties of the diamond-like carbon films

    International Nuclear Information System (INIS)

    DLC thin films were prepared by radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) method on silicon substrates using methane (CH4), hydrogen (H2) and gas mixture. We have checked the influence of varying RF power on DLC film. The Raman spectroscopy shows the diamond-like carbon (DLC) amorphous structure of the films. AFM images show the surface roughness of the DLC film decrease with increasing RF power. Also, the friction coefficients were investigated by atomic force microscope (AFM) in friction force microscope (FFM) mode

  2. Morphological analysis and cell viability on diamond-like carbon films containing nanocrystalline diamond particles

    Science.gov (United States)

    Almeida, C. N.; Ramos, B. C.; Da-Silva, N. S.; Pacheco-Soares, C.; Trava-Airoldi, V. J.; Lobo, A. O.; Marciano, F. R.

    2013-06-01

    The coating of orthopedic prostheses with diamond like-carbon (DLC) has been actively studied in the past years, in order to improve mechanical, tribological properties and promote the material's biocompatibility. Recently, the incorporation of crystalline diamond nanoparticles into the DLC film has shown effective in combating electrochemical corrosion in acidic medias. This study examines the material's biocompatibility through testing by LDH release and MTT, on in vitro fibroblasts; using different concentrations of diamond nanoparticles incorporated into the DLC film. Propounding its potential use in orthopedics in order to increase the corrosion resistance of prostheses and improve their relationship with the biological environment.

  3. Panel 2 - properties of diamond and diamond-like-carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.; Clausing, R.E. [Oak Ridge National Lab., TN (United States); Ajayi, O.O.; Liu, Y.Y.; Purohit, A. [Argonne National Lab., IL (United States); Bartelt, P.F. [Deere & Co., Moline, IL (United States); Baughman, R.H. [Allied Signal, Morristown, NJ (United States); Bhushan, B. [Ohio State Univ., Columbus (United States); Cooper, C.V. [United Technologies Research Center, East Hartford, CT (United States); Dugger, M.T. [Sandia National Laboratories, Albuquerque, NM (United States); Freedman, A. [Aerodyne Research, Inc., Billerica, MA (United States); Larsen-Basse, J. [National Science Foundation, Washington, DC (United States); McGuire, N.R. [Caterpillar, Peoria, IL (United States); Messier, R.F. [Pennsylvania State Univ., University Park (United States); Noble, G.L.; Ostrowki, M.H. [John Crane, Inc., Morton Grove, IL (United States); Sartwell, B.D. [Naval Research Lab., Washington, DC (United States); Wei, R. [Colorado State Univ., Fort Collins (United States)

    1993-01-01

    This panel attempted to identify and prioritize research and development needs in determining the physical, mechanical and chemical properties of diamond and diamond-like-carbon films (D/DLCF). Three specific goals were established. They were: (1) To identify problem areas which produce concern and require a better knowledge of D/DLCF properties. (2) To identify and prioritize key properties of D/DLCF to promote transportation applications. (3) To identify needs for improvement in properties-measurement methods. Each of these goals is addressed subsequently.

  4. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan;

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...... obtained by means of a single short and intensive carbon plasma deposition pulse. The deposited DLC coating was characterized by micro-Raman spectroscopy measurements. The DLC coating process gave rise to wide potential possibilities in micro-devices manufacturing productions....

  5. Possible diamond-like nanoscale structures induced by slow highly-charged ions on graphite (HOPG)

    International Nuclear Information System (INIS)

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly-oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosize areas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  6. Possible diamond-like nanoscale structures induced by slow highly-charged ions on graphite (HOPG)

    Energy Technology Data Exchange (ETDEWEB)

    Sideras-Haddad, E. [School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa); iThemba LABS for Accelerator Based Sciences, Johannesburg-Gauteng (South Africa)], E-mail: haddade@physics.wits.ac.za; Schenkel, T. [E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Shrivastava, S.; Makgato, T. [School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa); Batra, A.; Weis, C.D.; Persaud, A. [E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Erasmus, R.; Mwakikunga, B. [School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa)

    2009-08-15

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly-oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosize areas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  7. Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)

    Energy Technology Data Exchange (ETDEWEB)

    Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

    2009-01-06

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  8. Films and Disperse Materials Based on Diamond-Like and Related Structures

    Science.gov (United States)

    Gun'ko, V. M.; Mikhalovsky, S. V.; Mikhalovska, L. I.; Tomlins, P.; Field, S.; Teer, D. G.; Fitzgerald, S.; Fucassi, F.; Bogatyrev, V. M.; Semikina, T. V.; Turanska, S. P.; Borysenko, M. V.; Turov, V. V.; Gorbyk, P. P.

    Structural, adsorption, mechanical and other properties of diamond-like carbon (DLC) films, ultradisperse diamonds and porous diamond compacts were studied in comparison with Ti, TiO X , TiN X , TiC, Zr, ZrO X , ZrN X , ZrC, SiO2, graphite-like carbon film and graphitised carbon black. Control of the properties of DLC materials by doping or surface modification, high mechanical characteristics and tribological behaviour, chemical passivity, biocompatibility and nontoxicity allow the use of these materials in industry and medicine.

  9. Femtosecond pulsed laser ablation of diamond-like carbon films on silicon

    International Nuclear Information System (INIS)

    Femtosecond pulsed laser ablation (τ = 120 fs, λ = 800 nm, repetition rate = 1 kHz) of thin diamond-like carbon (DLC) films on silicon was conducted in air using a direct focusing technique for estimating ablation threshold and investigating the influence of ablation parameter on the morphological features of ablated regions. The single-pulse ablation threshold estimated by two different methods were φ th(1) = 2.43 and 2.51 J/cm2. The morphological changes were evaluated by means of scanning electron microscopy. A comparison with picosecond pulsed laser ablation shows lower threshold and reduced collateral thermal damage

  10. Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals

    OpenAIRE

    Camargo Junior, S. S.; Gomes, J. R.; Carrapichano, J. M.; Silva, R F; Achete, C. A.

    2005-01-01

    Amorphous silicon carbide (a-SiC) and silicon-incorporated diamond-like carbon films (DLC-Si) were evaluated as protective and friction reduction coatings onto Si3N4 rings. Unlubricated tribological tests were performed with a pin-on-disk apparatus against stainless steel pins with loads ranging from 3 N to 55 N and sliding velocities from 0.2 m/s to 1.0 m/s under ambient air and 50-60% relative humidity. At the lowest loads, a-SiC coatings present a considerable improvement with respect to t...

  11. Modulation polarimetry of full internal reflection, broken by diamond-like films

    Directory of Open Access Journals (Sweden)

    Maksimenko L. S.

    2013-02-01

    Full Text Available This article presents research results on diamond-like films produced under different technological conditions. The parameter ρ — polarization difference — has been introduced. It has been found from spectral features of the parameter ρ that the interaction of electromagnetic radiation with the electronic system of specimens, which occurs in the used spectral range, consists of local and polariton surface resonances, differing in frequencies and times of relaxations. The autors concluded that the correlation in resonance intensity is defined by the structural characteristics of the specimens. These results show that modulation polarimetry is a perspective technique for diagnostics of the structural homogeneity of composite nanocluster films.

  12. Visible photoluminescence from ZnO/diamond-like carbon thin films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-chun; LI Qing-shan; DONG Yan-feng; MA Zi-xia

    2012-01-01

    ZnO/diamond-like carbon (DLC) thin films are deposited by pulsed laser deposition (PLD) on Si (111) wafer.Visible room-temperature photoluminescence (PL) is observed from ZnO/DLC thin films by fluorescence spectrophotometer.The Gaussian curve fitting of PL spectra reveals that the broadband visible emission contains three components with λ=508 nm,554 nm and 698 nm.The origin and possible mechanism of the visible PL are discussed,and they can be attributed to the PL recombination of ZnO and DLC thin films.

  13. Diamond-like BC3 as a superhard conductor identified by ideal strength calculations

    International Nuclear Information System (INIS)

    We present first-principles calculations on the ideal strength of a diamond-like (d-) BC3 phase under tensile and shear deformation. The results show that d-BC3 is comparable in strength to cubic BN, the second (only to diamond) hardest material known. Moreover, the calculated electronic density of states reveal that d-BC3 is metallic not only at equilibrium but also under large tensile and shear deformation, making it the hardest conductor studied to date. We identify a metastable graphitic BC3 precursor that has a low energy barrier to transform into d-BC3

  14. Photocatalysis Activity and Physicochemical Structure of Titanium Dioxide Co-doped with N and B

    Institute of Scientific and Technical Information of China (English)

    YAN Gui-Yang; ZHENG Liu-Ping; LIN Shen; YE Jin-Hua

    2008-01-01

    Titanium dioxide co-doped with N and B was prepared by sol-gel method. The photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light. Its physicochemical properties were characterized by means of UV-Vis DRS, XRD, FT-IR, and XPS. The results indicated that N-B-TiO2 has good activity to the photodegradation of MB. Its decolourizing rate of methylene blue solution goes up to 98.4% under the visible light irradiation with 5 h. The doping nitrogen forms N-Ti-O and boron primarily existing in oxide appears in the N-B-TiO2 sample. They response for visible light of TiO2 was also exploited.

  15. Understanding run-in behavior of diamond-like carbon friction and preventing diamond-like carbon wear in humid air.

    Science.gov (United States)

    Marino, Matthew J; Hsiao, Erik; Chen, Yongsheng; Eryilmaz, Osman L; Erdemir, Ali; Kim, Seong H

    2011-10-18

    The friction behavior of diamond-like carbon (DLC) is very sensitive to the test environment. For hydrogen-rich DLC tested in dry argon and hydrogen, there was always an induction period, so-called "run-in" period, during which the friction coefficient was high and gradually decreased before DLC showed an ultralow friction coefficient (less than 0.01) behavior. Regardless of friction coefficients and hydrogen contents, small amounts of wear were observed in dry argon, hydrogen, oxygen, and humid argon environments. Surprisingly, there were no wear or rubbing scar on DLC surfaces tested in n-pentanol vapor conditions, although the friction coefficient was relatively high among the five test environments. Ex situ X-ray photoelectron and near-edge X-ray absorption fine-structure spectroscopy analyses failed to reveal any differences in chemical composition attributable to the environment dependence of DLC friction and wear. The failure of getting chemical information of oxygenated surface species from the ex situ analysis was found to be due to facile oxidation of the DLC surface upon exposure to air. The removal or wear of this surface oxide layer is responsible for the run-in behavior of DLC. It was discovered that the alcohol vapor can also prevent the oxidized DLC surface from wear in humid air conditions. PMID:21888344

  16. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  17. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    International Nuclear Information System (INIS)

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp3/sp2 after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp3/sp2 after laser treatment

  18. Tribological properties and structural investigation of Diamond-like nano-composites

    International Nuclear Information System (INIS)

    Diamond-Like Nano composites (DylynTM) are a new family of hard amorphous coatings combining high hardness, high elasticity, low friction and good adhesion on a variety of substrates. Mechanical properties of several DylynTM films and metal-doped DylynTM films have been investigated using nano-indentation and ball-on-disk measurements. Nano hardness up to 17 GPa is reported. The coefficient of friction, measured in air at 50% relative humidity and using a steel ball with 10 N normal load, can be tailored to be typically 0.05 - 0.07. This low-friction behaviour opens up applications of these films as hard, self-lubricating, low-friction coatings. Structural characterization has been performed using Grazing Incidence X-Ray Diffraction (GIXRD), X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Rutherford Backscattering Spectroscopy (RBS) and Elastic Recoil Detection (ERD). X-ray studies indicate that the films are completely amorphous. XPS shows that the films consist mainly of a C-based and a Si-O network. AES measurements yield spectra comparable to diamond-like carbon (DLC) due to the presence of sp3-bonded C. Finally, atomic concentrations, including the H content, have been determined with RBS and ERD. (author). 4 refs., 2 figs

  19. Characterization of the Diamond-like Carbon Based Functionally Gradient Film

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Diamond-like carbon coatings have been used as solid lubricating coatings in vacuum technology for their goodphysical and chemical properties. In this paper, the hybrid technique of unbalanced magnetron sputtering and plasmaimmersion ion implantation (PIll) was adopted to fabricate diamond-like carbon-based functionally gradient film,N/TiN/Ti(N,C)/DLC, on the 304 stainless steel substrate. The film was characterized by using Raman spectroscopyand glancing X-ray diffraction (GXRD), and the topography and surface roughness of the film was observed usingAFM. The mechanical properties of the film were evaluated by nano-indentation. The results showed that the surfaceroughness of the film was approximately 0.732 nm. The hardness and elastic modulus, fracture toughness andinterfacial fracture toughness of N/TiN/Ti(N,C)/DLC functionally gradient film were about 19.84 GPa, 190.03 GPa,3.75 MPa.m1/2 and 5.68 MPa@m1/2, respectively. Compared with that of DLC monolayer and C/TiC/DLC multilayer,this DLC gradient film has better qualities as a solid lubricating coating.

  20. Ellipsometry studies on nitrogenated diamond-like carbon (DLC) thin films produced by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Nitrogen doped Diamond-like carbon thin films were deposited on n-Si and SiO2 substrates by rf magnetron sputtering using pure graphite (99.999%) as the target material and mixtures of Ar, N2 and H2 for plasma generation. The dependence of structural and optical properties on nitrogen content was investigated using XPS, Raman spectroscopy, FT-IR spectroscopy, and Ellipsometry studies. It was found that as the nitrogen content was increased in the plasma, sp2 bonding favored. Also it was observed that oxygen contamination increased with nitrogen content. Typical C-H stretching modes connected with diamond-like carbon could be seen in FT-IR spectra. The ID and IG bands were well defined and it was observed that as nitrogen content increased IG band was enhanced. Ellipsometry studies revealed that the optical constants like refractive index (n) and extinction co-efficient (k) increased with increase in nitrogen content as well as substrate temperature. (author)

  1. Synthesis of functional diamond-like carbon nanocomposite films containing titanium dioxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kuo-Cheng [Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Hong, Franklin Chau-Nan, E-mail: hong@mail.ncku.edu.t [Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Taiwan (China)

    2010-10-01

    Synthesis of diamond-like carbon (DLC) films with UV-induced-hydrophilicity function was studied by inductively-coupled plasma (ICP) chemical vapor deposition. Titanium tetraisopropoxide (TTIP) and oxygen gases were employed as the precursors to deposit diamond-like nanocomposite films containing titanium dioxide (TiO{sub 2}) nanoparticles. X-ray diffraction and high-resolution transmission electron microscopy revealed that TiO{sub 2} nanocrystallites were formed in the DLC films when oxygen concentration was higher than TTIP concentration during deposition. The DLC nanocomposite film was hydrophobic without ultraviolet (UV) irradiation, and became highly hydrophilic under UV irradiation, exhibiting the self-cleaning effect. A very broad peak centered at 1580 cm{sup -1} was observed in the Raman spectra confirming the formation of DLC films. The hardness of the film was about 8 GPa with a stress of 3 GPa. ICP was essential in forming the photocatalytic TiO{sub 2} nanoparticles in the DLC matrix.

  2. Corrosion behavior of titanium alloy Beta-21S coated with diamond like carbon in Hank's solution

    Science.gov (United States)

    Mohan, L.; Anandan, C.; Grips, V. K. William

    2012-06-01

    Diamond like carbon (DLC) coatings posses high hardness and low friction coefficient and also biocompatible, hence, they are of interest for enhancing the wear and corrosion resistance of bio-implant materials. Beta stabilized titanium alloys are attractive for biomedical applications because of their high specific strength and low modulus. In this work Beta-21S alloy (Ti-15Mo-3Nb-3Al-0.2Si) was implanted with carbon ions by plasma immersion ion implantation using methane and hydrogen gas mixture followed by DLC deposition by plasma enhanced chemical vapour deposition (PECVD). The implanted layers enabled deposition of adherent diamond-like carbon coatings on the titanium alloy which was otherwise not possible. The corrosion behavior of the treated and untreated samples was investigated through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies in simulated body fluid (Hank's solution). XPS, micro Raman and EDAX investigation of the samples showed the formation of a thin oxide layer on the treated samples after corrosion experiments. Corrosion resistance of the DLC coated sample is comparable with that of the untreated samples. Electrochemical impedance data of the substrate and implanted samples were fitted with two time constant equivalent circuits and that of DLC coated samples with two-layer model.

  3. Dual-ion-beam deposition of carbon films with diamond-like properties

    Science.gov (United States)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1985-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.

  4. The local crystallization in nanoscale diamond-like carbon films during annealing

    International Nuclear Information System (INIS)

    The local crystallization during annealing at 600 °C in nanoscale diamond-like carbon coatings films grown by pulsed vacuum-arc deposition method was observed using modern techniques of high-resolution transmission electron microscopy. The crystallites formed by annealing have a face-centred cubic crystal structure and grow in the direction [01¯1¯] as a normal to the film surface. The number and size of the crystallites depend on the initial values of the intrinsic stresses before annealing, which in turn depend on the conditions of film growth. The sizes of crystallites are 10 nm for films with initial compressive stresses of 3 GPa and 17 nm for films with initial compressive stresses of 12 GPa. Areas of local crystallization arising during annealing have a structure different from the graphite. Additionally, the investigation results of the structure of nanoscale diamond-like carbon coatings films using Raman spectroscopy method are presented, which are consistent with the transmission electron microscopy research results

  5. Controlling the work function of a diamond-like carbon surface by fluorination with XeF2

    International Nuclear Information System (INIS)

    Thin diamond-like carbon films were subjected to fluorination with gaseous XeF2 under ultrahigh vacuum conditions in order to increase the work function of the diamond-like carbon surface. Changes in the work function and surface composition were monitored with UV photoemission spectroscopy and x-ray photoemission spectroscopy, respectively. Successive XeF2 exposures raised the work function by as much as 1.55 eV. Surprisingly, approximately half of the increase in the work function occurred while the coverage of fluorine remained below 0.02 monolayers (ML). This suggests that initial doses of XeF2 remove extrinsic adsorbates from the diamond-like carbon film and that fluorine desorbs with the reaction products. Increasing the exposure of the diamond-like carbon to XeF2 leads to the expected covalent fluorination of the surface, which saturates at fluorine coverages of 6 F atoms/nm2 (∼0.3 ML). Annealing of the diamond-like carbon to temperatures above 850 K was required to reduce the surface fluorine concentration to undetectable levels. This did not, however, cause the work function to return to its original, prefluorination value.

  6. Radioluminescence spectra of PWO crystals (co)doped by Ba

    Czech Academy of Sciences Publication Activity Database

    Boháček, Pavel; Nikl, Martin; Solovieva, Natalia; Trunda, Bohumil

    2004-01-01

    Roč. 38, - (2004), s. 363-365. ISSN 1350-4487 R&D Projects: GA ČR GA202/01/0753; GA MŠk ME 519 Institutional research plan: CEZ:AV0Z1010914 Keywords : lead tungstate * Ba (co)doping -radioluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.664, year: 2004

  7. Co doped ZnO nanowires as visible light photocatalysts

    Science.gov (United States)

    Šutka, Andris; Käämbre, Tanel; Pärna, Rainer; Juhnevica, Inna; Maiorov, Mihael; Joost, Urmas; Kisand, Vambola

    2016-06-01

    High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV-visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10-3 min-1 in case of nanoparticles and 4.2·10-3 min-1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.

  8. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag87.5Cu12.5-alloy (10 nm)/DLC (140 nm)/Ag87.5Cu12.5-alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  9. Properties of Diamond-Like Carbon Films Synthesized by Dual-Target Unbalanced Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    LIU Cui; LI Guo-Qing; GOU Wei; MU Zong-Xin; ZHANG Cheng-Wu

    2004-01-01

    @@ Smooth, dense and uniform diamond-like carbon films (DLC films) for industrial applications have successfully been prepared by dual-target unbalanced magnetron sputtering and the DLC characteristics of the films are confirmed by Raman spectra. It is found that the sputtering current of target plays an important role in the DLC film deposition. Deposition rate of 3.5μm/h is obtained by using the sputtering current of 30 A. The friction coefficient of the films is 0.2-0.225 measured by using a pin-on-disc microtribometer. The structure of the films tends to have a growth of sp3 bonds content at high sputtering current. The compressive residual stress in the films increases with the increasing sputtering current of the target.

  10. Tantalum as a buffer layer in diamond-like carbon coated artificial hip joints.

    Science.gov (United States)

    Kiuru, Mirjami; Alakoski, Esa; Tiainen, Veli-Matti; Lappalainen, Reijo; Anttila, Asko

    2003-07-15

    The acid resistance of tantalum coated and uncoated human hip joint prostheses was studied with commercial CrCoMo acetabular cups. The samples were exposed to 10% HCl solution and the quantities of dissolved Cr, Co, and Mo were measured with proton-induced X-ray emission (PIXE). The absolute quantities were obtained with the use of Cr and Se solution standards. Tantalum coatings (thicknesses 4-6 microm) were prepared in vacuum with magnetron sputtering. Tantalum coating decreased the corrosion rate by a factor of 10(6). As a spinoff from recent wear tests on artificial hip joints it was shown that tantalum has excellent mechanical properties as an intermediate layer of diamond-like carbon (DLC) coatings. When tantalum was tested together with DLC on three metal-on-metal hip joint pairs in a hip simulator, no observable defects occurred during 15 million walking cycles with a periodic 50-300-kg load (Paul curve). PMID:12808604

  11. Experimental Study of Diamond Like Carbon (DLC) Coated Electrodes for Pulsed High Gradient Electron Gun

    CERN Document Server

    Paraliev, M; Ivkovic, S; Le Pimpec, F

    2010-01-01

    For the SwissFEL Free Electron Laser project at the Paul Scherrer Institute, a pulsed High Gradient (HG) electron gun was used to study low emittance electron sources. Different metals and surface treatments for the cathode and anode were studied for their HG suitability. Diamond Like Carbon (DLC) coatings are found to perform exceptionally well for vacuum gap insulation. A set of DLC coated electrodes with different coating parameters were tested for both vacuum breakdown and photo electron emission. Surface electric fields over 250MV/m (350 - 400kV, pulsed) were achieved without breakdown. From the same surface, it was possible to photo-emit an electron beam at gradients up to 150MV/m. The test setup and the experimental results are presented

  12. Atomic oxygen resistant behaviors of Mo/diamond-like carbon nanocomposite lubricating films

    International Nuclear Information System (INIS)

    Mo doped diamond-like carbon (Mo/DLC) films were deposited on Si substrates via unbalanced magnetron sputtering of molybdenum combined with plasma chemical vapor deposition of CH4/Ar. The microstructure of the films, characterized by transmission electron microscopy and selected area electron diffraction, was considered as a nanocomposite with nano-sized MoC particles uniformly embedded in the amorphous carbon matrix. The structure, morphology, surface composition and tribological properties of the Mo/DLC films before and after the atomic oxygen (AO) irradiation were investigated and a comparison made with the DLC films. The Mo/DLC films exhibited more excellent degradation resistant behaviors in AO environment than the DLC films, and the MoC nanoparticles were proved to play a critical role of preventing the incursion of AO and maintaining the intrinsic structure and excellent tribological properties of DLC films.

  13. Low-friction behaviour of boundary-lubricated diamond-like carbon coatings containing tungsten

    International Nuclear Information System (INIS)

    It is generally accepted and well described that the mechanism by which extreme-pressure (EP) and antiwear (AW) additives reduce the friction and wear of metallic surfaces under boundary lubrication is the formation of tribochemical films. Although investigations of diamond-like carbon (DLC)-coated surfaces showed improved tribological properties when lubricated by additivated oil, the mechanism responsible is not fully understood. Therefore, the aim of the investigation was to determine the mechanism responsible for the low-friction behaviour of W-containing DLC coatings when lubricated with polyalphaolefin (PAO) oil containing EP or AW additives and to obtain some further understanding to this important area. The results of the present investigation clearly show that low-friction behaviour of boundary-lubricated W-DLC coatings is governed by formation of WS2-containing tribofilms on the steel countersurface or exposed steel substrate, which reduce friction by up to 50%

  14. Influences of ultraviolet irradiation on structure and tribological properties of diamond-like carbon films

    International Nuclear Information System (INIS)

    Two types of diamond-like carbon (DLC) films with different bonding configurations were produced by pulse-assisted and DC-assisted plasma chemical vapor deposition. The chemical composition, surface morphology, microstructure, internal stress and tribological properties of the two films before and after the ultraviolet (UV) irradiation were investigated and compared. It was found that the UV irradiation had little effects on the chemical composition and surface morphology of both the films, but greatly influenced their tribological properties in the opposite trends. This result was attributed to the different changing outcomes of the bonding configuration induced by the UV actions of primary photo-dissociation and secondary recombination, wherein the inherent bonding configuration and internal stress played important roles.

  15. Tribological properties of ion beam deposited diamond-like carbon film on silicon nitride

    International Nuclear Information System (INIS)

    The present article reports on the physical characterization and tribological properties of diamond-like carbon (DLC) films deposited on structural Si3N4 substrates. The films were deposited by the direct ion beam deposition technique. The ion beam was produced by plasma discharge of pre-mixed methane and hydrogen gas in a Kaufman-type ion source. The deposited films were found to be amorphous and contained about 70% carbon and 30% hydrogen. The friction coefficient of an uncoated Si3N4 ball on a DLC coated Si3N4 disc starts at about 0.2, then decreases rapidly to 0.1-0.15 with increasing sliding distance. Increasing humidity results in a slight increase in friction coefficient, but a significant decrease in wear factor. The wear factor for the tests at ≅60% rh (relative humidity) are about an order of magnitude smaller than the tests at 3% rh. (orig.)

  16. Synthesis and tribological properties of diamond-like carbon films by electrochemical anode deposition

    Science.gov (United States)

    Li, Yang; Zhang, GuiFeng; Hou, XiaoDuo; Deng, DeWei

    2012-06-01

    Diamond-like carbon films (DLC) are deposited on Ti substrate by electrochemical anodic deposition at room temperature in pure methanol solution using a pulsed DC voltage at a range from 200 V to 2000 V. Raman spectroscopy analysis of the films reveals two broaden characteristic absorption peaks centred at ˜1350 cm-1 and 1580 cm-1, relating to D- and G-band of typical DLC films, respectively. A broad peak centred at 1325-1330 cm-1 is observed when an applied potential is 1200 V, which can confirm that the deposited films contained diamond structure phase. Tribological properties of the coated Ti substrates have been measured by means of a ball-on-plate wear test machine. A related growth mechanism of DLC films by the anodic deposition mode has also been discussed.

  17. Hydrogenated diamond-like carbon film deposited on UHMWPE by RF-PECVD

    International Nuclear Information System (INIS)

    In this work, investigations were conducted to analyze the properties of diamond-like carbon (DLC) film deposited on ultra-high molecular weight polyethylene (UHMWPE) by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) at a low temperature of 50 deg. C. Composition and structure of the films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Hardness and wettability of the film were tested. Tribological characterizations were carried out on a universal micro-tribometer, and reciprocating friction against ZrO2 ball was adopted with 25% bovine serum as lubrication. Results show that DLC film was successfully deposited on UHMWPE surface by RF-PECVD and the sp3 content was about 20% in the film. The film increased the macrohardness of the substrate by about 42% and the wettability was improved too. Tribology test showed a higher friction coefficient but a much smaller wear volume after the deposition due to the surface roughening and strengthening.

  18. Structure and mechanical properties of tungsten-containing hydrogenated diamond like carbon coatings for space applications

    Science.gov (United States)

    Jun, Zheng; Hui, Zhou; Zhi-hua, Wan; Rui-peng, Sang

    Tungsten-containing diamond like carbon (W-C:H) coatings were prepared by unbalanced magnetron sputtering (UBM) using tungsten carbide targets in Ar/C2H2 atmosphere. The structure and mechanical properties of these coatings with different C2H2 flow (from 40 sccm to 140 sccm) were studied. According to the analysis of Raman spectroscopy and the measurement of hardness and Young's modulus about the coatings, it was showed that sp3/sp2 ratio in the coatings changed and the hardness and Young's modulus decreased with increase of the C2H2 flow. Besides, the adhension and friction wear properties of the coatings were evaluated using the scratch test and dry sliding tests respectively. It was found that the coatings exhibited very good adhension and the C2H2 flow (actually the hydrogen) played a very important role in the tribological behavior of the W-C:H coatings in vacuum.

  19. Field emission of nitrogen-doped diamond-like-carbon (DLC) thin film

    International Nuclear Information System (INIS)

    An experimental study of the field emission from nitrogen doped Diamond-Like-Carbon (DLC) thin films prepared by plasma Chemical Vapor Deposition (CVD) was carried out for the purpose of investigating the characteristic of field electron emission from the surface of nitrogen doped DLC thin film. Thin DLC film was deposited on silicon using the plasma CVD method, from a mixture of Methane (CH4), Helium (He) and Nitrogen (N2) at room temperature. Emission current was measured while high volume of voltage was applied between the cathode-anode diode structures. Barrier height was obtained by current density-electric field (J-E) characteristic in the relation of Fowler-Nordheim equation. The value of barrier height in range of 0.03 eV to 0.06 eV was obtained and considered as low barrier. (Author)

  20. Role of atomic transverse migration in growth of diamond-like carbon films

    Institute of Scientific and Technical Information of China (English)

    Ma Tian-Bao; Hu Yuan-Zhong; Wang Hui

    2007-01-01

    The growth of diamond-like carbon (DLC) films is studied using molecular dynamics simulations. The effect of impact angle on film structure is carefully studied, which shows that the transverse migration of the incident atoms is the main channel of film relaxation. A transverse-migration-induced film relaxation model is presented to elucidate the process of film relaxation which advances the original model of subplantation. The process of DLC film growth on a rough surface is also investigated, as well as the evolution of microstructure and surface morphology of the film. A preferential-to-homogeneous growth mode and a smoothing of the film are observed, which are due to the transverse migration of the incident atoms.

  1. Preparation and Characteristics of Nanoscale Diamond-Like Carbon Films for Resistive Memory Applications

    International Nuclear Information System (INIS)

    We propose diamond-like carbon (DLC) as the resistance change material for nonvolatile memory applications. Nanoscale DLC films are prepared by filtered cathodic vacuum arc technique and integrated to W/DLC/W structure devices. The deposited DLC film has a thickness of about 20 nm and high sp3 fraction content. Reversible bistable resistive switching from a high resistance state to a low resistance state, and vice versa, is observed under appropriate unipolar stimulation pulses. High resistance switching ratio (larger than a thousand times) and low level of switching power (about 11 μW) are demonstrated. We propose that the mechanism of the repetitive resistive switching is the growth and breakage of conductive sp2-like filaments in the predominantly sp3-type insulating carbon upon applications of voltage pulses, which is consistent with the experimental results

  2. Oxygen plasma etching of silver-incorporated diamond-like carbon films

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) film as a solid lubricant coating represents an important area of investigation related to space devices. The environment for such devices involves high vacuum and high concentration of atomic oxygen. The purpose of this paper is to study the behavior of silver-incorporated DLC thin films against oxygen plasma etching. Silver nanoparticles were produced through an electrochemical process and incorporated into DLC bulk during the deposition process using plasma enhanced chemical vapor deposition technique. The presence of silver does not affect significantly DLC quality and reduces by more than 50% the oxygen plasma etching. Our results demonstrated that silver nanoparticles protect DLC films against etching process, which may increase their lifetime in low earth orbit environment.

  3. Diamond-Like Carbon Film Deposition Using DC Ion Source with Cold Hollow Cathode

    Directory of Open Access Journals (Sweden)

    E. F. Shevchenko

    2014-01-01

    Full Text Available Carbon diamond-like thin films on a silicon substrate were deposited by direct reactive ion beam method with an ion source based on Penning direct-current discharge system with cold hollow cathode. Deposition was performed under various conditions. The pressure (12–200 mPa and the plasma-forming gas composition consisting of different organic compounds and hydrogen (C3H8, CH4, Si(CH32Cl2, H2, the voltage of accelerating gap in the range 0.5–5 kV, and the substrate temperature in the range 20–850°C were varied. Synthesized films were researched using nanoindentation, Raman, and FTIR spectroscopy methods. Analysis of the experimental results was made in accordance with a developed model describing processes of growth of the amorphous and crystalline carbon materials.

  4. Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2015-01-01

    Full Text Available Structure and properties of Cu-doped diamond-like carbon films (DLC were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.% on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.

  5. Magnetic studies of surface properties of binary diamond-like semiconductors

    International Nuclear Information System (INIS)

    Behaviour of the surface of GaAs, ZnSe, ZnTe binary semiconductors under conditions of thermal vacuum treatment and during their interaction with gas media: H2, CO2, CO2 + H2 is studied using the methods of magnetic susceptibility. Pronounced influence of sample dispersion and treatment on the magnetic susceptibility. Pronounced influence of sample dispersion and treatment on the magnetic susceptibility and EPR spectra is found out. It is established that hydrogen and CO2 + H2 mixture adsorption leads to the increase of the system surfasce paramagnetism especially noticeable at high temperatures. CO2 adsorption effect the magnetic properties in different ways depending on the semiconductor nature and state. The mechanism of gas adsorption on diamond-like semiconductors, proposed by authors, is confirmed. The hydrogen adsorption mainly takes place on vacancy defects with formation of ion radicals, but CO2 adsorption takes place on surface atoms with formation of donor-acceptor and dative bonds

  6. Diamond like carbon coatings deposited by microwave plasma CVD: XPS and ellipsometric studies

    Indian Academy of Sciences (India)

    R M Dey; M Pandey; D Bhattacharyya; D S Patil; S K Kulkarni

    2007-12-01

    Diamond-like carbon (DLC) films were deposited by microwave assisted chemical vapour deposition system using d.c. bias voltage ranging from –100 V to –300 V. These films were characterized by X-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry techniques for estimating 3/2 ratio. The 3/2 ratio obtained by XPS is found to have an opposite trend to that obtained by spectroscopic ellipsometry. These results are explained using sub-plantation picture of DLC growth. Our results clearly indicate that the film is composed of two different layers, having entirely different properties in terms of void percentage and 3/2 ratio. The upper layer is relatively thinner as compared to the bottom layer.

  7. Characterization of diamond-like carbon films by SEM, XRD and Raman spectroscopy

    International Nuclear Information System (INIS)

    Diamond-like carbon films were deposited by electrolysis of a water-ethanol solution on Cu at low voltages (60-100 V) at 2 mm interelectrode separation. The films were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and Raman spectroscopy. The films were found to be continuous and compact with uniform grain distribution. Raman spectroscopy analysis revealed two broad bands at ∼1350 and ∼1580 cm-1. The downshift of the G band of graphite is indicative of the presence of DLC. For XRD analysis, the three strong peaks located at 2θ values of 43.2 deg., 74.06 deg. and 89.9 deg. can be identified with reflections form (1 1 1), (2 2 0) and (3 1 1) plane of diamond.

  8. Fabrication of Diamond-like Carbon Films by Ion Assisted Middle Frequency Unbalanced Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi-chen; SUN Shao-ni; ZHOU Yi; MA Sheng-ge; BA De-chun

    2006-01-01

    Diamond-like carbon (DLC) films are deposited by the Hall ion source assisted by the mid-frequency unbalanced magnetron sputtering technique. The effects of the substrate voltage bias, the substrate temperature, the Hall discharging current and the argon/nitrogen ratio on the DLC film's performance were studied. The experimental results show that the film's surface roughness, the hardness and the Young's modulus increase firstly and then decrease with the bias voltage incrementally increases. Also when the substrate temperature rises, the surface roughness of the film varies slightly, but its hardness and Young's modulus firstly increase followed by a sharp decrease when the temperature surpassing 120 ℃. With the Hall discharging current incrementally rising, the hardness and Young's modulus of the film decrease and the surface roughness of the film on 316L stainless steel firstly decreased and then remains constant.

  9. In Vitro Durability - Pivot bearing with Diamond Like Carbon for Ventricular Assist Devices

    CERN Document Server

    de Sá, Rosa Corrêa Leoncio; Leão, Tarcísio Fernandes; da Silva, Evandro Drigo; da Fonseca, Jeison Willian Gomes; da Silva, Bruno Utiyama; Leal, Edir Branzoni; Moro, João Roberto; de Andrade, Aron José Pazin; Bock, Eduardo Guy Perpétuo

    2015-01-01

    Institute Dante Pazzanese of Cardiology (IDPC) develops Ventricular Assist Devices (VAD) that can stabilize the hemodynamics of patients with severe heart failure before, during and/or after the medical practice; can be temporary or permanent. The ADV's centrifugal basically consist of a rotor suspended for system pivoting bearing; the PIVOT is the axis with movement of rotational and the bearing is the bearing surface. As a whole system of an implantable VAD should be made of long-life biomaterial so that there is no degradation or deformation during application time; surface modification techniques have been widely studied and implemented to improve properties such as biocompatibility and durability of applicable materials. The Chemical Vapour Deposition technique allows substrates having melting point higher than 300 {\\deg}C to be coated, encapsulated, with a diamond like carbon film (DLC); The test simulated the actual conditions in which the system of support remains while applying a ADV. The results hav...

  10. Oxygen plasma etching of silver-incorporated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, F.R., E-mail: fernanda@las.inpe.b [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil); Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Bonetti, L.F. [Clorovale Diamantes Industria e Comercio Ltda, Estr. do Torrao de Ouro, 500-Sao Jose dos Campos, 12229-390, SP (Brazil); Pessoa, R.S.; Massi, M. [Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Santos, L.V.; Trava-Airoldi, V.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil)

    2009-08-03

    Diamond-like carbon (DLC) film as a solid lubricant coating represents an important area of investigation related to space devices. The environment for such devices involves high vacuum and high concentration of atomic oxygen. The purpose of this paper is to study the behavior of silver-incorporated DLC thin films against oxygen plasma etching. Silver nanoparticles were produced through an electrochemical process and incorporated into DLC bulk during the deposition process using plasma enhanced chemical vapor deposition technique. The presence of silver does not affect significantly DLC quality and reduces by more than 50% the oxygen plasma etching. Our results demonstrated that silver nanoparticles protect DLC films against etching process, which may increase their lifetime in low earth orbit environment.

  11. Surface properties and cell behaviour of diamond-like carbon coatings produced by plasma immersion

    International Nuclear Information System (INIS)

    The morphology, microstructure and roughness of the diamond-like carbon (DLC) films produced by plasma immersion were investigated. Vero cells (fibroblasts) were utilized for the in vitro biocompatibility studies of the DLC-coated Ti-13Nb-13Zr alloy. In the cytotoxicity assay, fibroblast cells were cultured for a period of 24 h, and in the adhesion assay, cells were cultured for a period of 2 and 24 h. The cell morphology was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). No evidence was found that the presence of the DLC coating had any adverse effect. Our results show that the adherence of fibroblasts was significantly enhanced when Ti alloy was coated with DLC from the uncoated

  12. Diamond-like films deposited in the plasma of barrier and surface discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    The structure and properties were investigated of carbon coatings deposited in the plasma of barrier and surface discharges at atmospheric pressure. To examine the structure of the coatings, methods of transmission electron microscopy and electron diffraction analysis were used. The coatings produced in a barrier discharge in methane and in acetylene-hydrogen mixtures are similar in chemical and phase composition to amorphous diamond-like carbon films produced at low pressures by conventional deposition techniques. However, the coatings have a significant number of defects, evidently caused by the inherent microstructure of the barrier discharge. From this point of view, the use of a surface discharge is much more promising. The coatings produced in a surface discharge have almost no microdefects and both the spatial distribution of the energy delivered to the discharge and the transport of film-forming particles towards the substrate are more efficient. (J.U.)

  13. Ion-implanted Mechanism of the Deposition Process for Diamond-Like Carbon Films

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-Min; WU Wei-Dong; WANG Yu-Ying; WANG Hai-Ping; GE Fang-Fang; TANG Yong-Jian; JU Xin

    2011-01-01

    Due to the local densification, high-energy C and doped ions can greatly affect the bonding configurations of diamond-like carbon films. We investigate the corresponding affection of different incident ions with energy from WeV to 600eV by Monte Carlo methods. The ion-implanted mechanism called the subplantation (for C, N, O, W, Y, etc.) is confirmed. Obvious thermal effect could be induced by the subplantation of the incident ions. Further, the subplantation of C ions is proved by in situ reflection high energy electron diffraction (RHEED). The observation from an atomic force microscope (AFM) indicates that the initial implantation of C ions might result in the final primitive-cell-like morphology of the smooth film (in an area of 1.2 mm × 0.9 mm, rms roughness smaller than 20 nm by Wyko).

  14. Diamond-like nanocomposite coatings for LIGA-fabricated nickel alloy parts.

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Somuri V.; Scharf, Thomas W.

    2005-03-01

    A commercial plasma enhanced chemical vapor deposition (PECVD) technique with planetary substrate rotation was used to apply a thin (200-400 nm thick) conformal diamond-like carbon (DLC) coating (known as a diamond-like nanocomposite (DLN)) on LIGA fabricated Ni-Mn alloy parts. The PECVD technique is known to overcome the drawbacks associated with the line-of-sight nature of physical vapor deposition (PVD) and substrate heating inherent with traditional chemical vapor deposition (CVD). The purpose of the present study is to characterize the coverage, adhesion, and tribological (friction and wear) behavior of DLN coatings applied to planar and sidewall surfaces of small featured LIGA Ni-Mn fabricated parts, e.g. 280 {micro}m thick sidewalls. Friction and wear tests were performed in dry nitrogen, dry air, and air with 50% RH at Hertzian contact pressures ranging from 0.3 to 0.6 GPa. The friction coefficient of bare Ni-Mn alloy was determined to be 0.9. In contrast, low friction coefficients ({approx}0.02 in dry nitrogen and {approx}0.2 in 50% RH air) and minimal amount of wear were exhibited for the DLN coated LIGA Ni-Mn alloy parts and test coupons. This behavior was due to the ability of the coating to transfer to the rubbing counterface providing low interfacial shear at the sliding contact; resultantly, coating one surface was adequate for low friction and wear. In addition, a 30 nm thick titanium bond layer was determined to be necessary for good adhesion of DLN coating to Ni-Mn alloy substrates. Raman spectroscopy and cross-sectional SEM with energy dispersive x-ray analysis revealed that the DLN coatings deposited by the PECVD with planetary substrate rotation covered both the planar and sidewall surfaces of LIGA fabricated parts, as well as narrow holes of 300 {micro}m (0.012 inch) diameter.

  15. Low temperature crystallization of diamond-like carbon films to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Tinchev, Savcho, E-mail: stinchev@ie.bas.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia (Bulgaria); Valcheva, Evgenia [Physics Department, Sofia University, J. Bourchier 5, 1164 Sofia (Bulgaria); Petrova, Elitza [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia (Bulgaria)

    2013-09-01

    Plasma surface modification was used to fabricate graphene on the top of insulating diamond-like carbon films. It is shown that by a combination of pulsed argon plasma treatment and thermal annealing at 350{sup o}C it is possible to achieve crystallization of amorphous carbon to graphene. The observed Raman spectra are typical for defected graphene-splitted D- and G-peaks and a broad 2D-peak. Because interpretation of Raman spectra of such complicated system is not easy we have calculated Raman signals of graphene on an amorphous hydrogenated carbon film deposited on a Si substrate. Our simulation results show that multiple reflections and interference effects lead to enhancement of Raman signal of the system. The characteristic for graphene G and 2D bands reach maximal enhancement for thicknesses of the amorphous hydrogenated carbon film of about 75 nm and 230 nm. We estimate that the interference enhancement of the 2D graphene Raman signal is very weak in contrast to that of the G band signal simulated for the underlying diamond-like carbon films on silicon substrate only. Therefore experimentally measured Raman spectra of the whole graphene/a-C:H/Si system probably will consist of interference enhanced but still weak 2D graphene peak and stronger D and G peaks dominated by G and D Raman bands of the a-C:H. This conclusion is in line with observed experimental Raman spectra. Electrical field effect measurements of the samples show ambipolar dependence, typical for single-layer graphene.

  16. Kinetics and thermodynamics of human serum albumin adsorption on silicon doped diamond like carbon

    International Nuclear Information System (INIS)

    To gain a better understanding of protein adsorption onto biomaterial surfaces is required for the control of biocompatibility and bioactivity. Various samples of diamond like carbon (DLC) and silicon-doped DLC were synthesised using plasma enhanced chemical vapour deposition (PECVD). The effects of surface morphology on the interaction of human serum albumin (HSA) with doped and undoped DLC films was investigated using spectroscopic ellipsometry (SE) and other surface analysis techniques. The results highlighted an increase in both contact angle and hydrophobicity with increasing silicon dopant levels. A reduction on the contact angle values. After adsorption of HSA, the films showed a reduction in the contact angle with a significant change in the cosΔ and this gap increased with increasing surface coverage of HSA. The adsorption kinetics of HSA were also investigated and revealed that the maximum adsorption occurred at pH 5.0 and the process involved chemisorption. The experimental isotherm data were analysed using the Langmuir and Freundlich‎ models. The amount of HSA adsorbed increased with contact time and reached saturation ‎after 30 min. The adsorption ‎process was found to be pseudo first order with respect to the bulk concentration and was dependent on both the concentration of protein and surface characteristics of the samples. The amount of adsorbed HSA was higher with higher levels of silicon doping of the DLC. Therefore, doping DLC may provide an approach to controlling the protein adsorption. - Graphical abstract: The average thickness layer of HSA measurement onto surfaces of DLC and Si-DLC. - Highlights: • Diamond Like Carbon (DLC) and Silicon doped DLC were synthesised and characterised. • Si-DLC increases the hydrophobicity and decreases the surface free energy. • Adsorption study using human serum albumin (HSA). • The adsorbed amount of HSA increases with increasing of Silicon content DLC. • Adsorption process follow pseudo

  17. Kinetics and thermodynamics of human serum albumin adsorption on silicon doped diamond like carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Mukhtar H., E-mail: ahmed-m@email.ulster.ac.uk; Byrne, John A.; McLaughlin, James

    2015-03-15

    To gain a better understanding of protein adsorption onto biomaterial surfaces is required for the control of biocompatibility and bioactivity. Various samples of diamond like carbon (DLC) and silicon-doped DLC were synthesised using plasma enhanced chemical vapour deposition (PECVD). The effects of surface morphology on the interaction of human serum albumin (HSA) with doped and undoped DLC films was investigated using spectroscopic ellipsometry (SE) and other surface analysis techniques. The results highlighted an increase in both contact angle and hydrophobicity with increasing silicon dopant levels. A reduction on the contact angle values. After adsorption of HSA, the films showed a reduction in the contact angle with a significant change in the cosΔ and this gap increased with increasing surface coverage of HSA. The adsorption kinetics of HSA were also investigated and revealed that the maximum adsorption occurred at pH 5.0 and the process involved chemisorption. The experimental isotherm data were analysed using the Langmuir and Freundlich‎ models. The amount of HSA adsorbed increased with contact time and reached saturation ‎after 30 min. The adsorption ‎process was found to be pseudo first order with respect to the bulk concentration and was dependent on both the concentration of protein and surface characteristics of the samples. The amount of adsorbed HSA was higher with higher levels of silicon doping of the DLC. Therefore, doping DLC may provide an approach to controlling the protein adsorption. - Graphical abstract: The average thickness layer of HSA measurement onto surfaces of DLC and Si-DLC. - Highlights: • Diamond Like Carbon (DLC) and Silicon doped DLC were synthesised and characterised. • Si-DLC increases the hydrophobicity and decreases the surface free energy. • Adsorption study using human serum albumin (HSA). • The adsorbed amount of HSA increases with increasing of Silicon content DLC. • Adsorption process follow pseudo

  18. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved....

  19. Li3AlSiO5: the first aluminosilicate as a potential deep-ultraviolet nonlinear optical crystal with the quaternary diamond-like structure.

    Science.gov (United States)

    Chen, Xinglong; Zhang, Fangfang; Liu, Lili; Lei, Bing-Hua; Dong, Xiaoyu; Yang, Zhihua; Li, Hongyi; Pan, Shilie

    2016-02-14

    Deep-ultraviolet (deep-UV) nonlinear optical (NLO) crystals play a crucial role in modern laser frequency conversion technology. Traditionally, the exploration of deep-UV NLO crystals is mainly focused on borates, while, the use of phosphates recently opened up a novel and promising non-boron pathway for designing new deep-UV NLO crystals. Extending this pathway to aluminosilicates led to the discovery of Li3AlSiO5, the first NLO crystal in this system. It crystallizes in the polar space group Pna21 (no. 33) with a quaternary diamond-like structure composed of LiO4, AlO4 and SiO4 tetrahedral groups. The compound exhibits a deep-UV cut-off edge below 190 nm and is phase matchable with moderate powder second harmonic generation (SHG) intensity (0.8KH2PO4). The band gap calculated using PBE0 is 7.29 eV, indicating that the cut-off edge of the Li3AlSiO5 crystal can be down to 170 nm. In addition, the compound is nonhygroscopic and thermally stable up to ∼1472 K. These results suggest that Li3AlSiO5 is a potential deep-UV NLO crystal. First-principles studies were performed to elucidate the structure-property relationship of Li3AlSiO5. PMID:26788988

  20. Thermal stability of diamond-like carbon–MoS2 thin films in different environments

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) based coatings are ideal for low friction and wear resistant applications. For those tribological applications, the coatings may expose to high temperature environments. Therefore, the thermal stability of the coating is very important for its long-term performance. In this work, DLC–MoS2 composite thin films were synthesized using biased target ion beam deposition technique in which MoS2 was produced by sputtering a MoS2 target using Ar ion beams while DLC was deposited by an ion source with CH4 gas as carbon source. DLC films without MoS2 deposited under similar conditions were used as reference samples. After the deposition, DLC and DLC–MoS2 thin films were heat-treated in ambient air and low pressure environments at different temperatures ranging from 100 to 600 °C for 2 h. The effect of annealing on the structure, mechanical and tribological properties of the resulting films were studied by means of Raman spectroscopy, X-ray absorption near edge structure, scanning electron microscopy, nanoindentation, and ball-on-disk testing. The results showed that the structure, hardness, Young's modulus, friction coefficient and wear coefficient of the DLC films were stable up to 200 °C annealing in air and 300 °C in low pressure. At higher temperature, the annealing led to the transformation of sp3 to sp2, which degraded the mechanical and tribological properties of the thin films. Comparing with the DLC films, the DLC–MoS2 thin films showed a slower rate of graphitization and higher structure stability throughout the range of annealing temperatures, indicating a relatively higher thermal stability. - Highlights: • Thermal stability of diamond-like carbon (DLC) and DLC–MoS2 films were evaluated. • DLC–MoS2 films can be synthesized by biased target ion beam deposition technique. • Comparing with DLC films, the DLC–MoS2 thin films showed higher thermal stability. • DLC–MoS2 film is thermally stable up to 400 °C in

  1. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    Science.gov (United States)

    Ozeki, K.; Hirakuri, K. K.; Masuzawa, T.

    2011-04-01

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO2) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO2 films and DLC/TiO2/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO2-coated and the DLC/TiO2/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO2/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO2/DLC film had a photocatalytic effect even though the TiO2 film was covered with the DLC film.

  2. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    International Nuclear Information System (INIS)

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO2) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO2 films and DLC/TiO2/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO2-coated and the DLC/TiO2/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO2/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO2/DLC film had a photocatalytic effect even though the TiO2 film was covered with the DLC film.

  3. X-ray reflectivity study of bias graded diamond like carbon film synthesized by ECR plasma

    Indian Academy of Sciences (India)

    R M Dey; S K Deshpande; S B Singh; N Chand; D S Patil; S K Kulkarni

    2013-02-01

    Diamond like carbon (DLC) coatings were deposited on silicon substrates by microwave electron cyclotron resonance (ECR) plasma CVD process using plasma of Ar and CH4 gases under the influence of negative d.c. self bias generated on the substrates by application of RF (13.56 MHz) power. The negative bias voltage was varied from −60 V to −150 V during deposition of DLC films on Si substrate. Detailed X-ray reflectivity (XRR) study was carried out to find out film properties like surface roughness, thickness and density of the films as a function of variation of negative bias voltage. The study shows that the DLC films constituted of composite layer i.e. the upper sub surface layer followed by denser bottom layer representing the bulk of the film. The upper layer is relatively thinner as compared to the bottom layer. The XRR study was an attempt to substantiate the sub-plantation model for DLC film growth.

  4. Effect of source gas chemistry on tribological performance of diamond-like carbon films.

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Eryilmaz, O. L.; Fenske, G. R.; Nilufer, I. B.

    1999-08-23

    In this study, we investigated the effects of various source gases (i. e., methane, ethane, ethylene, acetylene and methane + hydrogen) on friction and wear performance of diamond-like carbon (DLC) films. Specifically, we described the anomalous nature and fundamental friction and wear mechanisms of DLC films derived from gas discharge plasmas with very low to very high hydrogen content. The films were deposited on steel substrates by a plasma enhanced chemical vapor deposition process at room temperature and the tribological tests were performed in dry nitrogen. The results of tribological tests revealed a close correlation between the friction and wear coefficients of the DLC films and the source gas chemistry. Specifically, films grown in source gases with higher hydrogen-to-carbon ratios had much lower friction coefficients and wear rates than the films derived from source gases with lower hydrogen-to-carbon ratios. The lowest friction coefficient (0.002) was achieved with a film derived from 25% methane--75% hydrogen while the films derived from acetylene had a coefficient of 0.15. Similar correlations were observed on wear rates. Specifically, the films derived from hydrogen rich plasmas had the least wear while the films derived from pure acetylene suffered the highest wear. We used a combination of scanning and transmission electron microscopy and Raman spectroscopy to characterize the structural chemistry of the resultant DLC films.

  5. Plasma post-processing of diamond-like carbon nano-coated long-period gratings

    Science.gov (United States)

    Śmietana, Mateusz; Krysiński, Adrian; Bock, Wojtek J.; Mikulic, Predrag

    2013-09-01

    This work presents an application of reactive ion etching (RIE) for effective tuning of spectral response and the refractive-index (RI) sensitivity of diamond-like carbon (DLC) nano-coated long-period gratings (LPGs). The technique allows for an efficient and well controlled etching of the DLC by means of O2 and CF4 plasma. The effect of DLC nanocoating etching on spectral properties of the LPGs is discussed. We correlated the decrease in DLC thickness with the shift of the LPG resonance wavelength. The thinning of the overlay effectively changes the distribution of the cladding modes and thus it also has an impact on the device's RI sensitivity. The advantage of this approach is a capability for post-processing of the nano-coated structures with a good precision (etching rate from 4.6 to 8.1 nm/min for O2 plasma), cleaning the samples and their re-coating according to requested needs.

  6. The Development, Application And Testing Of Diamond-Like Coatings For Infra-Red Components

    Science.gov (United States)

    Lettington, A. H.

    1986-05-01

    The lack of durability of the outermost coated lens or window of thermal imaging systems had been a problem for many years. It was overcome in the mid-seventies by the development within RSRE of the infra-red transparent diamond-like carbon coating. This material was chemically durable, abrasion resistant and a near perfect match to germanium as a single layer anti-reflection coating. Originally the coatings had reasonable infra-red transmission but their hardness and adhesion were variable. Using our own processes we obtained consistently good coatings with optimised transmission. The application and excellent performance of these coatings on germanium components is described. Another application is the protection of diamond flycut aluminium surfaces where the off-normal reflectivity in the infra-red using conventional coatings can be poor. Having developed these coatings it was then necessary to develop specifications before they could be used in service. The development of coatings test procedures and specifications is also described.

  7. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles

    International Nuclear Information System (INIS)

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  8. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions.

    Science.gov (United States)

    Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis

    2011-03-01

    This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P coating without increasing the risk of implant-related infections. PMID:21243516

  9. High rate PLD of diamond-like-carbon utilizing high repetition rate visible lasers

    Energy Technology Data Exchange (ETDEWEB)

    McLean, W. II; Fehring, E.J.; Dragon, E.P.; Warner, B.E.

    1994-09-15

    Pulsed Laser Deposition (PLD) has been shown to be an effective method for producing a wide variety of thin films of high-value-added materials. The high average powers and high pulse repetition frequencies of lasers under development at LLNL make it possible to scale-up PLD processes that have been demonstrated in small systems in a number of university, government, and private laboratories to industrially meaningful, economically feasible technologies. A copper vapor laser system at LLNL has been utilized to demonstrate high rate PLD of high quality diamond-like-carbon (DLC) from graphite targets. The deposition rates for PLD obtained with a 100 W laser were {approx} 2000 {mu}m{center_dot}cm{sup 2}/h, or roughly 100 times larger than those reported by chemical vapor deposition (CVD) or physical vapor deposition (PVD) methods. Good adhesion of thin (up to 2 pm) films has been achieved on a small number of substrates that include SiO{sub 2} and single crystal Si. Present results indicate that the best quality DLC films can be produced at optimum rates at power levels and wavelengths compatible with fiber optic delivery systems. If this is also true of other desirable coating systems, this PLD technology could become an extremely attractive industrial tool for high value added coatings.

  10. Frictional and Optical Properties of Diamond-Like-Carbon Coatings on Polycarbonate

    International Nuclear Information System (INIS)

    In this work, diamond-like-carbon (DLC) films were deposited onto polycarbonate (PC) substrates by radio-frequency plasma-enhanced chemical vapor deposition (RF PECVD), and silicon films were prepared between DLC and PC substrates by magnetron sputtering deposition so as to improve the adhesion of the DLC films. The deposited films were investigated by means of field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Subsequently, the following frictional and optical properties of the films were measured: the friction coefficient by using a ball-on-disk tribometer, the scratch hardness by using a nano-indenter, the optical transmittance by using a UV/visible spectrometer. The effects of incident power upon the frictional and optical properties of the films were investigated. Films deposited at low incident powers showed large optical gaps, which decreased with increasing incident power. The optical properties of DLC films correlated to the sp2 content of the coatings. High anti-scratch properties were obtained at higher values of incident power. The anti-scratch properties of DLC films correlated to the sp3 content of the coatings

  11. Electron transport in W-containing amorphous carbon-silicon diamond-like nanocomposites

    International Nuclear Information System (INIS)

    The electron transport in amorphous hydrogenated carbon-silicon diamond-like nanocomposite films containing tungsten over the concentration range 12-40 at.% was studied in the temperature range 80-400 K. The films were deposited onto polycrystalline substrates, placed on the RF-biased substrate holder, by the combination of two methods: PECVD of siloxane vapours in the stimulated dc discharge and dc magnetron sputtering of tungsten target. The experimental dependences of the conductivity on the temperature are well fitted by the power-law dependences over the entire temperature range. The results obtained are discussed in terms of the model of inelastic tunnelling of the electrons in amorphous dielectrics. The average number of localized states (n) in the conducting channels between metal clusters calculated in the framework of this model is characterized by the non-monotonic dependence on the tungsten concentration in the films. The qualitative explanation of the results on the basis of host carbon-silicon matrix structural modifications is proposed. The evolution of the carbon-silicon matrix microstructure by the increase in the tungsten concentration is confirmed by the Raman spectroscopy data

  12. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    International Nuclear Information System (INIS)

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and 13C glycerol. This was complemented by first-principles-based computer simulations using the ReaxFF reactive force field to create an atomistic model of ta-C. These simulations show that DLC with the experimental density of 3.24 g/cc leads to an atomistic structure consisting of a 3D percolating network of tetrahedral (sp3) carbons accounting for 71.5% of the total, in excellent agreement with the 70% deduced from our Auger spectroscopy and XANES experiments. The simulations show that the remaining carbons (with sp2 and sp1 character) attach in short chains of length 1 to 7. In sliding simulations including glycerol molecules, the surface atoms react readily to form a very smooth carbon surface containing OH-terminated groups. This agrees with our SIMS experiments. The simulations find that the OH atoms are mostly bound to surface sp1 atoms leading to very flexible elastic response to sliding. Both simulations and experiments suggest that the origin of the superlubricity arises from the formation of this OH-terminated surface

  13. Modifying surface properties of diamond-like carbon films via nanotexturing

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C; Portal-Marco, S; Rubio-Roy, M; Bertran, E; Andujar, J L [FEMAN Group, IN2UB, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, c/ Marti i Franques 1, 08028 Barcelona (Spain); Oncins, G [Serveis CientIfico-Tecnics, Universitat de Barcelona, c/ Marti i Franques s/n, 08028 Barcelona (Spain); Vallve, M A; Ignes-Mullol, J, E-mail: corberoc@hotmail.com [SOC and SAM Group, IN2UB, Departament de Quimica Fisica, Universitat de Barcelona, c/ Marti i Franques 1, 08028 Barcelona (Spain)

    2011-10-05

    Diamond-like amorphous carbon (DLC) films have been grown by pulsed-dc plasma-enhanced chemical vapour deposition on silicon wafers, which were previously patterned by means of colloidal lithography. The substrate conditioning comprised two steps: first, deposition of a self-assembled monolayer of silica sub-micrometre spheres ({approx}300 nm) on monocrystalline silicon ({approx}5 cm{sup 2}) by Langmuir-Blodgett technique, which acted as lithography template; second, substrate patterning via ion beam etching (argon) of the colloid samples (550 eV) at different incidence angles. The plasma deposition of a DLC thin film on the nanotextured substrates resulted in hard coatings with distinctly different surface properties compared with planar DLC. Also, in-plane anisotropy was generated depending on the etching angle. The samples were morphologically characterized by scanning electron microscopy and atomic force microscopy. The anisotropy introduced by the texture was evidenced in the surface properties, as shown by the directional dependences of wettability (water contact angle) and friction coefficient. The latter was measured using a nanotribometer and a lateral force microscope. These two techniques showed how the nanopatterns influenced the tribological properties at different scales of load and contact area. This fabrication technique finds applications in the industry of microelectromechanical systems, anisotropic tribological coatings, nanoimprint lithography, microfluidics, photonic crystals, and patterned surfaces for biomedicine.

  14. Segment-Structured Diamond-Like Carbon Coatings on Polymer Catheter

    Science.gov (United States)

    Nakagawa, Taku; Ohishi, Ryusuke; Ohtake, Naoto; Takai, Osamu; Tsutsui, Nobumasa; Tsutsui, Yasuhiro; Muraki, Yasuhiro; Ogura, Jyunpei

    Diamond-like carbon (DLC) has remarkable mechanical and tribological properties. Besides those mechanical properties, it has been clarified that DLC shows high biocompatibility in recent years. DLC coating can give high strength, abrasion resistance, and biocompatibility for surface of substrates. Hence DLC is a candidate for the coating material for medical devices such as artificial organ, joint, catheter, etc. The objective of this study is to develop safety protection films for implantable medical polymer devices utilizing segment-structured DLC (S-DLC) coatings. S-DLC and continuous-structured DLC were deposited on polyurethane and nylon sheet for balloon catheters. As a result, friction coefficient of DLC coated polyurethane sheet was approximately one-sixth of that of pristine polyurethane sheet, and S-DLC showed very low friction coefficient of μ=0.1-0.15. DLC coating can prevent polyurethane sheet from worn out. The puncture-resistance of nylon sheets increased 0.2MPa on average by DLC coatings regardless of the film structure. It was confirmed that DLC inhibits adsorption of blood coagulation factor. In conclusion, we succeed to verify that these DLC films can improve tribological property, abrasion-resistance, puncture-resistance, and anti-thrombogenicity of polymer catheters. Moreover, segment-structured DLC films exhibits high performance for protection of polymer material for polymer catheters.

  15. Tribological behavior of diamond-like carbon: effects of preparation conditions and annealing

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films are characterized by, among other properties, very low friction coefficients, high wear resistance, and high corrosion resistance. Depending upon the testing environment, the coefficient of friction can be as low as 0.01. As-deposited films are wear resistant in vacuum as well as in atmospheric ambient. This paper will discuss the general tribological behavior, in different environments, of DLC films deposited under a variety of conditions, and proposed mechanisms explaining the very low friction coefficients observed. The specific properties of DLC films deposited from acetylene by r.f. plasma-enhanced chemical vapor deposition will then be presented. The films were deposited at substrate temperatures between 100degC and 250degC, at various substrate biases. The films were annealed in vacuum at temperatures up to 590degC. The tribological properties of the as-deposited as well as annealed DLC films will be presented as a function of the deposition parameters. The observed behavior will be discussed and related to other physical properties of the films. (orig.)

  16. The role of substrate plasticity on the tribological behavior of diamond-like nanocomposite coatings

    International Nuclear Information System (INIS)

    Finite-element modeling (FEM) was used to predict the contact stress at which the transition from elastic to plastic deformation occurs in a metallic substrate underneath a hard tribological coating. Using model systems of diamond-like nanocomposite (DLN) coatings on electroformed Ni, NiMn alloy and Inconel 718, friction measurements were made at contact stresses ranging from 540 to 1720 MPa. Cross-sections of wear scars suitable for visualization of friction-induced plastic deformation in the substrate were prepared by focused ion beam microscopy and analyzed by electron backscatter diffraction. At contact stresses below the FEM-predicted elastic-plastic limit, the coefficient of friction decreased linearly with increase in contact stress, suggesting that interfacial shear is the major mechanism of friction in DLN. Contact stresses above the FEM-predicted elastic-plastic limit resulted in plastic deformation of the metallic substrate, and in extreme cases fracture and removal of the coating resulting in a sudden increase in friction

  17. Modifying surface properties of diamond-like carbon films via nanotexturing

    Science.gov (United States)

    Corbella, C.; Portal-Marco, S.; Rubio-Roy, M.; Bertran, E.; Oncins, G.; Vallvé, M. A.; Ignés-Mullol, J.; Andújar, J. L.

    2011-10-01

    Diamond-like amorphous carbon (DLC) films have been grown by pulsed-dc plasma-enhanced chemical vapour deposition on silicon wafers, which were previously patterned by means of colloidal lithography. The substrate conditioning comprised two steps: first, deposition of a self-assembled monolayer of silica sub-micrometre spheres (~300 nm) on monocrystalline silicon (~5 cm2) by Langmuir-Blodgett technique, which acted as lithography template; second, substrate patterning via ion beam etching (argon) of the colloid samples (550 eV) at different incidence angles. The plasma deposition of a DLC thin film on the nanotextured substrates resulted in hard coatings with distinctly different surface properties compared with planar DLC. Also, in-plane anisotropy was generated depending on the etching angle. The samples were morphologically characterized by scanning electron microscopy and atomic force microscopy. The anisotropy introduced by the texture was evidenced in the surface properties, as shown by the directional dependences of wettability (water contact angle) and friction coefficient. The latter was measured using a nanotribometer and a lateral force microscope. These two techniques showed how the nanopatterns influenced the tribological properties at different scales of load and contact area. This fabrication technique finds applications in the industry of microelectromechanical systems, anisotropic tribological coatings, nanoimprint lithography, microfluidics, photonic crystals, and patterned surfaces for biomedicine.

  18. Treating orthopedic prosthesis with diamond-like carbon: minimizing debris in Ti6Al4V.

    Science.gov (United States)

    Oliveira, Luciane Y S; Kuromoto, Neide K; Siqueira, Carlos J M

    2014-10-01

    Prostheses are subject to various forms of failing mechanisms, including wear from ordinary patient motion. Superficial treatments can improve tribological properties of the contact pair, minimizing wear and increasing prostheses lifetime. One possibility is the diamond-like carbon (DLC) coating, where Carbon is deposited with variable ratio of sp(2)/sp(3) structures, leading to an increase in surface hardness. So in this research Ti6Al4V samples were coated with DLC using sputtering process to evaluate the debris release. The Ti6Al4V and Ti6Al4V plus DLC coating surfaces were analyzed using Raman spectroscopy and instrumented indentation (hardness). The wear behavior was tested using a reciprocating linear tribometer. The wear rate was smaller in the coated samples, producing less debris than the untreated Ti6Al4V alloy. Debris morphology was also evaluated, using scanning electronic microscopy, and it was observed that debris size from the coated samples were bigger than those observed from the uncoated Ti6Al4V alloy, above the size that generally triggers biological response from the host. PMID:24948374

  19. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y.S., E-mail: yshzou75@gmail.com [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China); Wu, Y.F.; Yang, H.; Cang, K. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China); Song, G.H. [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning, 110178 (China); Li, Z.X.; Zhou, K. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China)

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp{sup 3} carbon content and mechanical properties of the deposited DLC films. A maximum sp{sup 3} content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  20. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    International Nuclear Information System (INIS)

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  1. The role of substrate plasticity on the tribological behavior of diamond-like nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jungk, J.M.; Michael, J.R. [Sandia National Laboratories, Albuquerque, NM 87185-0889 (United States); Prasad, S.V. [Sandia National Laboratories, Albuquerque, NM 87185-0889 (United States)], E-mail: svprasa@sandia.gov

    2008-05-15

    Finite-element modeling (FEM) was used to predict the contact stress at which the transition from elastic to plastic deformation occurs in a metallic substrate underneath a hard tribological coating. Using model systems of diamond-like nanocomposite (DLN) coatings on electroformed Ni, NiMn alloy and Inconel 718, friction measurements were made at contact stresses ranging from 540 to 1720 MPa. Cross-sections of wear scars suitable for visualization of friction-induced plastic deformation in the substrate were prepared by focused ion beam microscopy and analyzed by electron backscatter diffraction. At contact stresses below the FEM-predicted elastic-plastic limit, the coefficient of friction decreased linearly with increase in contact stress, suggesting that interfacial shear is the major mechanism of friction in DLN. Contact stresses above the FEM-predicted elastic-plastic limit resulted in plastic deformation of the metallic substrate, and in extreme cases fracture and removal of the coating resulting in a sudden increase in friction.

  2. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    Science.gov (United States)

    Zou, Y. S.; Wu, Y. F.; Yang, H.; Cang, K.; Song, G. H.; Li, Z. X.; Zhou, K.

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  3. Fatigue Properties and Fracture Mechanism of Steel Coated with Diamond-Like Carbon Films

    Science.gov (United States)

    Akebono, Hiroyuki; Kato, Masahiko; Sugeta, Atsushi

    Diamond-like carbon (DLC) films have attracted much attention in many industrial fields because of their excellent tribological properties, high hardness, chemical inertness and biocompatibility. In order to examine the fatigue properties and to clear the fracture mechanism of DLC coated materials, AISI4140 steel coated with DLC films by using unbalanced magnetron sputtering method was prepared and two types of fatigue test were carried out by using a tension and compression testing machine with stress ratio -1 and a bending testing machine with stress ratio -1 with a focused on the fatigue crack behavior in detail. The fracture origin changed from the slip deformation to micro defects at surface whose size didn't affect the fatigue crack initiation behavior in the case of Virgin series because the hard coating like DLC films make the defect sensitivity of coated material higher. However, DLC series indicated higher fatigue strengths in finite life region and fatigue limit compared with Virgin series. From the continuously observation by using a plastic replicas technique, it is clear that there are no noticeable differences on fatigue crack propagation rate between the Virgin and DLC series, however the fatigue crack initiation of DLC series was delayed significantly by existence of DLC films compared with Virgin series.

  4. Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver.

    Science.gov (United States)

    Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2016-12-01

    In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out. PMID:26979724

  5. Molecular dynamics simulation of the deposition process of hydrogenated diamond-like carbon (DLC) films

    Institute of Scientific and Technical Information of China (English)

    ZHANG YuJun; DONG GuangNeng; MAO JunHong; XIE YouBai

    2008-01-01

    The deposition process of hydrogenated diamond-like carbon (DLC) film greatly affects its frictional properties. In this study, CH3 radicals are selected as source species to deposit hydrogenated DLC films for molecular dynamics simulation. The growth and structural properties of hydrogenated DLC films are investigated and elucidated in detail. By comparison and statistical analysis, the authors find that the ratio of carbon to hydrogen in the films generally shows a monotonously increasing trend with the increase of impact energy. Carbon atoms are more reactive during deposition and more liable to bond with substrate atoms than hydrogen atoms. In addition, there exists a peak value of the number of hydrogen atoms deposited in hydrogenated DLC films. The trends of the variation are opposite on the two sides of this peak point, and itbecomes stable when impact energy is greater than 80 eV. The average relative density also indicates a rising trend along with the increment of impact energy, while it does not reach the saturation value until impact energy comes to 50 eV. The hydrogen content in source species is a key factor to determine the hydrogen content in hydrogenated DLC films. When the hydrogen content in source species is high, the hydrogen content in hydrogenated DLC films is accordingly high.

  6. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, K., E-mail: ozeki@mx.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Toukai, Ibaraki 319-1106 (Japan); Hirakuri, K.K. [Applied Systems Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama 350-0394 (Japan); Masuzawa, T. [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan)

    2011-04-15

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO{sub 2}) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO{sub 2} films and DLC/TiO{sub 2}/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO{sub 2}-coated and the DLC/TiO{sub 2}/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO{sub 2} coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO{sub 2}/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO{sub 2}/DLC film had a photocatalytic effect even though the TiO{sub 2} film was covered with the DLC film.

  7. Hydrogenated diamond-like carbon film deposited on UHMWPE by RF-PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Shi Xingling, E-mail: shixingling1985@hotmail.com [School of Materials Science and Engineering, China University of Mining and Technology, South Road of Third Cycle, Xuzhou, 221116 (China); Wang Qingliang; Xu Lingli; Ge Shirong [School of Materials Science and Engineering, China University of Mining and Technology, South Road of Third Cycle, Xuzhou, 221116 (China); Wang Chao [Test and Analysis Center of China University of Mining and Technology, Xuzhou, 221116 (China)

    2009-07-15

    In this work, investigations were conducted to analyze the properties of diamond-like carbon (DLC) film deposited on ultra-high molecular weight polyethylene (UHMWPE) by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) at a low temperature of 50 deg. C. Composition and structure of the films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Hardness and wettability of the film were tested. Tribological characterizations were carried out on a universal micro-tribometer, and reciprocating friction against ZrO{sub 2} ball was adopted with 25% bovine serum as lubrication. Results show that DLC film was successfully deposited on UHMWPE surface by RF-PECVD and the sp{sup 3} content was about 20% in the film. The film increased the macrohardness of the substrate by about 42% and the wettability was improved too. Tribology test showed a higher friction coefficient but a much smaller wear volume after the deposition due to the surface roughening and strengthening.

  8. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES Membrane

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-09-01

    Full Text Available A nano porous polyethersulfone (PES membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems.

  9. Tribological behaviors of hydrogenated diamond-like carbon films in different testing environments

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-min; LI Hong-xuan; XU Tao; ZHOU Hui-di; LIU Hui-wen

    2004-01-01

    Hydrogenated diamond-like carbon (DLC) films were deposited on Si substrate using plasma enhanced chemical vapor deposition(PECVD) technique with CH4 plus H2 as the feedstock. The tribological properties of the hydrogenated DLC films were measured on a ball-on-disk tribometer in different testing environments (humid air,dry air, dry O2, dry Ar and dry N2 ) sliding against Si3 N4 balls. The friction surfaces of the films and Si3 N4 balls were observed on a scanning electron microscope (SEM) and investigated by X-ray photoelectron spectroscopy (XPS). The results show that the tribological properties of the hydrogenated DLC films are strongly dependent on the testing environments. In dry Ar and dry N2 environments, the hydrogenated DLC films provide a superlow friction coefficient of about 0. 008 -0.01 and excellent wear resistance (wear life of above 56 km). In dry air and dry O2, the friction coefficient is increased to 0. 025 - 0.04 and the wear life is decreased to about 30 km. When sliding in moist air, the friction coefficient of the films is further increased to 0. 08 and the wear life is decreased to 10. 4 km. SEM and XPS analyses show that the tribological behaviors appear to rely on the transferred carbon-rich layer processes on the Si3 N4 balls and on the friction-induced oxidation of the films controlled by the nature of the testing environments.

  10. Characteristics of Diamond-Like Carbon Films Deposited on Polymer Dental Materials

    Science.gov (United States)

    Ohtake, Naoto; Uchi, Tomio; Yasuhara, Toshiyuki; Takashima, Mai

    2012-09-01

    Characterizations of diamond-like carbon (DLC) deposited on a polymer artificial tooth were performed. DLC films were deposited on dental parts made of poly(methyl methacrylate) (PMMA) resin by dc-pulse plasma chemical vapor deposition (CVD) from methane. Wear resistance test results revealed that a DLC-coated resin tooth has a very high wear resistance against tooth brushing, and endures 24 h brushing without a marked weight decrease. Cell cultivation test results show that DLC plays an important role in preventing cell death. Moreover, a biocompatibility test using a rabbit revealed that a connective tissue in the vicinity of DLC-coated PMMA is significantly thinner than that of noncoated PMMA. The numbers of inflammatory cells in the vicinity of DLC-coated and noncoated surfaces are 0 and 508 cells/mm2, respectively. These results led us to conclude that DLC films are an excellent material for use as the coating of a polymer artificial tooth in terms of not only high wear resistance but also biocompatibility.

  11. Gas barrier properties of diamond-like carbon films coated on PTFE

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using radio frequency (RF) plasma-enhanced chemical vapour deposition (PE-CVD). Before the DLC coating, the PTFE substrate was modified with a N2 plasma pre-treatment to enhance the adhesive strength of the DLC to the substrate. The influences of the N2 plasma pre-treatment and process pressure on the gas permeation properties of these DLC-coated PTFE samples were investigated. In the Raman spectra, the G peak position shifted to a lower wave number with increasing process pressure. With scanning electron microscopy (SEM), a network of microcracks was observed on the surface of the DLC film without N2 plasma pre-treatment. The density of these cracks decreased with increasing process pressure. In the film subjected to a N2 plasma pre-treatment, no cracks were observed at any process pressure. In the gas barrier test, the gas permeation decreased drastically with increasing film thickness and saturated at a thickness of 0.2 μm. The DLC-coated PTFE with the N2 plasma pre-treatment exhibited a greater reduction in gas permeation than did the samples without pre-treatment. For both sample types, gas permeation decreased with increasing process pressure.

  12. Synthesis and Characteristics of Diamond-like Carbon Films Deposited on Quartz Substrate

    Institute of Scientific and Technical Information of China (English)

    黄卫东; 丁鼎; 詹如娟

    2004-01-01

    Diamond-like carbon (DLC) films are deposited on quartz substrate using pure CH4 in the surface wave plasma equipment. A direct current negative bias up to -90 V is applied to the substrate to investigate the bias effect on the film characteristics. Deposited films are characterized by Raman spectroscopy, infrared (IR) and ultraviolet-visible absorption techniques.There are two broad Raman peaks around 1340 cm-1 and 1600 cm-1 and the first one has a greater sp3 component with an increased bias. Infrared spectroscopy has three sp3 C-H modes at 2852 cm-1, 2926 cm- 1 and 2962 cm-1, respectively and also shows an intensity increase with the negative bias. Optical band gap is calculated from the ultraviolet-visible absorption spectroscopy and the increased values with negative bias and deposition time are obtained. After a thermal anneal at about 500 ℃ for an hour to the film deposited under the bias of-90 V, we get an almost unchanged Raman spectrum and a peak intensity-reduced IR signal, which indicates a reduced H-content in the film. Meanwhile the optical band gap changed from 0.85 eV to 1.5 eV.

  13. Multiwavelength Raman analysis of SiOx and N containing amorphous diamond like carbon films

    International Nuclear Information System (INIS)

    In the current research SiOx and N containing amorphous diamond like carbon (a-C:H) films were deposited on crystalline silicon from hexamethyldisiloxane and hexamethyldisilazane compounds respectively, using closed drift ion beam source and different ion beam energy in a range 300–800 eV. Hydrogen was used as a carrier gas of the precursors. Composition of the films was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The structure of these films was studied employing multiwavelength (325 nm–785 nm) Raman analysis. From the Raman spectra analysis, the characteristic parameters such as the position of G peak, D/G peak intensity ratio as well as dispersion of G (Disp(G)) peak showing topological disorder of sp2 phase in doped a-C:H films were determined. Analysis of Disp (G) and D/G intensity ratio revealed that in both types of films increase of ion beam energy gives higher sp3/sp2 ratio in the films. - Highlights: • Siloxanes are used to incorporate Si, O and N into a-C:H films. • Closed drift ion beam source at varying ion beam energy was used. • Multiwavelength Raman spectroscopy analysis (325–785 nm) was performed. • Dispersion of G peak shows that sp3/sp2 ratio rises with increasing ion beam energy

  14. Deposition of Fluorinated Diamond-Like-Carbon Films by Exposure of Electrothermal Pulsed Plasmas

    Science.gov (United States)

    Kimura, Takashi; Iida, Masayasu

    2011-08-01

    Thin amorphous carbon films are deposited on silicon substrates by exposure to pulsed plasmas where the feed gas is mainly generated from the ablation of an insulator. An electrothermal pulsed plasma thruster with a discharge room in an insulator rod is used as the pulsed plasma for the ablation of the insulator, and the material of the insulator rod is poly(tetrafluoroethylene) (PTFE). The pulsed plasma, in which the estimated electron density is on the order of 1022-1023 m-3, is generated by the stored energy in the capacitor. The deposition rate, which depends on the stored energy, is lower than 1 nm per pulse in our experiment. The maximum hardness measured using a nanoindenter is about 7 GPa at a stored energy of about 2.7 J, beyond which the hardness of the films decreases with the increase in stored energy. Raman spectroscopy is also carried out to examine the formation of fluorinated diamond-like carbon films. In addition, the influence of dilution gas on the properties of the deposited films is also investigated.

  15. High-frequency, scaled graphene transistors on diamond-like carbon.

    Science.gov (United States)

    Wu, Yanqing; Lin, Yu-ming; Bol, Ageeth A; Jenkins, Keith A; Xia, Fengnian; Farmer, Damon B; Zhu, Yu; Avouris, Phaedon

    2011-04-01

    Owing to its high carrier mobility and saturation velocity, graphene has attracted enormous attention in recent years. In particular, high-performance graphene transistors for radio-frequency (r.f.) applications are of great interest. Synthesis of large-scale graphene sheets of high quality and at low cost has been demonstrated using chemical vapour deposition (CVD) methods. However, very few studies have been performed on the scaling behaviour of transistors made from CVD graphene for r.f. applications, which hold great potential for commercialization. Here we report the systematic study of top-gated CVD-graphene r.f. transistors with gate lengths scaled down to 40 nm, the shortest gate length demonstrated on graphene r.f. devices. The CVD graphene was grown on copper film and transferred to a wafer of diamond-like carbon. Cut-off frequencies as high as 155 GHz have been obtained for the 40-nm transistors, and the cut-off frequency was found to scale as 1/(gate length). Furthermore, we studied graphene r.f. transistors at cryogenic temperatures. Unlike conventional semiconductor devices where low-temperature performance is hampered by carrier freeze-out effects, the r.f. performance of our graphene devices exhibits little temperature dependence down to 4.3 K, providing a much larger operation window than is available for conventional devices. PMID:21475197

  16. Effects of CPII implantation on the characteristics of diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ya-Chi [Department of Materials Science and Engineering, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402, Taiwan (China); Weng, Ko-Wei, E-mail: wl2426@ms26.hinet.net [Department of Materials Science and Engineering, MingDao University, 369-B, Wen-Hua Road, Peetow, Chang-Hwa 523, Taiwan (China); Chao, Ching-Hsun; Lien, Shui-Yang [Department of Materials Science and Engineering, MingDao University, 369-B, Wen-Hua Road, Peetow, Chang-Hwa 523, Taiwan (China); Han, Sheng [Department of Leisure and Recreation Management, National Taichung Institute of Technology 129 San-min Road, Section 3, Taichung 404, Taiwan (China); Chen, Tien-Lai [Department of Holistic Wellness, MingDao University, 369-B, Wen-Hua Road, Peetow, Chang-Hwa 523, Taiwan (China); Lee, Ying-Chieh [Department of Materials Engineering,Nationla Pingtung University of Science and Technology 1, Hseuh Fu Road, Nei Pu, Pingtung, 91201, Taiwan (China); Shih, Han-Chang [Department of Materials Science and Engineering, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402, Taiwan (China); Wang, Da-Yung [Department of Materials Science and Engineering, MingDao University, 369-B, Wen-Hua Road, Peetow, Chang-Hwa 523, Taiwan (China)

    2009-05-30

    A diamond-like carbon film (DLC) was successfully synthesized using a hybrid PVD process, involving a filter arc deposition source (FAD) and a carbon plasma ion implanter (CPII). A quarter-torus plasma duct filter markedly reduced the density of the macro-particles. Graphite targets were used in FAD. Large electron and ion energies generated from the plasma duct facilitate the activation of carbon plasma and the deposition of high-quality DLC films. M2 tool steel was pre-implanted with 45 kV carbon ions before the DLC was deposited to enhance the adhesive and surface properties of the film. The ion mixing effect, the induction of residual stress and the phase transformation at the interface were significantly improved. The hardness of the DLC increased to 47.7 GPa and 56.5 GPa, and the wear life was prolonged to over 70 km with implantation fluences of 1 x 10{sup 17} ions/cm{sup 2} and 2 x 10{sup 17} ions/cm{sup 2}, respectively.

  17. Friction force microscopy study of annealed diamond-like carbon film

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Seok; Joung, Yeun-Ho [School of Electrical Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Heo, Jinhee [Materials Safety Evaluation Group, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Hong, Byungyou, E-mail: byhong@skku.edu [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2012-10-15

    In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH{sub 4}) and hydrogen (H{sub 2}) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp{sup 3} content is decreased from 75.2% to 24.1% while the sp{sup 2} content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.

  18. Metal-doped diamond-like carbon films synthesized by filter-arc deposition

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) thin films are extensively utilized in the semiconductor, electric and cutting machine industries owing to their high hardness, high elastic modulus, low friction coefficients and high chemical stability. DLC films are prepared by ion beam-assisted deposition (BAD), sputter deposition, plasma-enhanced chemical vapor deposition (PECVD), cathodic arc evaporation (CAE), and filter arc deposition (FAD). The major drawbacks of these methods are the degraded hardness associated with the low sp3/sp2 bonding ratio, the rough surface and poor adhesion caused by the presence of particles. In this study, a self-developed filter arc deposition (FAD) system was employed to prepare metal-containing DLC films with a low particle density. The relationships between the DLC film properties, such as film structure, surface morphology and mechanical behavior, with variation of substrate bias and target current, are examined. Experimental results demonstrate that FAD-DLC films have a lower ratio, suggesting that FAD-DLC films have a greater sp3 bonding than the CAE-DLC films. FAD-DLC films also exhibit a low friction coefficient of 0.14 and half of the number of surface particles as in the CAE-DLC films. Introducing a CrN interfacial layer between the substrate and the DLC films enables the magnetic field strength of the filter to be controlled to improve the adhesion and effectively eliminate the contaminating particles. Accordingly, the FAD system improves the tribological properties of the DLC films

  19. Optical and mechanical properties of diamond like carbon films deposited by microwave ECR plasma CVD

    Indian Academy of Sciences (India)

    S B Singh; M Pandey; N Chand; A Biswas; D Bhattacharya; S Dash; A K Tyagi; R M Dey; S K Kulkarni; D S Patil

    2008-10-01

    Diamond like carbon (DLC) films were deposited on Si (111) substrates by microwave electron cyclotron resonance (ECR) plasma chemical vapour deposition (CVD) process using plasma of argon and methane gases. During deposition, a d.c. self-bias was applied to the substrates by application of 13.56 MHz rf power. DLC films deposited at three different bias voltages (–60 V, –100 V and –150 V) were characterized by FTIR, Raman spectroscopy and spectroscopic ellipsometry to study the variation in the bonding and optical properties of the deposited coatings with process parameters. The mechanical properties such as hardness and elastic modulus were measured by load depth sensing indentation technique. The DLC film deposited at –100 V bias exhibit high hardness (∼ 19 GPa), high elastic modulus (∼ 160 GPa) and high refractive index (∼ 2.16–2.26) as compared to films deposited at –60 V and –150 V substrate bias. This study clearly shows the significance of substrate bias in controlling the optical and mechanical properties of DLC films.

  20. Effects of CPII implantation on the characteristics of diamond-like carbon films

    International Nuclear Information System (INIS)

    A diamond-like carbon film (DLC) was successfully synthesized using a hybrid PVD process, involving a filter arc deposition source (FAD) and a carbon plasma ion implanter (CPII). A quarter-torus plasma duct filter markedly reduced the density of the macro-particles. Graphite targets were used in FAD. Large electron and ion energies generated from the plasma duct facilitate the activation of carbon plasma and the deposition of high-quality DLC films. M2 tool steel was pre-implanted with 45 kV carbon ions before the DLC was deposited to enhance the adhesive and surface properties of the film. The ion mixing effect, the induction of residual stress and the phase transformation at the interface were significantly improved. The hardness of the DLC increased to 47.7 GPa and 56.5 GPa, and the wear life was prolonged to over 70 km with implantation fluences of 1 x 1017 ions/cm2 and 2 x 1017 ions/cm2, respectively.

  1. Modifying surface properties of diamond-like carbon films via nanotexturing

    International Nuclear Information System (INIS)

    Diamond-like amorphous carbon (DLC) films have been grown by pulsed-dc plasma-enhanced chemical vapour deposition on silicon wafers, which were previously patterned by means of colloidal lithography. The substrate conditioning comprised two steps: first, deposition of a self-assembled monolayer of silica sub-micrometre spheres (∼300 nm) on monocrystalline silicon (∼5 cm2) by Langmuir-Blodgett technique, which acted as lithography template; second, substrate patterning via ion beam etching (argon) of the colloid samples (550 eV) at different incidence angles. The plasma deposition of a DLC thin film on the nanotextured substrates resulted in hard coatings with distinctly different surface properties compared with planar DLC. Also, in-plane anisotropy was generated depending on the etching angle. The samples were morphologically characterized by scanning electron microscopy and atomic force microscopy. The anisotropy introduced by the texture was evidenced in the surface properties, as shown by the directional dependences of wettability (water contact angle) and friction coefficient. The latter was measured using a nanotribometer and a lateral force microscope. These two techniques showed how the nanopatterns influenced the tribological properties at different scales of load and contact area. This fabrication technique finds applications in the industry of microelectromechanical systems, anisotropic tribological coatings, nanoimprint lithography, microfluidics, photonic crystals, and patterned surfaces for biomedicine.

  2. Bacterial attachment and removal properties of silicon- and nitrogen-doped diamond-like carbon coatings.

    Science.gov (United States)

    Zhao, Qi; Su, Xueju; Wang, Su; Zhang, Xiaoling; Navabpour, Parnia; Teer, Dennis

    2009-01-01

    Si- and N-doped diamond-like carbon (DLC) coatings with various Si and N contents were deposited on glass slides using magnetron sputter ion-plating and plasma-enhanced chemical vapour deposition. Surface energy analysis of the DLC coatings revealed that with increasing Si content, the electron acceptor gamma(s)(+) value decreased while the electron donor gamma(s)(-) value increased. The antifouling property of DLC coatings was evaluated with the bacterium, Pseudomonas fluorescens, which is one of the most common microorganisms forming biofilms on the surface of heat exchangers in cooling water systems. P. fluorescens had a high value of the gamma(s)(-) component (69.78 mN m(-1)) and a low value of the gamma(s)(+) component (5.97 mN m(-1)), and would be negatively charged with the zeta potential of -16.1 mV. The experimental results showed that bacterial removal by a standardised washing procedure increased significantly with increasing electron donor gamma(s)(-) values and with decreasing electron acceptor gamma(s)(+) values of DLC coatings. The incorporation of 2%N into the Si-doped DLC coatings further significantly reduced bacterial attachment and significantly increased ease of removal. The best Si-N-doped DLC coatings reduced bacterial attachment by 58% and increased removal by 41%, compared with a silicone coating, Silastic T2. Bacterial adhesion strength on the DLC coatings is explained in terms of thermodynamic work of adhesion. PMID:19283517

  3. Diamond-Like Carbon Coatings as Encapsulants for Photovoltaic Solar Cells

    International Nuclear Information System (INIS)

    High-quality single-layer and bilayer diamond-like carbon (DLC) thin films are fabricated by two technologies, namely, ion-assisted plasma-enhanced deposition (IAPED) and electron cyclotron resonance (ECR) deposition. Deposition on various substrates, such as sapphires and solar cells, has been performed at low substrate temperatures (50 ∼ 80 C). The two deposition technologies allow good control over the growth conditions to produce DLC films with desired optical properties, thickness, and energy bandgap. The bilayer-structured DLC can be fabricated by using IAPED for the bottom layer followed by ECR for the top layer, or just by IAPED for both layers with different compositions. The DLC films have shown good spatial uniformity, density, microhardness, and adhesion strength. They exhibit excellent stability against attack by strong acids, prolonged damp-heat exposure at 85 C and 85% relative humidity, mechanical scratch, ultrasonication, and irradiation by ultraviolet (UV), protons, and electrons. When deposited on crystalline Si and GaAs solar cells in single-layer and/or bilayer structure, the DLC films not only serve as antireflection coating and protective encapsulant, but also improve the cell efficiencies

  4. Surface properties of diamond-like carbon films prepared by CVD and PVD methods

    Institute of Scientific and Technical Information of China (English)

    Liu Dong-Ping; Liu Yan-Hong; Chen Bao-Xiang

    2006-01-01

    Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance-plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) filtered-pulsed cathodic arc discharge. The surface and mechanical properties of these films are compared using atomic force microscopebased tests. The experimental results show that hydrogenated DLC films are covered with soft surface layers enriched with hydrogen and sp3 hybridized carbon while the soft surface layers of tetrahedral amorphous carbon (ta-C) films have graphite-like structure. The formation of soft surface layers can be associated with the surface diffusion and growth induced by the low-energy deposition process. For typical CVD methods, the atomic hydrogen in the plasmas can contribute to the formation of hydrogen and sp3 hybridized carbon enriched surface layers. The high-energy ion implantation causes the rearrangement of atoms beneath the surface layer and leads to an increase in film density. The ta-C films can be deposited using the medium energy carbon ions in the highly-ionized plasma.

  5. Strength and Fracture Resistance of Amorphous Diamond-Like Carbon Films for MEMS

    Directory of Open Access Journals (Sweden)

    K. N. Jonnalagadda

    2009-01-01

    Full Text Available The mechanical strength and mixed mode I/II fracture toughness of hydrogen-free tetrahedral amorphous diamond-like carbon (ta-C films, grown by pulsed laser deposition, are discussed in connection to material flaws and its microstructure. The failure properties of ta-C were obtained from films with thicknesses 0.5–3 μm and specimen widths 10–20 μm. The smallest test samples with 10 μm gage section averaged a strength of 7.3 ± 1.2 GPa, while the strength of 20-μm specimens with thicknesses 0.5–3 μm varied between 2.2–5.7 GPa. The scaling of the mechanical strength with specimen thickness and dimensions was owed to deposition-induced surface flaws, and, only in the smallest specimens, RIE patterning generated specimen sidewall flaws. The mode I fracture toughness of ta-C films is KIc=4.4±0.4 MPam, while the results from mixed mode I/II fracture experiments with cracks arbitrarily oriented in the plane of the film compared very well with theoretical predictions.

  6. Graphite-like and Diamond-like Carbon Coatings with Exceptional Tribological Properties

    Institute of Scientific and Technical Information of China (English)

    M.Jarratt; S.K.Field; S.Yang; D.G.Teer

    2004-01-01

    Two hard, carbon-based solid lubricant coatings, Graphit-iCTM and Dymon-iCTM, have been developed that offer considerable benefits for industry. Both of these new coatings have a high tribological load-bearing capacity, exceptional wear resistance and very low friction, even in dry or lubricant-starved contact. This is in contrast to many commercial diamond-like carbon, DLC coatings, which tend to be highly stressed and therefore brittle, making them unsuitable for high load bearing industrial applications. The development of the new solid lubricant coatings is described, and details of their tribological performance in dry, water and oil-lubricated environments are given. The structure of the coatings has been investigated and related to the tribological properties, and the mechanism for the low friction and wea rrates is discussed. The coatings have been used to successfully improve the lifetime and efficiency of many highly loaded mechanical parts, including automotive fuel injection components, gears, bearings, tappets (cam followers), gudgeon (wrist) pins, etc. They also offer benefits for tooling and are widely used in forming or machining of non-ferrous alloys, and extensively on dies and moulds. Other industrial application areas include electrical devices that require either high conductivity or insulation, optical devices requiring abrasion resistance and surgical tools and implants.

  7. Graphite-like and Diamond-like Carbon Coatings with Exceptional Tribological Properties

    Institute of Scientific and Technical Information of China (English)

    M. Jarratt; S. K. Field; S. Yang; D.G. Teer

    2004-01-01

    Two hard, carbon-based solid lubricant coatings, Graphit-iCTM and Dymon-iCTM, have been developed that offer considerable benefits for industry. Both of these new coatings have a high tribological load-bearing capacity,exceptional wear resistance and very low friction, even in dry or lubricant-starved contact. This is in contrast to many commercial diamond-like carbon, DLC coatings, which tend to be highly stressed and therefore brittle, making them unsuitable for high load bearing industrial applications. The development of the new solid lubricant coatings is described,and details of their tribological performance in dry, water and oil-lubricated environments are given. The structure of the coatings has been investigated and related to the tribological properties, and the mechanism for the low friction and wear rates is discussed. The coatings have been used to successfully improve the lifetime and efficiency of many highly loaded mechanical parts, including automotive fuel injection components, gears, bearings, tappets (cam followers), gudgeon (wrist)pins, etc. They also offer benefits for tooling and are widely used in forming or machining of non-ferrous alloys, and extensively on dies and moulds. Other industrial application areas include electrical devices that require either high conductivity or insulation, optical devices requiring abrasion resistance and surgical tools and implants.

  8. Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver

    Science.gov (United States)

    Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2016-03-01

    In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.

  9. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Thema, F.T.; Beukes, P.; Ngom, B.D. [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Manikandan, E., E-mail: mani@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital (SBMCH), Chrompet, Bharath University, Chennai, 600044 (India); Maaza, M., E-mail: maaza@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa)

    2015-11-05

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range.

  10. Dry And Ringer Solution Lubricated Tribology Of Thin Osseoconductive Metal Oxides And Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Waldhauser W.

    2015-09-01

    Full Text Available Achieving fast and strong adhesion to jawbone is essential for dental implants. Thin deposited films may improve osseointegration, but they are prone to cohesive and adhesive fracture due to high stresses while screwing the implant into the bone, leading to bared, less osteoconductive substrate surfaces and nano- and micro-particles in the bone. Aim of this work is the investigation of the cohesion and adhesion failure stresses of osteoconductive tantalum, titanium, silicon, zirconium and aluminium oxide and diamond-like carbon films. The tribological behaviour under dry and lubricated conditions (Ringer solution reveals best results for diamond-like carbon, while cohesion and adhesion of zirconium oxide films is highest.

  11. Reflectance spectrum of diamond-like carbon/porous silicon double-layer antireflection coatings designed for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aroutiounian, V.M.; Martirosyan, Kh.S. [Department of Physics of Semiconductors and Microelectronics, Yerevan State University, 375025 Yerevan (Armenia); Soukiassian, P.G. [Commissariat a l' Energie Atomique, Laboratoire SIMA associe a l' Universite de Paris-Sud/Orsay, DSM/DRECAM/SPCSI, Batiment 462, Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2007-07-01

    In this study, our purpose was to investigate the possibility of using a diamond-like carbon/porous silicon double-layer antireflection coating which is characterized by low reflectance, in order to enhance the performance of silicon solar cells and to protect them from various external influences. Experimental results obtained from reflectance measurements showed the possibility of achieving low reflectance value. Theoretical simulations of the reflectance spectra were carried out. The comparison of the reflectance spectrum of such diamond-like carbon/porous silicon double layer antireflection coating with spectra obtained from other types of coating layers showed a much lower reflectance within larger energy range including the UV, visible and infrared regions of the solar spectrum. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. A planar diamond-like carbon nanostructure for a low-voltage field emission cathode with a developed surface

    Science.gov (United States)

    Aban'shin, N. P.; Avetisyan, Yu. A.; Akchurin, G. G.; Loginov, A. P.; Morev, S. P.; Mosiyash, D. S.; Yakunin, A. N.

    2016-05-01

    Issues pertaining to the effective solution of problems related to the creation of durable low-voltage field emission cathodes with developed working surface and high density of emission current are considered. Results of practical implementation of the concept of multielectrode field emission planar nanostructures based on diamond-like carbon are presented. High average current density (0.1-0.3 A cm-2) is ensured by the formation of a controlled zone of electrostatic field localization at the planar-edge structure. The working life of cathode samples reaches 700-3000 h due to several positive factors, such as the stabilizing properties of a diamond-like carbon film, protection of the emitter from ion bombardment, use of a system of ballast resistors, and low-voltage operation of submicron interelectrode gaps.

  13. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    International Nuclear Information System (INIS)

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range

  14. Improvement in the degradation resistance of silicon nanostructures by the deposition of diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Klyui, N. I., E-mail: klyui@isp.kiev.ua; Semenenko, M. A.; Khatsevich, I. M.; Makarov, A. V.; Kabaldin, A. N. [National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine); Fomovskii, F. V. [Kremenchug National University (Ukraine); Han, Wei [Jilin University, College of Physics (China)

    2015-08-15

    It is established that the deposition of a diamond-like film onto a structure with silicon nanoclusters in a silicon dioxide matrix yields an increase in the long-wavelength photoluminescence intensity of silicon nanoclusters due to the passivation of active-recombination centers with hydrogen and a shift of the photoluminescence peak to the region of higher photosensitivity of silicon-based solar cells. It is also shown that, due to the deposited diamond-like film, the resistance of such a structure to degradation upon exposure to γ radiation is improved, which is also defined by the effect of the passivation of radiation-induced activerecombination centers by hydrogen that is released from the films during treatment.

  15. Improvement in the degradation resistance of silicon nanostructures by the deposition of diamond-like carbon films

    International Nuclear Information System (INIS)

    It is established that the deposition of a diamond-like film onto a structure with silicon nanoclusters in a silicon dioxide matrix yields an increase in the long-wavelength photoluminescence intensity of silicon nanoclusters due to the passivation of active-recombination centers with hydrogen and a shift of the photoluminescence peak to the region of higher photosensitivity of silicon-based solar cells. It is also shown that, due to the deposited diamond-like film, the resistance of such a structure to degradation upon exposure to γ radiation is improved, which is also defined by the effect of the passivation of radiation-induced activerecombination centers by hydrogen that is released from the films during treatment

  16. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet, M I De Barros [Laboratory of Tribology and System Dynamics, Ecole Centrale de Lyon, 69134 Ecully (France); Matta, C [Laboratory of Tribology and System Dynamics, Ecole Centrale de Lyon, 69134 Ecully (France); Le-Mogne, Th [Laboratory of Tribology and System Dynamics, Ecole Centrale de Lyon, 69134 Ecully (France); Martin, J Michel [Laboratory of Tribology and System Dynamics, Ecole Centrale de Lyon, 69134 Ecully (France); Zhang, Q [Materials and Process Simulation Center, California Institute of Technology, Pasadena CA (United States); III, W Goddard [Materials and Process Simulation Center, California Institute of Technology, Pasadena CA (United States); Kano, M [Nissan Research Center, to Kanagawa Industrial Technology Center, 705-1, 1 Shimo-imaizumi, Ebina, Kanagawa 243-0435 (Japan); Mabuchi, Y [Materials Engineering Department, Nissan Motor Co., Ltd., 6-1, Daikoku-cho, Tsurumi-ku, Yokohama (Japan); Ye, J [Research Department, NISSAN ARC LTD., 1 Natsushima-cho, Yokosuka 237-8523 (Japan)

    2007-11-15

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and {sup 13}C glycerol. This was complemented by first-principles-based computer simulations using the ReaxFF reactive force field to create an atomistic model of ta-C. These simulations show that DLC with the experimental density of 3.24 g/cc leads to an atomistic structure consisting of a 3D percolating network of tetrahedral (sp{sup 3}) carbons accounting for 71.5% of the total, in excellent agreement with the 70% deduced from our Auger spectroscopy and XANES experiments. The simulations show that the remaining carbons (with sp{sup 2} and sp{sup 1} character) attach in short chains of length 1 to 7. In sliding simulations including glycerol molecules, the surface atoms react readily to form a very smooth carbon surface containing OH-terminated groups. This agrees with our SIMS experiments. The simulations find that the OH atoms are mostly bound to surface sp{sup 1} atoms leading to very flexible elastic response to sliding. Both simulations and experiments suggest that the origin of the superlubricity arises from the formation of this OH-terminated surface.

  17. Microstructure and tribological performance of diamond-like carbon films deposited on hydrogenated rubber

    International Nuclear Information System (INIS)

    In this paper, the microstructure and tribological performance of diamond-like carbon (DLC) films prepared by plasma chemical vapor deposition on hydrogenated nitrile butadiene rubbers (HNBR) are studied. Different negative variations of temperature during film growth were selected by proper changes of the bias voltage. Raman measurements show a similar bonding regardless of the voltages used. A columnar growth and a tile-like microstructure of the DLC films were identified by scanning electron microscopy. Patch sizes can be correlated with the deposition conditions. The coefficient of friction (CoF) of DLC film coated HNBR was found to be much lower than that of the unprotected rubber, and more reduced for the DLC films with smaller patch sizes, which is explained by a better flexibility and conformity of the film during testing. In one of the samples, unexpected low CoF was observed, which was attributed to a modification of the mechanical properties of the rubber during the plasma treatment at high voltage. This issue was confirmed by X-ray photoelectron spectroscopy, which indicated a modification of the cross linking in the rubber. - Highlights: ► Bias voltage does not vary the chemical bonding and surface morphology of films. ► Film structure is patched, whose size depends on the etching and deposition voltages. ► The frictional behavior can be correlated with the patch size of the films. ► Surface analysis showed that rubber x-linking is modified by etching at high voltage. ► Modification of rubber x-linking leads to a different frictional behavior.

  18. Laser surface graphitization to control friction of diamond-like carbon coatings

    Science.gov (United States)

    Komlenok, Maxim S.; Kononenko, Vitaly V.; Zavedeev, Evgeny V.; Frolov, Vadim D.; Arutyunyan, Natalia R.; Chouprik, Anastasia A.; Baturin, Andrey S.; Scheibe, Hans-Joachim; Shupegin, Mikhail L.; Pimenov, Sergei M.

    2015-11-01

    To study the role of laser surface graphitization in the friction behavior of laser-patterned diamond-like carbon (DLC) films, we apply the scanning probe microscopy (SPM) in the lateral force mode (LFM) which allows to obtain simultaneously the lateral force and topography images and to determine local friction levels in laser-irradiated and original surface areas. Based on this approach in the paper, we report on (1) laser surface microstructuring of hydrogenated a-C:H and hydrogen-free ta-C films in the regime of surface graphitization using UV laser pulses of 20-ns duration and (2) correlation between the structure and friction properties of the laser-patterned DLC surface on micro/nanoscale using SPM/LFM technique. The SPM/LFM data obtained for the surface relief gratings of graphitized microstructures have evidenced lower friction forces in the laser-graphitized regions. For the hydrogenated DLC films, the reversible frictional behavior of the laser-graphitized micropatterns is found to take place during LFM imaging at different temperatures (20 and 120 °C) in ambient air. It is revealed that the lateral force distribution in the laser-graphitized areas is shifted to higher friction levels (relative to that of the unirradiated surface) at temperature 120 °C and returned back to the lower friction during the sample cooling to 20 °C, thus confirming an influence of adsorbed water layers on the nanofriction properties of laser-graphitized micropatterns on the film surface.

  19. Engineering analysis of diamond-like carbon coated polymeric materials for biomedical applications.

    Science.gov (United States)

    Alanazi, A; Nojiri, C; Kido, T; Noguchi, T; Ohgoe, Y; Matsuda, T; Hirakuri, K; Funakubo, A; Sakai, K; Fukui, Y

    2000-08-01

    Diamond-like carbon (DLC) films have received much attention recently owing to their properties, which are similar to diamond: hardness, thermal conductivity, corrosion resistance against chemicals, abrasion resistance, good biocompatibility, and uniform flat surface. Furthermore, DLC films can be deposited easily on many substrates for wide area coat at room temperature. DLC films were developed for applications as biomedical materials in blood contacting-devices (e.g., rotary blood pump) and showed good biocompatibility for these applications. In this study, we investigated the surface roughness by Atomic Force Microscopy (AFM) and Hi-vision camera, SEM for surface imaging. The DLC films were produced by radio frequency glow discharge plasma decomposed of hydrocarbon gas at room temperature and low pressure (53 Pa) on several kinds of polycarbonate substrates. For the evaluation of the relation between deposition rate and platelet adhesion that we investigated in a previous study, DLC films were deposited at the same methane pressure for several deposition times, and film thickness was investigated. In addition, the deposition rate of DLC films on polymeric substrates is similar to the deposition rate of those deposited on Si substrates. There were no significant differences in substrates' surface roughness that were coated by DLC films in different deposition rates (16-40 nm). The surface energy and the contact angle of the DLC films were investigated. The chemical bond of DLC films also was evaluated. The evaluation of surface properties by many methods and measurements and the relationship between the platelet adhesion and film thickness is discussed. Finally, the presented DLC films appear to be promising candidates for biomedical applications and merit investigation. PMID:10971249

  20. Characterization of laboratory and industrial CrN/CrCN/diamond-like carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F.J.G., E-mail: francisco.silva@eu.ipp.pt [Departamento de Engenharia Mecânica do Instituto Superior de Engenharia do Porto do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto (Portugal); Martinho, R.P. [Departamento de Engenharia da Escola Superior de Estudos Industriais e de Gestão do Instituto Politécnico do Porto, Rua D. Sancho I, 981, 4480-876 Vila do Conde (Portugal); Baptista, A.P.M. [Departamento de Engenharia Mecânica da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2014-01-01

    This work reports on laboratorial and experimental wear behaviour studies about a multi-layered film deposited by PVD (Physical Vapour Deposition) unbalanced magnetron sputtering. The film consists of three different layers: CrN in the bottom, CrCN as intermediate layer and DLC (diamond-like carbon) on the top. Film characterization was done using techniques such as Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Atomic Force Microscopy and X-ray diffraction. Scratch-tests, nanoindentation analysis and ball-cratering wear tests were used in order to measure the adhesion critical load, hardness and wear coefficient, respectively. Experimental tests were developed letting one to realise the suitability of this film for mould cavities used on injection moulding machines that produce automotive parts in polypropylene reinforced with 30% (wt.) glass fibres, because this composite material performs severe abrasion on injection moulding which brings important challenges to surface wear resistance. Experimental tests revealed that, after 135,000 injection cycles, multi-layer coating improved significantly the performance previously revealed by uncoated samples. The good results achieved by this film can be partially assigned to DLC top layer due to its low friction coefficient. This paper discusses these results, comparing them with some other PVD coatings already tested in the same conditions. - Highlights: • This coating presents a very good adhesion to the P20 steel substrate. • Surface wear performance is largely improved by the use of this coating. • Coating wear resistance is about 58.2 times higher than the uncoated substrate. • This film presents high suitability for application in mould cavities.

  1. Fabrication and Characterization of ZnS/Diamond-Like Carbon Core-Shell Nanowires

    Directory of Open Access Journals (Sweden)

    Jung Han Kim

    2016-01-01

    Full Text Available We fabricated ZnS/diamond-like carbon (DLC core-shell heterostructure nanowire using a simple two-step process: the vapor-liquid-solid method combined with radio frequency plasma enhanced chemical vapor deposition (rf PECVD. As a core nanowire, ZnS nanowires with face-centered cubic structure were synthesized with a sputtered Au thin film, which exhibit a length and a diameter of ~10 μm and ~30–120 nm . After rf PECVD for DLC coating, The length and width of the dense ZnS/DLC core-shell nanowires were a range of ~10 μm  and 50–150 nm , respectively. In addition, ZnS/DLC core-shell nanowires were characterized with scanning transmission electron microscopy. From the results, the products have flat and uniform DLC coating layer on ZnS nanowire in spite of high residual stress induced by the high sp3 fraction. To further understanding of the DLC coating layer, Raman spectroscopy was employed with ZnS/DLC core-shell nanowires, which reveals two Raman bands at 1550 cm−1 (G peak and 1330 cm−1 (D peak. Finally, we investigated the optical properties from ultraviolet to infrared wavelength region using ultraviolet-visible (UV-Vis and Fourier transform infrared (FT-IR spectrometry. Related to optical properties, ZnS/DLC core-shell nanowires exhibit relatively lower absorbance and higher IR transmittance than that of ZnS nanowires.

  2. Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires.

    Science.gov (United States)

    Kobayashi, Shinya; Ohgoe, Yasuharu; Ozeki, Kazuhide; Hirakuri, Kenji; Aoki, Hideki

    2007-12-01

    Nickel-titanium (NiTi) has been used for implants in orthodontics due to the unique properties such as shape memory effect and superelasticity. However, NiTi alloys are eroded in the oral cavity because they are immersed by saliva with enzymolysis. Their reactions lead corrosion and nickel release into the body. The higher concentrations of Ni release may generate harmful reactions. Ni release causes allergenic, toxic and carcinogenic reactions. It is well known that diamond-like carbon (DLC) films have excellent properties, such as extreme hardness, low friction coefficients, high wear resistance. In addition, DLC film has many other superior properties as a protective coating for biomedical applications such as biocompatibility and chemical inertness. Therefore, DLC film has received enormous attention as a biocompatible coating. In this study, DLC film coated NiTi orthodontic archwires to protect Ni release into the oral cavity. Each wire was immersed in physiological saline at the temperature 37 degrees C for 6 months. The release concentration of Ni ions was detected using microwave induced plasma mass spectrometry (MIP-MS) with the resolution of ppb level. The toxic effect of Ni release was studied the cell growth using squamous carcinoma cells. These cells were seeded in 24 well culture plates and materials were immersed in each well directly. The concentration of Ni ions in the solutions had been reduced one-sixth by DLC films when compared with non-coated wire. This study indicated that DLC films have the protective effect of the diffusion and the non-cytotoxicity in corrosive environment. PMID:17562139

  3. Electrical and magnetic properties of electrodeposited nickel incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B., E-mail: pandey.beauty@yahoo.com [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India); Das, D. [UGC-DAE CSR, Sector III/LB-8, Bidhan Nagar, Kolkata 700098 (India); Kar, A.K. [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India)

    2015-05-15

    Highlights: • Electrical and magnetic properties of DLC and Ni-DLC thin films are studied. • The ohmicity and conductivity of DLC films rise with nickel addition. • The ohmicity of Ni-DLC is enhanced with increase in dilution of electrolyte. • Dielectric loss is high for Ni-DLC and decreases with frequency till 100 kHz. • (m–H) and (m–T) curves of Ni-DLC indicate superparamagnetic behavior. - Abstract: Nanocomposite diamond-like carbon (DLC) thin films have been synthesized by incorporating nickel (Ni) nanoparticles in DLC matrix with varying concentration of nickel. DLC and Ni-DLC thin films have been deposited on ITO coated glass substrates employing low voltage electrodeposition method. Electrical properties of the samples were studied by measuring current–voltage characteristics and dielectric properties. The current approaches toward an ohmic behavior with metal addition. This tendency of increasing ohmicity is enhanced with increase in dilution of the electrolyte. The conductivity increases with Ni addition and interestingly it continues to increase with dilution of Ni concentration in the electrolyte in the range of our study. Magnetic properties for DLC and Ni-DLC thin film samples were examined by electron paramagnetic resonance (EPR) measurements and Super Conducting Quantum Interference Device (SQUID) measurements. g-Value for DLC is 2.074, whereas it decreases to 2.055 with Ni addition in the electrolyte. This decrement arises from the increased sp{sup 2} content in DLC matrix. The magnetic moment vs. magnetic field (m–H) curves of Ni-DLC indicate superparamagnetic behavior which may be due to ferromagnetic contribution from the incorporated nickel nanoparticles in the DLC matrix. The ZFC curve of Ni-DLC after the blocking temperature shows a combined contribution of ferromagnetic, superparamagnetic and paramagnetic nature of the materials persisting up to 300 K.

  4. Characterization of laboratory and industrial CrN/CrCN/diamond-like carbon coatings

    International Nuclear Information System (INIS)

    This work reports on laboratorial and experimental wear behaviour studies about a multi-layered film deposited by PVD (Physical Vapour Deposition) unbalanced magnetron sputtering. The film consists of three different layers: CrN in the bottom, CrCN as intermediate layer and DLC (diamond-like carbon) on the top. Film characterization was done using techniques such as Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Atomic Force Microscopy and X-ray diffraction. Scratch-tests, nanoindentation analysis and ball-cratering wear tests were used in order to measure the adhesion critical load, hardness and wear coefficient, respectively. Experimental tests were developed letting one to realise the suitability of this film for mould cavities used on injection moulding machines that produce automotive parts in polypropylene reinforced with 30% (wt.) glass fibres, because this composite material performs severe abrasion on injection moulding which brings important challenges to surface wear resistance. Experimental tests revealed that, after 135,000 injection cycles, multi-layer coating improved significantly the performance previously revealed by uncoated samples. The good results achieved by this film can be partially assigned to DLC top layer due to its low friction coefficient. This paper discusses these results, comparing them with some other PVD coatings already tested in the same conditions. - Highlights: • This coating presents a very good adhesion to the P20 steel substrate. • Surface wear performance is largely improved by the use of this coating. • Coating wear resistance is about 58.2 times higher than the uncoated substrate. • This film presents high suitability for application in mould cavities

  5. Diamond-like carbon coatings for the protection of metallic artefacts: effect on the aesthetic appearance

    Science.gov (United States)

    Faraldi, Federica; Angelini, Emma; Caschera, Daniela; Mezzi, Alessio; Riccucci, Cristina; Caro, Tilde De

    2014-03-01

    Plasma-enhanced chemical vapour deposition (PECVD) is an environmentally friendly process used to deposit a variety of nano-structured coatings for the protection or the surface modification of metallic artefacts like the SiO2-like films that have been successfully tested on ancient silver, bronze and iron artefacts as barriers against aggressive agents. This paper deals with the preliminary results of a wider investigation aimed to the development of eco-sustainable coatings for the protection of Cu and Ag-based artefacts of archaeological and historic interest. Diamond-like carbon (DLC) coatings have been deposited by PECVD in different experimental conditions, in a capacitively coupled asymmetric plasma reactor, placing the substrates either on electrically powered electrode (cathodic mode) or grounded electrode (anodic mode) with and without hydrogen addition in the gas mixture. The final goal is to develop a coating with good protective effectiveness against aggressive atmospheres and contemporarily with negligible effects on the aesthetic appearance of the artefacts. The evaluation of possible colour changes of the surface patinas, due to coating process, was performed by optical microscopy and colorimetric measurements. Furthermore, to evaluate the reversibility of the thin DLC layer, an etching treatment in oxygen plasma has been successfully carried out and optimized. The chemical-physical characterization of the deposited DLC coatings was performed by means of the combined use of micro-Raman and XPS spectroscopies. The results show that the DLC films obtained in the anodic mode, may be proposed as a viable alternative to polymeric coatings for the protection of metallic ancient objects.

  6. Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets.

    Science.gov (United States)

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Nakagaki, Susumu; Endo, Kazuhiko; Mizoguchi, Itaru

    2013-04-01

    This study investigated the effects of a diamond-like carbon (DLC) coating on frictional and mechanical properties of orthodontic brackets. DLC films were deposited on stainless steel brackets using the plasma-based ion implantation/deposition (PBIID) method under two different atmospheric conditions. As-received metal brackets served as the control. Two sizes of stainless steel archwires, 0.018 inch diameter and 0.017 × 0.025 inch cross-section dimensions, were used for measuring static and kinetic friction by drawing the archwires through the bracket slots, using a mechanical testing machine (n = 10). The DLC-coated brackets were observed with a scanning electron microscope (SEM). Values of hardness and elastic modulus were obtained by nanoindentation testing (n = 10). Friction forces were compared by one-way analysis of variance and the Scheffé test. The hardness and elastic modulus of the brackets were compared using Kruskal-Wallis and Mann-Whitney U-tests. SEM photomicrographs showed DLC layers on the bracket surfaces with thickness of approximately 5-7 μm. DLC-coated brackets deposited under condition 2 showed significantly less static frictional force for the stainless steel wire with 0.017 × 0.025 inch cross-section dimensions than as-received brackets and DLC-coated brackets deposited under condition 1, although both DLC-coated brackets showed significantly less kinetic frictional force than as-received brackets. The hardness of the DLC layers was much higher than that of the as-received bracket surfaces. In conclusion, the surfaces of metal brackets can be successfully modified by the PBIID method to create a DLC layer, and the DLC-coating process significantly reduces frictional forces. PMID:21934113

  7. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Thin diamond-like carbon (DLC) stripper foils ∼5μg/cm2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ∼4μg/cm2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine–saccharose as releasing agent, which were previously covered with evaporated carbon layers ∼1μg/cm2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4 for the 197Au− (∼9MeV, ∼1μA) and 63Cu− (∼9MeV, ∼1μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (ID/IG) measured by the Raman spectroscopy is 0.78

  8. Real contact temperatures as the criteria for the reactivity of diamond-like carbon coatings with oil additives

    OpenAIRE

    Kalin, Mitjan; Vižintin, Jože

    2015-01-01

    The operating conditions under which chemical reactions between diamond-like-carbon (DLC) coatings and oil additives occur and the main driving forces, i.e., the activation criteria for these chemical reactions, have not yet been defined. In order to clarify the difference between the test temperature and real contact temperature, and to determine the effect of the real contact temperature for these reactions, we have calculated the contact temperatures using two well-known models and compare...

  9. The influence of anti-wear additive ZDDP on doped and undoped diamond-like carbon coatings

    OpenAIRE

    Austin, L.; Liskiewicz, T; Kolev, I; Zhao, H.; Neville, A.

    2015-01-01

    Diamond-like carbon (DLC) coatings are recognised as a promising way to reduce friction and improve wear performance of automotive engine components. DLC coatings provide new possibilities in the improvement of the tribological performance of automotive components beyond what can be achieved with lubricant design alone. Lubricants are currently designed for metallic surfaces, the tribology of which is well defined and documented. DLC does not share this depth of tribological knowledge; thus, ...

  10. Interpreting the effects of interfacial chemistry on the tribology of diamond-like carbon coatings against steel in distilled water

    OpenAIRE

    Sutton, Daniel; Limbert, Georges; Burdett, Bary; R.J.K. Wood

    2013-01-01

    Three commercially available Diamond?Like Carbon (DLC) coatings were investigated to help understand the dynamics of transfer layer formation and decay, when sliding against AISI 52100 steel balls in distilled water. Optimum tribological behaviour was observed during interfacial sliding between the transfer layer and DLC coating. Alternatively, shear of the carbonaceous transfer layer from the contact region resulted in growth of an iron oxide layer comprised of magnetite, maghemite and hemat...

  11. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    OpenAIRE

    Tadas Juknius; Modestas Ružauskas; Tomas Tamulevičius; Rita Šiugždinienė; Indrė Juknienė; Andrius Vasiliauskas; Aušrinė Jurkevičiūtė; Sigitas Tamulevičius

    2016-01-01

    In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag)-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using micro...

  12. Low reflectance of diamond-like carbon/porous silicon double layer antireflection coating for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aroutiounian, V M [Department of Semiconductor Physics and Microelectronics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 375025 (Armenia); Martirosyan, Kh [Department of Semiconductor Physics and Microelectronics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 375025 (Armenia); Soukiassian, P [Commissariat a l' Energie Atomique, Laboratoire SIMA associe a l' Universite Paris-Sud/Orsay, DSM-DRECAM-SPCSI, Saclay, Batiment 462, 91191 Gif sur Yvette Cedex (France)

    2004-10-07

    Reflectance calculations for diamond-like carbon (DLC) antireflection thin-film coatings on porous silicon (PS) have been carried out using the optical matrix approach method. Comparison with the reflectance spectrum obtained for other antireflection coatings shows a much lower reflectance with a larger energy range including the ultraviolet, visible and infrared regions of the solar spectrum for the DLC/PS double layer. This finding is relevant in solar cell applications. (rapid communication)

  13. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Czech Academy of Sciences Publication Activity Database

    Mikšovský, Jan; Voss, A.; Kozarova, R.; Kocourek, Tomáš; Písařík, Petr; Ceccone, G.; Kulisch, W.; Jelínek, Miroslav; Apostolova, M.D.; Reithmaier, J.P.; Popov, C.

    2014-01-01

    Roč. 297, APR (2014), s. 95-102. ISSN 0169-4332 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : ultrananocrystalline diamond films * diamond-like carbon films * surface modification * direct contact cell tests Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014 http://www.sciencedirect.com/science/article/pii/S0169433214001251

  14. Deposition of hard and adherent diamond-like carbon films inside steel tubes using a pulsed-DC discharge.

    Science.gov (United States)

    Trava-Airoldi, Vladimir Jesus; Capote, Gil; Bonetti, Luís Francisco; Fernandes, Jesum; Blando, Eduardo; Hübler, Roberto; Radi, Polyana Alves; Santos, Lúcia Vieira; Corat, Evaldo José

    2009-06-01

    A new, low cost, pulsed-DC plasma-enhanced chemical vapor deposition system that uses a bipolar, pulsed power supply was designed and tested to evaluate its capacity to produce quality diamond-like carbon films on the inner surface of steel tubes. The main focus of the study was to attain films with low friction coefficients, low total stress, a high degree of hardness, and very good adherence to the inner surface of long metallic tubes at a reasonable growth rate. In order to enhance the diamond-like carbon coating adhesion to metallic surfaces, four steps were used: (1) argon ion sputtering; (2) plasma nitriding; (3) a thin amorphous silicon interlayer deposition, using silane as the precursor gas; and (4) diamond-like carbon film deposition using methane atmosphere. This paper presents various test results as functions of the methane gas pressure and of the coaxial metal anode diameter, where the pulsed-DC voltage constant is kept constant. The influence of the coaxial metal anode diameter and of the methane gas pressure is also demonstrated. The results obtained showed the possibilities of using these DLC coatings for reduced friction and to harden inner surface of the steel tubes. PMID:19504937

  15. Improvement of adhesion of diamond-like coatings to steel using a transition layer of variable composition

    International Nuclear Information System (INIS)

    The influence of transition layer composition on adhesive strength of a diamond-like coating deposited on steel Kh12M is under study. The transition layer ∼ 100 nm thick was formed as a Ti-C structure with carbon content varying from 0 to 100%. This structure resulted from the deposition of arc sputtered Ti and pulsed arc sputtered graphite from two sources simultaneously. The concentration of C in the transition layer was controlled thought the variation of a carbon deposition rate at a constant Ti deposition velocity. The adhesion strength was determined from the extent of coating exfoliation near a scratch or from cone indentation of a Rockwell hardness meter. The best adhesion of coatings 1-2μ thick is attained when a 20 nm thin layer of Ti is covered with carbon-titanium mixture, not lower TiC in composition, with progressive transition to a pure diamond-like coating. Measurements of microhardness, friction properties and wear rate in abrasive powder show high quality of diamond-like coatings on steel if the transition layer is of optimal composition

  16. Osteoblast adhesion to orthopaedic implant alloys: effects of cell adhesion molecules and diamond-like carbon coating.

    Science.gov (United States)

    Kornu, R; Maloney, W J; Kelly, M A; Smith, R L

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48% (p Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. PMID:8982128

  17. Photoluminescence properties of Co-doped ZnO nanocrystals

    DEFF Research Database (Denmark)

    Lommens, P.; Smet, P.F.; De Mello Donega, C.; Meijerink, A.; Piraux, L.; Michotte, S.; Mátéfi-Tempfli, Stefan; Poelman, D.; Hens, Z.

    2006-01-01

    We performed photoluminescence experiments on colloidal, Co -doped ZnO nanocrystals in order to study the electronic properties of Co in a ZnO host. Room temperature measurements showed, next to the ZnO exciton and trap emission, an additional emission related to the Co dopant. The spectral...... position and width of this emission does not depend on particle size or Co concentration. At 8 K, a series of ZnO bulk phonon replicas appear on the Co-emission band. We conclude that Co ions are strongly localized in the ZnO host, making the formation of a Co d-band unlikely. Magnetic measurements...

  18. Ga co-doping in Cz-grown silicon ingots to overcome limitations of B and P compensated silicon feedstock for PV applications

    Energy Technology Data Exchange (ETDEWEB)

    Forster, Maxime [APOLLON SOLAR, 66 cours Charlemagne, 69002 Lyon (France); INSA de LYON, INL, 7 av. J. Capelle, 69621 Villeurbanne Cedex (France); Fourmond, Erwann; Lemiti, Mustapha [INSA de LYON, INL, 7 av. J. Capelle, 69621 Villeurbanne Cedex (France); Einhaus, Roland; Lauvray, Hubert; Kraiem, Jed [APOLLON SOLAR, 66 cours Charlemagne, 69002 Lyon (France)

    2011-03-15

    In this paper, we investigate gallium co-doping during CZ crystallization of boron and phosphorus compensated Si. It is shown that the addition of gallium yields a fully p-type ingot with high resistivity despite high B and P contents in the silicon. Segregation of doping impurities is consistent with theory. Minority carrier lifetime and majority carrier mobility measurements indicate that this material is suitable for the realization of solar cells with comparable efficiencies to standard material. Significant light-induced degradation of minority carrier lifetime is however revealed to occur in this material. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Phase stability of Y+Gd co-doped zirconia

    International Nuclear Information System (INIS)

    The high-temperature stability of zirconias co-doped with Y and Gd and synthesized as metastable single phases within the equilibrium tetragonal+cubic field is investigated. The motivation arises from strategies to enhance the insulating efficiency of thermal barrier systems by co-doping the conventional ZrO2-7.6% YO1.5 composition with trivalent rare-earth cations. The issue is the partitioning of the metastable tetragonal (t') or cubic (c') phases into the equilibrium t+c phases dictated by the phase diagram, whereupon the tetragonal phase becomes susceptible to the disruptive monoclinic transformation. The experiments are based on compositions synthesized by precursor pyrolysis, all of which yield initially supersaturated single-phase solid solutions. It is found that t' stabilized by Gd alone is significantly less resistant to partitioning at high temperature than its Y counterpart with the same amount of stabilizer. However, modest substitution of Gd for Y does not degrade the stability, and may improve it in some cases. Increasing the total amount of stabilizer generally enhances phase stability. The roles of thermodynamics and kinetics on the relative stability of the system are discussed. (orig.)

  20. Phase stability of Y+Gd co-doped zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo, N.R.; Levi, C.G. [Materials Dept., Univ. of California, Santa Barbara, CA (United States); Fabrichnaya, O. [Max-Planck-Inst. fuer Metallforschung, Stuttgart (Germany)

    2003-03-01

    The high-temperature stability of zirconias co-doped with Y and Gd and synthesized as metastable single phases within the equilibrium tetragonal+cubic field is investigated. The motivation arises from strategies to enhance the insulating efficiency of thermal barrier systems by co-doping the conventional ZrO{sub 2}-7.6% YO{sub 1.5} composition with trivalent rare-earth cations. The issue is the partitioning of the metastable tetragonal (t') or cubic (c') phases into the equilibrium t+c phases dictated by the phase diagram, whereupon the tetragonal phase becomes susceptible to the disruptive monoclinic transformation. The experiments are based on compositions synthesized by precursor pyrolysis, all of which yield initially supersaturated single-phase solid solutions. It is found that t' stabilized by Gd alone is significantly less resistant to partitioning at high temperature than its Y counterpart with the same amount of stabilizer. However, modest substitution of Gd for Y does not degrade the stability, and may improve it in some cases. Increasing the total amount of stabilizer generally enhances phase stability. The roles of thermodynamics and kinetics on the relative stability of the system are discussed. (orig.)

  1. Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals

    International Nuclear Information System (INIS)

    Amorphous silicon carbide (a-SiC) and silicon-incorporated diamond-like carbon films (DLC-Si) were evaluated as protective and friction reduction coatings onto Si3N4 rings. Unlubricated tribological tests were performed with a pin-on-disk apparatus against stainless steel pins with loads ranging from 3 to 55 N and sliding velocities from 0.2 to 1.0 m/s under ambient air and 50-60% relative humidity. At the lowest loads, a-SiC coatings present a considerable improvement with respect to the behavior of uncoated disks since the friction coefficient is reduced to about 0.2 and the system is able to run stably for thousands of meters. At higher loads, however, a-SiC coatings fail. DLC-Si-coated rings, on the other hand, presented for loads up to 10 N a steady-state friction coefficient below 0.1 and very low wear rates. The lowest steady-state mean friction coefficient value of only 0.055 was obtained with a sliding velocity of 0.5 m/s. For higher loads in the range of 20 N, the friction coefficient drops to values around 0.1 but no steady state is reached. For the highest loads of over 50 N, a catastrophic behavior is observed. Typically, wear rates below 5x10-6 and 2x10-7 mm3/N m were obtained for the ceramic rings and pins, respectively, with a load of 10 N and a sliding velocity of 0.5 m/s. Analysis of the steel pin contact surface by scanning electron microscopy (SEM)-energy dispersive X-ray spectrometry (EDS) and Auger spectroscopy revealed the formation of an adherent tribo-layer mainly composed by Si, C and O. The unique structure of DLC-Si films is thought to be responsible for the formation of the tribo-layer

  2. The enhanced electrocatalytic activity of graphene co-doped with chlorine and fluorine atoms

    International Nuclear Information System (INIS)

    Graphene co-doped with fluorine and chlorine was prepared through a one-step synthesis to greatly enhance its electrocatalytic activity and stability for oxygen reduction reaction. - Highlights: • Developed a one-step synthesis of graphene co-doped with different halogen atoms. • The obtained graphene exhibits great electrocatalytic activity in the oxygen reduction reaction. • The chlorine–fluorine co-doped graphene has great stability in methanol crossover effect. • Experiments indicate that there are possible synergetic interactions between halogen dopants. - Abstract: Graphene co-doped with fluorine and chlorine heteroatoms was prepared through a one-step synthesis and was investigated as the oxygen reduction electrocatalysts. Voltammetric measurements show that fluorine and chlorine co-doped graphene has remarkable catalytic activity toward the electrochemical reduction of oxygen in alkaline solution. Besides having a high tolerance to methanol crossover effect, the co-doped graphene also showed a better stability than that of commercial Pt/C electrocatalysts and of the chlorine-doped graphene that was prepared by the same approach. The charge transfer resistance of the co-doped graphene was substantially lower than that of the chlorine-doped graphene, suggesting that there may exist a synergistic interaction between fluorine and chlorine dopants. The rapid synthetic method reported here provides an effective approach for future investigation of halogen (co-) doped graphene

  3. Electronic structure and optical properties of Al and Mg co-doped GaN

    International Nuclear Information System (INIS)

    The electronic structure and optical properties of Al and Mg co-doped GaN are calculated from first principles using density function theory with the plane-wave ultrasoft pseudopotential method. The results show that the optimal form of p-type GaN is obtained with an appropriate Al:Mg co-doping ratio rather than with only Mg doping. Al doping weakens the interaction between Ga and N, resulting in the Ga 4s states moving to a high energy region and the system band gap widening. The optical properties of the co-doped system are calculated and compared with those of undoped GaN. The dielectric function of the co-doped system is anisotropic in the low energy region. The static refractive index and reflectivity increase, and absorption coefficient decreases. This provides the theoretical foundation for the design and application of Al—Mg co-doped GaN photoelectric materials

  4. Molecular dynamics simulations of the structures and mechanical properties of ZDOL polymer films on diamond-like carbon

    OpenAIRE

    Zhang, Yong-Wei

    2014-01-01

    One of the core technologies in the design and manufacture of the next-generation hard disk drives is the head-disk interface (HDI). The design of HDI must provide sufficient stability and durability for tens of thousands of hard drive start/stop cycles. However, the intermittent contacts between the head and disk are often unavoidable. To avoid and minimize disk damage, the surface of hard drive disks is often protected by a diamond-like carbon (DLC) coating, which is in turn covered by a th...

  5. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    order to quantitatively determine coating fracture properties. A non-linear elastic-plastic finite element model of the coating system which is loaded with a spherical indenter is used to simulated stress and displacement distributions in the material. The simulations are used to predict the onset of...... cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved....

  6. Effect of nitrogen pressure on optical properties and microstructure of diamond-like carbon films grown by pulsed laser deposition

    Institute of Scientific and Technical Information of China (English)

    DING Xu-Li; LI Qing-Shan; KONG Xiang-he

    2009-01-01

    The effect of nitrogen pressure on optical properties of hydrogen-free diamond-like carbon (DLC) films deposited by pulsed laser ablation graphite in different background pressures of nitrogen is reported. By varying nitrogen pressures from 0.05 to 15.00 Pa, the photoluminescence is gradually increased and optical transmittance is gradually decreased. Atomic force microscopy (AFM) is used to observe the surface morphology of the DLC films. The results indicate that the surface becomes unsmoothed and there are some globose particles on the films surface with the rise of nitrogen pressures. The microstructure of the films is characterized using Raman spectroscopy.

  7. Thin film hybrid Josephson junctions with Co doped Ba-122

    International Nuclear Information System (INIS)

    Josephson junctions are a strong tool to investigate fundamental superconducting properties, such as gap behaviour, dependencies from external fields and the order parameter symmetry. Finding secure values enables the possibility of theoretical descriptions to understand the physical processes within the new iron-based superconductors. Based on Co-doped BaFe2As2 (Ba-122) layers produced via pulsed laser deposition (PLD) on (La,Sr)(Al,Ta)O3 substrates, we manufactured superconductor-normal conductor-superconductor (S-N-S) junctions structures by using photolithography, ion beam etching as well as insulating SiO2 layers. We present working Ba-122/Au/PbIn thin film Josephson junctions with different contact areas and barrier thicknesses, their temperature dependence and response to microwave irradiation. The calculated IcRN product is in the range of a couple of microvolts.

  8. Co-doped spinels: promising materials for solid state lasers

    Science.gov (United States)

    Kuleshov, Nickolai V.; Mikhailov, Victor P.; Scherbitsky, V. G.

    1994-07-01

    Optical absorption, luminescence, saturation of absorption and lifetime measurements have been carried out on Co-doped MgAl2O4 and ZnGa2O4. The crystal field parameters are estimated for the tetrahedral Co2+ ion. Three luminescence bands observed in the visible and near infrared are assigned to transitions from the 4T1(4P) level to the lower levels 4A2(4F), 4T2(4F), and 4T1(4F), respectively. Strong luminescence quenching due to nonradiative decay processes is observed MgAl2O4:Co. Saturation of Co2+ absorption at 540 nm is measured and the absorption cross section is estimated to be 2.1 + 0.2 X 10-19 cm2 in MgAl2O4.

  9. No Co ferromagnetism in Co doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, Thomas; Brueck, Sebastian; Goering, Eberhard; Schuetz, Gisela [Max-Plank-Institute for Metal Research, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Gacic, Milan; Jakob, Gerhard; Herbort, Christian; Adrian, Hermann [Institute of Physics, University of Mainz, Staudinger Weg 7, 55099 Mainz (Germany)

    2007-07-01

    Diluted magnetic semiconductors, doped with a few percent (<10%) of magnetic ions such as Co or Mn, have attracted recently enormous interest, due to the room temperature ferromagnetism observed in such systems. The original intention for doping is that localized magnetic moments couple with each other ferromagnetically via the semi conducting host material. We have investigated 5% Co doped ZnO prepared by pulsed laser deposition (PLD). X-ray magnetic circular dichroism provides element specific magnetic moments of Co, Zn an O. We have performed field and temperature dependent XMCD measurements at the Co and Zn L{sub 2,3} edges and the O K edge. As expected, Zn does not contribute to the ferromagnetism, but Co exhibits only paramagnetic behavior at all temperatures and fields. But surprisingly we found magnetic polarization, related to a small orbital moment; at the O site, suspected to be responsible for room temperature ferromagnetism of ZnO.

  10. Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Wei, E-mail: wei.ren@helsinki.fi; Avchaciov, Konstantin; Nordlund, Kai [Department of Physics, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland); Iyer, Ajai; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, P.O. Box 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, 00076 Aalto (Finland)

    2015-11-21

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether the quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp{sup 3} bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp{sup 3}-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40–70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity.

  11. Gas Permeation, Mechanical Behavior and Cytocompatibility of Ultrathin Pure and Doped Diamond-Like Carbon and Silicon Oxide Films

    Directory of Open Access Journals (Sweden)

    Juergen M. Lackner

    2013-12-01

    Full Text Available Protective ultra-thin barrier films gather increasing economic interest for controlling permeation and diffusion from the biological surrounding in implanted sensor and electronic devices in future medicine. Thus, the aim of this work was a benchmarking of the mechanical oxygen permeation barrier, cytocompatibility, and microbiological properties of inorganic ~25 nm thin films, deposited by vacuum deposition techniques on 50 µm thin polyetheretherketone (PEEK foils. Plasma-activated chemical vapor deposition (direct deposition from an ion source was applied to deposit pure and nitrogen doped diamond-like carbon films, while physical vapor deposition (magnetron sputtering in pulsed DC mode was used for the formation of silicon as well as titanium doped diamond-like carbon films. Silicon oxide films were deposited by radio frequency magnetron sputtering. The results indicate a strong influence of nanoporosity on the oxygen transmission rate for all coating types, while the low content of microporosity (particulates, etc. is shown to be of lesser importance. Due to the low thickness of the foil substrates, being easily bent, the toughness as a measure of tendency to film fracture together with the elasticity index of the thin films influence the oxygen barrier. All investigated coatings are non-pyrogenic, cause no cytotoxic effects and do not influence bacterial growth.

  12. Composition and morphology of metal-containing diamond-like carbon films obtained by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    The addition of metal atoms within the matrix of diamond-like carbon films leads to the improvement of their mechanical properties. The present paper discusses the relationship between the composition and morphology of metal-containing (W, Nb, Mo, Ti) diamond-like carbon thin films deposited at room temperature by reactive magnetron sputtering from a metal target in an argon and methane atmosphere. Composition was measured either by electron microprobe technique or by X-ray photoelectron spectroscopy and shows a smooth variation with relative methane flow. High relative methane flows lead to a bulk saturation of carbon atoms, which leads to a lack of homogeneity in the films as confirmed by secondary ion mass spectrometry. Cross-section micrographs were observed by transmission electron microscopy and revealed a structure strongly influenced by the metal inserted and its abundance. The surface pattern obtained by scanning electrochemical potential microscopy provided the metallicity distribution. These measurements were completed with atomic force microscopy of the surface. Selected area electron diffraction and X-ray diffraction measurements provided data of the crystalline structure along with nano-crystallite size. High-resolution transmission electron microscopy provided images of these crystallites

  13. Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials

    Science.gov (United States)

    Ren, Wei; Iyer, Ajai; Koskinen, Jari; Kaskela, Antti; Kauppinen, Esko I.; Avchaciov, Konstantin; Nordlund, Kai

    2015-11-01

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether the quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp3 bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp3-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40-70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity.

  14. Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials

    International Nuclear Information System (INIS)

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether the quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp3 bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp3-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40–70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity

  15. Ultra hydrophobic/superhydrophilic modified cotton textiles through functionalized diamond-like carbon coatings for self-cleaning applications.

    Science.gov (United States)

    Caschera, Daniela; Cortese, Barbara; Mezzi, Alessio; Brucale, Marco; Ingo, Gabriel Maria; Gigli, Giuseppe; Padeletti, Giuseppina

    2013-02-26

    A stable and improved control of the wettability of textiles was obtained by using a coating of diamond like carbon (DLC) films on cotton by PECVD. By controlling different plasma pretreatments of argon, oxygen, and hydrogen on the cotton fibers' surface, we have shown that the pretreatments had a significant impact on wettability behavior resulting from an induced nanoscale roughness combined with an incorporation of selected functional groups. Upon subsequent deposition of diamond like carbon (DLC) films, the cotton fibers yield to a highly controlled chemical stability and hydrophobic state and could be used for self-cleaning applications. By controlling the nature of the plasma pretreatment we have shown that the oxygen plasma pretreatment was more effective than the argon and hydrogen for the superhydrophilic/ultra hydrophobic properties. The chemical and morphological changes of the cotton fibers under different treatments were characterized using X-ray photoelectron and Raman spectroscopy, AFM, and water contact angle measurements. The mechanism underlying the water-repellent properties of the cotton fibers provides a new and innovative pathway into the development of a range of advanced self-cleaning textiles. PMID:23379650

  16. Enhanced field electron emission from aligned diamond-like carbon nanorod arrays prepared by reactive ion beam etching

    Science.gov (United States)

    Zhao, Yong; Qin, Shi-Qiao; Zhang, Xue-Ao; Chang, Sheng-Li; Li, Hui-Hui; Yuan, Ji-Ren

    2016-05-01

    Homogeneous diamond-like carbon (DLC) films were deposited on Si supports by a pulsed filtered cathodic vacuum arc deposition system. Using DLC films masked by Ni nanoparticles as precursors, highly aligned diamond-like carbon nanorod (DLCNR) arrays were fabricated by the etching of inductively coupled radio frequency oxygen plasma. The as-prepared DLCNR arrays exhibit excellent field emission properties with a low turn-on field of 2.005 V μm‑1 and a threshold field of 4.312 V μm‑1, respectively. Raman spectroscopy and x-ray photoelectron spectroscopy were employed to determine the chemical bonding structural change of DLC films before and after etching. It is confirmed that DLC films have good connection with Si supports via the formation of the SiC phase, and larger conductive sp2 domains are formed in the as-etched DLC films, which play essential roles in the enhanced field emission properties for DLCNR arrays.

  17. Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO

    Institute of Scientific and Technical Information of China (English)

    Weng Zhen-Zhen; Zhang Jian-Min; Huang Zhi-Gao; Lin Wen-Xiong

    2011-01-01

    The influence of oxygen vacancy on the magnetism of Co-doped ZnO has been investigated by the first-principles calculations. It is suggested that oxygen vacancy and its location play crucial roles on the magnetic properties of Co-doped ZnO. The exchange coupling mechanism should account for the magnetism in Co-doped ZnO with oxygen vacancy and the oxygen vacancy is likely to be close to the Co atom. The oxygen vacancy (doping electrons) might be available for carrier mediation but is localized with a certain length and can strengthen the ferromagnetic exchange interaction between Co atoms.

  18. Photovoltaic Properties of Co-doped ZnO Thin Film on Glass Substrate

    International Nuclear Information System (INIS)

    Cobalt (Co) 0.4 mol doped zinc oxide (ZnO) fine powder was prepared by solid state mixed oxide route. Phase formation and crystal structure of Co-doped ZnO (CZO) powder were examined by X-ray diffraction (XRD). Scanning Electron Microscopy (SEM) was used to observe the micro structure of Co doped ZnO powder. Energy Dispersive X-ray Fluorescent (EDXRF) technique gave the elemental content of cobalt and zinc. Co-doped ZnO film was formed on glass substrate by spin coating technique. Photovoltaic properties of CZO/glass cell were measured.

  19. Dynamics of iron-acceptor-pair formation in co-doped silicon

    Energy Technology Data Exchange (ETDEWEB)

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F. [Calisolar GmbH, Magnusstrasse 11, 12489 Berlin (Germany); Möller, C. [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany); TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau (Germany); Lauer, K. [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany)

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  20. Electrochemical Properties for Co-Doped Pyrite with High Conductivity

    Directory of Open Access Journals (Sweden)

    Yongchao Liu

    2015-09-01

    Full Text Available In this paper, the hydrothermal method was adopted to synthesize nanostructure Co-doped pyrite (FeS2. The structural properties and morphology of the synthesized materials were characterized using X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. Co in the crystal lattice of FeS2 could change the growth rate of different crystal planes of the crystal particles, which resulted in various polyhedrons with clear faces and sharp outlines. In addition, the electrochemical performance of the doping pyrite in Li/FeS2 batteries was evaluated using the galvanostatic discharge test, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the discharge capacity of the doped material (801.8 mAh·g−1 with a doping ratio of 7% was significantly higher than that of the original FeS2 (574.6 mAh·g−1 because of the enhanced conductivity. Therefore, the doping method is potentially effective for improving the electrochemical performance of FeS2.

  1. Effect of shallow donors on Curie–Weiss temperature of Co-doped ZnO

    International Nuclear Information System (INIS)

    Co-doped ZnO and Al, Co co-doped ZnO polycrystalline powders were synthesized by co-precipitation method. The magnetization curves measured at 2 K show no hysteresis neither remanence for all samples. ZnO:Co grown at low temperature has a positive Curie–Weiss temperature Θ, and ZnO:Co grown at high temperature has a negative Θ. But Al-doped ZnO:Co grown at high temperature has a positive Θ. Positive Curie–Weiss temperature Θ was considered to have relation to the presence of shallow donors in the samples. - Highlights: • Co-doped ZnO and Al, Co co-doped ZnO polycrystalline powders were synthesized. • No hysteresis is observed for all samples. • The Curie–Weiss temperature Θ changes its sign by Al doping. • Positive Θ should be related to shallow donors

  2. Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    Idil Uysal; Feride Severcana; Aysen Tezcanera; Zafer Evisa

    2014-01-01

    Hydroxyapatite (HA) co-doped with Zn2+ and F- ions was synthesized by precipitation method for the first time in this study. FTIR spectroscopy revealed Zn2+ and F- ions incorporation into HA structure. Co-doping of Zn2 + and F- ions decreased unit cell volume of HA and decreased grain sizes. Zn2+ or 5 mol% F- addition into HA significantly improved its density. Microhardness was increased with Zn2 + addition and further increase was detected with F- co-doping. Zn2+ and F- co-doped samples had higher fracture toughness than pure HA. Zn2+incorporation to the structure resulted in an increase in cell proliferation and ALP activity of cells, and further increase was observed with 1 mol%F- addition. With superior mechanical properties and biological response 2Zn1F is a good candidate for biomedical applications.

  3. Characteristics of Nitrogen Doped Diamond-Like Carbon Films Prepared by Unbalanced Magnetron Sputtering for Electronic Devices.

    Science.gov (United States)

    Lee, Jaehyeong; Choi, Byung Hui; Yun, Jung-Hyun; Park, Yong Seob

    2016-05-01

    Synthetic diamond-like carbon (DLC) is a carbon-based material used mainly in cutting tool coatings and as an abrasive material. The market for DLC has expanded into electronics, optics, and acoustics because of its distinct electrical and optical properties. In this work, n-doped DLC (N:DLC) films were deposited on p-type silicon substrates using an unbalanced magnetron sputtering (UBMS) method. We investigated the effect of the working pressure on the microstructure and electrical properties of n-doped DLC films. The structural properties of N:DLC films were investigated by Raman spectroscopy and SEM-EDX, and the electrical properties of films were investigated by observing the changes in the resistivity and current-voltage (I-V) properties. The N:DLC films prepared by UBMS in this study demonstrated good conducting and physical properties with n-doping. PMID:27483841

  4. Theoretical investigation of superconductivity in ternary silicide NaAlSi with layered diamond-like structure

    Science.gov (United States)

    Tütüncü, H. M.; Karaca, Ertuǧrul; Srivastava, G. P.

    2016-04-01

    We have investigated the electronic structure, phonon modes and electron-phonon coupling to understand superconductivity in the ternary silicide NaAlSi with a layered diamond-like structure. Our electronic results, using the density functional theory within a generalized gradient approximation, indicate that the density of states at the Fermi level is mainly governed by Si p states. The largest contributions to the electron-phonon coupling parameter involve Si-related vibrations both in the x-y plane as well as along the z-axis in the x-z plane. Our results indicate that this material is an s-p electron superconductor with a medium level electron-phonon coupling parameter of 0.68. Using the Allen-Dynes modification of the McMillan formula we obtain the superconducting critical temperature of 6.98 K, in excellent agreement with experimentally determined value of 7 K.

  5. Defect effect on tribological behavior of diamond-like carbon films deposited with hydrogen diluted benzene gas in aqueous environment

    Science.gov (United States)

    Yi, Jin Woo; Park, Se Jun; Moon, Myoung-Woon; Lee, Kwang-Ryeol; Kim, Seock-Sam

    2009-05-01

    This study examined the friction and wear behavior of diamond-like carbon (DLC) films deposited from a radio frequency glow discharge using a hydrogen diluted benzene gas mixture. The DLC films were deposited on Si (1 0 0) and polished stainless steel substrates by radio frequency plasma-assisted chemical vapor deposition (r.f.-PACVD) at hydrogen to benzene ratios, or the hydrogen dilution ratio, ranging from 0 to 2.0. The wear test was carried out in both ambient and aqueous environments using a homemade ball-on-disk type wear rig. The stability of the DLC coating in an aqueous environment was improved by diluting the benzene precursor gas with hydrogen, suggesting that hydrogen dilution during the deposition of DLC films suppressed the initiation of defects in the film and improved the adhesion of the coating to the interface.

  6. Durability evaluation of perfluoropolyether-lubricant-coated protective diamond-like carbon film by the lateral vibration friction test

    International Nuclear Information System (INIS)

    An investigation of the perfluoropolyether (PFPE) lubricant effect on the tribological properties of diamond-like carbon (DLC) film magnetic hard disks was conducted. On the basis of friction force microscopy techniques, we carried out lateral oscillation wear tests to detect DLC film disks with and without PFPE lubricant. The results reveal that the DLC film without lubricant easily fractures and swells. In contrast, the transfer of free lubricant and the progressive destruction of bonding lubricant were observed on the DLC film coated with a PFPE lubricant. The dynamic deformation and durability evaluation of the PFPE lubricant and DLC film system were observed in the lateral oscillation wear test by changing the experimental load and amplitude of lateral vibration applied to a cantilever tip. The destruction of the PFPE-DLC film occurred in the test of the 10 nm oscillation amplitude due to the breaking off of the molecular chain of PFPE

  7. Synthesis and tribological behaviors of diamond-like carbon films by electrodeposition from solution of acetonitrile and water

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were prepared on silicon substrates by liquid phase electrodeposition from a mixture of acetonitrile and deionized water. The deposition voltage was clearly reduced owing to the presence of deionized water in the electrolyte by changing the basic properties (dielectric constant and dipole moment) of the electrolyte. Raman spectra reveal that the ratio of sp3/sp2 in the DLC films is related to the concentration of acetonitrile. The surface roughness and grain morphology determined by atomic force microscopy are also influenced by the concentration of the acetonitrile. The UMT-2 universal micro-tribometer was used to test the friction properties of the DLC films obtained from electrolytes with different concentration. The results convey that the DLC film prepared from the electrolyte containing 10 vol.% acetonitrile has the better surface morphology and friction behavior comparing with the other. In addition the growth mechanism of the film was also discussed

  8. Investigation of Physical Properties and Electrochemical Behavior of Nitrogen-Doped Diamond-Like Carbon Thin Films

    Directory of Open Access Journals (Sweden)

    Rattanakorn Saensak

    2014-03-01

    Full Text Available This work reports characterizations of diamond-like carbon (DLC films used as electrodes for electrochemical applications. DLC thin films are prepared on glass slides and silicon substrates by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD using a gas mixture of methane and hydrogen. In addition, the DLC films are doped with nitrogen in order to reduce electrical resistivity. Compared to the undoped DLC films, the electrical resistivity of nitrogen-doped (N-doped DLC films is decreased by three orders of magnitude. Raman spectroscopy and UV/Vis spectroscopy analyses show the structural transformation in N-doped DLC films that causes the reduction of band gap energy. Contact angle measurement at N-doped DLC films indicates increased hydrophobicity. The results obtained from the cyclic voltammetry measurements with Fe(CN63-/Fe(CN64- redox species exhibit the correlation between the physical properties and electrochemical behavior of DLC films.

  9. Propagation of electromagnetic waves through a multilayered structure containing diamond-like carbon, porous silicon, and left-handed material

    Science.gov (United States)

    Shabat, Mohammed M.; Ubeid, Muin F.; Altanany, Sameh M.

    2016-05-01

    In this work, reflection and transmission of electromagnetic wave through a multilayered structure containing diamond-like carbon, porous silicon, and left-handed material (LHM) are investigated theoretically and numerically. The mentioned materials are described, and their main parameters are given in detail. After the construction of the problem, the reflection and transmission coefficients are derived in a closed form by a transfer matrix method. The reflected and transmitted powers of the structure are calculated using these coefficients. In the numerical results, the mentioned powers are computed and illustrated as a function of frequency, angle of incidence, and slabs thickness, when the damping coefficient of the LHM changes. The results obtained may be useful to the researchers and designer working in the area solar cells.

  10. Corrosion behavior of aluminum doped diamond-like carbon thin films in NaCl aqueous solution.

    Science.gov (United States)

    Khun, N W; Liu, E

    2010-07-01

    Aluminum doped diamond-like carbon (DLC:Al) thin films were deposited on n-Si(100) substrates by co-sputtering a graphite target under a fixed DC power (650 W) and an aluminum target under varying DC power (10-90 W) at room temperature. The structure, adhesion strength and surface morphology of the DLC:Al films were characterized by X-ray photoelectron spectroscopy (XPS), micro-scratch testing and atomic force microscopy (AFM), respectively. The corrosion performance of the DLC:Al films was investigated by means of potentiodynamic polarization testing in a 0.6 M NaCl aqueous solution. The results showed that the polarization resistance of the DLC:Al films increased from about 18 to 30.7 k(omega) though the corrosion potentials of the films shifted to more negative values with increased Al content in the films. PMID:21128496

  11. Broadband high efficiency silicon nanowire arrays with radial diversity within diamond-like geometrical distribution for photovoltaic applications.

    Science.gov (United States)

    Al-Zoubi, Omar H; Said, Tarek M; Alher, Murtadha Abdulmueen; El-Ghazaly, Samir; Naseem, Hameed

    2015-07-27

    In this study we report novel silicon nanowire (SiNW) array structures that have near-unity absorption spectrum. The design of the new SiNW arrays is based on radial diversity of nanowires with periodic diamond-like array (DLA) structures. Different array structures are studied with a focus on two array structures: limited and broad diversity DLA structures. Numerical electromagnetic modeling is used to study the light-array interaction and to compute the optical properties of SiNW arrays. The proposed arrays show superior performance over other types of SiNW arrays. Significant enhancement of the array absorption is achieved over the entire solar spectrum of interest with significant reduction of the amount of material. The arrays show performance independent of angle of incidence up to 70 degrees, and polarization. The proposed arrays achieved ultimate efficiency as high as 39% with filling fraction as low as 19%. PMID:26367679

  12. Coating NiTi archwires with diamond-like carbon films: reducing fluoride-induced corrosion and improving frictional properties.

    Science.gov (United States)

    Huang, S Y; Huang, J J; Kang, T; Diao, D F; Duan, Y Z

    2013-10-01

    This study aims to coat diamond-like carbon (DLC) films onto nickel-titanium (NiTi) orthodontic archwires. The film protects against fluoride-induced corrosion and will improve orthodontic friction. 'Mirror-confinement-type electron cyclotron resonance plasma sputtering' was utilized to deposit DLC films onto NiTi archwires. The influence of a fluoride-containing environment on the surface topography and the friction force between the brackets and archwires were investigated. The results confirmed the superior nature of the DLC coating, with less surface roughness variation for DLC-coated archwires after immersion in a high fluoride ion environment. Friction tests also showed that applying a DLC coating significantly decreased the fretting wear and the coefficient of friction, both in ambient air and artificial saliva. Thus, DLC coatings are recommended to reduce fluoride-induced corrosion and improve orthodontic friction. PMID:23793493

  13. Thermal effects on structure and photoluminescence properties of diamond-like carbon films prepared by pulsed laser deposition

    Institute of Scientific and Technical Information of China (English)

    CHEN Da; LI Qing-shan; WANG Jing-jing; ZHENG Xue-gang

    2006-01-01

    Un-hydrogenated Diamond-like Carbon (DLC) films were prepared by pulsed laser deposition technique at different substrate temperature.The Raman spectra,the absorption and the photoluminescence spectra were measured.The dependence of structure and photoluminescence properties on deposition temperature were studied in detail.The experimental results indicate that the sp2 sites form small clusters that consist of both olefinic chains and aromatic ring groups within the sp3 matrix.With raising deposition temperature,the optical band gaps increase from 1.87 to 2.85 eV.The main band of photoluminescence centered at around 700nm shifts to short wavelength,and the intensity of this band increases.The photoluminescence can be attributed to carrier localization within an increasing sp2 clusters.It was clarified that the DLC films are ordered with increasing deposition temperature.

  14. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L3,2 NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L3,2 edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles

  15. The effect of temperature on the tribological mechanisms and reactivity of hydrogenerated, amorphous diamond-like carbon coatings under oil-lubricated conditions

    OpenAIRE

    Roman, E.; Kalin, Mitjan; Vižintin, Jože

    2015-01-01

    In this work we present the wear and friction behaviour of boundary-lubricated, hydrogenated, amorphous, diamond-like carbon coatings (a-C:H), in self-mated a-C:H/a-C:H contacts, at three different testing temperaturesČ 20, 80, 150 °C. We present results from Auger electron spectroscopy, X-ray photoelectron spectroscopy and Raman analyses relating to the chemical and structural changes in the diamond-like carbon coatings duringsliding in the presence of mineral oil, with and without additives...

  16. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    International Nuclear Information System (INIS)

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz

  17. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, Masaki, E-mail: m-nakaya@kirin.co.jp [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Shimizu, Mari [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Uedono, Akira [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-08-01

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz.

  18. Electrical and optical properties of Co-doped and undoped MoS2

    Science.gov (United States)

    Ko, Tsung-Shine; Huang, Cheng-Ching; Lin, Der-Yuh; Ruan, Yan-Jia; Huang, Ying Sheng

    2016-04-01

    Co-doped and undoped layered MoS2 crystals were grown by the chemical vapor transport method using iodine as the transport agent. Both reflectance and piezoreflectance measurements reveal two exciton transitions of the direct band edge around 1.86 and 2.06 eV for undoped MoS2 and 1.84 and 2.03 eV for Co-doped MoS2. Hall effect measurements show that the Co-doped MoS2 sample has a lower carrier concentration and mobility than the undoped sample. These differences between undoped and Co-doped MoS2 were attributed to the effect of cobalt atoms causing a small lattice distortion, lattice imperfections and/or impurity states that form trap states between the conduction band and valence band. Furthermore, photoconductivity (PC) and persistent PC results show that Co-doped MoS2 has a longer time constant and better responsivity than undoped MoS2. This work discusses the advantages of Co-doped MoS2 for photodetector applications.

  19. Efficient Photocatalytic Hydrogen Evolution over Platinum and Boron Co-doped TiO2 Photoatalysts

    OpenAIRE

    JIN, ZHILIANG; Xuqiang HAO; Shixiong MIN; Xu, Jing; Yuan, Hong

    2014-01-01

    In this paper, the new photocatalyst, Ptx-/TiO2-yBy was prepared by impregnation method via coupling with a inorganic water splitting system, namely, a ternary system K+,Na+/B4O72- - H2O for hydrogen evolution. The integration process of the preparation for B doping Pt/TiO2 with the significant photocatalytic hydrogen evolution in the ternary system K+,Mg2+/B4O72- - H2O and K+,Na+/B4O72- - H2O were accomplished by impregnation in situ. The photocatalyst Ptx-/TiO2-yBy synthesis and the photoca...

  20. Electrochemical Performances of Diamond Like Carbon Films for Pb(II) Detection in Tap Water Using Differential Pulse Anodic Stripping Voltammetry Technique

    Czech Academy of Sciences Publication Activity Database

    Sbartai, A.; Namour, F.; Barbier, F.; Krejčí, J.; Kučerová, R.; Krejčí, T.; Neděla, Vilém; Sobota, Jaroslav; Jaffrezic-Renault, N.

    2013-01-01

    Roč. 11, č. 8 (2013), s. 1524-1529. ISSN 1546-198X Institutional support: RVO:68081731 Keywords : Diamond Like Carbon DLC * Lead Detection * Differential Pulse Anodic Stripping * Voltammetry * Tap Water Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.558, year: 2013

  1. Thermal stability of diamond-like carbon–MoS{sub 2} thin films in different environments

    Energy Technology Data Exchange (ETDEWEB)

    Niakan, H., E-mail: hamid.niakan@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y. [Canadian Light Source, 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada); Szpunar, J.A.; Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada)

    2014-07-01

    Diamond-like carbon (DLC) based coatings are ideal for low friction and wear resistant applications. For those tribological applications, the coatings may expose to high temperature environments. Therefore, the thermal stability of the coating is very important for its long-term performance. In this work, DLC–MoS{sub 2} composite thin films were synthesized using biased target ion beam deposition technique in which MoS{sub 2} was produced by sputtering a MoS{sub 2} target using Ar ion beams while DLC was deposited by an ion source with CH{sub 4} gas as carbon source. DLC films without MoS{sub 2} deposited under similar conditions were used as reference samples. After the deposition, DLC and DLC–MoS{sub 2} thin films were heat-treated in ambient air and low pressure environments at different temperatures ranging from 100 to 600 °C for 2 h. The effect of annealing on the structure, mechanical and tribological properties of the resulting films were studied by means of Raman spectroscopy, X-ray absorption near edge structure, scanning electron microscopy, nanoindentation, and ball-on-disk testing. The results showed that the structure, hardness, Young's modulus, friction coefficient and wear coefficient of the DLC films were stable up to 200 °C annealing in air and 300 °C in low pressure. At higher temperature, the annealing led to the transformation of sp{sup 3} to sp{sup 2}, which degraded the mechanical and tribological properties of the thin films. Comparing with the DLC films, the DLC–MoS{sub 2} thin films showed a slower rate of graphitization and higher structure stability throughout the range of annealing temperatures, indicating a relatively higher thermal stability. - Highlights: • Thermal stability of diamond-like carbon (DLC) and DLC–MoS{sub 2} films were evaluated. • DLC–MoS{sub 2} films can be synthesized by biased target ion beam deposition technique. • Comparing with DLC films, the DLC–MoS{sub 2} thin films showed higher

  2. Co-doping effects on luminescence and scintillation properties of Ce doped Lu3Al5O12 scintillator

    International Nuclear Information System (INIS)

    The Mg, Ca, Sr and Ba 200 ppm co-doped Ce:Lu3Al5O12 single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of the co-doping. The scintillation decays were accelerated by both Mg and Ca co-dopants. The Mg co-doped samples showed the fastest decay and the highest light yield among the co-doped samples

  3. Effect of Co doping on structural, optical, magnetic and dielectric properties of Bi2Fe4O9

    International Nuclear Information System (INIS)

    Polycrystalline Bi2Fe4O9 and 2% Co doped Bi2Fe4O9 were prepared by solid state reaction route. X-ray diffraction (XRD) result reveals that there is no change in the crystal structure due to Co doping and the compound has orthorhombic structure. UV-visible spectroscopy confirms the decrease in band gap due Co doping. Zero field cooled magnetization measurement at 100 Oe magnetic field shows substantial decrease in the magnetic transition temperature. Room temperature frequency dependent dielectric permittivity at 1V DC bias shows ∼10% increase in Co doped sample with respect to pure Bi2Fe4O9

  4. Photoluminescence, ellipsometric, optical and morphological studies of sprayed Co-doped ZnO films

    Science.gov (United States)

    Gençyılmaz, O.; Atay, F.; Akyüz, I.

    2016-06-01

    In this study, undoped and cobalt (Co)-doped zinc oxide (ZnO) films were successfully produced by ultrasonic spray pyrolysis (USP) technique at low temperature (350°C). The optical and surface properties were investigated as a function of Co content. The optical parameters (thickness, refractive index and extinction coefficient) were determined using spectroscopic ellipsometry (SE) and it was seen that the refractive index and extinction coefficient values of Co-doped ZnO films decreased slightly depending on the increasing of Co doping. For investigation, the transmittance and photoluminescence (PL) spectra of the films, UV-Vis spectrophotometer and PL spectroscopy were used at room temperature. The transmittance spectra show that transmittance values decreased and Co+2 ions substitute Zn+2 ions of ZnO lattice. The optical band gap values decreased from 3.26 eV to 2.85 eV with the changing of Co content. The results of PL spectra exhibit the position of the different emission peaks unchanged but the intensity of peaks increased with increasing Co doping. Also, the surface properties of the films were obtained by atomic force microscopy (AFM) and these results indicated that the surface morphology and roughness values were prominently changed with Co doping.

  5. Band gap tuning and room temperature ferromagnetism in Co doped Zinc stannate nanostructures

    Science.gov (United States)

    Sumithra, S.; Victor Jaya, N.

    2016-07-01

    The effect of Co doping on structural, optical and magnetic behavior of pure and Co doped Zinc stannate (ZTO) nanostructures was investigated. Pure and Co (1%, 3% & 5%) doped Zn2SnO4 compounds were prepared through simple precipitation route. Formation of cubic inverse spinel structure and metal oxide vibrations of the samples were investigated using XRD and FTIR. Co doping influences the crystallite size producing micro strain in ZTO lattice. Poly dispersed rod like shape of the particles was examined by FESEM. Elemental composition of prepared samples was identified by EDAX analysis. Optical Absorption spectra shows significant red shift on increasing the dopant concentration which indicates the reduction in optical band gap. Visible luminescence observed from photoluminescence studies confirms the presence of oxygen vacancies and trap sites in the lattice. Magnetization analysis reveals the enhanced ferromagnetic behavior in all Co doped ZTO samples. The amplified ferromagnetic ordering in Co doped ZTO compounds has been explained in terms of defects serving as free spin polarized prophetic carriers.

  6. Visible-Light Photodegradation of Dye on Co-Doped Titania Nanotubes Prepared by Hydrothermal Synthesis

    Directory of Open Access Journals (Sweden)

    Jung-Pin Wang

    2012-01-01

    Full Text Available Highly porous Co-doped TiO2 nanotubes synthesized from a hydrothermal treatment were used to photodecompose methylene blue (MB in liquid phase under visible light irradiation. The anatase-type titania nanotubes were found to have high specific surface areas of about 289–379 m2/g. These tubes were shown to be hollow scrolls with outer diameter of about 10–15 nm and length of several micrometers. UV absorption confirmed that Co doping makes the light absorption of nanotubes shift to visible light region. With increasing the dopant concentration, the optical band gap of nanotubes became narrower, ranging from 2.4 eV to 1.8 eV, determined by Kubelka-Munk plot. The Co-doped nanotubes exhibit not only liquid-phase adsorption ability, but also visible-light-derived photodegradation of MB in aqueous solution. The synergetic effect involves two key factors in affecting the photocatalytic activity of Co-doped titania nanotubes under fluorescent lamp, that is, high porosity and optical band gap. The merit of the present work is to provide an efficient route for preparing Co-doped TiO2 nanotubes and to clarifying their adsorption and photocatalytic activity under fluorescent lamp.

  7. Examination of Photoluminescence Temperature Dependencies in N-B Co-doped 6H-SiC

    International Nuclear Information System (INIS)

    Two overlapping photoluminescent (PL) bands with a peaks (half-width) at 1.95 eV (0.45 eV) and 2.15 eV (0.25 eV), correspondingly at 300 K, are observed in heavily B-N co-doped 6H-SiC epilayers under high-level excitation condition. The low energy band dominates at low temperatures and decreases towards 300 K which is assigned to DAP emission from the nitrogen trap to the deep boron (dB) with phonon-assistance. The 2.15 eV band slightly increases with temperature and becomes comparable with the former one at 300 K. We present a modelling comprising electron de-trapping from the N-trap, i.e. calculating trapping and de-trapping probabilities. The T-dependence of the 2.15 eV band can be explained by free electron emission from the conduction band into the dB center provided by similar phonon-assistance

  8. Extraordinary self-lubrication properties of non-hydrogenated diamond-like carbon films under humid atmosphere

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Tribological properties of non-hydrogenated diamond-like carbon (DLC) films were investigated under humid (RH=80%) and dry (RH=5%) air. These films were deposited by pulsed laser deposition (PLD) at different substrate temperatures. Tribological properties of DLC fabricated by PLD is not sensitive to the relative humidity of testing environment. Because of the unique growth mechanism of DLC pre- pared by PLD, DLC is of "soft-hard" double layers, having a very low friction coefficient and wear rate under humid atmosphere. The minimum coefficient and wear rate of film under humid circumstance are 0.045 and 5.94×10?10 mm3N-1m-1, respectively, just a little bit more than those under dry condition. The root means square roughness of film is less than 1 nm. The sp3 content of film grown at room tem- perature (RT) is 72%, and the sp3 content decreases with temperature. Raman spectrum shows that the micro-structure is amorphous network. The largest hardness and elastic modulus of film are 51 GPa and 350 GPa, respectively and they reduce with increase of deposition temperature too. Water contact angles on surface are more than 90° which indicates that films fabricated by PLD are hydrophobic with low surface energy.

  9. Patterned macroarray plates in comparison of bacterial adhesion inhibition of tantalum, titanium, and chromium compared with diamond-like carbon.

    Science.gov (United States)

    Levon, Jaakko; Myllymaa, Katja; Kouri, Vesa-Petteri; Rautemaa, Riina; Kinnari, Teemu; Myllymaa, Sami; Konttinen, Yrjö T; Lappalainen, Reijo

    2010-03-15

    Staphylococcus aureus device-related infection is a common complication in implantology. Bacterial adhesion on implant surfaces is the initial step in the infective process. The aim was to develop a method suitable for quantitative bacterial adherence studies and to test a new diamond-like carbon (DLC) coating against commonly used metallic biomaterials with regards to Staphylococcus aureus adhesion. Patterned silicon chips with spots of tantalum, titanium, chromium, and DLC were produced using ultraviolet lithography and physical vapor deposition. These patterned chips were used as such or glued to array plates, pretreated with serum and exposed to S. aureus (S-15981) for 90 min, followed by acridine orange staining and fluorescence microscopy. An adhesion index showed that the ranking order of the biomaterials was titanium, tantalum, chromium, and DLC, with the DLC being clearly most resistant against colonization with S. aureus. Micropatterned surfaces are useful for quantitative comparison of bacterial adherence on different biomaterials. In the presence of serum, DLC is superior in its ability to resist adhesion and colonization by S. aureus compared with the commonly used biomaterial metals tantalum, titanium, and chromium. PMID:19437436

  10. Influence of Hydrogen Content on Optical and Mechanical Performances of Diamond-Like Carbon Films on Glass Substrate

    Science.gov (United States)

    Sun, Yao; Huang, Xing-Ye; Wang, Hong

    2016-04-01

    The protective layer for cover glass of touch panel screen for electronic mobile devices is required to have good mechanical properties and decent optical transparency simultaneously. The hydrogenated diamond-like carbon (a-C:H) films were deposited on glass substrate by RF-PECVD in the negative stage potential mode (NP mode), as well as the ground stage potential mode (GP mode). The impact of hydrogen content, affected by stage potential and RF power, on optical and mechanical properties was investigated. The results show that hydrogen content decreases with increasing RF power, due to the dehydrogenation effect. Higher hydrogen content in films results in lower refractive index, lower extinction coefficient, lower optical absorptions, larger optical band gap and higher transmittance, but lower hardness and wearing resistance. Therefore, although the GP mode DLC is optically favorable because of higher hydrogen content, the NP mode one is far more superior from mechanical standpoint. A compromise can be reached to deposit an ultrathin layer of DLC in NP mode, which offers a good combination of properties to meet the requirement for the protective layer of cover glass.

  11. Deposition and field-emission characterization of electrically conductive nitrogen-doped diamond-like amorphous carbon films

    International Nuclear Information System (INIS)

    For the fabrication of high performance field emitters, diamond-like amorphous carbon films doped with nitrogen (DAC:N) were formed using an intermittent supermagnetron plasma chemical vapor deposition technique. DAC:N films were deposited using isobutane plasma to investigate the influence of discharge-off time and electrode spacing on the physical properties of the films at upper- and lower-electrode radio frequency (rf) powers (LORF) of 800 W/50-800 W. At LORF of 100 W, a discharge-on time of 1 min, and a discharge-off time (cooling time) of 30 s-10 min, resistivity was decreased with a decrease of the cooling time. By reducing the electrode spacing from 60 to 20 mm at a LORF of 50 and 800 W, the optical band gap of DAC:N film was decreased from 0.85 and 0.23 eV to 0.6 and 0 eV, respectively. A flat DAC:N film of 700 A thickness was deposited on a n-Si wafer at rf powers of 800 W/800 W. Using this flat DAC:N film, a threshold electric field of 18 V/μm was observed and maximum field-emission current density of 2.2 mA/cm2 was observed at the electric field of 32 V/μm

  12. Combining different modes of high-power ion beam application for creation of metallic and diamond-like coatings

    International Nuclear Information System (INIS)

    Some results of the experiments on thin film deposition using pulsed high-power ion beam (HPIB) are reported. Ti, Nb, Pt, and C films were produced from ablation plasma generated under the action of pulsed HPIB on a surface of ablated materials. We are developing the combined technology that deals with cleaning a substrate surface by HPIB, thin film deposition by HPIB, and the radiation-induced mass transfer of elements of both film and substrate to increase the adhesion. The deposition of the diamond-like titanium carbide has been realized on the basis of the scheme including Ti film deposition. C film deposition, and the ion beam mixing to form TiC carbide. The main parameters of the Ti-substrate transition layers have been determined for different regimes of their creation by Rutherford backscattering (RBS). Ti, Nb, and Pt coatings were deposited on silicon cantilevers used in high-resolution scanning probe microscopes. The analysis of the composition of TiC coatings at a substrate was performed using the Auger electron spectroscopy (AES) method

  13. Time-resolved electrical measurements of a pulsed-dc methane discharge used in diamond-like carbon films production

    International Nuclear Information System (INIS)

    Amorphous hydrogenated carbon (a-C:H) thin films were obtained at room temperature via asymmetric bipolar pulsed-dc methane glow discharge. The power frequency values were varied from 100 to 200 kHz and the maximum amplitude voltage from -600 to -1400 V. Such films present diamond-like carbon (DLC) properties [J.L. Andujar, M. Vives, C. Corbella, E. Bertran, Diamond Relat. Mater. 12 (2003) 98]. The plasma, powered by a pulse frequency of 100 kHz, was electrically studied by a Langmuir probe. The next parameters were calculated within the pulse cycle from I-V measurements with 1 μs resolution: plasma and floating potentials, electron temperature, and electron and ion densities. The presence of a population of hot electrons (10 eV) was detected at high bias voltage region. The density of cold electrons grows one order of magnitude after each negative pulse, whereas the ion density suffers a prompt increase during each positive pulse. The surface topography of DLC films was scanned by atomic force microscopy (AFM). A smoothly varying friction coefficient (between 0.2 and 0.3) was measured by AFM in contact mode. X-ray reflectivity (XRR) analysis provided a wide characterization of the films, involving density, thickness and roughness. The C/H ratio, as directly obtained by elemental analysis (EA), shows an increase at higher bias voltages. All these features are discussed in terms of process parameters varied in film growth

  14. Physical properties of nitrogen-doped diamond-like amorphous carbon films deposited by supermagnetron plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Diamond-like amorphous carbon films doped with nitrogen (DAC:N) were deposited on Si and glass wafers intermittently using i-C4H10/N2 repetitive supermagnetron plasma chemical vapor deposition. Deposition duration, which is equal to a plasma heating time of wafer, was selected to be 40 or 60 s, and several layers were deposited repetitively to form one thick film. DAC:N films were deposited at a lower-electrode temperature of 100 deg. C as a function of upper- and lower-electrode rf powers (200 W/200 W-1 kW/1 kW) and N2 concentration (0%-80%). With an increase in N2 concentration and rf power, the resistivity and the optical band gap decreased monotonously. With increase of the deposition duration from 40 to 60 s, resistivity decreased to 0.03Ω cm and optical band gap decreased to 0.02 eV (substantially equal to 0 eV within the range of experimental error), at an N2 concentration of 80% and rf power of 1 kW(/1 kW)

  15. Preparation of diamond-like carbon films in methane by electron cyclotron resonance microwave plasma source ion implantation

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were prepared on Si(100) substrates by ion implantation from an electron cyclotron resonance microwave plasma source. During the implantation, 650 W microwave power was used to produce discharge plasma with methane as working gas, and -20 kV voltage pulses were applied to the substrate holder to accelerate ions in the plasma. Confocal Raman spectra confirmed the DLC characteristics of the films. Fourier-transform infrared characterization indicates that the DLC films were composed of sp3 and sp2 carbon-bonded hydrogen. The hardness of the films was evaluated with a Nano Indenter-XP System. The result shows that the highest hardness value was 14.6 GPa. The surface rms roughness of the films was as low as 0.104 nm measured with an atomic force microscope. The friction coefficient of the films was checked using a ball-on-disk microtribometer. The average friction coefficient is approximately 0.122

  16. Tribological behaviors of diamond-like carbon coatings on plasma nitrided steel using three BN-containing lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Jia Zhengfeng [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 73000 (China); College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Graduate School of the Chinese Academy of Sciences, Beijing 10039 (China); Wang Peng [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 73000 (China); Xia Yanqiu, E-mail: xiayanqiu@yahoo.com [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 73000 (China); Zhang Haobo; Pang Xianjuan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 73000 (China); Graduate School of the Chinese Academy of Sciences, Beijing 10039 (China); Li Bin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 73000 (China)

    2009-04-15

    In this work, diamond-like carbon (DLC) coatings were deposited on plasma nitrided AISI 1045 steel by magnetron sputtering. Three BN-containing additives and molybdenum dithiocarbamate (MoDTC) were added to poly-alpha-olefin (PAO) as additives. The additive content (mass fraction) in PAO was fixed at 0.5 wt%. The friction and wear characters of DLC coatings on nitrided steel discs sliding against AISI 52100 steel balls were tested under the lubricated conditions. It was found that borate esters have a higher load carrying capacity and much better anti-wear and friction-reducing ability than that of MoDTC. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were employed to explore the properties of the worn surface and the mechanism of friction and wear. According to the XPS analysis, the adsorbed organic N-containing compounds and BN are, possibly, the primary reason for the novel borate esters to possess a relatively constant coefficient of friction and lower wear rate. On the other hand, possibly, the MoDTC molecules break down during sliding and produce many Mo-oxides, and then the Mo-oxides destroy the DLC coating because of its sharp edge crystalline solid structure. After destroying the DLC coating, the MoDTC react with metals and form MoS{sub 2} tribofilm, and decrease coefficient of friction of rubbing pairs.

  17. In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications.

    Science.gov (United States)

    Allen, M; Myer, B; Rushton, N

    2001-05-01

    Diamond-like carbon (DLC) shows great promise as a durable, wear- and corrosion-resistant coating for biomedical implants. The effects of DLC coatings on the musculoskeletal system have not been investigated in detail. In this study, DLC coatings were deposited on polystyrene 24-well tissue culture plates by fast-atom bombardment from a hexane precursor. Two osteoblast-like cell lines were cultured on uncoated and DLC-coated plates for periods of up to 72 h. The effects of DLC coatings on cellular metabolism were investigated by measuring the production of three osteoblast-specific marker proteins: alkaline phosphatase, osteocalcin, and type I collagen. There was no evidence that the presence of the DLC coating had any adverse effect on any of the parameters measured in this study. In a second series of experiments, DLC-coated cobalt-chromium cylinders were implanted in intramuscular locations in rats and in transcortical sites in sheep. Histologic analysis of specimens retrieved 90 days after surgery showed that the DLC-coated specimens were well tolerated in both sites. These data indicate that DLC coatings are biocompatible in vitro and in vivo, and further investigations into their long-term biological and tribological performance are now warranted. PMID:11319748

  18. Wetting behavior and nanotribological properties of silicon nanopatterns combined with diamond-like carbon and perfluoropolyether films

    International Nuclear Information System (INIS)

    A large number of silicon (Si) patterns consisting of nanopillars of varying diameter and pitch have been fabricated and further coated with diamond-like carbon (DLC) and perfluoropolyether (Z-DOL) films. The wetting behavior and nano-adhesion/friction of the patterns are investigated experimentally in relation to the nanostructures and the hydrophobicity of the materials. Measurements of water contact angle illustrate that the patterning-enhanced wettability of the Si flat surface, along with two distinct wettings which are in good agreement with the Wenzel and hemi-wicking states, depended on the value of the pitch-over-diameter ratio. In the case of the coated patterns, three wetting states are observed: the Cassie-Baxter, the Wenzel, and a transition from the Cassie-Baxter into the Wenzel, which varies with regard to the hydrophobic properties of the DLC and Z-DOL. In terms of tribological properties, it is demonstrated that a combination of the nanopatterns and the films is effective in reducing adhesive and frictional forces. In addition, the pitch and diameter of the patterns are found to significantly influence their adhesion/friction behaviors.

  19. Wetting behavior and nanotribological properties of silicon nanopatterns combined with diamond-like carbon and perfluoropolyether films

    Science.gov (United States)

    Pham, D. C.; Na, K.; Piao, S.; Cho, I.-J.; Jhang, K.-Y.; Yoon, E.-S.

    2011-09-01

    A large number of silicon (Si) patterns consisting of nanopillars of varying diameter and pitch have been fabricated and further coated with diamond-like carbon (DLC) and perfluoropolyether (Z-DOL) films. The wetting behavior and nano-adhesion/friction of the patterns are investigated experimentally in relation to the nanostructures and the hydrophobicity of the materials. Measurements of water contact angle illustrate that the patterning-enhanced wettability of the Si flat surface, along with two distinct wettings which are in good agreement with the Wenzel and hemi-wicking states, depended on the value of the pitch-over-diameter ratio. In the case of the coated patterns, three wetting states are observed: the Cassie-Baxter, the Wenzel, and a transition from the Cassie-Baxter into the Wenzel, which varies with regard to the hydrophobic properties of the DLC and Z-DOL. In terms of tribological properties, it is demonstrated that a combination of the nanopatterns and the films is effective in reducing adhesive and frictional forces. In addition, the pitch and diameter of the patterns are found to significantly influence their adhesion/friction behaviors.

  20. Tribological behavior of diamond-like carbon film with different tribo-pairs: A size effect study

    International Nuclear Information System (INIS)

    A friction force microscope (FFM) with different probes and a ball-on-disk (BOD) tribo-meter were used to investigate the tribological properties of diamond-like carbon (DLC) films. DLC films were prepared by chemical vapor deposition (CVD) method by altering the deposition parameters, and their morphologies and structural information were examined with an atomic force microscope (AFM) and the Raman spectrum. The wear traces of the DLC films after frictional tests were analyzed by an optical microscope. It is found that surface roughness and adhesion play important roles in characterizing the tribological properties of DLC films using FFM. Moreover, the debris accumulation is another significant factor affecting the frictional behavior of DLC films, especially for the sharp tip. The difference in coefficients of friction (COFs) obtained by the BOD method among different DLC films under water lubrication is much smaller than the case without water lubrication. The variation trends in COF for the flat tip and the BOD test are similar in comparison with the result obtained with the sharp tip. The wear traces after frictional tests suggest that DLC films under water lubrication are prone to be damaged more readily

  1. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    Science.gov (United States)

    Ghosh, Subir; Choudhury, Dipankar; Roy, Taposh; Mamat, Azuddin Bin; Masjuki, H. H.; Pingguan-Murphy, Belinda

    2015-06-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy.

  2. Tribological behaviors of diamond-like carbon coatings on plasma nitrided steel using three BN-containing lubricants

    Science.gov (United States)

    Jia, Zheng-feng; Wang, Peng; Xia, Yan-qiu; Zhang, Hao-bo; Pang, Xian-juan; Li, Bin

    2009-04-01

    In this work, diamond-like carbon (DLC) coatings were deposited on plasma nitrided AISI 1045 steel by magnetron sputtering. Three BN-containing additives and molybdenum dithiocarbamate (MoDTC) were added to poly-alpha-olefin (PAO) as additives. The additive content (mass fraction) in PAO was fixed at 0.5 wt%. The friction and wear characters of DLC coatings on nitrided steel discs sliding against AISI 52100 steel balls were tested under the lubricated conditions. It was found that borate esters have a higher load carrying capacity and much better anti-wear and friction-reducing ability than that of MoDTC. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were employed to explore the properties of the worn surface and the mechanism of friction and wear. According to the XPS analysis, the adsorbed organic N-containing compounds and BN are, possibly, the primary reason for the novel borate esters to possess a relatively constant coefficient of friction and lower wear rate. On the other hand, possibly, the MoDTC molecules break down during sliding and produce many Mo-oxides, and then the Mo-oxides destroy the DLC coating because of its sharp edge crystalline solid structure. After destroying the DLC coating, the MoDTC react with metals and form MoS 2 tribofilm, and decrease coefficient of friction of rubbing pairs.

  3. Tribological behaviors of diamond-like carbon coatings on plasma nitrided steel using three BN-containing lubricants

    International Nuclear Information System (INIS)

    In this work, diamond-like carbon (DLC) coatings were deposited on plasma nitrided AISI 1045 steel by magnetron sputtering. Three BN-containing additives and molybdenum dithiocarbamate (MoDTC) were added to poly-alpha-olefin (PAO) as additives. The additive content (mass fraction) in PAO was fixed at 0.5 wt%. The friction and wear characters of DLC coatings on nitrided steel discs sliding against AISI 52100 steel balls were tested under the lubricated conditions. It was found that borate esters have a higher load carrying capacity and much better anti-wear and friction-reducing ability than that of MoDTC. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were employed to explore the properties of the worn surface and the mechanism of friction and wear. According to the XPS analysis, the adsorbed organic N-containing compounds and BN are, possibly, the primary reason for the novel borate esters to possess a relatively constant coefficient of friction and lower wear rate. On the other hand, possibly, the MoDTC molecules break down during sliding and produce many Mo-oxides, and then the Mo-oxides destroy the DLC coating because of its sharp edge crystalline solid structure. After destroying the DLC coating, the MoDTC react with metals and form MoS2 tribofilm, and decrease coefficient of friction of rubbing pairs.

  4. Comparative surface and nano-tribological characteristics of nanocomposite diamond-like carbon thin films doped by silver

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han-Shen; Endrino, Jose L.; Anders, Andre

    2008-07-10

    In this study we have deposited silver-containing hydrogenated and hydrogen-free diamond-like carbon (DLC) nanocomposite thin films by plasma immersion ion implantation-deposition methods. The surface and nano-tribological characteristics were studied by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and nano-scratching experiments. The silver doping was found to have no measurable effect on sp2-sp3 hybridization of the hydrogenated DLC matrix and only a slight effect on the hydrogen-free DLC matrix. The surface topography was analyzed by surface imaging. High- and low-order roughness determined by AFM characterization was correlated to the DLC growth mechanism and revealed the smoothing effect of silver. The nano-tribological characteristics were explained in terms of friction mechanisms and mechanical properties in correlation to the surface characteristics. It was discovered that the adhesion friction was the dominant friction mechanism; the adhesion force between the scratching tip and DLC surface was decreased by hydrogenation and increased by silver doping.

  5. The Improvement of Tribological and Fatigue Properties of Casting Magnesium Alloy AZ91 Performed Diamond Like Carbon Coating

    Science.gov (United States)

    Akebono, Hiroyuki; Suzuki, Hideto

    In recent years, magnesium alloy has been widely used because of its low weight and ease of recycling. However, because magnesium alloys provide inferior wear resistance, it is necessary to improve this property to use magnesium alloy for more machine parts. For this study, we produced a diamond like carbon (DLC) coating that has high hardness, low friction, and excellent wear resistance. With DLC coated onto a soft material such as magnesium alloy, the adhesion strength between the substrate and the coating poses an important problem. Therefore, in this study, to acquire high adhesion strength, the DLC coating process was performed using unbalanced magnetron sputtering (UBMS). A tungsten-doped inter-layer was formed on the substrate. Onto the inter-layer, nano-order DLC coatings of two kinds were laminated. Wear tests and fatigue tests were carried out. The DLC-coated magnesium alloy exhibited excellent wear friction. Furthermore, DLC coatings raised its fatigue reliability over that of the substrate alone.

  6. Effects of molybdenum dithiocarbamate and zinc dialkyl dithiophosphate additives on tribological behaviors of hydrogenated diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Highlights: • For MoDTC, DLC coating showed better anti-friction and worse anti-wear behaviors. • The improved anti-friction property was due to graphitization and MoS2. • Formation of MoOx resulted in a high wear volume. • For ZDDP, DLC coating showed the best anti-wear and the worst anti-friction behaviors. • Absence of friction reducing product and graphitized layer resulted in a higher friction. - Abstract: The tribological behaviors of hydrogenated diamond-like carbon (DLC) coatings under varied load conditions lubricated with polyalpha olefin (PAO), molybdenum dithiocarbamate (MoDTC) and zinc dialkyl dithiophosphate (ZDDP) additives were investigated in this paper. Hydrogenated DLC coatings were synthesized through the decomposition of acetylene by the ion source. The tribological performances were measured on a SRV tribometer. The morphologies and chemical structures of the DLC coatings were investigated by the scanning electron microscope (SEM), Raman spectrometer (Raman) and X-ray photoelectron spectroscope (XPS). It was shown that the low friction and high wear were achieved on the hydrogenated DLC coating under MoDTC lubrication, while low wear was found on the hydrogenated DLC coating lubricated by ZDDP. The primary reason was attributed to different tribofilms formed on the contact area and the formation of graphitic layer. Both factors working together leaded to quite different tribological behaviors

  7. Structure analysis of silicon-doped diamond-like carbon films by X-ray and neutron reflectivity measurements

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) is an amorphous material with an intermediate chemical structure between diamond and graphite. While the DLC coatings show low friction and little wear, the tribological properties are improved by doping of silicon. Since the effect of the silicon on the improvement is not unveiled, we coated silicon wafers with Si-doped DLC (DLC-Si) films by direct-current plasma CVD process, evaluated their friction coefficient and wear depth, and investigated the cross-section profiles of the films. Ball-on-disk test revealed that the tribological properties improved most when silicon is added by 6-10 at.% against carbon in the DLC-Si films. X-ray reflectometry suggested the existence of a thin layer with a different scattering length density (SLD) on the surfaces of the DLC-Si films. The thickness of the layers is around 20 nm. Neutron reflectivity measurements confirmed the formation similar SLD structure, the composition and mass density of the films. It is concluded that the surface thin layers, which are not observed for a DLC film free from or without silicon, should be responsible for the enhanced tribological properties. (author)

  8. Effect of relative humidity on the tribological properties of hydrogenated diamond-like carbon films in a nitrogen environment

    International Nuclear Information System (INIS)

    Hydrogenated diamond-like carbon (DLC) films were deposited on Si (100) wafers by a plasma enhanced chemical vapour deposition technique using CH4 plus Ar as the feedstock. The friction and wear properties of the resulting films under different relative humidities, ranging from 5% to 100%, in a nitrogen environment, were measured using a ball-on-disc tribometer, with Si3N4 balls as the counterparts. The friction surfaces of the films and Si3N4 balls were observed on a scanning electron microscope, and investigated by x-ray photoelectron spectroscopy. The results showed that the friction coefficient increased continuously from 0.025 to 0.09 with increase in relative humidity from 5% to 100%, while the wear rate of the films sharply decreased and reached a minimum at a relative humidity of 40%, then it increased with further increase of the relative humidity. The interruption of the transferred carbon-rich layer on the Si3N4 ball, and the friction-induced oxidation of the films at higher relative humidity were proposed as the main reasons for the increase in the friction coefficient. Moreover, the oxidation and hydrolysis of the Si3N4 ball at higher relative humidity, leading to the formation of a tribochemical film, which mainly consists of silica gel, on the friction surface, are also thought to influence the friction and wear behaviour of the hydrogenated DLC films

  9. Comparative study of the tribological behavior under hybrid lubrication of diamond-like carbon films with different adhesion interfaces

    Science.gov (United States)

    Costa, R. P. C.; Lima-Oliveira, D. A.; Marciano, F. R.; Lobo, A. O.; Corat, E. J.; Trava-Airoldi, V. J.

    2013-11-01

    This paper reports the influence of the adhesion interlayer between stainless steel and diamond-like carbon (DLC) films in two different contact conditions: in dry air and deionized water. The water was the liquid used to understand the mechanism and chemical reactions of the tribolayer formation under boundary lubrication. The effect of silicon and carbonitride adhesion interlayer was investigated on uncoated and coated DLC films. The results show that DLC/DLC pairs using carbonitride in air (30% RH) showed 60% less friction coefficient and wear less than three orders of magnitude than DLC/DLC pairs using silicon as interlayer. In deionized water, DLC/DLC pairs using carbonitride as interlayer showed 31% less friction coefficient when compared to DLC/DLC pairs with silicon. Raman related the chemical and structural changes in the DLC films during sliding in air and in the presence of water. Scratch tests showed a critical load of 14 N and 33 N in DLC films with silicon and carbonitride, respectively.

  10. Diamond-Forming Block Copolymers and Diamond-like Morphologies: a New Route towards efficient Block Copolymer Membranes?

    Science.gov (United States)

    Erukhimovich, Igor; Kriksin, Yury

    2014-03-01

    Formation of ordered (microphase separated) block copolymer nanostructures is a promising route towards creating isoporous membranes suitable for technological applications. We propose a new route to achieve this target: to choose such block copolymer architectures, which would provide a practically isotropic permeability both in the bulk and in thin films. Basing both on the weak segregation theory extension into the thin films and the self-consistent field theory numerical procedure we present the results concerning the effects of the wall confinement both with neutral, selective and patterned walls on the structure and stability of the block copolymer ordered films. The diamond-like morphology is found to be the most promising one as to optimizing the permeability of thin films. A new effect of the diamond morphology stability enhancement in the presence of a properly designed lamellar-like wall pattern is discovered and the corresponding phase diagram demonstrating the effect of the pattern scale and film width on the diamond morphology stability is presented. The financial support was provided by Ministry of Science and Education of Russian Federation (State Contract No. 02.740.11.0858) and European Commission (FP7 project NMP3-SL-2009- 228652 (SELFMEM)).

  11. Study on Exploding Wire Compression for Evaluating Electrical Conductivity in Warm-Dense Diamond-Like-Carbon

    Science.gov (United States)

    Sasaki, Toru; Takahashi, Kazumasa; Kudo, Takahiro; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.; Fujioka, Shinsuke; Horioka, Kazuhiko

    2016-03-01

    To improve a coupling efficiency for the fast ignition scheme of the inertial confinement fusion, fast electron behaviors as a function of an electrical conductivity are required. To evaluate the electrical conductivity for low-Z materials as a diamond-like-carbon (DLC), we have proposed a concept to investigate the properties of warm dense matter (WDM) by using pulsed-power discharges. The concept of the evaluation of DLC for WDM is a shock compression driven by an exploding wire discharge with confined by a rigid capillary. The qualitatively evaluation of the electrical conductivity for the WDM DLC requires a small electrical conductivity of the exploding wire. To analyze the electrical conductivity of exploding wire, we have demonstrated an exploding wire discharge in water for gold. The results indicated that the electrical conductivity of WDM gold for 5000 K of temperature has an insulator regime. It means that the shock compression driven by the exploding wire discharge with confined by the rigid capillary is applied for the evaluation of electrical conductivity for WDM DLC.

  12. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.Y. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Zhang, G.F. [School of Materials Science and Engineering, Dalian University of Technology, 116024, Dalian China (China); Zhao, Y.; Liu, D.D. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Cong, Y., E-mail: congyan@ciomp.ac.cn [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Buck, V. [Thin Film Technology Group, Faculty of Physics, University Duisburg-Essen and CeNIDE, 47057 Duisburg (Germany)

    2015-09-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect.

  13. Electrochemical Effects of Silicon/Diamond-Like Carbon Layered Composite on Oxygen Cathodes in Lithium–Oxygen Batteries

    International Nuclear Information System (INIS)

    Lithium–oxygen batteries are one of the most promising energy storage systems because of their high energy density. However, lithium carbonate (Li2CO3) and lithium carboxylates (HCO2Li, CH3CO2Li) are formed on cycling, which results in high charging over-potential and limited cycle life. In this study, a silicon/diamond-like carbon (Si–DLC) coating film was deposited onto an O2 electrode uniformly by plasma-enhanced chemical vapor deposition to improve the electrochemical properties of lithium–oxygen batteries. The coated layer prevented the direct contact of carbon with both the Li2O2 and the electrolyte, resulting in suppression of side-reaction product formation. For this reason, the coated cell showed better cycle life and round-trip efficiency than the pristine cell. When the charge was terminated, the potentials of the coated cell were 4.15 V for both the 1st and 5th cycles, whereas those of a pristine cell were 4.34 V for the 1st cycle and 4.51 V for the 5th cycle at a current density of 100 mA g−1 with a limited duration of 10 h for a single charge and discharge cycle. The coated cell was able to stably reach 50 cycles, whereas the pristine cell only lasted 7 cycles

  14. Functionalization of Hydrogen-free Diamond-like Carbon Films using Open-air Dielectric Barrier Discharge Atmospheric Plasma Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid, Spain; Instituto de Quimica-Fisica" Rocasolano" C.S.I.C., 28006 Madrid, Spain; Mahasarakham University, Mahasarakham 44150, Thailand; CASTI, CNR-INFM Regional Laboratory, L' Aquila 67100, Italy; SUNY Upstate Medical University, Syracuse, NY 13210, USA; Endrino, Jose; Endrino, J. L.; Marco, J. F.; Poolcharuansin, P.; Phani, A.R.; Allen, M.; Albella, J. M.; Anders, A.

    2007-12-28

    A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N2 gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N2 DBD plasma treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N2 atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC coated devices.

  15. Improved wear resistance of functional diamond like carbon coated Ti-6Al-4V alloys in an edge loading conditions.

    Science.gov (United States)

    Choudhury, Dipankar; Lackner, Jürgen M; Major, Lukasz; Morita, Takehiro; Sawae, Yoshinori; Bin Mamat, Azuddin; Stavness, Ian; Roy, Chanchal K; Krupka, Ivan

    2016-06-01

    This study investigates the durability of functional diamond-like carbon (DLC) coated titanium alloy (Ti-6Al-4V) under edge loading conditions for application in artificial hip joints. The multilayered (ML) functional DLC coatings consist of three key layers, each of these layers were designed for specific functions such as increasing fracture strength, adapting stress generation and enhancing wear resistance. A 'ball-on-disk' multi-directional wear tester was used in the durability test. Prior to the wear testing, surface hardness, modulus elasticity and Raman intensity were measured. The results revealed a significant wear reduction to the DLC coated Ti-6Al-4V disks compared to that of non-coated Ti-6Al-4V disks. Remarkably, the counterpart Silicon Nitride (Si3N4) balls also yielded lowered specific wear rate while rubbed against the coated disks. Hence, the pairing of a functional multilayered DLC and Si3N4 could be a potential candidate to orthopedics implants, which would perform a longer life-cycle against wear caused by edge loading. PMID:27085502

  16. An examination of trace surface on diamond-like carbon film after ball-on disk measurement

    International Nuclear Information System (INIS)

    Hydrogenated diamond-like carbon (DLC) films were prepared by the radio frequency plasma-enhanced chemical vapor deposition method on silicon substrates using methane (CH4) and hydrogen (H2) gas. The wear track on DLC films was examined after the ball-on disk (BOD) measurement with a Raman mapping method. The BOD measurement of DLC films was performed for 1 to 3 h with a 1-hour step time. The sliding traces on the hydrogenated DLC film after the BOD measurement were also observed using an optical microscope. The films synthesized in this work had a very low friction coefficient (about 0.06) and were adhered very well without peeling off during the BOD measurement even with very thin thickness. Energy dispersive X-ray spectra show the decrease of C atomic % and the increase of O atomic % according to the sliding time. The novel Raman mapping method effectively showed the graphitization of DLC films according to the sliding time

  17. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-03-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.

  18. Study of Fluorine Addition Influence in the Dielectric Constant of Diamond-Like Carbon Thin Film Deposited by Reactive Sputtering

    Science.gov (United States)

    Trippe, S. C.; Mansano, R. D.

    The hydrogenated amorphous carbon films (a-C:H) or DLC (Diamond-Like Carbon) films are well known for exhibiting high electrical resistivity, low dielectric constant, high mechanical hardness, low friction coefficient, low superficial roughness and also for being inert. In this paper, we produced fluorinated DLC films (a-C:F), and studied the effect of adding CF4 on the above-mentioned properties of DLC films. These films were produced by a reactive RF magnetron sputtering system using a target of pure carbon in stable graphite allotrope. We performed measurements of electrical characteristic curves of capacitance as a function of applied tension (C-V) and current as a function of the applied tension (I-V). We showed the dielectric constant (k) and the resistivity (ρ) as functions of the CF4 concentration. On films with 65% CF4, we found that k = 2.7, and on films with 70% CF4, ρ = 12.3 × 1011 Ω cm. The value of the electrical breakdown field to films with 70% CF4 is 5.3 × 106 V/cm.

  19. Debris reduction for copper and diamond-like carbon thin films produced by magnetically guided pulsed laser deposition

    CERN Document Server

    Tsui, Y Y; Vick, D; Fedosejevs, R

    2002-01-01

    The effectiveness of debris reduction using magnetically guided pulsed laser deposition (MGPLD) is reported here. KrF laser pulses (248 nm) of 100 mJ energy were focused to intensities of 6x10 sup 9 W/cm sup 2 onto the surface of a copper or a carbon source target and a magnetic field of 0.3 T as used to steer the plasma around a curved arc of 0.5 m length to the deposition substrate. Debris counts were compared for films produced by the MGPLD and conventional PLD (nonguided) techniques. A significant reduction in particulates of size greater than 0.1 mu m was achieved using MGPLD. For the copper films, particulate count was reduced from 150 000 particles/cm sup 2 /nm to 50 particulates/cm sup 2 /nm and for diamond-like carbon thin films particulate count was reduced from 25 000 particles/cm sup 2 /nm to 1200 particles/cm sup 2 /nm.

  20. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    Directory of Open Access Journals (Sweden)

    Tadas Juknius

    2016-05-01

    Full Text Available In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique. The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile.

  1. Tribological behavior of diamond-like carbon film with different tribo-pairs: A size effect study

    Science.gov (United States)

    Xie, Guoxin; Zheng, Beirong; Li, Wei; Xue, Wei

    2008-08-01

    A friction force microscope (FFM) with different probes and a ball-on-disk (BOD) tribo-meter were used to investigate the tribological properties of diamond-like carbon (DLC) films. DLC films were prepared by chemical vapor deposition (CVD) method by altering the deposition parameters, and their morphologies and structural information were examined with an atomic force microscope (AFM) and the Raman spectrum. The wear traces of the DLC films after frictional tests were analyzed by an optical microscope. It is found that surface roughness and adhesion play important roles in characterizing the tribological properties of DLC films using FFM. Moreover, the debris accumulation is another significant factor affecting the frictional behavior of DLC films, especially for the sharp tip. The difference in coefficients of friction (COFs) obtained by the BOD method among different DLC films under water lubrication is much smaller than the case without water lubrication. The variation trends in COF for the flat tip and the BOD test are similar in comparison with the result obtained with the sharp tip. The wear traces after frictional tests suggest that DLC films under water lubrication are prone to be damaged more readily.

  2. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  3. Design of a 3D photonic band gap cavity in a diamond-like inverse woodpile photonic crystal

    CERN Document Server

    Woldering, Léon A; Vos, Willem L

    2014-01-01

    We theoretically investigate the design of cavities in a three-dimensional (3D) inverse woodpile photonic crystal. This class of cubic diamond-like crystals has a very broad photonic band gap and consists of two perpendicular arrays of pores with a rectangular structure. The point defect that acts as a cavity is centred on the intersection of two intersecting perpendicular pores with a radius that differs from the ones in the bulk of the crystal. We have performed supercell bandstructure calculations with up to $5 \\times 5 \\times 5$ unit cells. We find that up to five isolated and dispersionless bands appear within the 3D photonic band gap. For each isolated band, the electric-field energy is localized in a volume centred on the point defect, hence the point defect acts as a 3D photonic band gap cavity. The mode volume of the cavities resonances is as small as 0.8 $\\lambda^{3}$ (resonance wavelength cubed), indicating a strong confinement of the light. By varying the radius of the defect pores we found that o...

  4. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Indian Academy of Sciences (India)

    Awadesh Kr Mallik; Nanadadulal Dandapat; Prajit Ghosh; Utpal Ganguly; Sukhendu Jana; Sayan Das; Kaustav Guha; Garfield Rebello; Samir Kumar Lahiri; Someswar Datta

    2013-04-01

    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0.6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14.4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10-7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

  5. Performance Study of CdS/Co-Doped-CdSe Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Xiaoping Zou

    2014-01-01

    Full Text Available In order to optimize the charge transfer path in quantum dot sensitized solar cells (QDSCs, we employed successive ionic layer adsorption and reaction method to dope CdSe with Co for fabricating CdS/Co-doped-CdSe QDSCs constructed with CdS/Co-doped-CdSe deposited on mesoscopic TiO2 film as photoanode, Pt counter electrode, and sulfide/polysulfide electrolyte. After Co doping, the bandgap of CdSe quantum dot decreases, and the conduction band and valence band all improve, forming a cascade energy level which is more conducive to charge transport inside the solar cell and reducing the recombination of electron-hole thus improving the photocurrent and ultimately improving the power conversion efficiency. This work has not been found in the literature.

  6. Fabrication and magnetic properties of Fe and Co co-doped ZrO2

    Directory of Open Access Journals (Sweden)

    J. Okabayashi

    2011-12-01

    Full Text Available We investigate the effects of Fe and Co co-doping on the magnetic and electronic properties of ZrO2 ceramics prepared by a sol-gel method, and study their dependence on the annealing temperature. Dilute Fe and Co co-doping into ZrO2 exhibits ferromagnetic behavior at room temperature for annealing temperatures above 900 °C, accompanying the phase transition from tetragonal to monoclinic structure in ZrO2. The electronic structures are studied by x-ray absorption spectroscopy and Mössbauer spectroscopy, which suggest that the Fe3+ and Co2+/Co3+ mixing states are dominant in Fe and Co co-doped ZrO2.

  7. Ferromagnetism from Co-Doped ZnO Nanocantilevers above Room Temperature

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shao-Min; WANG Peng; LI Sheng; ZHANG Bin; GONG He-Chun; DU Zu-Liang

    2008-01-01

    @@ At low temperature (400° C), chemical vapour deposition (CVD) is employed to make comb-like Co-doped ZnO nanocantilever arrays (NAs). The magnetization curves of the as-synthesized Co-doped ZnO NAs indicate the existence of above-room-temperature ferromagnetism (ARTFM) (Curie temperature, Tc > 300 K) whereas un-doped ZnO NAs does not. The corresponding ferromagnetic source mechanism is discussed, in which defects play an important role due to the strong green light emission.

  8. Enhanced magnetic and dielectric behavior in Co doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Magnetic and dielectric properties of Co doped BiFeO3 (BFO) nanoparticles (13 nm) have been investigated. The dopant Co2+ converts spherical morphology to cubic nanostructures. The significant changes in temperature dependence of magnetization may be due to magnetic disorder phase induced by divalent Co. The substitution of Fe by Co disrupts cycloidal spin structure of BFO and improves the ferromagnetic property. Enhancement of the saturation magnetization and coercivity by about 10 times in doped BFO are due to changes in morphology. High dielectric constant of about 670 and low loss at room temperature show Co doped BFO as promising material for multifunctional devices

  9. Preparation and photocatalytic activity of B, Y co-doped nanosized TiO_2 catalyst

    Institute of Scientific and Technical Information of China (English)

    石中亮; 刘富梅; 姚淑华

    2010-01-01

    The catalysts of un-doped, single-doped and co-doped titanium dioxide (TiO2) powders were prepared by sol-gel method with Ti(OC4H9)4 as a raw material. The photocatalytic decomposition of phenol in aqueous solution under UV light was used as a probe reaction to evaluate their photocatalytic activities. The effects of B, Y co-doping on the crystallite sizes, crystal pattern, surface composition, and optical property of the catalyst were investigated by thermogravimetric differential thermal analysis, X-ray d...

  10. Magnetic and Moessbauer studies of Fe and Co co-doped SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Shin [Tokyo University of Science, Department of Chemistry (Japan); Nomura, Kiyoshi, E-mail: k-nomura@t-adm.t.u-tokyo.ac.jp [University of Tokyo, School of Engineering (Japan); Yamada, Yasuhiro [Tokyo University of Science, Department of Chemistry (Japan); Okabayashi, Jun [University of Tokyo, Research Center for Spectrochemistry (Japan)

    2012-03-15

    1-5% Fe and 1% Co co-doped SnO{sub 2} samples were synthesized by sol-gel method. Their magnetization increased with increasing crystal size of rutile SnO{sub 2}. Their Moessbauer spectra contain a broad sextet, magnetic relaxation components, and paramagnetic doublet peaks for less than 3% Fe doping. The sextet of {alpha}-Fe{sub 2}O{sub 3} was observed instead of magnetic relaxation peaks for Fe doping of above 4%. The broad sextet and relaxation components may be related to the magnetic properties of Fe and Co co-doped SnO{sub 2}.

  11. In vitro Cyto and Blood Compatibility of Titanium Containing Diamond-Like Carbon Prepared by Hybrid Sputtering Method

    International Nuclear Information System (INIS)

    In recent years, diamond-like carbon films (DLC) have been given more attention in research in the biomedical industry due to their potential application as surface coating on biomedical materials such as metals and polymer substrates. There are many ways to prepare metal containing DLC films deposited on polymeric film substrates, such as coatings from carbonaceous precursors and some means that incorporate other elements. In this study, we investigated both the surface and biocompatible properties of titanium containing DLC (Ti-DLC) films. The Ti-DLC films were prepared on the surface of poly (ethylene terephthalate) (PET) film as a function of the deposition power level using reactive sputtering technique. The films' hydrophilicity was studied by contact angle and surface energy tests. Their surface morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental chemical composition was analyzed using energy dispersive X-spectra (EDX) and X-ray photoelectron spectroscopy (XPS). Their blood and cell compatibility was studied by in vitro tests, including tests on platelet adhesion, thrombus formation, whole blood clotting time and osteoblast cell compatibility. Significant changes in the morphological and chemical composition of the Ti-DLC films were observed and found to be a function of the deposition level. These morphological and chemical changes reduced the interfacial tension between Ti-DLC and blood proteins as well as resisted the adhesion and activation of platelets on the surface of the Ti-DLC films. The cell compatibility results exhibited significant growth of osteoblast cells on the surface of Ti incorporated DLC film compared with that of DLC film surface.

  12. In vitro Cyto and Blood Compatibility of Titanium Containing Diamond-Like Carbon Prepared by Hybrid Sputtering Method

    Institute of Scientific and Technical Information of China (English)

    Krishnasamy NAVANEETHA PANDIYARAJ; Jan HEEG; Andreas LAMPKA; Fabian JUNGE; Torsten BARFELS; Marion WIENECKE; Young Ha RHEE; Hyoung Woo KIM

    2012-01-01

    In recent years, diamond-like carbon films (DLC) have been given more attention in research in the biomedical industry due to their potential application as surface coating on biomedical materials such as metals and polymer substrates. There are many ways to prepare metal containing DLC films deposited on polymeric film substrates, such as coatings from car- bonaceous precursors and some means that incorporate other elements. In this study, we in- vestigated both the surface and biocompatible properties of titanium containing DLC (Ti-DLC) films. The Ti-DLC films were prepared on the surface of poly (ethylene terephthalate) (PET) film as a function of the deposition power level using reactive sputtering technique. The films' hydrophilicity was studied by contact angle and surface energy tests. Their surface morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental chemical composition was analyzed using energy dispersive X-spectra (EDX) and X-ray photoelectron spectroscopy (XPS). Their blood and cell compatibility was studied by in vitro tests, including tests on platelet adhesion, thrombus formation, whole blood clotting time and osteoblast cell compatibility. Significant changes in the morphological and chemical composition of the Ti-DLC films were observed and found to be a function of the deposition level. These morphological and chemical changes reduced the interfacial tension between Ti-DLC and blood proteins as well as resisted the adhesion and activation of platelets on the surface of the Ti-DLC films. The cell compatibility results exhibited significant growth of osteoblast cells on the surface of Ti incorporated DLC film compared with that of DLC film surface.

  13. Characterization of hydrogen-free diamond-like carbon film on COC for flexible organic electro-luminescence application

    International Nuclear Information System (INIS)

    The applicability of the top emission organic light-emitting diode (TEOLED) with multilayer electrodes on flexible cyclic olefin polymers (COC) substrates depends on an ultra smooth, low-transmittance, insulating substrate overcoat to support the device structure. In this study, the feasibility of the diamond-like carbon (DLC) film as a viable device component for TEOLED was investigated. Featured for its advanced physical and chemical advantages such as high hardness, chemical stability, and wide band-gap optical transparency, the hydrogen-free DLC exhibits promising characteristics as the flexible substrate and TFT component overcoat. Ultra smooth and hydrogen-free DLC thin films were synthesized by using filter arc deposition (FAD) system. Raman spectroscopy, ESCA, Nano-Indenter, and electron microscopy were used to characterize the electronic, morphological, and microstructure properties of the DLC coatings. Results indicate that the device-quality DLC needs to be synthesized at lower substrate bias potential to retain a higher sp3/sp2 ratio. The bending tests demonstrated a 30-fold improvement of the DLC protected COC over that of the unprotected COC. The water vapor permeability tests demonstrated a 25-fold improvement of the DLC protected COC over that of the unprotected COC. The configuration of TEOLED was made of Al/Au/NPB/Alq3/LiF/Al/Ag to realize the top emission device, which was assembled with conventional thermal evaporation process. The design of the COC substrate/DLC/Al/Au/NPB/Alq3/LiF/Al/Ag of TEOLED device is shown optimized to reach the emission efficiency of 1-3 cd/A and luminance intensity of 1800 cd/m2 at 18 V

  14. First principles investigation of interaction between impurity atom (Si, Ge, Sn) and carbon atom in diamond-like carbon system

    International Nuclear Information System (INIS)

    The interaction between impurity atom (Si, Ge, and Sn) and carbon atom in diamond-like carbon (DLC) system was investigated by the first principles simulation method based on the density functional theory. The tetrahedral configuration was selected as the calculation model for simplicity. When the bond angle varied in a range of 90°–130° from the equivalent state of 109.471°, the distortion energy and the electronic structures including charge density of the highest occupied molecular orbital (HOMO) and partial density of state (PDOS) in the different systems were calculated. The results showed that the addition of Si, Ge and Sn atom into amorphous carbon matrix significantly decreased the distortion energy of the system as the bond angles deviated from the equilibrium one. Further studies of the HOMO and PDOS indicated that the weak covalent bond between Si(Ge, Sn) and C atoms was formed with the decreased strength and directionality, which were influenced by the electronegative difference. These results implied that the electron transfer behavior at the junction of carbon nano-devices could be tailored by the impurity element, and the compressive stress in DLC films could be reduced by the incorporation of Si, Ge and Sn because of the formation of weaker covalent bonds. - Highlights: ►Distortion energy after bond angle distortion was decreased comparing with C-C unit. ►The weak covalent bond was formed between impurity atoms and corner carbon atoms. ►Observed electron transfer behavior affected the strength and directionality of bond. ►Reduction of strength and directionality of bond contributed to small energy change.

  15. On Interlayer Stability and High-Cycle Simulator Performance of Diamond-Like Carbon Layers for Articulating Joint Replacements

    Directory of Open Access Journals (Sweden)

    Kerstin Thorwarth

    2014-06-01

    Full Text Available Diamond like carbon (DLC coatings have been proven to be an excellent choice for wear reduction in many technical applications. However, for successful adaption to the orthopaedic field, layer performance, stability and adhesion in physiologically relevant setups are crucial and not consistently investigated. In vitro wear testing as well as adequate corrosion tests of interfaces and interlayers are of great importance to verify the long term stability of DLC coated load bearing implants in the human body. DLC coatings were deposited on articulating lumbar spinal disks made of CoCr28Mo6 biomedical implant alloy using a plasma-activated chemical vapor deposition (PACVD process. As an adhesion promoting interlayer, tantalum films were deposited by magnetron sputtering. Wear tests of coated and uncoated implants were performed in physiological solution up to a maximum of 101 million articulation cycles with an amplitude of ±2° and −3/+6° in successive intervals at a preload of 1200 N. The implants were characterized by gravimetry, inductively coupled plasma optical emission spectrometry (ICP-OES and cross section scanning electron microscopy (SEM analysis. It is shown that DLC coated surfaces with uncontaminated tantalum interlayers perform very well and no corrosive or mechanical failure could be observed. This also holds true in tests featuring overload and third-body wear by cortical bone chips present in the bearing pairs. Regarding the interlayer tolerance towards interlayer contamination (oxygen, limits for initiation of potential failure modes were established. It was found that mechanical failure is the most critical aspect and this mode is hypothetically linked to the α-β tantalum phase switch induced by increasing oxygen levels as observed by X-ray diffraction (XRD. It is concluded that DLC coatings are a feasible candidate for near zero wear articulations on implants, potentially even surpassing the performance of ceramic vs

  16. Atomic force microscopy and tribology study of the adsorption of alcohols on diamond-like carbon coatings and steel

    International Nuclear Information System (INIS)

    Polar molecules are known to affect the friction and wear of steel contacts via adsorption onto the surface, which represents one of the fundamental boundary-lubrication mechanisms. Since the basic chemical and physical effects of polar molecules on diamond-like carbon (DLC) coatings have been investigated only very rarely, it is important to find out whether such molecules have a similar effect on DLC coatings as they do on steel. In our study the adsorption of hexadecanol in various concentrations (2–20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage, the size and the density of the adsorbed islands of alcohol molecules were analyzed. Tribological tests were also performed to correlate the wear and friction behaviours with the adsorption of molecules on the surface. In this case, steel surfaces served as a reference. The AFM was successfully used to analyze the adsorption ability of polar molecules onto the DLC surfaces and a good correlation between the AFM results and the tribological behaviour of the DLC and the steel was found. We confirmed that alcohols can adsorb physically and chemically onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for the DLC coatings. The adsorption of alcohol onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction because of the already inherently low-friction properties of DLC. Tentative adsorption mechanisms that include the environmental species effect, the temperature effect and the tribological rubbing effect are proposed for DLC and steel surfaces.

  17. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  18. Atomic force microscopy and tribology study of the adsorption of alcohols on diamond-like carbon coatings and steel

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, M., E-mail: mitjan.kalin@tint.fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Tribology and Interface Nanotechnology, Bogišićeva 8, 1000 Ljubljana (Slovenia); Simič, R. [University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Tribology and Interface Nanotechnology, Bogišićeva 8, 1000 Ljubljana (Slovenia)

    2013-04-15

    Polar molecules are known to affect the friction and wear of steel contacts via adsorption onto the surface, which represents one of the fundamental boundary-lubrication mechanisms. Since the basic chemical and physical effects of polar molecules on diamond-like carbon (DLC) coatings have been investigated only very rarely, it is important to find out whether such molecules have a similar effect on DLC coatings as they do on steel. In our study the adsorption of hexadecanol in various concentrations (2–20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage, the size and the density of the adsorbed islands of alcohol molecules were analyzed. Tribological tests were also performed to correlate the wear and friction behaviours with the adsorption of molecules on the surface. In this case, steel surfaces served as a reference. The AFM was successfully used to analyze the adsorption ability of polar molecules onto the DLC surfaces and a good correlation between the AFM results and the tribological behaviour of the DLC and the steel was found. We confirmed that alcohols can adsorb physically and chemically onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for the DLC coatings. The adsorption of alcohol onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction because of the already inherently low-friction properties of DLC. Tentative adsorption mechanisms that include the environmental species effect, the temperature effect and the tribological rubbing effect are proposed for DLC and steel surfaces.

  19. Atomic force microscopy and tribology study of the adsorption of alcohols on diamond-like carbon coatings and steel

    Science.gov (United States)

    Kalin, M.; Simič, R.

    2013-04-01

    Polar molecules are known to affect the friction and wear of steel contacts via adsorption onto the surface, which represents one of the fundamental boundary-lubrication mechanisms. Since the basic chemical and physical effects of polar molecules on diamond-like carbon (DLC) coatings have been investigated only very rarely, it is important to find out whether such molecules have a similar effect on DLC coatings as they do on steel. In our study the adsorption of hexadecanol in various concentrations (2-20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage, the size and the density of the adsorbed islands of alcohol molecules were analyzed. Tribological tests were also performed to correlate the wear and friction behaviours with the adsorption of molecules on the surface. In this case, steel surfaces served as a reference. The AFM was successfully used to analyze the adsorption ability of polar molecules onto the DLC surfaces and a good correlation between the AFM results and the tribological behaviour of the DLC and the steel was found. We confirmed that alcohols can adsorb physically and chemically onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for the DLC coatings. The adsorption of alcohol onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction because of the already inherently low-friction properties of DLC. Tentative adsorption mechanisms that include the environmental species effect, the temperature effect and the tribological rubbing effect are proposed for DLC and steel surfaces.

  20. Influence of flow rate on different properties of diamond-like nanocomposite thin films grown by PECVD

    Directory of Open Access Journals (Sweden)

    T. S. Santra

    2012-06-01

    Full Text Available Diamond-like nanocomposite (DLN thin films were deposited on pyrex glass substrate using different flow rate of haxamethyldisiloxane (HMDSO based liquid precursor with nitrogen gas as a glow discharged decomposition by plasma enhanced chemical vapor deposition (PECVD technique. The significant influence of different precursor flow rates on refractive index and thickness of the DLN films was measured by using spectroscopic filmatrics and DEKTAK profilometer. Optical transparency of the DLN thin films was analyzed by UV-VIS-NIR spectrometer. FTIR spectroscopy, provides the information about shifted bonds like SiC2, Si-C, Si-O, C-C, Si-H, C-H, N-H, and O-H with different precursor flow rate. We have estimated the hardness of the DLN films from Raman spectroscopy using Gaussian deconvolution method and tried to investigate the correlation between hardness, refractive index and thickness of the films with different precursor flow rates. The composition and surface morphology of the DLN films were investigated by X-ray photo electron spectroscopy (XPS and atomic force microscopy (AFM respectively. We have analyzed the hardness by intensity ratio (ID/IG of D and G peaks and correlates with hardness measurement by nanoindentation test where hardness increases from 27.8 μl/min to 80.6μl/min and then decreases with increase of flow rate from 80.6μl/min to 149.5μl/min. Finally, we correlates different parameters of structural, optical and tribological properties like film-thickness, refractive index, light transmission, hardness, surface roughness, modulus of elasticity, contact angle etc. with different precursor flow rates of DLN films.

  1. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Miksovsky, J. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Voss, A. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Kozarova, R. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kocourek, T.; Pisarik, P. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Ceccone, G. [Unit Nanobiosciences, European Commission Joint Research Centre, Ispra (Italy); Kulisch, W. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Jelinek, M. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Apostolova, M.D. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Reithmaier, J.P. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Popov, C., E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany)

    2014-04-01

    Graphical abstract: - Highlights: • UNCD and DLC films were modified by UV/O{sub 3} treatments, O{sub 2} or NH{sub 3}-containing plasmas. • Surface composition, wettability and surface energy change upon modifications. • Higher efficiency of UNCD modifications was observed. • Cell attachment and growth were influenced by the surface termination and roughness. - Abstract: Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O{sub 2} or NH{sub 3}/N{sub 2} plasmas and UV/O{sub 3} treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.

  2. Studies of diamond-like carbon (DLC) films deposited on stainless steel substrate with Si/SiC intermediate layers

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Liu Gui-Chang; Wang Li-Da; Deng Xin-Lü; Xu Jun

    2008-01-01

    In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and thesp3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp3 bonding and reduced the hardness. The incorporated Si atoms substituted sp2- bond carbon atoms in ring structures, which promoted the formation of sp3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power.

  3. Mössbauer and x-ray absorption studies in Fe and V co-doped SnO2

    International Nuclear Information System (INIS)

    Ferromagnetic nanoparticles of iron and vanadium co-doped SnO2 were synthesized by a sol-gel method. Fe and V co-doped SnO2 enhanced the magnetization, which showed the maximum saturation magnetization (Ms) at 1 % of Fe and 1 % of V co-doping. With further increasing the amounts of Fe and V co-doping into SnO2 host, the Ms decreased. Chemical states of vanadium ions were deduced as V5+ states by x-ray absorption spectroscopy. Mössbauer spectrometry revealed that the intensities of sextet components are related to the Ms, which indicates that small amounts of Fe and V co-doping is effective to enhance Ms.

  4. Moessbauer and x-ray absorption studies in Fe and V co-doped SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Okabayashi, Jun, E-mail: jun@chem.s.u-tokyo.ac.jp [University of Tokyo, Research Center for Spectrochemistry (Japan); Kono, Shin; Yamada, Yasuhiro [Tokyo University of Science, Department of Chemistry (Japan); Nomura, Kiyoshi [University of Tokyo, Department of Applied Chemistry (Japan)

    2013-04-15

    Ferromagnetic nanoparticles of iron and vanadium co-doped SnO{sub 2} were synthesized by a sol-gel method. Fe and V co-doped SnO{sub 2} enhanced the magnetization, which showed the maximum saturation magnetization (M{sub s}) at 1 % of Fe and 1 % of V co-doping. With further increasing the amounts of Fe and V co-doping into SnO{sub 2} host, the M{sub s} decreased. Chemical states of vanadium ions were deduced as V{sup 5+} states by x-ray absorption spectroscopy. Moessbauer spectrometry revealed that the intensities of sextet components are related to the M{sub s}, which indicates that small amounts of Fe and V co-doping is effective to enhance M{sub s}.

  5. [The possibilities for the application of the fluoroplast-based prostheses with a diamond-like carbon nanocoating in ear surgery (an experimental study)].

    Science.gov (United States)

    Sitnikov, V P; Shil'ko, S V; Khusam, Él'-Refaĭ; Nadyrov, É A; Kazachenko, V P; Dzhaĭnakbaev, N T

    2014-01-01

    The objective of the present study was to elucidate general and local characteristics of the tissue reactions to the implantation of radiation-modified polytetrafluoroethylene (PTFE)-based fluoroplast F-4PM20 with a diamond-like carbon (DLC) nanocoating or with the diamond-like carbon coating containing the dispersed nano-sized silver particles to the experimental animals (rats). A total of 150 inbred white rats were included into the experiment; they were divided into 3 groups comprised of 50 animals each. The rats in group 1 were implanted with the 5 nm thick strips of fluoroplast F-4PM20 having the diamond-like carbon nanocoating. The animals of group 2 were implanted with the same material containing nanoparticles of chemically pure silver dispersed in the coating, those in group 3 (controls) were implanted with the fluoroplast F-4PM20 without a coating. The animals were sacrificed on days 7, 21, 30, and 60 days after the onset of the experiment. The tissues surrounding the implant as well as heart, lung, spleen, liver, and kidney tissues were taken for the histological study. The local reactions of different tissues were found to be uniform even though there was an apparent tendency toward the less pronounced granulation and scarification processes in the animals implanted with the diamond-like carbon coating containing the dispersed nano-sized silver particles. In none of the groups, the animals exhibited statistically significant lymphoid tissue hyperplasia in the spleen which suggested the activation of the immune system in response to implantation. It is concluded that the PTFE-based fluoroplast F-4PM20 implants with the 5 nm thick DLC coating and a similar coating containing the dispersed nano-sized silver particles can be applied for middle ear reconstructive surgery, being a histologically compatible material that does not cause an inflammatory degenerative response of the tissues. PMID:25246203

  6. XPS, XRD and laser raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    OpenAIRE

    William de Melo Silva; José Rubens Gonçalves Carneiro; Vladimir Jesus Trava-Airoldi

    2013-01-01

    Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the ...

  7. Substrate and material transfer effects on the surface chemistry and texture of diamond-like carbon deposited by plasma-enhanced chemical vapour deposition

    OpenAIRE

    Jones, Benjamin; Ojeda, J. J.

    2012-01-01

    Diamond-like carbon (DLC), a thin amorphous carbon film, has many uses in tribological systems. Exploiting alternative substrates and interlayers can enable the control of the hardness and modulus of the multilayer system and improve wear or friction properties. We used XPS and atomic force microscopy to examine DLC that had been concurrently coated on an epoxy interlayer and a steel substrate by plasma-enhanced chemical vapour deposition. sp2/sp3 ratios were calculated both by the deconvolut...

  8. The effect of temperature on the tribological mechanisms and reactivity of hydrogenated, amorphous diamond-like carbon coatings under oil-lubricated conditions

    International Nuclear Information System (INIS)

    In this work we present the wear and friction behaviour of boundary-lubricated, hydrogenated, amorphous, diamond-like carbon coatings (a-C:H), in self-mated a-C:H/a-C:H contacts, at three different testing temperatures: 20, 80, 150 deg. C. We present results from Auger electron spectroscopy, X-ray photoelectron spectroscopy and Raman analyses relating to the chemical and structural changes in the diamond-like carbon coatings during sliding in the presence of mineral oil, with and without additives. We show, that chemical reactions between the a-C:H coatings and the oil additives take place, which are dependent on the temperature, on the presence of additives and the type of additives used. At high temperatures the extreme pressure additive interacts with the diamond-like carbon surface and forms a tribochemical layer with a four-times lower sulphur/phosphorous ratio than the additive formulation. In the absence of additives, however, graphitisation of the coating occurs under these conditions, which results in high-wear and low-friction behaviour. Another result from this study is that a-C:H coatings can oxidise during room-temperature experiments, suggesting that some interactions and adsorptions are also possible at lower temperatures

  9. Re-dispersible Li+ and Eu3+ co-doped CdS nanoparticles: Luminescence studies

    Indian Academy of Sciences (India)

    N S Gajbhiye; Raghumani Singh Ninghoujam; Asar Ahmed; D K Panda; S S Umare; S J Sharma

    2008-02-01

    Re-dispersible CdS, 5 at.% Eu3+-doped CdS, 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS nanoparticles in organic solvent are prepared by urea hydrolysis in ethylene glycol medium at a low temperature of 170°C. CdS nanoparticles have spherical shape with a diameter of ∼ 80 nm. The asymmetric ratio (21) of the integrated intensities of the electrical dipole transition to the magnetic dipole transition for 5 at.% Eu3+-doped CdS is found to be 3.8 and this ratio is significantly decreased for 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS (21 = 2.6). It establishes that the symmetry environment of Eu3+ ion is more favored by Li-doping. Extra peak at 550 nm (green emission) could be seen for 2 and 5 at.% Eu3+ co-doped CdS. Also, the significant energy transfer from host CdS to Eu3+ is found for 5 at.% Eu3+-doped CdS compared to that for 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS.

  10. Preparation, characterization and photoluminescent studies of Cr and Nd co-doped Ce:YAG compounds

    Energy Technology Data Exchange (ETDEWEB)

    Naik, S.R. [Department of Chemistry, Goa University, Goa 403206 (India); Shripathi, T. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India); Salker, A.V., E-mail: sal_arun@rediffmail.com [Department of Chemistry, Goa University, Goa 403206 (India)

    2015-05-15

    Sol–gel autocombustion as an efficient method in the preparation of monophasic Cr and Nd co-doped Ce:YAG compounds has been demonstrated. A reduction in the formation temperature to 1000 °C as compared to the classical ceramic method has been effectively shown. Monophasic formation of the compounds has been confirmed from the X-ray diffraction study which is equally supported by the Raman spectroscopy. The TEM analysis confirms the formation of submicron sized particles (around 100 nm) which are equally supported by SEM micrographs revealing the granular morphology for the compounds. Photoluminescence (excitation) studies carried out for the compounds at 468, 341 and 685 nm display excellent emission intensity for the compounds with similar emission pattern pointing towards a common emission centre in all the three cases. Decrease in Ce{sup 3+} emission intensity for the Cr and Nd co-doped Ce:YAG is observed. Energy transfer mechanism is suggested for the lowering of emission intensity confirming the activity of Ce{sup 3+} as a sensitizer. - Highlights: • Nd and Cr co-doped Ce:YAG are prepared by the sol–gel autocombustion. • Monophasic preparation proves the method to be efficient. • Formation of particles around 100 nm is confirmed from TEM. • Singly doped Ce:YAG exhibits maximum emission intensity. • Energy transfer between ions in excited state is in co-doped samples.

  11. Preparation, characterization and photoluminescent studies of Cr and Nd co-doped Ce:YAG compounds

    International Nuclear Information System (INIS)

    Sol–gel autocombustion as an efficient method in the preparation of monophasic Cr and Nd co-doped Ce:YAG compounds has been demonstrated. A reduction in the formation temperature to 1000 °C as compared to the classical ceramic method has been effectively shown. Monophasic formation of the compounds has been confirmed from the X-ray diffraction study which is equally supported by the Raman spectroscopy. The TEM analysis confirms the formation of submicron sized particles (around 100 nm) which are equally supported by SEM micrographs revealing the granular morphology for the compounds. Photoluminescence (excitation) studies carried out for the compounds at 468, 341 and 685 nm display excellent emission intensity for the compounds with similar emission pattern pointing towards a common emission centre in all the three cases. Decrease in Ce3+ emission intensity for the Cr and Nd co-doped Ce:YAG is observed. Energy transfer mechanism is suggested for the lowering of emission intensity confirming the activity of Ce3+ as a sensitizer. - Highlights: • Nd and Cr co-doped Ce:YAG are prepared by the sol–gel autocombustion. • Monophasic preparation proves the method to be efficient. • Formation of particles around 100 nm is confirmed from TEM. • Singly doped Ce:YAG exhibits maximum emission intensity. • Energy transfer between ions in excited state is in co-doped samples

  12. Wideband Erbium-Ytterbium Co-Doped Phosphate Glass Waveguide Amplifier

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new '(?)' type of wideband erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with medium thin film filter is proposed, Average gain about 15.5dB between 1530nm and 1570nm with gain difference of below 2 dB is obtained.

  13. Ferromagnetism at room temperature in Co-doped KNbO3 bulk samples

    International Nuclear Information System (INIS)

    In this work, polycrystalline KNb1−xCoxO3 (x=0, 0.05 and 0.1) samples were synthesized through standard solid-state reaction, and their structural and magnetic properties were carefully studied. The X-ray powder diffraction (XRD) patterns show reflections of a pure orthorhombic structure (space group Bmm2) with lattice parameters being very close to those reported in the literature. The most important point here is that all the samples ended up being single-phase with no affectation by impurities or segregates. The XRD peaks of Co-doped samples are broadened and shifted to the right side as compared to those of the pristine compound (x=0) suggesting effective substitution of Nb by Co ions. The Co-doped samples exhibit ferromagnetic properties at room temperature, which contrasts starkly with the paramagnetic behavior exhibited by the undoped sample. Interactions between bound magnetic polarons are considered as a possible scenario to explain the appearance of the ferromagnetic signal in the Co-doped samples. - Highlights: • Polycrystalline KNb1−xCoxO3 (x=0, 0.05 and 0.1) is synthesized by physical route. • XRD patterns show reflections of a pure orthorhombic structure. • No affectation by impurities or segregates is verified by XRD analysis. • The Co-doped samples exhibit ferromagnetic properties at room temperature

  14. Co-doped ZnO nanopowders: Location of cobalt and reduction in photocatalytic activity

    International Nuclear Information System (INIS)

    Highlights: ► Successful crystal doping of ZnO nanopowders with Co using a co-precipitation method. ► The location of the dopant was characterised using synchrotron radiation (XRD, EXAFS). ► The photocatalytic activity under the entire solar spectrum was reduced by Co-doping. ► Only 1 at% Co-doping reduced the photoactivity down to 18% of the original value. - Abstract: The location of dopant ions and the effect of doping level on the photocatalytic activity have been investigated on Co-doped ZnO nanopowders. A co-precipitation method was used to prepare ZnO nanoparticles of <50 nm in diameter doped with up to 5 at% of Co. The crystal structure of nanoparticles and local atomic arrangements around dopant ions were analysed by X-ray diffraction and extended X-ray absorption fine structure spectroscopy using synchrotron radiation. The results showed the Co ions substituted the Zn ions in ZnO crystal lattice and induced lattice shrinkage. The photocatalytic activity under simulated sunlight irradiation was characterised by the decomposition of Rhodamine B dye molecules, which revealed the successful reduction of photocatalytic activity by Co-doping.

  15. Transient Dynamics of Fluoride-Based High Concentration Erbium/Cerium Co-Doped Fiber Amplifier

    Institute of Scientific and Technical Information of China (English)

    S. S-H. Yam; Y. Akasaka; Y. Kubota; R. Huang; D. L. Harris; J. Pan

    2003-01-01

    We designed and evaluated a fluoride-based high concentration erbium/ cerium co-doped fiber amplifier. It is suitable for Metropolitan Area Networks due to faster transient, flatter (unfiltered) gain, smaller footprint and gain excursion than its silica-based counterpart.

  16. Yb-Er co-doped phosphate fiber with hexagonal inner cladding

    Science.gov (United States)

    Wen, Lei; Wang, Longfei; He, Dongbing; Chen, Danping; Hu, Lili

    2016-04-01

    An Yb-Er co-doped phosphate glass double-clad fiber with hexagonal inner cladding was fabricated by stack-and-draw method. Output power of 4.9 W was extracted with slope efficiency of 30 % from the fiber with 55 cm in length.

  17. Co-doped mesoporous titania photocatalysts prepared from a peroxo-titanium complex solution

    Energy Technology Data Exchange (ETDEWEB)

    El Saliby, Ibrahim [Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007 (Australia); Erdei, Laszlo [Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, QLD 4350 (Australia); McDonagh, Andrew [Faculty of Science, University of Technology Sydney, NSW 2007 (Australia); Kim, Jong-Beom; Kim, Jong-Ho [The Research Institute for Catalysis, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Photo and Environmental Technology Co. Ltd., Gwangju 500-460 (Korea, Republic of); Shon, Ho Kyong, E-mail: hokyong.shon-1@uts.edu.au [Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007 (Australia)

    2014-01-01

    Graphical abstract: - Highlights: • Peroxotitanium complex for the synthesis of doped photocatalysts. • Fabrication of N doped and N/Ag co-doped photocatalysts. • Characterization of photocatalysts by SEM, XRD, BET, DRS and XPS. • Bench scale photocatalysis under simulated solar light using crystal violet pollutant. - Abstract: In this study, nitrogen doped and nitrogen/silver co-doped TiO{sub 2} photocatalsysts were fabricated using a sol–gel method at room temperature. The obtained gels were neutralized, washed with pure water, and calcined at 400 °C for 4 h. The photocatalysts were characterized by scanning and transmission electron microscopy, X-ray diffraction, diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and BET specific surface area. The results showed that spherical particles with anatase structure were produced after annealing at 400 °C. N 1s (400 eV) and Ag 3d (367.3 eV) states indicated that nitrogen doping and silver co-doping were in the form of NO bonds and AgO, respectively. The photocatalytic activity of photocatalysts was investigated using a batch reactor system exposed to artificial solar irradiation. Both nitrogen and silver/nitrogen co-doped materials were effective in the photocatalytic degradation of hexamethyl pararosaniline chloride.

  18. Er3+/Yb3+co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    In this paper, we report the microwave hydrothermal synthesis of Er3+/Yb3+ co-doped Bi2MoO6 upconversion photocatalyst. Crystal structure, morphology, elemental composition, optical properties and BET surface area were analyzed in detail. Infrared to visible upconversion luminescence at 532 nm and 546 nm of the co-doped samples was investigated under excitation at 980 nm. The results revealed that the co-doping of Er3+/Yb3+ into Bi2MoO6 exhibited enhanced photocatalytic activity for the decomposition of rhodamine B under simulated solar light irradiation. Enhanced photocatalytic activity can be attributed to the energy transfer between Er3+/Yb3+ and Bi2MoO6 via infrared to visible upconversion from Er3+/Yb3+ ion and higher surface area of the Bi2MoO6 nanosheets. Therefore, this synthetic approach may exhibit a better alternative to fabricate upconversion photocatalyst for integral solar light absorption. - Graphical abstract: Schematic illustration of the upconversion photocatalysis. Display Omitted - Highlights: • Er3+/Yb3+ co-doped Bi2MoO6 upconversion photocatalyst is successfully synthesized. • We obtained the nanosheets having high surface area. • Upconversion of IR to visible light was confirmed. • Upconversion phenomena can be utilized for effective photocatalysis

  19. Structural, chemical and magnetic properties of secondary phases in Co-doped ZnO

    DEFF Research Database (Denmark)

    Ney, A; Kovács, András; Ney, V; Ye, S; Ollefs, K; Kammermeier, T; Wilhelm, F; Rogalev, A; Dunin-Borkowski, Rafal E.

    2011-01-01

    , chemical and magnetic properties of Co-doped ZnO samples. It can be established on a quantitative basis that the superparamagnetic (SPM) behavior observed by integral superconducting quantum interference device magnetometry is not an intrinsic property of the material but stems from precipitations of...

  20. Ferromagnetism at room temperature in Co-doped KNbO{sub 3} bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Astudillo, A., E-mail: jaastudillo@unicauca.edu.co [Low Temperature Laboratory, Department of Physics, University of Cauca, Calle 5 No. 4-70, Popayán (Colombia); Izquierdo, J.L. [Universidad Nacional de Colombia, Campus Medellín, Departamento de Física, Laboratorio de Materiales Cerámicos y Vítreos, A.A. 568, Medellín (Colombia); Gómez, A. [Universidad Nacional de Colombia, Campus Medellín, Facultad de Minas, Laboratorio de Caracterización de Materiales, A.A. 568, Medellín (Colombia); Bolaños, G. [Low Temperature Laboratory, Department of Physics, University of Cauca, Calle 5 No. 4-70, Popayán (Colombia); Morán, O. [Universidad Nacional de Colombia, Campus Medellín, Departamento de Física, Laboratorio de Materiales Cerámicos y Vítreos, A.A. 568, Medellín (Colombia)

    2015-01-01

    In this work, polycrystalline KNb{sub 1−x}Co{sub x}O{sub 3} (x=0, 0.05 and 0.1) samples were synthesized through standard solid-state reaction, and their structural and magnetic properties were carefully studied. The X-ray powder diffraction (XRD) patterns show reflections of a pure orthorhombic structure (space group Bmm2) with lattice parameters being very close to those reported in the literature. The most important point here is that all the samples ended up being single-phase with no affectation by impurities or segregates. The XRD peaks of Co-doped samples are broadened and shifted to the right side as compared to those of the pristine compound (x=0) suggesting effective substitution of Nb by Co ions. The Co-doped samples exhibit ferromagnetic properties at room temperature, which contrasts starkly with the paramagnetic behavior exhibited by the undoped sample. Interactions between bound magnetic polarons are considered as a possible scenario to explain the appearance of the ferromagnetic signal in the Co-doped samples. - Highlights: • Polycrystalline KNb{sub 1−x}Co{sub x}O{sub 3} (x=0, 0.05 and 0.1) is synthesized by physical route. • XRD patterns show reflections of a pure orthorhombic structure. • No affectation by impurities or segregates is verified by XRD analysis. • The Co-doped samples exhibit ferromagnetic properties at room temperature.

  1. Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics

    Science.gov (United States)

    Li, Jinglei; Li, Fei; Zhuang, Yongyong; Jin, Li; Wang, Linghang; Wei, Xiaoyong; Xu, Zhuo; Zhang, Shujun

    2014-08-01

    The (Nb + In) co-doped TiO2 ceramics recently attracted considerable attention due to their colossal dielectric permittivity (CP) (˜100,000) and low dielectric loss (˜0.05). In this research, the 0.5 mol. % In-only, 0.5 mol. % Nb-only, and 0.5-7 mol. % (Nb + In) co-doped TiO2 ceramics were synthesized by standard conventional solid-state reaction method. Microstructure studies showed that all samples were in pure rutile phase. The Nb and In ions were homogeneously distributed in the grain and grain boundary. Impedance spectroscopy and I-V behavior analysis demonstrated that the ceramics may compose of semiconducting grains and insulating grain boundaries. The high conductivity of grain was associated with the reduction of Ti4+ ions to Ti3+ ions, while the migration of oxygen vacancy may account for the conductivity of grain boundary. The effects of annealing treatment and bias filed on electrical properties were investigated for co-doped TiO2 ceramics, where the electric behaviors of samples were found to be susceptible to the annealing treatment and bias field. The internal-barrier-layer-capacitance mechanism was used to explain the CP phenomenon, the effect of annealing treatment and nonlinear I-V behavior for co-doped rutile TiO2 ceramics. Compared with CaCu3Ti4O12 ceramics, the high activation energy of co-doped rutile TiO2 (3.05 eV for grain boundary) was thought to be responsible for the low dielectric loss.

  2. Effect of co-doping on luminescence of LiCaAlF6:Eu phosphor

    International Nuclear Information System (INIS)

    Abstracts: LiCaAlF6 is a versatile host material. Applications of this host as scintillation detector and solid state laser have been reported quite frequently. Thermoluminescence studies on LiCaAlF6:Eu have also been reported. They are, however, not consistent. The glow curve structure depends on the synthesis route. At least two glow peaks are observed, around 180 °C and 240 °C. Effects of co-doping on the glow curve are reported. Co-doping with Y (0.5 mol%) suppresses the 240 °C peak and increases the intensity of 180 °C peak nearly 3 fold and shifts it to slightly higher temperature of 190 °C. Co-doping with La (0.8 mol%), on the other hand, removes 180 °C peak and intense peak at 240 °C can be observed. Thus co-doping produces a relatively simple glow curve with only one dominant peak. LiCaAlF6:Eu phosphor also shows intense optically stimulated luminescence (OSL). The OSL sensitivity of LiCaAlF6:Eu codoped with Y is about 7 times that of commercially available Al2O3:C. Other OSL properties useful for dosimetry applications are also reported in this paper. - Highlights: • Precipitation synthesis of LiCaAlF6:Eu, Yttrium co-doping simplifies glow curve. • TL sensitivity is 3 times that of CaSO4:Dy. • OSL sensitivity is 7 times that of Al2O3:C (Landauer). • Linear OSL response in the range 3 mGy to 1 kGy. • Negligible fading over 40 days

  3. Structural Analysis of Planar sp3 and sp2 Films: Diamond-Like Carbon and Graphene Overlayers

    KAUST Repository

    Mansour, Ahmed

    2011-07-07

    The special electronic configuration of carbon enables the existence of wide ranging allotropes taking all possible dimensionalities. The allotropes of carbon are characterized by the type of hybridized bonding forming its structure, ranging from pure sp2 as in graphene, carbon nanotubes and fullerenes, to pure sp3 as in diamond. Amorphous and diamond-like carbon consists of a mixture of both hybridizations. This variation in hybridization in carbon materials enables a wide spectrum of properties, ranging from high bulk mechanical hardness, tribological properties and chemical inertness made possible by moving towards pure sp3 bonding to the extraordinary electrical conductivity, optical properties and in-plane mechanical strength resulting from pure sp2 bonding. Two allotropes at the extremes of this spectrum, diamond like carbon (DLC) and graphene, are investigated in this thesis; the former is investigated as a protective coating in hard drive applications, while the latter is investigated in the context of chemically derived graphene as material for transparent conducting electrode applications. DLC thin films are a main component in computer hard drives, acting as a protective coating against corrosion and mechanical wear of the magnetic layer and read-write head. The thickness of DLC films greatly affects the storage density in such devices, as larger separation between the read/write head and the magnetic layer decreases the storage density. A targeted DLC thickness of 2 nm would increase the storage density towards 1 Tbits/inch2. However, difficulty achieving continuous films at such thicknesses by commonly used sputtering methods challenges the industry to investigate alternative methods. Filtered cathodic vacuum arc (FCVA) has been proposed as an efficient technique to provide continuous, smooth and ultra-thin DLC films. We investigate the influence of deposition angle, deposition time, and substrate biasing to define the optimum process window to obtain

  4. Anomalous enhancement of the thermoelectric figure of merit by V co-doping of Nb-SrTiO3

    KAUST Repository

    Ozdogan, K.

    2012-05-10

    The effect of V co-doping of Nb-SrTiO3 is studied by full-potential density functional theory. We obtain a stronger increase of the carrier density for V than for Nbdopants. While in Nb-SrTiO3 a high carrier density counteracts a high thermoelectric figure of merit, the trend is inverted by V co-doping. The mechanism leading to this behavior is explained in terms of a local spin-polarization introduced by the V ions. Our results indicate that magnetic co-doping can be a prominent tool for improving the thermoelectric figure of merit.

  5. Synthesis, structural, optical, and magnetic properties of Co doped, Sm doped and Co+Sm co-doped ZnS nanoparticles

    Science.gov (United States)

    Poornaprakash, B.; Poojitha, P. T.; Chalapathi, U.; Subramanyam, K.; Park, Si-Hyun

    2016-09-01

    The compositional, structural, optical and magnetic properties of ZnS, Zn0.98Co0.02S, Zn0.98Sm0.02S and Zn0.96Co0.02Sm0.02S nanoparticles synthesized by a hydrothermal method are presented and discussed. X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) studies revealed that all the samples exhibited cubic structure without any impurity phases. X-ray photoelectron spectroscopy (XPS) results revealed that the Co and Sm ions existed in +2 and +3 states in these samples. The photoluminescence (PL) spectra of all the samples exhibited a broad emission in the visible region. The room temperature magnetization versus applied magnetic field (M-H) curves demonstrated that the Sm+Co doped nanoparticles exhibited enhanced ferromagnetic behavior compare to Co and Sm individually doped ZnS nanoparticles, which is probably due to the exchange interaction between conductive electrons with local spin polarized electrons on the Co2+ or Sm3+ ions. This study intensifies the understanding of the novel performances of co-doped ZnS nanoparticles and also provides possibilities to fabricate future spintronic devices.

  6. Nuclear magnetic resonance study of pure and Ni/Co doped LiFeAs

    International Nuclear Information System (INIS)

    We present Nuclear Magnetic and Nuclear Quadrupole Resonance (NMR/NQR) measurements on pure, Ni and Co doped LiFeAs single crystals. The parent compound LiFeAs exhibits unconventional superconductivity with a transition temperature of about 17 K. Unlike other Fe based superconductors, where superconductivity is induced or stabilized by Co or Ni doping, replacement of Fe by these elements leads to a suppression of the superconducting transition temperature in LiFeAs. In case of Ni doping, a bulk magnetic order is induced below about 160 K. In contrast, for Co doping, the superconducting transition temperature is only reduced, but no magnetic order is observed. We discuss the nature and the origin of this magnetic order and its relation to unconventional superconductivity in pure LiFeAs.

  7. Electronic structure, magnetic and superconducting properties of co-doped iron-arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, Helge; Schnelle, Walter; Nicklas, Michael; Leithe-Jasper, Andreas [MPI CPfS Dresden (Germany); Weikert, Franziska [Los Alamos National Laboratory, New Mexico (United States); HLD Dresden Rossendorf (Germany); Wosnitza, Joachim [HLD Dresden Rossendorf (Germany)

    2013-07-01

    We present a joint experimental and theoretical study of co-doped iron-arsenide superconductors of the 122 family A{sub 1-x}K{sub x}Fe{sub 2-y}T{sub y}As{sub 2} (A = Ba,Sr,Eu; T = Co,Ru,Rh). In these systems, the co-doping enables the separation of different parameters - like electron count, disorder or the specific geometry of the FeAs layer - with respect to the position of the respective compounds in the general 122 phase diagram. For a series of compounds, we investigate the relevance of the different parameters for the magnetic, thermodynamic and superconducting properties. Our experimental investigations are supported by density functional electronic structure calculations applying different approximations for doping and disorder.

  8. One step synthesis of Al/N co-doped carbon nanoparticles with enhanced photoluminescence

    International Nuclear Information System (INIS)

    In a typical synthesis, luminescent carbon nanoparticles were synthesized via hydrothermal oxidation of glucose in deionized water. Here we reported the photoluminescence of the carbon nanoparticles greatly enhanced when reacted with Al(NO3)3 for the first time, the resulted carbon dots have appropriate spherical morphology, uniform size and good dispersion. The carbon nanoparticles can exhibit excitation-dependent photoluminescence behavior and emit bright green photoluminescence under UV excitation, which might provide a potential application for carbon dots in other extensive fields. - Highlights: • One step synthesis of Al/N co-doped carbon nanoparticles via a hydrothermal method. • The Al/N co-doped carbon dots possessed higher luminescence than the primordial one. • The cause for the enhanced photoluminescence was investigated and discussed

  9. Upconversion luminescence of Yb 3+/Tb 3+ co-doped tellurite glasses

    Science.gov (United States)

    Kochanowicz, Marcin; Zmojda, Jacek; Dorosz, Dominik; Miluski, Piotr; Dorosz, Jan

    2014-05-01

    In the article the upconversion luminescence ofTeO2- GeO2 - PbO - PbF2- BaO - Nb2O5 - LaF3 glass system co-doped withYb 3+ /Tb 3+ under 976 nm laser diode excitation was investigated. The influence of Tb2O3concentration on the luminescent properties was determined. Measured strong luminescence at492, 547, 588, 622 nm correspond to 5D4→7FJ (J=6, 4, 3) transitions. Energy transfer (ET) mechanism involved in observed emission was discussed. The highest upconversion emission intensity was obtained in the tellurite glass co-doped with 0.5 Yb2O3/0.5 Tb2O3 (mol%).

  10. Enhanced electrical activation in In-implanted Ge by C co-doping

    Energy Technology Data Exchange (ETDEWEB)

    Feng, R., E-mail: ruixing.feng@anu.edu.au; Kremer, F.; Mirzaei, S.; Medling, S. A.; Ridgway, M. C. [Department of Electronic Materials Engineering, Australian National University, Canberra ACT 0200 (Australia); Sprouster, D. J. [Nuclear Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Decoster, S.; Pereira, L. M. C. [KU Leuven, Instituut voor Kern-en Stralingsfysica, 3001 Leuven (Belgium); Glover, C. J. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Russo, S. P. [Applied Physics, School Applied Sciences, RMIT University, Melbourne 3001 (Australia)

    2015-11-23

    At high dopant concentrations in Ge, electrically activating all implanted dopants is a major obstacle in the fulfillment of high-performance Ge-channel complementary metal oxide semiconductor devices. In this letter, we demonstrate a significant increase in the electrically-active dopant fraction in In-implanted Ge by co-doping with the isovalent element C. Electrical measurements have been correlated with x-ray absorption spectroscopy and transmission electron microscopy results in addition to density functional theory simulations. With C + In co-doping, the electrically active fraction was doubled and tripled at In concentrations of 0.2 and 0.7 at. %, respectively. This marked improvement was the result of C-In pair formation such that In-induced strain in the Ge lattice was reduced while the precipitation of In and the formation of In-V clusters were both suppressed.

  11. Co-doping of Potassium and Bromine in Carbon Nanotubes: A Density Functional Theory Study

    Institute of Scientific and Technical Information of China (English)

    XIAO Yong; YAN xiao-Hong; DING Jian-Wen

    2007-01-01

    We investigate the co-doping of potassium and bromine in singlewalled carbon nanotubes (SWCNTs)and doublewalled carbon nanotubes(DWCNTs)based on density functional theory.In the co-doped(6,O)SWCNTs,the 4s electron of potassium is transferred to nanotube and Br,leading to the n-type feature of SWCNTs.When potassium is intercalated into inner tube and bromine is put on outer tube,the positive and negative charges reside on the outer and inner tubes of the(7.0)@(16,0)DWCNT,respectively.It is expected that DWCNTs would be an ideal candidate for p-n junction and diode applications.

  12. First Principles Study of Electronic and Magnetic Properties of Co-Doped Armchair Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Biao Li

    2015-01-01

    Full Text Available Using the first principles calculations, we have studied the atomic and electronic structures of single Co atom incorporated with divacancy in armchair graphene nanoribbon (AGNR. Our calculated results show that the Co atom embedded in AGNR gives rise to significant impacts on the band structures and the FM spin configuration is the ground state. The presence of the Co doping could introduce magnetic properties. The calculated results revealed the arising of spin gapless semiconductor characteristics with doping near the edge in both ferromagnetic (FM and antiferromagnetic (AFM magnetic configurations, suggesting the robustness for potential application of spintronics. Moreover, the electronic structures of the Co-doped AGNRs are strongly dependent on the doping sites and the edge configurations.

  13. Electronic structure, magnetic and superconducting properties of co-doped iron-arsenide superconductors

    International Nuclear Information System (INIS)

    We present a joint experimental and theoretical study of co-doped iron-arsenide superconductors of the 122 family A1-xKxFe2-yTyAs2 (A = Ba,Sr,Eu; T = Co,Ru,Rh). In these systems, the co-doping enables the separation of different parameters - like electron count, disorder or the specific geometry of the FeAs layer - with respect to the position of the respective compounds in the general 122 phase diagram. For a series of compounds, we investigate the relevance of the different parameters for the magnetic, thermodynamic and superconducting properties. Our experimental investigations are supported by density functional electronic structure calculations applying different approximations for doping and disorder.

  14. One step synthesis of Al/N co-doped carbon nanoparticles with enhanced photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Ruan, Fengping; Lv, Ting; Liu, Yanqiang; Deng, Degang, E-mail: dengdegang@cjlu.edu.cn; Zhao, Shilong; Wang, Huanping; Xu, Shiqing, E-mail: sxucjlu@hotmail.com

    2015-02-15

    In a typical synthesis, luminescent carbon nanoparticles were synthesized via hydrothermal oxidation of glucose in deionized water. Here we reported the photoluminescence of the carbon nanoparticles greatly enhanced when reacted with Al(NO{sub 3}){sub 3} for the first time, the resulted carbon dots have appropriate spherical morphology, uniform size and good dispersion. The carbon nanoparticles can exhibit excitation-dependent photoluminescence behavior and emit bright green photoluminescence under UV excitation, which might provide a potential application for carbon dots in other extensive fields. - Highlights: • One step synthesis of Al/N co-doped carbon nanoparticles via a hydrothermal method. • The Al/N co-doped carbon dots possessed higher luminescence than the primordial one. • The cause for the enhanced photoluminescence was investigated and discussed.

  15. An all-fiber type Er3+/Yb3+ co-doped fiber laser

    Institute of Scientific and Technical Information of China (English)

    Jun Li(李军); Yubin Guo(郭玉彬); Tianshu Wang(王天枢); Yadong Sun(孙雅东); Bing Bai(白冰); Xiaobin Li(李晓滨); Guijun Hu(胡贵军)

    2003-01-01

    In this paper, a distributed Bragg reflection (DBR) type Er3+/Yb3+ co-doped fiber laser of high output power and high slope efficiency was developed. Its gain medium was a 4.45-m-long Er3+/Yb3+ co-doped fiber. When it was pumped by a 1064-nm Nd:YAG, the linewidth of output laser was measured as 0.072nm by 3 dB and 0.192 nm by 25 dB at 1552.08 nm. The maximum output power was measured as 69 mW.Its power stability was < 5%, side mode suppression ratio was 59 dB, and the output wavelength stability was ±0.01 nm. The laser had a threshold of 12 mW and a slope efficiency of 22%.

  16. Performance test of diamond-like carbon films for lubricating ITER blanket maintenance equipment under GPa-level high contact stress

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) coating was tested as a candidate solid lubricant for transmission gears of the maintenance equipment of the blanket of the ITER instead of an oil lubricant. The wear tests using the pin-on-disk method were performed on disks with SCM440 and SNCM420 as the base materials and coated with soft, layered, and hard DLCs. All cases satisfied the required allowable contact stress (2 GPa) and lifetime (104 cycles), and therefore the feasibility of the DLC coating was validated. Among the three types of DLCs, the soft DLC showed the best performance. (author)

  17. Formation of a diamond-like carbon film by magnetron sputtering of a graphite target under radiation flux from a black-body model

    Science.gov (United States)

    Kostanovskiy, A. V.; Pronkin, A. A.; Kostanovskiy, I. A.

    2014-04-01

    A method of depositing a film (under a radiation flux from a high-temperature black-body model) by magnetron sputtering of a graphite target has been implemented. The elemental composition and structure of deposited films have been analyzed by X-ray photoelectron spectroscopy and characteristic electron-energy-loss spectroscopy. The investigations have shown that chemically pure diamond-like films can be formed at a radiation-flux density no less than 1.5 × 10-4 W/m2 in the spectral range of 170-255 nm.

  18. Structural, optical and magnetic properties of pulsed laser deposited Co-doped ZnO films

    International Nuclear Information System (INIS)

    Zn1−xCoxO films with different Co concentrations (with x=0.00, 0.10, 0.15, and 0.30) were grown by pulsed laser deposition (PLD) technique. The structural and optical properties of the films were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and photoluminescence (PL). The magnetic properties were measured by conventional magnetometry using a SQUID and simulated by ab-initio calculations using Korring–Khon–Rostoker (KKR) method combined with coherent potential approximation (CPA). The effect of Co-doping on the GIXRD and Raman peaks positions, shape and intensity is discussed. PL studies demonstrate that Co-doping induces a decrease of the bandgap energy and quenching of the UV emission. They also suggest the presence of Zn interstitials when x≥0.15. The 10% Co-doped ZnO film shows ferromagnetism at 390 K with a spontaneous magnetic moment ≈4×10−5 emu and coercive field ≈0.17 kOe. The origin of ferromagnetism is explained based on the calculations using KKR method. - Highlights: • Zn1−xCoxO films (x=0.00, 0.10, 0.15, and 0.30) were grown by (PLD) technique. • Zn0.9Co0.1O film shows ferromagnetism above room temperature. • The origin of ferromagnetism behavior is attributed to the p-d hybridization. • Co-doping induces a decrease of the bandgap energy of the films

  19. Structural, optical and magnetic properties of pulsed laser deposited Co-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Karzazi, O., E-mail: ouiame_karzazi@hotmail.fr [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); LPS, Physics Department, Faculty of Sciences, BP 1796, Fes (Morocco); Sekhar, K.C. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); El Amiri, A. [LPTA, Université Hassan II-Casablanca, Faculté des Sciences, B.P. 5366, Maârif (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université J. Fourier, BP 166, 38042 Grenoble (France); Conde, O. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa and CeFEMA, Campo Grande, 1749-016 Lisboa (Portugal); Levichev, S. [Research Institute for Chemistry, Nizhni Novgorod State University, 603950 Nizhni Novgorod (Russian Federation); Agostinho Moreira, J. [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto (Portugal); Chahboun, A. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); FST Tanger, Physics Department, BP 416, Tangier (Morocco); Almeida, A. [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto (Portugal); Gomes, M.J.M. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-12-01

    Zn{sub 1−x}Co{sub x}O films with different Co concentrations (with x=0.00, 0.10, 0.15, and 0.30) were grown by pulsed laser deposition (PLD) technique. The structural and optical properties of the films were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and photoluminescence (PL). The magnetic properties were measured by conventional magnetometry using a SQUID and simulated by ab-initio calculations using Korring–Khon–Rostoker (KKR) method combined with coherent potential approximation (CPA). The effect of Co-doping on the GIXRD and Raman peaks positions, shape and intensity is discussed. PL studies demonstrate that Co-doping induces a decrease of the bandgap energy and quenching of the UV emission. They also suggest the presence of Zn interstitials when x≥0.15. The 10% Co-doped ZnO film shows ferromagnetism at 390 K with a spontaneous magnetic moment ≈4×10{sup −5} emu and coercive field ≈0.17 kOe. The origin of ferromagnetism is explained based on the calculations using KKR method. - Highlights: • Zn{sub 1−x}Co{sub x}O films (x=0.00, 0.10, 0.15, and 0.30) were grown by (PLD) technique. • Zn{sub 0.9}Co{sub 0.1}O film shows ferromagnetism above room temperature. • The origin of ferromagnetism behavior is attributed to the p-d hybridization. • Co-doping induces a decrease of the bandgap energy of the films.

  20. Composite laser fiber with Yb, Er co-doped phosphate glass core and silica cladding

    International Nuclear Information System (INIS)

    This letter is devoted to fabrication and tests of an optical fiber with a phosphate glass core in a silica cladding. The fiber preform was made by melting Yb, Er co-doped phosphate laser glass in a high-purity silica tube. 1.54 μm laser action was demonstrated under 1.06 μm pumping into the Yb absorption band. (letter)

  1. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    International Nuclear Information System (INIS)

    We report for the first time a rapid preparation of Zn1−2xCoxNixO nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co2+ and Ni2+ into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide

  2. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Moura, Ana P. de [LIEC, Instituto de Química, Universidade Estadual Paulista, 14800-900 Araraquara, SP (Brazil); Freire, Poliana G. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Silva, Luis F. da; Longo, Elson [LIEC, Instituto de Química, Universidade Estadual Paulista, 14800-900 Araraquara, SP (Brazil); Munoz, Rodrigo A.A. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Lima, Renata C., E-mail: rclima@iqufu.ufu.br [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil)

    2015-10-15

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.

  3. Computational discovery of lanthanide doped and Co-doped Y3Al5O12 for optoelectronic applications

    International Nuclear Information System (INIS)

    We systematically elucidate the optoelectronic properties of rare-earth doped and Ce co-doped yttrium aluminum garnet (YAG) using hybrid exchange-correlation functional based density functional theory. The predicted optical transitions agree with the experimental observations for single doped Ce:YAG, Pr:YAG, and co-doped Er,Ce:YAG. We find that co-doping of Ce-doped YAG with any lanthanide except Eu and Lu lowers the transition energies; we attribute this behavior to the lanthanide-induced change in bonding environment of the dopant atoms. Furthermore, we find infrared transitions only in case of the Er, Tb, and Tm co-doped Ce:YAG and suggest Tm,Ce:YAG and Tb,Ce:YAG as possible functional materials for efficient spectral up-conversion devices

  4. Preparation and photoluminescence enhancement of Li+ and Eu3+ co-doped YPO4 hollow microspheres

    Institute of Scientific and Technical Information of China (English)

    ZHAG Lixin; JIU Hongfang; FU Yuehua; SUN Yixin; WANG Yuanzhong

    2013-01-01

    Li+ and Eu3+ co-doped YPO4 hollow microspheres were successfully synthesized by a sacrificial template method using polystyrene (PS) as template.Techniques of X-ray diffraction (XRD),scanning electron microscopy (SEM),as well as transmission electron microscopy (TEM) were employed to characterize the as-synthesized sample.Furthermore,the photoluminescence (PL)characterization of the Li+ and Eu3+ co-doped YPO4 microsphere was carried out and the effects of the doping concentration of Li+ and Eu3+ active center concentration as well as calcination temperature on the PL properties were studied in detail.The results showed that the incorporation of Li+ ions into the YPO4∶Eu3+ lattice could induce a remarkable improvement of the PL intensity.The highest emission intensity was observed with the compound of 5%Li+ and 5%Eu3+ co-doped YPO4,whose brightness was increased by a factor of more than 2.2 in comparison with that of the YPOa:5%Eu3+.

  5. Improved Methane Sensing Properties of Co-Doped SnO2 Electrospun Nanofibers

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2013-01-01

    Full Text Available Co-doped SnO2 nanofibers were successfully synthesized via electrospinning method, and Co-doped SnO2 nanospheres were also prepared with traditional hydrothermal synthesis route for comparison. The synthesized SnO2 nanostructures were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectra. Planar-type chemical gas sensors were fabricated and their sensing properties to methane were investigated in detail. Gas sensors based on these two samples demonstrate the highest CH4 sensing response at an operating temperature of 300°C. Compared with traditional SnO2 nanospheres, the nanofiber sensor shows obviously enhanced gas response, higher saturated detection concentration, and quicker response-recovery time to methane. Moreover, good stability, prominent reproducibility, and excellent selectivity are also observed based on the nanofibers. These results demonstrate the potential application of Co-doped SnO2 nanofibers for fabricating high performance methane sensors.

  6. Carbon Nitrogen Co-Doped P25: Parameter Study on Photodegradation of Reactive Red 4

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available Photocatalytic degradation rate of reactive red 4 (RR4 using carbon coated nitrogen doped TiO2 (C N co-doped TiO2 in photocatalysis process is main goal on this research. The main operating the parameters such as effect of initial dye concentration, catalyst loading, aeration flow rate and initial pH on degradation of RR4 under 45 W fluorescent lamp was investigated. photocatalytic activity of RR4 dye decreased with increasing RR4 dye concentration. The optimum loading is around 0.04 g and optimum aeration rate is about 25 mL min-1 of C N co-doped TiO2. Effect of pH was conducted based on the optimum loading and conclude that the photocatalytic degradation of RR4 became faster at pH 2 - 7. For the future work, the modification of doping with others element like non-metal or metal with C N co-doped TiO2 can be enhanced toward the higher efficieny of photodegradation under visible light. Moreover, the immobilized technique can be used in future to overcome the difficulty of filtration on suspension.

  7. Photoluminescence properties of ZnS nanoparticles co-doped with Pb 2+ and Cu 2+

    Science.gov (United States)

    Yang, Ping; Lü, Mengkai; Xü, Dong; Yuan, Duolong; Zhou, Guangjun

    2001-03-01

    Nanometer-scale ZnS, ZnS:Cu, ZnS:Pb, and ZnS co-doped with Cu 2+ and Pb 2+ have been synthesized using a chemical precipitation method. X-ray diffraction analysis shows that the diameter of the particles is 2-4 nm. These nanocrystals can be doped with copper and lead during the synthesis without altering the X-ray diffraction pattern. However, doping has shifted the luminescence to 530 nm (Cu 2+-doped) and 500-550 nm (co-doped with Cu 2+ and Pb 2+). In the case of ZnS:Pb nanocrystals, a relatively broad emission band (color range from blue to yellow) has been observed and its excitation wavelength shows a red shift. The photoluminescence intensity increases as the ZnS nanoparticles co-doped with Pb 2+ and Cu 2+. The results strongly suggest that doped ZnS nanocrystals, especially two kinds of metals activated ZnS nanocrystals, form a new class of luminescent materials.

  8. Electronic and magnetic properties of Co-doped ZnO diluted magnetic semiconductor

    International Nuclear Information System (INIS)

    The effect of low level Co doping (5%) on polycrystalline ZnO samples has been investigated to correlate the observed changes in their magnetic state vis a vis changes in their electronic properties. Rietveld refinement of the XRD patterns confirms single phase crystallization of the samples in the wurtzite type lattice, with no evidence of any secondary phases. The as-synthesized Co-doped sample shows a paramagnetic (PM) state, however, when hydrogenated for ∼6 h, it shows a strong ferromagnetic (FM) ordering. The magnetic moment suppressed significantly when hydrogen ions were evaporated by heating and the sample turned completely paramagnetic upon long heating in air. The Co 2p X-ray photoelectron spectroscopy (XPS) results show that the substituted Co ions are in 2+ oxidation state that incorporate at Zn2+ sites and no evidence of metallic Co is observed upon hydrogenation. The XRD refinement results and the O 1s XPS results show clear evidence of oxygen depletion upon hydrogenation, followed by a complete regain upon their long heating in air. A plausible explanation for the observed room temperature ferromagnetism (RTFM) is presented in terms of oxygen vacancies, in the framework of bound magnetic polarons model. Our results evidence that the FM ordering can be switched between 'on' and 'off' by introducing (upon hydrogenation) or removing (by re-heating), respectively, the oxygen vacancies in the Co-doped ZnO matrix.

  9. Investigation on Er3+/Ho3+ co-doped silicate glass for ~2 µm fiber lasers

    International Nuclear Information System (INIS)

    A stable Er3+/Ho3+ co-doped lead silicate glass is developed. Luminescent properties are recorded under pumping with 808 and 1550 nm lasers. Energy-transfer mechanism and efficiency are analyzed. Energy-transfer efficiency from Er3+:4I13/2 to Ho3+:5I7 reaches 93.8% at 3 mol% Ho2O3 doping concentration. Strong luminescence is detected when pumped at 1550 nm because of efficient energy transfer from Er3+:4I13/2 to Ho3+:5I7. Peak gain coefficient at 2056 nm is detected as 1.62 cm−1. The excellent luminescent property and high stability indicate that Er3+/Ho3+ co-doped lead silicate glass can be applied in 2 µm fiber lasers. - Highlights: • Er3+/Ho3+ co-doped silicate glasses with high stability are prepared. • Strong luminescence is detected under pump of 1550 nm lasers owing to efficient energy transfer from Er3+ to Ho3+. • Transfer efficiency is calculated to be 93.8% when Ho2O3 doping concentration is up to 3 mol%. • Gain coefficient peaks at 2056 nm to be 1.62 cm−1

  10. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Harish, G.S.; Sreedhara Reddy, P., E-mail: psreddy4@gmail.com

    2015-09-15

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2–3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm{sup −1}) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  11. Growth of Co-doped (Ba,Sr)TiO 3 single crystals and their characterization

    Science.gov (United States)

    Madeswaran, S.; Giridharan, N. V.; Jayavel, R.; Subramanian, C.

    2002-04-01

    Single crystals of Co-doped B 1- xSr xTiO 3 (Co:BST) have been grown by high-temperature solution growth technique. The dopant has significant effect on the growth parameters and considerably reduced the twin formation in the grown crystal. Bulk single crystals of dimensions 5×5×4 mm 3 have been grown with optimized growth parameters. Layer growth and vein-like structure patterns, indicative of 2D nucleation mechanism, have been observed on the grown crystals. The presence of dopant in the grown crystals was confirmed by EDX analysis. For lower doping concentration (0.1 mol%), the crystal possesses tetragonal structure and changes to cubic for higher dopant level (1 and 5 mol%) Co doping in BST increases the dielectric constant values and decreases the Curie temperature ( Tc). The spontaneous polarization ( Ps) value for 0.1 mol% of Co-doped BST crystal is measured to be 22 μc/cm 2 and the value decreases with increasing Co concentration.

  12. Study of new states in visible light active W, N co-doped TiO{sub 2} photo catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sajjad, Ahmed Khan Leghari [Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Shamaila, Sajjad, E-mail: shalisajjad@yahoo.com [Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Zhang, Jinlong [Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2012-11-15

    Highlights: ► Visible light efficient W, N co-doped TiO{sub 2} photo catalysts are prepared by sol–gel. ► Oxygen vacancies are detected in the form of new linkages as N-Ti-O, N-W-O, Ti-O-N and W-O-N. ► W, N co-doped titania has new energy states which narrows the band gap effectively. ► Oxygen vacancies are proved to be the cause for high photo catalytic activity. ► W and N co-doping plays the major role to make the composite thermally stable. -- Abstract: The visible light efficient W, N co-doped TiO{sub 2} photo catalysts are prepared by sol–gel method. New linkages of N, W and O are formed as N-Ti-O, N-W-O, Ti-O-N and W-O-N. Electron paramagnetic resonance illustrates the presence of oxygen vacancies in W, N co-doped TiO{sub 2} acting as trapping agencies for electrons to produce active species. X-ray photoelectron spectroscopy confirms the presence of new energy states. New linkages and oxygen vacancies are proved to be the main cause for the improved photo catalytic performances. W, N co-doped TiO{sub 2} has new energy states which narrow the band gap effectively. W, N co-doped TiO{sub 2} is thermally stable and retains its anatase phase up to 900 °C. 4.5% W, N co-doped TiO{sub 2} showed superior activity for the degradation of Rhodamine B and 2,4-dichlorophenol as compared to pure titania, Degussa P-25, traditional N-doped TiO{sub 2} and pure WO{sub 3}.

  13. Study of new states in visible light active W, N co-doped TiO2 photo catalyst

    International Nuclear Information System (INIS)

    Highlights: ► Visible light efficient W, N co-doped TiO2 photo catalysts are prepared by sol–gel. ► Oxygen vacancies are detected in the form of new linkages as N-Ti-O, N-W-O, Ti-O-N and W-O-N. ► W, N co-doped titania has new energy states which narrows the band gap effectively. ► Oxygen vacancies are proved to be the cause for high photo catalytic activity. ► W and N co-doping plays the major role to make the composite thermally stable. -- Abstract: The visible light efficient W, N co-doped TiO2 photo catalysts are prepared by sol–gel method. New linkages of N, W and O are formed as N-Ti-O, N-W-O, Ti-O-N and W-O-N. Electron paramagnetic resonance illustrates the presence of oxygen vacancies in W, N co-doped TiO2 acting as trapping agencies for electrons to produce active species. X-ray photoelectron spectroscopy confirms the presence of new energy states. New linkages and oxygen vacancies are proved to be the main cause for the improved photo catalytic performances. W, N co-doped TiO2 has new energy states which narrow the band gap effectively. W, N co-doped TiO2 is thermally stable and retains its anatase phase up to 900 °C. 4.5% W, N co-doped TiO2 showed superior activity for the degradation of Rhodamine B and 2,4-dichlorophenol as compared to pure titania, Degussa P-25, traditional N-doped TiO2 and pure WO3.

  14. Photocatalytic Degradation of Dicofol and Pyrethrum with Boric and Cerous Co-doped TiO2 under Light Irradiation

    Institute of Scientific and Technical Information of China (English)

    GONG Lifen; ZOU Jing; ZENG Jinbin; CHEN Wenfeng; CHEN Xi; WANG Xiaoru

    2009-01-01

    Boric and cerous co-doped nano titanium dioxide (B/Ce co-doped TiO2) was synthesized using a sol-gel tech-nique, which involved the hydrolyzation of tetrabutyl titanate with the addition of boric acid and cerous nitrate. The B/Ce co-doped TiO2 was employed for the photocatalytic degradation of dicofol, cyfluthrin and fenvalerate under light irradiation. XRD, TEM, Fr-IR and UV-Vis DRS methods were used to characterize the crystalline structure. Experimental results showed that only the anatase signal phase was found for B/Ce co-doped TiO2, but multiplicate phases, including anatase, rutile and less brookite phases, were identified both in the pure TiO2 nanoparticles and Ce-doped TiO2 nanoparticles. The band gap value of B/Ce co-doped nano TiO2 was narrower than that of undoped nano TiO2. Compared to undoped TiO2, a stronger absorption in the range of 420 to 850 nm was found for B/Ce co-doped nano TiO2, which presented a higher photocatalytic activity in the degradation of dicofol, cyfluthrin and fenvalerate than both Ce doped nano TiO2 and pure nano TiO2 under the same light irradiation.

  15. Structure and properties of Mo-containing diamond-like carbon films produced by ion source assisted cathodic arc ion-plating

    International Nuclear Information System (INIS)

    Ion source assisted cathodic arc ion-plating was used to synthesize molybdenum containing diamond-like carbon films. The element of molybdenum is uniformly distributed in our sample as analyzed by Rutherford backscattering spectroscopy. The surface morphology of the films was analyzed by scanning electron microscope and atomic force microscope. The structure and bond state of the molybdenum containing diamond-like carbon films were characterized by X-ray diffraction, high resolution transmission electron microscopy, Raman spectra, and X-ray photoelectron spectroscopy. The Mo content in the films was controlled by varying of the acetylene gas flow rates. The root-mean square roughness of the as-deposited sample was found in the range of 1.5 nm. The hardness of 35 GPa has been achieved at the optimum conditions of synthesis. This can be attributed to formation multilayer structure during deposition process and the formation of hard molybdenum carbide phase with C=Mo bonding. The results show that ion source assisted cathodic arc ion-plating is an effective technique to fabricate metal-containing carbon films with controlled metal contents.

  16. Preparation of Ag-containing diamond-like carbon films on the interior surface of tubes by a combined method of plasma source ion implantation and DC sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hatada, R., E-mail: hatada@ca.tu-darmstadt.de [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Flege, S.; Bobrich, A.; Ensinger, W.; Dietz, C. [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Baba, K. [Industrial Technology Center of Nagasaki, Applied Technology Division, Omura, Nagasaki 856-0026 (Japan); Sawase, T.; Watamoto, T. [Nagasaki University, Department of Applied Prosthodontics, Nagasaki 852-8523 (Japan); Matsutani, T. [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Kinki University, Department of Electric and Electronic Engineering, Higashi-osaka 577-2332 (Japan)

    2014-08-15

    Highlights: • Deposition of Ag-containing diamond-like carbon films inside of tubes. • Combination of plasma source ion implantation and DC sputtering. • Antibacterial effect against S. aureus bacteria. - Abstract: Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C{sub 2}H{sub 4} plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C{sub 2}H{sub 4} was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria.

  17. Corrosion resistance of amorphous hydrogenated SiC and diamond-like coatings deposited by r.f.-plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    This paper reports on the properties and corrosion resistance of amorphous hydrogenated carbon and amorphous hydrogenated SiC films deposited by r.f.-plasma-enhanced chemical vapour deposition at low temperatures (below 200 C). SiC coatings were prepared from SiH4-CH4 gas mixtures. Hydrogenated diamond-like coatings were deposited from classical CH4-H2 mixtures. The influence of various deposition parameters was investigated. Microstructural and mechanical properties of the films were studied (density, hydrogen content, nanohardness, internal stress, critical load and friction coefficient). Two examples of corrosion resistance are given: (1) the corrosion resistance and biocompatibility of SiC and diamond-like coatings deposited on metal implants (Ti alloy) (the corrosion resistance is evaluated through potentiodynamic polarization tests in biological media; the biocompatibility of coated and uncoated metals is compared using differentiated human cell cultures); and (2) the corrosion resistance of SiC-coated magnesium in chloride-containing boric borate buffer at pH = 9.3 evaluated from anodic polarization curves and scanning electron microscopy studies. (orig.)

  18. Preparation of Ag-containing diamond-like carbon films on the interior surface of tubes by a combined method of plasma source ion implantation and DC sputtering

    International Nuclear Information System (INIS)

    Highlights: • Deposition of Ag-containing diamond-like carbon films inside of tubes. • Combination of plasma source ion implantation and DC sputtering. • Antibacterial effect against S. aureus bacteria. - Abstract: Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C2H4 plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C2H4 was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria

  19. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    International Nuclear Information System (INIS)

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m2 for pure carbon film to 2.48 mJ/m2 for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness

  20. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  1. Highly Active and Durable Co-Doped Pt/CCC Cathode Catalyst for Polymer Electrolyte Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Highlights: •Co-doped Pt core–shell type catalyst having 0.75 nm thick Pt shell is synthesized. •Co-doped Pt exhibited mass activity of 0.44 A mgPt−1 at 0.9 ViR-free. •Co-doped Pt cathode catalyst showed high stability under cycling conditions. •Co-doped Pt catalyst showed only 16% power density loss after 30,000 cycles. •The enhanced stability is due to the increase in onset potential for PtO2 formation. -- Abstract: Cathode catalyst based on Co-doped Pt deposited on carbon composite catalyst (CCC) support with high measured activity and stability under potential cycling conditions for polymer electrolyte membrane (PEM) fuel cells was developed in this study. The catalyst was synthesized through platinum deposition on Co-doped CCC support containing pyridinic-nitrogen active sites followed by controlled heat-treatment. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) studies confirmed uniform Pt deposition (Pt/CCC catalyst, dPt = 2 nm) and formation of Co-doped Pt/CCC catalyst (dPt = 5.4 nm) respectively. X-ray energy dispersive spectrometry (XEDS) line-scan studies showed the formation of Co-core Pt-shell type catalyst with a Pt-shell thickness of ∼0.75 nm. At 0.9 ViR-free, the Co-doped Pt/CCC catalyst showed initial mass activity of 0.44 A mgPt−1 and 0.25 A mgPt−1 after 30,000 potential cycles between 0.6 and 1.0 V corresponding to an overall measured activity loss of 42.8%. The commercial Pt-Co/C showed initial mass activity of 0.38 A mgPt−1 and ∼70% loss of activity after 30,000 cycles. The enhanced catalytic activity at high potentials and stability of mass activity for the Co-doped Pt/CCC catalyst are attributed to the formation of compressive Pt lattice catalyst due to Co doping. The Co-doped Pt/CCC showed stable open circuit potential close to 1.0 V under H2-air with an initial power density of 857 mW cm−2 and only 16% loss after 30,000 cycles. Catalyst durability studies performed between 0

  2. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids

    International Nuclear Information System (INIS)

    Graphical abstract: N, S co-doped CDs with orange luminescence were synthesized through one-pot polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. - Highlights: • N, S co-doped CDs were synthesized by one-pot carbonization reactions, using two different amino acids as raw materials. • The as-obtained N, S co-doped CDs showed unique orange fluorescence under excitation at room temperature. • The products could be applied in the imaging of peritoneal macrophages of mice without any functionalization. - Abstract: For practical application, it is highly desirable to obtain carbon dots (CDs) through environmentally benign synthetic route, using green raw materials. On the other hand, at present, most of CDs reported in the literature showed blue, green and yellow emission. Therefore it is still necessary to develop new strategy to obtain CDs with longer wavelength emission in order to expand their application range. Toward this end, in this study, N, S co-doped CDs were synthesized through one-pot condensation polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. Taking the reaction of L-serine with L-cystine as an example, the as-obtained products were characterized by various techniques such as transmission electron microscopy, elemental analysis, Fourier-transform infrared spectrum, X-ray photoelectron spectra, and so on. Interestingly, N, S co-doped CDs displayed unique orange emission at room temperature. The possible photoluminescence mechanism of N, S co-doped CDs was proposed. Furthermore, the as-synthesized N, S co-doped CDs were directly applied in the imaging of peritoneal macrophages of mice

  3. A comparative investigation on structure and multiferroic properties of bismuth ferrite thin films by multielement co-doping

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guohua; Tan, Guoqiang, E-mail: tan3114@163.com; Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun

    2014-12-15

    Highlights: • Multielement (Tb, Cr and Mn) co-doped BiFeO{sub 3} films were fabricated by CSD method. • Multielement co-doping induces a structural transition. • It is found effective to stabilize the valence of Fe ions at +3 by the strategy. • The co-doping at A/B-sites gives rise to the superior multiferroic properties. - Abstract: (Tb, Cr and Mn) multielement co-doped BiFeO{sub 3} (BTFCMO) thin films were prepared by the chemical solution deposition method on fluorine doped tin oxide (FTO) substrates. X-ray diffraction, Rietveld refinement and Raman analyses revealed that a phase transition from rhombohedral to triclinic structure occurs in the multielement co-doped BiFeO{sub 3} films. It is found that the doping is conducive to stabilizing the valence of Fe ions and reducing leakage current. In addition, the highly enhanced ferroelectric properties with a huge remanent polarization (2P{sub r}) of 239.6 μC/cm{sup 2} and a low coercive field (2E{sub c}) of 615.6 kV/cm are ascribed to the well film texture, the structure transition and the reduced leakage current by the co-doping. Moreover, the structure transition is the dominant factor resulting in the significant enhancement observed in magnetization (M{sub s} ∼ 10.5 emu/cm{sup 3}), owing to the collapse of the space-modulated spin structure. In this contribution, these results demonstrate that the multielement co-doping is in favor of the enhanced multiferroic properties of the BFO films for possible multifunctional applications.

  4. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ya-Wen [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Ma, De-Kun, E-mail: dkma@wzu.edu.cn [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Wang, Wei; Chen, Jing-Jing; Zhou, Lin; Zheng, Yi-Zhou [Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 (China); Yu, Kang, E-mail: yukang62@126.com [Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 (China); Huang, Shao-Ming, E-mail: smhuang@wzu.edu.cn [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China)

    2015-07-01

    Graphical abstract: N, S co-doped CDs with orange luminescence were synthesized through one-pot polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. - Highlights: • N, S co-doped CDs were synthesized by one-pot carbonization reactions, using two different amino acids as raw materials. • The as-obtained N, S co-doped CDs showed unique orange fluorescence under excitation at room temperature. • The products could be applied in the imaging of peritoneal macrophages of mice without any functionalization. - Abstract: For practical application, it is highly desirable to obtain carbon dots (CDs) through environmentally benign synthetic route, using green raw materials. On the other hand, at present, most of CDs reported in the literature showed blue, green and yellow emission. Therefore it is still necessary to develop new strategy to obtain CDs with longer wavelength emission in order to expand their application range. Toward this end, in this study, N, S co-doped CDs were synthesized through one-pot condensation polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. Taking the reaction of L-serine with L-cystine as an example, the as-obtained products were characterized by various techniques such as transmission electron microscopy, elemental analysis, Fourier-transform infrared spectrum, X-ray photoelectron spectra, and so on. Interestingly, N, S co-doped CDs displayed unique orange emission at room temperature. The possible photoluminescence mechanism of N, S co-doped CDs was proposed. Furthermore, the as-synthesized N, S co-doped CDs were directly applied in the imaging of peritoneal macrophages of mice.

  5. Characterization of Bi and Fe co-doped PZT capacitors for FeRAM

    Directory of Open Access Journals (Sweden)

    Jeffrey S Cross, Seung-Hyun Kim, Satoshi Wada and Abhijit Chatterjee

    2010-01-01

    Full Text Available Ferroelectric random access memory (FeRAM has been in mass production for over 15 years. Higher polarization ferroelectric materials are needed for future devices which can operate above about 100 °C. With this goal in mind, co-doping of thin Pb(Zr40,Ti60O3 (PZT films with 1 at.% Bi and 1 at.% Fe was examined in order to enhance the ferroelectric properties as well as characterize the doped material. The XRD patterns of PZT-5% BiFeO3 (BF and PZT 140-nm thick films showed (111 orientation on (111 platinized Si wafers and a 30 °C increase in the tetragonal to cubic phase transition temperature, often called the Curie temperature, from 350 to 380 °C with co-doping, indicating that Bi and Fe are substituting into the PZT lattice. Raman spectra revealed decreased band intensity with Bi and Fe co-doping of PZT compared to PZT. Polarization hysteresis loops show similar values of remanent polarization, but square-shaped voltage pulse-measured net polarization values of PZT-BF were higher and showed higher endurance to repeated cycling up to 1010 cycles. It is proposed that Bi and Fe are both in the +3 oxidation state and substituting into the perovskite A and B sites, respectively. Substitution of Bi and Fe into the PZT lattice likely creates defect dipoles, which increase the net polarization when measured by the short voltage pulse positive-up-negative-down (PUND method.

  6. Energy storage and heat deposition in Cr,Yb,Er co-doped phosphate glass

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Shunguang Li; Lei Wen; Yongchun Xu; Lili Hu; Biao Wang; Wei Chen

    2006-01-01

    Energy storage and heat deposition in Cr,Yb,Er co-doped phosphate glass were reported. A model based on rate equations was used to determine the energy storage from the free-oscillating output energy characteristics. The heat deposition was calculated by measuring the temperature rise of the glass rod. The results provided important information for the glass operating in Q-switched mode, and also for calculating the temperature profiles and cooling requirements of the glass under single shot and repetitive pulsed conditions.

  7. Luminescence studies of rare-earth doped and Co-doped hydroxyapatite

    Science.gov (United States)

    Vasugi, G.; Thamizhavel, A.; Girija, E. K.

    2012-06-01

    Rare-earth doped and co-doped hydroxyapatite (Eu: HA, Eu-Y: HA) were prepared by wet precipitation method by using CTAB as the organic modifier. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Photoluminescence spectra (PL). Upon excitation at 350 nm the samples Eu: HA and Eu-Y: HA shows the emission band in the visible region, which makes it suitable for potential application such as bio-imaging.

  8. Co-doping with antimony to control phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.

    2013-02-15

    In germanium, phosphorous and antimony diffuse quickly and as such their transport must be controlled in order to design efficient n-typed doped regions. Here, density functional theory based calculations are used to predict the influence of double donor co-doping on the migration activation energies of vacancy-mediated diffusion processes. The migration energy barriers for phosphorous and antimony were found to be increased significantly when larger clusters involving two donor atoms and a vacancy were formed. These clusters are energetically stable and can lead to the formation of even larger clusters involving a number of donor atoms around a vacancy, thereby affecting the properties of devices.

  9. Highly piezoelectric co-doped AlN thin films for wideband FBAR applications.

    Science.gov (United States)

    Yokoyama, Tsuyoshi; Iwazaki, Yoshiki; Onda, Yosuke; Nishihara, Tokihiro; Sasajima, Yuichi; Ueda, Masanori

    2015-06-01

    We report piezoelectric materials composed of charge-compensated co-doped (Mg, β)(x)Al(1-x)N (β = Zr or Hf) thin films. The effect of the dopant element into AlN on the crystal structure, and piezoelectric properties of co-doped AlN was determined on the basis of a first-principles calculation, and the theoretical piezoelectric properties were confirmed by experimentally depositing thin films of magnesium (Mg) and zirconium (Zr) co-doped AlN (Mg-Zr-doped AlN). The Mg-Zrdoped AlN thin films were prepared on Si (100) substrates by using a triple-radio-frequency magnetron reactive co-sputtering system. The crystal structures and piezoelectric coefficients (d33) were investigated as a function of the concentrations, which were measured by X-ray diffraction and a piezometer. The results show that the d33 of Mg-Zr-doped AlN at total Mg and Zr concentrations (both expressed as β) of 0.35 was 280% larger than that of pure AlN. The experimentally measured parameter of the crystal structure and d33 of Mg-Zr-doped AlN (plotted as functions of total Mg and Zr concentrations) were in very close agreement with the corresponding values obtained by the first-principle calculations. Thin film bulk acoustic wave resonators (FBAR) employing (Mg,Zr)0.13Al0.87N and (Mg, Hf)0.13 Al0.87N as a piezoelectric thin film were fabricated, and their resonant characteristics were evaluated. The measured electromechanical coupling coefficient increased from 7.1% for pure AlN to 8.5% for Mg-Zr-doped AlN and 10.0% for Mg- Hf-doped AlN. These results indicate that co-doped (Mg, β)(x)Al(1-x)N (β = Zr or Hf) films have potential as piezoelectric thin films for wideband RF applications. PMID:26067035

  10. Nuclear Magnetic Resonance Studies of Rare Earth co-doped Lanthanum Cuprates

    OpenAIRE

    Grafe, Hans-Joachim

    2005-01-01

    The work described in this thesis uses oxygen NMR to probe the electronic system of rare earth co-doped La_{2-x}Sr_xCuO_4, the prototypical high temperature superconducting cuprate (HTSC). Oxygen NMR turns out to be a powerful tool for this purpose. The nucleus is located directly inside the CuO_2 planes. It has a spin of 5/2 and a quadrupole moment and therefore can probe both, interactions with the magnetic hyperfine field as well as interactions through the electric field gradient of the c...

  11. Short-Cavity Er/Yb-P/Al/Si Co-doped Fibre Grating Laser

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; KAI Gui-Yun; FENG De-Jun; LIU Yun-Qi; DING Lei; YUAN Shu-Zhong; DONG Xiao-Yi

    2001-01-01

    A short-cavity Er/Yb-P/AI/Si co-doped fibre grating laser is demonstrated, with a pair of fibre Bragg gratings whose central resonant wavelengths are around 1551 nm and the reflectivities are 10.5 and 15dB. The threshold value is about 48mW and the slope efficiency is 1.1%. The signal-to-noise ratio is 59dB, and the output central wavelength is 1550.94 nm. A peak power of 1.112mW at a pump power of 80mW has been achieved.

  12. Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF{sub 6} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Kentaro, E-mail: ken-fukuda@tokuyama.co.jp [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196 (Japan)

    2015-06-01

    Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF{sub 6} crystal. Eu doped and Eu, Y co-doped LiCaAlF{sub 6} were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded.

  13. Co-doping effects on luminescence and scintillation properties of Ce doped Lu{sub 3}Al{sub 5}O{sub 12} scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kei, E-mail: kamada@imr.tohoku.ac.jp [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); C& A Corporation, T-Biz, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Nikl, Martin [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Kurosawa, Shunsuke [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Beitlerova, Alena [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Nagura, Aya [Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Shoji, Yasuhiro [C& A Corporation, T-Biz, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Pejchal, Jan [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Ohashi, Yuji [Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Yokota, Yuui [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Yoshikawa, Akira [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); C& A Corporation, T-Biz, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan)

    2015-05-11

    The Mg, Ca, Sr and Ba 200 ppm co-doped Ce:Lu{sub 3}Al{sub 5}O{sub 12} single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of the co-doping. The scintillation decays were accelerated by both Mg and Ca co-dopants. The Mg co-doped samples showed the fastest decay and the highest light yield among the co-doped samples.

  14. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination

    International Nuclear Information System (INIS)

    A type of nitrogen and cerium co-doped titania photocatalyst, which could degrade nitrobenzene under visible light irradiation, was prepared by the sol-gel route. Titanium isopropoxide, ammonium nitrate, and cerium nitrate were used as the sources of titanium, nitrogen, and cerium, respectively. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffusive reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and N2 adsorption-desorption isotherm were employed to characterize the as-prepared photocatalyst. The degradation of nitrobenzene under visible light illumination was taken as probe reaction to evaluate the photoactivity of the co-doped photocatalyst. The commercial TiO2 photocatalyst (Degussa P25), which was thought as a high active photocatalyst, was chosen as standard photocatalyst to contrast the photoactivity of the nitrogen and cerium co-doped titania photocatalyst. The results showed that the photocatalytic performance of the nitrogen and cerium co-doped titania was related with the calcination temperature and the component. The nitrogen atoms were incorporated into the crystal of titania and could narrow the band gap energy. The doping cerium atoms existed in the forms of Ce2O3 and dispersed on the surface of TiO2. The improvement of the photocatalytic activity was ascribed to the synergistic effects of the nitrogen and cerium co-doping

  15. Visible light induced photodegradation of organic pollutants on nitrogen and fluorine co-doped TiO2 photocatalyst

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-peng; XU Jun; CAI Wei-min; ZHOU Bao-xue; HE Zheng-guang; CAI Chun-guang; HONG Xiao-ting

    2005-01-01

    The nitrogen and fluorine co-doped TiO2 polycrystalline powder was synthesized by calcinations of the hydrolysis product of tetrabutyl titanate with ammonium fluoride. Nitrogen and fluorine co-doping causes the absorption edge of TiO2 to shift to a lower energy region.The photocatalytic activity of co-doped TiO2 with anatase phases was found to be 2.4 times higher than that of the commercial TiO2photocatalyst Degussa P25 for phenol decomposition under visible light irradiation. The co-doped TiO2 powders only contain anatase phases even at 1000℃. Apparently, ammonium fluoride added retarded phase transformation of the TiO2 powders from anatase to rutile.The substitutional fluorine and interstitial nitrogen atoms in co-doped TiO2 polycrystalline powder were responsible for the vis light response and caused the absorption edge of TiO2 to shift to a lower energy region.

  16. First principles study on the spin dependent electronic behavior of Co doped ZnO structures joining the Al electrodes

    International Nuclear Information System (INIS)

    Highlights: • An atomic configuration joining the electrodes can govern spin resolved transport. • Co position and concentration in ZnO have a crucial effect on electronic behavior. • It is possible to obtain high spin polarization in Al–Co doped ZnO–Al systems. • Al–Co doped ZnO–Al device structures reveal Schottky-like contact at the interface. - Abstract: Employing first principles, Co doped ZnO systems between the Al electrodes were investigated through the Density Functional Theory combined with Non Equilibrium Green’s Function Formalism. Electronic transport properties of these systems, in the presence of spin property, were revealed using substitutional Co atoms in a supercell. Spin resolved electronic behavior was observed to be crucially governed by atomic configuration, defined by doping position and concentration, of the system joining the electrodes. Using this feature, one can manipulate both the electronic transport and magnetic properties of an Al–Co doped ZnO–Al device structure. A nonlinearity was exhibited in current–voltage characteristics for Co doped ZnO systems attached to the Al electrodes, which implies a Schottky-like contact at the interface. The induced magnetic moment and spin polarization in the system, yielding the spin dependent transport, were elucidated

  17. Influence of La3+ and Fe3+ co-doping to nano-TiO2 prepared by graded calcination

    International Nuclear Information System (INIS)

    Highlights: ► La3+ and Fe3+ co-doped TiO2 sample was prepared by a new process. ► The gelatinizing time is obviously shortened. ► The grain size of co-doped TiO2 sample is decreased. ► The photocatalytic activity of co-doped TiO2 under visible light is improved. - Abstract: The un-doping, single-doping and co-doping TiO2 nanoparticles have been prepared through the graded calcination method with Ti(OC4H9)4 as raw material and characterized by X-ray diffraction (XRD) and UV–vis reflection spectra. Their photocatalytic activities have been investigated by the photocatalytic oxidation of methyl orange. It is indicated that Fe3+-doping makes the reflection profile narrow, improves photoutilization of TiO2, and then generates more electron–hole pairs. La3+-doping restrains the increase of grain size, leads to crystal expansion plus matrix distortion and retards the recombination of the photoexcited charge carriers. The photocatalytic activity of TiO2 co-doped with La3+ and Fe3+ is notably improved due to the cooperative actions of the two dopants.

  18. Evaluation of Ce3+ and alkali metal ions Co-doped LiSrAlF6 crystalline scintillators

    International Nuclear Information System (INIS)

    High scintillation efficiency of Eu-doped LiSrAlF6 (LiSAF) and LiCaAlF6 (LiCAF) codoped with alkali metal ions has been reported in our recent studies. Thus in this paper, we demonstrated the scintillation properties of 1% Ce-doped LiSAF crystals with 1% alkali metal ions co-doping to increase the light yield and understand the scintillation mechanism. The crystals showed intense emission band corresponding to the 5d-4f transition of Ce3+, and their light yields under thermal neutron excitation were higher than that of the Ce only doped crystal. Especially, the light yield of Ce–Na co-doped crystal exceeded about two times that of Ce only doped one. -- Highlights: ► Ce-doped and alkali metal co-doped LiSAF crystals were grown by μ-PD method. ► Alkali metal co-doped crystals showed higher light yield than Ce only doped crystal. ► Decay time of alkali metal co-doped LiSAF were longer than that of Ce only doped one

  19. XPS, XRD and laser Raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Silva, William de Melo; Carneiro, Jose Rubens Goncalves, E-mail: williammelosilva@gmail.com [Pontificia Universidade Catolica de Minas Gerais (PUC-MG), Belo Horizonte (Brazil). Dept. de Engenharia Mecanica; Trava-Airoldi, Vladimir Jesus [Associate Laboratory of Sensors and Materials, National Institute for Space Research, Sao Jose dos Campos, SP (Brazil)

    2013-11-01

    Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment. (author)

  20. XPS, XRD and laser raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Directory of Open Access Journals (Sweden)

    William de Melo Silva

    2013-06-01

    Full Text Available Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment.

  1. Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations

    Science.gov (United States)

    Schwen, D.; Bringa, E.; Krauser, J.; Weidinger, A.; Trautmann, C.; Hofsäss, H.

    2012-09-01

    The formation of surface hillocks in diamond-like carbon is studied experimentally and by means of large-scale molecular dynamics simulations with 5 × 106 atoms combined with a thermal spike model. The irradiation experiments with swift heavy ions cover a large electronic stopping range between ˜12 and 72 keV/nm. Both experiments and simulations show that beyond a stopping power threshold, the hillock height increases linearly with the electronic stopping, and agree extremely well assuming an efficiency of approximately 20% in the transfer of electronic energy to the lattice. The simulations also show a transition of sp3 to sp2 bonding along the tracks with the hillocks containing almost no sp3 contribution.

  2. Hydrogen-free diamond-like carbon films prepared by microwave electron cyclotron resonance plasma-enhanced direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Hydrogen-free diamond-like carbon (DLC) films were prepared by means of microwave electron cyclotron resonance plasma enhanced direct current magnetron sputtering. To study the influence of enhanced plasma on film fabrication and properties, the structures as well as mechanical and electrical properties of these films were studied as a function of applied microwave power. Results showed that higher microwave power could induce higher plasma density and electron temperature. The hardness increased from 3.5 GPa to 13 GPa with a variation of microwave power from 0 W to 1000 W. The resistivity showed a drastic increase from 4.5 x 104 Ωcm at 0 W to 1.3 x 1010 Ωcm at 1000 W. The variation of the intensity ratio I(D)/I(G) and the position of the G-peak of the DLC films with respect to changes in microwave power were also investigated by Raman spectroscopy.

  3. Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations

    International Nuclear Information System (INIS)

    The formation of surface hillocks in diamond-like carbon is studied experimentally and by means of large-scale molecular dynamics simulations with 5 × 106 atoms combined with a thermal spike model. The irradiation experiments with swift heavy ions cover a large electronic stopping range between ∼12 and 72 keV/nm. Both experiments and simulations show that beyond a stopping power threshold, the hillock height increases linearly with the electronic stopping, and agree extremely well assuming an efficiency of approximately 20% in the transfer of electronic energy to the lattice. The simulations also show a transition of sp3 to sp2 bonding along the tracks with the hillocks containing almost no sp3 contribution.

  4. Friction reduction in powertrain and engine components by coating with diamond-like, amorphous carbon; Reibungsminderung an Antriebs- und Motorkomponenten durch Beschichtungen mit diamantaehnlichem amorphen Kohlenstoff

    Energy Technology Data Exchange (ETDEWEB)

    Schork, Willi Sebastian

    2010-07-01

    The author investigated inhowfar coatings with diamond-like amorphous carbon (ta-C) in combination with suitable lubricants may help to reduce friction in selected powertrain and engine components. The influence of the microstructure on the stresses on layers in tribological contact was investigated using simulations. By varying the parameters of the background gas in the coating plant, hydrogen-free amorphous carbon layers of different elasticities and compositions were deposited reproducibly using a pulsed arc technology. For selective analyses of damage mechanisms in high-wear conditions, a novel tribometer for increasing loads was designed and constructed, with oscillating sliding contact and dynamic load. Failure models were established for various stress-related damge mechanisms of layered systems measured by the new tribometer. Practical tests with engines with ta-C coated piston rings proved the applicability of hydrogen-free amorphous carbon in engine applications.

  5. Investigation of copper and silver nanoparticles deposited on a nitrogen-doped diamond-like carbon (N-DLC) film electrode for bio-sensing

    International Nuclear Information System (INIS)

    An electrochemical method has been employed in this work to deposit copper and silver nanoparticles onto chemical-vapor-deposited nitrogen doped hydrogen amorphous diamond-like carbon (N-DLC) film electrodes. The electrochemical behaviors of the metal-nanoparticle-modified N-DLC electrodes have been characterized in the presence of glucose and hydrogen peroxide in the electrolyte. The copper and the silver nanoparticles possess high catalytic function for the oxidation of glucose and the reduction of hydro peroxide, respectively. The well-defined reduction responses of the reduction or hydrogen peroxide give the silver-nanoparticle-modified N-DLC electrodes high potential for application in hydrogen-peroxide sensing without a label.

  6. On-chip identification and interaction analysis of gel-resolved proteins using a diamond-like carbon-coated plate.

    Science.gov (United States)

    Iwafune, Yuko; Tan, Jian-Zhong; Ino, Yoko; Okayama, Akiko; Ishigaki, Yuji; Saito, Koji; Suzuki, Nobutake; Arima, Mikiko; Oba, Mitsuyoshi; Kamei, Shuichi; Tanga, Michifumi; Okada, Takeshi; Hirano, Hisashi

    2007-06-01

    We developed a novel protein chip made of a diamond-like, carbon-coated stainless steel plate (DLC plate), the surface of which is chemically modified with N-hydroxysuccinimide ester. To produce a high-density protein chip using the DLC plate, proteins separated by SDS gel electrophoresis or two-dimensional electrophoresis were electroblotted onto the DLC plate and immobilized covalently. A high blotting efficiency (25-70%) for transferring proteins from the gels onto the DLC plates was achieved by improvement of the electrophoresis device and electroblotting techniques. With the use of the DLC plate, we developed novel techniques to identify proteins immobilized on the chip and to detect protein-protein interactions on the chip by mass spectrometric analysis. We also developed a technique to identify post-translationally modified proteins, such as glycoproteins, on the protein chip. PMID:17489622

  7. Structure and Performance of TiC-containing Diamond-like Carbon Nanocomposite Coatings Deposited by Rectangular Cathodic Arc Ion-plating

    Institute of Scientific and Technical Information of China (English)

    XIE Guosheng; YIN Zhimin; DING Hui; LI Xiaohong; YANG Bing

    2009-01-01

    TiC-containing diamond-like carbon(TiC-DLC)nanocomposite coatings were deposited by a rectangular cathodic arc ion-plating system using C_2H_2 as reacting gas.Raman spectroscopy and transmission electron microscopy analysis show that with increasing flow rate of C_2H_2,the structure of nanocomposite coatings changes from TiC nanograin-containing to graphite nanograin-containing DLC.The hardness measurements show that the hardness decreases from 28 GPa to 18 GPa with increasing C_2H_2 flow rate.The scratch test show that a high critical load(>40 N)was obtained and exhibited a good adhesion between the coating and the substrate.Wear experiment shows that the friction coefficient of TiC-DLC nanocomposite coatings decreases with increasing C_2H_2.A low friction coefficient of 0.07 was obtained at 480 sccm C_2H_2.

  8. Diamond-like-carbon nanoparticle production and agglomeration following UV multi-photon excitation of static naphthalene/helium gas mixtures

    Science.gov (United States)

    Walsh, A. J.; Tielens, A. G. G. M.; Ruth, A. A.

    2016-07-01

    We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles' spectroscopic and optical properties with those of carbonaceous materials indicate a sp3/sp2 hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ.

  9. In vitro evaluation of diamond-like carbon coatings with a Si/SiC x interlayer on surgical NiTi alloy

    Science.gov (United States)

    Liu, C. L.; Chu, Paul K.; Yang, D. Z.

    2007-04-01

    Diamond-like carbon (DLC) coatings were produced with a Si/SiCx interlayer by a hybrid plasma immersion ion implantation and deposition process to improve the adhesion between the carbon layer and surgical NiTi alloy substrate. The structure, mechanical properties, corrosion resistance and biocompatibility of the coatings were evaluated in vitro by Raman spectroscopy, pin-on-disk tests, potentiodynamic polarization tests and simulated fluid immersion tests. The DLC coatings with a Si/SiCx interlayer of a suitable thickness have better adhesion, lower friction coefficients and enhanced corrosion resistance. In the simulated body fluid tests, the coatings exhibit effective corrosion protection and good biocompatibility as indicated by PC12 cell cultures. DLC films fabricated on a Si/SiCx interlayer have high potential as protective coatings for biomedical NiTi materials.

  10. In vitro evaluation of diamond-like carbon coatings with a Si/SiC x interlayer on surgical NiTi alloy

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) coatings were produced with a Si/SiC x interlayer by a hybrid plasma immersion ion implantation and deposition process to improve the adhesion between the carbon layer and surgical NiTi alloy substrate. The structure, mechanical properties, corrosion resistance and biocompatibility of the coatings were evaluated in vitro by Raman spectroscopy, pin-on-disk tests, potentiodynamic polarization tests and simulated fluid immersion tests. The DLC coatings with a Si/SiC x interlayer of a suitable thickness have better adhesion, lower friction coefficients and enhanced corrosion resistance. In the simulated body fluid tests, the coatings exhibit effective corrosion protection and good biocompatibility as indicated by PC12 cell cultures. DLC films fabricated on a Si/SiC x interlayer have high potential as protective coatings for biomedical NiTi materials

  11. Enhanced stability of Eu in GaN nanoparticles: Effects of Si co-doping

    International Nuclear Information System (INIS)

    Ab initio calculations on Eu doped (GaN)n (n = 12, 13, and 32) nanoparticles show that Eu doping in nanoparticles is favorable compared with bulk GaN as a large fraction of atoms lie on the surface where strain can be released compared with bulk where often Eu doping is associated with a N vacancy. Co-doping of Si further facilitates Eu doping as strain from an oversized Eu atom and an undersized Si atom is compensated. These results along with low symmetry sites in nanoparticles make them attractive for developing strongly luminescent nanomaterials. The atomic and electronic structures are discussed using generalized gradient approximation (GGA) for the exchange-correlation energy as well as GGA + U formalism. In all cases of Eu (Eu + Si) doping, the magnetic moments are localized on the Eu site with a large value of 6μB (7μB). Our results suggest that co-doping can be a very useful way to achieve rare-earth doping in different hosts for optoelectronic materials

  12. Spectroscopic properties of bismuth-germanate glasses co-doped with erbium and holmium ions

    Science.gov (United States)

    Ragin, Tomasz; Kochanowicz, Marcin; Żmojda, Jacek; Dorosz, Dominik

    2014-05-01

    In the article an analysis of thermal and spectroscopic properties of heavy metal oxide glasses from the Bi2O3-Ga2O3- Na2O-Ge2O3 system doped with rare earth elements were presented. It has been focused on the elaboration of the glass composition in terms of low phonon energy, high transparency in the range of infrared region and high thermal stability (ΔT=160 °C) required in optical fiber technology. Fabricated glasses co-doped with Er3+/Ho3+ions under 980 nm laser diode excitation exhibit emission at 1.55 μm (Er3+: 4I 13/2 → 4I15/2) and 2.0 μm (Ho3+: 4I7 → 5I8). The emission at 2.0 μm results from the Er3+ → Ho3+energy transfer. Taking into account great thermal stability and good optical properties such as high transparency (up to 80%) or high refractive index (2.23), the fabricated bismuth-germanate glass co-doped with Er3+/Ho3+ is promising material for construction of active optical fibers operating in the range of mid-infrared.

  13. Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide

    International Nuclear Information System (INIS)

    The photocatalytic decomposition of perfluorooctanoic acid (PFOA) in aqueous solution using Fe and Nb co-doped TiO2 (Fe:Nb-TiO2) prepared by sol-gel method was investigated. The photocatalytic activity of Fe:Nb-TiO2 towards PFOA degradation was compared to that of pure TiO2 synthesized using the same method, and that of the commercially available TiO2 photocatalyst, Aeroxide TiO2 P25 (AO-TiO2 P25). The photocatalysts were characterized by XRD, DRS, BET-N2 adsorption isotherm, and SEM-EDX techniques and the data were correlated to the photocatalytic activity. Fe:Nb-TiO2 showed the highest activity compared to the undoped TiO2 and the commercially available TiO2. Such activity was attributable to the effects of co-doping both on the physico-chemical properties and surface interfacial charge transfer mechanisms. Perfluorocarboxylic acids (PFCAs) with shorter carbon chain length and fluoride ions were identified as photocatalytic reaction intermediates and products.

  14. Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Renan Estrellan, Carl, E-mail: estrellan.c.ac@m.titech.ac.jp [Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Salim, Chris; Hinode, Hirofumi [Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2010-07-15

    The photocatalytic decomposition of perfluorooctanoic acid (PFOA) in aqueous solution using Fe and Nb co-doped TiO{sub 2} (Fe:Nb-TiO{sub 2}) prepared by sol-gel method was investigated. The photocatalytic activity of Fe:Nb-TiO{sub 2} towards PFOA degradation was compared to that of pure TiO{sub 2} synthesized using the same method, and that of the commercially available TiO{sub 2} photocatalyst, Aeroxide TiO{sub 2} P25 (AO-TiO{sub 2} P25). The photocatalysts were characterized by XRD, DRS, BET-N{sub 2} adsorption isotherm, and SEM-EDX techniques and the data were correlated to the photocatalytic activity. Fe:Nb-TiO{sub 2} showed the highest activity compared to the undoped TiO{sub 2} and the commercially available TiO{sub 2}. Such activity was attributable to the effects of co-doping both on the physico-chemical properties and surface interfacial charge transfer mechanisms. Perfluorocarboxylic acids (PFCAs) with shorter carbon chain length and fluoride ions were identified as photocatalytic reaction intermediates and products.

  15. Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2.

    Science.gov (United States)

    Dong, Wen; Hu, Wanbiao; Berlie, Adam; Lau, Kenny; Chen, Hua; Withers, Ray L; Liu, Yun

    2015-11-18

    Stimulated by the excellent colossal permittivity (CP) behavior achieved in In+Nb co-doped rutile TiO2, in this work we investigate the CP behavior of Ga and Nb co-doped rutile TiO2, i.e., (Ga(0.5)Nb(0.5))(x)Ti(1-x)O2, where Ga(3+) is from the same group as In(3+) but with a much smaller ionic radius. Colossal permittivity of up to 10(4)-10(5) with an acceptably low dielectric loss (tan δ = 0.05-0.1) over broad frequency/temperature ranges is obtained at x = 0.5% after systematic synthesis optimizations. Systematic structural, defect, and dielectric characterizations suggest that multiple polarization mechanisms exist in this system: defect dipoles at low temperature (∼10-40 K), polaronlike electron hopping/transport at higher temperatures, and a surface barrier layer capacitor effect. Together these mechanisms contribute to the overall dielectric properties, especially apparent observed CP. We believe that this work provides comprehensive guidance for the design of new CP materials. PMID:26512874

  16. Enhanced mid-IR emission in Yb3+-Tm3+ co-doped oxyfluoride glass ceramics

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Research highlights: → Tm3+ and Yb3+ ions had been enriched in the nanocrystals of the glass ceramics. → Mid-IR luminescence intensity of the glass ceramics was enhanced. → Judd-Ofelt theory was used to calculate optical parameters. - Abstract: Tm3+-Yb3+ co-doped transparent oxyfluoride glass ceramics were prepared through thermal treatment of the as-prepared glasses. The precipitation of nanocrystals and the incorporation of Tm3+ and Yb3+ into the nanocrystals were confirmed by X-ray diffraction and absorption spectra. Based on the Judd-Ofelt theory, the J-O parameters Ωλ (λ = 2, 4, 6), spontaneous radiative transition rates, radiative lifetimes and fluorescence branching ratios of Tm3+ in both as-prepared glasses and glass ceramics were calculated. Intense mid-IR emission and upconversion luminescence in the Tm3+ and Yb3+ co-doped glass ceramics were observed under 980 nm excitation. Especially, compared with that of the as-prepared glasses, mid-IR luminescence intensity of Tm3+ in the glass ceramics was greatly enhanced. Desirable spectroscopic characteristics suggest that these oxyfluoride glass ceramics may be promising mid-IR laser active medium.

  17. Enhanced stability of Eu in GaN nanoparticles: Effects of Si co-doping

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Prabhsharan [Dr. Vijay Kumar Foundation, 1969 Sector 4, Gurgaon 122001, Haryana (India); Department of Physics, Guru Nanak Dev University, Amritsar 143005, Punjab (India); Sekhon, S. S. [Department of Physics, Guru Nanak Dev University, Amritsar 143005, Punjab (India); Department of Physics, The University of the West Indies, St. Augustine (Trinidad and Tobago); Zavada, J. M. [Department of Electrical and Computer Engineering, NYU Polytechnic School of Engineering, Brooklyn, New York 11201 (United States); Kumar, Vijay [Dr. Vijay Kumar Foundation, 1969 Sector 4, Gurgaon 122001, Haryana (India); Center for Informatics, School of Natural Sciences, Shiv Nadar University, NH91, Tehsil Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh (India)

    2015-06-14

    Ab initio calculations on Eu doped (GaN){sub n} (n = 12, 13, and 32) nanoparticles show that Eu doping in nanoparticles is favorable compared with bulk GaN as a large fraction of atoms lie on the surface where strain can be released compared with bulk where often Eu doping is associated with a N vacancy. Co-doping of Si further facilitates Eu doping as strain from an oversized Eu atom and an undersized Si atom is compensated. These results along with low symmetry sites in nanoparticles make them attractive for developing strongly luminescent nanomaterials. The atomic and electronic structures are discussed using generalized gradient approximation (GGA) for the exchange-correlation energy as well as GGA + U formalism. In all cases of Eu (Eu + Si) doping, the magnetic moments are localized on the Eu site with a large value of 6μ{sub B} (7μ{sub B}). Our results suggest that co-doping can be a very useful way to achieve rare-earth doping in different hosts for optoelectronic materials.

  18. ND laser with co-doped ion(s) pumped by visible laser diodes

    Science.gov (United States)

    Scheps, Richard

    1993-04-01

    The 1.06 microns Nd transition in a co-doped Cr,Nd:Gd3Sc2Ga3O12 (Cr,Nd:GSGG) gain element is obtained by diode pumping Cr(3+) at 670 run and produces efficient, low threshold laser operation. Although co-doped Cr,Nd:GSGG was developed for more efficient flashlamp pumping, it has the desirable property of having an extraordinarily broad absorption to allow for efficient diode pumping relative to the ND:YAG laser. The consequent broad bandwidth tolerance of the Cr,Nd:GSGG for the diode pumping radiation allows diode pumping of the 1.06 microns transition without regard to the wavelength of the visible diodes which has the potential for reducing the cost of the semiconductor pump and also demonstrates the extended versatility of these diodes which previously had been restricted to pump the Cr(3+) tunable vibronic lasers. CW and long pulse diode pumping provided pump power levels as high as 300 mW CW and 1 W pulsed. The lowest threshold power was measured at 938 micron W and the highest output power was obtained at 43 mW CW and 173 mW pulsed. The best slope efficiency obtained was 42.1%, 78% of the theoretical maximum. Loss measurements indicate a value of 0.4%/cm.

  19. Anodic Titania Nanotube Arrays Sensitized with Mn- or Co-Doped CdS Nanocrystals

    International Nuclear Information System (INIS)

    Highlights: • Mn or Co doped CdS where synthesized and deposited onto TiO2 nanotubular arrays. • Synthesis and deposition were achieved simultaneously using SILAR method. • Various characterization techniques demonstrate lattice incorporation of dopant. • Photoelectrochemical performance was analyzed using AM 1.5 irradiation. • Dopants increases depletion width of CdS and increase photoelectrochemical responses. - Abstract: The use of doped luminescent nanocrystals or quantum dots have mainly been explored for imaging applications; however, recently they have gained interest in solar energy conversion applications due to long electron lifetimes, tunable band gaps and emission by compositional control. In this study, we have examined the application of Mn or Co doped CdS nanocrystals as a sensitizing layer over titania nanotubular arrays synthesized via electrochemical anodization in photoelectrochemical applications. The doped and undoped CdS nanocrystals were simultaneously synthesized and deposited onto the titania surface by adoption of a successive ion layer adsorption-reaction (SILAR) method. Various characterization methods indicate lattice incorporation of the dopant within CdS. The addition of dopants to CdS was found to improve the photoelectrochemical performance by increasing the depletion width of the CdS nanocrystals and reducing recombination losses of charge carriers

  20. Eu and Rb co-doped LiCaAlF6 scintillators for neutron detection

    International Nuclear Information System (INIS)

    Eu and Rb co-doped LiCaAlF6 (LiCAF) single crystals with different dopant concentrations were grown by the micro-pulling-down method for neutron detection. Their transmittance spectra showed strong absorption bands at 200–220 and 290–350 nm, and under 241Am alpha-ray excitation, their radioluminescence spectra exhibited an intense emission peak at 373 nm that was attributed to the Eu2+ 5d–4f transition. These results were consistent with those for the Rb-free Eu:LiCAF. The highest light yield among the grown crystals was 36,000 ph/n, which was 20% greater than that of the Rb-free crystal. In addition, the neutron-excited scintillation decay times were 650–750 ns slower than that of the Rb-free Eu:LiCAF. -- Highlights: •Eu and Rb co-doped LiCaAlF6 crystals were grown by the micro-pulling down method. •Transmittance, photoluminescence and radioluminescence spectra were measured. •The light yields and scintillation decays were evaluated under 252Cf neutron irradiation

  1. Photoluminescence and energy transfer in cerium and terbium co-doped trisodium yttrium silicates

    International Nuclear Information System (INIS)

    Ce3+ and Tb3+ doped Na3YSi2O7 were synthesized with solid state reactions. The luminescence properties of Ce3+ and Tb3+ in Na3YSi2O7 and energy transfer (ET) from Ce3+ to Tb3+ were investigated in detail. Measurements of the luminescence lifetimes of Ce3+ and calculation of ET efficiency prove that ET from Ce3+ to Tb3+ is efficient. Optimal composition was experimentally ascertained to be 10% and 20% mol for Ce3+ and Tb3+, respectively. The integrated green emission intensity of Na3YSi2O7: 10%Ce3+, 20%Tb3+ is 93.2% of commercial green phosphor LaPO4: 10%Ce3+, 20%Tb3+. It proves that Na3YSi2O7: Ce3+, Tb3+ is a promising green phosphor for AlGaN-based ultraviolet light-emitting diodes. - Highlights: • Photoluminescence of Tb 3+ in Na3YSi2O7 obtains obvious enhancement by Ce3+ co-doping. • Efficient energy transfer from Ce3+ to Tb3+ in Na3YSi2O7 was validated. • Ce3+ and Tb 3+ co-doped Na3YSi2O7 can be a promising green phosphor

  2. GREAT MAGNETIC ENTROPY CHANGE IN La(Fe, M)13 (M=Si, Al) WITH Co DOPING

    Institute of Scientific and Technical Information of China (English)

    Hu Feng-xia; Shen Bao-gen; Sun Ji-rong; Zhang Xi-xiang

    2000-01-01

    Very large magnetic entropy change SM, which originates from a fully reversible second-order transition at Curie temperature TC, has been discovered in compounds La(Fe, Si)13, La(Fe, Al)13 and those with Co doping. The maximum change S M19 J-1-1, achieved in LaFe11.4Si1.6 at 209K upon a 5T magnetic field change, exceeds that of Gd by more than a factor of 2. The TC of the Co-doped compounds shifts to higher temperatures. SM still has a considerable large magnitude near room temperature. The phenomena of very large SM, convenience of adjustmentof TC, and also thesuperiority of low cost, strongly suggest that the compoundsLa(Fe, M)13 (M=Si, Al) with Co doping are suitable candidatesfor magnetic refrigerants at high temperatures.

  3. Effect of Mg2+ co-doping on the scintillation performance of LuAG:Ce ceramics

    International Nuclear Information System (INIS)

    Ce-doped Lu3Al5O12 optical ceramics co-doped with Mg2+ are fabricated by solid-state reaction method and further optimized by an air-annealing process. Mg2+ co-doping leads to a significant decrease of thermoluminescence intensity above room temperature and an increase of scintillation light yield (LY) value and fast component content even if the overall scintillation efficiency decreases. Scintillation LY of ∝21900 ph/MeV has been achieved with a short shaping time of 1 μs, and the ratio of LY values for 1 μs and 10 μs shaping times was as high as 79%. The acceleration of scintillation response induced by Mg2+ co-doping and the role of Ce4+ ions in the scintillation mechanism are discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Thermochromic properties of Sn, W co-doped VO2 nanostructured thin film deposited by pulsed laser deposition.

    Science.gov (United States)

    Hur, M G; Masaki, T; Yoon, D H

    2014-12-01

    Tin (Sn) and tungsten (W) co-doped vanadium dioxide (VO2) nanostructured thin films with 50-nm thickness were deposited by pulsed laser deposition (PLD) to reduce the transition temperature and improve the IR transmittance. The crystal structure of the nanostructured thin films and the presence of elements were evaluated by XRD and XPS analysis. The transition temperature (T(c)) of 1 at% Sn-1 at% W co-doped VO2 nanostructured thin film was decreased to about 22 degrees C (from 70.3 to 48.5 degrees C) compared with the undoped VO2 nanostructured thin film. The transmittance width in the IR range of the co-doped nanostructured thin film decreased from 37.5% to 27% compared with the undoped VO2 nanostructured thin film. Also, the width of hysteresis was narrowed by Sn doping. PMID:25970986

  5. Fabrication and photoelectric properties of Er3+ and Yb3+ co-doped ZnO films

    Science.gov (United States)

    Feng, Wei; Wang, Xiangfu; Meng, Lan; Yan, Xiaohong

    2016-01-01

    In this paper, the Er3+ and Yb3+ co-doped ZnO films deposited by a novel thermal decomposition method under different annealing temperature process have been reported. The effects of annealing temperature on the morphology and properties of the films are systematically studied. The resulting spectra demonstrate that the Er3+ and Yb3+ co-doped ZnO films possessed the property of up-conversion, converting IR light into visible light that can be absorbed by amorphous silicon solar cell. After all, inner photoelectric effect of the Er3+ and Yb3+ co-doped ZnO films in the amorphous as a light scattering layer are also found with an infrared 980 nm laser as excitation source.

  6. The effect of K-na co-doping on the formation and particle size of Bi-2212 phase

    Science.gov (United States)

    Kır, M. Ebru; Özkurt, Berdan; Aytekin, M. Ersin

    2016-06-01

    Superconducting K-Na co-doped Bi2Sr2KxCa1Cu1.75Na0.25Oy (x=0, 0.05, 0.1 and 0.25) ceramics are prepared by a solid-state reaction method. It is clearly determined from XRD data that the characteristic peaks of Bi-2212 phase are observed in all samples. The resistivity measurements show that Tc (onset) values is gradually increasing as K content is increased. It is also found that K-Na co-doping influence the grain sizes for Bi-2212 phase significantly. The critical current densities as a function of magnetic field have been calculated from M-H hysteresis loops of samples according to Bean's critical model, indicating that K-Na co-doping cause higher Jc values than the pure ones.

  7. Spontaneous Boron-doping of Graphene at Room Temperature

    Science.gov (United States)

    Pan, Lida; Que, Yande; Du, Shixuan; Gao, Hongjun; Pantelides, Sokrates T.

    2015-03-01

    Doping graphene with boron or nitrogen is an effective way to modify its electronic properties. However, the reaction barrier for introducing these impurities is quite high, making the doping process difficult. In this work, we propose a low-energy reaction route derived from first-principles calculations and subsequently validated by experiments. The calculations show that, when graphene is placed on a ruthenium substrate and exposed to atomic boron, boron atoms can incorporate substitutionally into the graphene sheet with an energy barrier about 0.1 eV, displacing carbon atoms below the graphene sheet where they migrates away. This result suggests that spontaneous doping by boron can take place at room temperature. Following the prediction, we grew high-quality graphene on the Ru(0001) surface and then expose it to B2H6 which decomposes into atomic boron. XPS and STM results indicate that boron dopes graphene substantially without disturbing the graphene lattice, confirming the theoretical predictions. Doping by nitrogen and co-doping by B and N will also be discussed.

  8. Novel band gap-tunable K–Na co-doped graphitic carbon nitride prepared by molten salt method

    International Nuclear Information System (INIS)

    Graphical abstract: K and Na ions co-doped into g-C3N4 crystal lattice can tune the position of CB and VB potentials, influence the structural and optical properties, and thus improve the photocatalytic degradation and mineralization ability. - Highlights: • K, Na co-doped g-C3N4 was prepared in KCl/NaCl molten salt system. • The structural and optical properties of g-C3N4 were greatly influenced by co-doping. • The position of VB and CB can be tuned by controlling the weight ratio of eutectic salts to melamine. • Co-doped g-C3N4 showed outstanding photodegradation ability, mineralization ability, and catalytic stability. - Abstract: Novel band gap-tunable K–Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N2 adsorption, Scanning electron microscope (SEM), UV–vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from −1.09 and +1.55 eV to −0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K–Na co-doping

  9. Novel band gap-tunable K–Na co-doped graphitic carbon nitride prepared by molten salt method

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiannan [Institute of Eco-environmental Sciences, Liaoning Shihua University, Fushun 113001 (China); School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun 113001 (China); Ma, Lin [School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001 (China); Wang, Haoying; Zhao, Yanfeng [School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun 113001 (China); Zhang, Jian [School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001 (China); Hu, Shaozheng, E-mail: hushaozhenglnpu@163.com [Institute of Eco-environmental Sciences, Liaoning Shihua University, Fushun 113001 (China)

    2015-03-30

    Graphical abstract: K and Na ions co-doped into g-C{sub 3}N{sub 4} crystal lattice can tune the position of CB and VB potentials, influence the structural and optical properties, and thus improve the photocatalytic degradation and mineralization ability. - Highlights: • K, Na co-doped g-C{sub 3}N{sub 4} was prepared in KCl/NaCl molten salt system. • The structural and optical properties of g-C{sub 3}N{sub 4} were greatly influenced by co-doping. • The position of VB and CB can be tuned by controlling the weight ratio of eutectic salts to melamine. • Co-doped g-C{sub 3}N{sub 4} showed outstanding photodegradation ability, mineralization ability, and catalytic stability. - Abstract: Novel band gap-tunable K–Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N{sub 2} adsorption, Scanning electron microscope (SEM), UV–vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from −1.09 and +1.55 eV to −0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K–Na co-doping.

  10. Magnetic and Mössbauer studies of Fe and Co co-doped SnO2

    International Nuclear Information System (INIS)

    1–5% Fe and 1% Co co-doped SnO2 samples were synthesized by sol-gel method. Their magnetization increased with increasing crystal size of rutile SnO2. Their Mössbauer spectra contain a broad sextet, magnetic relaxation components, and paramagnetic doublet peaks for less than 3% Fe doping. The sextet of α-Fe2O3 was observed instead of magnetic relaxation peaks for Fe doping of above 4%. The broad sextet and relaxation components may be related to the magnetic properties of Fe and Co co-doped SnO2.

  11. Pr and Cr co-doped BiFeO3 nanotubes: an advance multiferroic oxide material

    OpenAIRE

    Mandal Kalyan; Gopal Khan Gobinda; Das Rajasree

    2013-01-01

    Arrays of single phase pure and Pr-Cr co-doped BiFeO3 (BFO) nanotubes (NTs) with compositions BiFeO3 and Bi0.9Pr0.1Fe0.9Cr0.1O3 have been synthesized using Anodic Aluminium Oxide (AAO) template (pore diameter ~250 nm) by wet chemical liquid phase deposition technique. All the NTs show ferromagnetic nature at room temperature (RT). Better magnetic properties are observed in the co-doped BFO NTs with the value of saturation magnetization (MS) ~49 memu/g, magnetization at the remanence (MR) ~12 ...

  12. Structural, Optical, and Magnetic Properties of Co Doped CdTe Alloy Powders Prepared by Solid-State Reaction Method

    Directory of Open Access Journals (Sweden)

    M. Rigana Begam

    2013-01-01

    Full Text Available Co doped CdTe powder samples were prepared by solid-state reaction method. In the present work effect of Co doping on structural, optical, and magnetic properties has been studied. X-ray diffraction studies confirm zinc blend structure for all the samples. The lattice parameter showed linear increase with the increase in Co content. The elemental constituents were characterized by EDAX. Optical studies showed the increase in band gap with increase in Co level. The samples were diluted magnetic semiconductors and exhibited clear hysteresis loop showing room temperature ferromagnetism as confirmed by vibrating sample magnetometer.

  13. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  14. Electroextraction of boron from boron carbide scrap

    International Nuclear Information System (INIS)

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron (10B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of 10B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron

  15. Investigation on Mg and Sc co-doped Ceria electrolyte for IT-SOFC

    Directory of Open Access Journals (Sweden)

    P.Ravi Chandran

    2014-07-01

    Full Text Available Nanocrystalline form of pure ceria (CeO2 and metal (Mg or Sc doped ceria was attempted for 10 mol %. Also, Mg and Sc co-doped ceria with Ce1-x(Mg0.5Sc0.5xO2 (x=0-0.24 was prepared as an electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs by co-precipitation method. The synthesized different compositions of pure and doped nanocrystalline powders were then subjected to powder X-ray diffraction (XRD for phase and structural identification. All the nanocrystalline samples were found to be ceria based solid solutions of fluorite type structures. A.C. impedance spectroscopy measurements in the frequency range of 50Hz to 5MHz was carried out to study the grain, grain boundary and ionic conductivity of doped ceria samples in the temperature range of 400-600oC. The sample Ce0.84(Mg0.5Sc0.50.16O2 composition showed highest ionic conductivity i.e., 1.923 x 10-2 S/cm at 500oC. Its morphology and composition was investigated using scanning electron microscopic analysis (SEM and energy dispersive X-ray spectrometry (EDS and conductivity behavior was compared with those of pure ceria and singly doped ceria electrolytes namely Ce0.9Mg0.1O2 and Ce0.9Sc0.1O2. The impedance analysis reveals that the sample Ce0.9Mg0.1O2 was found to have higher ionic conductivity compared to Ce0.9Sc0.1O2 in the temperature range of 400–600°C. The co-doped ceria showed a much higher conductivity in air at 500oC in comparison to that of singly doped ceria. Therefore, these co-doped ceria are also the more ideal electrolyte materials for IT-SOFCs. Nyquist plot shows the major contributions were due to the grain boundary resistance contributions which accounts for the higher ionic conductivity in case of the dopants. These dopant effect on the ceria is discussed in detail.

  16. Optical properties of diamond like carbon films containing copper, grown by high power pulsed magnetron sputtering and direct current magnetron sputtering: Structure and composition effects

    Energy Technology Data Exchange (ETDEWEB)

    Meškinis, Š., E-mail: sarunas.meskinis@ktu.lt; Čiegis, A.; Vasiliauskas, A.; Šlapikas, K.; Tamulevičius, T.; Tamulevičienė, A.; Tamulevičius, S.

    2015-04-30

    In the present study chemical composition, structure and optical properties of hydrogenated diamond like carbon films containing copper (DLC:Cu films) deposited by reactive magnetron sputtering were studied. Different modes of deposition — direct current (DC) sputtering and high power pulsed magnetron sputtering (HIPIMS) as well as two configurations of the magnetron magnetic field (balanced and unbalanced) were applied. X-ray diffractometry, Raman scattering spectroscopy, energy-dispersive X-ray spectroscopy and atomic force microscopy were used to study the structure and composition of the films. It was shown that by using HIPIMS mode contamination of the cathode during the deposition of DLC:Cu films can be suppressed. In all cases oxygen atomic concentration in the films was in 5–10 at.% range and it increased with the copper atomic concentration. The highest oxygen content was observed in the films deposited employing low ion/neutral ratio balanced DC magnetron sputtering process. According to the analysis of the parameters of Raman scattering spectra, sp{sup 3}/sp{sup 2} bond ratio decreased with the increase of Cu atomic concentration in the DLC films. Clear dependence of the extinction, absorbance and reflectance spectra on copper atomic concentration in the films was observed independently of the method of deposition. Surface plasmon resonance effect was observed only when Cu atomic concentration in DLC:Cu film was at least 15 at.%. The maximum of the surface plasmon resonance peak of the absorbance spectra of DLC:Cu films was in 600–700 nm range and redshifted with the increase of Cu amount. The ratio between the intensities of the plasmonic peak and hydrogenated amorphous carbon related peak at ~ 220 nm both in the extinction and absorbance spectra as well as peak to background ratio of DLC:Cu films increased linearly with Cu amount in the investigated 0–40 at.% range. Reflectance of the plasmonic DLC:Cu films was in 30–50% range that could be

  17. Optical properties of diamond like carbon films containing copper, grown by high power pulsed magnetron sputtering and direct current magnetron sputtering: Structure and composition effects

    International Nuclear Information System (INIS)

    In the present study chemical composition, structure and optical properties of hydrogenated diamond like carbon films containing copper (DLC:Cu films) deposited by reactive magnetron sputtering were studied. Different modes of deposition — direct current (DC) sputtering and high power pulsed magnetron sputtering (HIPIMS) as well as two configurations of the magnetron magnetic field (balanced and unbalanced) were applied. X-ray diffractometry, Raman scattering spectroscopy, energy-dispersive X-ray spectroscopy and atomic force microscopy were used to study the structure and composition of the films. It was shown that by using HIPIMS mode contamination of the cathode during the deposition of DLC:Cu films can be suppressed. In all cases oxygen atomic concentration in the films was in 5–10 at.% range and it increased with the copper atomic concentration. The highest oxygen content was observed in the films deposited employing low ion/neutral ratio balanced DC magnetron sputtering process. According to the analysis of the parameters of Raman scattering spectra, sp3/sp2 bond ratio decreased with the increase of Cu atomic concentration in the DLC films. Clear dependence of the extinction, absorbance and reflectance spectra on copper atomic concentration in the films was observed independently of the method of deposition. Surface plasmon resonance effect was observed only when Cu atomic concentration in DLC:Cu film was at least 15 at.%. The maximum of the surface plasmon resonance peak of the absorbance spectra of DLC:Cu films was in 600–700 nm range and redshifted with the increase of Cu amount. The ratio between the intensities of the plasmonic peak and hydrogenated amorphous carbon related peak at ~ 220 nm both in the extinction and absorbance spectra as well as peak to background ratio of DLC:Cu films increased linearly with Cu amount in the investigated 0–40 at.% range. Reflectance of the plasmonic DLC:Cu films was in 30–50% range that could be important in

  18. Synthesis of new cubic C3N4 and diamond-like BC3 phases under high pressure and high temperature

    International Nuclear Information System (INIS)

    In this report, we discuss the progress in synthesis of new binary phases from B-C-N triangle in DAC under high-pressure and high-temperature (HPHT) conditions: cubic C3N4 (c-C3N4) and diamond-like BC3 (d-BC3) phase. These two phases have been synthesized by direct transformation from graphitic phases under HPHT conditions. The c-C3N4 phase was recovered at ambient conditions from the graphite-like C3N4 (g-C3N4) phase subjected to pressures between 21 and 38 GPa in a diamond anvil cell, laser-heated to temperatures between 1600 and 3000 K. The x-ray diffraction data on the new phase are best explained by a cubic unit cell with the lattice parameters a = 3.878±0.001 A. The synthesis of the c-C3N4 phase has been also conducted in a large volume press at pressure 25 GPa and temperature 20000C. X-ray peaks of c-C3N4 phase obtained in the large-volume press are weaker than those of diamonds. Application of the UV Raman spectroscopy revealed that UV Raman spectrum of the g-C3N4 is substantially different from that measured with visible Raman spectroscopy. It has two strong peaks at 690 cm-1 and at 986 cm-1 assigned to different types of the ring (s-triazine ring) breathing modes. A diamond-like BC3 has been synthesized at temperature 2033 ± 241 K and at pressure 50 GPa. The conclusion about the phase transition from graphitic BC3 (g-BC3) to d-BC3 phase was made from the analysis of Raman scattering data. The Raman spectrum of the novel d-BC3 displays all the peaks but one at 671 cm-1 characteristic to Raman spectra the B doped diamond. The peaks pattern of the d-BC3 suggests that this phase could become a superconductor at low temperatures

  19. Deposition of Co-doped TiO2 Thin Films by sol-gel method

    Science.gov (United States)

    Boutlala, A.; Bourfaa, F.; Mahtili, M.; Bouaballou, A.

    2016-03-01

    Cobalt doped TiO2 thin films have been prepared by sol-gel method onto glass substrate at room temperature. in this present work, we are interesting to study the effect of Cobalt doped TiO2 thin films.the concentration of Co was varied from 0 to 6%at .The obtained films have been annealed at 500°C for 2 hours. X-ray diffraction patterns showed that Co: TiO2 films are polycrystalline with a tetragonal anatase and orthorhombic brookite types structures. The surface morphologies of the TiO2 doped with cobalt thin films were evaluated by Atomic Force Microscopy (AFM). The optical properties were studied by mean of UV-visible and near infrared spectroscopy.The calculated optical band gap decreases from 3.30 to 2.96 eV with increasing Co doping.

  20. Slow/fast light using a very short Er3+/Yb3+ co-doped fiber.

    Science.gov (United States)

    Gan, Jiulin; Chen, Jiali; Xu, Shanhui; Yang, Zhongmin; Jiang, Zhonghong

    2013-03-01

    A slow/fast light device with a sealed size of 130 mm×30 mm×3 mm has been demonstrated. Ultraslow propagation and superluminal propagation with group velocity values from 8.4 to -14.7 m/s are observed in a 3.86 cm long Er3+/Yb3+ co-doped single-mode phosphate glass fiber. The dependence of pump power, modulation frequency, and wavelength on the slow/fast light effect in this fiber is investigated in detail. These results suggest that this compact slow/fast device is more suitable for all-fiber applications than those made by traditional methods. PMID:23455260

  1. Influence of Input Pulse Durations on Properties of Er3+/Yb3+ Co-doped DCFA

    Institute of Scientific and Technical Information of China (English)

    ZHAN Sheng-bao; ZHAO Shang-hong; SHI Lei; XU Jie; ZHAO Xiao-ming

    2006-01-01

    Based on propagation-rate equations,the influence of different input pulse durations on the properties of Er3+/Yb3+ co-doped double-clad fiber amplifier at dynamic equilibrium was analyzed. The change characteristic of output power sag with pulse duration and repetition rate was shown. Whether single or multi-channel input pulses are amplified,the shorter the input pulse duration is,the smaller the power sags of output pulse will be. At low repetition rate,upper gain values(Gupper) of gain swing are almost the same for different input pulse durations,which tend to the small signal gain,but lower gain value(Glower) of short input pulse is larger than that of long input pulse. At high repetition rate,lower gain value(Glower) approaches to upper gain value(Gupper).

  2. Aqueous synthesis and characterization of Ni, Zn co-doped CdSe QDs

    Science.gov (United States)

    Thirugnanam, N.; Govindarajan, D.

    2016-01-01

    Ni, Zn co-doped CdSe quantum dots (QDs) were synthesized by chemical precipitation method through aqueous route. The prepared QDs were characterized by X-ray diffraction (XRD) technique, UV-Vis absorption spectroscopy, photoluminescence (PL) spectroscopy and high resolution transmission electron microscopy (HRTEM). XRD technique results indicate that the prepared samples have a zinc blende cubic phase. From UV-Vis absorption spectroscopy technique, the prepared samples were blue shifted with respect to their bulk counter part due to quantum confinement effect. Among different doping ratios examined, a maximum PL emission intensity was observed for CdSe:Ni(1 %):Zn(1 %) QDs. HRTEM pictures show that the prepared QDs were in spherical shape.

  3. Neutron spin resonance study in Co-doped NaFeAs

    Science.gov (United States)

    Zhang, Chenglin; Takeshi, Egami; Dai, Pengcheng; UTK and Rice Team

    2014-03-01

    Since the discovery of iron superconductors, the (Ba,Sr,Ca)Fe2As2 (``122'') family especially electron doped side has been subjected to heavily study byneutron scattering. One of the pronounced features generally observed in bulk superconducting compositions is a broad resonance along antiferrromagnetic order wave vector. The resonance energy linearly scales with Tc. However, our neutron study shows that Co-doped NaFeAs system exhibits complexity, distinguishing itself from ``122'' system. We observed a sharp resonance in the electron-overdope regime, providing strong evidence for S +_ pairing symmetry in pnictide superconductors. In the underdoped regime, we find double resonances at commensurate wave vector, demonstrating the multi-orbital nature of pnictides. Our finding further suggests that the resonance energy and Tc may not be simply correlated in multiband superconductors such as iron pnictides. We will discuss in detail how resonances evolve with electron doping.

  4. Electronic and magnetic properties of Co doped MoS2 monolayer

    Science.gov (United States)

    Wang, Yiren; Li, Sean; Yi, Jiabao

    2016-01-01

    First principle calculations are employed to calculate the electronic and magnetic properties of Co doped MoS2 by considering a variety of defects including all the possible defect complexes. The results indicate that pristine MoS2 is nonmagnetic. The materials with the existence of S vacancy or Mo vacancy alone are non-magnetic either. Further calculation demonstrates that Co substitution at Mo site leads to spin polarized state. Two substitutional CoMo defects tend to cluster and result in the non-magnetic behaviour. However, the existence of Mo vacancies leads to uniform distribution of Co dopants and it is energy favourable with ferromagnetic coupling, resulting in an intrinsic diluted magnetic semiconductor. PMID:27052641

  5. Cooperative energy transfer in Tm3+ and Yb3+ co-doped phosphate glasses

    Institute of Scientific and Technical Information of China (English)

    XU Bo; YANG Bin; ZHANG Yuepin; XIA Haiping; WANG Jinhao

    2013-01-01

    An efficient near-infrared (NIR) quantum cutting (QC) in Tm3+ and Yb3+ co-doped phosphate glasses was demonstrated,which involved the emission of two NIR photons from an absorbed visible photon via a cooperative energy transfer (CET) from Tm3+to Yb3+ ions.Judd-Ofelt (J-O) theory was used to calculate the intensity parameters (Ω2,Ω4,Ω6),the radiative transition rates (Ar),and radiative transition lifetime (τrad) of Tm3+.Based on Inokuti-Hirayama's model,the energy transfer processes were studied and results indicated that the energy transfer of the electric dipole-dipole (Edd) was dominant in this system.Quantum efficiency related to Yb3+concentration was calculated,and the maximum QE efficiency reached 169.8%.

  6. Pr and Cr co-doped BiFeO3 nanotubes: an advance multiferroic oxide material

    Directory of Open Access Journals (Sweden)

    Mandal Kalyan

    2013-01-01

    Full Text Available Arrays of single phase pure and Pr-Cr co-doped BiFeO3 (BFO nanotubes (NTs with compositions BiFeO3 and Bi0.9Pr0.1Fe0.9Cr0.1O3 have been synthesized using Anodic Aluminium Oxide (AAO template (pore diameter ~250 nm by wet chemical liquid phase deposition technique. All the NTs show ferromagnetic nature at room temperature (RT. Better magnetic properties are observed in the co-doped BFO NTs with the value of saturation magnetization (MS ~49 memu/g, magnetization at the remanence (MR ~12 memu/g and coercive field (HC ~103 Oe. Increase of ferromagnetic signature in the co-doped BFO NTs is believed to be due to the collapse of the space-modulated spin structure. Significant increase in the dielectric characteristics in co-doped BFO NTs suggests lowering of leakage current due to the reduction of the oxygen vacancies in the structure. Strong Magnetodielectric effect (MD, expressed by [εr(H-εr(0]/εr(0 is observed in doped BFO NTs, where the increase of the dielectric constant is noticeable with the increase in the applied magnetic field. The codoped BFO NTs show noticeable increase in MD effect at a lower field (1-2 kOe.

  7. Structural transformation and multiferroic properties of Ba-Mn co-doped BiFeO3

    Science.gov (United States)

    Rout, Jyoshna; Choudhary, R. N. P.

    2016-01-01

    Pure BiFeO3 and Bi1-xBaxFe1-xMnxO3 (x = 0.10, 0.20) fine ceramics were synthesized using mechano-synthesis route. The influence of co-doping (Ba-Mn) on structural and multiferroic properties of BiFeO3 has been studied in different experimental conditions. X-ray diffraction patterns, Rietveld structural refinement of XRD patterns and Fourier transform infrared (FTIR) spectra reveal the structural transition from rhombohedral (R3c) to the biphasic structure (R3c + P4mm) on co-doping. The co-doping improves surface morphology and also reduces the particle size. The room temperature M-H loops of all samples showed antiferromagnetic/weak ferromagnetic behavior. Magnetoelectric coupling coefficient determination is carried out to reveal extent of intimate interaction between electric and magnetic dipoles interaction in the samples. Room temperature occurrence of ferromagnetism, ferroelectricity and magnetoelectric effect supports the observation of multiferroism and magnetoelectric coupling in BiFeO3. Thus, co-doping at Bi- and Fe-sites of BiFeO3 can improve multiferroic properties of BiFeO3 for various applications.

  8. Highly efficient Gd, Lu co-doped KY(WO4)2:Yb3+ planar waveguide laser

    NARCIS (Netherlands)

    Geskus, Dimitri; Aravazhi, Shanmugam; Bernhardi, Edward; Grivas, Christos; Wörhoff, Kerstin; Pollnau, Markus

    2009-01-01

    Laser operation at 1025 nm with 82.3% slope efficiency and 195 mW output power for 23% outcoupling is reported for KY(WO4)2:Yb3+ planar waveguides, co-doped with optically inert Gd3+ and Lu3+ ions. Codoping enhances the refractive index contrast, improves light confinement, and reduces the threshold

  9. Photocatalytic Activity of Nanosized TiO2 Enhanced by co-doping with Fe3+ and Nd3+ Ions

    Institute of Scientific and Technical Information of China (English)

    Fu Pingfeng; Zhao Zhuo; Wang Jingxin

    2007-01-01

    In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was evaluated by degrading methylene blue (MB) solution. The results indicated that TiO2 crystalline size was reduced and phase transformation of anatase to rutile was suppressed as the content of doped Nd3+ ion increased in the co-doped TiO2. The UV-vis spectra of co-doped TiO2 seemed to simply overlay two spectra of single metal doped TiO2, and had significantly increased absorbance in the ranges of 400~500 nm, 565~600 nm and 730~765 nm as compared to pure TiO2. The photocatalytic activity of co-doped TiO2 was obviously enhanced, and raised about 30% compared to that of pure TiO2 as doped Nd3+ content was 0.15% and Fe3+ content was 0.05%, respectively. The enhanced catalytic activity was attributed to a synergistic effect of two doped ions, where doped Fe3+ ion inhibited the recombination of photogenerated electron and hole, and Nd3+ ion brought more surface carboxyl to promote the degradation reaction.

  10. Electronic structures and optical properties of GaN nanotubes with MgGa–ON co-doping

    International Nuclear Information System (INIS)

    Both the electronic structures and the optical properties of single-walled zigzag GaN nanotubes (NTs) with MgGa–ON co-doping are investigated using first-principles calculations. We find that the MgGa–ON defect complex can exist stably in GaN NTs. The direct band gap width of the GaN NTs can be reduced by means of the MgGa–ON co-doping. The electrons of the valence band maximum (VBM) state are localized around the N atoms bonded with the Mg atom. The imaginary part ε2 of the complex dielectric function of GaN NTs with MgGa–ON co-doping has a sharp peak closely related to the optical transitions between the VBM and conduction band minimum states. - Highlights: ► The MgGa–ON defect complex can exist stably in GaN NTs. ► The band gap of the GaN NTs can be reduced due to the MgGa–ON co-doping. ► The VBM states are localized around the N atoms bonded with the Mg atom. ► The ε2-plot has a peak related to the optical transition from the VBM to CBM state

  11. Tailoring the band structure of β-Bi2O3 by co-doping for realized photocatalytic hydrogen generation

    Science.gov (United States)

    Li, Min; Li, Feng; Yin, Peng Gang

    2014-05-01

    The electronic properties and optical properties of doped β-Bi2O3 have been studied using spin-polarized density function theory (DFT) with the aim of realizing the photocatalytic hydrogen generation under visible light irradiation. The results show that IIIA elements (Al, Ga, In and Tl) mono-doping increase the necessary redox potentials in energy for water splitting, but the increasing of band gap decreases the visible light absorption. Moreover, co-doping in β-Bi2O3 can overcome this problem by increasing the light absorption and simultaneously realizing water splitting by sunlight. The N/Al and N/Ga co-doped β-Bi2O3 introduce the delocalized band, which extend the light absorption but has limited benefit for photocatalytic activity. Importantly, N/In and N/Tl co-doping shift the mid-gap states toward the valence band edge to create an extend valence density of states, which can improve the light absorption. In particular, N/In co-doping leads to the narrowed band gap and a stronger potential for photocatalytic activity toward hydrogen evolution from water, which may play an important role in the development of bismuth oxides for more effective utilization of the solar spectrum for fuel production.

  12. Transparent and conductive Al/F and In co-doped ZnO thin films deposited by spray pyrolysis

    Science.gov (United States)

    Hadri, A.; Taibi, M.; El hat, A.; Mzerd, A.

    2016-02-01

    In doped ZnO (IZO), In-Al co-doped ZnO (IAZO) and In-F co-doped ZnO (IFZO) were deposited on glass substrates at 350 °C by spray pyrolysis technique. The structural, optical and electrical properties of as-deposited thin films were investigated and compared. A polycrystalline and (002) oriented wurtzite crystal structure was confirmed by X-ray patterns for all films; and the full width at half -maximum (FWHM) of (002) diffraction peak increased after co-doping. The investigation of the optical properties was performed using Uv-vis spectroscopy. The average transmittances of all the films were between 70 and 85%. Hall Effect measurements showed that the electrical conductivity of co-doped films increased as compared with IZO thin film. The highest conductivity of about 16.39 Ω-1 cm-1 was obtained for as-deposited IFZO thin film. In addition, the thin films were annealed at 350 °C for two hour under Ar atmosphere and their optical, electrical properties and the associated photoluminescence (PL) responses of selected films were analysed. After annealing, the electrical conductivity of all thin films was improved and the optical transmittance remained above 70%. Room temperature PL revealed that the annealed IAZO thin film had a strong green emission than that of IZO film.

  13. Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+

    International Nuclear Information System (INIS)

    Spectroscopic characterization of Er3+/Yb3+ co-doped tellurite glasses 70.8TeO2–5Al2O3–13K2O–(11−x)–BaO–0.2Er2O3–xYb2O3, where x=0, 0.4, 0.8, 1.2 and 2 mol% has been carried out through X-ray diffraction, Raman, absorption and luminescence spectra. The Judd–Ofelt intensity parameters were calculated for 0.2 mol% Er3+-doped glass and are used to evaluate radiative properties such as transition probabilities, branching ratios and radiative lifetime. The emission cross-section of the 4I13/2→4I15/2 transition has been calculated from the absorption data using McCumber's theory. The emission intensity of both, visible and infrared signals as a function of Yb2O3, have been studied under 980 nm and 375 nm laser excitation. The physical mechanisms responsible for both, visible and infrared signals in the tellurite samples have been explained in terms of the energy transfer and excited state absorption process. The FWHM of the 4I13/2→4I15/2 transition as a function of Yb2O3 mol% and distance (δ) between the laser focusing point and the end-face of the glass has been reported. It was observed both, experimentally and numerically, a change in the FWHM with variations of δ less than 8 mm. The latter was attributed to the radiation trapping effect. - Highlights: • Er3+/Yb3+ co-doped tellurite glasses were fabricated by the melt-quenching technique. • The structural, thermal and optical properties of the tellurite glasses were studied. • The radiation trapping effect has been observed in small tellurite glass samples. • Tellurite glasses could be a potential material for fiber fabrication

  14. Enhanced electrical insulation and ferroelectricity in La and Ni co-doped BiFeO3 thin films

    International Nuclear Information System (INIS)

    Highlights: • La,Ni co-doped BiFeO3 thin films deposited by chemical solution method. • Polycrystalline films without any preferred orientation. • Bi0.95La0.05Fe0.975Ni0.025O3 sample shows a Pr of ∼66 μC/cm2 and a Ec of 0.3 MV/cm. • The lowest leakage for samples with co-doping of 5% La and 2.5% Ni. - Abstract: In this manuscript, we report the effect of co-doping of La and Ni in controlling the electrical leakage and enhancing the ferroelectric polarization in chemical solution processed BiFeO3 (BFO) thin films grown on Pt/Si substrates. Structural analysis of the films using X-ray diffraction shows that all the films are phase pure with perovskite structure and a R3c space group. The films are polycrystalline without evidence of any preferred orientation. Compared to the undoped BFO thin films, the leakage current in co-doped thin films is minimum at a La doping of 5 at% and Ni doping of 2.5 at% beyond which the leakage increases. While ferroelectric polarization does decrease marginally on co-doping, the shape of ferroelectric hysteresis loop improves in comparison to the undoped or singly doped films. The samples with La doping of 5 at% and Ni doping of 2.5 at% (Bi0.95La0.05Fe0.975Ni0.025O3) show a remnant polarization (Pr) of ∼66 μC/cm2 and a coercive field of 0.3 MV/cm at room temperature

  15. High efficiency energy transfer in Ce,Tb co-doped silica prepared by sol-gel method

    International Nuclear Information System (INIS)

    Amorphous Ce,Tb co-doped silica (SiO2) was prepared using the sol-gel method with the aim of studying the energy transfer from Ce to Tb ions. It was initially found that adding Ce reduced the Tb emission intensity, implying that energy transfer did not occur. In fact, the Ce single doped sample exhibited very poor emission. Ultraviolet-visible diffuse reflectance measurements displayed the signature of non-luminescent Ce4+ rather than Ce3+ ions. We therefore annealed the samples in a reducing atmosphere of 4% hydrogen in argon gas at 1000 °C. The reduced Ce single doped samples exhibited bright luminescence and the diffuse reflectance measurements now showed the characteristic of Ce3+ ions. The reduced Ce,Tb co-doped samples excited at the Ce absorption wavelength gave characteristic Tb emission (with negligible Ce emission), indicating that very efficient energy transfer from Ce to Tb was achieved. For samples containing 1 mol% Tb, the maximum luminescence was found when co-doping with 0.5 mol% Ce. Using such co-doped silica samples exhibiting energy transfer, it is possible to obtain effective luminescence from the Tb3+ ions via excitation of Ce3+ ions at 325 nm, instead of exciting the Tb3+ ions directly which requires a shorter wavelength of about 227 nm. - Highlights: ► Vast improvement in energy transfer from Ce to Tb in sol-gel silica. ► Tb doped silica effectively excited at 325 nm instead of 227 nm after Ce co-doping. ► Improved annealing process for sol-gel silica with Ce for luminescence applications.

  16. Effect of co-doping on luminescence of LiCaAlF{sub 6}:Eu phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Rahangdale, S.R.; Palikundwar, U.A. [Department of Physics, Nagpur University, Nagpur 440033 (India); Wankhede, S.P. [Department of Physics, K.D.K. College of Engineering, Nagpur (India); Dhabekar, Bhushan; Kadam, Sonal [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085 (India); Moharil, S.V., E-mail: svmoharil@yahoo.com [Department of Physics, Nagpur University, Nagpur 440033 (India)

    2015-11-15

    Abstracts: LiCaAlF{sub 6} is a versatile host material. Applications of this host as scintillation detector and solid state laser have been reported quite frequently. Thermoluminescence studies on LiCaAlF{sub 6}:Eu have also been reported. They are, however, not consistent. The glow curve structure depends on the synthesis route. At least two glow peaks are observed, around 180 °C and 240 °C. Effects of co-doping on the glow curve are reported. Co-doping with Y (0.5 mol%) suppresses the 240 °C peak and increases the intensity of 180 °C peak nearly 3 fold and shifts it to slightly higher temperature of 190 °C. Co-doping with La (0.8 mol%), on the other hand, removes 180 °C peak and intense peak at 240 °C can be observed. Thus co-doping produces a relatively simple glow curve with only one dominant peak. LiCaAlF{sub 6}:Eu phosphor also shows intense optically stimulated luminescence (OSL). The OSL sensitivity of LiCaAlF{sub 6}:Eu codoped with Y is about 7 times that of commercially available Al{sub 2}O{sub 3}:C. Other OSL properties useful for dosimetry applications are also reported in this paper. - Highlights: • Precipitation synthesis of LiCaAlF{sub 6}:Eu, Yttrium co-doping simplifies glow curve. • TL sensitivity is 3 times that of CaSO{sub 4}:Dy. • OSL sensitivity is 7 times that of Al{sub 2}O{sub 3}:C (Landauer). • Linear OSL response in the range 3 mGy to 1 kGy. • Negligible fading over 40 days.

  17. Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films

    International Nuclear Information System (INIS)

    The influence of incident angles of energetic carbon atoms (0–60°) on the structure and properties of diamond-like carbon (DLC) films was investigated by the molecular dynamics simulation using a Tersoff interatomic potential. The present simulation revealed that as the incident angles increased from 0 to 60°, the surface roughness of DLC films increased and the more porous structure was generated. Along the growth direction of DLC films, the whole system could be divided into four regions including substrate region, transition region, stable region and surface region except the case at the incident angle of 60°. When the incident angle was 45°, the residual stress was significantly reduced by 12% with little deterioration of mechanical behavior. The further structure analysis using both the bond angles and bond length distributions indicated that the compressive stress reduction mainly resulted from the relaxation of highly distorted C–C bond length. - Highlights: • The dependence of films properties on different incident angles was investigated. • The change of incident angles reduced the stress without obvious damage of density. • The stress reduction attributed to the relaxation of highly distorted bond length

  18. Blood compatibility of gas plasma-treated diamond-like carbon surface-Effect of physicochemical properties of DLC surface on blood compatibility

    International Nuclear Information System (INIS)

    From the knowledge that zwitterion-type polymers show good blood compatibility, the introduction of both cationic and anionic functional groups onto diamond-like carbon (DLC) surface is expected to improve blood compatibility. Thus, DLC films were treated with oxygen and ammonia gas plasmas. The surfaces were characterized in terms of chemical composition by XPS, contact angle, and zeta potential. XPS analysis showed the introductions of a carboxyl group by oxygen plasma treatment and nitrogen atoms by ammonia plasma treatment. The evaluation of blood compatibility for the DLC surfaces was carried out in terms of platelets and the coagulation system. Excellent improvement of platelet compatibility was observed by the treatment with the gas plasmas, regardless of the plasma species. As for the compatibility with the coagulation system, DLC surfaces with a high concentration of carboxyl groups (COOH) markedly activated the system via the intrinsic pathway. However, the surfaces treated with ammonia plasma did not activate the system even though they had high COOH concentration. Measurement of the zeta potential revealed that the ammonia plasma treatment raised the potential from a negative value to a positive one. Though the introduction of amino groups to the surface was not detected directly, the treatment of ammonia plasma changed the electrical state of the DLC surface having COOH group, causing a difference in blood compatibility among the DLCs obtained by various plasma conditions.

  19. Structural and electrical properties and current–voltage characteristics of nitrogen-doped diamond-like carbon films on Si substrates by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Tsuchiya, Masato; Murakami, Kazuki; Magara, Kohei; Nakamura, Kazuki; Ohashi, Haruka; Tokuda, Kengo; Takami, Takahiro; Ogasawara, Haruka; Enta, Yoshiharu; Suzuki, Yushi; Ando, Satoshi; Nakazawa, Hideki

    2016-06-01

    We have deposited nitrogen-doped diamond-like carbon (N-DLC) films by plasma-enhanced chemical vapor deposition using CH4, N2, and Ar, and investigated the effects of N doping on the structure and the electrical, mechanical, and optical properties of the N-DLC films. We fabricated undoped DLC/p-type Si and N-DLC/p-type Si heterojunctions and examined the current–voltage characteristics of the heterojunctions. When the N2 flow ratio was increased from 0 to 3.64%, the resistivity markedly decreased from the order of 105 Ω·cm to that of 10‑2 Ω·cm and the internal stress also decreased. The resistivity gradually increased with increasing N2 flow ratio from 3.64 to 13.6%, and then it decreased at a N2 flow ratio of 13.6%. These behaviors can be explained in terms of the clustering of sp2 carbons and the formation of sp3C–N, sp2C=N, sp1C≡N, and C–H n bonds. The rectification ratio of the heterojunction using the N-DLC film prepared at 3.64% was 35.8 at ±0.5 V.

  20. Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering

    International Nuclear Information System (INIS)

    Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1 x 109 Ω · cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.

  1. Intermittent chemical vapor deposition of thick electrically conductive diamond-like amorphous carbon films using i-C4H10/N2 supermagnetron plasma

    International Nuclear Information System (INIS)

    Electrically conductive diamond-like amorphous carbon (DAC) films with nitrogen (DAC:N) were deposited on Si and SiO2 wafers using the i-C4H10/N2 supermagnetron plasma chemical vapor deposition (CVD) method. Resistivity and hardness decreased with increase of upper electrode rf power (UPRF) under constant lower electrode rf power (LORF). Film thickness increased linearly to over 0.3 μm with deposition time via intermittent deposition. The film exhibited good adhesion to the substrate. Low-resistance thick films were deposited using alternating multilayer CVD at UPRF/LORFs of 1 kW/1 kW and 300 W/300 W. In the deposited alternating multiple layers, resistivity significantly decreased with the increase of H layer (1 kW/1 kW) thickness, and film thickness significantly increased with the increase of L layer (300 W/300 W) thickness. By the deposition of H/L multiple layers, a film of 2.1 μm thickness and 0.14 Ω cm resistivity was obtained

  2. Effect of tetramethylsilane flow on the deposition and tribological behaviors of silicon doped diamond-like carbon rubbed against poly(oxymethylene)

    Science.gov (United States)

    Deng, Xingrui; Lim, Yankuang; Kousaka, Hiroyuki; Tokoroyama, Takayuki; Umehara, Noritsugu

    2014-11-01

    In this study, silicon doped diamond-like carbon (Si-DLC) was deposited on stainless steel (JIS SUS304) by using surface wave-excited plasma (SWP). The effects of tetramethylsilane (TMS) flow on the composition, topography, mechanical properties and tribological behavior were investigated. Pin-on-disc tribo-meter was used to investigate the tribological behavior of the Si-DLC coating rubbed against poly(oxymethylene) (POM). The results show that the deposition rate, roughness of Si-DLC increased and the hardness of Si-DLC decreased with the increase of TMS flow rate from 2 to 4 sccm; the roughness increase therein led to the increase of ploughing term of friction. The increase of adhesion term was also seen with the increase of TMS flow rate, being attributed to the decrease of hydrogen concentration in the coating. It was considered that more POM transferred onto the Si-DLC deposited at higher TMS flow rate due to larger heat generation by friction.

  3. Effects of frequency of pulsed substrate bias on structure and properties of silicon-doped diamond-like carbon films by plasma deposition

    International Nuclear Information System (INIS)

    We have investigated the effects of the frequency of pulsed substrate bias on the structure and properties of Si-doped diamond-like carbon (Si-DLC) films deposited by radio-frequency plasma-enhanced chemical vapor deposition using CH4, Ar, and monomethylsilane (CH3SiH3) as the Si source. The Si/(Si + C) ratios in the Si-DLC films deposited using pulsed bias were higher than that of the dc-biased Si-DLC film, and the Si fraction increased with decreasing frequency. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that Si–C, Si–Hn, and C–Hn bonds in the Si-DLC films increased with decreasing frequency. The internal stress decreased as the frequency decreased, which is probably due to the increase in Si–C, Si–Hn, and C–Hn bonds in the films. It was found that the wear rate of the pulse-biased Si-DLC film deposited at the highest frequency in this study is comparable to that of the dc-biased, undoped DLC film. Furthermore, the friction coefficient of the former is about one third of that of the latter. - Highlights: • The tribological properties of Si-doped films were improved at higher frequencies. • The internal stress of Si-doped films was lowered at lower frequencies. • The adhesion of pulse-biased films was improved at lower frequencies

  4. Influence of high temperature annealing on the structure, hardness and tribological properties of diamond-like carbon and TiAlSiCN nanocomposite coatings

    Science.gov (United States)

    Xie, Z. W.; Wang, L. P.; Wang, X. F.; Huang, L.; Lu, Y.; Yan, J. C.

    2011-11-01

    Diamond-like carbon (DLC) and TiAlSiCN nanocomposite coatings were synthesized and annealed at different temperatures in a vacuum environment. The microstructure, hardness and tribological properties of as-deposited and annealed DLC-TiAlSiCN nanocomposite coatings were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, nano-indentation and friction tests. The TEM results reveal that the as-deposited DLC-TiAlSiCN coating has a unique nanocomposite structure consisting of TiCN nanocrystals embedded in an amorphous matrix consisting of a-Si3N4, a-SiC, a-CN and DLC, and the structure changed little after annealing at 800 °C. However, XPS and Raman results show that an obvious graphitization of the DLC phase occurred during the annealing process and it worsened with annealing temperature. Because of the graphitization, the hardness of the DLC-TiAlSiCN coating after annealing at 800 °C decreased from 45 to 36 GPa. In addition, the DLC-TiAlSiCN coating after annealing at 800 °C has a similar friction coefficient to the as-deposited coating.

  5. Influence of high temperature annealing on the structure, hardness and tribological properties of diamond-like carbon and TiAlSiCN nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.W. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, L.P., E-mail: aplpwang@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, X.F.; Huang, L.; Lu, Y.; Yan, J.C. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2011-11-15

    Diamond-like carbon (DLC) and TiAlSiCN nanocomposite coatings were synthesized and annealed at different temperatures in a vacuum environment. The microstructure, hardness and tribological properties of as-deposited and annealed DLC-TiAlSiCN nanocomposite coatings were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, nano-indentation and friction tests. The TEM results reveal that the as-deposited DLC-TiAlSiCN coating has a unique nanocomposite structure consisting of TiCN nanocrystals embedded in an amorphous matrix consisting of a-Si{sub 3}N{sub 4}, a-SiC, a-CN and DLC, and the structure changed little after annealing at 800 Degree-Sign C. However, XPS and Raman results show that an obvious graphitization of the DLC phase occurred during the annealing process and it worsened with annealing temperature. Because of the graphitization, the hardness of the DLC-TiAlSiCN coating after annealing at 800 Degree-Sign C decreased from 45 to 36 GPa. In addition, the DLC-TiAlSiCN coating after annealing at 800 Degree-Sign C has a similar friction coefficient to the as-deposited coating.

  6. Reciprocating sliding behaviour of self-mated amorphous diamond-like carbon coatings on Si3N4 ceramics under tribological stress

    International Nuclear Information System (INIS)

    Amorphous diamond-like carbon films grown by magnetron sputtering have been deposited on silicon nitride based substrates for tribological purposes. A conductive Si3N4/30% vol.TiN composite was produced for bias substrate application. Friction and wear properties of carbon coated self-mated pairs were assessed using a reciprocal motion ball-on-flat setup in unlubricated conditions with applied normal loads of 3 N and 5 N. The worn surfaces were studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) in order to identify the prevalent wear mechanism. Unbiased and biased substrates behaved differently, the former undergoing premature delamination while the latter endured the tribological test conditions (3 N, ∼ 43 m). Very low friction coefficient values of ∼ 0.015 were sustained assuring remarkable wear behaviour. Surface grooving and wear debris accumulation in the sliding track lead to a roughness increase from the nominal rms value of ∼ 12 nm to ∼ 97 nm, although no weight loss and surface profile modification was quantifiable

  7. Influence of high temperature annealing on the structure, hardness and tribological properties of diamond-like carbon and TiAlSiCN nanocomposite coatings

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) and TiAlSiCN nanocomposite coatings were synthesized and annealed at different temperatures in a vacuum environment. The microstructure, hardness and tribological properties of as-deposited and annealed DLC-TiAlSiCN nanocomposite coatings were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, nano-indentation and friction tests. The TEM results reveal that the as-deposited DLC-TiAlSiCN coating has a unique nanocomposite structure consisting of TiCN nanocrystals embedded in an amorphous matrix consisting of a-Si3N4, a-SiC, a-CN and DLC, and the structure changed little after annealing at 800 °C. However, XPS and Raman results show that an obvious graphitization of the DLC phase occurred during the annealing process and it worsened with annealing temperature. Because of the graphitization, the hardness of the DLC-TiAlSiCN coating after annealing at 800 °C decreased from 45 to 36 GPa. In addition, the DLC-TiAlSiCN coating after annealing at 800 °C has a similar friction coefficient to the as-deposited coating.

  8. Electrochemical Characteristics of Diamond-Like Carbon/Cr Double-Layer Coating on Silicon Monoxide-Graphite Composite Anode for Li-Ion Batteries

    International Nuclear Information System (INIS)

    The electrochemical behavior of a SiOx–graphite composite anode with a diamond-like carbon (DLC)–Cr double-layer coating and employed in a Li-ion secondary cell was studied to determine whether the coating improved the electrochemical characteristics of SiOx. The DLC layer was coated through plasma-enhanced chemical vapor deposition, and the Cr layer was formed by physical vapor deposition. The formation of the coating layer was confirmed by transmission electron microscopy, Raman spectroscopy, and electron microprobe analysis. The charge capacity of a coated-anode cell (591 mA·h·g−1) was found to be higher than that of a bare-anode cell (517 mA·h·g−1) after the 1st cycle. Further, the 50th-cycle capacity retention of the coated-anode cell (83%) was higher than that of the bare-anode cell (59%) at a 0.5 C-rate. The electrochemical characteristics of the coated-anode cell were investigated by impedance analysis, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. Because of good mechanical properties of the DLC-Cr coatings and high electrical conductivity of Cr, double layer coating enhances the electrochemical behavior of SiOx as a supplementary coating material

  9. Synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure study on oxidative etching of diamond-like carbon films by hyperthermal atomic oxygen

    International Nuclear Information System (INIS)

    Surface structural changes of a hydrogenated diamond-like carbon (DLC) film exposed to a hyperthermal atomic oxygen beam were investigated by Rutherford backscattering spectroscopy (RBS), synchrotron radiation photoelectron spectroscopy (SR-PES), and near-edge X-ray absorption fine structure (NEXAFS). It was confirmed that the DLC surface was oxidized and etched by high-energy collisions of atomic oxygen. RBS and real-time mass-loss data showed a linear relationship between etching and atomic oxygen fluence. SR-PES data suggested that the oxide layer was restricted to the topmost surface of the DLC film. NEXAFS data were interpreted to mean that the sp2 structure at the DLC surface was selectively etched by collisions with hyperthermal atomic oxygen, and an sp3-rich region remained at the topmost DLC surface. The formation of an sp3-rich layer at the DLC surface led to surface roughening and a reduced erosion yield relative to the pristine DLC surface.

  10. Nanostructured diamond-like carbon on digital versatile disc as a matrix-free target for laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Najam-ul-Haq, Muhammad; Rainer, Matthias; Huck, Christian W; Hausberger, Peter; Kraushaar, Harald; Bonn, Günther K

    2008-10-01

    A nanostructured diamond-like carbon (DLC) coated digital versatile disk (DVD) target is presented as a matrix-free sample support for application in laser desorption/ionization mass spectrometry (LDI-MS). A large number of vacancies, defects, relative sp(2) carbon content, and nanogrooves of DLC films support the LDI phenomenon. The observed absorptivity of DLC is in the range of 305-330 nm (nitrogen laser, 337 nm). The universal applicability is demonstrated through different analytes like amino acids, carbohydrates, lipids, peptides, and other metabolites. Carbohydrates and amino acids are analyzed as sodium and potassium adducts. Peptides are detectable in their protonated forms, which avoid the extra need of additives for ionization. A bovine serum albumin (BSA) digest is analyzed to demonstrate the performance for peptide mixtures, coupled with the material-enhanced laser desorption/ionization (MELDI) approach. The detection limit of the described matrix-free target is investigated to be 10 fmol/microL for [Glu(1)]-fibrinopeptide B (m/z 1570.6) and 1 fmol/microL for L-sorbose (Na(+) adduct). The device does not require any chemical functionalization in contrast to other matrix-free systems. The inertness of DLC provides longer lifetimes without any deterioration in the detection sensitivity. Broad applicability allows high performance analysis in metabolomics and peptidomics. Furthermore the DLC coated DVD (1.4 GB) sample support is used as a storage device for measured and processed data together with sampling on a single device. PMID:18729472

  11. Application of hard X-ray photoemission spectroscopy to material science using synchrotron radiation. Lubricant molecule on diamond like carbon (DLC) for hard disk

    International Nuclear Information System (INIS)

    Third generation [3G] high-intensity synchrotron X-ray source combined with a high-energy electron analyzer has enabled us to perform photoelectron spectroscopy with high-resolution at hard X-ray regions. The detection depth of the apparatus installed to SPring-8/BL-47XU is 5-20 nm in the solid sample compared to ∼1 nm in case of conventional XPS. Thus, the method has a much broader range of application in the study of electronic structure of the materials. The present paper introduces the system component of the apparatus of hard X-ray photoelectron spectroscopy (HAXPES), its main features and performance. Furthermore, as an application example, the research results on a thin A20H film, which consists of perfluoropolyether (PFPE) as lubricant molecule developed on DLC (Diamond-like Carbon) substrate, used for hard disk is demonstrated. From the comparison of the various C 1s peaks observed, the author concluded that P-N ring structure in the end group of phosphazene selectively absorbed chemically to DLC. (S. Ohno)

  12. Correlation of sp3 and sp2 fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films

    International Nuclear Information System (INIS)

    In the present work the correlation of electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon (Ar-DLC) thin films with sp3 and sp2 fractions of carbon have been explored. These Ar-DLC thin films have been deposited, under varying C2H2 gas pressures from 25 to 75 mTorr, by radio frequency-plasma enhanced chemical vapor deposition technique. X-ray photoelectron spectroscopy studies are performed to estimate the sp3 and sp2 fractions of carbon by deconvoluting C 1s core level spectra. Various electrical, optical and nano-mechanical parameters such as conductivity, I-V characteristics, optical band gap, stress, hardness, elastic modulus, plastic resistance parameter, elastic recovery and plastic deformation energy have been estimated and then correlated with calculated sp3 and sp2 fractions of carbon and sp3/sp2 ratios. Observed tremendous electrical, optical and nano-mechanical properties in Ar-DLC films deposited under high base pressure conditions made it a cost effective material for not only hard and protective coating applications but also for electronic and optoelectronic applications.

  13. Microstructure and surface properties of chromium-doped diamond-like carbon thin films fabricated by high power pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    High power pulsed magnetron sputtering (HPPMS) has attracted much interest due to the large plasma density and high ionization rate of sputtered materials. It is expected to produce a highly ionized C flux from a graphite target but unfortunately, the ionization rate of carbon is still very small and the discharge on a solid carbon target is unstable as well. In this work, a stable discharged chromium target is used in the preparation of chromium-doped diamond-like carbon (Cr-DLC) films in HPPMS in reactive C2H2 gas, but the unstable graphite. The chromium concentration in the Cr-DLC films is limited by surface poisoning due to reactive gas. Less than 2% of Cr is incorporated into the DLC films at C2H2 flow rate of 5 sccm or higher. However, as a result of the high ionization rate of the reactive gas in HPPMS, intense ion bombardment of the substrate is realized. The films show a smooth surface and a dense structure with a large sp3 concentration. As the C2H2 flow increase, the sp3 fraction increase and the sp3 to sp2 ratio increase to 0.75 at a C2H2 flow rate of 10 sccm. Compared to the substrate, the Cr-DLC films have lower friction and exhibit excellent corrosion resistance.

  14. Near edge X-ray absorption fine structure study for optimization of hard diamond-like carbon film formation with Ar cluster ion beam

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) film deposited using C60 vapor with simultaneous irradiation of an Ar cluster ion beam was characterized by a near edge X-ray absorption fine structure (NEXAFS), in order to optimize the hard DLC film deposition conditions. Contents of sp2 orbitals in the films, which were estimated from NEXAFS spectra, are 30% lower than that of a conventional DLC film deposited by a RF plasma method. Those contents were obtained under the flux ratio of the C60 molecules to the Ar cluster ions to range from 1 to 20, at 5keV of Ar cluster ion acceleration energy. Average hardness of the films was 50 GPa under these flux ratios. This hardness was three times higher than that of a conventional DLC film. Furthermore, the lowest sp2 content and above-mentioned high hardness were obtained at room temperature of the substrate when the depositions were performed in the range of the substrate temperature from room temperature to 250degC. (author)

  15. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time. PMID:25173323

  16. Ferromagnets based on diamond-like semiconductors GaSb, InSb, Ge, and Si supersaturated with manganese or iron impurities during laser-plasma deposition

    International Nuclear Information System (INIS)

    Properties of thin (30–100 nm) layers of diluted magnetic semiconductors based on diamond-like compounds III–V (InSb and GaSb) and elemental semiconductors Ge and Si doped with 3d impurities of manganese and iron up to 15% were measured and discussed. The layers were grown by laser-plasma deposition onto heated single-crystal gallium arsenide or sapphire substrates. The ferromagnetism of layers with the Curie temperature up to 500 K appeared in observations of the ferromagnetic resonance, anomalous Hall effect, and magneto-optic Kerr effect. The carrier mobility of diluted magnetic semiconductors is a hundred times larger than that of the previously known highest temperature magnetic semiconductors, i.e., copper and chromium chalcogenides. The difference between changes in the magnetization with temperature in diluted semiconductors based on III–V, Ge, and Si was discussed. A complex structure of the ferromagnetic resonance spectrum in Si:Mn/GaAs was observed. The results of magnetic-force microscopy showed a weak correlation between the surface relief and magnetic inhomogeneity, which suggests that the ferromagnetism is caused by the 3d-impurity solid solution, rather than ferromagnetic phase inclusions.

  17. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Self-limiting of the thickness of diamond-like films deposited in the laser pyrolysis of liquid aromatic hydrocarbons

    Science.gov (United States)

    Simakin, Aleksandr V.; Lubnin, Evgenii N.; Shafeev, Georgii A.

    2000-03-01

    The process involving the self-regulation of the thickness of a diamond-like film, deposited on the interface between a transparent dielectric substrate (glass, sapphire, quartz) when a liquid aromatic hydrocarbon is heated by the radiation of a copper vapour laser, was observed and investigated. The film thickness reaches 100 nm and ceases to depend on the number of laser pulses, whereas the depth of the ablated region of the substrate, in which the film is deposited, increases monotonically. The self-regulation effect, observed over a wide range of pressures (from 0.08 to 10 bar), is caused both by the heating of the deposited film by the laser radiation to the graphitisation temperature and by its mechanical damage as a consequence of the difference between the coefficients of thermal expansion of the film and the substrate. The latter has been confirmed with the aid of x-ray Auger spectroscopy, the results of which indicate the formation in the liquid of a nanodisperse suspension of carbon particles with the diamond type of bonding.

  18. Investigation of structure, adhesion strength, wear performance and corrosion behavior of platinum/ruthenium/nitrogen doped diamond-like carbon thin films with respect to film thickness

    International Nuclear Information System (INIS)

    Research highlights: → Sputtered PtRuN-DLC thin films were fabricated with different film thicknesses. → The graphitization of the films increased with increased film thickness. → The wear resistance of the films increased though their adhesion strength decreased. → The corrosion potentials of the films shifted to more negative values. → However, the corrosion currents of the films decreased. - Abstract: In this study, the corrosion performance of platinum/ruthenium/nitrogen doped diamond-like carbon (PtRuN-DLC) thin films deposited on p-Si substrates using a DC magnetron sputtering deposition system in a 0.1 M NaCl solution was investigated using potentiodynamic polarization test in terms of film thickness. The effect of the film thickness on the chemical composition, bonding structure, surface morphology, adhesion strength and wear resistance of the PtRuN-DLC films was studied using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM), micro-scratch test and ball-on-disc tribotest, respectively. It was found that the wear resistance of the PtRuN-DLC films apparently increased with increased film thickness though the adhesion strength of the films decreased. The corrosion results revealed that the increased concentration of sp2 bonds in the PtRuN-DLC films with increased film thickness shifted the corrosion potentials of the films to more negative values but the decreased porosity density in the films significantly decreased the corrosion currents of the films.

  19. Bias voltage effect on the structure and property of chromium copper-diamond-like carbon multilayer films fabricated by cathodic arc plasma

    International Nuclear Information System (INIS)

    Chromium copper-diamond-like carbon (Cr:Cu)-DLC films were deposited onto silicon and by cathodic arc evaporation process using chromium (Cr) and copper (Cu) target arc sources to provide Cr and Cu in the Me-DLC. Acetylene reactive gases were the carbon source and activated at 180 deg. C at 13 mTorr, and a substrate bias voltage was varied from -50 V to -200 V to provide the (Cr:Cu)-DLC structure. The structure, interface, and chemical bonding state of the produced film were analyzed by transmission electron microscope (TEM), IR Fourier transform (FTIR) spectra, and X-ray photoelectron spectroscopy (XPS). The results showed that the Cr-containing a-C:H/Cu coatings exhibited an amorphous layer of DLC:Cr layer and a crystalline layer of Cu multilayer structure. The profiles of sp3/sp2 (XPS) ratios corresponded to the change of microhardness profile by varying the pressure of the negative DC bias voltage. These (Cr:Cu)-DLC coatings are promising materials for soft substrate protective coatings.

  20. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles; Ioneninduzierte Umwandlung von Polymerschichten zu diamantaehnlichem Kohlenstoff mit darin enthaltenen Silber-Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Florian P.

    2010-03-26

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  1. Effect of Discharge Parameters on Properties of Diamond-Like Carbon Films Prepared by Dual-Frequency Capacitively Coupled Plasma Source

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Due to a coupling via bulk plasma, the self-bias voltage depended not only on the radiofrequency (RF) power of the corresponding electrode but also on another RF power of the counter electrode. The influence of the discharge parameters on the deposition rate, optical and Raman properties of the deposited films was investigated. The optical band decreased basically with the increase in the input power of both the low frequency and high frequency. Raman measurements show that the deposited films have a maximal sp3 content with an applied negative self-bias voltage of -150 V, while high frequency power causes a continuous increase in the sp3 content. The measurement of atomic force microscope (AFM) shows that the surface of the deposited films under ion-bombardment becomes smoother than those with non-intended self-bias voltage.

  2. Diamond-like carbon (DLC) thin film bioelectrodes: effect of thermal post-treatments and the use of Ti adhesion layer.

    Science.gov (United States)

    Laurila, Tomi; Rautiainen, Antti; Sintonen, Sakari; Jiang, Hua; Kaivosoja, Emilia; Koskinen, Jari

    2014-01-01

    The effect of thermal post-treatments and the use of Ti adhesion layer on the performance of thin film diamond like carbon bioelectrodes (DLC) have been investigated in this work. The following results were obtained: (i) The microstructure of the DLC layer after the deposition was amorphous and thermal annealing had no marked effect on the structure, (ii) formation of oxygen containing SiOx and Ti[O,C] layers were detected at the Si/Ti and Ti/DLC interfaces with the help of transmission electron microscope (TEM), (iii) thermal post-treatments increased the polar fraction of the surface energy, (iv) cyclic voltammetry (CV) measurements showed that the DLC films had wide water windows and were stable in contact with dilute sulphuric acid and phosphate buffered saline (PBS) solutions, (v) use of Ti interlayer between Pt(Ir) microwire and DLC layer was crucial for the electrodes to survive the electrochemical measurements without the loss of adhesion of the DLC layer, (vi) DLC electrodes with small exposed Pt areas were an order of magnitude more sensitive towards dopamine than Pt electrodes and (vii) thermal post-treatments did not markedly change the electrochemical behavior of the electrodes despite the significant increase in the polar nature of the surfaces. It can be concluded that thin DLC bioelectrodes are stable under physiological conditions and can detect dopamine in micro molar range, but their sensitivity must be further improved. PMID:24268281

  3. Morphological and Chemical Evolution of Gradually Deposited Diamond-Like Carbon Films on Polyethylene Terephthalate: From Subplantation Processes to Structural Reorganization by Intrinsic Stress Release Phenomena.

    Science.gov (United States)

    Catena, Alberto; Guo, Qiaochu; Kunze, Michael R; Agnello, Simonpietro; Gelardi, Franco M; Wehner, Stefan; Fischer, Christian B

    2016-04-27

    Diamond-like carbon (DLC) films on polyethylene terephthalate (PET) are nowadays intensively studied composites due to their excellent gas barrier properties and biocompatibility. Despite their applicative features being highly explored, the interface properties and structural film evolution of DLC coatings on PET during deposition processes are still sparsely investigated. In this study two different types of DLC films were gradually deposited on PET by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) using acetylene plasma. The surface morphology of the deposited samples has been analyzed by atomic force microscopy (AFM). Their chemical composition was investigated by diffusive reflectance infrared Fourier transform (DRIFT) and Raman spectroscopy analysis and the surface wettability by contact angle measurements. Subplantation processes and interface effects are revealed through the morphological and chemical analysis of both types. During plasma deposition processes the increasing carbon load causes the rise of intrinsic film stress. It is proven that stress release phenomena cause the transition between polymer-like to a more cross-linked DLC network by folding dehydrogenated chains into closed 6-fold rings. These findings significantly lead to an enhanced understanding in DLC film growth mechanism by RF-PECVD processes. PMID:27058762

  4. Investigation of corrosion behavior of nitrogen doped and platinum/ruthenium doped diamond-like carbon thin films in Hank's solution

    International Nuclear Information System (INIS)

    Undoped (DLC), nitrogen-doped (N-DLC) and platinum/ruthenium doped diamond-like carbon (PtRu-DLC) thin films were deposited on p-Si (100) substrates using a DC magnetron sputtering deposition system. The chemical composition, bonding structure, surface morphology and adhesion strength of the films were characterized using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch test, respectively. The corrosion behavior of the films in a Hank's solution was investigated using potentiodynamic polarization test. The corrosion results revealed that the PtRu-DLC film had the highest corrosion potential among the films used in this study. Highlights: → DLC thin films were deposited on Si substrates via dc magnetron sputtering. → Some DLC films were doped with N and/or Pt/Ru. → The film corrosion behavior was studied in a Hank solution with polarization test. → The PtRu-DLC film showed the highest corrosion potential among the films studied.

  5. Fabrication of High Transparency Diamond-Like Carbon Film Coating on D263T Glass at Room Temperature as an Antireflection Layer

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2013-01-01

    Full Text Available This study intends to deposit high transmittance diamond-like carbon (DLC thin films on D263T glass substrate at room temperature via a diamond powder target using the radio frequency (RF magnetron sputtering technique. Moreover, various process parameters were used to tune the properties of the thin films by using the Taguchi method. Experimental results show that the content of sp3 bonded carbon decreases in accordance with the effect of the substrate temperature. In addition, the hardness of all as-deposited single-layer DLC films ranges from 13.2 to 22.5 GPa, and the RMS surface roughness was improved significantly with the decrease in sputtering pressure. The water repellent of the deposited DLC films improved significantly with the increase of the sp3 content, and its contact angle was larger than that of the noncoated one by 1.45 times. Furthermore, the refraction index (n of all as-deposited DLC films ranges from 1.95 to 2.1 at λ = 600 nm. These results demonstrate that the thickness increased as the reflectance increased. DLC film under an RF power of 150 W possesses high transmissive ability (>81% and low average reflectance ability (<9.5% in the visible wavelengths (at λ = 400–700 nm.

  6. Near edge X-ray absorption fine structure study for optimization of hard diamond-like carbon film formation with Ar cluster ion beam

    CERN Document Server

    Kitagawa, T; Kanda, K; Shimizugawa, Y; Toyoda, N; Matsui, S; Yamada, I; Tsubakino, H; Matsuo, J

    2003-01-01

    Diamond-like carbon (DLC) film deposited using C sub 6 sub 0 vapor with simultaneous irradiation of an Ar cluster ion beam was characterized by a near edge X-ray absorption fine structure (NEXAFS), in order to optimize the hard DLC film deposition conditions. Contents of sp sup 2 orbitals in the films, which were estimated from NEXAFS spectra, are 30% lower than that of a conventional DLC film deposited by a RF plasma method. Those contents were obtained under the flux ratio of the C sub 6 sub 0 molecules to the Ar cluster ions to range from 1 to 20, at 5keV of Ar cluster ion acceleration energy. Average hardness of the films was 50 GPa under these flux ratios. This hardness was three times higher than that of a conventional DLC film. Furthermore, the lowest sp sup 2 content and above-mentioned high hardness were obtained at room temperature of the substrate when the depositions were performed in the range of the substrate temperature from room temperature to 250degC. (author)

  7. Preparation of diamond-like carbon films using reactive Ar/CH4 high power impulse magnetron sputtering system with negative pulse voltage source for substrate

    Science.gov (United States)

    Kimura, Takashi; Kamata, Hikaru

    2016-04-01

    Diamond-like carbon films were prepared using a reactive Ar/CH4 high-power impulse magnetron sputtering system with a negative pulse voltage source for the substrate, changing the CH4 fraction up to 15% in the total pressure range from 0.3 to 2 Pa. The magnitude of the negative pulse voltage for the substrate was also varied up to about 500 V. The hardness of films monotonically increased with increasing magnitude of the negative pulse voltage. The films with hardnesses between 16.5 and 23 GPa were prepared at total pressures less than 0.5 Pa and CH4 fractions less than 10% by applying an appropriate negative pulse voltage of 300-400 V. In X-ray photoelectron spectroscopy, the area ratio C-C sp3/(C-C sp2 + C-C sp3) in the C 1s core level was higher than 30% at pressures less than 0.5 Pa and CH4 fractions less than 15%. On the other hand, the films with hardnesses between 5 and 10 GPa were prepared with a relatively high growth rate at the partial pressures of CH4 higher than 0.1 Pa. However, the observation of the photoluminescence background in Raman spectroscopy indicated a relatively high hydrogen content.

  8. Enhanced green upconversion by controlled ceramization of Er3+–Yb3+ co-doped sodium niobium tellurite glass–ceramics for low temperature sensors

    International Nuclear Information System (INIS)

    Highlights: • Upconversion luminescence improved in glass–ceramics compared to host glass. • Judd–Ofelt and radiative parameters calculated. • NIR decay curve results concur the results of improved luminescence. • Temperature dependent upconversion support the use of materials for sensors. - Abstract: Tellurite based glasses are well-known for their upconversion properties besides having a disadvantage of low mechanical strength dragging them away from practical applications. The present work deals with preparation of sodium niobium tellurite (SNT) glasses using melt quenching method, in which small quantities of boron and silicon in the form of oxides are added to improve their mechanical properties. Controlled heat treatment is performed to ceramize the prepared glasses based on the thermal data given by DTA. XRD and SEM profiles of the glass–ceramics which confirmed the formation of crystalline monoclinic Sodium Tellurium Niobium Oxide (Na1.4Nb3Te4.9O18) phase (JCPDS card No. 04–011-7556). Upconversion measurements in the visible region were made for the prepared Er3+–Yb3+ co-doped glasses and glass–ceramics with 980 nm laser excitation varying the laser power and concentration of Er3+ ions. Results showed that the upconversion luminescence intensity was enhanced by ten times in SNT glass–ceramics compared to that in the SNT glasses. Decay curves give evidence of high performance of glass–ceramics compared to glasses due to ceramization and structural changes. Temperature dependent visible upconversion was performed to test the ability of efficient SNT glass–ceramic at low temperatures and variation of upconversion intensities was studied

  9. Determination of boron content in boron carbide, boron nitride and amorphous boron

    International Nuclear Information System (INIS)

    In the present article an analyzing method of determination of boron content in boron carbide, boron nitride and amorphous boron described. Examined samples were digested with potassium hydroxide and potassium nitrate in nickel crucible and the boron contents determined subsequently by an alcalimetric titration of boric acid in presence of mannite resp. sorbite. (author)

  10. Influence of duty ratio of pulsed bias on structure and properties of silicon-doped diamond-like carbon films by plasma deposition

    International Nuclear Information System (INIS)

    We have investigated the influence of the duty ratio of pulsed substrate bias on the structure and properties of Si-doped diamond-like carbon (Si-DLC) films deposited by radio frequency plasma-enhanced chemical vapor deposition using CH4, Ar, and monomethylsilane (CH3SiH3) as the Si source. The Si/(Si + C) ratios in the Si-DLC films deposited using pulsed bias were higher than that of the dc-biased Si-DLC film, and the Si fraction increased with decreasing pulse duty ratio. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that Si-C, Si-Hn, and C-Hn bonds in the Si-DLC films increased with decreasing duty ratio. The internal stress decreased as the duty ratio decreased, which is probably due to the increase in Si-C, Si-Hn, and C-Hn bonds in the films. The Si-DLC films deposited using pulsed bias had higher adhesion strength than the dc-biased Si-DLC film because of the further reduction of internal stress. At higher duty ratios, although the Si fractions of the pulse-biased Si-DLC films were higher than that of the dc-biased Si-DLC film, the wear rates of the former were less than that of the latter. - Highlights: • The internal stress of Si-doped films was lowered at lower duty ratios. • The adhesion of pulse-biased films was improved compared with that of dc films. • The tribological properties of Si-doped films were improved by the use of pulse bias

  11. Influence of W content on tribological performance of W-doped diamond-like carbon coatings under dry friction and polyalpha olefin lubrication conditions

    International Nuclear Information System (INIS)

    Highlights: • W-doped DLC coating with various W contents was fabricated. • Friction and wear of DLC coated sample was studied. • The lubricant additive was T307. • The influence of W content on friction under lubrication was unveiled. • The influence of W content on wear under lubrication was studied. - Abstract: The influence on tungsten content on the structure, mechanical properties and tribological performance of W-doped diamond-like carbon (DLC) coatings was studied by X-ray photoelectron spectroscopy, nano-indentation, scratch test, and ball-on-disk friction test. It was found that with increasing W content, the content of WC and free W in the coatings is increased while the content of sp3-C in the coatings is decreased. The effect of W content on the hardness and elastic modulus of the coatings is indistinctive, but there exists the highest critical load of scratch test of above 100 N when W content is 3.08 at.%. With the increase of W content, the friction coefficients of W-doped DLC coatings under dry friction conditions are increased while the friction coefficients of W-doped DLC coatings under polyalpha olefin (PAO) lubrication are decreased. With the increase of W content, the wear rates of the DLC-coated samples under dry friction conditions show a minimum value; under pure PAO lubrication, the influence of W content on the wear rates of the DLC-coated samples is indistinctive when the W content is below 10.73 at.% while the wear rates are increased with increasing W content from 10.73 at.% to 24.09 at.%; when lubricated by PAO + thiophosphoric acid amine (T307) salt, the samples coated with the undoped DLC or the W-doped DLC with high W content exhibit low wear rates

  12. Infrared nonlinear optical properties of lithium-containing diamond-like semiconductors Li2ZnGeSe4 and Li2ZnSnSe4.

    Science.gov (United States)

    Zhang, Jian-Han; Clark, Daniel J; Brant, Jacilynn A; Sinagra, Charles W; Kim, Yong Soo; Jang, Joon I; Aitken, Jennifer A

    2015-06-28

    Two new lithium-containing diamond-like semiconductors, Li2ZnGeSe4 and Li2ZnSnSe4, have been prepared by high-temperature, solid-state synthesis. Single crystal X-ray diffraction reveals that both compounds adopt the wurtz-kesterite structure type, crystallizing in the noncentrosymmetric space group Pn. X-ray powder diffraction coupled with Rietveld refinement indicates the high degree of phase purity in which the materials are prepared. Both compounds display optical bandgaps around 1.8 eV, wide optical transparency windows from 0.7 to 25 μm and type-I phase matched second harmonic generation starting at 2500 nm and persisting deeper into the infrared. Using the Kurtz powder method, the second-order nonlinear optical coefficient, χ((2)), was estimated to be 19 and 23 pm V(-1) for Li2ZnGeSe4 and Li2ZnSnSe4, respectively. Using a 1064 nm incident laser beam with a pulse width (τ) of 30 ps both compounds exhibit a laser damage threshold of 0.3 GW cm(-2), which is higher than that of the AgGaSe2 reference material measured under identical conditions. Differential thermal analysis shows that the title compounds are stable up to 684 and 736 °C, respectively. These properties collectively demonstrate that Li2ZnGeSe4 and Li2ZnSnSe4 have great potential for applications in tunable laser systems, especially in the infrared and even up to the terahertz regime. Electronic structure calculations using a plane-wave pseudopotential method within density functional theory provide insight regarding the nature of the bandgap and bonding. PMID:26006322

  13. The effect of nitrogen and oxygen plasma on the wear properties and adhesion strength of the diamond-like carbon film coated on PTFE

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using a radiofrequency plasma chemical vapour deposition method. Prior to DLC coating, the PTFE substrates were modified with O2 and N2 plasma to enhance the adhesion strength of the DLC film to the substrate. The effect of the plasma pre-treatment on the chemical composition and the surface energy of the plasma pre-treated PTFE surface was investigated by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurement, respectively. A pull-out test and a ball-on-disc test were carried out to evaluate the adhesion strength and the wear properties of the DLC-coated PTFE. In the N2 plasma pre-treatment, the XPS result indicated that defluorination and the nitrogen grafting occurred on the plasma pre-treated PTFE surface, and the water contact angle decreased with increasing the plasma pre-treatment time. In the O2 plasma pre-treatment, no grafting of the oxygen occurred, and the water contact angle slightly increased with the treatment time. In the pull-out test, the adhesion strength of the DLC film to the PTFE substrate was improved with the plasma pre-treatment to the PTFE substrate, and N2 plasma pre-treatment was more effective than the O2 plasma pre-treatment. In the ball-on-disc test, the DLC film with the N2 plasma pre-treatment showed good wear resistance, compared with that with O2 plasma pre-treatment

  14. Effects of electrical conductivity of substrate materials on microstructure of diamond-like carbon films prepared by bipolar-type plasma based ion implantation

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films are prepared by a bipolar-type plasma based ion implantation, and the structural differences between DLC films deposited on different electrical conductive substrates, i.e., conductive Si wafers and insulating glass plates are examined by Raman spectroscopy and x-ray photo emission spectroscopy (XPS). In the Raman measurements, graphite (G) and disorder (D) peaks are observed for both samples. However, the additional photo luminescence is overlapped on the spectra in the case of on-glass sample. To elucidate the structural difference, the intensity ratio of D to G peak (I(D)/I(G)), G peak position and full width at half maximum (FWHM) are obtained by curve fitting using Gaussian function and linear baseline. It is found that the I(D)/I(G) is lower, G peak position is higher and FWHM of G peak is narrower for on-glass sample than for on-Si sample. According to Robertson [1], lower I(D)/I(G) seems more sp3 C-C bonding in amount for on-glass sample. In contrast, higher G peak position and narrower FWHM of G peak suggest less sp3 C-C bonding in amount for on-glass sample. The results of XPS analysis with C1s spectra reveal that sp3 ratio, i.e., the intensity ratio of sp3/(sp3+sp2) is smaller for on-glass sample than for on-Si sample. The inconsistency of the trend between I(D)/I(G) and other parameters (G peak position and FWHM of G peak) might be caused by the overlap of photo luminescence signal on Raman spectrum as to on-glass sample. From these results, it is considered that sp3 C-C bonding is reduced in amount when using insulating substrate in comparison with conductive substrate.

  15. Comparison between FTIR and XPS characterization of amino acid glycine adsorption onto diamond-like carbon (DLC) and silicon doped DLC

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) coatings are extremely useful for creating biocompatible surfaces on medical implants. DLC and silicon doped DLC synthesized on silicon wafer substrate by using plasma enhanced chemical vapour deposition (PECVD). The adsorption of glycine onto prepared samples has been investigated with a range of surface analysis techniques. The effects of surface morphology on the interaction of glycine with doped and undoped DLC films have been investigated. The chemical composition of the surface before and after adsorption was analyzed using X-ray photoelectron spectroscopy (XPS). For undoped DLC the spectra show peaks at 285 eV (C 1s), 532 eV (O 1s) and in the case of Si-doped DLC films a band at ∼100 eV (Si 2p) is observed. Following exposure to solutions containing (0.001 M) glycine, for undoped DLC the peaks at ∼285.0, ∼399 and ∼532 eV reduced in intensity and for Si-DLC samples, the peak at 100 eV was reduced. This gives an indication of the quantitative change in the amounts of C, N and O on the surfaces. From Fourier transform infrared (FTIR) spectrum, the peaks occur the following functional groups were assigned as COO-R, COO-bar , -NH3+, NH2, C-H and C-C-N. Both XPS and FTIR spectroscopy confirm that glycine was bound onto the surfaces of the DLC and Si-DLC films via interaction of ionized carboxyl groups and the amino group did not play a significant role in the adsorption of glycine. These results from SE show that an adsorbed layer of glycine is higher at low silicon doping whilst increased doping levels led to a reduced adsorption compared to undoped DLC. Therefore doping of DLC may provide an approach to controlling the protein adsorption.

  16. Diamond-like carbon (DLC) thin film bioelectrodes: Effect of thermal post-treatments and the use of Ti adhesion layer

    International Nuclear Information System (INIS)

    The effect of thermal post-treatments and the use of Ti adhesion layer on the performance of thin film diamond like carbon bioelectrodes (DLC) have been investigated in this work. The following results were obtained: (i) The microstructure of the DLC layer after the deposition was amorphous and thermal annealing had no marked effect on the structure, (ii) formation of oxygen containing SiOx and Ti[O,C] layers were detected at the Si/Ti and Ti/DLC interfaces with the help of transmission electron microscope (TEM), (iii) thermal post-treatments increased the polar fraction of the surface energy, (iv) cyclic voltammetry (CV) measurements showed that the DLC films had wide water windows and were stable in contact with dilute sulphuric acid and phosphate buffered saline (PBS) solutions, (v) use of Ti interlayer between Pt(Ir) microwire and DLC layer was crucial for the electrodes to survive the electrochemical measurements without the loss of adhesion of the DLC layer, (vi) DLC electrodes with small exposed Pt areas were an order of magnitude more sensitive towards dopamine than Pt electrodes and (vii) thermal post-treatments did not markedly change the electrochemical behavior of the electrodes despite the significant increase in the polar nature of the surfaces. It can be concluded that thin DLC bioelectrodes are stable under physiological conditions and can detect dopamine in micro molar range, but their sensitivity must be further improved. - Highlights: • Crucial effect of Ti adhesion layer on the performance of DLC bioelectrodes is shown. • Amorphous SiOx and Ti[C,O]x are shown to form at the Si/Ti and Ti/DLC interfaces. • Thermal annealing can be used to oxidize the surface of DLC films. • However, there is no change in the sensitivity of the electrodes towards dopamine. • DLC/Pt composite electrodes have improved sensitivity

  17. Diamond-like carbon (DLC) thin film bioelectrodes: Effect of thermal post-treatments and the use of Ti adhesion layer

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, Tomi, E-mail: tomi.laurila@aalto.fi [Department of Electronics, School of Electrical Engineering, Aalto University, Espoo (Finland); Rautiainen, Antti [Department of Electronics, School of Electrical Engineering, Aalto University, Espoo (Finland); Sintonen, Sakari [Department of Micro- and Nanotechnology, School of Electrical Engineering, Aalto University, Espoo (Finland); Jiang, Hua [Department of Applied Physics, School of Science, Aalto University, Espoo (Finland); Kaivosoja, Emilia [Department of Electronics, School of Electrical Engineering, Aalto University, Espoo (Finland); Helsinki University Central Hospital, Institute of Clinical Medicine (Finland); Koskinen, Jari [Department of Materials Science, School of Chemical Technology, Aalto University, Espoo (Finland)

    2014-01-01

    The effect of thermal post-treatments and the use of Ti adhesion layer on the performance of thin film diamond like carbon bioelectrodes (DLC) have been investigated in this work. The following results were obtained: (i) The microstructure of the DLC layer after the deposition was amorphous and thermal annealing had no marked effect on the structure, (ii) formation of oxygen containing SiO{sub x} and Ti[O,C] layers were detected at the Si/Ti and Ti/DLC interfaces with the help of transmission electron microscope (TEM), (iii) thermal post-treatments increased the polar fraction of the surface energy, (iv) cyclic voltammetry (CV) measurements showed that the DLC films had wide water windows and were stable in contact with dilute sulphuric acid and phosphate buffered saline (PBS) solutions, (v) use of Ti interlayer between Pt(Ir) microwire and DLC layer was crucial for the electrodes to survive the electrochemical measurements without the loss of adhesion of the DLC layer, (vi) DLC electrodes with small exposed Pt areas were an order of magnitude more sensitive towards dopamine than Pt electrodes and (vii) thermal post-treatments did not markedly change the electrochemical behavior of the electrodes despite the significant increase in the polar nature of the surfaces. It can be concluded that thin DLC bioelectrodes are stable under physiological conditions and can detect dopamine in micro molar range, but their sensitivity must be further improved. - Highlights: • Crucial effect of Ti adhesion layer on the performance of DLC bioelectrodes is shown. • Amorphous SiOx and Ti[C,O]x are shown to form at the Si/Ti and Ti/DLC interfaces. • Thermal annealing can be used to oxidize the surface of DLC films. • However, there is no change in the sensitivity of the electrodes towards dopamine. • DLC/Pt composite electrodes have improved sensitivity.

  18. Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Highlights: • The effect of DLC and GLC films on the FW and FF resistance was investigated. • The bonding strength and toughness were investigated by home-made device. • The FW and FF resistance was improved significantly by DLC and GLC films. • The effect of bonding strength and toughness is more important than that of friction factor in improving the FW and FF resistance. - Abstract: To investigate their effect on the fretting wear (FW) and fretting fatigue (FF) resistance of a Ti6Al4V alloy, the diamond-like carbon (DLC) and graphite-like carbon (GLC) films were deposited on a Ti6Al4V alloy substrate using closed field unbalanced magnetron sputtering. The basic film properties, such as surface morphology, micro-structure, micro-hardness, bonding strength, and toughness were investigated by atomic force microscopy, X-ray photoelecton spectroscopy, nano-hardness testing, scratch testing and by a home-made repeated press-press test system, respectively. The FW and FF resistance was studied using home-made devices. The results show that DLC and GLC films can reduce the friction factor while the FW and FF resistance of the titanium alloy were improved significantly. However, the FW and FF resistance of the DLC film on the titanium alloy was better than that of the GLC film. This was attributed to the excellent properties of bonding strength and toughness of the DLC film. Moreover, the effect of bonding strength and toughness is more important than that of friction factor in improving the FW and FF resistance

  19. Mikrobiologische Untersuchung der antimikrobiellen Wirksamkeit silberhaltiger, abriebarmer Oberflächenbeschichtungen aus amorphen Kohlenstoff (Diamond-like Carbon, DLC) auf Titan und Polyethylen für orthopädische Implantate

    OpenAIRE

    Jüssen, Sebastian Horst

    2015-01-01

    In der vorliegenden Arbeit wurde die antibakterielle Potenz verschiedener silberhaltiger, abriebarmer Diamond-like Carbon (DLC) Oberflächenmodifikationen auf Titan (Ti6Al4V) und Polyethylen (UHMWPE) für den Einsatz auf tribologisch belasteten Gelenkflächen untersucht. Implantatassoziierte Infektionen gelten neben der durch Abriebpartikel verursachten aseptischen Lockerung als ein Hauptproblem im klinischen Alltag und können zu schwerwiegenden Komplikationen führen. Ziel dieser Arbeit war es d...

  20. The influence of Er, Ti co-doping on the multiferroic properties of BiFeO3 thin films

    Science.gov (United States)

    Ma, Yinina; Xing, Wenyu; Chen, Jieyu; Bai, Yulong; Zhao, Shifeng; Zhang, Hao

    2016-02-01

    The pure and Er, Ti co-doped BiFeO3 thin films were prepared by chemistry solution deposition. Enhanced ferroelectric and ferromagnetic properties were obtained, which is mainly attributed to that the effect of co-doping Er and Ti leads to the drastic crystal structural transformation from rhombohedral phase to orthorhombic phase. Thus crystal structural transformation not only changes the switching behavior of the polarization path to improve the ferroelectric polarization, but also suppresses the original spiral spin structure to release the locked magnetization. At the same time, the leakage current density is decreased after doping Er3+ and Ti4+, which results from that the crystal structural transformation changes the leakage current mechanism. The present work provides an available way on improving the multiferroic properties of BiFeO3 thin films.