WorldWideScience

Sample records for boron carbon nitrogen

  1. Prediction of boron carbon nitrogen phase diagram

    Science.gov (United States)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  2. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  3. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  4. Predicted phase diagram of boron-carbon-nitrogen

    Science.gov (United States)

    Zhang, Hantao; Yao, Sanxi; Widom, Michael

    2016-04-01

    Noting the structural relationships between phases of carbon and boron carbide with phases of boron nitride and boron subnitride, we investigate their mutual solubilities using a combination of first-principles total energies supplemented with statistical mechanics to address finite temperatures. Thus we predict the solid-state phase diagram of boron-carbon-nitrogen (B-C-N). Owing to the large energy costs of substitution, we find that the mutual solubilities of the ultrahard materials diamond and cubic boron nitride are negligible, and the same for the quasi-two-dimensional materials graphite and hexagonal boron nitride. In contrast, we find a continuous range of solubility connecting boron carbide to boron subnitride at elevated temperatures. An electron-precise ternary compound B13CN consisting of B12 icosahedra with NBC chains is found to be stable at all temperatures up to melting. It exhibits an order-disorder transition in the orientation of NBC chains at approximately T =500 K. We also propose that the recently discovered binary B13N2 actually has composition B12.67N2 .

  5. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  6. Fabrication of particular structures of hexagonal boron nitride and boron-carbon-nitrogen layers by anisotropic etching

    Science.gov (United States)

    Vishwakarma, Riteshkumar; Sharma, Subash; Shinde, Sachin M.; Sharma, Kamal P.; Thangaraja, Amutha; Kalita, Golap; Tanemura, Masaki

    2016-05-01

    Anisotropic etching of hexagonal boron nitride (h-BN) and boron-carbon-nitrogen (BCN) basal plane can be an exciting platform to develop well-defined structures with interesting properties. Here, we developed an etching process of atomically thin h-BN and BCN layers to fabricate nanoribbons (NRs) and other distinct structures by annealing in H2 and Ar gas mixture. BCN and h-BN films are grown on Cu foil by chemical vapor deposition (CVD) using solid camphor and ammonia borane as carbon, nitrogen and boron source, respectively. Formation of micron size well-defined etched holes and NRs are obtained in both h-BN and BCN layers by the post growth annealing process. The etching process of h-BN and BCN basal plane to fabricate NRs and other structures with pronounced edges can open up new possibilities in 2D hybrid materials.

  7. Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng; LIU De-Sheng; ZHANG Ying; WANG Pei-Ji; ZHANG Zhong

    2011-01-01

    @@ Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbonnanotube-based molecular junction.Obvious rectifying behavior is observed and it is strongly dependent on the doping site.The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer.Moreover, the rectifying performance can be further improved by adjusting the distance between the Cso nanotube caps.%Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbon-nanotube-based molecular junction. Obvious rectifying behavior is observed and it is strongly dependent on the doping site. The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer. Moreover, the rectifying performance can be further improved by adjusting the distance between the C60 nanotube caps.

  8. First-principles study of palladium atom adsorption on the boron- or nitrogen-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Guoxiang [College of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062, Shaanxi (China); School of Science, Xi' an Shiyou University, Xi' an 710065, Shaanxi (China); Zhang Jianmin, E-mail: jianm_zhang@yahoo.co [College of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062, Shaanxi (China); Wang Doudou [Institute of Telecommunication Engineering of the Air Force Engineering University (AFEU1), Xi' an 710077, Shaanxi (China); Xu Kewei [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)

    2009-11-15

    We have performed first-principles calculation to investigate the adsorption of a single palladium atom on the surface of the pristine and boron- or nitrogen-doped carbon nanotubes (CNTs). The results show that for the adsorption of a single palladium atom on the pristine CNT surface, the most stable site is Bridge1 site above the axial carbon-carbon bond. Either boron- or nitrogen-doped CNTs can assist palladium surface adsorption, but the detailed mechanisms are different. The enhanced palladium adsorption on boron-doped CNT is attributed to the palladium d orbital strongly hybridized with both boron p orbital and carbon p orbital. The enhancement in palladium adsorption on nitrogen-doped CNT results from activating the nitrogen-neighboring carbon atoms due to the large electron affinity of nitrogen. Furthermore, the axial bond is preferred over the zigzag bond for a palladium atom adsorbed on the surface of all three types of CNTs. The most energetically favorable site for a palladium atom adsorbed on three types of CNTs is above the axial boron-carbon bond in boron-doped CNT. The enhancement in palladium adsorption is more significant for the boron-doped CNT than it is for nitrogen-doped CNT with a similar configuration. So we conclude that accordingly, the preferred adsorption site is determined by the competition between the electron affinity of doped and adsorbed atoms and preferred degree of the axial bond over the zigzag bond.

  9. Synthesis of boron/nitrogen substituted carbons for aqueous asymmetric capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Tomko, Timothy [Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Rajagopalan, Ramakrishnan, E-mail: rur12@psu.edu [Materials Research Institute, Pennsylvania State University, 270 MRL Bldg., University Park, PA 16802 (United States); Aksoy, Parvana [Energy Institute, Pennsylvania State University, University Park, PA 16802 (United States); Foley, Henry C. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2011-06-01

    Highlights: > Synthesis of highly substituted boron and nitrogen containing carbons (BCN) for ultracapacitor applications. > Evidence for strong electroadsorption of protons on BCN. > Increased specific capacitance per unit area and improved cell voltage in aqueous asymmetric capacitors. - Abstract: Boron/nitrogen substituted carbons were synthesized by co-pyrolysis of polyborazylene/coal tar pitch blends to yield a carbon with a boron and nitrogen content of 14 at% and 10 at%, respectively. The presence of heteroatoms in these carbons shifted the hydrogen evolution overpotential to -1.4 V vs Ag/AgCl in aqueous electrolytes, providing a large electrochemical potential window ({approx}2.4 V) as well as a specific capacitance of 0.6 F/m{sup 2}. An asymmetric capacitor was fabricated using the as-prepared low surface area carbon as the negative electrode along with a redox active manganese dioxide as the positive electrode. The energy density of the capacitor exceeded 10 Wh/kg at a power density of 1 kW/kg and had a cycle life greater than 1000 cycles.

  10. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Nazé, C.; Verdebout, S. [Service de Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B 1050 Brussels (Belgium); Rynkun, P.; Gaigalas, G. [Vilnius University, Institute of Theoretical Physics and Astronomy, LT-01108 Vilnius (Lithuania); Godefroid, M., E-mail: mrgodef@ulb.ac.be [Service de Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B 1050 Brussels (Belgium); Jönsson, P. [Group for Materials Science and Applied Mathematics, Malmö University, 205-06 Malmö (Sweden)

    2014-09-15

    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.

  11. Study on boron-carbon-nitrogen; Tanchikka hoso ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-28

    Experimental investigation has been conducted to obtain fundamental knowledge of synthesis of BCN at atmospheric pressure. For the study on BCN compounds by thermo-CVD process, thermo-CVD synthesis was taken up using hydrogen compound as starting material, which is common system of CVD film synthesis. Relationship was examined between the deposition conditions and properties of the film. For the study on powder of BCN-system, a melt mixture method was developed to easily obtain a large amount of powders required as raw material for sintering and high pressure phase synthesis. For the study on BCN thin film, in order to obtain BCN as electronic material and protective coat on the low temperature substrate, BCN film was prepared by irradiating boron vapor and powders of carbon and nitrogen taken out through activation with saddle field type ion source on the substrate, simultaneously. For the study on activating state of nitrogen, fundamental knowledge was obtained concerning the prediction of behavior of nitrogen species, energy distribution of electrons, and neutral excitation species. 119 refs., 70 figs., 13 tabs.

  12. Space-Confined Synthesis of Three-Dimensional Boron/Nitrogen-Doped Carbon Nanotubes/Carbon Nanosheets Line-in-Wall Hybrids and Their Electrochemical Energy Storage Applications

    DEFF Research Database (Denmark)

    Zhu, Shan; Li, Jiajun; Li, Qingfeng;

    2016-01-01

    This research demonstrates a flexible one-pot strategy for fabricating three-dimensional (3D) boron/nitrogen-doped networks of carbon nanotubes(CNTs)/carbon nanosheets "Line-in-Wall" hybrids (LIWNB) based on the space-confined template method. In the synthesis, the high rate of freezing step and ...

  13. Organic Solar Cells with Boron- or Nitrogen-Doped Carbon Nanotubes in the P3HT : PCBM Photoactive Layer

    Directory of Open Access Journals (Sweden)

    Godfrey Keru

    2016-01-01

    Full Text Available Either boron- or nitrogen-doped carbon nanotubes (B- or N-CNTs were incorporated in bulk heterojunction organic solar cells photoactive layer composed of poly(3-hexylthiophene (P3HT : (6,6-phenyl-C61-butyric acid methyl ester (PCBM. The physical and chemical properties were investigated using different spectroscopic techniques. The cell performance was followed from their current-voltage (J-V characteristics. Recombination dynamics of the photo-generated free charge carriers were investigated using micro- to milliseconds transient absorption spectroscopy (TAS. Transmission electron microscopy (TEM images revealed the presence of cone structures and bamboo compartments in B-CNTs and N-CNTs, respectively. X-ray photoelectron spectroscopy (XPS revealed very little boron was substituted in the carbon network and presence of pyrrolic, pyridinic, and quaternary species of nitrogen in N-CNTs. J-V characteristics were found to be similar for the devices with B- and N-CNTs even though boron- and nitrogen-doped CNTs are known to have different properties, that is, p-type and n-type, respectively. TAS results showed that all devices had long lived free charge carriers but the devices with B- or N-CNTs had low power conservation efficiency and voltage.

  14. Production process for boron carbide coated carbon material and boron carbide coated carbon material obtained by the production process

    International Nuclear Information System (INIS)

    A boron carbide coated carbon material is used for a plasma facing material of a thermonuclear reactor. The surface of a carbon material is chemically reacted with boron oxide to convert it into boron carbide. Then, it is subjected to heat treatment at a temperature of not lower than 1600degC in highly evacuated or inactive atmosphere to attain a boron carbide coated carbon material. The carbon material used is an artificial graphite or a carbon fiber reinforced carbon composite material. In the heat treatment, when the atmosphere is in vacuum, it is highly evacuated to less than 10Pa. Alternatively, in a case of inactive atmosphere, argon or helium gas each having oxygen and nitrogen content of not more than 20ppm is used. With such procedures, there can be obtained a boron carbide-coated carbon material with low content of oxygen and nitrogen impurities contained in the boron carbide coating membrane thereby hardly releasing gases. (I.N.)

  15. Boron/nitrogen pairs Co-doping in metallic carbon nanotubes: a first-principle study

    Institute of Scientific and Technical Information of China (English)

    Ouyang Fang-Ping; Peng Sheng-Lin; Chen Ling-Na; Sun Shu-Yuan; Xu Hui

    2011-01-01

    By using the first-principles calculations, the electronic structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.

  16. Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure

    Directory of Open Access Journals (Sweden)

    Kang Xia

    2014-03-01

    Full Text Available Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene–nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials.

  17. First-principles study of metallic carbon nanotubes with boron/nitrogen co-doping

    Institute of Scientific and Technical Information of China (English)

    Chen Ling-Na; Ma Song-Shan; OuYang Fang-Ping; Xiao Jin; Xu Hui

    2011-01-01

    Using the first-principles calculations, we investigate the electronic band structure and the quantum transport properties of metallic carbon nanotubes (MCNTs) with B/N pair co-doping. The results about formation energy show that the B/N pair co-doping configuration is a most stable structure. We find that the electronic structure and the transport properties are very sensitive to the doping concentration of the B/N pairs in MCNTs, where the energy gaps increase with doping concentration increasing both along the tube axis and around the tube, because the mirror symmetry of MCNT is broken by doping B/N pairs. In addition, we discuss conductance dips of the transmission spectrum of doped MCNTs. These unconventional doping effects could be used to design novel nanoelectronic devices.

  18. Tuning electronic properties of carbon nanotubes by Boron and Nitrogen doping

    Science.gov (United States)

    Chegel, Raad

    2016-10-01

    The electronic properties of pure and doped carbon nanotubes and NC3-, BC3-, NC- and BC-nanotubes are investigated by using tight binding theory. It was found that applying the external fields and doping change the band gap. The energy gap is reduced by B/N-doping and the reduction value is sensitive to the several parameters such as nanotube diameter and chirality, external field strength, electric field direction, impurity type and concentration. The direct N (B) substitution creates a new band above (below) the Fermi level and leads to creation of n-type (p-type) semiconductor. The external fields modify the band structure and convert the doped nanotube into metal. For both XC and XC3 nanotubes (X=B/N), the gap energy reduction shows identical dependence to electric field and the XC3 nanotubes show more sensitive behavior to electric field rather than XC nanotubes.

  19. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.

    Science.gov (United States)

    Zhang, Jinli; Nie, Ning; Liu, Yuanyuan; Wang, Jiao; Yu, Feng; Gu, Junjie; Li, Wei

    2015-09-16

    An evolutionary composite of LiFePO4 with nitrogen and boron codoped carbon layers was prepared by processing hydrothermal-synthesized LiFePO4. This novel codoping method is successfully applied to LiFePO4 for commercial use, and it achieved excellent electrochemical performance. The electrochemical performance can be improved through single nitrogen doping (LiFePO4/C-N) or boron doping (LiFePO4/C-B). When modifying the LiFePO4/C-B with nitrogen (to synthesis LiFePO4/C-B+N) the undesired nonconducting N-B configurations (190.1 and 397.9 eV) are generated. This decreases the electronic conductivity from 2.56×10(-2) to 1.30×10(-2) S cm(-1) resulting in weak electrochemical performance. Nevertheless, using the opposite order to decorate LiFePO4/C-N with boron (to obtain LiFePO4/C-N+B) not only eliminates the nonconducting N-B impurity, but also promotes the conductive C-N (398.3, 400.3, and 401.1 eV) and C-B (189.5 eV) configurations-this markedly improves the electronic conductivity to 1.36×10(-1) S cm(-1). Meanwhile the positive doping strategy leads to synergistic electrochemical activity distinctly compared with single N- or B-doped materials (even much better than their sum capacity at 20 C). Moreover, due to the electron and hole-type carriers donated by nitrogen and boron atoms, the N+B codoped carbon coating tremendously enhances the electrochemical property: at the rate of 20 C, the codoped sample can elevate the discharge capacity of LFP/C from 101.1 mAh g(-1) to 121.6 mAh g(-1), and the codoped product based on commercial LiFePO4/C shows a discharge capacity of 78.4 mAh g(-1) rather than 48.1 mAh g(-1). Nevertheless, the B+N codoped sample decreases the discharge capacity of LFP/C from 101.1 mAh g(-1) to 95.4 mAh g(-1), while the commercial LFP/C changes from 48.1 mAh g(-1) to 40.6 mAh g(-1). PMID:26305802

  20. In situ fabrication of three-dimensional nitrogen and boron co-doped porous carbon nanofibers for high performance lithium-ion batteries

    Science.gov (United States)

    Zhang, Lijun; Xia, Guanglin; Guo, Zaiping; Sun, Dalin; Li, Xingguo; Yu, Xuebin

    2016-08-01

    This paper reports the fabrication of three-dimensional porous carbon nanofibers network with high doping level of nitrogen (N, 5.17 at.%) and boron (B, 6.87 at.%) through a general electrospinning strategy followed by a calcination process. The employed ammonia borane (NH3BH3, denote as AB) not only functions as a porogen reagent to generate porous structures but also as the heteroatoms source to induce N and B co-doping. Such highly unique nanoarchitectures offer remarkably improved Li storage performance including high reversible capacity (∼910 mAh g-1 at a current density of 100 mA g-1) with good cycling and rate performances.

  1. Adsorption of CH4 on nitrogen- and boron-containing carbon models of coal predicted by density-functional theory

    Science.gov (United States)

    Liu, Xiao-Qiang; Xue, Ying; Tian, Zhi-Yue; Mo, Jing-Jing; Qiu, Nian-Xiang; Chu, Wei; Xie, He-Ping

    2013-11-01

    Graphene doped by nitrogen (N) and/or boron (B) is used to represent the surface models of coal with the structural heterogeneity. Through the density functional theory (DFT) calculations, the interactions between coalbed methane (CBM) and coal surfaces have been investigated. Several adsorption sites and orientations of methane (CH4) on graphenes were systematically considered. Our calculations predicted adsorption energies of CH4 on graphenes of up to -0.179 eV, with the strongest binding mode in which three hydrogen atoms of CH4 direct to graphene surface, observed for N-doped graphene, compared to the perfect (-0.154 eV), B-doped (-0.150 eV), and NB-doped graphenes (-0.170 eV). Doping N in graphene increases the adsorption energies of CH4, but slightly reduced binding is found when graphene is doped by B. Our results indicate that all of graphenes act as the role of a weak electron acceptor with respect to CH4. The interactions between CH4 and graphenes are the physical adsorption and slightly depend upon the adsorption sites on graphenes and the orientations of methane as well as the electronegativity of dopant atoms in graphene.

  2. Hyperfine structures and Landé g{sub J}-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Verdebout, S.; Nazé, C. [Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, B 1050 Brussels (Belgium); Jönsson, P., E-mail: per.jonsson@mah.se [Faculty of Technology and Society, Group for Materials Science and Applied Mathematics, Malmö University, 205-06 Malmö (Sweden); Rynkun, P. [Institute of Theoretical Physics and Astronomy, Vilnius University, LT-01108 Vilnius (Lithuania); Godefroid, M. [Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, B 1050 Brussels (Belgium); Gaigalas, G. [Institute of Theoretical Physics and Astronomy, Vilnius University, LT-01108 Vilnius (Lithuania)

    2014-09-15

    Energy levels, hyperfine interaction constants, and Landé g{sub J}-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core–valence, and core–core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.

  3. Boron and nitrogen doping in graphene antidot lattices

    Science.gov (United States)

    Brun, Søren J.; Pereira, Vitor M.; Pedersen, Thomas G.

    2016-06-01

    Bottom-up fabrication of graphene antidot lattices (GALs) has previously yielded atomically precise structures with subnanometer periodicity. Focusing on this type of experimentally realized GAL, we perform density functional theory calculations on the pristine structure as well as GALs with edge carbon atoms substituted with boron or nitrogen. We show that p - and n -type doping levels emerge with activation energies that depend on the level of hydrogenation at the impurity. Furthermore, a tight-binding parametrization together with a Green's function method are used to describe more dilute doping. Finally, random configurations of impurities in moderately doped systems are considered to show that the doping properties are robust against disorder.

  4. Boron-nitrogen doped carbon scaffolding: organic chemistry, self-assembly and materials applications of borazine and its derivatives.

    Science.gov (United States)

    Bonifazi, Davide; Fasano, Francesco; Lorenzo-Garcia, M Mercedes; Marinelli, Davide; Oubaha, Hamid; Tasseroul, Jonathan

    2015-10-25

    Discovered by Stock and Pohland in 1926, borazine is the isoelectronic and isostructural inorganic analogue of benzene, where the C[double bond, length as m-dash]C bonds are substituted by B-N bonds. The strong polarity of such heteroatomic bonds widens the HOMO-LUMO gap of the molecule, imparting strong UV-emitting/absorption and electrical insulating properties. These properties make borazine and its derivatives valuable molecular scaffolds to be inserted as doping units in graphitic-based carbon materials to tailor their optoelectronic characteristics, and specifically their semiconducting properties. By guiding the reader through the most significant examples in the field, in this feature paper we describe the past and recent developments in the organic synthesis and functionalisation of borazine and its derivatives. These boosted the production of a large variety of tailored derivatives, broadening their use in optoelectronics, H2 storage and supramolecular functional architectures, to name a few.

  5. Boron-Filled Hybrid Carbon Nanotubes.

    Science.gov (United States)

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  6. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  7. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  8. Deep levels of nitrogen vacancies complexes in graphite-like boron nitride

    CERN Document Server

    Grinyaev, S N; Lopatin, V V

    2002-01-01

    Paper presents results of theoretical studies using methods of model pseudopotential and of extended elementary cell of deep levels of nitrogen vacancies, small clusters from di- and trivacancies of nitrogen covering nearest defects in one layer of graphite-like boron nitride. On the basis of calculated spectra and intensities of oscillators one interpreted local bands of optical absorption, luminescence, photoconductivity in pyrolytic boron nitride prior to and subsequent to irradiation by fast neutrons, protons and ions of carbon (50-150 keV). One identified not deep levels of activation of thermally stimulated luminescence and conductivity prior to and subsequent to irradiation

  9. Graphitized boron-doped carbon foams: Performance as anodes in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Elena; Camean, Ignacio; Garcia, Roberto [Instituto Nacional del Carbon (CSIC), C/Francisco Pintado Fe 26, 33011 Oviedo (Spain); Garcia, Ana B., E-mail: anabgs@incar.csic.es [Instituto Nacional del Carbon (CSIC), C/Francisco Pintado Fe 26, 33011 Oviedo (Spain)

    2011-05-30

    Highlights: > Because of the catalytic effect of boron, graphite-like foams were prepared. > The presence of substitutional boron in carbon foams improves their anodic performance. > The graphitized boron-doped foams provide reversible capacities of 310 mA h g{sup -1}. - Abstract: The electrochemical performance as potential anodes in lithium-ion batteries of several boron-doped and non-doped graphitic foams with different degree of structural order was investigated by galvanostatic cycling. The boron-doped foams were prepared by the co-pyrolysis of a coal and two boron sources (boron oxide and a borane-pyridine complex), followed by heat treatment in the 2400-2800 deg. C temperature interval. The extent of the graphitization process of the carbon foams depends on boron concentration and source. Because of the catalytic effect of boron, lightweight graphite-like foams were prepared. Boron in the foams was found to be present as carbide (B{sub 4}C), in substitutional positions in the carbon lattice (B-C), bonded to nitrogen (B-N) and forming clusters. Larger reversible lithium storage capacities with values up to {approx}310 mA h g{sup -1} were achieved by using the boron oxide-based carbon foams. Moreover, since the electrochemical anodic performance of these boron-doped foams with different degree of structural order is similar, the beneficial effect of the presence of the B-C boron phase was inferred. However, the bonding of boron with nitrogen in the pyridine borane-based has a negative effect on lithium intercalation.

  10. Synthesis and properties of low-carbon boron carbides

    International Nuclear Information System (INIS)

    This paper reports on the production of boron carbides of low carbon content (3 and CCl4 at 1273-1673 K in a chemical vapor deposition (CVD) reactor. Transmission electron microscopy (TEM) revealed that phase separation had occurred, and tetragonal boron carbide was formed along with β-boron or α-boron carbide under carbon-depleted gas-phase conditions. At temperatures greater than 1390 degrees C, graphite substrates served as a carbon source, affecting the phases present. A microstructure typical of CVD-produced α-boron carbide was observed. Plan view TEM of tetragonal boron carbide revealed a blocklike structure

  11. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  12. Computational Aspects of Carbon and Boron Nanotubes

    Directory of Open Access Journals (Sweden)

    Paul Manuel

    2010-11-01

    Full Text Available Carbon hexagonal nanotubes, boron triangular nanotubes and boron a-nanotubes are a few popular nano structures. Computational researchers look at these structures as graphs where each atom is a node and an atomic bond is an edge. While researchers are discussing the differences among the three nanotubes, we identify the topological and structural similarities among them. We show that the three nanotubes have the same maximum independent set and their matching ratios are independent of the number of columns. In addition, we illustrate that they also have similar underlying broadcasting spanning tree and identical communication behavior.

  13. Hydrogen Storage in Boron Nitride and Carbon Nanomaterials

    Directory of Open Access Journals (Sweden)

    Takeo Oku

    2014-12-01

    Full Text Available Boron nitride (BN nanomaterials were synthesized from LaB6 and Pd/boron powder, and the hydrogen storage was investigated by differential thermogravimetric analysis, which showed possibility of hydrogen storage of 1–3 wt%. The hydrogen gas storage in BN and carbon (C clusters was also investigated by molecular orbital calculations, which indicated possible hydrogen storage of 6.5 and 4.9 wt%, respectively. Chemisorption calculation was also carried out for B24N24 cluster with changing endohedral elements in BN cluster to compare the bonding energy at nitrogen and boron, which showed that Li is a suitable element for hydrogenation to the BN cluster. The BN cluster materials would store H2 molecule easier than carbon fullerene materials, and its stability for high temperature would be good. Molecular dynamics calculations showed that a H2 molecule remains stable in a C60 cage at 298 K and 0.1 MPa, and that pressures over 5 MPa are needed to store H2 molecules in the C60 cage.

  14. Nitrogen implantation effects on the chemical bonding and hardness of boron and boron nitride coatings

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S; Felter, T; Hayes, J; Jankowski, A F; Patterson, R; Poker, D; Stamler, T

    1999-02-08

    Boron nitride (BN) coatings are deposited by the reactive sputtering of fully dense, boron (B) targets utilizing an argon-nitrogen (Ar-N{sub 2}) reactive gas mixture. Near-edge x-ray absorption fine structure analysis reveals features of chemical bonding in the B 1s photoabsorption spectrum. Hardness is measured at the film surface using nanoindentation. The BN coatings prepared at low, sputter gas pressure with substrate heating are found to have bonding characteristic of a defected hexagonal phase. The coatings are subjected to post-deposition nitrogen (N{sup +} and N{sub 2}{sup +}) implantation at different energies and current densities. The changes in film hardness attributed to the implantation can be correlated to changes observed in the B 1s NEXAFS spectra.

  15. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 3000C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 10500C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  16. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  17. Effect of Nitrogen Impurity on Electronic Properties of Boron Nanotubes

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Jain

    2014-01-01

    Full Text Available For the first time we present electronic band structure and density of states for nitrogen doped hexagonal ultrathin boron nanotubes in the framework of density functional theory. The considered models of nanotubes below 5 Å diameter are armchair (3,3, zigzag (5,0, and chiral (4,2. The impurity chosen for the study is nitrogen and concentration of impurity atoms is limited to two. The study reveals that (3,3 BNT retains its metallic nature after nitrogen doping. However, metallicity gets increased which is attributed by the excess electrons of nitrogen. Further, it also brings out that (5,0 BNT which is originally metal transforms into semiconductor after nitrogen interaction and the band gap at G point increases with the impurity. Moreover, the band gap of (4,2 BNT reduces significantly and turns into semimetal for nitrogen doping. Thus, the nitrogen impurity has the predominant effect on the electronic properties of BNTs and therefore can be regarded as suitable candidates for nanoelectronic and field emission devices.

  18. BORON-NITROGEN RELATIONSHIP IN WHEAT (Triticum aestivum L. GROWN WITH THE NUTRIENT SOLUTION

    Directory of Open Access Journals (Sweden)

    Mehmet ALPASLAN

    1996-03-01

    Full Text Available The effects of boron applied 0.01, 0.1, 1.0, and 10.0 µg B/ml levels as boric acid (H3 BO3, and nitrogen applied 25, 100, 200, and 400 µg N/ml as ammonium nitrate (NH4 NO3, respectively, on the amount of dry matter yield, and boron, nitrogen and nitrate contents of wheat (Triticum aestivum L. grown in perlite medium with Ruakura nutrient solution under greenhouse conditions were investigated. Dry matter yield and nitrate contents of wheat were decreased and boron content was increased with increasing boron application. Controversially, application of nitrogen increased dry matter yield, nitrogen and nitrate contents of wheat, while decreases in boron contents. Those effects of boron and nitrogen were found to be statistically significant (P

  19. Effects of carbon doping on the electronic properties of boron nitride nanotubes: Tight binding calculation

    Science.gov (United States)

    Chegel, Raad

    2016-10-01

    The electronic properties of pure and carbon doped zigzag and armchair Boron Nitride Nanotubes (BNNTs) have been investigated based on tight binding formalism. It was found that the band gap is reduced due to substitution of Boron or Nitrogen atoms by carbon atoms and the doping effects of B- and N-substituted BNNTs are different. The applied electric field converts the carbon doped BNNTs from semiconductor to metal. The gap energy reduction shows an identical dependence to electric field and doping for both armchair and zigzag carbon doped BNNTs. Our results indicate that the band gap of carbon doped BNNTs is a function of the Impurity concentration, electric field strength and the direction between the electric field and dopant location. The band gap for C-doped BNNTs with four carbon atoms decreases linearly but for two carbon atoms, it is constant at first then decreases linearly.

  20. The energy landscape of fullerene materials: a comparison between boron, boron-nitride and carbon

    CERN Document Server

    De, Sandip; Amsler, Maximilian; Pochet, Pascal; Genovese, Luigi; Goedecker, Stefan

    2010-01-01

    Using the minima hopping global geometry optimization method on the density functional potential energy surface we study medium size and large boron clusters. Even though for isolated medium size clusters the ground state is a cage like structure they are unstable against external perturbations such as contact with other clusters. The energy landscape of larger boron clusters is glass like and has a large number of structures which are lower in energy than the cages. This is in contrast to carbon and boron nitride systems which can be clearly identified as structure seekers in our minima hopping runs. The differences in the potential energy landscape explain why carbon and boron nitride systems are found in nature whereas pure boron fullerenes have not been found.

  1. Effect of Nitrogen and Boron in Seed Yield and Yield Attributing Characters of Broccoli

    Directory of Open Access Journals (Sweden)

    A. Khanal

    2015-09-01

    Full Text Available Plant nutrient is one of the limiting factors affecting crop production. Nitrogen and boron are major nutrients in case of broccoli. So, an experiment was carried out to evaluate the effect of nitrogen and boron in seed yield and yield attributing characters of broccoli in Rampur, Chitwan during winter season. The experiment was laid out in factorial RCBD design with four levels of nitrogen and two levels of boron. Each plot consists of 25 plants which were separated by 60 * 60 cm spacing. There are altogether eight treatments replicates thrice. Local variety Calabrese was used. Significant effect of different dose of nitrogen and boron on yield attributing characters was found. Also interactive effect of nitrogen and boron in number of pods, pod length, seed yield and number of seeds per pod was found significantly different.

  2. Role of boron nutrient in nodules growth and nitrogen fixation rates in soybean genotypes under water stress conditions

    Science.gov (United States)

    Although boron has a stimulatory effect on nodule growth and nitrogen fixation, mechanisms of how boron affects nodules growth and nitrogen fixation, especially under water stress, are still unknown. The stimulatory effect of boron (B) on nodules and nitrogen fixation (NF) is influenced by biotic (s...

  3. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.

    Science.gov (United States)

    Lazar, Petr; Zbořil, Radek; Pumera, Martin; Otyepka, Michal

    2014-07-21

    Boron and nitrogen doped graphenes are highly promising materials for electrochemical applications, such as energy storage, generation and sensing. The doped graphenes can be prepared by a broad variety of chemical approaches. The substitution of a carbon atom should induce n-type behavior in the case of nitrogen and p-type behavior in the case of boron-doped graphene; however, the real situation is more complex. The electrochemical experiments show that boron-doped graphene prepared by hydroboration reaction exhibits similar properties as the nitrogen doped graphene; according to theory, the electrochemical behavior of B and N doped graphenes should be opposite. Here we analyze the electronic structure of N/B-doped graphene (at ∼5% coverage) by theoretical calculations. We consider graphene doped by both substitution and addition reactions. The density of states (DOS) plots show that graphene doped by substitution of the carbon atom by N/B behaves as expected, i.e., as an n/p-doped material. N-doped graphene also has a lower value of the workfunction (3.10 eV) with respect to that of the pristine graphene (4.31 eV), whereas the workfunction of B-doped graphene is increased to the value of 5.57 eV. On the other hand, the workfunctions of graphene doped by addition of -NH2 (4.77 eV) and -BH2 (4.54 eV) groups are both slightly increased and therefore the chemical nature of the dopant is less distinguishable. This shows that mode of doping depends significantly on the synthesis method used, as it leads to different types of behaviour, and, in turn, different electronic and electrochemical properties of doped graphene, as observed in electrocatalytic experiments. This study has a tremendous impact on the design of doped graphene systems from the point of view of synthetic chemistry.

  4. Reactivity of boron- and nitrogen-doped carbon nanotubes functionalized by (Pt, Eu) atoms toward O2 and CO: A density functional study

    Science.gov (United States)

    Abdel Aal, S.

    2016-01-01

    The adsorption behavior and electronic properties of CO and O2 molecules at the supported Pt and Eu atoms on (5,5) armchair SWCNT have been systematically investigated within density functional theory (DFT). Fundamental aspects such as adsorption energy, natural bond orbital (NBO), charge transfer, frontier orbitals and the projected density of states (PDOS) are elucidated to analyze the adsorption properties of CO and O2 molecules. The results reveal that B- and N-doping CNTs can enhance the binding strength and catalytic activity of Pt (Eu) anchored on the doped-CNT, where boron-doping is more effective. The electronic structures of supported metal are strongly influenced by the presence of gases. After adsorption of CO and O2, the changes in binding energy, charge transfer and conductance may lead to the different response in the metal-doped CNT-based sensors. It is expected that these results could provide helpful information for the design and fabrication of the CO and O2 sensing devices. The high catalytic activity of Pt supported at doped-CNT toward the interaction with CO and O2 may be attributed to the electronic resonance particularly among Pt-5d, CO-2π* and O2-2π* antibonding orbitals. In contrast to the supported Eu at doped-CNT, the Eu atom becomes more positively charged, which leads to weaken the CO adsorption and promote the O2 adsorption, consequently enhancing the activity for CO oxidation and alleviating the CO poisoning of the europium catalysts. A notable orbital hybridization and electrostatic interaction between these two species in adsorption process being an evidence of strong interaction. The electronic structure of O2 adsorbed on Eu-doped CNT resembles that of O2-, therefore the transferred charge weakens the O-O bonds and facilitates the dissociation process, which is the precondition for the oxygen reduction reaction (ORR).

  5. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  6. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  7. Hydrogen adsorption on nitrogen and boron doped graphene

    International Nuclear Information System (INIS)

    Hydrogen adsorption on boron and nitrogen doped graphene is investigated in detail by means of first-principles calculations. A comprehensive study is performed of the structural, electronic, and magnetic properties of chemisorbed hydrogen atoms and atom pairs near the dopant sites. The main effect of the substitutional atoms is charge doping which is found to greatly affect the adsorption process by increasing the binding energy at the sites closest to the substitutional species. It is also found that doping does not induce magnetism despite the odd number of electrons per atom introduced by the foreign species, and that it quenches the paramagnetic response of chemisorbed H atoms on graphene. Overall, the effects are similar for B and N doping, with only minor differences in the adsorption energetics due to different sizes of the dopant atoms and the accompanying lattice distortions. (paper)

  8. Physical properties of CVD boron-doped multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Kartick C. [Molecular Sciences Institute and School of Chemistry, University of the Witwatersrand, P.O. Wits, 2050 Johannesburg (South Africa); DST/NRF Centre of Excellence in Strong Materials, P.O. Wits, 2050 Johannesburg (South Africa); Strydom, Andre M. [Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa)], E-mail: amstrydom@uj.ac.za; Erasmus, Rudolph M.; Keartland, Jonathan M. [DST/NRF Centre of Excellence in Strong Materials, P.O. Wits, 2050 Johannesburg (South Africa); School of Physics, University of the Witwatersrand, P.O. Wits, 2050 Johannesburg (South Africa); Coville, Neil J. [Molecular Sciences Institute and School of Chemistry, University of the Witwatersrand, P.O. Wits, 2050 Johannesburg (South Africa); DST/NRF Centre of Excellence in Strong Materials, P.O. Wits, 2050 Johannesburg (South Africa)], E-mail: Neil.Coville@wits.ac.za

    2008-10-15

    The effects of boron doping and electron correlation on the transport properties of CVD boron-doped multiwalled carbon nanotubes are reported. The boron-doped multiwalled carbon nanotubes were characterized by TEM as well as Raman spectroscopy using different laser excitations (viz. 488, 514.5 and 647 nm). The intensity of the D-band laser excitation line increased after the boron incorporation into the carbon nanotubes. The G-band width increased on increasing the boron concentration, indicating the decrease of graphitization with increasing boron concentration. Electrical conductivity of the undoped and boron-doped carbon nanotubes reveal a 3-dimensional variable-range-hopping conductivity over a wide range of temperature, viz. from room temperature down to 2 K. The electrical conductivity is not found to be changed significantly by the present levels of B-doping. Electron Paramagnetic Resonance (EPR) results for the highest B-doped samples showed similarities with previously reported EPR literature measurements, but the low concentration sample gives a very broad ESR resonance line.

  9. Synthesis and characterization of boron-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ceragioli, H J; Peterlevitz, A C; Quispe, J C R; Pasquetto, M P; Sampaio, M A; Baranauskas, V [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, 13083-852 Campinas SP Brasil (Brazil); Larena, A [Department of Chemical Industrial Engineering and Environment, Universidad Politecnica de Madrid, E.T.S. Ingenieros Industriales, C/ Jose Gutierrez Abascal, Madrid (Spain)], E-mail: vitor.baranauskas@gmail.com

    2008-03-15

    Boron-doped carbon nanotubes have been prepared by chemical vapour deposition of ethyl alcohol doped with B{sub 2}O{sub 3} using a hot-filament system. Multi-wall carbon nanotubes of diameters in the range of 30-100 nm have been observed by field emission scanning electron microscopy (FESEM). Raman measurements indicated that the degree of C-C sp{sup 2} order decreased with boron doping. Lowest threshold fields achieved were 1.0 V/{mu}m and 2.1 V/{mu}m for undoped and boron-doped samples, respectively.

  10. Boron diffusion into nitrogen doped silicon films for P{sup +} polysilicon gate structures

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, Farida; Mahamdi, Ramdane; Jalabert, Laurent; Temple-Boyer, Pierre

    2003-06-23

    This paper deals with the study of the boron diffusion in nitrogen doped silicon (NIDOS) deposited from disilane Si{sub 2}H{sub 6} and ammonia NH{sub 3} for the development of P{sup +} polysilicon gate metal oxide semiconductor (MOS) devices. NIDOS films with varied nitrogen content have been boron implanted, then annealed and finally analysed by secondary ion mass spectroscopy (SIMS). In order to simulate the experimental SIMS of boron concentration profiles in the NIDOS films, a model adapted to the particular conditions of the samples elaboration, i.e. the very high boron concentration and the nitrogen content, has been established. The boron diffusion reduction in NIDOS films with increasing nitrogen rates has been evidenced by the profiles as well as by the obtained diffusion coefficients, which shows that the nitrogen incorporation reduces the boron diffusion. This has been confirmed by capacitance-voltage (C-V) measurements performed on MOS capacitors: the higher the nitrogen content, the lower the flat-band voltage. Finally, these results demonstrate that the improvement of the gate oxide quality occurs with the suppression of the boron penetration.

  11. Nitrogen-doped hydrothermal carbons

    Energy Technology Data Exchange (ETDEWEB)

    Titirici, Maria-Magdalena; White, Robin J. [Max-Planck-Institute of Colloids and Interfaces, Potsdam (Germany). Dept. of Colloid Chemistry; Zhao, Li [Max-Planck-Institute of Colloids and Interfaces, Potsdam (Germany). Dept. of Colloid Chemistry; National Center for Nanoscience and Technology, Beijing (China)

    2012-07-01

    Nitrogen doped carbon materials are now playing an important role in cutting edge innovations for energy conversion and storage technologies such as supercapacitors and proton exchange membrane fuel cells as well as in catalytic applications, adsorption and CO{sub 2} capture. The production of such materials using benign aqueous based processes, mild temperatures and renewable precursors is of great promise in addressing growing environmental concerns for cleaner power sources at a time of increasing global demand for energy. In this perspective, we show that nitrogen doped carbons prepared using sustainable processes such as ''Hydrothermal Carbonisation'' has advantages in many applications over the conventional carbons. We also summarize an array of synthetic strategies used to create such nitrogen doped carbons, and discuss the application of these novel materials. (orig.)

  12. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    Science.gov (United States)

    Rinaldo, Steven G.

    This thesis is divided into two parts. In Part I, we examine the properties of thin sheets of carbon and boron nitride. We begin with an introduction to the theory of elastic sheets, where the stretching and bending modes are considered in detail. The coupling between stretching and bending modes is thought to play a crucial role in the thermodynamic stability of atomically-thin 2D sheets such as graphene. In Chapter 2, we begin by looking at the fabrication of suspended, atomically thin sheets of graphene. We then study their mechanical resonances which are read via an optical transduction technique. The frequency of the resonators was found to depend on their temperature, as was their quality factor. We conclude by offering some interpretations of the data in terms of the stretching and bending modes of graphene. In Chapter 3, we look briefly at the fabrication of thin sheets of carbon and boron nitride nanotubes. We examine the structure of the sheets using transmission and scanning electron microscopy (TEM and SEM, respectively). We then show a technique by which one can make sheets suspended over a trench with adjustable supports. Finally, DC measurements of the resistivity of the sheets in the temperature range 600 -- 1400 C are presented. In Chapter 4, we study the folding of few-layer graphene oxide, graphene and boron nitride into 3D aerogel monoliths. The properties of graphene oxide are first considered, after which the structure of graphene and boron nitride aerogels is examined using TEM and SEM. Some models for their structure are proposed. In Part II, we look at synthesis techniques for boron nitride (BN). In Chapter 5, we study the conversion of carbon structures of boron nitride via the application of carbothermal reduction of boron oxide followed by nitridation. We apply the conversion to a wide variety of morphologies, including aerogels, carbon fibers and nanotubes, and highly oriented pyrolytic graphite. In the latter chapters, we look at the

  13. New carbon-carbon linked amphiphilic carboranyl-porphyrins as boron neutron capture agents

    International Nuclear Information System (INIS)

    Novel amphiphilic carboranyl-porphyrins have been synthesized for Boron Neutron Capture Therapy (BNCT). These compounds have carbon-carbon bonds between the carborane residues and the porphyrin meso-phenyl groups, and contain 28-31% boron by weight . (author)

  14. Carbon-rich icosahedral boron carbide designed from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Jay, Antoine; Vast, Nathalie; Sjakste, Jelena; Duparc, Olivier Hardouin [Ecole Polytechnique, Laboratoire des Solides Irradiés, CEA-DSM-IRAMIS, CNRS UMR 7642, F-91120 Palaiseau (France)

    2014-07-21

    The carbon-rich boron-carbide (B{sub 11}C)C-C has been designed from first principles within the density functional theory. With respect to the most common boron carbide at 20% carbon concentration B{sub 4}C, the structural modification consists in removing boron atoms from the chains linking (B{sub 11}C) icosahedra. With C-C instead of C-B-C chains, the formation of vacancies is shown to be hindered, leading to enhanced mechanical strength with respect to B{sub 4}C. The phonon frequencies and elastic constants turn out to prove the stability of the carbon-rich phase, and important fingerprints for its characterization have been identified.

  15. Structural Modification in Carbon Nanotubes by Boron Incorporation

    Directory of Open Access Journals (Sweden)

    Handuja Sangeeta

    2009-01-01

    Full Text Available Abstract We have synthesized boron-incorporated carbon nanotubes (CNTs by decomposition of ferrocene and xylene in a thermal chemical vapor deposition set up using boric acid as the boron source. Scanning and transmission electron microscopy studies of the synthesized CNT samples showed that there was deterioration in crystallinity and improvement in alignment of the CNTs as the boron content in precursor solution increased from 0% to 15%. Raman analysis of these samples showed a shift of ~7 cm−1in wave number to higher side and broadening of the G band with increasing boron concentration along with an increase in intensity of the G band. Furthermore, there was an increase in the intensity of the D band along with a decrease in its wave number position with increase in boron content. We speculate that these structural modifications in the morphology and microstructure of CNTs might be due to the charge transfer from boron to the graphite matrix, resulting in shortening of the carbon–carbon bonds.

  16. Growth and characterization of BCN nanotubes with high boron and nitrogen content

    Indian Academy of Sciences (India)

    Guo Zhang; Zhiye Liu; Lianping Zhang; Liqiang Jing; Keying Shi

    2013-09-01

    Multiwalled carbon nanotubes doped with boron and nitrogen (BCNTs) have been synthesized by chemical vapour deposition at temperatures ranging from 800°C to 950°C. Their morphological and structural features have been studied by transmission electron microscope, which reveal that BCNTs have bamboo-like structure. The results of X-ray photoelectron spectroscopy demonstrated that the atomic ratio of B, C and N of BCNTs is about 1:4:1, when temperature is 850°C. Electrooxidation performance of the BCNTs for NO at the modified electrodes was investigated. The results of cyclic voltammograms and the electrochemical impedance spectroscopy of BCNT-modified electrodes indicated that the activity of NO electrooxidation on 850°C-modified electrodes is much stronger than others and the charge transfer resistance of NO electroxidation BCNT-modified electrode is the least. By this means, BCNT-modified electrodes showed excellent electrode materials for NO detection and other potential applications.

  17. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  18. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to ‑41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  19. Thermodynamic Model for Calculating Activity of Nitrogen and Boron in Fe-C-B-N Molten Metal

    Institute of Scientific and Technical Information of China (English)

    WANG Shi-jun; PENG Jun; DONG Yuan-chi; LIU Li-xia; ZHOU Yun; CHEN Er-bao

    2009-01-01

    The solubility of nitrogen in Fe-C-B-N system was measured at 1 758 K,and the computational model on activity (action concentration) of nitrogen and boron was established based on phase diagram and the coexistence theory about metal melt structure model.Comparing the computed results with the experimental results,satisfactory conclusion can be obtained.The result shows that BN and B4C can exist in Fe-C-B-N molten metal at high temperature,which consequently restrains the nitrogen removal from the melt.However,B4C content is extremely low.Before graphite is precipitated,the influence of carbon on activity of nitrogen in melt is higher in ternary system than in binary system; however,this effect is contrary to that after graphite is precipitated.

  20. Closeout of Advanced Boron and Metal Loaded High Porosity Carbons.

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Eklund (deceased); T. C. Mike Chung; Henry C. Foley; Vincent H. Crespi

    2011-05-01

    The Penn State effort explored the development of new high-surface-area materials for hydrogen storage, materials that could offer enhancement in the hydrogen binding energy through a direct chemical modification of the framework in high specific-surface-area platforms. The team chemically substituted boron into the hexagonal sp2 carbon framework, dispersed metal atoms bound to the boro-carbon structure, and generated the theory of novel nanoscale geometries that can enhance storage through chemical frustration, sheet curvature, electron deficiency, large local fields and mixed hybridization states. New boro-carbon materials were synthesized by high temperature plasma, pyrolysis of boron-carbon precursor molecules, and post-synthesis modification of carbons. Hydrogen uptake has been assessed, and several promising leads have been identified, with the requirement to simultaneously optimize total surface area while maintaining the enhanced hydrogen binding energies already demonstrated.

  1. INFLUENCE RESEARCH OF COLD PLASTIC DEFORMATION ON DIFFUSION SATURATION PROCESS BY CARBON AND BORON OF THE LOW-CARBON AND BORON-CONTAINING ALLOYS

    Directory of Open Access Journals (Sweden)

    N. Yu. Filonenko

    2010-06-01

    Full Text Available This work is devoted to the study of influence of cold prestrain with degree of deformation within the range 0…40 % on diffusion saturation with boron and carbon for low-carbon and boron steels. It is determined that the plastic prestrain with degree of deformation 20 % at temperature 750 °С for the low-carbon steel promote increasing of boron-cementation layer thickness by 25 % and microhardness of perlite layer by 20 %.

  2. Subgrains and boron distribution of low carbon bainitic steels

    Institute of Scientific and Technical Information of China (English)

    Xuemin Wang; Bing Cao; Chengjia Shang; Xueyi Liu; Xinlai He

    2005-01-01

    The structure variation of deformed austenite during the relaxation stage after deformation at various temperatures in an Nb-B ultra low carbon bainitic steel and Fe-Ni alloy was studied by the thermo-simulation. Optical microscope and TEM were applied to analyze the microstructure after RPC (Relaxation-precipitation-controlling phase transformation technique) and the evolution of dislocation configuration. The particle tracking autoradiography (PTA) technique, revealing the distribution of boron, was employed to show the change of boron segregation after different relaxation times. The results indicate that during the relaxation stage the recovery occurs in the deformed austenite, the dislocations rearrange and subgrains form. During the subsequent cooling the boron will segregate at the boundaries of subgrains.

  3. Lithium insertion into boron containing carbons prepared by co-pyrolysis of coal-tar pitch and borane-pyridine complex

    Energy Technology Data Exchange (ETDEWEB)

    Machnikowski, J.; Frackowiak, E.; Kierzek, K.; Waszak, D.; Benoit, R.; Beguin, F. [Wroclaw University of Technology, Wroclaw (Poland)

    2004-03-01

    Carbon materials of boron content ranging from 0.6 to 4 wt.% were synthesized by co-pyrolysis of QI-free coal-tar pitch with the borane-pyridine complex. The growing amount of boron introduced into the carbonaceous material is associated with an increase in nitrogen content and a progressive degradation of structural and textural ordering. The structural variations of the boron-doped materials on heat treatment up to 2500{sup o}C were monitored using X-ray diffraction and X-ray photoelectron spectroscopy. The intrinsic boron acts effectively as a catalyst of graphitization above 2100{sup o}C. The carbonaceous material with boron content of about 1.5 wt% shows the highest degree of structural ordering after thermal treatment. A high amount of oxygen was found in the graphitized boronated carbons, proving that the incorporated boron induces a strong chemisorption activity of the material when exposed to air. For a series of cokes calcined at 1000 {sup o}C, the most striking effect of increasing the boron content is an increase of irreversible capacity X-irr from 0.2 to 0.7. The reversible capacity (X-rev) amounts to about 1, with a slight tendency to decrease with the boron content. Upon increasing the temperature up to 2500{sup o}C, X-irr decreases to about 0.1 in the graphitic carbons, while X-rev reaches a minimum of 0.4-0.5 at 1700{sup o}C and next increases to a value close to 1 at 2500{sup o}C. In the boron doped graphite, X-irr has a slight tendency to increase with the boron content, due to the simultaneous presence of nitrogen in these materials and their strong affinity for oxygen from the atmosphere.

  4. Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron

    Science.gov (United States)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)

    1997-01-01

    Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft.

  5. Tuning the optical response in carbon doped boron nitride nanodots

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-09-04

    Time dependent density functional theory and the hybrid B3LYP functional are used to investigate the structural and optical properties of pristine and carbon doped hexagonal boron nitride nanodots. In agreement with recent experiments, the embedded carbon atoms are found to favor nucleation. Our results demonstrate that carbon clusters of different shapes promote an early onset of absorption by generating in-gap states. The nanodots are interesting for opto-electronics due to their tunable optical response in a wide energy window. We identify cluster sizes and shapes with optimal conversion efficiency for solar radiation and a wide absorption range form infrared to ultraviolet. This journal is

  6. The heliospheric modulation of cosmic ray boron and carbon

    Directory of Open Access Journals (Sweden)

    M. S. Potgieter

    2004-11-01

    Full Text Available The observed boron to carbon ratio (B/C at Earth provides a good measure of the overall secondary to primary ratio of galactic cosmic rays. This makes B/C an important constraint and test for the validity and general applicability of theoretical and numerical models of galactic propagation and heliospheric modulation. For this purpose, the modulation of boron and carbon in the heliosphere must be understood in greater detail. The latest approach to heliospheric modulation, using a numerical model containing a termination shock, a heliosheath and particle drifts, is used to the study the modulation of the two species. This model also includes a more comprehensive set of diffusion coefficients. From this and previous work follows that the model is compatible with a variety of observations, for seven species, i.e. protons, anti-protons, electrons, positrons, helium, boron, and carbon, with the same set of parameters for both solar magnetic polarity cycles. Despite the rather flat interstellar spectrum for carbon below 100MeV/nuc, the modulated spectra at 1AU look very similar for boron and carbon, caused by adiabatic energy losses, implying that the carbon modulation should have a much larger radial gradient in the outer heliosphere below ~200-500MeV/nuc than boron. Significant modulation can be caused by the heliosheath but it is strongly dependent on energy and on the field polarity, with almost no effect at high energies to the largest effect at low energies. The solar wind termination shock has an important effect on the B to C ratio in the heliosphere, although small at Earth, during the A<0 cycle, with E<~600MeV/nuc, but it seems less significant for the A>0 cycle and with increasing tilt angles. Drift models produce different spectra for consecutive solar minimum conditions which may account for the modulation level differences between observations around 100MeV/nuc compared to around 500MeV/nuc. All factors taken into account

  7. STUDY ON THE CARDANOL-ALDEHYDE CONDENSATION POLYMER CONTAINING BORON-NITROGEN COORDINATE BOND

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Cardanol-aldehyde condensation polymer containing boron-nitrogen coordinate bond (CFBN) has been synthesized and characterized by IR, XPS, HPLC and DTA-TG. Its properties were also investigated. The results show that the coating film of CFBN has excellent physico-mechanical properties, good anticorrosive properties and stable at high temperature.

  8. Structures of Pt clusters on graphene doped with nitrogen, boron, and silicon: a theoretical study

    Institute of Scientific and Technical Information of China (English)

    Dai Xian-Qi; Tang Ya-Nan; Dai Ya-Wei; Li Yan-Hui; Zhao Jian-Hua; Zhao Bao; Yang Zong-Xian

    2011-01-01

    The structures of Pt clusters on nitrogen-, boron-, silicon- doped graphenes are theoretically studied using densityfunctional theory. These dopants (nitrogen, boron and silicon) each do not induce a local curvature in the graphene and the doped graphenes all retain their planar form. The formation energy of the silicon-graphene system is lower than those of the nitrogen-, boron-doped graphenes, indicating that the silicon atom is easier to incorporate into the graphene.All the substitutional impurities enhance the interaction between the Pt atom and the graphene. The adsorption energy of a Pt adsorbed on the silicon-doped graphene is much higher than those on the nitrogen- and boron-doped graphenes.The doped silicon atom can provide more charges to enhance the Pt-graphene interaction and the formation of Pt clusters each with a large size. The stable structures of Pt clusters on the doped-graphenes are dimeric, triangle and tetrahedron with the increase of the Pt coverage. Of all the studied structures, the tetrahedron is the most stable cluster which has the least influence on the planar surface of doped-graphene.

  9. Photoluminescence and Raman spectroscopy characterization of boron- and nitrogen-doped 6H silicon carbide

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Liu, Chuan;

    2011-01-01

    Boron - and nitrogen-doped 6H silicon carbide epilayers grown on low off-axis 6H silicon carbide substrates have been characterized by photoluminescence and Raman spectroscopy. Combined with secondary ion mass spectrometry results, preferable doping type and optimized concentration could...

  10. Simulation of swift boron clusters traversing amorphous carbon foils

    OpenAIRE

    Heredia Ávalos, Santiago; Abril Sánchez, Isabel; Denton Zanello, Cristian D.; García Molina, Rafael

    2007-01-01

    We use a simulation code to study the interaction of swift boron clusters (Bn+, n=2–6, 14) with amorphous carbon foils. We analyze different aspects of this interaction, such as the evolution of the cluster structure inside the target, the energy and angle distributions at the detector or the stopping power ratio. Our simulation code follows in detail the motion of the cluster fragments through the target and in the vacuum until reaching a detector, taking into account the following interacti...

  11. Methods of Boron-carbon Deposited Film Removal

    Science.gov (United States)

    Airapetov, A.; Terentiev, V.; Voituk, A.; Zakharov, A.

    Boron carbide was proposed as a material for in-situ renewable protecting coating for tungsten tiles of the ITER divertor. It is necessary to develop a method of gasification of boron-carbon film which deposits during B4C sputtering. In this paper the results of the first stage investigation of gasification methods of boron-carbon films are presented. Two gasification methods of films are investigated: interaction with the ozone-oxygen mixture and irradiation in plasma with the working gas composed of oxygen, ethanol, and, in some cases, helium. The gasification rate in the ozone-oxygen mixture at 250 °C for B/C films with different B/C ratio and carbon fiber composite (CFC), was measured. For B/C films the gasification rate decreased with increasing B/C ratio (from 45 nm/h at B/C=0.7 to 4 nm/h at B/C=2.1; for CFC - 15 μm/h). Films gasification rates were measured under ion irradiation from ethanol-oxygen-helium plasma at different temperatures, with different ion energies and different gas mixtures. The maximum obtained removal rate was near 230 nm/h in case of ethanol-oxygen plasma and at 150°C of the sample temperature.

  12. Investigating Carbonate System Perturbations across the Cretaceous-Palaeogene Transition using Boron Isotopes in Planktonic Foraminifera.

    Science.gov (United States)

    Henehan, M. J.; Hull, P. M.; Planavsky, N. J.; Huber, B. T.; Thomas, E.

    2014-12-01

    The interval spanning the latest Maastrichtian to the early Palaeocene has great potential in helping to elucidate the stabilising mechanisms on the Earth's carbonate system on both long and very short geological timescales, from the geologically-instantaneous production of sulphate-rich aerosols and nitrogen oxides from the K-Pg bolide impact to the relatively more gradual degassing from Deccan volcanism in the latest Maastrichtian. The extent to which ocean pH (and atmospheric CO2 concentrations) changed in response to these contrasting acidification pressures, and the timescales of their recovery, may provide unique insight into the efficiency of the Earth's oceans in buffering greenhouse gas increases (through carbonate dissolution, weathering-derived alkalinity flux, and biological carbon cycling). The boron isotope palaeo-pH proxy in planktic foraminifera is well suited to such investigations, but its application over this interval has been problematic, not least due to a scarcity of sample material and a near-complete turnover of planktonic foraminiferal species across the K-Pg boundary. To attempt to circumvent these issues, we investigate the biological influences on boron isotope signals in Maastrichtian and Danian planktonic foraminifera, with the goal of producing more accurate palaeo-pH reconstructions. With these findings in mind, we present preliminary constraints on ocean pH and carbonate system dynamics across this critical interval of geological time.

  13. Tuning the Electrochemical Reactivity of Boron- and Nitrogen-Substituted Graphene.

    Science.gov (United States)

    Wu, Jingjie; Rodrigues, Marco-Tulio F; Vajtai, Robert; Ajayan, Pulickel M

    2016-08-01

    The structural modification of nanomaterials at the atomic level has the potential to generate tailor-made components with enhanced performance for a variety of tasks. The chemical versatility of graphene has been constantly employed to fabricate multi-functional doped 2D materials with applications encompassing energy storage and electrocatalysis. Despite the many reports on boron- and nitrogen-doped graphenes, the possible synergy that arises from combining these electronically complementary elements has yet to be fully understood and explored. The techniques used for the fabrication of these nanomaterials are reviewed, along with the most recent reports on the benefits of B, N singly doping and co-doping in the electrocatalysis for oxygen reduction reactions and for energy storage in supercapacitors and lithium secondary batteries. The investigation of bulk co-doped materials has intrinsic limitations in fully understanding the real role of heteroatoms in the above applications. Ultimately, the design and creation of substituted monolayers with controlled compositions might hold the key for carbon-based energy-related applications. PMID:27028898

  14. Effect of Boron on Delayed Fracture Resistance of Medium-Carbon High Strength Spring Steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The delayed fracture behavior of medium-carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6%) was studied using sustained load delayed fracture test. The results show that delayed fracture resistance of boron containing steels is higher than that of conventional steel 60Si2MnA at the same strength level and it increases with the increase of boron content from 0. 000 5 % to 0. 001 6 %. The delayed fracture mode is mainly intergranular in the boron containing steels tempered at 350 ℃, which indicates that the addition of boron does not change the fracture character. However, the increase of boron content enlarges the size of the crack initiation area. Further study of phase analysis indicates that most boron is in solid solution, and only a very small quantity of boron is in the M3 (C, B) phase.

  15. Carbon nanotube quantum dots on hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, A., E-mail: andreas.baumgartner@unibas.ch; Abulizi, G.; Gramich, J.; Schönenberger, C. [Institute of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Watanabe, K.; Taniguchi, T. [National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2014-07-14

    We report the fabrication details and low-temperature characteristics of carbon nanotube (CNT) quantum dots on flakes of hexagonal boron nitride (hBN) as substrate. We demonstrate that CNTs can be grown on hBN by standard chemical vapor deposition and that standard scanning electron microscopy imaging and lithography can be employed to fabricate nanoelectronic structures when using optimized parameters. This proof of concept paves the way to more complex devices on hBN, with more predictable and reproducible characteristics and electronic stability.

  16. Magnetism of single-walled silicon carbide nanotubes doped by boron, nitrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Maghnaoui, Ahmed [Laboratoire de Physique, Universite du 08 mai 45, BP 401, 24000 Guelma (Algeria); Boufelfel, Ahmed, E-mail: ahboufelfel@gmail.com [Laboratoire de Physique, Universite du 08 mai 45, BP 401, 24000 Guelma (Algeria)

    2012-09-15

    We calculated, using spin polarized density functional theory, the electronic properties of zigzag (10,0) and armchair (6,6) semiconductor silicon carbide nanotubes (SiCNTs) doped once at the time with boron, nitrogen, and oxygen. We have looked at the two possible scenarios where the guest atom X (B, N, O), replaces the silicon X{sub Si}, or the carbon atom X{sub C}, in the unit cell. We found that in the case of one atom B - SiCNT replacing a carbon atom position annotated by B{sub C} exhibits a magnetic moment of 1 {mu}{sub B}/cell in both zigzag and armchair nanotubes. Also, B replacing Si, (B{sub Si}), induce a magnetic moment of 0.46 {mu}{sub B}/cell in the zigzag (10,0) but no magnetic moment in armchair (6,6). For N substitution; (N{sub C}) and (N{sub Si}) each case induce a magnetic moment of 1 {mu}{sub B}/cell in armchair (6,6), while N{sub Si} give rise to 0.75 {mu}{sub B}/cell in zigzag (10,0) and no magnetic moment for N{sub C}. In contrast the case of O{sub C} and O{sub Si} did not produce any net magnetic moment in both zigzag and armchair geometries. - Highlights: Black-Right-Pointing-Pointer Calculation scheme the one implemented in the SIESTA. Black-Right-Pointing-Pointer Materials studied SiCNT, B - SiCNT, N - SiCNT and O - SiCNT. Black-Right-Pointing-Pointer Magnetism in single wall SiCNTs when one atom of C or Si is replaced by B or N zigzag (10,0) and armchair (6,6).

  17. Boron

    Science.gov (United States)

    ... an eye wash. Boron was used as a food preservative between 1870 and 1920, and during World Wars ... chemical symbol), B (symbole chimique), Borate, Borate de Sodium, Borates, Bore, Boric Acid, Boric Anhydride, Boric Tartrate, ...

  18. Effect of nitrogen on deposition and field emission properties of boron-doped micro-and nano-crystalline diamond films

    Institute of Scientific and Technical Information of China (English)

    L.A. Li; S.H. Cheng; H.D. Li; Q. Yu; J.W. Liu; X.Y. Lv

    2010-01-01

    In this paper, we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition. The diamond films consisting of micro-grains (nano-grains) were realized with low (high) boron source flow rate during the growth processes. The transition of micro-grains to nano-grains is speculated to be strongly (weekly) related with the boron (nitrogen) flow rate. The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate. The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples, which are related to the combined phase composition, boron doping level and texture structure. There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.

  19. Determination of nitrogen in boron carbide by instrumental photon activation analysis.

    Science.gov (United States)

    Merchel, Silke; Berger, Achim

    2007-05-01

    Boron carbide is widely used as industrial material, because of its extreme hardness, and as a neutron absorber. As part of a round-robin exercise leading to certification of a new reference material (ERM-ED102) which was demanded by the industry we analysed nitrogen in boron carbide by inert gas fusion analysis (GFA) and instrumental photon activation analysis (IPAA) using the 14N(gamma,n)13N nuclear reaction. The latter approach is the only non-destructive method among all the methods applied. By using photons with energy below the threshold of the 12C(gamma,n)11C reaction, we hindered activation of matrix and other impurities. A recently installed beam with a very low lateral activating flux gradient enabled us to homogeneously activate sample masses of approximately 1 g. Taking extra precautions, i.e. self-absorption correction and deconvolution of the complex decay curves, we calculated a nitrogen concentration of 2260+/-100 microg g-1, which is in good agreement with our GFA value of 2303+/-64 microg g-1. The values are the second and third highest of a rather atypical (non-S-shape) distribution of data of 14 round-robin participants. It is of utmost importance for the certification process that our IPAA value is the only one not produced by inert gas fusion analysis and, therefore, the only one which is not affected by a possible incomplete release of nitrogen from high-melting boron carbide.

  20. Growth evaluation of spondias tuberosa rootsctocks in the substrate fertilization with nitrogen and boron.

    Directory of Open Access Journals (Sweden)

    Cleiton José de Oliveira

    2009-08-01

    Full Text Available The main goal of this works was evaluate the effect of nitrogen and boron doses, in the rootstocks ‘umbu’ (Spondias tuberosa Arruda Câmara. The experiment it was led at CCA/UFPB-Campus II, located in the Areia city, state of Paraiba in Brazil. The treatments were five levels of nitrogen (0 to 4,50 g dm-3 as ureia (45% N, and five boron doses (0 to 3,0 mg dm-3, as borax (11% B, applied in the subtract constituted by the mixture of 75% of soil and 25% of manure bovine, in the randomized blocks design, with four repetitions. The experimental unit was constituted of three recipient containing three seedlings. It was evaluated height and the diameter of the stem of the seedlings, besides the mass of the matter evaporates and the areas of the root system and aerial part. The increase of the levels of nitrogen resulted in smaller growth of the seedlings. The application of 3 mg dm-3 of the boron provided the largest growth of the aerial parts and root.Key-words: Spondias tuberosa, mixture, fertilization

  1. Wich Parameter of the Carbonate System Influences the Boron Isotopic Composition and the Boron Calcium Ratio in Foraminiferal Tests?

    Science.gov (United States)

    Kaczmarek, K.; Nehrke, G.; Horn, I.; Langer, G.; Misra, S.; Bijma, J.

    2013-12-01

    We performed culture experiments with the benthic symbiont bearing foraminifer Amphistegina lessonii in order to determine which parameter of the marine carbonate system influences the boron isotopic composition (δ11B) and the boron calcium ratio (B/Ca) in the test. A. lessonii grew for two months in treatments of culture media with decoupled pH-carbonate chemistry. We measured δ11B and B/Ca simultaneously on single tests using a recently new developed mass spectrometric technique. Our results show a clear pH dependence on δ11B. The B/Ca in the shell show a positive correlation with aqueous B(OH)4-/HCO3-.

  2. Carbon-nitrogen interactions in forest ecosystems

    DEFF Research Database (Denmark)

    Gundersen, Per; Berg, Bjørn; Currie, W.S.;

    This report is a summary of the main results from the EU project “CarbonNitrogen Interactions in Forest Ecosystems” (CNTER). Since carbon (C) and nitrogen (N) are bound together in organic matter we studied both the effect of N deposition on C cycling in forest ecosystems, and the effect of C...... accumulation on N storage and release. Based on compiled databases on element pools and fluxes from several hundred forest sites, process studies in long-term nitrogen manipulation experiments and modelling efforts we estimated C sequestration and N retention in European forest soils. Further, we studied...... the impact of forest management on C sequestration, N retention and N leaching....

  3. Synthesis of boron and nitrogen doped graphene supporting PtRu nanoparticles as catalysts for methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jiming; Zhou, Yingke, E-mail: zhouyk888@hotmail.com; Tian, Xiaohui; Xu, Xiao; Zhu, Hongxi; Zhang, Shaowei; Yuan, Tao

    2014-10-30

    Highlights: • A single-step heat treatment approach is developed to synthesize boron and nitrogen doped graphene supporting PtRu nanocatalysts. • The introduction of boron or nitrogen containing function groups into graphene can modulate the particle size and dispersion of the supporting PtRu nanoparticles. • The optimized catalysts present high electrocatalytic activity and excellent stability for methanol oxidation reaction. - Abstract: In this study, we demonstrate a single-step heat treatment approach to synthesize boron and nitrogen doped graphene supporting PtRu electrocatalysts for methanol electro-oxidation reaction. The reduction of graphene oxide, boron or nitrogen doping of graphene and loading of PtRu nanoparticles happened simultaneously during the reaction process. The morphologies and microstructures of the as-prepared catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic methanol oxidation activity and durability of the obtained catalysts were evaluated by the cyclic voltammetry and chronoamperometric techniques. The results reveal that the boron and nitrogen doped graphene supporting PtRu electrocatalysts can be successfully prepared by the single step heat treatment technique, and the introduction of boron or nitrogen containing function groups into the reduced graphene sheets could modulate the particle size and dispersion of the supporting PtRu nanoparticles and improve the electrocatalytic performance of methanol oxidation reaction. The optimal annealing temperature is 800 °C, the preferable heat treatment time is 60 min for the nitrogen-doped catalysts and 90 min for the boron-doped catalysts, and the catalysts prepared under such conditions present superior catalytic activities for methanol oxidation than those prepared under other heat treatment conditions.

  4. Synthesis of boron and nitrogen doped graphene supporting PtRu nanoparticles as catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Highlights: • A single-step heat treatment approach is developed to synthesize boron and nitrogen doped graphene supporting PtRu nanocatalysts. • The introduction of boron or nitrogen containing function groups into graphene can modulate the particle size and dispersion of the supporting PtRu nanoparticles. • The optimized catalysts present high electrocatalytic activity and excellent stability for methanol oxidation reaction. - Abstract: In this study, we demonstrate a single-step heat treatment approach to synthesize boron and nitrogen doped graphene supporting PtRu electrocatalysts for methanol electro-oxidation reaction. The reduction of graphene oxide, boron or nitrogen doping of graphene and loading of PtRu nanoparticles happened simultaneously during the reaction process. The morphologies and microstructures of the as-prepared catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic methanol oxidation activity and durability of the obtained catalysts were evaluated by the cyclic voltammetry and chronoamperometric techniques. The results reveal that the boron and nitrogen doped graphene supporting PtRu electrocatalysts can be successfully prepared by the single step heat treatment technique, and the introduction of boron or nitrogen containing function groups into the reduced graphene sheets could modulate the particle size and dispersion of the supporting PtRu nanoparticles and improve the electrocatalytic performance of methanol oxidation reaction. The optimal annealing temperature is 800 °C, the preferable heat treatment time is 60 min for the nitrogen-doped catalysts and 90 min for the boron-doped catalysts, and the catalysts prepared under such conditions present superior catalytic activities for methanol oxidation than those prepared under other heat treatment conditions

  5. 造礁珊瑚碳、氮、硼同位素的海洋酸化指示意义%Isotopes ofCarbon, Nitrogen,Boron inReef Coral asProxies ofOcean Acidification

    Institute of Scientific and Technical Information of China (English)

    韩韬; 余克服; 陶士臣

    2016-01-01

    Ocean acidification, caused by the increasing atmospheric CO2levels, has not only decreased seawater pH, but also changed the carbonate equilibrium so that the aragonite saturation state has decreased, which has lead to the decrease of calcification rates. Researches show thatd13C,d11B andd15N of the coral skeleton have the capacity of recording Suess Effect, productivity, seawater pH and nutrient source. The main characteristics are: itsd11Brecords seawater pH,d13C records sea waterdissolved inorganic carbon(DIC)d13C and productivity, andd15N records terrestrial input. The combination of those proxies can indicate “the shelf carbon pumping” of the South China Sea and the coastal pollution effects on ocean acidification. However, researches on records of ocean acidification in coral reefs are insufficient, our understanding of ocean acidification, climate variability and global carbon, nitrogen cycle can be deepened by the application of such combination, which may be an important tool of revealing sea water pH change regularity.%大气CO2体积分数升高导致的海洋酸化不仅会降低海水pH,还会改变其碳酸盐平衡体系,使得海水中文石饱和度(Ω)降低,相应地会降低珊瑚钙化的速率。已有研究表明:珊瑚骨骼δ13C、δ11B和δ15N具有记录Suess Effect、生物生产力、海水pH值以及营养源的能力;主要表现为:δ11B记录的pH值、δ13C记录的海水无机碳库(DIC)δ13C和生物生产力,以及δ15N记录的陆源物质输送量相结合,可用来指示受季风影响的南海“大陆架碳泵”和近海污染与海洋酸化的联系。目前关于珊瑚对海洋酸化的记录研究仍相对较少,珊瑚碳-氮-硼同位素组合的应用将会加深对于海洋酸化与气候变率和全球碳、氮循环的关系的认识,可能成为揭示海水pH值变化规律性的重要手段。

  6. Resonance of graphene nanoribbons doped with nitrogen and boron: a molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Ye Wei

    2014-05-01

    Full Text Available Based on its enticing properties, graphene has been envisioned with applications in the area of electronics, photonics, sensors, bio-applications and others. To facilitate various applications, doping has been frequently used to manipulate the properties of graphene. Despite a number of studies conducted on doped graphene regarding its electrical and chemical properties, the impact of doping on the mechanical properties of graphene has been rarely discussed. A systematic study of the vibrational properties of graphene doped with nitrogen and boron is performed by means of a molecular dynamics simulation. The influence from different density or species of dopants has been assessed. It is found that the impacts on the quality factor, Q, resulting from different densities of dopants vary greatly, while the influence on the resonance frequency is insignificant. The reduction of the resonance frequency caused by doping with boron only is larger than the reduction caused by doping with both boron and nitrogen. This study gives a fundamental understanding of the resonance of graphene with different dopants, which may benefit their application as resonators.

  7. Hot rolling of chromium - nickel - manganese stainless steel containing nitrogen and boron

    International Nuclear Information System (INIS)

    The strength of stainless steel of the 03Kh2ON16AG6 type increases perceptibly with an increase in the nitrogen content from 0.11 to 0.37%. At the same time, however, its ductility in the region of hot deformation temperatures (red brittleness range of 800 to 1,000 deg C) decreases. Microalloying with boron (0.002 to 0.005% by calculation) permits enhancing the hot ductility to an acceptable level without adversely affecting the working properties. The mechaniusm of boron effect is analyzed. The temperature at which ingots are heated prior to rolling to achieve the desired effect must be sufficiently low. Optimum condition for two stage heating of 6.2-ton ingots are recommeded

  8. Effect of boron on hot strips of low carbon steel produced by compact strip production

    Institute of Scientific and Technical Information of China (English)

    Hao Yu; Yonglin Kang

    2008-01-01

    The effect of boron on hot strips of low carbon steel produced by compact strip production (CSP) to reduce the strength to a certain degree was investigated, which is quite different from that of high-strength low alloy steel. The mechanical properties and microstructural evolution of the hot strip were studied using optical microscopy and tensile tests. By means of an electrolytic disso- lution technique and Thermo-Cal calculation, the precipitates containing boron were analyzed and detected. From the electron back- scattered diffraction analysis, it can be deciphered whether the microstructure has recrystallized or not. Furthermore, the effect of boron segregation on the recrystallization or non-recrystallization conditions can be distinguished. The segregation behavior of boron was investigated in boron-containing steel. The nonequilibrium segregation of boron during processing was discussed on the basis of the forming complexes with vacancies that migrate to the boundaries prior to annihilation, which was confirmed by the subsequent cold rolling with annealing experiments.

  9. Hydrogen storage by boron-nitrogen heterocycles: a simple route for spent fuel regeneration.

    Science.gov (United States)

    Campbell, Patrick G; Zakharov, Lev N; Grant, Daniel J; Dixon, David A; Liu, Shih-Yuan

    2010-03-17

    We describe a new hydrogen storage platform based on well-defined BN heterocyle materials. Specifically, we demonstrate that regeneration of the spent fuel back to the charged fuel can be accomplished using molecular H(2) and H(-)/H(+) sources. Crystallographic characterization of intermediates along the regeneration pathway confirms our structural assignments and reveals unique bonding changes associated with increasing hydrogen content on boron and nitrogen. Synthetic access to the fully charged BN cyclohexane fuels will now enable investigations of these materials in hydrogen desorption studies. PMID:20214402

  10. On The Cosmic Origins Of Carbon & Nitrogen

    CERN Document Server

    Henry, R B C; Köppen, J

    2001-01-01

    We employ analytical and numerical chemical evolution models to study observed trends in abundance ratios involving carbon, nitrogen, and oxygen. Several sets of published stellar yields for both intermediate-mass and massive stars are considered, and the most appropriate sets are selected through the use of analytical models. These yields are then used in the numerical models to match observed data trends in C/O, N/O, and O/H. We conclude that the principal production site for carbon is massive stars, while that for nitrogen is intermediate-mass stars.

  11. Modelling the carbon and nitrogen cycles

    Directory of Open Access Journals (Sweden)

    Costas A Varotsos

    2014-04-01

    Full Text Available The issues of air pollution are inextricably linked to the mechanisms underlying the physicochemical functioning of the biosphere which together with the atmosphere, the cryosphere, the lithosphere, and the hydrosphere constitute the climate system. We herewith present a review of the achievements and unresolved problems concerning the modeling of the biochemical cycles of basic chemicals of the climate system, such as carbon and nitrogen. Although the achievements in this area can roughly describe the carbon and nitrogen cycles, serious problems still remain associated with the accuracy and precision of the processes and assessments employed in the relevant modeling.

  12. Worldwide organic soil carbon and nitrogen data

    Energy Technology Data Exchange (ETDEWEB)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  13. Determination of oxygen, carbon and nitrogen in calcium by the gamma activation method

    International Nuclear Information System (INIS)

    Gamma-activation determination of oxygen, carbon and nitrogen in technical calcium is described. The method involves (γ,n) reactions of 16O, 12C and 14N. To determine the concentration of the admixtures the activities of 15O, 11C and 13N have been compared with those of the reference samples (LAVSAN polyester, boron nitride and aluminium nitride). Upon irradiation the calcium samples have undergone surface cleaning by 20-30 sec. etching in concentrated hydrochloric acid. Because of the matrix activation and the presence of other admixtures the determination of oxygen, carbon and nitrogen requires their radiochemical isolation. The average concentrations of oxygen, carbon and nitrogen in six calcium samples have been 3x10sup(-1), 3x10sup(-3) and 7x10sup(-3) % wt

  14. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    International Nuclear Information System (INIS)

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid

  15. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  16. Influence of boron on strain hardening behaviour and ductility of low carbon hot rolled steel

    International Nuclear Information System (INIS)

    Highlights: → Unique feature of low strain hardening exponent (n) with high total elongation has been discussed in industrially produced low carbon boron containing steel. → n has been correlated with the micro structural changes occurring during deformation of steel. → This feature of low n and high % elongation has potential for higher cold reducibility. → The work is being reported for the first time on industrially produced low carbon boron containing steel. - Abstract: The beneficial effect of boron on mechanical properties of low carbon Al-killed steel has been reported in recent past. However, the effect of boron on strain hardening exponent (n) and ductility has not been fully understood. This aspect has been discussed in present work. The results of mill trials with reference to n and ductility with boron added steel are compared to those for commercial grade. The lowering of 'n' with increased total elongation in boron bearing steel has been related to the microstructural evolution as a result of boron addition.

  17. Formation of Boron-Carbon Nanosheets and Bilayers in Boron-Doped Diamond: Origin of Metallicity and Superconductivity.

    Science.gov (United States)

    Polyakov, S N; Denisov, V N; Mavrin, B N; Kirichenko, A N; Kuznetsov, M S; Martyushov, S Yu; Terentiev, S A; Blank, V D

    2016-12-01

    The insufficient data on a structure of the boron-doped diamond (BDD) has frustrated efforts to fully understand the fascinating electronic properties of this material and how they evolve with doping. We have employed X-ray diffraction and Raman scattering for detailed study of the large-sized BDD single crystals. We demonstrate a formation of boron-carbon (B-C) nanosheets and bilayers in BDD with increasing boron concentration. An incorporation of two boron atoms in the diamond unit cell plays a key role for the B-C nanosheets and bilayer formation. Evidence for these B-C bilayers which are parallel to {111} planes is provided by the observation of high-order, super-lattice reflections in X-ray diffraction and Laue patterns. B-C nanosheets and bilayers minimize the strain energy and affect the electronic structure of BDD. A new shallow acceptor level associated with B-C nanosheets at ~37 meV and the spin-orbit splitting of the valence band of ~6 meV are observed in electronic Raman scattering. We identified that the superconducting transitions occur in the (111) BDD surfaces only. We believe that the origin of Mott and superconducting transitions is associated with the two-dimensional (2D) misfit layer structure of BDD. A model for the BDD crystal structure, based on X-ray and Raman data, is proposed and confirmed by density functional theoretical calculation. PMID:26754937

  18. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  19. Irradiation studies on carbon nanotube-reinforced boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Aitkaliyeva, Assel [Department of Materials Science and Engineering, Texas A and M University, College Station, TX 77843 (United States); McCarthy, Michael C.; Jeong, Hae-Kwon [Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Shao, Lin, E-mail: lshao@ne.tamu.edu [Department of Materials Science and Engineering, Texas A and M University, College Station, TX 77843 (United States); Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States)

    2012-02-01

    Radiation response of carbon nanotube (CNT) reinforced boron carbide composite has been studied for its application as a structural component in nuclear engineering. The composite was bombarded by 140 keV He ions at room temperature to a fluence ranging from 1 Multiplication-Sign 10{sup 14} to 1 Multiplication-Sign 10{sup 17} cm{sup -2}. Two-dimensional Raman mapping shows inhomogeneous distribution of CNTs, and was used to select regions of interest for damage characterization. For CNTs, the intensities ratio of D-G bands (I{sub D}/I{sub G}) increased with fluence up to a certain value, and decreased at the fluence of 5 Multiplication-Sign 10{sup 16} cm{sup -2}. This fluence also corresponds to a trend break in the plot of FWHM (full width at half maximum) of G band vs. I{sub D}/I{sub G} ratio, which indicates amorphization of CNTs. The study shows that Raman spectroscopy is a powerful tool to quantitatively characterize radiation damage in CNT-reinforced composites.

  20. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.L. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Tang, Y.; Yang, L.; Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y.; Cui, X. [Canadian Light Source Inc., 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada)

    2015-08-31

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B{sub 4}C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B{sub 4}C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp{sup 3} bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp{sup 3} bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp{sup 3} bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films.

  1. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  2. In Situ Observation of Phase Transformation in Low-Carbon, Boron-Treated Steels

    Science.gov (United States)

    Zhang, Di; Shintaku, Yoshiaki; Suzuki, Shuichi; Komizo, Yu-Ichi

    2012-02-01

    It is known that adding the appropriate amount of boron to steels dramatically increases their hardness and toughness as a result of the transition of the microstructure from grain boundary nucleation to intragranular nucleation. In this study, precipitation and phase transformation kinetics in heat-affected zones of low-carbon, boron-treated steels are observed directly by high-temperature laser scanning confocal microscopy. The effects of boron content and austenite grain size on the phase transformation process are investigated systematically by quantifying the transformation product, the transformation start temperature, the average length of the ferrite plates, and the average number of potent nucleation sites. Finally, detailed methods for controlling and optimizing the microstructure in the heat-affected zones of low-carbon, boron-treated steels are discussed.

  3. Soil Carbon and Nitrogen Cycle Modeling

    Science.gov (United States)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased

  4. Melting and spheroidization of hexagonal boron nitride in a microwave-powered, atmospheric pressure nitrogen plasma `

    Energy Technology Data Exchange (ETDEWEB)

    Gleiman, S. S. (Seth S.); Phillips, J. (Jonathan)

    2001-01-01

    We have developed a method for producing spherically-shaped, hexagonal phase boron nitride (hBN) particles of controlled diameter in the 10-100 micron size range. Specifically, platelet-shaped hBN particles are passed as an aerosol through a microwave-generated, atmospheric pressure, nitrogen plasma. In the plasma, agglomerates formed by collisions between input hBN particles, melt and forms spheres. We postulate that this unprecedented process takes place in the unique environment of a plasma containing a high N-atom concentration, because in such an environment the decomposition temperature can be raised above the melting temperature. Indeed, given the following relationship [1]: BN{sub (condensed)} {leftrightarrow} B{sub (gas)} + N{sub (gas)}. Standard equilibrium thermodynamics indicate that the decomposition temperature of hBN is increased in the presence of high concentrations of N atoms. We postulate that in our plasma system the N atom concentration is high enough to raise the decomposition temperature above the (undetermined) melting temperature. Keywords Microwave plasma, boron nitride, melting, spherical, thermodynamics, integrated circuit package.

  5. Closo-Carborane-metal complexes containing metal-carbon and metal-boron sigma-bonds

    International Nuclear Information System (INIS)

    This paper examines the metal derivatives of the closo-carboranes formed through carborane carbon-metal and carborane boron-metal bonds. In order to provide a better perspective of the closo-carborane-metal compounds the authors include derivatives containing carboranyl groups bonded to boron and silicon, which are normally classified as nonmetals. The structures, nomenclature system, and general preparative methods of the closo-carboranes are examined

  6. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid

    OpenAIRE

    Zohdi, Nima; Mahdavi, Fariba; Abdullah, Luqman Chuah; Choong, Thomas SY

    2014-01-01

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of ad...

  7. The electronic structure of graphene tuned by hexagonal boron nitrogen layers: Semimetal-semiconductor transition

    Science.gov (United States)

    Liu, Ming-Yang; Chen, Qing-Yuan; Ma, Tai; He, Yao; Cao, Chao

    2016-05-01

    The electronic structure of graphene and hexagonal boron nitrogen (G/h-BN) systems have been carefully investigated using the pseudo-potential plane-wave within density functional theory (DFT) framework. We find that the stacking geometries and interlayer distances significantly affect the electronic structure of G/h-BN systems. By studying four stacking geometries, we conclude that the monolayer G/h-BN systems should possess metallic electronic properties. The monolayer G/h-BN systems can be transited from metallicity to semiconductor by increasing h-BN layers. It reveals that the alteration of interlayer distances 2.50-3.50 Å can obtain the metal-semiconductor-semimetal variation and a tunable band gap for G/h-BN composite systems. The band dispersion along K-H direction is analogous to the band of rhombohedral graphite when the G/h-BN systems are semiconducting.

  8. Electronic properties of graphene nanoribbon doped by boron/nitrogen pair: a first-principles study

    Institute of Scientific and Technical Information of China (English)

    Xiao Jin; Yang Zhi-Xiong; Xie Wei-Tao; Xiao Li-Xin; Xu Hui; OuYang Fang-Ping

    2012-01-01

    By using the first-principles calculations,the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at the edges of GNR and B/N pair doping in GNR is easier to carry out than single B doping and unbonded B/N co-doping in GNR.The electronic structure of GNR doped by B/N pair is very sensitive to doping site besides the ribbon width and chirality. Moreover,B/N pair doping can selectively adjust the energy gap of armchair GNR and can induce the semimetal-semiconductor transmission for zigzag GNR.This fact may lead to a possible method for energy band engineering of GNRs and benefit the design of graphene electronic device.

  9. Pentagonal monolayer crystals of carbon, boron nitride, and silver azide

    Energy Technology Data Exchange (ETDEWEB)

    Yagmurcukardes, M., E-mail: mehmetyagmurcukardes@iyte.edu.tr; Senger, R. T., E-mail: tugrulsenger@iyte.edu.tr [Department of Physics, Izmir Institute of Technology, 35430 Urla, Izmir (Turkey); Sahin, H.; Kang, J.; Torun, E.; Peeters, F. M. [Department of Physics, University of Antwerp, Campus Groenenborgerlaan, 2020, Antwerp (Belgium)

    2015-09-14

    In this study, we present a theoretical investigation of structural, electronic, and mechanical properties of pentagonal monolayers of carbon (p-graphene), boron nitride (p-B{sub 2}N{sub 4} and p-B{sub 4}N{sub 2}), and silver azide (p-AgN{sub 3}) by performing state-of-the-art first principles calculations. Our total energy calculations suggest feasible formation of monolayer crystal structures composed entirely of pentagons. In addition, electronic band dispersion calculations indicate that while p-graphene and p-AgN{sub 3} are semiconductors with indirect bandgaps, p-BN structures display metallic behavior. We also investigate the mechanical properties (in-plane stiffness and the Poisson's ratio) of four different pentagonal structures under uniaxial strain. p-graphene is found to have the highest stiffness value and the corresponding Poisson's ratio is found to be negative. Similarly, p-B{sub 2}N{sub 4} and p-B{sub 4}N{sub 2} have negative Poisson's ratio values. On the other hand, the p-AgN{sub 3} has a large and positive Poisson's ratio. In dynamical stability tests based on calculated phonon spectra of these pentagonal monolayers, we find that only p-graphene and p-B{sub 2}N{sub 4} are stable, but p-AgN{sub 3} and p-B{sub 4}N{sub 2} are vulnerable against vibrational excitations.

  10. INTEGRATED NITROGEN AND BORON FERTILIZATION IMPROVES THE PRODUCTIVITY AND OIL QUALITY OF SUNFLOWER GROWN IN A CALCAREOUS SOIL

    OpenAIRE

    SHEHZAD, Muhammad Asif; Maqsood, Muhammad

    2015-01-01

    Among biotic and abiotic factors, imbalanced plant nutrition is more indispensable for low sunflower productivity. To assess the interaction behavior of nitrogen with boron on sunflower growth, yield and its oil quality in alkaline-calcareous soils, a field experiment was conducted for two consecutive growing seasons of 2011 and 2012. Sunflower hybrid (Helianthus annuus ‘Hysun-33’) was grown on sandy clay loam soil that was amended with diverse boron rates of 0, 2, 4, and 6 kg ha-1 under vari...

  11. Nitrogen in highly crystalline carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ducati, C; Koziol, K; Stavrinadis, A; Friedrichs, S; Windle, A H; Midgley, P A [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2006-02-22

    Multiwall carbon nanotubes (MWCNTs) with an unprecedented degree of internal order were synthesised by chemical vapour deposition (CVD) adding a nitrogen-containing compound to the hydrocarbon feedstock. Ferrocene was used as the metal catalyst precursor. The remarkable crystallinity of these nanotubes lies both in the isochirality and in the crystallographic register of their walls, as demonstrated by electron diffraction and high resolution electron microscopy experiments. High resolution transmission electron microscopy analysis shows that the walls of the nanotubes consist of truncated stacked cones, instead of perfect cylinders, with a range of apex angles that appears to be related to the nitrogen concentration in the synthesis process. The structure of armchair, zigzag and chiral nanotubes is modelled and discussed in terms of density of topological defects, providing an interesting comparison with our microscopy experiments. A growth mechanism based on the interplay of base- and tip-growth is proposed to account for our experimental observations.

  12. Study of Nitrogen Effect on the Boron Diffusion during Heat Treatment in Polycrystalline Silicon/Nitrogen-Doped Silicon Thin Films

    Science.gov (United States)

    Saci, Lynda; Mahamdi, Ramdane; Mansour, Farida; Boucher, Jonathan; Collet, Maéva; Bedel Pereira, Eléna; Temple-Boyer, Pierre

    2011-05-01

    The present paper studies the boron (B) diffusion in nitrogen (N) doped amorphous silicon (a-Si) layer in original bi-layer B-doped polycrystalline silicon (poly-Si)/in-situ N-doped Si layers (NIDOS) thin films deposited by low pressure chemical vapor deposition (LPCVD) technique. The B diffusion in the NIDOS layer was investigated by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR) analysis. A new extended diffusion model is proposed to fit the SIMS profile of the bi-layer films. This model introduces new terms which take into account the effect of N concentration on the complex diffusion phenomena of B atoms in bi-layer films. SIMS results show that B diffusion does not exceed one third of NIDOS layer thickness after annealing. The reduction of the B diffusion in the NIDOS layer is due to the formation of complex B-N as shown by infrared absorption measurements. Electrical measurements using four-probe and Hall effect techniques show the good conductivity of the B-doped poly-Si layer after annealing treatment.

  13. Study of the effect of nano-sized precipitates on the mechanical properties of boron-added low-carbon steels by neutron scattering techniques.

    Science.gov (United States)

    Seong, B S; Cho, Y R; Shin, E J; Kim, S I; Choi, S-H; Kim, H R; Kim, Y J

    2008-10-01

    Small-angle neutron scattering (SANS) and neutron powder diffraction (ND) techniques were used to study quantitatively the effect of nano-sized precipitates and boron addition on the mechanical properties of low-carbon steels. SANS was used to evaluate nano-sized precipitates, smaller than about 600 A in diameter, and ND was used to determine the weight fraction of the cementite precipitates. Fine core-shell structured spherical precipitates with an average radius of ~50 A, such as MnS and/or CuS, surrounded by BN layers were observed in the boron-added (BA) low-carbon steels; fine spherical precipitates with an average radius of ~48 A were mainly observed in the boron-free (BF) low-carbon steels. In the BA steels, the number of boron precipitates, such as BN, Fe(3)(C,B) and MnS, surrounded by BN layers increased drastically at higher hot-rolling temperatures. The volume fraction of the fine precipitates of the BA steels was higher than that of the BF steels; this difference is related to the rapid growth of the BN layers on the MnS and CuS precipitates. Boron addition to low-carbon steels resulted in a reduction in strength and an improvement in elongation; this behaviour is related to the reduction of the solute carbon and the nitrogen contents in the ferrite matrix caused by the precipitation of BN, as well by the increase in the volume fraction of the cementites. PMID:19461851

  14. Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment

    CERN Document Server

    Adriani, O; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Danilchenko, I A; De Donato, C; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergé, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Panico, B; Papini, P; Pearce, M; Picozza, P; Pizzolotto, C; Ricci, M; Ricciarini, S B; Rossetto, L; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N; Zverev, V G

    2014-01-01

    The propagation of cosmic rays inside our galaxy plays a fundamental role in shaping their injection spectra into those observed at Earth. One of the best tools to investigate this issue is the ratio of fluxes for secondary and primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive probe to investigate propagation mechanisms. This paper presents new measurements of the absolute fluxes of boron and carbon nuclei, as well as the B/C ratio, from the PAMELA space experiment. The results span the range 0.44 - 129 GeV/n in kinetic energy for data taken in the period July 2006 - March 2008.

  15. Synthesis and oxidation behavior of boron-substituted carbon powders by hot filament chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Boron-substituted carbon powder, BxC1-x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared BxC1-x samples can be controlled by varying the relative proportions of methane and diborane. X-ray diffraction, transmission electron microscopy, and electron energy loss spectrum confirm the successful synthesis of an amorphous BC5 compound, which consists of 10―20 nm particles with disk-like morphology. Thermogravimetry measurement shows that BC5 compound starts to oxidize ap-proximately at 620℃ and has a higher oxidation resistance than carbon.

  16. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    Science.gov (United States)

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  17. Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?

    Science.gov (United States)

    Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun

    2015-02-21

    Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.

  18. Boron-doped MnO{sub 2}/carbon fiber composite electrode for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hong Zhong, E-mail: hzchi@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhu, Hongjie [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Gao, Linhui [Center of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-10-05

    Highlights: • Interstitial ion in MnO{sub 2} lattice. • Porous film composed by interlocking worm-like nanostructure. • Boron-doped birnessite-type MnO{sub 2}/carbon fiber composite electrode. • Enhanced capacitive properties through nonmetal element doping. - Abstract: The boron-doped MnO{sub 2}/carbon fiber composite electrode has been prepared via in situ redox reaction between potassium permanganate and carbon fibers in the presence of boric acid. The addition of boron as dopant results in the increase of growth-rate of MnO{sub 2} crystal and the formation of worm-like nanostructure. Based on the analysis of binding energy, element boron incorporates into the MnO{sub 2} lattice through interstitial mode. The doped electrode with porous framework is beneficial to pseudocapacitive reaction and surface charge storage, leading to higher specific capacitance and superior rate capability. After experienced 1000 cycles, the boron-doped MnO{sub 2} still retain a higher specific capacitance by about 80% of its initial value. The fall in capacitance is blamed to be the combination of the formation of soluble Mn{sup 2+} and the absence of active site on the outer surface.

  19. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  20. Relationship between carbon and nitrogen mineralization in a subtropical soil

    Science.gov (United States)

    Li, Qianru; Sun, Yue; Zhang, Xinyu; Xu, Xingliang; Kuzyakov, Yakov

    2014-05-01

    In most soils, more than 90% nitrogen is bonded with carbon in organic forms. This indicates that carbon mineralization should be closely coupled with nitrogen mineralization, showing a positive correlation between carbon and nitrogen mineralization. To test this hypothesis above, we conducted an incubation using a subtropical soil for 10 days at 15 °C and 25 °C. 13C-labeled glucose and 15N-labeled ammonium or nitrate was used to separate CO2 and mineral N released from mineralization of soil organic matter and added glucose or inorganic nitrogen. Phospholipid fatty acid (PLFA) and four exoenzymes (i.e. β-1,4- Glucosaminidase, chitinase, acid phosphatase, β-1,4-N- acetyl glucosamine glycosidase) were also analyzed to detect change in microbial activities during the incubation. Our results showed that CO2 release decreased with increasing nitrogen mineralization rates. Temperature did not change this relationship between carbon and nitrogen mineralization. Although some changes in PLFA and the four exoenzymes were observed, these changes did not contribute to changes in carbon and nitrogen mineralization. These findings indicates that carbon and nitrogen mineralization in soil are more complicated than as previously expected. Future investigation should focus on why carbon and nitrogen mineralization are coupled in a negative correlation not in a positive correlation in many soils for a better understanding of carbon and nitrogen transformation during their mineralization.

  1. Study on Tribological Behaviors of Boron-Nitrogen Modified Fatty Acid as Water-Based Lube Additives

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-hua; CHEN Bo-shui; DONG Ling; WANG Jiu

    2008-01-01

    A new type of boron-nitrogen modified fatty acid as water base lube additive was prepared and the chemical structure characterized by infrared spectrum. The tribological properties of the additive in water were evaluated by friction testers. The morphographies and tribochemical species of the worn surfaces were analyzed by means of X-ray Photoelectron Spectroscope (XPS). The results showed that the additive is excellent in increasing loadcarrying capacity, anti-wear and friction-reducing abilities of water. The lubrication mechanism is inferred that a high strength adsorption film and a tribochemical reaction film are formed on the rubbing surfaces due to the carrier effect of the long chain fatty acid molecules, high reaction activities of nitrogen, electron-deficient orbit of boron and their synergisms.

  2. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    International Nuclear Information System (INIS)

    Research highlights: → Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. → Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. → Hot ductility improvement is associated with segregation/precipitation of boron. → Typical hot ductility recovery at lower temperatures does not appear in this steel. → Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s-1. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of boron segregation towards

  3. Processing and Properties of Distaloy Sa Sintered Alloys with Boron and Carbon

    Directory of Open Access Journals (Sweden)

    Karwan-Baczewska J.

    2015-04-01

    Full Text Available Prealloyed iron-based powders, manufactured in Höganäs Company, are used in the automotive parts industry. The properties and life time of such sintered parts depend, first of all, on their chemical composition, the production method of the prealloyed powder as well as on the technology of their consolidation and sintering. One of simpler and conventional methods aimed at increasing the density in sintered products is the process of activated sintering, performed, for example, by adding boron as elementary boron powder. Under this research project obtained were novel sintered materials, based on prealloyed and diffusion bonded powder, type: Distaloy SA, with the following chemical composition: Fe-1.75% Ni-1.5%Cu- 0.5%Mo with carbon (0.55%; 0.75% and boron (0.2%, 0.4% and 0.6%. Distaloy SA samples alloyed with carbon and boron were manufactured by mixing powders in a Turbula mixer, then compressed using a hydraulic press under a pressure of 600 MPa and sintered in a tube furnace at 1473 K, for a 60 minute time, in the hydrogen atmosphere. After the sintering process, there were performed density and porosity measurements as well as hardness tests and mechanical properties were carried out, too. Eventually, analyzed was the effect of boron upon density, hardness and mechanical properties of novel sintered construction parts made from Distaloy SA powder.

  4. RESEARCH OF INFLUENCE OF ALLOYING BY BORON ON PROPERTIES THE IRON-CARBON ALLOYS

    Directory of Open Access Journals (Sweden)

    K. V. Kobyakov

    2014-01-01

    Full Text Available It is shown that for improvement of physical-mechanical properties of the cast products which have hard usage, the boron carbide, which can be used at carrying out process of thermo-chemical treatment of cast products of iron-carbon alloy, is of great interest.

  5. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers

    Science.gov (United States)

    Cheng, Yi-Han; Zhang, Chuan-Yu; Ren, Juan; Tong, Kai-Yu

    2016-10-01

    New materials for hydrogen storage of Li-doped fullerene (C20, C28, C36, C50, C60, C70)-intercalated hexagonal boron nitrogen ( h-BN) frameworks were designed by using density functional theory (DFT) calculations. First-principles molecular dynamics (MD) simulations showed that the structures of the C n -BN ( n = 20, 28, 36, 50, 60, and 70) frameworks were stable at room temperature. The interlayer distance of the h-BN layers was expanded to 9.96-13.59 Å by the intercalated fullerenes. The hydrogen storage capacities of these three-dimensional (3D) frameworks were studied using grand canonical Monte Carlo (GCMC) simulations. The GCMC results revealed that at 77 K and 100 bar (10 MPa), the C50-BN framework exhibited the highest gravimetric hydrogen uptake of 6.86 wt% and volumetric hydrogen uptake of 58.01 g/L. Thus, the hydrogen uptake of the Li-doped C n -intercalated h-BN frameworks was nearly double that of the non-doped framework at room temperature. Furthermore, the isosteric heats of adsorption were in the range of 10-21 kJ/mol, values that are suitable for adsorbing/desorbing the hydrogen molecules at room temperature. At 193 K (-80 °C) and 100 bar for the Li-doped C50-BN framework, the gravimetric and volumetric uptakes of H2 reached 3.72 wt% and 30.08 g/L, respectively.

  6. The Influence of Nitrogen and Boron Implant into Silicon Substrate on the Phase and Internal Stress of c-BN Films

    Institute of Scientific and Technical Information of China (English)

    TAN Jun; CAI Zhi-hai; ZHANG Ping

    2004-01-01

    Cubic boron nitride(c-BN) film was deposited on a Si (100) substrate by the RF-magnetron sputtering.The mainly problems for fabrication of c-BN films are the low purity and high intrinsic compressive stress. In order to solve the two problems, the c-BN film with the buffer interlayer was deposited on the substrate which had been implanted with nitrogen and/or boron ions. The results show: the implantation of nitrogen ions can obviously increase c-BN content and reduce the internal stress slightly; while the implantation of boron shows no obvious improvement to the content of c-BN, which can reduce the internal stress in the film obviously. In addition, it is suggested that the implantation of nitrogen and boron shows the best result, which not only can increase the content of c-BN, but also reduce the internal stress in the c-BN film obviously.

  7. Effect of boron and carbon addition on microstructure and mechanical properties of metastable beta titanium alloys

    International Nuclear Information System (INIS)

    Highlights: • Effect of boron and carbon on properties of three beta titanium alloys studied. • Ti–15V–3Cr–3Mo–3Sn, Ti–10V–2Fe–3Al, and Ti–5V–5Mo–5Al–3Cr alloys studied. • Hardness and 0.2% YS increases and elongation to failure deteriorates with the B and C addition. • Ageing in comparison to solution treatment results in increase in strength and decrease in elongation. • Low ‘n′ values and multiple slopes are observed in log–log plots of true stress–true strain curves. - Abstract: Effect of boron and carbon on microstructure and mechanical properties of β titanium alloys Ti–15V–3Cr–3Mo–3Sn, Ti–10V–2Fe–3Al, and Ti–5V–5Mo–5Al–3Cr has been studied in detail. The addition of boron and carbon results in refinement of β grain size and α-precipitates during ageing. While the hardness and tensile strength increase with the addition of boron and carbon, the elongation to failure deteriorates. The increase in strength is attributed to a synergistic effect of grain refinement and load sharing by TiB and TiC particles; whereas decrease in elongation is due to the brittleness of these hard particles. Ageing results in increase in strength and decrease in elongation as compared to solution treatment condition. In this case, the effect of boron and carbon is marginal. Further enhancement in the properties can be achieved by fine tuning heat treatment parameters. Multiple slopes are observed in log–log plots of true stress–true strain thereby implying different deformation mechanisms over a large range of plastic deformation

  8. Connecting effect on the first hyperpolarizability of armchair carbon-boron-nitride heteronanotubes: pattern versus proportion.

    Science.gov (United States)

    Zhong, Rong-Lin; Xu, Hong-Liang; Su, Zhong-Min

    2016-05-18

    Carbon-boron-nitride heteronanotubes (BNCNT) have attracted a lot of attention because of their adjustable properties and potential applications in many fields. In this work, a series of CA, PA and HA armchair BNCNT models were designed to explore their nonlinear optical (NLO) properties and provide physical insight into the structure-property relationships; CA, PA and HA represent the models that are obtained by doping the carbon segment into pristine boron nitride nanotube (BNNT) fragments circularly around the tube axis, parallel to the tube axis and helically to the tube axis, respectively. Results show that the first hyperpolarizability (β0) of an armchair BNCNT model is dramatically dependent on the connecting patterns of carbon with the boron nitride fragment. Significantly, the β0 value of PA-6 is 2.00 × 10(4) au, which is almost two orders of magnitude larger than those (6.07 × 10(2) and 1.55 × 10(2) au) of HA-6 and CA-6. In addition, the β0 values of PA and CA models increase with the increase in carbon proportion, whereas those of HA models show a different tendency. Further investigations on transition properties show that the curved charge transfer from N-connecting carbon atoms to B-connecting carbon atoms of PA models is essentially the origin of the big difference among these models. This new knowledge about armchair BNCNTs may provide important information for the design and preparation of advanced NLO nano-materials.

  9. Tuning the electronic properties of armchair carbon nanoribbons by a selective boron doping

    International Nuclear Information System (INIS)

    Armchair carbon nanoribbons (ACNRs) substitutionally doped with boron atoms are investigated in the framework of first-principles density functional theory. Different boron-boron arrangements and concentrations are considered in order to simulate possible aggregation patterns, their structural stability and electronic behavior are determined as a function of ribbon size. In agreement with previous studies, our results show that the dopant atoms have in general a preference for edge sites, but specific effects appear as a function of concentration that importantly modify the properties of the ribbons compared to the pristine case. Interesting tendencies are discovered as a function of dopant concentration that significantly affect the electronic properties of the ribbons. We have found that BC3 island formation and edge doping are the most important factors for the structural stabilization of the ribbons with high boron concentration (>7%) whereas for the cases of low boron concentrations (3 island patterns give rise to highly localized B states on top of the Fermi level, resulting in semiconducting behavior. On the other hand, when the average distance between the B atoms increases beyond island stoichiometry, the localization of their states is reduced and the ribbons may become metallic due to a band crossing caused by the lowering of the Fermi level resulting from the positive charge doping. Thus, tuning the dopant interaction would be an appropriate way to tailor the electronic properties of the ribbons in a convenient manner in view of potential technological applications.

  10. Boron nutrition affects the carbon metabolism of silver birch seedlings.

    Science.gov (United States)

    Ruuhola, Teija; Keinänen, Markku; Keski-Saari, Sarita; Lehto, Tarja

    2011-11-01

    Boron (B) is an essential micronutrient whose deficiency is common both in agriculture and in silviculture. Boron deficiency impairs the growth of plants and affects many metabolic processes like carbohydrate metabolism. Boron deficiency and also excess B may decrease the sink demand by decreasing the growth and sugar transport which may lead to the accumulation of carbohydrates and down-regulation of photosynthesis. In this study, we investigated the effects of B nutrition on the soluble and storage carbohydrate concentrations of summer leaves and autumn buds in a deciduous tree species, Betula pendula Roth. In addition, we investigated the changes in the pools of condensed tannins between summer and autumn harvests. One-year-old birch seedlings were fertilized with a complete nutrient solution containing three different levels of B: 0, 30 and 100% of the standard level for complete nutrient solution. Half of the seedlings were harvested after summer period and another half when leaves abscised. The highest B fertilization level (B100) caused an accumulation of starch and a decrease in the concentrations of hexoses (glucose and fructose) in summer leaves, whereas in the B0 seedlings, hexoses (mainly glucose) accumulated and starch decreased. These changes in carbohydrate concentrations might be related to the changes in the sink demand since the autumn growth was the smallest for the B100 seedlings and largest for the B30 seedlings that did not accumulate carbohydrates. The autumn buds of B30 seedlings contained the lowest levels of glucose, glycerol, raffinose and total polyols, which was probably due to the dilution effect of the deposition of other substances like phenols. Condensed tannins accumulated in high amounts in the birch stems during the hardening of seedlings and the largest accumulation was detected in the B30 treatment. Our results suggest that B nutrition of birch seedlings affects the carbohydrate and phenol metabolism and may play an important

  11. Stable carbon isotope discrimination: an indicator of cumulative salinity and boron stress in Eucalyptus camaldulensis.

    Science.gov (United States)

    Poss, J A; Grattan, S R; Suarez, D L; Grieve, C M

    2000-10-01

    Saplings of Eucalyptus camaldulensis Dehn. Clone 4544, irrigated with water of differing salinities (2 to 28 dS m-1) and boron concentrations (1 to 30 mg l-1), integrated the history of these stresses through the discrimination of stable isotopes of carbon in leaf and woody tissues. Carbon isotope discrimination (delta) was reduced primarily by salinity. Decreases in discrimination in response to boron stress were detected in the absence of salinity stress, but the decreases were significant only in leaf tissues with visible boron injury. Sapwood core samples indicated that salinity- and boron-induced reductions in delta increased with increasing tree age. Absolute values of delta varied with location of leaf or wood tissue, but relative effects of salinity on the relationship between delta and transpiration efficiency (W) were similar. In response to increasing salinity stress, relative decreases in delta paralleled relative decreases in biomass and both indices yielded similar salt tolerance model parameters. The strong correlations between delta, tree fresh weight, leaf area and W suggest that delta is a useful parameter for evaluating salt tolerance of eucalyptus PMID:11269964

  12. Applicability of carbon and boron nitride nanotubes as biosensors: Effect of biomolecular adsorption on the transport properties of carbon and boron nitride nanotubes

    Science.gov (United States)

    Zhong, Xiaoliang; Mukhopadhyay, Saikat; Gowtham, S.; Pandey, Ravindra; Karna, Shashi P.

    2013-04-01

    The effect of molecular adsorption on the transport properties of single walled carbon and boron nitride nanotubes (CNTs and BNNTs) is investigated using density functional theory and non-equilibrium Green's function methods. The calculated I-V characteristics predict noticeable changes in the conductivity of semiconducting BNNTs due to physisorption of nucleic acid base molecules. Specifically, guanine which binds to the side wall of BNNT significantly enhances its conductivity by introducing conduction channels near the Fermi energy of the bioconjugated system. For metallic CNTs, a large background current masks relatively small changes in current due to the biomolecular adsorption. The results therefore suggest the suitability of BNNTs for biosensing applications.

  13. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  14. Shock induced polymorphic transition in quartz, carbon, and boron nitride

    Science.gov (United States)

    Tan, Hua; Ahrens, Thomas J.

    1990-01-01

    The model proposed by Ahrens (1988) to explain the mechanism of the polymorphism in silicates is revised, and the revised model is applied to the quartz/stishovite, graphite/diamond, and graphite-boron nitride (g-BN) phase transformations. In this model, a key assumption is that transformation to a high-density amorphous or possibly liquid phase which rapidly crystallized to the high-pressure phase is triggered by the high temperatures in the shear band and upon crossing the metastable extension of a melting curve. Good agreement between the calcualted results and published data is obtained. The present theory predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.

  15. Superior critical current density obtained in MgB2 bulks through low-cost carbon-encapsulated boron powder

    International Nuclear Information System (INIS)

    The unavailability of high quality precursor is encouraging researchers to seek effective ways to fabricate magnesium diboride (MgB2) wire. Herein, cost-effective amorphous boron powder produced through a diborane (B2H6) gas process is investigated for the possibility of further industrial application. A thin carbon layer to encapsulate the boron particles is simultaneously deposited by pyrolysis of hydrocarbon. We found that the carbon-encapsulated amorphous boron has a high upper critical field due to impurity scattering, and thereby, enhanced high-field critical current density

  16. Intercropping enhances soil carbon and nitrogen.

    Science.gov (United States)

    Cong, Wen-Feng; Hoffland, Ellis; Li, Long; Six, Johan; Sun, Jian-Hao; Bao, Xing-Guo; Zhang, Fu-Suo; Van Der Werf, Wopke

    2015-04-01

    Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration.

  17. Properties of nitrogen containing diamond-like carbon films

    International Nuclear Information System (INIS)

    Optical and mechanical properties of nitrogen containing diamond- like carbon (NC-DLC) films deposited by RF plasma decomposition of CH4:H2:N2 gas mixture were investigated. Nitrogen was incorporated into DLC films both during film growth and after deposition of film by implantation of nitrogen ions. It was shown that both optical and mechanical properties of the films strongly depend on nitrogen content in the films. In some cases the mechanical properties of nitrogen implanted films were improved in comparison with unimplanted samples. (author). 7 refs., 2 figs

  18. Improved creep and oxidation behavior of a martensitic 9Cr steel by the controlled addition of boron and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Peter [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Materials Science; Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Holzer, Ivan; Mendez-Martin, Francisca [Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Albu, Mihaela; Mitsche, Stefan [Graz Univ. of Technology (Austria). Inst. for Electron Microscopy; Gonzalez, Vanessa; Agueero, Alina [Instituto Nacional de Tecnica Aeroespacial, Torrejon de Ardoz (Spain)

    2010-07-01

    This manuscript gives an overview on recent developments of a martensitic steel grade based on 9Cr3W3CoVNb with controlled additions of boron and nitrogen. Alloy design by thermodynamic equilibrium calculations and calculation of boron-nitrogen solubility is discussed. Out of this alloy design process, two melts of a 9Cr3W3CoVNbBN steel were produced. The investigation focused on microstructural evolution during high temperature exposure, creep properties and oxidation resistance in steam at 650 C. Microstructural characterization of ''as-received'' and creep exposed material was carried out using conventional optical as well as advanced electron microscopic methods. Creep data at 650 was obtained at various stress levels. Longest-running specimens have reached more than 20,000 hours of testing time. In parallel, long-term oxidation resistance has been studied at 650 C in steam atmosphere up to 5,000 hours. Preliminary results of the extensive testing program on a 9Cr3W3CoVNbBN steel show significant improvement in respect to creep strength and oxidation resistance compared to the state-of-the-art 9 wt. % Cr martensitic steel grades. Up to current testing times, the creep strength is significantly beyond the +20% scatterband of standard grade P92 material. Despite the chromium content of 9 wt % the material exhibits excellent oxidation resistance. Steam exposed plain base material shows comparable oxidation behavior to coated material, and the corrosion rate of the boron-nitrogen controlled steel is much lower compared to standard 9 wt % Cr steel grades, P91 and P92. (orig.)

  19. The Effect of Nitrogen and Boron on Growth, Yield and Concentration of Some Nutrient Elements of Tomato

    Directory of Open Access Journals (Sweden)

    N. Farzaneh

    2010-08-01

    Full Text Available A completely randomized factorial experiment was set up with 16 treatments and three replicates to study the effect of nitrogen and boron on yield, shoot and root dry weights and leaf concentration of nutrient elements in hydroponically grown tomato in greenhouse of Agricultural College of Zanjan University in 2008. In this experiment, tomato seed of Rio Grande Ug was selected and simple and interaction effect of four levels of N (100, 200, 300 and 400 mgL-1 and four levels of B (0.5, 1.0, 1.5 and 2.0 mg L-1 on tomato yield, shoot and root dry weights and leaf concentration of nutrient elements was investigated. The results indicated that the simple and interaction effect of nitrogen and boron on yield and tomato shoot and root dry weights were significant. Te highest yield and root dry weights were obtained in N200B1.0 treatment and the highest shoot dry weight was obtained in N300B1.0 treatment. By increasing the nitrogen level in the nutrient solution, leaf N and Mn concentration increased while B, Fe and Zn concentration of leaves decreased significantly. In contrast, by increasing the boron levels, leaf N, B and Zn concentration increased and Fe and Mn concentration of leaves decreased significantly. With respect to the results of this study, applications of 200 mg L-1N and 1.0 mgL-1 B of nutrient solution are recommended to obtain higher yield and better quality for tomato in hydroponic culture.

  20. Oxygen, Carbon and Nitrogen evolution in galaxies

    CERN Document Server

    Chiappini, C; Matteucci, F; Chiappini, Cristina; Romano, Donatella; Matteucci, Francesca

    2003-01-01

    We discuss the evolution of oxygen, carbon and nitrogen in galaxies of different morphological type by adopting detailed chemical evolution models with different star formation histories (continuous star formation or starbursts). We start by computing chemical evolution models for the Milky Way with different stellar nucleosynthesis prescriptions. Then, a comparison between model results and ``key'' observational constraints allows us to choose the best set of stellar yields. Once the best set of yields is identified for the Milky Way, we apply the same nucleosynthesis prescriptions to other spirals (in particular M101) and dwarf irregular galaxies. We compare our model predictions with the [C,N,O/Fe] vs. [Fe/H], log(C/O) vs. 12+ log(O/H), log(N/O) vs. 12+ log(O/H) and [C/O] vs. [Fe/H] relations observed in the solar vicinity, along the disk and in other galaxies. By taking into account the results obtained for all the studied galaxies (Milky Way, M101, dwarf galaxies and DLAs) our main conclusions are: a) on...

  1. Report on carbon and nitrogen abundance studies

    Science.gov (United States)

    Boehm-Vitense, Erika

    1991-01-01

    The aim of the proposal was to determine the nitrogen to carbon abundance ratios from transition layer lines in stars with different T(sub eff) and luminosities. The equations which give the surface emission line fluxes and the measured ratio of the NV to CIV emission line fluxes are presented and explained. The abundance results are compared with those of photospheric abundance studies for stars in common with the photospheric investigations. The results show that the analyses are at least as accurate as the photospheric determinations. These studies can be extended to F and early G stars for which photospheric abundance determinations for giants are hard to do because molecular bands become too weak. The abundance determination in the context of stellar evolution is addressed. The N/C abundance ratio increases steeply at the point of evolution for which the convection zone reaches deepest. Looking at the evolution of the rotation velocities v sin i, a steep decrease in v sin i is related to the increasing depth of the convection zone. It is concluded that the decrease in v sin i for T(sub eff) less than or approximately = 5800 K is most probably due to the rearrangement of the angular momentum in the stars due to deep convective mixing. It appears that the convection zone is rotating with nearly depth independent angular momentum. Other research results and ongoing projects are discussed.

  2. Effects of boron-doping on the morphology and magnetic property of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    JIANG Qi; QIAN Lan; YI Jing; ZHU Xiaotong; ZHAO Yong

    2007-01-01

    Boron carbide nanotubes (nano-fibers) was prepared by B powder and carbon nanotubes (CNTs) at high temperature in a vacuumed quartz tube.The morphology,microstructure,component and magnetic property of samples were characterized by transmission electron microscopy (TEM),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS)and magnetic property measurement system (MPMS) controller.The results showed that B-doping CNTs have great difference in the morphology and magnetic property from those of pristine CNTs.

  3. Negative differential resistance in an (8, 0) carbon/boron nitride nanotube heterojunction*

    Institute of Scientific and Technical Information of China (English)

    Song Jiuxu; Yang Yintang; Liu Hongxia; Guo Lixin

    2011-01-01

    Using the method combined non-equilibrium Green's function with density functional theory, the electronic transport properties of an (8, 0) carbon/boron nitride nanotube heterojunction coupled to Au electrodes were investigated. In the current voltage characteristic of the heterojunction, negative differential resistance was found under positive and negative bias, which is the variation of the localization for corresponding molecular orbital caused by the applied bias voltage These results are meaningful to modeling and simulating on related electronic devices.

  4. Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde

    Directory of Open Access Journals (Sweden)

    Hongling Han

    2015-07-01

    Full Text Available A novel Cu and boron doped graphitic carbon nitride catalyst (Cu-CNB was synthesized using cheap precursors and systematically characterized. The selective oxidation of toluene proceeded very smoothly over the catalyst at 70 °C using tert-butyl hydroperoxide (TBHP as the oxidant to exclusively afford benzaldehyde. The catalyst can be used for at least five cycles without decrease in activity and selectivity.

  5. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions

    OpenAIRE

    Hashim, Daniel P.; Narayanan, Narayanan T.; Romo-Herrera, Jose M.; Cullen, David A.; Myung Gwan Hahm; Peter Lezzi; Suttle, Joseph R.; Doug Kelkhoff; E. Muñoz-Sandoval; Sabyasachi Ganguli; Roy, Ajit K.; Smith, David J.; Robert Vajtai; Sumpter, Bobby G.; Vincent Meunier

    2012-01-01

    The establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a challenge. This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical va...

  6. Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications

    KAUST Repository

    Wan, Shanhong

    2015-01-01

    A novel boron nitride nanosheets (BNNSs)-amorphous carbon (a-C) hybrid film has been deposited successfully on silicon substrates by simultaneous electrochemical deposition, and showed a good integrity of this B-C-N composite film by the interfacial bonding. This synthesis can potentially provide the facile control of the B-C-N composite film for the potential optoelectronic devices. This journal is

  7. Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde.

    Science.gov (United States)

    Han, Hongling; Ding, Guodong; Wu, Tianbin; Yang, Dexin; Jiang, Tao; Han, Buxing

    2015-07-13

    A novel Cu and boron doped graphitic carbon nitride catalyst (Cu-CNB) was synthesized using cheap precursors and systematically characterized. The selective oxidation of toluene proceeded very smoothly over the catalyst at 70 °C using tert-butyl hydroperoxide (TBHP) as the oxidant to exclusively afford benzaldehyde. The catalyst can be used for at least five cycles without decrease in activity and selectivity.

  8. Synthesis of Boron-doped Diamond/Porous Ti Composite Materials——Effect of Carbon Concentration

    Institute of Scientific and Technical Information of China (English)

    MA Ming; CHANG Ming; LI Xiaowei

    2012-01-01

    Highly boron-doped diamond films were deposited on porous titanium substrates by hot filament chemical vapor deposition technique.The morphology variation of highly boron-doped diamond films grown on porous titanium substrates was investigated,and the effects of carbon concentration on nucleation density and diamond growth were also studied.The continuous change of surface morphology and structure of diamond film were characterized by scanning electron microscopy.The structures of diamond film and interlayer were analyzed by X-ray diffraction.The quality of boron-doped diamond film was confirmed by visible Raman spectroscopy.The experimental results reveal that surface morphology and quality of boron-doped diamond films are various due to the change of carbon concentration.The thickness of intermediate layer decreases with the carbon concentration increasing.

  9. Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors

    Science.gov (United States)

    Li, Mei; Han, Xianlong; Chang, Xiaoqing; Yin, Wenchao; Ma, Jingyun

    2016-08-01

    d-Methionine and chitosan have been used for fabrication of nitrogen/sulfur-codoped carbon materials by a hydrothermal process followed by carbonization at 750°C for 3 h. The as-prepared carbon materials showed enhanced electrochemical performance, combining electrical double-layer capacitance with pseudocapacitance owing to the doping with sulfur and nitrogen. The specific capacitance of the obtained carbon material reached 135 F g-1 at current density of 1 A g-1, which is much higher than undoped chitosan (67 F g-1). The capacitance retention of the carbon material was almost 97.2% after 5000 cycles at current density of 1 A g-1. With such improved electrochemical performance, the nitrogen/sulfur-codoped carbon material may have promising potential for use in energy-storage electrodes of supercapacitors.

  10. Effect of glyphosate-boron application on seed composition and nitrogen metabolism in glyphosate-resistant soybean.

    Science.gov (United States)

    Bellaloui, Nacer; Abbas, Hamed K; Gillen, Anne M; Abel, Craig A

    2009-10-14

    The objective of this study was to evaluate the effects of foliar application of glyphosate (Gly) alone, boron (B) alone, and Gly-B combined on seed composition and nitrogen metabolism in glyphosate-resistant soybean (Glycine max (L.) Merr.). No Gly and no B application plants were used as control (C). Results showed that Gly, Gly-B, or B applications increased protein, oleic acid, and total amino acid concentrations in seed. However, oil and linolenic acid concentrations decreased under those treatments compared with the nontreated control. Gly-B combined or B treatments increased B concentration in leaves and seed, nitrate reductase activity (NRA), and nitrogenase activity and resulted in a significant positive correlation between B concentration in leaves and NRA (r = 0.54; P application alters seed composition, nitrogen metabolism, and B status in leaves and seed.

  11. Effect of reaction conditions on methyl red degradation mediated by boron and nitrogen doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Galenda, A., E-mail: galenda@ieni.cnr.it [CNR-IENI, Istituto per l’Energetica e le Interfasi, Corso Stati Uniti, 4 35127 Padova (Italy); Crociani, L.; Habra, N. El; Favaro, M. [CNR-IENI, Istituto per l’Energetica e le Interfasi, Corso Stati Uniti, 4 35127 Padova (Italy); Natile, M.M. [CNR-IENI, Istituto per l’Energetica e le Interfasi, Dipartimento di Scienze Chimiche, Università di Padova, via F. Marzolo, 1 35131 Padova (Italy); Rossetto, G. [CNR-IENI, Istituto per l’Energetica e le Interfasi, Corso Stati Uniti, 4 35127 Padova (Italy)

    2014-09-30

    Highlights: • Boron and/or nitrogen-doped TiO{sub 2} for photocatalytic wastewater treatment. • Methyl red degradation/mineralisation as a function of pH, acids and dopants. • Adsorption time influence on photocatalytic process. • Recovery of worn-out catalyst. - Abstract: Nowadays the employment of renewable and sustainable energy sources, and solar light as main option, becomes an urgent need. Photocatalytic processes received great attention in wastewater treatment due to their cheapness, environmental compatibility and optimal performances. Despite the general low selectivity of the photocatalysts, an accurate optimisation of the operational parameters needs to be carried out in order to maximise the process yield. Because of this reason, the present contribution aims to deepen either the knowledge in boron and/or nitrogen doped TiO{sub 2}-based systems and their employment in methyl red removal from aqueous solutions. The samples were obtained by coprecipitation and characterised by XRD, SEM, BET specific surface area, UV–vis and XPS techniques. The catalytic activity was for the first time carefully evaluated with respect to methyl red photodegradation in different conditions as a function of working pH, counter-ions and pre-adsorption time. An ad-hoc study was performed on the importance of the pre-adsorption of the dye, suggesting that an extended adsorption is useless for the catalyst photoactivity, while a partial coverage is preferable. The photocatalytic tests demonstrate the positive influence of boron doping in photo-activated reactions and the great importance of the operational parameters with respect to the simple methyl red bleaching rather than the overall pollutant mineralisation. It is proved, indeed, that different working pH, acidifying means and substrate pre-adsorption time can enhance or limit the catalyst performances with respect to the complete pollutant degradation rather than its partial breakage.

  12. Tuning the electronic properties of armchair carbon nanoribbons by a selective boron doping

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Santos, P; Ricardo-Chavez, J L; Lopez-Sandoval, R [Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San Jose 2055, San Luis Potosi 78216 (Mexico); Reyes-Reyes, M [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi 78000 (Mexico); Rivera, J L, E-mail: sandov@ipicyt.edu.m [Facultad de Ingenieria Quimica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia 403, Morelia, Michoacan, 58000 (Mexico)

    2010-12-22

    Armchair carbon nanoribbons (ACNRs) substitutionally doped with boron atoms are investigated in the framework of first-principles density functional theory. Different boron-boron arrangements and concentrations are considered in order to simulate possible aggregation patterns, their structural stability and electronic behavior are determined as a function of ribbon size. In agreement with previous studies, our results show that the dopant atoms have in general a preference for edge sites, but specific effects appear as a function of concentration that importantly modify the properties of the ribbons compared to the pristine case. Interesting tendencies are discovered as a function of dopant concentration that significantly affect the electronic properties of the ribbons. We have found that BC{sub 3} island formation and edge doping are the most important factors for the structural stabilization of the ribbons with high boron concentration (>7%) whereas for the cases of low boron concentrations (<5%) the structural stabilities are similar. For all the doped cases, we have found that the BC{sub 3} island patterns give rise to highly localized B states on top of the Fermi level, resulting in semiconducting behavior. On the other hand, when the average distance between the B atoms increases beyond island stoichiometry, the localization of their states is reduced and the ribbons may become metallic due to a band crossing caused by the lowering of the Fermi level resulting from the positive charge doping. Thus, tuning the dopant interaction would be an appropriate way to tailor the electronic properties of the ribbons in a convenient manner in view of potential technological applications.

  13. Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes

    Science.gov (United States)

    Savic, Ivana; Mingo, Natalio; Stewart, Derek

    2009-03-01

    We present first principles studies which determine dominant effects limiting the heat conduction in isotope-disordered boron nitride and carbon nanotubes [1]. Using an ab initio atomistic Green's function approach, we demonstrate that localization cannot be observed in the thermal conductivity measurements [1], and that diffusive scattering is the dominant mechanism which reduces the thermal conductivity [2]. We also give concrete predictions of the magnitude of the isotope effect on the thermal conductivities of carbon and boron nitride single-walled nanotubes [2]. We furthermore show that intershell scattering is not the main limiting mechanism for the heat flow through multi-walled boron nitride nanotubes [1], and that heat conduction restricted to a few shells leads to the low thermal conductivities experimentally measured [1]. We consequently successfully compare the results of our calculations [3] with the experimental measurements [1]. [1] C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901. [2] I. Savic, N. Mingo, D. A. Stewart, Phys. Rev. Lett. 2008, 101, 165502. [3] I. Savic, D. A. Stewart, N. Mingo, to be published.

  14. Spectroscopic investigation of nitrogen-functionalized carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Kevin N. [Department of Metallurgical and Materials Engineering, Colorado School of Mines, 1500 Illinois Street Golden CO 80401 USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor MI 48109 USA; Christensen, Steven T. [National Renewable Energy Laboratory, 15013 Denver West Pkwy Golden CO 80401 USA; Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd Menlo Park CA 94023 USA; Dameron, Arrelaine A. [National Renewable Energy Laboratory, 15013 Denver West Pkwy Golden CO 80401 USA; Ngo, Chilan [Department of Chemistry and Geochemistry, Colorado School of Mines, 1012 14th Street Golden CO 80401 USA; Dinh, Huyen [National Renewable Energy Laboratory, 15013 Denver West Pkwy Golden CO 80401 USA; Gennett, Thomas [National Renewable Energy Laboratory, 15013 Denver West Pkwy Golden CO 80401 USA; O' Hayre, Ryan [Department of Metallurgical and Materials Engineering, Colorado School of Mines, 1500 Illinois Street Golden CO 80401 USA; Pylypenko, Svitlana [Department of Chemistry and Geochemistry, Colorado School of Mines, 1012 14th Street Golden CO 80401 USA

    2016-04-07

    Carbon materials are used in a diverse set of applications ranging from pharmaceuticals to catalysis. Nitrogen modification of carbon powders has shown to be an effective method for enhancing both surface and bulk properties of as-received material for a number of applications. Unfortunately, control of the nitrogen modification process is challenging and can limit the effectiveness and reproducibility of N-doped materials. Additionally, the assignment of functional groups to specific moieties on the surface of nitrogen-modified carbon materials is not straightforward. Herein, we complete an in-depth analysis of functional groups present at the surface of ion-implanted Vulcan and Graphitic Vulcan through the use of X-ray photoelectron spectroscopy (XPS) and near edge X-ray adsorption fine structure spectroscopy (NEXAFS). Our results show that regardless of the initial starting materials used, nitrogen ion implantation conditions can be tuned to increase the amount of nitrogen incorporation and to obtain both similar and reproducible final distributions of nitrogen functional groups. The development of a well-controlled/reproducible nitrogen implantation pathway opens the door for carbon supported catalyst architectures to have improved numbers of nucleation sites, decreased particle size, and enhanced catalyst-support interactions.

  15. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Jun, H.J. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kang, J.S. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Seo, D.H. [Technical Research Laboratories, POSCO, Pohang 545-090 (Korea, Republic of); Kang, K.B. [Technical Research Laboratories, POSCO, Pohang 545-090 (Korea, Republic of); Park, C.G. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)]. E-mail: cgpark@postech.ac.kr

    2006-04-25

    The continuous-cooling-transformation (CCT) diagram and continuous cooled microstructure were investigated for low carbon (0.05 wt.% C) high strength low alloy steels with/without boron. Microstructures observed in continuous cooled specimens were composed of pearlite, quasi-polygonal ferrite, granular bainite, acicular ferrite, bainitic ferrite, lower bainite, and martensite depending on cooling rate and transformation temperature. A rapid cooling rate depressed the formation of pearlite and quasi-polygonal ferrite, which resulted in higher hardness. However, hot deformation slightly increased transformation start temperature, and promoted the formation of pearlite and quasi-polygonal ferrite. Hot deformation also strongly promoted the acicular ferrite formation which did not form under non-deformation conditions. Small boron addition effectively reduced the formation of pearlite and quasi-polygonal ferrite and broadened the cooling rate region for bainitic ferrite and martensite.

  16. Theoretical uncertainties in extracting cosmic-ray diffusion parameters: the boron-to-carbon ratio

    CERN Document Server

    Genolini, Y; Salati, P; Serpico, P D

    2015-01-01

    PAMELA and, more recently, AMS-02, are ushering us into a new era of greatly reduced statistical uncertainties in experimental measurements of cosmic-ray fluxes. In particular, new determinations of traditional diagnostic tools such as the boron-to-carbon ratio (B/C) are expected to significantly reduce errors on cosmic-ray diffusion parameters, with important implications for astroparticle physics, ranging from inferring primary source spectra to indirect dark matter searches. It is timely to stress, however, that the conclusions obtained crucially depend on the framework in which the data are interpreted as well as from some nuclear input parameters. We aim at assessing the theoretical uncertainties affecting the outcome, with models as simple as possible while still retaining the key dependencies. We compare different semi-analytical, two-zone model descriptions of cosmic-ray transport in the Galaxy. We test for the effect of a primary source contamination in the boron flux by parametrically altering its f...

  17. Nitrogen doped carbon nanotubes : synthesis, characterization and catalysis

    NARCIS (Netherlands)

    van Dommele, S.

    2008-01-01

    Nitrogen containing Carbon Nanotubes (NCNT) have altered physical- and chemical properties with respect to polarity, conductivity and reactivity as compared to conventional carbon nanotubes (CNT) and have potential for use in electronic applications or catalysis. In this thesis the incorporation of

  18. Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination

    OpenAIRE

    Hanxu Ji; Feng Zhou; Jiangjiang Gu; Chen Shu; Kai Xi; Xudong Jia

    2016-01-01

    Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots can enhance the electrocatalyti...

  19. Microstructural study of oxidation of carbon-rich amorphous boron carbide coating

    Institute of Scientific and Technical Information of China (English)

    Bin ZENG; Zu-de FENG; Si-wei LI; Yong-sheng LIU

    2008-01-01

    Carbon-rich amorphous boron carbide (BxC) coatings were annealed at 400℃, 700℃, 1000℃ and 1200℃ for 2 h in air atmosphere. The microstructure and composition of the as-deposited and annealed coat-ings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-Raman spectro-scopy and energy dispersive X-ray spectroscopy (EDS). All of the post-anneal characterizations demonstrated the ability of carbon-rich BxC coatings to protect the graphite substrate against oxidation. Different oxidation modes of the coatings were found at low temperature (400℃), moderate temperature (700℃) and high temper-ature (1000℃ and 1200℃). Finally, the feasibility of the application of carbon-rich BxC instead of pyrolytic car-bon (PyC) as a fiber/matrix interlayer in ceramics-matrix composites (CMCs) is discussed here.

  20. Boron isotopic fractionation in laboratory inorganic carbonate precipitation: Evidence for the incorpora-tion of B(OH)3 into carbonate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A laboratory inorganic carbonate precipitation experiment at high pH of 8.96 to 9.34 was conducted, and the boron isotopic fractionations of the precipitated carbonate were measured. The data show that boron isotopic fractionation factors (αcarb-3) between carbonate and B(OH)3 in seawater range 0.937 and 0.965, with an average value of 0.953. Our results together with those reported by Sanyal and collabo-rators show that the αcarb-3 values between carbonate and B(OH)3 in solution are not constant but are negatively correlated with the pH of seawater. The measured boron isotopic compositions of carbonate precipitation (δ11Bcarb) do not exactly lie on the best-fit theoretical δ 11B4-pH curves and neither do they exactly parallel any theoretical δ 11B4-pH curves. Therefore, it is reasonable to argue that a changeable proportion of B(OH)3 with pH of seawater should also be incorporated into carbonate except for the dominant incorporation of B(OH)4- in carbonate . Hence, in the reconstruction of the paleo-pH of sea-water from boron isotopes in marine biogenic carbonates, the use of theoretical boron isotopic frac-tionation factor (α4-3) between B(OH)4- and B(OH)3 is not suitable. Instead, an empirical equation should be established.

  1. Effects of Boron Bearing Additives on Oxidation and Corrosion Resistance of Doloma—based carbon bonded Refractories

    Institute of Scientific and Technical Information of China (English)

    YEFangbao; ZHONGXiangchong; 等

    1998-01-01

    Oxidation of the added graphite and the bonding carbon is an imortant degradation mode of doloma-carbon refractories in service,In this work,the behavior and effects of various boron bearing materials(CaB6,ZrB2,Bc and colemanite)as an-tioxidants have been investigated and compared to the effect of Al-Mg alloy,For CaO-MgO-C mate-rials,the effect of boron bearingadditives is better than Al-Mg alloy,The borate melt formed at high temperature would retard or prevent carbon oxidation,thus contributing to improved oxidation resistance,Preliminary investigations on the effect of boron bearing additives and Al-Mg alloy on corrosion resistance of doloma-carbon materials have indicated that simultaneous addition of the two types of additives would lead to pronounced improvement of slag corrosion resistance.

  2. Fabrication of Polyimide-Matrix/Carbon and Boron-Fiber Tape

    Science.gov (United States)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    2007-01-01

    The term HYCARB denotes a hybrid composite of polyimide matrices reinforced with carbon and boron fibers. HYCARB and an improved process for fabricating dry HYCARB tapes have been invented in a continuing effort to develop lightweight, strong composite materials for aerospace vehicles. Like other composite tapes in this line of development, HYCARB tapes are intended to be used to build up laminated structures having possibly complex shapes by means of automated tow placement (ATP) - a process in which a computer-controlled multiaxis machine lays down prepreg tape or tows. The special significance of the present process for making dry HYCARB for ATP is that it contributes to the reduction of the overall cost of manufacturing boron-reinforced composite-material structures while making it possible to realize increased compression strengths. The present process for making HYCARB tapes incorporates a "wet to dry" process developed previously at Langley Research Center. In the "wet to dry" process, a flattened bundle of carbon fiber tows, pulled along a continuous production line between pairs of rollers, is impregnated with a solution of a poly(amide acid) in N-methyl-2-pyrrolidinone (NMP), then most of the NMP is removed by evaporation in hot air. In the present case, the polyamide acid is, more specifically, that of LaRC. IAX (or equivalent) thermoplastic polyimide, and the fibers are, more specifically, Manganite IM7 (or equivalent) polyacrylonitrile- based carbon filaments that have a diameter of 5.2 m and are supplied in 12,000-filament tows. The present process stands in contrast to a prior process in which HYCARB tape was made by pressing boron fibers into the face of a wet carbon-fiber/ poly(amide acid) prepreg tape . that is, a prepreg tape from which the NMP solvent had not been removed. In the present process, one or more layer(s) of side-by-side boron fibers are pressed between dry prepreg tapes that have been prepared by the aforementioned gwet to dry h

  3. Platinum–boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    In order to enhance the electrochemical properties, especially durability and cell performance in proton exchange membrane fuel cell, electron deficient boron is doped into graphene, followed by deposition of Pt nanoparticles. Successful synthesis of Pt-boron doped graphene (Pt–B–Gr) by pyrolytic process is confirmed by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and Transmission electron microscopy analyses. Pt–B–Gr is intercalated by different amount of CB (carbon black) based on Pt–B–Gr/CBx (x = 0.0, 0.2, 0.3, 0.4) and applied to cathode in proton exchange membrane fuel cell. The ECSA (electrochemical active surface area) is increased with CB content up to 30 wt.% of Pt–B–Gr from 21.4 to 33.6 m2 g−1 beyond which it is rather slightly decreased to 29.6 m2 g−1. The ADT (accelerated durability test) is conducted where the ECSA is compared at every 400 cycles up to 1200 cycles for durability. The result exhibits that boron doping into graphene significantly enhances the durability. It might be attributed to more tight binding between Pt and B due to the electron transfer from graphene to boron. The cell performance is enhanced and it is attributed to the combined effect of B-doping and intercalation. - Highlights: • Graphene was successfully doped with boron using pyrolytic process. • Pt nanoparticles were deposited onto boron-doped graphene. • Pt-boron doped graphene was intercalated by carbon black to prevent restacking. • Boron doping significantly enhanced the durability. • The combined effect of boron doping and intercalation enhanced the cell performance

  4. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Terrones Maldonado, Humberto [ORNL; Terrones Maldonado, Mauricio [ORNL; Ajayan, Pullikel M [Rice University; Hashim, Daniel [Rice University; Romo Herrera, Jose M [ORNL; Cullen, David [ORNL; Munoz-Sandoval, Emilio [IPICyT; Smith, David J [Arizona State University; Vajtai, Robert [Rice University; Roy, Ajit K [ORNL; Ganguli, Sabyasachi [Arizona State University; Kelkhoff, Doug [University of Illinois, Urbana-Champaign; Suttle, Joesph [University of Illinois, Urbana-Champaign; Lezzi, Peter [Rensselaer Polytechnic Institute (RPI); Hahm, Gwan [Rice University; Narayanan, Narayanan [Rice University

    2012-01-01

    The establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a challenge. This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical vapor deposition, which influences the formation of atomic-scale elbow junctions and nanotube covalent interconnections. Detailed elemental analysis revealed that the elbow junctions are preferred sites for excess boron atoms, indicating the role of boron and curvature in the junction formation mechanism, in agreement with our first principle theoretical calculations. Exploiting this material s ultra-light weight, super-hydrophobicity, high porosity, thermal stability, and mechanical flexibility, the strongly oleophilic sponge-like solids are demonstrated as unique reusable sorbent scaffolds able to efficiently remove oil from contaminated seawater even after repeated use.

  5. Reduction-melting behaviors of boron-bearing iron concentrate/carbon composite pellets with addition of CaO

    Institute of Scientific and Technical Information of China (English)

    Jing-song Wang

    2015-01-01

    Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based on the iron nugget process. The present work de-scribes a further optimization of the conditions used in the previous study. The effects of CaO on the reduction–melting behavior and proper-ties of the boron-rich slag are presented. CaO improved the reduction of boron-bearing iron concentrate/carbon composite pellets when its content was less than 1wt%. Melting separation of the composite pellets became difficult with the CaO content increased. The sulfur content of the iron nugget gradually decreased from 0.16wt%to 0.046wt%as the CaO content of the pellets increased from 1wt%to 5wt%. CaO negatively affected the iron yield and boron extraction efficiency of the boron-rich slag. The mineral phase evolution of the boron-rich slag during the reduction–melting separation of the composite pellets with added CaO was also deduced.

  6. Effect of boron addition on the microstructures and mechanical properties of thermomechanically processed and tempered low carbon bainitic steels

    Institute of Scientific and Technical Information of China (English)

    Liangyun LAN; Chunlin QIU; Ping ZHOU; Dewen ZHAO; Canming LI; Xiuhua GAO; Linxiu DU

    2011-01-01

    Thermomechanical process and tempering heat treatment were employed to produce the experimental steel plates.The effect of boron addition on the microstructure and mechanical properties of low carbon bainitic steels was studied in this paper.Microstructure observation and crystallographic features were conducted by using optical microscopy,SEM,TEM and electron back scattering diffraction (EBSD) analysis.The results showed that under the same rolling processes and heat treatment conditions,a substantial increase in strength is obtained by addition of boron into steel,but accompanied by an obvious drop in toughness.New martensite phase forms along the grain boundaries on tempering at 650 ℃ mainly due to boron segregation,which can further deteriorate impact toughness of the boron bearing steel.The EBSD analysis showed that high angle grain boundary,is not responsible for the deteriorated toughness of the boron bearing steel because it has relatively higher percentage of high angle grain boundary than the boron free steel.The low toughness of the boron bearing steel is mainly attributed to the coarse boride precipitated particles according to the results of fractograph observation.

  7. Effects of strain on carbon donors and acceptors in hexagonal boron nitride monolayers

    Science.gov (United States)

    Fujimoto, Yoshitaka; Saito, Susumu

    2016-01-01

    We present first-principles density functional calculations that clarify the electronic properties of carbon defects in hexagonal boron nitride (h -BN) monolayers under biaxially applied strains. We find that strain can control the ionization energies of both donor and acceptor states. Furthermore, we also find that strain can lead to the dramatic change in conduction channel properties of donor states due to the interchange of the conduction-band-minimum state with the nearly-free-electron state. We also report the simulated scanning tunneling microscopy (STM) images of carbon defects in h -BN monolayers for experimental identification of those defects. We show that the STM images strongly reflect distinctive spatial distributions of local density of states around carbon defects depending on the substitution sites and thereby they could be identified by using STM experiments.

  8. Carbon nanotubes with atomic impurities on boron nitride sheets under applied electric fields

    OpenAIRE

    Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun

    2013-01-01

    We perform first-principles calculations to investigate the structural and electronic properties of metal-doped (10, 0) carbon nanotubes (CNTs) on a single hexagonal boron nitride (hBN) sheet in the presence of an external electric field. We consider K, Cl and Ni atoms as dopants to study the dependence of the electronic properties of the CNT on doping polarity and concentration. The electric field strength is varied from -0.2 V/\\AA to +0.2 V/\\AA to explore the effects of an external electric...

  9. The Effects of Radial Compression on Thermal Conductivity of Carbon and Boron Nitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Haijun Shen

    2012-01-01

    Full Text Available By using molecular dynamics method, thermal conductivity of (10, 10 carbon and boron nitride (BN nanotubes under radial compression was investigated, and the - (thermal conductivity versus temperature curves of the two nanotubes were obtained. It is found that with the increase of temperature the thermal conductivity of two nanotubes decreases; the nanotubes, under both the local compression and whole compression, have lower thermal conductivity, and the larger the compressive deformation is, the lower the thermal conductivity is; the whole compression has more remarkable effect on thermal conductivity than the local compression.

  10. Carbon, oxygen and boron isotopic studies of Huangbaishuwan witherite deposit at Ziyang and Wenyuhe witherite deposit at Zhushan

    Institute of Scientific and Technical Information of China (English)

    吕志成; 刘丛强; 刘家军; 赵志琦

    2003-01-01

    Being stratiform or stratoid, the Huangbaishuwan witherite deposit at Ziyang and the Wenyuhe witherite-barite deposit at Zhushan occur in the lower Lower Cambrian siliceous rocks and the orebodies are remarkably controlled by lithological character and petrography. Boron, carbon and oxygen isotopic studies of witherite, barytocalcite and calcite have shown that the carbon, involved in the formation of these minerals, was derived mainly from hydrocarbons and biogenetic gases resulting from degradation, polycondensation and dehydroxylation of bio-organic matter in sediments at the early stage of diagenesis; the boron was a mixture of boron in pore water and that released in the process of degradation of organic matter, with a minor amount of boron from cycling brines in the deep interior of the basin. Boron, carbon and oxygen isotopic studies unanimously demonstrated that witherite was precipitated in this sort of organic carbon-rich pore water medium during the early stage of diagenesis. Extensive occurrence of biodetritus and clastic texture in witherite ores strongly evidenced that Ba2+ was concentrated and settled down in the form of bio-barite on the seafloor as a result of biological processes, thereafter forming the initially enriched orebodies of barium deposits. Biological processes in seawater and early diagenesis in sediments are the major ore-forming mechanisms of witherite deposits in the region studied.

  11. Eutectic Syntheses of Graphitic Carbon with High Pyrazinic Nitrogen Content.

    Science.gov (United States)

    Fechler, Nina; Zussblatt, Niels P; Rothe, Regina; Schlögl, Robert; Willinger, Marc-Georg; Chmelka, Bradley F; Antonietti, Markus

    2016-02-10

    Mixtures of phenols/ketones and urea show eutectic behavior upon gentle heating. These mixtures possess liquid-crystalline-like phases that can be processed. The architecture of phenol/ketone acts as structure-donating motif, while urea serves as melting-point reduction agent. Condensation at elevated temperatures results in nitrogen-containing carbons with remarkably high nitrogen content of mainly pyrazinic nature. PMID:26178584

  12. First-principles calculations on the structure and electronic properties of boron doping zigzag single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Calculations have been made for single-walled zigzag(n,0) carbon nanotubes containing substitutional boron impurity atoms using ab initio density functional theory.It is found that the formation energies of these nanotubes depend on the tube diameter,as do the electronic properties,and show periodic fea-ture that results from their different π bonding structures compared to those of perfect zigzag carbon nanotubes.When more boron atoms are incorporated into a single-walled zigzag carbon nanotube,the substitutional boron atoms tend to come together to form structure of BC3 nanodomains,and B-doped tubes have striking acceptor states above the top of the valence bands.For the structure of BC3,there are two kinds of configurations with different electronic structures.

  13. Influence of chromium, oxygen, carbon and nitrogen on iron viscosity

    International Nuclear Information System (INIS)

    Kinetic viscosity of 70 beforehand melted iron samples with additions of chromium (up to 2%) and carbon (up to 1%) has been investigated. Different conditions of melting brought about differences in oxygen and nitrogen contents. Viscosity of most samples has been determined in the 1550-1650 deg C temperature range. It is stated that small additions to pure iron of each of the investigated elements (O, Cr, C, N) decrease its viscosity. Combined effect of these additions on viscosity is inadditive. Simultaneous introduction of oxygen and carbon may result in increase of melt viscosity. The same fact is observed at combined introduction of chromium and nitrogen. Simultaneous introduction of other impurities-chromium with oxygen or carbon, nitrogen with oxygen causes amplification of their individual effect. Reasons for the observed regularities result from changes in energies of interparticle interactions in the melt and therefore rebuilding of structure of its short-range order

  14. Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization

    Science.gov (United States)

    Treseder, K. K.; Turner, K. M.

    2005-12-01

    Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P P = 0.001), as did root-associated ECM structures (P = 0.021). The amount of carbon sequestered within living mycorrhizal structures (0.013 to 0

  15. tert-Butanesulfinamides as Nitrogen Nucleophiles in Carbon-Nitrogen Bond Forming Reactions.

    Science.gov (United States)

    Ramirez Hernandez, Johana; Chemla, Fabrice; Ferreira, Franck; Jackowski, Olivier; Oble, Julie; Perez-Luna, Alejandro; Poli, Giovanni

    2016-01-01

    The use of tert-butanesulfinamides as nitrogen nucleophiles in carbon-nitrogen bond forming reactions is reviewed. This field has grown in the shadow of the general interest in N-tert-butanesulfinyl imines for asymmetric synthesis and occupies now an important place in its own right in the chemistry of the chiral amine reagent tert-butanesulfinamide. This article provides an overview of the area and emphasizes recent contributions wherein the tert-butanesulfinamides act as chiral auxiliaries or perform as nitrogen donors in metal-catalyzed amination reactions. PMID:26931222

  16. Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses

    Science.gov (United States)

    Gutjahr, Marcus; Bordier, Louise; Douville, Eric; Farmer, Jesse; Foster, Gavin L.; Hathorne, Ed; Hönisch, Bärbel; Lemarchand, Damien; Louvat, Pascale; McCulloch, Malcolm; Noireaux, Johanna; Pallavicini, Nicola; Rodushkin, Ilia; Roux, Philippe; Stewart, Joseph; Thil, François; You, Chen-Feng

    2014-05-01

    Boron consists of only of two isotopes with a relatively large mass difference (~10 %). It is also volatile in acidic media and prone to contamination during analytical treatment. Nevertheless, an increasing number of isotope laboratories are successfully using boron isotope compositions (expressed in δ11B) in marine biogenic carbonates to reconstruct seawater pH. Recent interlaboratory comparison efforts [1] highlighted the existence of a relatively high level of disagreement between laboratories when measuring such material, so in order to further strengthen the validity of this carbonate system proxy, appropriate reference materials need to be urgently characterised. We describe here the latest results of the Boron Isotope Intercomparison Project (BIIP) where we aim to characterise the boron isotopic composition of two marine carbonates: Japanese Geological Survey carbonate standard materials JCp-1 (coral porites) [2] and JCt-1 (Giant Clam) [3]. This boron isotope interlaboratory comparison study has two aims: (i) to assess to what extent chemical pre-treatment, aimed at removing organic material, can influence the resulting carbonate δ11B; (ii) to determine the isotopic composition of the two reference materials with a number of analytical techniques to provide the community with reference δ11B values for JCp-1 and JCt-1 and to further explore any differences related to analytical technique. In total eight isotope laboratories participated, of which one determined δ11B via negative thermal ionisation mass spectrometry (NTIMS) and seven used multi collector inductively coupled plasma mass spectrometry (MC-ICPMS). For the latter several different introduction systems and chemical purification methods were used. Overall the results are strikingly consistent between the participating labs. The oxidation of organic material slightly lowered the median δ11B by ~0.1 ‰ for both JCp-1 and JCt-1, while the mean δ11B of all labs for both standards was lowered by 0

  17. Boron-doped few-walled carbon nanotubes: novel synthesis and properties

    Science.gov (United States)

    Preston, Colin; Song, Da; Taillon, Josh; Cumings, John; Hu, Liangbing

    2016-11-01

    Few-walled carbon nanotubes offer a unique marriage of graphitic quality and robustness to ink-processing; however, doping procedures that may alter the band structure of these few-walled nanotubes are still lacking. This report introduces a novel solution-injected chemical vapor deposition growth process to fabricate the first boron-doped few-walled carbon nanotubes (B-FWNTs) reported in literature, which may have extensive applications in battery devices. A comprehensive characterization of the as-grown B-FWNTs confirms successful boron substitution in the graphitic lattice, and reveals varying growth parameters impact the structural properties of B-FWNT yield. An investigation into the optimal growth purification parameters and ink-making procedures was also conducted. This study introduces the first process technique to successfully grow intrinsically p-doped FWNTs, and provides the first investigation into the impact factors of the growth parameters, purification steps, and ink-making processes on the structural properties of the B-FWNTs and the electrical properties of the resulting spray-coated thin-film electrodes.

  18. Carbon dioxide capture by means of cyclic organic nitrogen compounds

    OpenAIRE

    García Abuín, Alicia

    2012-01-01

    The research work included in present PhD Thesis involves the research studies to capture carbon dioxide using different cyclic nitrogen organic compounds (glucosamine (GA), chitosan (C), alkyl-pyrrolidones, pyrrolidine (PYR) and piperidine (PIP). This investigation is based on the study of three experimental systems. Each of them has characteristics potentially suitable to achieve the aim of this work, that is to say, to improve the carbon dioxide capture process, which is pre...

  19. In Situ Mechanical Property Measurements of Amorphous Carbon-Boron Nitride Nanotube Nanostructures

    Science.gov (United States)

    Kim, Jae-Woo; Lin, Yi; Nunez, Jennifer Carpena; Siochi, Emilie J.; Wise, Kristopher E.; Connell, John W.; Smith, Michael W.

    2011-01-01

    To understand the mechanical properties of amorphous carbon (a-C)/boron nitride nanotube (BNNT) nanostructures, in situ mechanical tests are conducted inside a transmission electron microscope equipped with an integrated atomic force microscope system. The nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation. We demonstrate multiple in situ tensile, compressive, and lap shear tests with a-C/BNNT hybrid nanostructures. The tensile strength of the a-C/BNNT hybrid nanostructure is 5.29 GPa with about 90 vol% of a-C. The tensile strength and strain of the end-to-end joint structure with a-C welding is 0.8 GPa and 5.2% whereas the lap shear strength of the side-by-side joint structure with a-C is 0.25 GPa.

  20. In situ mechanical property measurements of amorphous carbon-boron nitride nanotube nanostructures

    Science.gov (United States)

    Kim, Jae-Woo; Carpena Núñez, Jennifer; Siochi, Emilie J.; Wise, Kristopher E.; Lin, Yi; Connell, John W.; Smith, Michael W.

    2012-01-01

    To understand the mechanical properties of amorphous carbon (a-C)/boron nitride nanotube (BNNT) nanostructures, in situ mechanical tests are conducted inside a transmission electron microscope equipped with an integrated atomic force microscope system. The nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation. We demonstrate multiple in situ tensile, compressive, and lap shear tests with a-C/BNNT hybrid nanostructures. The tensile strength of the a-C/BNNT hybrid nanostructure is 5.29 GPa with about 90 vol% of a-C. The tensile strength and strain of the end-to-end joint structure with a-C welding is 0.8 GPa and 5.2% whereas the lap shear strength of the side-by-side joint structure with a-C is 0.25 GPa.

  1. Controlled route to the fabrication of carbon and boron nitride nanoscrolls: A molecular dynamics investigation

    Science.gov (United States)

    Perim, Eric; Paupitz, Ricardo; Galvão, Douglas S.

    2013-02-01

    Carbon nanoscrolls (graphene layers rolled up into papyrus-like tubular structures) are nanostructures with unique and interesting characteristics that could be exploited to build several new nanodevices. However, an efficient and controlled synthesis of these structures was not achieved yet, making its large scale production a challenge to materials scientists. Also, the formation process and detailed mechanisms that occur during its synthesis are not completely known. In this work, using fully atomistic molecular dynamics simulations, we discuss a possible route to nanoscrolls made from graphene layers deposited over silicon oxide substrates containing chambers/pits. The scrolling mechanism is triggered by carbon nanotubes deposited on the layers. The process is completely general and can be used to produce scrolls from other lamellar materials, like boron nitride, for instance.

  2. XPS of nitrogen-containing functional groups on activated carbon

    NARCIS (Netherlands)

    Jansen, R.J.J.; Bekkum, van H.

    1995-01-01

    XPS is used to study the binding energy of the Cls, Nls and Ols photoelectrons of surface groups on several nitrogen-containing activated carbons. Specific binding energies are assigned to amide (399.9 eV). lactam and imidc (399.7 eV). pyridine (398.7 eV), pyrrole (400.7 eV), alkylamine. secondary a

  3. Intercropping enhances soil carbon and nitrogen

    NARCIS (Netherlands)

    Cong, W.; Hoffland, E.; Li, L.; Six, J.; Sun, J.H.; Bao, X.G.; Zhang, F.S.; Werf, van der W.

    2015-01-01

    Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greate

  4. Effects of Nitrogen Forms on Carbon and Nitrogen Accumulation in Tomato Seedling

    Institute of Scientific and Technical Information of China (English)

    GE Ti-da; SONG Shi-wei; CHI Ming-han; HUANG Dan-feng; K Iwasaki

    2008-01-01

    Utilization of organic nitrogen (N) is an important aspect of plant N assimilation and has potential application in sustainable agriculture. The aim of this study was to investigate the plant growth, C and N accumulation in leaves and roots of tomato seedlings in response to inorganic (NH4+-N, NO3--N) and organic nitrogen (Gly-N). Different forms of nitrogen (NH4+-N, NO3--N, Gly-N) were supplied to two tomato cultivars (Shenfen 918 and Huying 932) using a hydroponics system. The plant dry biomass, chlorophyll content, root activity, total carbon and nitrogen content in roots and leaves, and total N absorption, etc. were assayed during the cultivation. Our results showed that no significant differences in plant height, dry biomass, and total N content were found within the first 16 d among three treatments; however, significant differences in treatments on 24 d and 32 d were observed, and the order was NO3--N > GIy-N > NH4+-N. Significant differences were also observed between the two tomato cultivars. Chlorophyll contents in the two cultivars were significantly increased by the GIy-N treatment, and root activity showed a significant decrease in NH4+-N treatment. Tomato leaf total carbon content was slightly affected by different N forms; however, total carbon in root and total nitrogen in root and leaf were promoted significantly by inorganic and organic N. Among the applied N forms, the increasing effects of the NH4+-N treatment were larger than that of the Gly-N. In a word, different N resources resulted in different physiological effects in tomatoes. Organic nitrogen (e.g., Gly-N) can be a proper resource of plant N nutrition. Tomatoes of different genotypes had different responses under organic nitrogen (e.g., Gly-N) supplies.

  5. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  6. Soil warming, carbon–nitrogen interactions, and forest carbon budgets

    OpenAIRE

    Melillo, Jerry M.; Butler, Sarah; Johnson, Jennifer,; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-mei; Tang, Jim

    2011-01-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observ...

  7. Effect of reaction conditions on methyl red degradation mediated by boron and nitrogen doped TiO2

    Science.gov (United States)

    Galenda, A.; Crociani, L.; Habra, N. El; Favaro, M.; Natile, M. M.; Rossetto, G.

    2014-09-01

    Nowadays the employment of renewable and sustainable energy sources, and solar light as main option, becomes an urgent need. Photocatalytic processes received great attention in wastewater treatment due to their cheapness, environmental compatibility and optimal performances. Despite the general low selectivity of the photocatalysts, an accurate optimisation of the operational parameters needs to be carried out in order to maximise the process yield. Because of this reason, the present contribution aims to deepen either the knowledge in boron and/or nitrogen doped TiO2-based systems and their employment in methyl red removal from aqueous solutions. The samples were obtained by coprecipitation and characterised by XRD, SEM, BET specific surface area, UV-vis and XPS techniques. The catalytic activity was for the first time carefully evaluated with respect to methyl red photodegradation in different conditions as a function of working pH, counter-ions and pre-adsorption time. An ad-hoc study was performed on the importance of the pre-adsorption of the dye, suggesting that an extended adsorption is useless for the catalyst photoactivity, while a partial coverage is preferable. The photocatalytic tests demonstrate the positive influence of boron doping in photo-activated reactions and the great importance of the operational parameters with respect to the simple methyl red bleaching rather than the overall pollutant mineralisation. It is proved, indeed, that different working pH, acidifying means and substrate pre-adsorption time can enhance or limit the catalyst performances with respect to the complete pollutant degradation rather than its partial breakage.

  8. [FTIR spectroscopic studies of inner stress on boron carbon nitride thin films].

    Science.gov (United States)

    Wang, Yu-Xin; Zheng, Ya-Ru; Song, Zhe; Feng, Ke-Cheng; Zhao, Yong-Nian

    2008-07-01

    Boron carbon nitride thin films were deposited by radio frequency (RF) magnetron sputtering technique using a 50 mm-diameter composite target consisting of h-BN and graphite in an Ar-N2 gas mixture. The composite target was composed of two semi disks: one of h-BN and the other one of graphite. The distance between the target and the substrate was kept at 50 mm. The chamber base pressure was below 5 x 10(-4) Pa. During the deposition, the mixture of Ar (80%) and N2 (20%) was injected into the vacuum chamber and the total pressure was 1.3 Pa. The films were grown on silicon substrates at different deposition parameters, including sputtering power of 80-130 W, deposition temperature of 300-500 degrees C and deposition time of 1-4 h. The chemical bonding state of the samples was characterized by Fourier transform infrared absorption spectroscopy (FTIR). The results suggested that all of the films deposited at these deposition parameters are atomic-level hybrids composed of B, C and N atoms. Besides BN and carbons bonds, the boron carbide and carbon nitride bonds were formed in the BCN thin films. And the deposition parameters have important influences on the growth and inner stress of BCN thin films. That is the higher the sputtering power, the larger the inner stress; the higher or lower the deposition temperature, the larger the inner stress; the longer the deposition time, the larger the inner stress. So changing deposition parameters properly is a feasible method to relax the inner stress between the films and substrate. In the conditions of changing one parameter each time, the optimum deposition parameters to prepare BCN thin films with lower inner stress were obtained: sputtering power of 80 W, deposition temperature of 400 degrees C and deposition time of 2 h.

  9. Carbon and nitrogen cycling in thermally heated sediments

    Science.gov (United States)

    Meyer-Dombard, D. R.; Burton, M.; Vennelakanti, S.; Havig, J. R.; Shock, E.

    2009-12-01

    Hydrothermally heated sediment environments, such as are found in abundance throughout Yellowstone National Park, host fully functional microbial ecosystems. As with any ecosystem, both sources and sinks of carbon, nitrogen, and a myriad of other nutrients and energy-driving factors must be supplied. While we know microbial communities in hydrothermal environments can be surprisingly diverse, we know little about basic ecological functions such as carbon and nitrogen cycling. Previous work has shown that carbon cycling in one hot spring in Yellowstone National Park [“Bison Pool”] and its associated runoff channel functions as a complex system. Analysis of carbon and nitrogen isotopes in sediments and biofilms across a temperature and chemical gradient at this location revealed that the four best studied carbon fixation pathways [Calvin, reverse tricarboxylic acid, acetyl-CoA, 3-hydroxypropionate cycles] may all be functioning in this system, and nitrogen fixation varies across the chemosynthetic/photosynthetic ecotone [1]. Microcosm experiments using biofilms from this hot spring as inoculae with 13C labeled carbon substrates indicate heterotrophic growth [2]. In addition, metagenomic analysis of environmental DNA has indicated the presence of genes involved in carbon fixation [both phototrophic and autotrophic], and heterotrophy, as well as nitrogen fixation [3]. Studies from other Yellowstone locations have also found genetic evidence for carbon and nitrogen fixation [4, 5]. Of particular interest is the role of individuals in carbon and nitrogen cycling as environmental conditions suitable for chemosynthetic and photosynthetic growth vary. This study explores the diversity of cbbM/cbbL [Calvin cycle], aclB/oor/porA [rTCA cycle], nifH [nitrogen fixation], nirK [nitrite reduction] and amoA [ammonia oxidation] genes across a variety of Yellowstone environments. The transition of genetic diversity within sediments and biofilms is focused on the chemosynthetic

  10. Theoretical uncertainties in extracting cosmic-ray diffusion parameters: the boron-to-carbon ratio

    Science.gov (United States)

    Genolini, Yoann

    2016-05-01

    PAMELA and, more recently, AMS-02, are ushering us into a new era of greatly reduced statistical uncertainties in experimental measurements of cosmic ray fluxes. In particular, new determinations of traditional diagnostic tools such as the boron to carbon ratio (B/C) are expected to significantly reduce errors on cosmic-ray diffusion parameters, with important implications for astroparticle physics, ranging from inferring primary source spectra to indirect dark matter searches. It is timely to stress, however, that the conclusions inferred crucially depend on the framework in which the data are interpreted as well as on some nuclear input parameters. We aim at assessing the theoretical uncertainties affecting the outcome, with models as simple as possible while still retaining the key dependences. We compare different semi-analytical, two-zone model descriptions of cosmic ray transport in the Galaxy: infinite slab(lD), cylindrical symmetry (2D) with homogeneous sources, cylindrical symmetry (2D) with inhomogeneous source distribution. We tested for the effect of a primary source contamination in the boron flux by parametrically altering its flux. We also tested for nuclear cross-section uncertainties.

  11. Carbon and nitrogen budgets of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Somasundar, K.; Rajendran, A.; DileepKumar, M.; SenGupta, R.

    and nitrogen budgets have been estimated for the Arabian Sea (0- 25 °N, 50-80°E), taking into consideration the possible sources of fluxes. By our model calculations the annual fluxes into and out of the Arabian Sea were estimated to be 446 and 530 trillion...) were obtained from Brewer and Dyrssen (1985 ) and Papaud and Poisson (1986), respectively. The details of the data and their sources are given in Table 1. The methods of calculating the fluxes of carbon and nitrogen are discussed below. RESULTS...

  12. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging

    Science.gov (United States)

    Bartelmess, Juergen; de Luca, Elisa; Signorelli, Angelo; Baldrighi, Michele; Becce, Michele; Brescia, Rosaria; Nardone, Valentina; Parisini, Emilio; Echegoyen, Luis; Pompa, Pier Paolo; Giordani, Silvia

    2014-10-01

    Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes.Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical

  13. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles

    Science.gov (United States)

    Bai, Zhitong; Zhang, Lin; Liu, Ling

    2016-04-01

    Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically analyzing the effects of the incident angle and ion energy in determining the probabilities of six distinct types of physics that may occur in an ion bombardment event, including reflection, absorption, substitution, single vacancy, double vacancy, and transmission. By analyzing the atomic trajectories from 576 000 simulations, we identified three single vacancy creation mechanisms and four double vacancy creation mechanisms, and quantified their probability distributions in the angle-energy space. These findings further open the door for improved control of ion implantation towards a wide range of applications of graphene.Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically

  14. Simultaneous tracing of carbon and nitrogen isotopes in human cells.

    Science.gov (United States)

    Nilsson, Roland; Jain, Mohit

    2016-05-24

    Stable isotope tracing is a powerful method for interrogating metabolic enzyme activities across the metabolic network of living cells. However, most studies of mammalian cells have used (13)C-labeled tracers only and focused on reactions in central carbon metabolism. Cellular metabolism, however, involves other biologically important elements, including nitrogen, hydrogen, oxygen, phosphate and sulfur. Tracing stable isotopes of such elements may help shed light on poorly understood metabolic pathways. Here, we demonstrate the use of high-resolution mass spectrometry to simultaneously trace carbon and nitrogen metabolism in human cells cultured with (13)C- and (15)N-labeled glucose and glutamine. To facilitate interpretation of the complex isotopomer data generated, we extend current methods for metabolic flux analysis to handle multivariate mass isotopomer distributions (MMIDs). We find that observed MMIDs are broadly consistent with known biochemical pathways. Whereas measured (13)C MIDs were informative for central carbon metabolism, (15)N isotopes provided evidence for nitrogen-carrying reactions in amino acid and nucleotide metabolism. This computational and experimental methodology expands the scope of metabolic flux analysis beyond carbon metabolism, and may prove important to understanding metabolic phenotypes in health and disease.

  15. Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ram Sevak, E-mail: singh915@gmail.com [Department of Physics, National Institute of TechnologyKurukshetra 136119 (Haryana) (India)

    2015-11-15

    Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes (CNTs and BNNTs) is systematically studied using first principle calculations based on density functional theory. Energy band structures and density of states of optimized zigzag (5, 0), armchair (3, 3), and chiral (4, 2) structures of CNT and BNNT are calculated. Oxygen doping in zigzag CNT exhibits a reduction in metallicity with opening of band gap in near-infrared region while metallicity is enhanced in armchair and chiral CNTs. Unlike oxygen-doped CNTs, energy bands are drastically modulated in oxygen-doped zigzag and armchair BNNTs, showing the nanotubes to have metallic behaviour. Furthermore, oxygen impurity in chiral BNNT induces narrowing of band gap, indicating a gradual modification of electronic band structure. This study underscores the understanding of different electronic properties induced in CNTs and BNNTs under oxygen doping, and has potential in fabrication of various nanoelectronic devices.

  16. Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study

    International Nuclear Information System (INIS)

    Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes (CNTs and BNNTs) is systematically studied using first principle calculations based on density functional theory. Energy band structures and density of states of optimized zigzag (5, 0), armchair (3, 3), and chiral (4, 2) structures of CNT and BNNT are calculated. Oxygen doping in zigzag CNT exhibits a reduction in metallicity with opening of band gap in near-infrared region while metallicity is enhanced in armchair and chiral CNTs. Unlike oxygen-doped CNTs, energy bands are drastically modulated in oxygen-doped zigzag and armchair BNNTs, showing the nanotubes to have metallic behaviour. Furthermore, oxygen impurity in chiral BNNT induces narrowing of band gap, indicating a gradual modification of electronic band structure. This study underscores the understanding of different electronic properties induced in CNTs and BNNTs under oxygen doping, and has potential in fabrication of various nanoelectronic devices

  17. Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study

    Directory of Open Access Journals (Sweden)

    Ram Sevak Singh

    2015-11-01

    Full Text Available Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes (CNTs and BNNTs is systematically studied using first principle calculations based on density functional theory. Energy band structures and density of states of optimized zigzag (5, 0, armchair (3, 3, and chiral (4, 2 structures of CNT and BNNT are calculated. Oxygen doping in zigzag CNT exhibits a reduction in metallicity with opening of band gap in near-infrared region while metallicity is enhanced in armchair and chiral CNTs. Unlike oxygen-doped CNTs, energy bands are drastically modulated in oxygen-doped zigzag and armchair BNNTs, showing the nanotubes to have metallic behaviour. Furthermore, oxygen impurity in chiral BNNT induces narrowing of band gap, indicating a gradual modification of electronic band structure. This study underscores the understanding of different electronic properties induced in CNTs and BNNTs under oxygen doping, and has potential in fabrication of various nanoelectronic devices.

  18. Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property

    Science.gov (United States)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong

    Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.

  19. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    Science.gov (United States)

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  20. Synthesis and characterization of well-aligned carbon nitrogen nanotubes by microwave plasma chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Well-aligned carbon nitrogen nanotube films have been synthesized successfully on mesoporous silica substrates by microwave plasma chemical vapor deposition (MWPCVD) method. Studies on their morphology, structure, and composition by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX), respectively, indicate that these nanotubes consist of linearly polymerized carbon nitrogen nanobells, and the nitrogen atoms have been doped into carbon netweork to form a new structure C1-xNx (x=0.16±0.01). X-ray photoelectron spectroscopy (XPS) results of the samples further demonstrate that carbon bonds covalently with nitrogen in all the carbon nitrogen nanotube films.

  1. Field Emission Properties of Nitrogen-doped Amorphous Carbon Films

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nitrogen-doped amorphous carbon thin films are deposited on the ceramic substrates coated with Ti film by using direct current magnetron sputtering technique at N2 and Ar gas mixture atmosphere during deposition. The field emission properties of the deposited films have been investigated. The threshold field as low as 5.93V/μm is obtained and the maximum current density increases from 4μA/cm2 to 20.67μA/cm2 at 10.67V/μm comparing with undoped amorphous film. The results show that nitrogen doping plays an important role in field emission of amorphous carbon thin films.

  2. Recombination pumped atomic nitrogen and carbon afterglow lasers

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, G.W.

    1976-01-01

    It is well established that lasing of atomic nitrogen and carbon can be obtained during the afterglow of an electrical discharge in gas mixtures of either neon or helium containing low partial pressures of N/sub 2/ or CO. In addition, the neon-nitrogen laser has recently been pumped directly by nuclear radiation. Microwave quenching experiments have shown conclusively that the afterglow lasers are being pumped directly by the recombination of electron-ion pairs. This result differs from the mechanisms previously proposed for these systems. Measurements comparing the relative sensitivity to the electron temperature of the neon to atomic nitrogen and carbon afterglow light infer that the recombination process pumping these lasers is collisional-radiative, allowing the recombining ions to be identified as N/sup +/ and C/sup +/. Since this process is highly compatible with nuclear-radiation generated plasmas, it is not unreasonable to infer that this process is also the pumping mechanism in the nuclear-excited, neon-nitrogen laser.

  3. Wettability and biocompatibility of nitrogen-doped hydrogenated amorphous carbon films: Effect of nitrogen

    International Nuclear Information System (INIS)

    Amorphous carbon films have been applied in biomedical fields as potential biocompatible materials with wettability that can be adjusted by doping with other elements, including F, Si, Ti, O and N. In this study, nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) films were deposited by PIII-D using C2H2 + N2 gas mixtures. The biocompatibility and anti-thrombotic properties of the films were assessed in vitro. The surface morphology and surface wettability of the films were characterized using atomic force microscopy (AFM) and a contact angle method. The results show no cytotoxicity for all films, and films with appropriate nitrogen doping possess much better endothelial cell growth and anti-thrombotic properties

  4. Phase transitions of boron carbide: Pair interaction model of high carbon limit

    Science.gov (United States)

    Yao, Sanxi; Huhn, W. P.; Widom, M.

    2015-09-01

    Boron Carbide exhibits a broad composition range, implying a degree of intrinsic substitutional disorder. While the observed phase has rhombohedral symmetry (space group R 3 bar m), the enthalpy minimizing structure has lower, monoclinic, symmetry (space group Cm). The crystallographic primitive cell consists of a 12-atom icosahedron placed at the vertex of a rhombohedral lattice, together with a 3-atom chain along the 3-fold axis. In the limit of high carbon content, approaching 20% carbon, the icosahedra are usually of type B11 Cp, where the p indicates the carbon resides on a polar site, while the chains are of type C-B-C. We establish an atomic interaction model for this composition limit, fit to density functional theory total energies, that allows us to investigate the substitutional disorder using Monte Carlo simulations augmented by multiple histogram analysis. We find that the low temperature monoclinic Cm structure disorders through a pair of phase transitions, first via a 3-state Potts-like transition to space group R3m, then via an Ising-like transition to the experimentally observed R 3 bar m symmetry. The R3m and Cm phases are electrically polarized, while the high temperature R 3 bar m phase is nonpolar.

  5. Carbon - Nitrogen interactions in forest ecosystems. Final report

    OpenAIRE

    Gundersen, P.; Berg, B.; Currie, W. S.; Dise, N.B.; Emmett, B.A.; Gauci, V.; M. Holmberg; Kjønaas, O. J.; Mol-Dijkstra, J. P.; Salm, van der, C.; Schmidt, I. K.; A. Tietema; Wessel, W.W.; L. S. Vestgarden; Akselsson, C.

    2006-01-01

    Databases on carbon (C) and nitrogen (N) fluxes and pools in European forests were compiled for 400 sites and explored thoroughly to create empirical models that predict C accumulation and N retention/nitrate leaching from N input, climate, and ecosystem characteristics. For nitrate leaching, analyses show that there is a threshold N deposition of 8-10 kg N/ha/yr below which almost no leaching occurs. The important parameters that determine N leaching (and thus N retention) are: N deposition,...

  6. Mathematical Model of Prediction of Nitrogen Pickup in Nitriding Process of Low Carbon Ferromanganese

    OpenAIRE

    Ghali, Saeed

    2014-01-01

    Low carbon ferromanganese was nitrided through gas-solid reaction. The nitriding process has been carried out on lab scale at temperature range 800°C–950°C at different nitrogen pressures. Temperature, time, and partial nitrogen pressure of nitriding process of fine low carbon ferromanganese were investigated. Nitrogen content, in weight percent, was more than 9%. MATLAB software was used to derive mathematical model to predict nitrogen content as a function of temperature and nitrogen pressu...

  7. Proton induced gamma-ray production cross sections and thick-target yields for boron, nitrogen and silicon

    Science.gov (United States)

    Marchand, Benoît; Mizohata, Kenichiro; Räisänen, Jyrki

    2016-07-01

    The excitation functions for the reactions 14N(p,p‧γ)14N, 28Si(p,p‧γ)28Si and 29Si(p,p‧γ)29Si were measured at an angle of 55° by bombarding a thin Si3N4 target with protons in the energy range of 3.6-6.9 MeV. The deduced γ-ray production cross section data is compared with available literature data relevant for ion beam analytical work. Thick-target γ-ray yields for boron, nitrogen and silicon were measured at 4.0, 4.5, 5.0, 5.5, 6.0 and 6.5 MeV proton energies utilizing thick BN and Si3N4 targets. The measured yield values are put together with available yield data found in the literature. The experimental yield data has been used to cross-check the γ-ray production cross section values by comparing them with calculated thick-target yields deduced from the present and literature experimental excitation curves. All values were found to be in reasonable agreement taking into account the experimental uncertainties.

  8. Complex boron redistribution kinetics in strongly doped polycrystalline-silicon/nitrogen-doped-silicon thin bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Abadli, S. [Department of Electrical Engineering, University Aout 1955, Skikda, 21000 (Algeria); LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Mansour, F. [LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Pereira, E. Bedel [CNRS-LAAS, 7 avenue du colonel Roche, 31077 Toulouse (France)

    2012-10-15

    We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi-layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 C, by using in-situ nitrogen-doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P{sup +}) layer. To avoid long-range B redistributions, thermal annealing was carried out at relatively low-temperatures (600 C and 700 C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders. The increasing kinetics of the B peak concentration near the bi-layers interface is well reproduced by the established model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Complex Boron Redistribution in P+ Doped-polysilicon / Nitrogen Doped Silicon Bi-layers during Activation Annealing

    Science.gov (United States)

    Abadli, S.; Mansour, F.; Perrera, E. Bedel

    We have investigated and modeled the complex phenomenon of boron (B) redistribution process in strongly doped silicon bilayers structure. A one-dimensional two stream transfer model well adapted to the particular structure of bi- layers and to the effects of strong-concentrations has been developed. This model takes into account the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method, using in-situ nitrogen- doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P+) layer. To avoid long redistributions, thermal annealing was carried out at relatively lowtemperatures (600 °C and 700 °C) for various times ranging between 30 minutes and 2 hours. The good adjustment of the simulated profiles with the experimental secondary ion mass spectroscopy (SIMS) profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders kinetics.

  10. Growth of Structured Non-crystalline Boron-Oxygen-Nitrogen Films and Measurement of Their Electrical Properties

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-Chao(陈广超); LU Fan-Xiu(吕反修); J.-H.Boo

    2003-01-01

    The boron-oxygen-nitrogen (BON) films have been grown on Si wafer by the low-frequency rf-plasma-enhanced metal-organic chemical vapour deposition method. The homogeneous film structure of completely amorphous BON is first fabricated on a low-temperature-made buffer at 500° C with N2 plasma and is observed with a high resolution-electron microscope by the transmission-electron diffraction. The results show that the interfaces among substrate/buffer/film are clear and straight in the structured film. A heterogeneous film containing nano-sized crystalline particles is also grown by a routine growth procedure as a referential structure. The C - V characteristic is measured on both the amorphous and crystal-containing films by using the metal-oxidesemiconductor structure. The dielectric constants of the films are, therefore, deduced to be 5.9 and 10.5 for the amorphous and crystal-containing films, respectively. The C - V results also indicate that more trapped charges exist in the amorphous film. The binding energy of the B, O, and N atoms in the amorphous film is higher than that in the crystal-containing one, and the N-content in the latter is found to be higher than that in the former by x-ray photo-electron spectroscopy. The different electrical property of the films is thought to originate from the energy state of the covalent electrons.

  11. On The Cosmic Origins Of Carbon And Nitrogen

    CERN Document Server

    Henry, R B C; Köppen, J

    2000-01-01

    We analyze the behavior of N/O and C/O abundance ratios as a function of metallicity as gauged by O/H in large, extant Galactic and extragalactic H II region abundance samples. Numerical chemical evolution models are computed using published stellar yields implied by comparing analytical models to the observations. Our results suggest that carbon and nitrogen originate from separate production sites and are decoupled from one another. Massive stars (M>8M_sun) dominate the production of carbon, while intermediate-mass stars between 4 and 8 solar masses, with a characteristic ejection delay time of 250 Myr after their formation, dominate nitrogen production. Carbon production is positively sensitive to metallicity through mass loss processes in massive stars and has a pseudo-secondary character. Nitrogen production in intermediate mass stars is primary at low metallicity, but clearly secondary (and perhaps tertiary) when 12+log(O/H)>8.3. The observed flat behavior of N/O versus O/H in metal-poor galaxies is exp...

  12. Nano-solenoid: helicoid carbon-boron nitride hetero-nanotube

    Science.gov (United States)

    Zhang, Zi-Yue; Miao, Chunyang; Guo, Wanlin

    2013-11-01

    As a fundamental element of a nanoscale passive circuit, a nano-inductor is proposed based on a hetero-nanotube consisting of a spiral carbon strip and a spiral boron nitride strip. It is shown by density functional theory associated with nonequilibrium Green function calculations that the nanotube exhibits attractive transport properties tunable by tube chirality, diameter, component proportion and connection manner between the two strips, with excellent `OFF' state performance and high current on the order of 10-100 μA. All the hetero-nanotubes show negative differential resistance. The transmission peaks of current are absolutely derived from the helicoid carbon strips or C-BN boundaries, giving rise to a spiral current analogous with an energized nano-solenoid. According to Ampere's Law, the energized nano-solenoid can generate a uniform and tremendous magnetic field of more than 1 tesla, closing to that generated by the main magnet of medical nuclear magnetic resonance. Moreover, the magnitude of magnetic field can be easily modulated by bias voltage, providing great promise for a nano-inductor to realize electromagnetic conversion at the nanoscale.As a fundamental element of a nanoscale passive circuit, a nano-inductor is proposed based on a hetero-nanotube consisting of a spiral carbon strip and a spiral boron nitride strip. It is shown by density functional theory associated with nonequilibrium Green function calculations that the nanotube exhibits attractive transport properties tunable by tube chirality, diameter, component proportion and connection manner between the two strips, with excellent `OFF' state performance and high current on the order of 10-100 μA. All the hetero-nanotubes show negative differential resistance. The transmission peaks of current are absolutely derived from the helicoid carbon strips or C-BN boundaries, giving rise to a spiral current analogous with an energized nano-solenoid. According to Ampere's Law, the energized nano

  13. Fabrication of boron-doped carbon fibers by the decomposition of B4C and its excellent rate performance as an anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Huiqi; Ma, Canliang; Yang, Xueteng; Han, Tao; Tao, Zechao; Song, Yan; Liu, Zhanjun; Guo, Quangui; Liu, Lang

    2015-03-01

    A facile route, for the first time, was developed to fabricate boron-doped carbon fibers (BDCFs). Boron was doped into mesosphere pitch-based carbon fibers (CFs) by exposing the CFs in a vapor of boron by the decomposition of boron carbide. The microstructure of BDCFs was characterized by SEM, TEM, XRD and Raman spectroscopy. When used as anode materials for the lithium-ion batteries, BDCFs electrode exhibits an improved performance. Concretely, the specific capacity of BDCFs still had a value of over 400 mAh g-1 after 100 cycles. Moreover, BDCFs exhibits better rate capability and less hysteresis in comparison to the pristine CFs. Such enhanced lithium storage capability can be attributed to the improvement of graphitization properties and the high amount of defects induced by boron.

  14. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  15. Carbon and Nitrogen Accumulation Rates in Salt Marshes in Oregon, USA

    Science.gov (United States)

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  16. The electrical transport properties of nitrogen doped carbon microspheres

    International Nuclear Information System (INIS)

    Four samples of nitrogen-doped carbon microspheres were synthesised using a horizontal chemical vapour deposition process. Characterization of the samples using scanning electron microscopy, Raman spectroscopy and electron paramagnetic resonance spectroscopy showed spherical graphitic carbon microparticles with substitutional nitrogen in the lattice structure. The average diameter of the microspheres was 1.7 μm. Electron paramagnetic resonance spectroscopy was also used as a technique to measure the percentage of substitutional nitrogen in each sample. This was determined to be 3.4% in two of the samples and 1.7% in the other two. Temperature dependent electrical transport measurements were performed on the samples and resistance measurements showed clear semiconducting behaviour in two of the samples and a transition from metallic to semiconducting behaviour in the other two samples. IV characteristics measurements display curves with increasing non-linearity as temperature decreases in two samples and saturation behaviour is seen at higher temperatures in the other two samples. An anomaly is present in the IV characteristics at 300 K in all samples. A combination of fluctuation induced tunnelling and electronphonon scattering is used to model the data. These models provide a satisfactory description of the data for both the IV characteristics and the resistance measurements. - Highlights: • Nitrogen doped carbon spheres were synthesised using a horizontal CVD technique. • SEM, EPR, and Raman spectroscopy confirmed the synthesis was successful. • Electrical transport measurements (resistance and IV characteristics) were done. • Variable temperature resistance measurements showed the samples conducted via FIT. • This result was confirmed with variable temperature IV characteristics

  17. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.

    Science.gov (United States)

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. PMID:27287103

  18. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.

    Science.gov (United States)

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution.

  19. Boron isotope ratio determination in carbonates /via/ LA-MC-ICP-MS using soda-lime glass standards as reference material

    OpenAIRE

    Fietzke, Jan; Heinemann, Agnes; Taubner, Isabelle; Böhm, Florian; Erez, Jonathan; Eisenhauer, Anton

    2010-01-01

    A new in situ method using LA-MC-ICP-MS (193 nm excimer laser) for the determination of stable boron isotope ratios (δ11B) in carbonates was developed. Data were acquired via a standard sample standard bracketing procedure typically providing a reproducibility of 0.5‰ (SD) for samples containing 35 ppm of boron. A single ablation interval consumed about 5 µg of sample corresponding to about 0.2 ng of boron. The major finding was the similar instrumental fractionation behaviour of carbonates, ...

  20. Carbon- and crack-free growth of hexagonal boron nitride nanosheets and their uncommon stacking order.

    Science.gov (United States)

    Khan, Majharul Haque; Casillas, Gilberto; Mitchell, David R G; Liu, Hua Kun; Jiang, Lei; Huang, Zhenguo

    2016-09-21

    The quality of hexagonal boron nitride nanosheets (h-BNNS) is often associated with the most visible aspects such as lateral size and thickness. Less obvious factors such as sheet stacking order could also have a dramatic impact on the properties of BNNS and therefore its applications. The stacking order can be affected by contamination, cracks, and growth temperatures. In view of the significance of chemical-vapour-decomposition (CVD) assisted growth of BNNS, this paper reports on strategies to grow carbon- and crack-free BNNS by CVD and describes the stacking order of the resultant BNNS. Pretreatment of the most commonly used precursor, ammonia borane, is necessary to remove carbon contamination caused by residual hydrocarbons. Flattening the Cu and W substrates prior to growth and slow cooling around the Cu melting point effectively facilitate the uniform growth of h-BNNS, as a result of a minimal temperature gradient across the Cu substrate. Confining the growth inside alumina boats effectively minimizes etching of the nanosheet by silica nanoparticles originating from the commonly used quartz reactor tube. h-BNNS grown on solid Cu surfaces using this method adopt AB, ABA, AC', and AC'B stacking orders, which are known to have higher energies than the most stable AA' configuration. These findings identify a pathway for the fabrication of high-quality h-BNNS via CVD and should spur studies on stacking order-dependent properties of h-BNNS.

  1. Carbon and nitrogen abundances determined from transition layer lines

    Science.gov (United States)

    Boehm-Vitense, Erika; Mena-Werth, Jose

    1992-01-01

    The possibility of determining relative carbon, nitrogen, and silicon abundances from the emission-line fluxes in the lower transition layers between stellar chromospheres and coronae is explored. Observations for main-sequence and luminosity class IV stars with presumably solar element abundances show that for the lower transition layers Em = BT sup -gamma. For a given carbon abundance the constants gamma and B in this relation can be determined from the C II and C IV emission-line fluxes. From the N V and S IV lines, the abundances of these elements relative to carbon can be determined from their surface emission-line fluxes. Ratios of N/C abundances determined in this way for some giants and supergiants agree within the limits of errors with those determined from molecular bands. For giants, an increase in the ratio of N/C at B-V of about 0.8 is found, as expected theoretically.

  2. Boron Doped Multi-walled Carbon Nanotubes as Catalysts for Oxygen Reduction Reaction and Oxygen Evolution Reactionin in Alkaline Media

    International Nuclear Information System (INIS)

    The boron doped multi-walled carbon nanotubes (B-MWCNTs) were synthesized by thermal annealing multi-walled carbon nanotubes (MWCNTs) in the presence of boric acid. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) results revealed that the structure of MWCNTs does not be destroyed during the doping process, and X-ray photoelectron spectroscopy (XPS) analysis demonstrated the boron atoms were successfully doped in the structure of MWCNTs. The electrocatalytic properties of B-MWCNTs are characterized by rotating disk electrode (RDE) methods. The results demonstrated that the B-MWCNTs catalyzed oxygen reduction reaction (ORR) in alkaline media by a 2 + 2 electron pathway and it showed good catalytic activity for oxygen evolution reaction (OER) as well

  3. The Carbon-Nitrogen Balance of the Nodule and Its Regulation under Elevated Carbon Dioxide Concentration

    Directory of Open Access Journals (Sweden)

    Marc Libault

    2014-01-01

    Full Text Available Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2. In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  4. Science Letters: Nitrogen doping of activated carbon loading Fe2O3 and activity in carbon-nitric oxide reaction

    Institute of Scientific and Technical Information of China (English)

    WAN Xian-kai; ZOU Xue-quan; SHI Hui-xiang; WANG Da-hui

    2007-01-01

    Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (<500 ℃) because of the cooperative effect of Fe2O3 and the surface nitrogen species.

  5. Carbon and Nitrogen Requirement of Colletotrichum Gloeosporioides Penz

    Directory of Open Access Journals (Sweden)

    K. C. Srivastava

    1967-04-01

    Full Text Available Effect of various carbon and nitroged compounds on the growth ahe sporulatice of Colletotrichum gloeosporiodes Penz., is lated from diseased leaves of Manihot utilissima Pohl. (a plant of great economic value for its starchy tuberous roots, was studied in liquid cultures. Of the various carbon compounds used starch, glycrine, sucrose and maltose supported good growth of the organism. Fructose, glucose and gala ctose were comparatively poor supporteds while lactose supported least growth of the organism. The sporulation of the fungus fungus was satisfactory on all the carbon sources used in the investigation, best being on starh, Comparatively poor sporulation was recorded on fructose and galactose. Among organic sources of nitrogen, which were better utilized by the fungus than inorganic ones, tryptophane, aspartic acid and asparagin showed good growth of fungs. Among inorgonic sources potassium nitrate was the best. No growth was recorded on sodium nitrite. There was no correlation between the sporulation and growth of the fungus in relation to the source from which nitrogen was obtained.

  6. Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steel with Chromium and Carbon

    Science.gov (United States)

    Wu, Ming-Wei; Fan, Yu-Chi; Huang, Her-Yueh; Cai, Wen-Zhang

    2015-11-01

    Liquid phase sintering is an effective method to improve the densification of powder metallurgy materials. Boron is an excellent alloying element for liquid phase sintering of Fe-based materials. However, the roles of chromium and carbon, and particularly that of the former, on liquid phase sintering are still undetermined. This study demonstrated the effects of chromium and carbon on the microstructure, elemental distribution, boride structure, liquid formation, and densification of Fe-B-Cr and Fe-B-Cr-C steels during liquid phase sintering. The results showed that steels with 0.5 wt pct C densify faster than those without 0.5 wt pct C. Moreover, although only one liquid phase forms in Fe-B-Cr steel, adding 0.5 wt pct C reduces the formation temperature of the liquid phase by about 50 K (°C) and facilitates the formation of an additional liquid, resulting in better densification at 1473 K (1200 °C). In both Fe-B-Cr and Fe-B-Cr-C steels, increasing the chromium content from 1.5 to 3 wt pct raises the temperature of liquid formation by about 10 K (°C). Thermodynamic simulations and experimental results demonstrated that carbon atoms dissolved in austenite facilitate the eutectic reaction and reduce the formation temperature of the liquid phase. In contrast, both chromium and molybdenum atoms dissolved in austenite delay the eutectic reaction. Furthermore, the 3Cr-0.5Mo additive in the Fe-0.4B steel does not change the typical boride structure of M2B. With the addition of 0.5 wt pct C, the crystal structure is completely transformed from M2B boride to M3(B,C) boro-carbide.

  7. Carbon-nitrogen feedbacks in the UVic ESCM

    Directory of Open Access Journals (Sweden)

    R. Wania

    2012-09-01

    Full Text Available A representation of the terrestrial nitrogen cycle is introduced into the UVic Earth System Climate Model (UVic ESCM. The UVic ESCM now contains five terrestrial carbon pools and seven terrestrial nitrogen pools: soil, litter, leaves, stem and roots for both elements and ammonium and nitrate in the soil for nitrogen. Nitrogen cycles through plant tissue, litter, soil and the mineral pools before being taken up again by the plant. Biological N2 fixation and nitrogen deposition represent external inputs to the plant-soil system while losses occur via leaching. Simulated carbon and nitrogen pools and fluxes are in the range of other models and observations. Gross primary production (GPP for the 1990s in the CN-coupled version is 129.6 Pg C a−1 and net C uptake is 0.83 Pg C a−1, whereas the C-only version results in a GPP of 133.1 Pg C a−1 and a net C uptake of 1.57 Pg C a−1. At the end of a transient experiment for the years 1800–1999, where radiative forcing is held constant but CO2 fertilisation for vegetation is permitted to occur, the CN-coupled version shows an enhanced net C uptake of 1.05 Pg C a−1, whereas in the experiment where CO2 is held constant and temperature is transient the land turns into a C source of 0.60 Pg C a−1 by the 1990s. The arithmetic sum of the temperature and CO2 effects is 0.45 Pg C a−1, 0.38 Pg C a−1 lower than seen in the fully forced model, suggesting a strong nonlinearity in the CN-coupled version. Anthropogenic N deposition has a positive effect on Net Ecosystem Production of 0.35 Pg C a−1. Overall, the UVic CN-coupled version shows similar characteristics to other CN-coupled Earth System Models, as measured by net C balance and sensitivity to changes in climate, CO2 and temperature.

  8. Variations in carbon and nitrogen stable isotopes of cryoconite

    Science.gov (United States)

    Takeuchi, N.

    2012-12-01

    Cryoconite is biogenic surface dust on snow and ice, and is commoly observed on glaciers worldwide. Because of their dark coloration, cryoconite substantially reduce surface albedo and accelerate melting of glaciers. Therefore, it is important to understand formation process of cryoconite to evaluate its effect on glacier melting. Although cryoconite consists of mineral particles and organic matter, organic fraction is more important in terms of albedo effect because it is usually darker color and accounts for major part of cryoconite in volume. The organic matter is derived from photosynthetic microbes such as cyanobacteria, and/or from windblown organic matter from ground soil around glaciers. Carbon (C) and nitrogen (N) stable isotopes of the organic matter could be useful to know their sources and to understand their cycles on glaciers. In this study, I analyzed carbon and nitrogen stable isotopes of cryoconite collected from 6 sites of different elevation from May to September on an Alaska glacier (Gulkana Glacier) to know their spatial and seasonal variations. I also analyze those collected from glaciers in Asia and Arctic to compare them among different geographical locations. Results on the Alaska glacier show that C and N stable isotopes of cryoconite organic mater significantly varied among elevations and seasons. C isotope was generally higher in lower elevation, probably due to higher photosynthetic activity in the lower elevation. In contrast, N isotope was constant on the ice area, but was lower in the snow area where the red snow algae were blooming. N isotope may be reflective of nitrogen availavility on the glacier surface. Geograpical comparison shows large variations in C and N isotopes among regions: higher C and N isotopes on Asian glaciers, lower C and N isotopes in Alaska, and lower C and higher N isotopes on Arctic glaciers. The isotope values suggest that algal production is a major carbon source on most of glaciers, but their productivity

  9. Nanoscale High Energetic Materials: A Polymeric Nitrogen Chain N8 Confined inside a Carbon Nanotube

    Science.gov (United States)

    Abou-Rachid, Hakima; Hu, Anguang; Timoshevskii, Vladimir; Song, Yanfeng; Lussier, Louis-Simon

    2008-05-01

    We present a theoretical study of a new hybrid material, nanostructured polymeric nitrogen, where a polymeric nitrogen chain is encapsulated in a carbon nanotube. The electronic and structural properties of the new system are studied by means of ab initio electronic structure and molecular dynamics calculations. Finite temperature simulations demonstrate the stability of this nitrogen phase at ambient pressure and room temperature using carbon nanotube confinement. This nanostructured confinement may open a new path towards stabilizing polynitrogen or polymeric nitrogen at ambient conditions.

  10. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance.

    Science.gov (United States)

    Zhai, Yunbo; Xu, Bibo; Zhu, Yun; Qing, Renpeng; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming

    2016-04-01

    Nitrogen doped porous activated carbon was prepared by annealing treatment of Camellia oleifera shell activated carbon under NH3. We found that nitrogen content of activated carbon up to 10.43 at.% when annealed in NH3 at 800 °C. At 600 °C or above, the N-doped carbon further reacts with NH3, leads to a low surface area down to 458 m(2)/g and low graphitization degree. X-ray photoelectron spectroscope (XPS) analysis indicated that the nitrogen functional groups on the nitrogen-doped activated carbons (NACs) were mostly in the form of pyridinic nitrogen. We discovered that the oxygen groups and carbon atoms at the defect and edge sites of graphene play an important role in the reaction, leading to nitrogen atoms incorporated into the lattice of carbon. When temperatures were lower than 600 °C the nitrogen atoms displaced oxygen groups and formed nitrogen function groups, and when temperatures were higher than 600 °C and ~4 at.% carbon atoms and part of oxygen function groups reacted with NH3. When compared to pure activated carbon, the nitrogen doped activated carbon shows nearly four times the capacitance (191 vs 51 F/g).

  11. Local atomic and electronic structure of boron chemical doping in monolayer graphene.

    Science.gov (United States)

    Zhao, Liuyan; Levendorf, Mark; Goncher, Scott; Schiros, Theanne; Pálová, Lucia; Zabet-Khosousi, Amir; Rim, Kwang Taeg; Gutiérrez, Christopher; Nordlund, Dennis; Jaye, Cherno; Hybertsen, Mark; Reichman, David; Flynn, George W; Park, Jiwoong; Pasupathy, Abhay N

    2013-10-01

    We use scanning tunneling microscopy and X-ray spectroscopy to characterize the atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 carriers into the graphene sheet per dopant. Density functional theory calculations indicate that boron dopants interact strongly with the underlying copper substrate while nitrogen dopants do not. The local bonding differences between graphitic boron and nitrogen dopants lead to large scale differences in dopant distribution. The distribution of dopants is observed to be completely random in the case of boron, while nitrogen displays strong sublattice clustering. Structurally, nitrogen-doped graphene is relatively defect-free while boron-doped graphene films show a large number of Stone-Wales defects. These defects create local electronic resonances and cause electronic scattering, but do not electronically dope the graphene film. PMID:24032458

  12. Theoretical investigation of methane adsorption onto boron nitride and carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Masoud Darvish Ganji, Amir Mirnejad and Ali Najafi

    2010-01-01

    Full Text Available Methane adsorption onto single-wall boron nitride nanotubes (BNNTs and carbon nanotubes (CNTs was studied using the density functional theory within the generalized gradient approximation. The structural optimization of several bonding configurations for a CH4 molecule approaching the outer surface of the (8,0 BNNT and (8,0 CNT shows that the CH4 molecule is preferentially adsorbed onto the CNT with a binding energy of −2.84 kcal mol−1. A comparative study of nanotubes with different diameters (curvatures reveals that the methane adsorptive capability for the exterior surface increases for wider CNTs and decreases for wider BNNTs. The introduction of defects in the BNNT significantly enhances methane adsorption. We also examined the possibility of binding a bilayer or a single layer of methane molecules and found that methane molecules preferentially adsorb as a single layer onto either BNNTs or CNTs. However, bilayer adsorption is feasible for CNTs and defective BNNTs and requires binding energies of −3.00 and −1.44 kcal mol−1 per adsorbed CH4 molecule, respectively. Our first-principles findings indicate that BNNTs might be an unsuitable material for natural gas storage.

  13. Dibenzothiophene adsorption at boron doped carbon nanoribbons studied within density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    López-Albarrán, P. [Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Santiago Tapia 403, CP 58000, Morelia, Michoacán (Mexico); Navarro-Santos, P., E-mail: pnavarrosa@conacyt.mx [Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Santiago Tapia 403, CP 58000, Morelia, Michoacán (Mexico); Garcia-Ramirez, M. A. [Research Centre for Innovation in Aeronautical Engineering, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, CP 66451 Nuevo León (Mexico); Ricardo-Chávez, J. L. [Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4" asección, CP 78216, San Luis Potosí, S. L. P. (Mexico)

    2015-06-21

    The adsorption of dibenzothiophene (DBT) on bare and boron-doped armchair carbon nanoribbons (ACNRs) is being investigated in the framework of the density functional theory by implementing periodic boundary conditions that include corrections from dispersion interactions. The reactivity of the ACNRs is characterized by using the Fukui functions as well as the electrostatic potential as local descriptors. Non-covalent adsorption mechanism is found when using the local Perdew-Becke-Ernzerhof functional, regardless of the DBT orientation and adsorption location. The dispersion interactions addition is a milestone to describe the adsorption process. The charge defects introduced in small number (i.e., by doping with B atoms), within the ACNRs increases the selectivity towards sulfur mainly due to the charge depletion at B sites. The DBT magnitude in the adsorption energy shows non-covalent interactions. As a consequence, the configurations where the DBT is adsorbed on a BC{sub 3} island increase the adsorption energy compared to random B arrangements. The stability of these configurations can be explained satisfactorily in terms of dipole interactions. Nevertheless, from the charge-density difference analysis and the weak Bader charge-distribution interactions cannot be ruled out completely. This is why the electronic properties of the ribbons are analyzed in order to elucidate the key role played by the B and DBT states in the adsorbed configurations.

  14. Lattice mismatch induced curved configurations of hybrid boron nitride-carbon nanotubes

    Science.gov (United States)

    Zhang, Jin

    2016-10-01

    A unique curved configuration is observed in freestanding hybrid boron nitride-carbon nanotubes (BN-CNTs) based on molecular dynamics simulations, which, in previous studies, was tacitly assumed as a straight configuration. The physical fundamentals of this phenomenon are explored by using the continuum mechanics theory, where the curved configuration of BN-CNTs is found to be induced by the bending effect due to the lattice mismatch between the C domain and the BN domain. In addition, our results show that the curvature of the curved BN-CNTs is determined by their radius and composition. The curvature of BN-CNTs decreases with growing radius of BN-CNTs and becomes ignorable when their radius is relatively large. A non-monotonic relationship is detected between the curvature and the composition of BN-CNTs. Specifically, the curvature of BN-CNTs increases with growing BN concentration when the molar fraction of BN atoms is smaller than a critical value 0.52, but decreases with growing BN concentration when the molar fraction of BN atoms is larger than this critical value.

  15. Carbon/Nitrogen Imbalance Associated with Drought-Induced Leaf Senescence in Sorghum bicolor

    OpenAIRE

    Daoqian Chen; Shiwen Wang; Binglin Xiong; Beibei Cao; Xiping Deng

    2015-01-01

    Drought stress triggers mature leaf senescence, which supports plant survival and remobilization of nutrients; yet leaf senescence also critically decreases post-drought crop yield. Drought generally results in carbon/nitrogen imbalance, which is reflected in the increased carbon:nitrogen (C:N) ratio in mature leaves, and which has been shown to be involved in inducing leaf senescence under normal growth conditions. Yet the involvement of the carbon/nitrogen balance in regulation of drought-i...

  16. Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties

    Science.gov (United States)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Huang, Jingfeng; Tan, Dunlin; Zhang, Bowei; Teo, Edwin Hang Tong; Tok, Alfred Iing Yoong

    2016-05-01

    Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability. CNT arrays are grown using a commercially available thermal chemical vapor deposition (TCVD) technique and an outer BNNT with a wall thickness up to 1.37 nm is introduced by a post-growth TCVD treatment. Importantly, compared to the as-grown CNT arrays which deform almost plastically upon compression, the coaxial C@BNNT arrays exhibit an impressive ~4-fold increase in compressive strength with nearly full recovery after the first compression cycle at a 50% strain (76% recovery maintained after 10 cycles), as well as a significantly high and persistent energy dissipation ratio (~60% at a 50% strain after 100 cycles), attributed to the synergistic effect between the CNT and outer BNNT. Additionally, the as-prepared C@BNNT arrays show an improved structural stability in air at elevated temperatures, attributing to the outstanding thermal stability of the outer BNNT. This work provides new insights into tailoring the mechanical and thermal behaviours of arbitrary CNT arrays which enables a broader range of applications.Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability

  17. Electroanalytical investigation and determination of pefloxacin in pharmaceuticals and serum at boron-doped diamond and glassy carbon electrodes.

    Science.gov (United States)

    Uslu, Bengi; Topal, Burcu Dogan; Ozkan, Sibel A

    2008-02-15

    The anodic behavior and determination of pefloxacin on boron-doped diamond and glassy carbon electrodes were investigated using cyclic, linear sweep, differential pulse and square wave voltammetric techniques. In cyclic voltammetry, pefloxacin shows one main irreversible oxidation peak and additional one irreversible ill-defined wave depending on pH values for both electrodes. The results indicate that the process of pefloxacin is irreversible and diffusion controlled on boron-doped diamond electrode and irreversible but adsorption controlled on glassy carbon electrode. The peak current is found to be linear over the range of concentration 2x10(-6) to 2x10(-4)M in 0.5M H(2)SO(4) at about +1.20V (versus Ag/AgCl) for differential pulse and square wave voltammetric technique using boron-doped diamond electrode. The repeatability, reproducibility, precision and accuracy of the methods in all media were investigated. Selectivity, precision and accuracy of the developed methods were also checked by recovery studies. The procedures were successfully applied to the determination of the drug in pharmaceutical dosage forms and humans serum samples with good recovery results. No electroactive interferences from the excipients and endogenous substances were found in the pharmaceutical dosage forms and biological samples, respectively.

  18. Carbon-nitrogen interactions and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T. [Helsinki Univ. (Finland). Dept. of Ecology and Systematics

    1996-12-31

    Biomass and production of vascular plants constitutes a major source of carbon input in peatlands. As rates of decomposition vary considerably with depth, the vertical distribution of biomass may substantially affect accumulation of carbon in peatlands. Therefore, allocation patterns between shoot and roots are particularly important when considering carbon balance of peatland ecosystems. The stimulatory effect of increasing atmospheric concentration of CO{sub 2} or photosynthesis may increase availability of carbon to most C3 plants. Availability of nitrogen may also alter both due to increased atmospheric deposition and changer in mineralisation rates associated with climate change. Most root-shoot partitioning models predict that allocation of biomass is dependent of the availability and uptake of carbon and nitrogen. A decrease in supply of carbon would favour allocation to shoots and a decrease in supply of nitrogen would increase allocation to roots. At a cellular level, non structural carbohydrates and free amino acids are thought to represent the biochemically available fraction of carbon and nitrogen, respectively. The aim of this work is study the long-term growth responses of Carex rostrata to changes in the availability of nitrogen. Special attention is paid to soluble sugars ant free amino acids, which may control partitioning of biomass. (10 refs.)

  19. Carbon and nitrogen dynamics in early stages of forest litter decomposition as affected by nitrogen addition

    Institute of Scientific and Technical Information of China (English)

    DENG Xiao-wen; LIU Ying; HAN Shi-jie

    2009-01-01

    The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh litter samples including needle litter (Pinus koraiensis) and two types of broadleaf litters (Quercus mongolica and Tilia amurensis) were collected from a broadleaf-korean pine mixed forest in the northern slope of Changbai Mountain (China). Different doses of N (equal to 0, 30 and 50 kg·ha-1yr-1, respectively, as NH4NO3) were added to litter during the experiment period. The litter decomposition rate expressed as mass loss and respiration rate increased significantly with increasing N availability. The mass loss and cumulative CO2-C emission were higher in leaf litter compared to that in needle litter. The dissolved organic Carbon (DOC) concentrations in litter leachate varied widely between the species, but were not greatly affected by N treatments. Regardless of the N addition rate, both N treatments and species had no significant effect on dissolved organic N (DON) concentrations in litter leachate. About 52·78% of added N was retained in the litter. The percentage of N retention was positively correlated (R2=0.91, p<0.05) with the litter mass loss. This suggested that a forest floor with easily decomposed litter might have higher potential N sink strength than that with more slowly decomposed litter.

  20. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture

    Science.gov (United States)

    Wan, Liu; Wang, Jianlong; Feng, Chong; Sun, Yahui; Li, Kaixi

    2015-04-01

    Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the CO2 capture performance. At 1 bar, high CO2 uptake of 4.02 and 6.35 mmol g-1 at 25 and 0 °C was achieved for the sample NPC-2 with a molar ratio of F127 : urea = 0.010 : 1. This can be attributed to its well-developed micropore structure and abundant pyridinic nitrogen, pyrrolic nitrogen and pyridonic nitrogen functionalities. The sample NPC-2 also exhibits a remarkable selectivity for CO2/N2 separation and a fast adsorption/desorption rate and can be easily regenerated. This suggests that the polybenzoxazine-based NPCs are desirable for CO2 capture because of possessing a high micropore surface area, a large micropore volume, appropriate pore size distribution, and a large number of basic nitrogen functionalities.Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the

  1. Studies on organic carbon, nitrogen and phosphorous in the sediments of Mandovi Estuary, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Nasnolkar, C.M.; Shirodkar, P.V.; Singbal, S.Y.S.

    Sediment organic carbon, total nitrogen, total phosphorous and hydrography of the overlying waters of the estuarine region in Mandovi Estuary, Goa, India have been studied. The relationship of carbon and nutrients with sediment characteristics...

  2. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    International Nuclear Information System (INIS)

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility

  3. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Gao, Peng; Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn, E-mail: zouguifu@suda.edu.cn; Du, Dezhuang [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123 (China); Guo, Jun [Testing and Analysis Center, Soochow University, Suzhou 215123 (China)

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  4. Carbon and Nitrogen Contents in Typical Plants and Soil Profiles in Yanqi Basin of Northwest China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Juan; WANG Xiu-jun; WANG Jia-ping; WANG Wei-xia

    2014-01-01

    Carbon and nitrogen are the most important elements in the terrestrial ecosystem. Studying carbon and nitrogen distributions in plant and soil is important for our understanding of the ecosystem dynamics and carbon cycle on arid lands. A study was conducted in a typical arid area, the Yanqi Basin, Northwest China. Carbon and nitrogen distributions in plant tissues and soil proifles were determined at 21 sites with typical native plants and crops. Our results indicated that carbon content was similar between crops and native plants, and the average carbon contents in aboveground (42.4%) and belowground (42.8%) tissues were almost the same. Average nitrogen contents in crops were nearly the same (~0.7%) in aboveground and belowground tissues whereas mean nitrogen content was approximately 100% higher in aboveground (2.2%) than in belowground (1.2%) tissues for native species. Soil organic carbon (SOC) and total nitrogen (TN) in cropland (9.4 and 0.9 g kg-1) were signiifcantly higher than those in native land (6.2 and 0.7 g kg-1). Multiple regression analyses indicated that carbon content in belowground tissue and nitrogen content in aboveground tissue were key factors connecting plant and soil in native land. However, there was no signiifcant relationship for carbon or nitrogen between soil and crop, which might relfect human disturbance, such as plowing and applications of various organic materials.

  5. A simple one step organic to inorganic pyrolysis route to bulk quantity boron carbonitride/carbon nanocables

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.; Wang, Y.P.; Yang, J.Q. [School of Materials Science and Engineering, Harbin Institute of Technology (Weihai), Weihai 264209 (China); Huang, X.X., E-mail: swliza@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wen, G., E-mail: g.w.wen.hit@gmail.com [School of Materials Science and Engineering, Harbin Institute of Technology (Weihai), Weihai 264209 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-09-15

    Highlights: • Bulk quantity boron carbonitride/carbon (BCN/C) nanocables have been synthesized by a simple one step organic to inorganic pyrolysis route. • BCN/C nanocables exhibit a much better oxidation resistance than substrate carbon nanofibers. • A probable formation mechanism of the BCN/C nanocables is proposed according to the experimental results. - Abstract: Bulk quantity boron carbonitride/carbon (BCN/C) nanocables have been successfully synthesized by a simple one step organic compounds pyrolysis route at 1100 °C. The nanocables consist of nanocarbon fibers inside covered by the cylindrical BCN coatings. The characteristics of the surface morphology and the diameters of the nanocables are determined by soaking time. It is demonstrated that the elements of B, C and N are hybridly bonded in the coating. The weight loss of the nanocables is about 12% at 1200 °C which is much better than the substrate carbon nanofibers (CNFs) (more than 20% weight loss at 1200 °C). The minimum reflection coefficient below −20 dB for the products is −24.5 dB at 14.48 GHz indicating good microwave absorption properties. The results suggest that the nanocables are favorable for achieving high performance oxidization resistance and microwave absorption properties.

  6. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    Directory of Open Access Journals (Sweden)

    K. Kaczmarek

    2014-12-01

    BOH4-/HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH4- and HCO3-. Furthermore, the simultaneous determination of B/Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B/Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  7. Soil nitrogen and carbon impacts of raising chickens on pasture

    Science.gov (United States)

    Ryals, R.; Leach, A.; Tang, J.; Hastings, M. G.; Galloway, J. N.

    2014-12-01

    Chicken is the most consumed meat in the US, and production continues to intensify rapidly around the world. Chicken manure from confined feeding operations is typically applied in its raw form to nearby croplands, resulting in hotspots of soil nitrous oxide (N2O) emissions. Pasture-raised chicken is an alternative to industrial production and is growing in popularity with rising consumer demand for more humanely raised protein sources. In this agricultural model, manure is deposited directly onto grassland soils where it is thought to increase pools of soil carbon and nitrogen. The fate of manure nitrogen from pasture-raised chicken production remains poorly understood. We conducted a controlled, replicated experiment on a permaculture farm in Charlottesville, Virginia (Timbercreek Organics) in which small chicken coops (10 ft x 12 ft) were moved daily in a pasture. We measured manure deposition rates, soil inorganic nitrogen pools, soil moisture, and soil N2O and CO2 emissions. Measurements were made for the 28-day pasture life of three separate flocks of chickens in the spring, summer, and fall. Each flock consisted of approximately 200-300 chickens occupying three to five coops (~65 chickens/coop). Measurements were also made in paired ungrazed control plots. Manure deposition rates were similar across flocks and averaged 1.5 kgdrywt ha-1 during the spring grazing event and 4.0 kgdrywt ha-1 during the summer and fall grazing events. Manure deposition was relatively constant over the four weeks pasture-lifetime of the chickens. Compared to control plots, grazed areas exhibited higher soil N2O and CO2 fluxes. The magnitude of these fluxes diminished significantly over the four-week span. Soil gas fluxes significantly increased following rainfall events. For a given rainfall event, higher fluxes were observed from transects that were grazed more recently. Soil gaseous reactive nitrogen losses were less in this pasture system compared to cultivated field amended

  8. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems

    NARCIS (Netherlands)

    Vries, de W.; Du, E.; Butterbach-Bahl, K.

    2014-01-01

    The carbon to nitrogen response of forest ecosystems depends on the possible occurrence of nitrogen limitation versus possible co-limitations by other drivers, such as low temperature or availability of phosphorus. A combination of nitrogen retention estimates and stoichiometric scaling is used to i

  9. Controllable-nitrogen doped carbon layer surrounding carbon nanotubes as novel carbon support for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, P.L.; Hsu, C.H.; Wu, H.M.; Hsu, W.S. [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Kuo, D. [Department of Biochemistry, University of Washington, Seattle, WA (United States)

    2012-08-15

    Novel nitrogen-doped carbon layer surrounding carbon nanotubes composite (NC-CNT) (N/C ratio 3.3-14.3 wt.%) as catalyst support has been prepared using aniline as a dispersant to carbon nanotubes (CNTs) and as a source for both carbon and nitrogen coated on the surface of the CNTs, where the amount of doped nitrogen is controllable. The NC-CNT so obtained were characterized with scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption and desorption isotherms. A uniform dispersion of Pt nanoparticles (ca. 1.5-2.0 nm) was then anchored on the surface of NC-CNT by using aromatic amine as a stabilizer. For these Pt/NC-CNTs, cyclic voltammogram measurements show a high electrochemical activity surface area (up to 103.7 m{sup 2} g{sup -1}) compared to the commercial E-TEK catalyst (55.3 m{sup 2} g{sup -1}). In single cell test, Pt/NC-CNT catalyst has greatly enhanced catalytic activity toward the oxygen reduction reaction, resulting in an enhancement of ca. 37% in mass activity compared with that of E-TEK. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Does canopy nitrogen uptake enhance carbon sequestration by trees?

    Science.gov (United States)

    Nair, Richard K F; Perks, Micheal P; Weatherall, Andrew; Baggs, Elizabeth M; Mencuccini, Maurizio

    2016-02-01

    Temperate forest (15) N isotope trace experiments find nitrogen (N) addition-driven carbon (C) uptake is modest as little additional N is acquired by trees; however, several correlations of ambient N deposition against forest productivity imply a greater effect of atmospheric nitrogen deposition than these studies. We asked whether N deposition experiments adequately represent all processes found in ambient conditions. In particular, experiments typically apply (15) N to directly to forest floors, assuming uptake of nitrogen intercepted by canopies (CNU) is minimal. Additionally, conventional (15) N additions typically trace mineral (15) N additions rather than litter N recycling and may increase total N inputs above ambient levels. To test the importance of CNU and recycled N to tree nutrition, we conducted a mesocosm experiment, applying 54 g N/(15) N ha(-1)  yr(-1) to Sitka spruce saplings. We compared tree and soil (15) N recovery among treatments where enrichment was due to either (1) a (15) N-enriched litter layer, or mineral (15) N additions to (2) the soil or (3) the canopy. We found that 60% of (15) N applied to the canopy was recovered above ground (in needles, stem and branches) while only 21% of (15) N applied to the soil was found in these pools. (15) N recovery from litter was low and highly variable. (15) N partitioning among biomass pools and age classes also differed among treatments, with twice as much (15) N found in woody biomass when deposited on the canopy than soil. Stoichiometrically calculated N effect on C uptake from (15) N applied to the soil, scaled to real-world conditions, was 43 kg C kg N(-1) , similar to manipulation studies. The effect from the canopy treatment was 114 kg C kg N(-1) . Canopy treatments may be critical to accurately represent N deposition in the field and may address the discrepancy between manipulative and correlative studies. PMID:26391113

  11. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG; Nielsen, LP;

    1999-01-01

    Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store...... internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths,vith trichomes in......) mg of protein(-1). The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol...

  12. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  13. Early Galactic Evolution of Carbon, Nitrogen and Oxygen

    CERN Document Server

    Israelian, G; Rebolo, R; Rebolo, Rafael

    2000-01-01

    We present results on carbon, nitrogen, and oxygen abundances for a sample of unevolved metal-poor stars with metallicities in the range -0.3[Fe/H]>-3.0, the [O/Fe] ratio increases from approximately 0 to 1. We find a good agreement between abundances based on the forbidden line, the OH and IR triplet lines when gravities based on Hipparcos} parallaxes are considered for the sample stars. Gravities derived from LTE ionization balance in metal-poor stars with [Fe/H]< -1 are likely too low, and could be responsible for an underestimation of the oxygen abundances derived using the [OI] line. [C/Fe] and [N/Fe] ratios appear to be constant, independently of metallicity, in the same range. However, they show larger scatter than oxygen at a given metallicity, which could reflect the larger variety of stellar production sites for these other elements.

  14. Current-voltage characteristics of carbon nanotubes with substitutional nitrogen

    DEFF Research Database (Denmark)

    Kaun, C.C.; Larade, B.; Mehrez, H.;

    2002-01-01

    We report ab initio analysis of current-voltage (I-V) characteristics of carbon nanotubes with nitrogen substitution doping. For zigzag semiconducting tubes, doping with a single N impurity increases current flow and, for small radii tubes, narrows the current gap. Doping a N impurity per nanotube...... unit cell generates a metallic transport behavior. Nonlinear I-V characteristics set in at high bias and a negative differential resistance region is observed for the doped tubes. These behaviors can be well understood from the alignment/mis-alignment of the current carrying bands in the nanotube leads...... due to the applied bias voltage. For a armchair metallic nanotube, a reduction of current is observed with substitutional doping due to elastic backscattering by the impurity....

  15. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    Science.gov (United States)

    Tsubouchi, Naoto; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-01

    The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K2CO3 activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500-900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m2/g and 0.13 cm3/g at 800 °C, and 540 m2/g and 0.31 cm3/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300-3400 m2/g and 2.0-2.3 cm3/g after holding at 800-900 °C for 1 h. Heating a lignin/urea/K2CO3 mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K2CO3 and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  16. Evaluation of Aromatic Boronic Acids as Ligands for Measuring Diabetes Markers on Carbon Nanotube Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Steingrimur Stefansson

    2012-01-01

    Full Text Available Biomolecular detections performed on carbon nanotube field-effect transistors (CNT-FETs frequently use reactive pyrenes as an anchor to tether bioactive ligands to the hydrophobic nanotubes. In this paper, we explore the possibility of directly using bioactive aromatic compounds themselves as CNT-FET ligands. This would be an efficient way to functionalize CNT-FETs since many aromatic compounds bind avidly to nanotubes, and it would also ensure that ligand-binding molecules would be brought in close proximity to the nanotubes. Using a model system consisting of pyrene, phenanthrene, naphthalene, or phenyl boronic acids immobilized on CNT-FET wafers, we show that all are able to bind glycated human serum albumin (gHSA, which is an important diabetes marker. Pyrene boronic acid proved to bind CNTs with the greatest apparent affinity as measured by gHSA impedance. Interestingly, gHSA CNT-FET signal intensity, which is proportional to amount of protein bound, remained essentially unchanged for all the boronic acids tested.

  17. Low Carbon Costs of Nitrogen Fixation in Tropical Dry Forests

    Science.gov (United States)

    Gei, M. G.; Powers, J. S.

    2015-12-01

    Legume tree species with the ability to fix nitrogen (N) are highly diverse and widespread across tropical forests but in particular in the dry tropics. Their ecological success in lower latitudes has been called a "paradox": soil N in the tropics is thought to be high, while acquiring N through fixation incurs high energetic costs. However, the long held assumptions that N fixation is limited by photosynthate and that N fixation penalizes plant productivity have rarely been tested, particularly in legume tree species. We show results from three different experiments where we grew eleven species of tropical dry forest legumes. We quantified plant biomass and N fixation using nodulation and the 15N natural isotope abundance (Ndfa or nitrogen derived from fixation). These data show little evidence for costs of N fixation in seedlings grown under different soil fertility, light regimes, and with different microbial communities. Seedling productivity did not incur major costs because of N fixation: indeed, the average slope between Ndfa and biomass was positive (range in slopes: -0.03 to 0.3). Moreover, foliar N, which varied among species, was tightly constrained and not correlated with Ndfa. This finding implies that legume species have a target N that does not change depending on N acquisition strategies. The process of N fixation in tropical legumes may be more carbon efficient than previously thought. This view is more consistent with the hyperabundance of members of this family in tropical ecosystems.

  18. Particulate organic carbon and nitrogen export from major Arctic rivers

    Science.gov (United States)

    McClelland, J. W.; Holmes, R. M.; Peterson, B. J.; Raymond, P. A.; Striegl, R. G.; Zhulidov, A. V.; Zimov, S. A.; Zimov, N.; Tank, S. E.; Spencer, R. G. M.; Staples, R.; Gurtovaya, T. Y.; Griffin, C. G.

    2016-05-01

    Northern rivers connect a land area of approximately 20.5 million km2 to the Arctic Ocean and surrounding seas. These rivers account for ~10% of global river discharge and transport massive quantities of dissolved and particulate materials that reflect watershed sources and impact biogeochemical cycling in the ocean. In this paper, multiyear data sets from a coordinated sampling program are used to characterize particulate organic carbon (POC) and particulate nitrogen (PN) export from the six largest rivers within the pan-Arctic watershed (Yenisey, Lena, Ob', Mackenzie, Yukon, Kolyma). Together, these rivers export an average of 3055 × 109 g of POC and 368 × 109 g of PN each year. Scaled up to the pan-Arctic watershed as a whole, fluvial export estimates increase to 5767 × 109 g and 695 × 109 g of POC and PN per year, respectively. POC export is substantially lower than dissolved organic carbon export by these rivers, whereas PN export is roughly equal to dissolved nitrogen export. Seasonal patterns in concentrations and source/composition indicators (C:N, δ13C, Δ14C, δ15N) are broadly similar among rivers, but distinct regional differences are also evident. For example, average radiocarbon ages of POC range from ~2000 (Ob') to ~5500 (Mackenzie) years before present. Rapid changes within the Arctic system as a consequence of global warming make it challenging to establish a contemporary baseline of fluvial export, but the results presented in this paper capture variability and quantify average conditions for nearly a decade at the beginning of the 21st century.

  19. Cellular Composition Changes and Nitrogen Uptake under Extra-Limited Nitrogen Conditions by Thermosynechococcus sp. CL-1 Carbon Biofixation

    Directory of Open Access Journals (Sweden)

    Tseng Chi-Ming

    2016-01-01

    Full Text Available Two types of culture systems were used (continuous and batch which were fed using a simulated absorbent from a scrubber with carbonate/bicarbonate as the carbon source and nitrate as the nitrogen source by a thermophile strain, Thermosynechococcus sp. CL-1 (TCL-1 at 50°C. The lipid, carbohydrate, and protein cellular components which can be used as bioenergy precursors along with their content as a function of various C/N ratios are quantified. Maximum lipid productivity of about 150 mg L−1 d−1 is obtained while the CO2 uptake rate is 917 mg L−1 d−1 at a dilution rate of 0.06 h−1 when both carbon and nitrogen sources are not limited. With high range of nitrogen concentrations batch culture test, TCL-1 reveals extra-high affinity on nitrogen source under limited carbon source conditions since the affinity constant is 0.12 mM. In addition, the flow of carbon fixed during photosynthesis seems to switch from the protein synthesis pathway to forming carbohydrate rather than lipid under N-limitation and a high C/N ratio for TCL-1, resulting in a maximal carbohydrate content of 61%. Consequently, TCL-1 is an appropriate candidate to treat the wastewater of environment and produce the bioenergy precursors under extreme limited nitrogen conditions.

  20. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen

    OpenAIRE

    Mikha, M.M.; Rice, C W

    2004-01-01

    Metadata only record This study assesses the impacts of tillage methods (conventional(CT) versus no-tillage(NT)) and nitrogen source (fertilizer(F) versus manure(M)) on soil aggregate size and the associated soil carbon and nitrogen. They find that both no-tillage and manure increase soil aggregate size, with the combination of the two producing the greatest soil aggregation. Likewise, there was greater total carbon and nitrogen in the soil for the no-tillage and manure treatments.

  1. Soil Inorganic Nitrogen and Microbial biomass Carbon and Nitrogen Under Pine Plantations in Zhanggutai Sandy Soil

    Institute of Scientific and Technical Information of China (English)

    YU Zhan-Yuan; CHEN Fu-Sheng; ZENG De-Hui; ZHAO Qiong; CHEN Guang-Sheng

    2008-01-01

    The dynamics of soil inorganic nitrogen (NH+4-N and NO-3N) and microbial biomass carbon (Cmic) and nitrogen (Nmic) under 30-year-old fenced Pinus sylvestris L. var. mongolica Litvin (SF), unfenced P. sylvestris L. var. mongolica Litvin (SUF), and unfenced Pinus densiflora Siebold et Zucc. (DUF) plantations in the Zhanggutai sandy soil of China were studied during Apr. to Oct. 2004 by the in situ closed-top core incubation method. All mentioned C and N indices in each stand type fluctuated over time. The ranges of inorganic N, Cmic, and Nmic contents in the three stand types were 0.7-2.6, 40.0-128.9, and 5.4-15.2 μg g-1, respectively. The average contents of soil NH+4-N and Cmic under the three 30-year-old pine plantations were not different. However, soil NO-3-N and total inorganic N contents decreased in the order of SUF > SF > DUF, the Nmic content was in the order of SF = SUF > DUF, and the Cmic:Nmic ratio was in the order of SUF = DUF > SF. Seasonal variations were observed in soil inorganic N, microbial biomass, and plant growth. These seasonal variations had certain correlations with microbe and plant N use in the soil, and their competition for NH+4-N was mostly regulated by soil N availability. The influence of tree species on inorganic N and Nmic were mainly because of differences in litter quality. Lack of grazing decreased the Cmic:N ratio owing to decreased carbon output and increased the ability of soil to supply N. The soil N supply under the P. sylvestris var. mongolica plantation was lower than under the P. densiflora plantation.

  2. Synthesis and characterization of well-aligned carbon nitrogen nanotubes by microwave plasma chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    马旭村; 徐贵昌; 王恩哥

    2000-01-01

    Well-aligned carbon nitrogen nanotube films have been synthesized successfully on meso-porous silica substrates by microwave plasma chemical vapor deposition (MWPCVD) method. Studies on their morphology, structure, and composition by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX), respectively, indicate that these nanotubes consist of linearly polymerized carbon nitrogen nanobells, and the nitrogen atoms have been doped into carbon netweork to form a new structure C1-xNx( x = 0.16±0.01). X-ray photoelectron spectroscopy (XPS) results of the samples further demonstrate that carbon bonds cova-lently with nitrogen in all the carbon nitrogen nanotube films.

  3. Spontaneous Boron-doping of Graphene at Room Temperature

    Science.gov (United States)

    Pan, Lida; Que, Yande; Du, Shixuan; Gao, Hongjun; Pantelides, Sokrates T.

    2015-03-01

    Doping graphene with boron or nitrogen is an effective way to modify its electronic properties. However, the reaction barrier for introducing these impurities is quite high, making the doping process difficult. In this work, we propose a low-energy reaction route derived from first-principles calculations and subsequently validated by experiments. The calculations show that, when graphene is placed on a ruthenium substrate and exposed to atomic boron, boron atoms can incorporate substitutionally into the graphene sheet with an energy barrier about 0.1 eV, displacing carbon atoms below the graphene sheet where they migrates away. This result suggests that spontaneous doping by boron can take place at room temperature. Following the prediction, we grew high-quality graphene on the Ru(0001) surface and then expose it to B2H6 which decomposes into atomic boron. XPS and STM results indicate that boron dopes graphene substantially without disturbing the graphene lattice, confirming the theoretical predictions. Doping by nitrogen and co-doping by B and N will also be discussed.

  4. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent.

    Science.gov (United States)

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-30

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  5. K-shell photoionization of boron-like carbon ions: analysis of 1s-2p resonances

    Institute of Scientific and Technical Information of China (English)

    Wang Guo-Li; Zhou Xiao-Xin

    2007-01-01

    Close-coupling calculations based on an R-matrix formalism are performed for the 1s-2p resonance photoionizations from the low-lying states of boron-like carbon ions. The resonance energies, widths and oscillator strengths of 1s-2p core excitations are determined by analysing the calculated photoionization cross sections. Our calculations are in reasonable agreement with the experimental and theoretical results presented by other authors. The present numerical values may help to analyse the astrophysical and laboratory plasmas.

  6. Preparation of Poly(p-phenylene sulfi de)/Carbon Composites with Enhanced Thermal Conductivity and Electrical Insulativity via Hybrids of Boron Nitride and Carbon Fillers

    Institute of Scientific and Technical Information of China (English)

    WU Jieli; WANG Jinwen; CHEN Feng

    2015-01-01

    The present work enhanced the thermal conductivity of poly(p-phenylene sulfi de)/expanded graphites and poly(p-phenylene sulfi de)/carbon nanotubes, by incorporating composites with hexagonal boron nitride, which simultaneously succeeded in raising the electrical conductivity of the systems. A two-step mechanical processing method which includes rotating solid-state premixing and inner mixing was adopted to improve dispersion of the hybrids, contributing to the formation of an interspered thermal conductive network. Similar synergic effect in thermal conductivity enhancement was discovered in the hybrid systems regardless of the dimension difference between the two carbonfi llers. Such is postulated to be the one satisfying advantage generated by the afore-mentioned network; the other is the insulativity of the hybrid systems given by the effective blockage of hexagonal boron nitride as an insulating material in our network.

  7. Nitrogen removal efficiency of iron-carbon micro-electrolysis system treating high nitrate nitrogen organic pharmaceutical wastewater

    Institute of Scientific and Technical Information of China (English)

    周健; 段送华; 陈垚; 胡斌

    2009-01-01

    The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively.

  8. Importance of Nitrogen Availability on Land Carbon Sequestration in Northern Eurasia during the 21st Century

    Science.gov (United States)

    Kicklighter, D. W.; Melillo, J. M.; Monier, E.; Sokolov, A. P.; Lu, X.; Zhuang, Q.

    2015-12-01

    Atmospheric nitrogen deposition, nitrogen fixation, and the application of nitrogen fertilizers provide subsidies to land ecosystems that can increase nitrogen availability for vegetation production and thereby influence land carbon dynamics. In addition, enhanced decomposition of soil organic matter (SOM) from warming soils and permafrost degradation may also increase nitrogen availability in Northern Eurasia. Here, we examine how changes in nitrogen availability may influence land carbon dynamics in Northern Eurasia during the 21st century by comparing results for a "business as usual" scenario (the IPCC Representative Concentration Pathways or RCP 8.5) and a stabilization scenario (RCP 4.5) between a version of the Terrestrial Ecosystem Model that does not consider the effects of atmospheric nitrogen deposition, nitrogen fixation and soil thermal dynamics on land carbon dynamics (TEM 4.4) and a version that does consider these dynamics (TEM 6.0). In these simulations, atmospheric nitrogen deposition, nitrogen fixation, and fertilizer applications provide an additional 3.3 Pg N (RCP 4.5) to 3.9 Pg N (RCP 8.5) to Northern Eurasian ecosystems over the 21st century. Land ecosystems retain about 38% (RCP4.5) to 48% (RCP 8.5) of this nitrogen subsidy. Net nitrogen mineralization estimated by TEM 6.0 provide an additional 1.0 Pg N to vegetation than estimated by TEM 4.4 over the 21st century from enhanced decomposition of SOM including SOM formerly protected by permafrost. The enhanced nitrogen availability in TEM 6.0 allows Northern Eurasian ecosystems to sequester 1.8x (RCP 8.5) to 2.4x (RCP 4.5) more carbon over the 21st century than estimated by TEM 4.4. Our results indicate that consideration of nitrogen subsidies and soil thermal dynamics have a large influence on how simulated land carbon dynamics in Northern Eurasia will respond to future changes in climate, atmospheric chemistry, and disturbances.

  9. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    Science.gov (United States)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-11-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use LPJ-GUESS, a dynamic vegetation model employing a detailed individual- and patch-based representation of vegetation dynamics, to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one representative "business-as-usual" climate scenario). Single-factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model as documented in previous studies using other global models. Under an RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics up to the present. However, during the 21st century, nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contrasts with previous results with other global models that have shown an 8 to 37% decrease in carbon uptake relative to modern baseline conditions. Implications for the plausibility of earlier projections of future terrestrial C dynamics based on C-only models are discussed.

  10. Nitrogen-Doped Carbon Dots for "green" Quantum Dot Solar Cells.

    Science.gov (United States)

    Wang, Hao; Sun, Pengfei; Cong, Shan; Wu, Jiang; Gao, Lijun; Wang, Yun; Dai, Xiao; Yi, Qinghua; Zou, Guifu

    2016-12-01

    Considering the environment protection, "green" materials are increasingly explored for photovoltaics. Here, we developed a kind of quantum dots solar cell based on nitrogen-doped carbon dots. The nitrogen-doped carbon dots were prepared by direct pyrolysis of citric acid and ammonia. The nitrogen-doped carbon dots' excitonic absorption depends on the N-doping content in the carbon dots. The N-doping can be readily modified by the mass ratio of reactants. The constructed "green" nitrogen-doped carbon dots solar cell achieves the best power conversion efficiency of 0.79 % under AM 1.5 G one full sun illumination, which is the highest efficiency for carbon dot-based solar cells. PMID:26781285

  11. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    Science.gov (United States)

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  12. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  13. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Kang, Jin Ho; Sauti, Godfrey; Thibeault, Sheila A.; Yamakov, Vesselin; Wise, Kristopher E.; Su, Ji; Fay, Catharine C.

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  14. Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Yoke Khin

    2013-03-14

    Hetero-junctions of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) are expected to have appealing new properties that are not available from pure BNNTs and CNTs. Theoretical studies indicate that BNNT/CNT junctions could be multifunctional and applicable as memory, spintronic, electronic, and photonics devices with tunable band structures. This will lead to energy and material efficient multifunctional devices that will be beneficial to the society. However, experimental realization of BNNT/CNT junctions was hindered by the absent of a common growth technique for BNNTs and CNTs. In fact, the synthesis of BNNTs was very challenging and may involve high temperatures (up to 3000 degree Celsius by laser ablation) and explosive chemicals. During the award period, we have successfully developed a simple chemical vapor deposition (CVD) technique to grow BNNTs at 1100-1200 degree Celsius without using dangerous chemicals. A series of common catalyst have then been identified for the synthesis of BNNTs and CNTs. Both of these breakthroughs have led to our preliminary success in growing two types of BNNT/CNT junctions and two additional new nanostructures: 1) branching BNNT/CNT junctions and 2) co-axial BNNT/CNT junctions, 3) quantum dots functionalized BNNTs (QDs-BNNTs), 4) BNNT/graphene junctions. We have started to understand their structural, compositional, and electronic properties. Latest results indicate that the branching BNNT/CNT junctions and QDs-BNNTs are functional as room-temperature tunneling devices. We have submitted the application of a renewal grant to continue the study of these new energy efficient materials. Finally, this project has also strengthened our collaborations with multiple Department of Energy's Nanoscale Science Research Centers (NSRCs), including the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory, and the Center for Integrated Nanotechnologies (CINTs) at Sandia National Laboratories and Los

  15. Carbon and nitrogen abundance variations in globular cluster red giants

    Science.gov (United States)

    Martell, Sarah L.

    2008-06-01

    This dissertation describes investigations into two of the persistent questions of elemental abundances in Galactic globular clusters: the phenomenon of deep mixing, observed through the progressive depletion of surface carbon abundance as stars evolve along the red giant branch, and abundance bimodality, a phenomenon observed only in globular clusters, in which a subset of stars in a given globular cluster have a distinctive pattern of elemental enhancements and depletions relative to the Solar pattern. The first chapter gives an introduction to the history of globular cluster abundance studies, with particular focus on low-resolution spectroscopy. For both deep mixing and abundance bimodality, the leading theoretical models and the data which support and challenge them are laid out. Each section ends with a description of presently-unanswered questions; these are the motivation for the various projects contained in this dissertation. The second chapter describes the use of molecular handstrengths for determining elemental abundances from low-resolution spectra, and introduces a new CH bandstrength index that is designed to be sensitive to carbon abundance and insensitive to nitrogen abundance in Pop. II red giants over a wide range of metallicity. Various CH indices defined elsewhere in the literature are also discussed, and are shown to have comparable accuracy to the new index only over a limited range of stellar properties. Carbon abundances determined using the new CH index are compared to literature abundances for a few stars, and general concordance with published abundances is found. The third chapter contains a large-scale application of the new CH index: a survey of present-day carbon abundances and calculated carbon depletion rates in bright red giants belonging to eleven Galactic globular clusters spanning the full metallicity range of halo globular clusters. Targets were selected with similar evolutionary states, were observed with one instrument on

  16. Modelling soil nitrogen: The MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics

    International Nuclear Information System (INIS)

    We present a new formulation of the acidification model MAGIC that uses decomposer dynamics to link nitrogen (N) cycling to carbon (C) turnover in soils. The new model is evaluated by application to 15–30 years of water chemistry data at three coniferous-forested sites in the Czech Republic where deposition of sulphur (S) and N have decreased by >80% and 40%, respectively. Sulphate concentrations in waters have declined commensurately with S deposition, but nitrate concentrations have shown much larger decreases relative to N deposition. This behaviour is inconsistent with most conceptual models of N saturation, and with earlier versions of MAGIC which assume N retention to be a first-order function of N deposition and/or controlled by the soil C/N ratio. In comparison with earlier versions, the new formulation more correctly simulates observed short-term changes in nitrate leaching, as well as long-term retention of N in soils. The model suggests that, despite recent deposition reductions and recovery, progressive N saturation will lead to increased future nitrate leaching, ecosystem eutrophication and re-acidification. - Highlights: ► New version of the biogeochemical model MAGIC developed to simulate C/N dynamics. ► New formulation of N retention based directly on the decomposer processes. ► The new formulation simulates observed changes in nitrate leaching and in soil C/N. ► The model suggests progressive N saturation at sites examined. ► The model performance meets a growing need for realistic process-based simulations. - Process-based modelling of nitrogen dynamics and acidification in forest ecosystems.

  17. Mechanochemical Synthesis of Visible-light Induced Photocatalyst with Nitrogen and Carbon Doping

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Nitrogen and/or carbon doped titania photocatalysts were prepared by a novel mechanochemical method. The prepared powders possessed two absorption edges around 400 and 540 nm wavelengths and showed excellent photocatalytic ability for nitrogen monoxide oxidation under visible light irradiation. Under the irradiation of visible light of wavelength >510 nm, 37% of nitrogen monoxide could be continuously removed by the carbon and nitrogen co-doped titania prepared by planetary ball milling of P-25 titania-10% hexamethylenetetramine mixture followed by calcination in air at 400 ℃.

  18. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.

    Science.gov (United States)

    Robertson, G Philip; Hamilton, Stephen K; Del Grosso, Stephen J; Parton, William J

    2011-06-01

    The biogeochemical liabilities of grain-based crop production for bioenergy are no different from those of grain-based food production: excessive nitrate leakage, soil carbon and phosphorus loss, nitrous oxide production, and attenuated methane uptake. Contingent problems are well known, increasingly well documented, and recalcitrant: freshwater and coastal marine eutrophication, groundwater pollution, soil organic matter loss, and a warming atmosphere. The conversion of marginal lands not now farmed to annual grain production, including the repatriation of Conservation Reserve Program (CRP) and other conservation set-aside lands, will further exacerbate the biogeochemical imbalance of these landscapes, as could pressure to further simplify crop rotations. The expected emergence of biorefinery and combustion facilities that accept cellulosic materials offers an alternative outcome: agricultural landscapes that accumulate soil carbon, that conserve nitrogen and phosphorus, and that emit relatively small amounts of nitrous oxide to the atmosphere. Fields in these landscapes are planted to perennial crops that require less fertilizer, that retain sediments and nutrients that could otherwise be transported to groundwater and streams, and that accumulate carbon in both soil organic matter and roots. If mixed-species assemblages, they additionally provide biodiversity services. Biogeochemical responses of these systems fall chiefly into two areas: carbon neutrality and water and nutrient conservation. Fluxes must be measured and understood in proposed cropping systems sufficient to inform models that will predict biogeochemical behavior at field, landscape, and regional scales. Because tradeoffs are inherent to these systems, a systems approach is imperative, and because potential biofuel cropping systems and their environmental contexts are complex and cannot be exhaustively tested, modeling will be instructive. Modeling alternative biofuel cropping systems converted

  19. Influence of cubic boron nitride grinding on the fatigue strengths of carbon steels and a nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoishi, N.; Chen, Q.; Kondo, E. [Kagoshima Univ. (Japan). Faculty of Engineering; Goto, M. [Oita Univ. (Japan). Faculty of Engineering; Nisitani, H. [Kyushu Sangyo Univ., Fukuoka (Japan). Faculty of Engineering

    1999-04-01

    The influence of cubic boron nitride (CBN) grinding on fatigue strength was investigated on an annealed carbon steel, a quenched and tempered carbon steel at room temperature, and a nickel-base superalloy, Inconel 718, at room temperature and 500 C. The results were discussed from several viewpoints, including surface roughness, residual stress, and work hardening or softening due to CBN grinding. The fatigue strength increased upon CBN grinding at room temperature, primarily because of the generation of compressive residual stress in the surface region. However, in the case of Inconel 718, this marked increase in the fatigue strength tended to disappear at the elevated temperature due to the release of compressive residual stress and the decrease of crack growth resistance at an elevated temperature.

  20. Boron isotope systematics during magma-carbonate interaction: an experimental study from Merapi (Indonesia) and Vesuvius (Italy)

    Science.gov (United States)

    Deegan, F. M.; Jolis, E. M.; Troll, V. R.; Freda, C.; Whitehouse, M.

    2011-12-01

    Carbonate assimilation is increasingly recognized as an important process affecting the compositional evolution of magma and its inherent ability to erupt explosively due to release of carbonate-derived CO2 [e.g., 1, 2, 3]. In order to gain insights into this process, we performed short time-scale carbonate dissolution experiments in silicate melt using natural starting materials from Merapi and Vesuvius volcanoes at magmatic pressure and temperature [2, 4]. The experiments enable us to resolve in detail the timescales, textures and chemical features of carbonate assimilation. Three compositionally distinct glass domains have been defined: i) Ca-normal glass, similar in composition to the starting material; ii) Ca-rich, contaminated glass; and iii) a diffusional glass interface between the Ca-normal and Ca-rich glass, characterized by steady interchange between SiO2 and CaO. Here we present new boron isotope data for the experimental products obtained by SIMS. The glasses show distinct and systematic variation in their δ11B (%) values. The contaminated glasses generally show extremely negative δ11B values (down to -41 %) relative to both the uncontaminated experimental glass and fresh arc volcanics (-7 to +7 % [5]). Considering that carbonates have δ11B values of +9 to +26 [6], the data cannot be explained by simple mixing processes between the end-members alone. This implies that the δ11B of the original contaminant was drastically modified before being incorporated into the melt, which can be explained by B isotope fractionation during breakdown and degassing of the carbonate. Our data represents the first B isotope analyses of experimental products of carbonate assimilation. They provide novel and well constrained insights into the behavior of boron upon degassing of carbonate. This, in turn, has implications for both i) late stage contamination and volatile addition to hazardous volcanic systems located over carbonate basement (cf. [7]) and ii) studies of

  1. Identification of nitrogen dopants in single-walled carbon nanotubes by scanning tunneling microscopy.

    Science.gov (United States)

    Tison, Yann; Lin, Hong; Lagoute, Jérôme; Repain, Vincent; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Henrard, Luc; Zheng, Bing; Susi, Toma; Kauppinen, Esko I; Ducastelle, François; Loiseau, Annick

    2013-08-27

    Using scanning tunnelling microscopy and spectroscopy, we investigated the atomic and electronic structure of nitrogen-doped single walled carbon nanotubes synthesized by chemical vapor deposition. The insertion of nitrogen in the carbon lattice induces several types of point defects involving different atomic configurations. Spectroscopic measurements on semiconducting nanotubes reveal that these local structures can induce either extended shallow levels or more localized deep levels. In a metallic tube, a single doping site associated with a donor state was observed in the gap at an energy close to that of the first van Hove singularity. Density functional theory calculations reveal that this feature corresponds to a substitutional nitrogen atom in the carbon network.

  2. Direct assessment of the mechanical modulus of graphene co-doped with low concentrations of boron-nitrogen by a non-contact approach

    Science.gov (United States)

    Pan, Shun-Hsien; Medina, Henry; Wang, Sheng-Bo; Chou, Li-Jen; Wang, Zhiming M.; Chen, Kuei-Hsien; Chen, Li-Chyong; Chueh, Yu-Lun

    2014-07-01

    Boron and nitrogen co-doping has been shown to be an effective way to induce a band gap in graphene for electrical applications but only a few theoretical studies have been done to understand the elastic and mechanical properties of the modified graphene. Until now, no experimental assessment of the mechanical modulus of boron-nitrogen-doped graphene (BNG) has been reported in the literature. Here, we demonstrate a novel non-contact approach to determine the in-plane stiffness of BNG at low BN concentrations. The in-plane stiffness of BNG with 2 at% BN concentration was estimated to be about 309 N m-1, which is lower than that of pristine graphene, in good agreement with some theoretical studies. Moreover, we correlated the conductivity of BNG with induced strain and found the BNG to be more sensitive than pristine graphene in response to externally applied strain. This result indicates that BNG is a more suitable material than graphene for strain sensor applications.Boron and nitrogen co-doping has been shown to be an effective way to induce a band gap in graphene for electrical applications but only a few theoretical studies have been done to understand the elastic and mechanical properties of the modified graphene. Until now, no experimental assessment of the mechanical modulus of boron-nitrogen-doped graphene (BNG) has been reported in the literature. Here, we demonstrate a novel non-contact approach to determine the in-plane stiffness of BNG at low BN concentrations. The in-plane stiffness of BNG with 2 at% BN concentration was estimated to be about 309 N m-1, which is lower than that of pristine graphene, in good agreement with some theoretical studies. Moreover, we correlated the conductivity of BNG with induced strain and found the BNG to be more sensitive than pristine graphene in response to externally applied strain. This result indicates that BNG is a more suitable material than graphene for strain sensor applications. Electronic supplementary

  3. Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems

    Directory of Open Access Journals (Sweden)

    X. Lu

    2013-01-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  4. Long-term nitrogen addition decreases carbon leaching in a nitrogen-rich forest ecosystem

    Directory of Open Access Journals (Sweden)

    X. Lu

    2013-06-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  5. Effects of nitrogen content on structure and electrical properties of nitrogen-doped fluorinated diamond-like carbon films

    Institute of Scientific and Technical Information of China (English)

    XIAO Jian-rong; LI Xin-hai; WANG Zhi-xing

    2009-01-01

    Nitrogen-doped fluorinated diamond-like carbon (FN-DLC) films were prepared on single crystal silicon substrate by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) under different deposited conditions with CF4,CH4 and nitrogen as source gases.The influence of nitrogen content on the structure and electrical properties of the films was studied.The films were investigated in terms of surface morphology,microstructure,chemical composition and electrical properties.Atomic force microscopy (AFM) results revealed that the surface morphology of the films became smooth due to doping nitrogen.Fourier transform infrared absorption spectrometry (FTIR) results showed that amouts of C=N and C≡N bonds increased gradually with increasing nitrogen partial pressure r (r=p(N_2)/p(N_2+CF_4+CH_4)).Gaussian fit results of C 1s and N 1s in X-ray photoelectron spectra (XPS) showed that the incorporation of nitrogen presented mainly in the forms of β-C_3N_4 and a-CN_x (x=1,2,3) in the films.The current-voltage (I-V) measurement results showed that the electrical conductivity of the films increased with increasing nitrogen content.

  6. How can carbon favor planar multi-coordination in boron-based clusters? Global structures of CB(x)E(y)(2-) (E = Al, Ga, x + y = 4).

    Science.gov (United States)

    Cui, Zhong-hua; Sui, Jing-jing; Ding, Yi-hong

    2015-12-21

    With the high preference in forming multi-center bonding, boron has been a miracle ligand in constructing diverse planar multi-coordinate (pM) (tetra/hyper) species. Unfortunately, the boron ligand usually dislikes encompassing a pM carbon (pMC) due to the high competition with pM boron (pMB), which makes the realization of boron-based pMC very difficult and quite challenging. Herein, we propose a strategy that by means of cooperative doping and charge-compensation, we can successfully improve and tune the stability of pMC relative to pMB for CB4(2-). In the free CBxEy(2-) (E = Al/Ga) species, ptC is thermodynamically less stable than the global ptB in mono- and di-substituted systems, in agreement with the results of Boldyrev and Wang. However, the thermodynamic preference of pMC increases along with the Al/Ga-doping. The pMC species can be further stabilized by the introduction of the alkaline-earth counterion (Mg(2+)). CB2E2Mg (E = Al, Ga) designed in the present study represents the first successful design of a boron-based planar penta-coordinate carbon (ppC) structures as the global minima. The strategy proposed in this study should be useful in the manipulation of competition between exotic pMC and pMB in B-based systems. PMID:26574884

  7. A one-step carbonization route towards nitrogen-doped porous carbon hollow spheres with ultrahigh nitrogen content for CO 2 adsorption

    KAUST Repository

    Wang, Yu

    2015-01-01

    © The Royal Society of Chemistry 2015. Nitrogen doped porous carbon hollow spheres (N-PCHSs) with an ultrahigh nitrogen content of 15.9 wt% and a high surface area of 775 m2 g-1 were prepared using Melamine-formaldehyde nanospheres as hard templates and nitrogen sources. The N-PCHSs were completely characterized and were found to exhibit considerable CO2 adsorption performance (4.42 mmol g-1).

  8. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  9. Superior critical current density obtained in MgB2 bulks via employing carbon-coated boron and minor Cu addition

    Science.gov (United States)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-09-01

    High performance Cu doped MgB2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB2 grains, as well as a high level of homogeneous carbon doping in the MgB2 samples, which significantly enhance the Jc in both Cu doped and undoped bulks compared to MgB2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (Jc) at self fields and low fields (the best values are 7 × 105 A/cm2 at self fields, and 1 × 105 A/cm2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of Jc at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB2 bulks or wires with excellent Jc on an industrial scale.

  10. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils

    OpenAIRE

    Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

    2014-01-01

    The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (

  11. Stable isotopes of carbon and nitrogen in suspended matter and sediments from the Godavari estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Arya, J.; Subbaiah, Ch.V.; Naidu, S.A.; Gawade, L.; PraveenKumar, P.; Reddy, N.P.C.

    Spatial distribution of the carbon and nitrogen content and their isotopic enrichment in suspended matter and sediments were measured in the Godavari estuary to identify the sources and transformation mechanism of organic matter. Significant...

  12. Impact of nitrogen seeding on carbon erosion in the JET divertor

    NARCIS (Netherlands)

    Brezinsek, S.; Jachmich, S.; Rapp, J.; Meigs, A. G.; Nicholas, C.; O' Mullane, M.; Pospieszczyk, A.; van Rooij, G. J.

    2011-01-01

    Nitrogen has been introduced in H-mode plasmas in JET in order to study its radiation cooling capability and impact on the erosion of divertor plasma-facing components made of carbon-fiber composites (CFC). Experiments in the ionizing plasma regime with low nitrogen injection show a reduction of the

  13. Modeling the effects of organic nitrogen uptake by plants on the carbon cycling of boreal ecosystems

    Directory of Open Access Journals (Sweden)

    Q. Zhu

    2013-08-01

    Full Text Available Boreal forest and tundra are the major ecosystems in the northern high latitudes in which a large amount of carbon is stored. These ecosystems are nitrogen-limited due to slow mineralization rate of the soil organic nitrogen. Recently, abundant field studies have found that organic nitrogen is another important nitrogen supply for boreal ecosystems. In this study, we incorporated a mechanism that allowed boreal plants to uptake small molecular amino acids into a process-based biogeochemical model, the Terrestrial Ecosystem Model (TEM, to evaluate the impact of organic nitrogen uptake on ecosystem carbon cycling. The new version of the model was evaluated at both boreal forest and tundra sites. We found that the modeled organic nitrogen uptake accounted for 36–87% of total nitrogen uptake by plants in tundra ecosystems and 26–50% for boreal forests, suggesting that tundra ecosystem might have more relied on the organic form of nitrogen than boreal forests. The simulated monthly gross ecosystem production (GPP and net ecosystem production (NEP tended to be larger with the new version of the model since the plant uptake of organic nitrogen alleviated the soil nitrogen limitation especially during the growing season. The sensitivity study indicated that the most important factors controlling the plant uptake of organic nitrogen were the maximum root uptake rate (Imax and the radius of the root (r0 in our model. The model uncertainty due to uncertain parameters associated with organic nitrogen uptake at tundra ecosystem was larger than at boreal forest ecosystems. This study suggests that considering the organic nitrogen uptake by plants is important to boreal ecosystem carbon modeling.

  14. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  15. Role of Nitrogen and Carbon Transport, Regulation, and Metabolism Genes for Saccharomyces cerevisiae Survival In Vivo†

    OpenAIRE

    Joanne M Kingsbury; Goldstein, Alan L.; McCusker, John H.

    2006-01-01

    Saccharomyces cerevisiae is both an emerging opportunistic pathogen and a close relative of pathogenic Candida species. To better understand the ecology of fungal infection, we investigated the importance of pathways involved in uptake, metabolism, and biosynthesis of nitrogen and carbon compounds for survival of a clinical S. cerevisiae strain in a murine host. Potential nitrogen sources in vivo include ammonium, urea, and amino acids, while potential carbon sources include glucose, lactate,...

  16. Initiation of Yeast Sporulation by Partial Carbon, Nitrogen, or Phosphate Deprivation

    OpenAIRE

    Freese, Elisabeth Bautz; Chu, Martha I.; Freese, Ernst

    1982-01-01

    In this paper we show that partial deprivation of a carbon source, a nitrogen source, or phosphate in the presence of all other nutrients needed for growth initiates meiosis and sporulation of Saccharomyces cerevisiae homothallic strain Y55. For carbon deprivation experiments, cells were grown in synthetic medium (pH 5.5) containing an excess of one carbon source and then transferred to the same medium containing different concentrations of the same carbon source. In the case of transfer to d...

  17. Isotopic composition of carbon and nitrogen in ureilitic fragments of the Almahata Sitta meteorite

    OpenAIRE

    Downes, Hilary; Abernethy, F.A.J.; Smith, C.L.; Ross, A. J.; Verchovsky, A. B.; Grady, M. M.; Jenniskens, P.; Shaddad, M.H.

    2015-01-01

    This study characterizes carbon and nitrogen abundances and isotopic compositions in ureilitic fragments of Almahata Sitta. Ureilites are carbon-rich (containing up to 7 wt% C) and were formed early in solar system history, thus the origin of carbon in ureilites has significance for the origin of solar system carbon. These samples were collected soon after they fell, so they are among the freshest ureilite samples available and were analyzed using stepped combustion mass spectrometry. They co...

  18. Modifications of multi-wall carbon nanotubes with B-containing vapor and their effects on the properties of boron carbide matrix nanocomposites.

    Science.gov (United States)

    Herth, S; Miranda, D; Doremus, R H; Siegel, R W

    2008-06-01

    Multi-wall carbon nanotubes were modified by heating them together with elemental boron powder. B4C crystals grew on the surfaces of the nanotubes, and electron diffraction patterns showed an orientation dependence of the surface B4C and the underlying carbon in the nanotubes. There was no reaction of the nanotubes with solid B2O3 alone. Composites of the modified nanotubes in a B4C matrix showed a small increase of density over sintered B4C.

  19. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction.

    OpenAIRE

    Masunaga, S; Sakurai, Y.; Tanaka, H.; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M.; Kondo, N; Narabayashi, M.; Maruhashi, A; Ono, K.

    2013-01-01

    [Objectives] To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). [Methods] EL4 tumour-bearing C57BL/J mice received 5-bromo-2′-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with γ-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of...

  20. Impacts of Invasive Pests on Forest Carbon and Nitrogen Dynamics

    Science.gov (United States)

    Lovett, G. M.; Crowley, K. F.

    2014-12-01

    Forests of the U.S. have been subject to repeated invasions of destructive insects and diseases imported from other continents. Like other disturbances, these pests can produce short-term ecosystem effects due to tree mortality, but unlike other disturbances, they often target individual species and therefore can cause long-term species change in the forest. Because tree species vary in their influence on carbon (C) and nitrogen (N) cycles, pest-induced species change can radically alter the biogeochemistry of a forest. In this paper we use both data and modeling to examine how pest-induced species change may alter the C and N cycling in forests of the eastern U.S. We describe a new forest ecosystem model that distinguishes individual tree species and allows species composition to shift over the course of the model run. Results indicate that the mortality of eastern hemlock (Tsuga canadensis) by hemlock woolly adelgid and its replacement by faster-growing species such as black birch (Betula lenta) will reduce forest floor C stocks but increase productivity as the birch become established. Decline of American beech (Fagus grandifolia) from beech bark disease and its replacement by sugar maple (Acer saccharum) is likely to decrease soil C storage and increase N leaching from the ecosystem. Responses to other invasive pests will also be discussed. The magnitude of these species-specific effects on C and N cycling is in many cases larger than direct effects expected from changes in climate and atmospheric N deposition, indicating that species change should be included in models that predict forest ecosystem function under future environmental conditions.

  1. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation

    Science.gov (United States)

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-01-01

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7–overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement. PMID:27293103

  2. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation.

    Science.gov (United States)

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-01-01

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7-overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement. PMID:27293103

  3. Effect of nitrogen deposition reduction on biodiversity and carbon sequestration

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Dobben, van H.F.; Mol-Dijkstra, J.P.; Schouwenberg, E.P.A.G.; Kros, J.; Vries, de W.; Berendse, F.

    2009-01-01

    Global warming and loss of biodiversity are among the most prominent environmental issues of our time. Large sums are spent to reduce their causes, the emission of CO2 and nitrogen compounds. However, the results of such measures are potentially conflicting, as the reduction of nitrogen deposition m

  4. DFT Study on Structural and Mechanical Properties of Single-walled Carbon and Boron Nitride Nanotubes Functionalized with Carbenes

    Directory of Open Access Journals (Sweden)

    I.K. Petrushenko

    2016-10-01

    Full Text Available This paper presents quantum chemistry study on structural and mechanical properties of a series of single-walled carbon nanotubes (SWCNTs and boron nitride nanotubes (BNNTs functionalized with carbenes. At the PBE/SVP level, the obtained data on pristine nanotubes are in good accordance with the results of previous experimental and theoretical studies. The calculations show that carbenes functionalization, in general, distorts both SWNCTs and BNNTs frameworks, but there exists the difference between ‘axial’ and ‘circumferential’ functionalization. It turns out that in both cases elastic properties diminish with increasing concentration of adsorbents, however, the functionalized SWCNTs and BNNTs remain strong enough to be suitable for reinforcement of composites.

  5. Preparation of diamond-like carbon and boron nitirde films by high-intensity pulsed ion beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rej, D.J.; Davis, H.A. [Los Alamos National Lab., NM (United States); Remnev, G.E. [Tomsk Polytechnic Univ., Tomsk (Russian Federation). Nuclear Physics Institute.] [and others

    1995-05-01

    Intense ion beams (300-keV C{sup +}, O{sup +}, and H{sup +}, 20--30 kA, 50 to 400-ns pulsewidth, up to 0.3-Hz repetition rate) were used to prepare diamond-like carbon (DLC) and boron nitride (BN) films. Deposition rates of up to 25{plus_minus}5 nm/pulse were obtained with instantaneous rates exceeding 1 mm/s. Most films were uniform, light brown, translucent, and nonporous with some micron-size particulates. Raman and parallel electron energy loss spectroscopy indicated the presence of DLC. The films possessed favorable electron field-emission characteristics desirable for cold-cathode displays. Transmission electron microscopy (TEM) and transmission electron diffraction (TED) revealed that the C films contained diamond crystals with 25 to 125-nm grain size. BN films were composed of hexagonal, cubic and wurtzite phases.

  6. Thermodynamics and Kinetics of Boron Removal from Metallurgical Grade Silicon by Addition of High Basic Potassium Carbonate to Calcium Silicate Slag

    Science.gov (United States)

    Wu, Jijun; Wang, Fanmao; Ma, Wenhui; Lei, Yun; Yang, Bin

    2016-06-01

    In this study, we investigated the thermodynamics and kinetics of boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag containing a high basic potassium carbonate. The distribution of boron between slag and silicon was theoretically derived and the distribution coefficients ( L B) of boron with different compositions of CaO, SiO2, and K2CO3 in slag reagents were determined. The maximal value of L B reached 2.08 with a high basicity slag of 40 pctCaO-40 pctSiO2-20 pctK2CO3 (Λ = 0.73). The boron removal rates from MG-Si using CaO-SiO2 and CaO-SiO2-K2CO3 slags at 1823 K (1550 °C) were investigated in an electromagnetic induction furnace. The results showed that the boron concentration in MG-Si can be reduced from 22 to 1.8 ppmw at 1823 K (1550 °C) with 20 pct K2CO3 addition to calcium silicate slag, where the removal efficiency of boron reached 91.8 pct. The mass transfer coefficient ( β S) of boron in binary 50 pctCaO-50 pctSiO2 slag was 3.16 × 10-6 m s-1 at 1823 K (1550 °C) and was 2.43 × 10-5 m s-1 in ternary 40 pctCaO-40 pctSiO2-20 pctK2CO3 slag.

  7. First boronization in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.H., E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, K.S.; Kim, K.M.; Kim, H.T.; Kim, G.P. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, J.H.; Woo, H.J. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Park, J.M.; Kim, W.C.; Kim, H.K.; Park, K.R.; Yang, H.L.; Na, H.K. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Chung, K.S. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-11-15

    First boronization in KSTAR is reported. KSTAR boronization system is based on a carborane (C{sub 2}B{sub 10}H{sub 12}) injection system. The design, construction, and test of the system are accomplished and it is tested by using a small vacuum vessel before it is mounted to a KSTAR port. After the boronization in KSTAR, impurity levels are significantly reduced by factor of 3 (oxygen) and by 10 (carbon). Characteristics of a-C/B:H thin films deposited by carborane vapor are investigated. Re-condensation of carborane vapor during the test phase has been reported.

  8. Synthesis of low carbon boron carbide powder using a minimal time processing route: Thermal plasma

    Directory of Open Access Journals (Sweden)

    Avinna Mishra

    2015-12-01

    Full Text Available Boron carbide powder was synthesized by thermal plasma reduction of boric acid in presence of graphite with a very minimal processing time. Subsequently, the as-synthesized products were leached to minimize the impurities content. Based on the results of X-ray diffraction and Raman spectroscopy, the effect of leaching on phase purity and crystallinity was studied. X-ray photoelectron spectroscopy was performed to identify the chemical composition which highlighted the absence of the BO bonding in the deconvoluted B 1s core-level spectrum. Finally, the temperature dependent thermal conductivity behavior of the leached materials was analyzed and presented.

  9. Carbon-nitrogen place exchange on NO exposed beta-Mo2C.

    Science.gov (United States)

    Siaj, Mohamed; Maltais, Carl; Zahidi, El Mamoune; Oudghiri-Hassani, Hicham; Wang, Jiqing; Rosei, Federico; McBreen, Peter H

    2005-08-18

    Atomic nitrogen and oxygen were deposited on beta-Mo(2)C through dissociative adsorption of NO. Reflectance absorbance infrared spectroscopy (RAIRS), thermal desorption, and synchrotron X-ray photoelectron spectroscopy (XPS) measurements were used to investigate the interplay between atomic nitrogen, carbon, and oxygen in the 400-1250 K region. The combination of the high resolution and high surface sensitivity offered by the synchrotron XPS technique was used to show that atomic nitrogen displaces interstitial carbon onto the carbide surface. Thermal desorption measurements show that the burnoff of the displaced carbon occurs at approximately 890 K. The incorporation of nitrogen into interstitial sites inhibits oxygen dissolution into the bulk. RAIRS spectroscopy was used to identify surface oxo, terminal oxygen, species formed from O(2) and NO on beta-Mo(2)C.

  10. Carbon and nitrogen balance of leaf-eating sesarmid crabs ( Neoepisesarma versicolor) offered different food sources

    Science.gov (United States)

    Thongtham, Nalinee; Kristensen, Erik

    2005-10-01

    Carbon and nitrogen budgets for the leaf-eating crab, Neoepisesarma versicolor, were established for individuals living on pure leaf diets. Crabs were fed fresh (green), senescent (yellow) and partly degraded (brown) leaves of the mangrove tree Rhizophora apiculata. Ingestion, egestion and metabolic loss of carbon and nitrogen were determined from laboratory experiments. In addition, bacterial abundance in various compartments of the crabs' digestive tract was enumerated after dissection of live individuals. Ingestion and egestion rates (in terms of dry weight) were highest, while the assimilation efficiency was poorest for crabs fed on brown leaves. The low assimilation efficiency was more than counteracted by the high ingestion rate providing more carbon for growth than for crabs fed green and yellow leaves. In any case, the results show that all types of leaves can provide adequate carbon while nitrogen was insufficient to support both maintenance (yellow leaves) and growth (green, yellow and brown leaves). Leaf-eating crabs must therefore obtain supplementary nitrogen by other means in order to meet their nitrogen requirement. Three hypotheses were evaluated: (1) crabs supplement their diet with bacteria and benthic microalgae by ingesting own faeces and/or selective grazing at the sediment surface; (2) assimilation of symbiotic nitrogen-fixing bacteria in the crabs' own intestinal system; and (3) nitrogen storage following occasional feeding on animal tissues (e.g. meiofauna and carcasses). It appears that hypothesis 1 is of limited importance for N. versicolor since faeces and sediment can only supply a minor fraction of the missing nitrogen due to physical constraints on the amount of material the crabs can consume. Hypothesis 2 can be ruled out because tests showed no nitrogen fixation activity in the intestinal system of N. versicolor. It is therefore likely that leaf-eating crabs provide most of their nitrogen requirement from intracellular deposits

  11. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    Directory of Open Access Journals (Sweden)

    X. Yang

    2010-04-01

    Full Text Available We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades

  12. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    International Nuclear Information System (INIS)

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B2O3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection and transportation, while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques

  13. Substantial increment in critical parameters of MgB2 superconductor by boron site nano-carbon substitution

    Science.gov (United States)

    Mudgel, Monika; Awana, V. P. S.; Bhalla, G. L.; Kishan, H.

    2010-12-01

    This paper deals with the determination of critical properties of MgB2 along with the impact of carbon substitution on critical parameters. The change in lattice parameters and decrease of transition temperature, Tc confirms the successful substitution by carbon at boron site. The magneto transport measurements up to 140 kOe are carried out to determine upper critical field (Hc2). The upper critical field values, Hc2 are obtained from ρ-T(H) data based upon the criterion of 90% of normal resistivity. The Ginzburg Landau theory (GL equation) is applied to the ρ-T(H) data which accounts for the temperature dependence behavior of Hc2 in the low temperature high field region along with the determination of Hc(0) value. The Hc(0) value of about 300 kOe is obtained for the carbon doped sample while the same is just near to 160 kOe for the pure MgB2 sample.

  14. The impact of nitrogen deposition on carbon sequestration by European forests and heathlands

    NARCIS (Netherlands)

    Vries, de W.; Solberg, S.; Dobbertin, M.; Sterba, H.; Laubhann, D.; Oijen, van M.; Evans, C.; Gundersen, P.; Kros, H.; Wamelink, W.; Reinds, G.J.; Sutton, M.A.

    2009-01-01

    In this study, we present estimated ranges in carbon (C) sequestration per kg nitrogen (N) addition in above-ground biomass and in soil organic matter for forests and heathlands, based on: (i) empirical relations between spatial patterns of carbon uptake and influencing environmental factors includi

  15. Nitrogen and carbon interactions in controlling terrestrial greenhouse gas fluxes

    Science.gov (United States)

    Ineson, Phil; Toet, Sylvia; Christiansen, Jesper

    2016-04-01

    The increased input of N to terrestrial systems may have profound impacts on net greenhouse gas (GHGs) fluxes and, consequently, our future climate; however, fully capturing and quantifying these interactions under field conditions urgently requires new, more efficient, measurement approaches. We have recently developed and deployed a novel system for the automation of terrestrial GHG flux measurements at the chamber and plot scales, using the approach of 'flying' a single measurement chamber to multiple points in an experimental field arena. As an example of the value of this approach, we shall describe the results from a field experiment investigating the interactions between increasing inorganic nitrogen (N) and carbon (C) additions on net ecosystem exchanges of N2O, CH4 and CO2, enabling the simultaneous application of 25 treatments, replicated five times in a fully replicated block field design. We will describe how the ability to deliver automated GHG flux measurements, highly replicated in space and time, has revealed hitherto unreported findings on N and C interactions in field soil. In our experiments we found insignificant N2O fluxes from bare field soil, even at very high inorganic N addition rates, but the interactive addition of even small amounts of available C resulted in very large and rapid N2O fluxes. The SkyGas experimental system enabled investigation of the underlying interacting response surfaces on the fluxes of the major soil-derived GHGs (CO2, CH4 and N2O) to increasing N and C inputs, and revealed unexpected interactions. In addition to these results we will also discuss some of the technical problems which have been overcome in developing these 'flying' systems and the potential of the systems for automatically screening the impacts of large numbers of treatments on GHG fluxes, and other ecosystem responses, under field conditions. We describe here technological advances that can facilitate the development of more robust GHG mitigation

  16. Nitrogen deposition enhances carbon sequestration by plantations in northern China.

    Directory of Open Access Journals (Sweden)

    Zhihong Du

    Full Text Available Nitrogen (N deposition and its ecological effects on forest ecosystems have received global attention. Plantations play an important role in mitigating climate change through assimilating atmospheric CO2. However, the mechanisms by which increasing N additions affect net ecosystem production (NEP of plantations remain poorly understood. A field experiment was initialized in May 2009, which incorporated additions of four rates of N (control (no N addition, low-N (5 g N m⁻² yr⁻¹, medium-N (10 g N m⁻² yr⁻¹, and high-N (15 g N m⁻² yr⁻¹ at the Saihanba Forestry Center, Hebei Province, northern China, a locality that contains the largest area of plantations in China. Net primary production (NPP, soil respiration, and its autotrophic and heterotrophic components were measured. Plant tissue carbon (C and N concentrations (including foliage, litter, and fine roots, microbial biomass, microbial community composition, extracellular enzyme activities, and soil pH were also measured. N addition significantly increased NPP, which was associated with increased litter N concentrations. Autotrophic respiration (AR increased but heterotrophic respiration (HR decreased in the high N compared with the medium N plots, although the HR in high and medium N plots did not significantly differ from that in the control. The increased AR may derive from mycorrhizal respiration and rhizospheric microbial respiration, not live root respiration, because fine root biomass and N concentrations showed no significant differences. Although the HR was significantly suppressed in the high-N plots, soil microbial biomass, composition, or activity of extracellular enzymes were not significantly changed. Reduced pH with fertilization also could not explain the pattern of HR. The reduction of HR may be related to altered microbial C use efficiency. NEP was significantly enhanced by N addition, from 149 to 426.6 g C m⁻² yr⁻¹. Short-term N addition may

  17. Graphitic Carbon Nitride/Nitrogen-Rich Carbon Nanofibers: Highly Efficient Photocatalytic Hydrogen Evolution without Cocatalysts.

    Science.gov (United States)

    Han, Qing; Wang, Bing; Gao, Jian; Qu, Liangti

    2016-08-26

    An interconnected framework of mesoporous graphitic-C3 N4 nanofibers merged with in situ incorporated nitrogen-rich carbon has been prepared. The unique composition and structure of the nanofibers as well as strong coupling between the components endow them with efficient light-harvesting properties, improved charged separation, and a multidimensional electron transport path that enhance the performance of hydrogen production. The as-obtained catalyst exhibits an extremely high hydrogen-evolution rate of 16885 μmol h(-1)  g(-1) , and a remarkable apparent quantum efficiency of 14.3 % at 420 nm without any cocatalysts, which is much higher than most reported g-C3 N4 -based photocatalysts even in the presence of Pt-based cocatalysts.

  18. A study on the creep properties more over 700 C of advanced heat resistant carbon, nitrogen and cobalt free alloys

    Energy Technology Data Exchange (ETDEWEB)

    Muneki, Seiichi; Okubo, Hiroshi; Abe, Fujio [National Institute for Materials Science (NIMS) (Japan)

    2008-07-01

    A new attempt has been demonstrated using carbon, nitrogen and cobalt free Fe-12Ni-5Cr-Mo alloys strengthened by Laves phase such as Fe{sub 2}Mo to achieve creep deformation at high temperatures and high stress levels. Creep resistance of Fe-12Ni-5Cr-5Mo-0.005B alloys remarkably increased at elevated temperatures over 700 C. As the transformation temperatures of A{sub c1} and A{sub c3} of these alloys indicated remarkably low, the microstructure of these alloys was reverted austenite during the creep test over 700 C. Creep properties were extremely improved more over 700 C by the addition of boron, which depends on the effect of retardation of the recovery process and that the suppression of recrystallization of these alloys. Creep life of the Fe-12Ni-5Cr-10Mo-0.2Ti-0.1Al-0.005B alloy was drastically extended from 13h at 700 C and 300MPa to 2,100h at 700 C and 200MPa. Creep resistance in the Fe-12Ni alloys depends on the unrecrystallized austenite structure and a fine and uniform distribution of precipitates during creep tests. And that long term stability of microstructure works on the DSS operation effectively in the USC power plant. (orig.)

  19. The first-principles study of low dimensional boron and carbon nanostructures%低维硼碳纳米材料第一原理研究

    Institute of Scientific and Technical Information of China (English)

    倪军; 杨再林

    2011-01-01

    We have reviewed our recent researches on the boron and carbon nanostructures in this paper. We show that the stable boron sheet, nanotubes, and nanoribbons have a rich variety of electronic properties. For boron carbide nanostructures, such as the ordering BC3, BC5 and BC7 sheets, we found that the hydrogenation and defects could lead to rich electronic and magnetic properties. The boron and carbon nanostructures may have the potential applications in the nanoscale devices in the future.%介绍了近年来关于低维硼碳纳米材料结构和电子性质的研究工作.通过第一原理计算,从理论上预言了稳定的低维硼纳米结构,并系统研究了以稳定硼平面为基础的硼纳米管和硼纳米带的电子性质.对于硼碳复合纳米材料,以BC3,BC5和BC7有序结构的平面为基础,发现对其剪裁、氢化修饰之后,硼碳纳米结构具有丰富的电磁学性质,可能在未来电子学器件中得到广泛的应用.

  20. Nitrogen restrictions buffer modeled interactions of water with the carbon cycle

    Science.gov (United States)

    Huang, Yuanyuan; Gerber, Stefan

    2016-01-01

    Terrestrial carbon and water cycles are coupled at multiple spatiotemporal scales and are crucial to carbon sequestration. Water related climate extremes, such as drought and intense precipitation, can substantially affect the carbon cycle. Meanwhile, nitrogen is a limiting resource to plant and has therefore the potential to alter the coupling of water and carbon cycles on land. Here we assess the effect of nitrogen limitation on the response of the terrestrial carbon cycle to moisture anomalies using Geophysical Fluid Dynamics Laboratory's land surface model LM3V-N. We analyzed the response of three central carbon fluxes: net primary productivity (NPP), heterotrophic respiration (Rh), and net ecosystem productivity (NEP, the difference between NPP and Rh) and how these fluxes were altered under anomalies of the standardized precipitation and evapotranspiration index (SPEI). We found that globally, the correlations between each of the carbon flux and SPEI depended on the timescale and a strong legacy effect of SPEI anomalies on Rh. Consideration of nitrogen constraints reduced anomalies in carbon fluxes in response to extreme dry/wet events. This nitrogen-induced buffer constrained the growth of plants under wet extremes and allowed for enhanced growth during droughts. Extra gain of soil moisture from the downregulation of canopy transpiration by nitrogen limitation and shifts in the relative importance of water and nitrogen limitation during dry/wet extreme events are possible mechanisms contributing to the buffering of modeled NPP and NEP. Responses of Rh to moisture anomalies were much weaker compared to NPP, and N buffering effects were less evident.

  1. [Effects of different fertilizer species on carbon and nitrogen leaching in a reddish paddy soil].

    Science.gov (United States)

    Liu, Xi-Yu; Zou, Jing-Dong; Xu, Li-Li; Zhang, Xin-Yu; Yang, Feng-Ting; Dai, Xiao-Qin; Wang, Zhong-Qiang; Sun, Xiao-Min

    2014-08-01

    Enhanced fertilization could decrease nitrogen utilization rate and increase carbon and nitrogen leaching, leading to water pollution in agricultural ecosystem. A long-term field experiment had been established on a reddish paddy soil of Qianyanzhou Ecological Experimental Station (114 degrees 53'E, 26 degrees 48'N) in Jiangxi Province in 1998. Soil solution samples were collected by clay tube and vacuum pump. Four fertilizer species treatments were selected: control with no fertilizer (CK), straw return (ST), nitrogen, phosphorus and potassium mineral fertilizers (NPK) and pig manure (OM), aiming to evaluate the effects of different species of fertilizer on carbon and nitrogen leaching in a double rice cropping system. The results showed that: (1) ammonium nitrogen (NH4(+) -N) was the major type of N in soil leachate in reddish paddy soil. The application of NPK could significantly increase the ammonium nitrogen concentration (1.2 mg x L(-1) +/- 0.1 mg x L(-1)) compared with the CK, ST and OM treatments, and the application of OM could significantly increase the dissolved organic carbon (DOC) concentration (27.3 mg x L(-1) +/- 1.6 mg x L(-1)) in soil leachate. The carbon and nitrogen leaching were more notable in the vegetative growth stage than the reproductive growth stage of rice (P NPK and OM increased the NH4(+) -N, DOC, soil organic carbon (SOC) and total nitrogen (TN) contents. The NPK was best beneficial to improve TN contents and OM to improve SOC contents. (3) The DOC contents in soil leachate and SOC in paddy soil had a positive correlation (P < 0.01), while NH4(+) -N contents in soil leachate and TN contents in paddy soil had a positive correlation (P < 0.01). PMID:25338383

  2. [Effects of different fertilizer species on carbon and nitrogen leaching in a reddish paddy soil].

    Science.gov (United States)

    Liu, Xi-Yu; Zou, Jing-Dong; Xu, Li-Li; Zhang, Xin-Yu; Yang, Feng-Ting; Dai, Xiao-Qin; Wang, Zhong-Qiang; Sun, Xiao-Min

    2014-08-01

    Enhanced fertilization could decrease nitrogen utilization rate and increase carbon and nitrogen leaching, leading to water pollution in agricultural ecosystem. A long-term field experiment had been established on a reddish paddy soil of Qianyanzhou Ecological Experimental Station (114 degrees 53'E, 26 degrees 48'N) in Jiangxi Province in 1998. Soil solution samples were collected by clay tube and vacuum pump. Four fertilizer species treatments were selected: control with no fertilizer (CK), straw return (ST), nitrogen, phosphorus and potassium mineral fertilizers (NPK) and pig manure (OM), aiming to evaluate the effects of different species of fertilizer on carbon and nitrogen leaching in a double rice cropping system. The results showed that: (1) ammonium nitrogen (NH4(+) -N) was the major type of N in soil leachate in reddish paddy soil. The application of NPK could significantly increase the ammonium nitrogen concentration (1.2 mg x L(-1) +/- 0.1 mg x L(-1)) compared with the CK, ST and OM treatments, and the application of OM could significantly increase the dissolved organic carbon (DOC) concentration (27.3 mg x L(-1) +/- 1.6 mg x L(-1)) in soil leachate. The carbon and nitrogen leaching were more notable in the vegetative growth stage than the reproductive growth stage of rice (P soil organic carbon (SOC) and total nitrogen (TN) contents. The NPK was best beneficial to improve TN contents and OM to improve SOC contents. (3) The DOC contents in soil leachate and SOC in paddy soil had a positive correlation (P soil leachate and TN contents in paddy soil had a positive correlation (P < 0.01).

  3. Carbon and nitrogen isotopic signatures and nitrogen profile to identify adulteration in organic fertilizers.

    Science.gov (United States)

    Verenitch, Sergei; Mazumder, Asit

    2012-08-29

    Recently it has been shown that stable isotopes of nitrogen can be used to discriminate between organic and synthetic fertilizers, but the robustness of the approach is questionable. This work developed a comprehensive method that is far more robust in identifying an adulteration of organic nitrogen fertilizers. Organic fertilizers of various types (manures, composts, blood meal, bone meal, fish meal, products of poultry and plant productions, molasses and seaweed based, and others) available on the North American market were analyzed to reveal the most sensitive criteria as well as their quantitative ranges, which can be used in their authentication. Organic nitrogen fertilizers of known origins with a wide δ(15)N range between -0.55 and 28.85‰ (n = 1258) were characterized for C and N content, δ(13)C, δ(15)N, viscosity, pH, and nitrogen profile (urea, ammonia, organic N, water insoluble N, and NO3). A statistically significant data set of characterized unique organic nitrogen fertilizers (n = 335) of various known origins has been assembled. Deliberately adulterated samples of different types of organic fertilizers mixed with synthetic fertilizers at a wide range of proportions have been used to develop the quantitative critical characteristics of organic fertilizers as the key indicators of their adulteration. Statistical analysis based on the discriminant functions of the quantitative critical characteristics of organic nitrogen fertilizers from 14 different source materials revealed a very high average rate of correct classification. The developed methodology has been successfully used as a source identification tool for numerous commercial nitrogen fertilizers available on the North American market.

  4. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    Science.gov (United States)

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-01

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. PMID:26763714

  5. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    Science.gov (United States)

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-01

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles.

  6. Responses of Carbon Dynamics to Nitrogen Deposition in Typical Freshwater Wetland of Sanjiang Plain

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-01-01

    Full Text Available The effects of nitrogen deposition (N-deposition on the carbon dynamics in typical Calamagrostis angustifolia wetland of Sanjiang Plain were studied by a pot-culture experiment during two continuous plant growing seasons. Elevated atmospheric N-deposition caused significant increases in the aboveground net primary production and root biomass; moreover, a preferential partition of carbon to root was also observed. Different soil carbon fractions gained due to elevated N-deposition and their response intensities followed the sequence of labile carbon > dissolved organic carbon > microbial biomass carbon, and the interaction between N-deposition and flooded condition facilitated the release of different carbon fractions. Positive correlations were found between CO2 and CH4 fluxes and liable carbon contents with N-deposition, and flooded condition also tended to facilitate CH4 fluxes and to inhibit the CO2 fluxes with N-deposition. The increases in soil carbon fractions occurring in the nitrogen treatments were significantly correlated with increases in root, aboveground parts, total biomass, and their carbon uptake. Our results suggested that N-deposition could enhance the contents of active carbon fractions in soil system and carbon accumulation in plant of the freshwater wetlands.

  7. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations

    OpenAIRE

    Ehrenfeld Nicole; Ugalde Juan A; Levicán Gloria; Maass Alejandro; Parada Pilar

    2008-01-01

    Abstract Background Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacter...

  8. Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination

    Directory of Open Access Journals (Sweden)

    Hanxu Ji

    2016-05-01

    Full Text Available Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots can enhance the electrocatalytic activity toward the reduction of O2. The specific amino-carboxyl reaction provides strong and stable immobilization of GOx on electrodes. The developed biosensor responds efficiently to the presence of glucose in serum samples over the concentration range from 1 to 12 mM with a detection limit of 0.25 mM. This novel biosensor has good reproducibility and stability, and is highly selective for glucose determination under physiological conditions. These results indicate that N-doped quantum dots represent a novel candidate material for the construction of electrochemical biosensors.

  9. Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination.

    Science.gov (United States)

    Ji, Hanxu; Zhou, Feng; Gu, Jiangjiang; Shu, Chen; Xi, Kai; Jia, Xudong

    2016-01-01

    Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots can enhance the electrocatalytic activity toward the reduction of O₂. The specific amino-carboxyl reaction provides strong and stable immobilization of GOx on electrodes. The developed biosensor responds efficiently to the presence of glucose in serum samples over the concentration range from 1 to 12 mM with a detection limit of 0.25 mM. This novel biosensor has good reproducibility and stability, and is highly selective for glucose determination under physiological conditions. These results indicate that N-doped quantum dots represent a novel candidate material for the construction of electrochemical biosensors. PMID:27153071

  10. Carbon and nitrogen - The key to biological activity, diversity and productivity in a Haplic Acrisol

    International Nuclear Information System (INIS)

    Soil organic matter is important because it impacts all soil quality functions. Much less information is available on the dynamics of the residual carbon and nitrogen content and their distribution in continuously cropped arable fields. We described the values of the soil properties, pH, moisture content, organic carbon and total nitrogen considering them to be random variables. We treated their spatial variation as a function of the distance between observations within the study site, a continuously-cropped field dominated by Haplic Acrisols. We discussed the nature and structure of the modeled functions, the semivariograms, and interpreted these in the light of the potential of these soils to sustain agricultural productivity. At these sites there had been no conversion of natural forests to agriculture so the paper does not discuss soil carbon storage for either the regional or global storage. All the properties studied showed spatial non-stationarity for the distances covered, indicating that the variance between pairs of observations increased as separating distances also increased. pH, moisture content and total nitrogen were fitted with the power model whereas the linear model best fitted organic carbon. Total nitrogen had the least nugget variance and pH the highest estimated exponent, α, from the power equations. The soils are highly variable in terms of input or return of organic residue to provide a sink for carbon and nitrogen and the breakdown of these materials as affected by pH, moisture availability and microorganisms. (author)

  11. Effect of Nitrogen Source and Carbon to Nitrogen Ratio on Hydrogen Production using C. acetobutylicum

    Directory of Open Access Journals (Sweden)

    Mohd Sahaid Kalil

    2008-01-01

    Full Text Available Problem statement: One of the main factors influenced the bacterial productivity and total yield of hydrogen is the nitrogen source and its concentration. Approach: Using different nitrogen source with different concentration on bacterial productivity of hydrogen showed to affect on both bacterial productivity of hydrogen and biomass concentration. Results: Yeast extract as nitrogen source at concentration of 13 g L-1 was the best organic nitrogen source and resulted in hydrogen yield YP/S of 308 mL g-1 glucose utilized with biomass concentration of 1.1 g L-1, hydrogen yield per biomass YP/X of 280 mL g-1 L-1, biomass per substrate utilized YX/S of 0.22 and produced hydrogen in gram per gram of glucose utilized YH2/S of 0.0275. C/N of 70 enhanced the YP/S from 308-350 mL g?1 glucose utilized with biomass concentration of 1.22 gL-1, YP/X of 287 mL g-1 L-1, YX/S of 0.244 and YH2/S of 0.03125. Conclusion: Nitrogen source with proper C:N ratio enhanced the hydrogen production.

  12. Co-implantation of carbon and nitrogen into silicon dioxide for synthesis of carbon nitride materials

    CERN Document Server

    Huang, M B; Nuesca, G; Moore, R

    2002-01-01

    Materials synthesis of carbon nitride has been attempted with co-implantation of carbon and nitrogen into thermally grown SiO sub 2. Following implantation of C and N ions to doses of 10 sup 1 sup 7 cm sup - sup 2 , thermal annealing of the implanted SiO sub 2 sample was conducted at 1000 degree sign C in an N sub 2 ambient. As evidenced in Fourier transform infrared measurements and X-ray photoelectron spectroscopy, different bonding configurations between C and N, including C-N single bonds, C=N double bonds and C=N triple bonds, were found to develop in the SiO sub 2 film after annealing. Chemical composition profiles obtained with secondary ion mass spectroscopy were correlated with the depth information of the chemical shifts of N 1s core-level electrons, allowing us to examine the formation of C-N bonding for different atomic concentration ratios between N and C. X-ray diffraction and transmission electron microscopy showed no sign of the formation of crystalline C sub 3 N sub 4 precipitates in the SiO ...

  13. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction

    Science.gov (United States)

    Mir, Showkat H.; Chakraborty, Sudip; Jha, Prakash C.; Wärnâ, John; Soni, Himadri; Jha, Prafulla K.; Ahuja, Rajeev

    2016-08-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of the boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.

  14. Nitrogen-boron coordination versus OH∙∙∙N hydrogen bonding in pyridoxaboroles - aza analogues of benzoxaboroles.

    Science.gov (United States)

    Steciuk, I; Durka, K; Gontarczyk, K; Dąbrowski, M; Luliński, S; Woźniak, K

    2015-10-01

    Pyridoxaboroles - fused heterocyclic systems composed of pyridine and five-membered oxaborole rings - have been obtained for the first time from simple halopyridines. Thus, 6-butyl-2-(3'-bromo-4'-pyridyl)-(N-B)-1,3,6,2-dioxazaborocan obtained from 3-bromopyridine was converted into a lithio derivative by Br/Li exchange using nBuLi/THF at -85 °C. This intermediate was trapped with benzaldehydes to give the corresponding pyridoxaboroles after hydrolysis. The use of chlorodiphenylsilane as an electrophile gave rise to a related pyridosiloxaborole. The fluorinated pyridoxaborole was obtained by deprotonation of α-(2-methoxyphenyl)-2-fluoro-4-iodopyridylmethanol with NaH and consecutive iodine-lithium exchange/boronation followed by hydrolysis. Single-crystal X-ray analysis of pyridino[4,3-c]-1,3-dihydro-1-hydroxy-3-mesityl[2,1]oxaborole revealed the formation of a unique 1D coordination polymer based on N-B dative bonds between monomeric molecules. In contrast, the crystal structure of 2-fluoropyridino[4,3-c]-1,3-dihydro-1-hydroxy-3-(2'-methoxyphenyl)[2,1]oxaborole features an infinite H-bonded chain as the main structural motif. The presented considerations are quantified in terms of various computational methods (single molecule and dimer energy calculations, electron density topology, NBO analyses) providing a comprehensive picture of the structural properties of pyridoxaboroles. PMID:26328873

  15. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage

    Science.gov (United States)

    Lin, Tianquan; Chen, I.-Wei; Liu, Fengxin; Yang, Chongyin; Bi, Hui; Xu, Fangfang; Huang, Fuqiang

    2015-12-01

    Carbon-based supercapacitors can provide high electrical power, but they do not have sufficient energy density to directly compete with batteries. We found that a nitrogen-doped ordered mesoporous few-layer carbon has a capacitance of 855 farads per gram in aqueous electrolytes and can be bipolarly charged or discharged at a fast, carbon-like speed. The improvement mostly stems from robust redox reactions at nitrogen-associated defects that transform inert graphene-like layered carbon into an electrochemically active substance without affecting its electric conductivity. These bipolar aqueous-electrolyte electrochemical cells offer power densities and lifetimes similar to those of carbon-based supercapacitors and can store a specific energy of 41 watt-hours per kilogram (19.5 watt-hours per liter).

  16. Nitrogen doping in camphoric carbon films and its application to photovoltaic cell

    Energy Technology Data Exchange (ETDEWEB)

    Mominuzzaman, Sharif M. [Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Rusop, Mohamad; Soga, Tetsuo; Jimbo, Takashi [Department of Environmental Technology and Urban Planning, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Umeno, Masayoshi [Department of Electronic Engineering, Chubu University, Kasugai 487-8501 (Japan)

    2006-11-23

    Carbon films have been deposited on quartz and single-crystal silicon substrates by pulsed laser deposition technique. The soot for the target was obtained from burning camphor, a natural source. The effect of nitrogen (N) incorporation in camphoric carbon film is investigated. Optical gap for the undoped film is about 0.95eV. The optical gap remains unchanged for low N content and decreases to about 0.7eV. With higher N content the optical gap increases. The resistivity of the carbon film is increased with N content initially and decreases with higher N content till the film is deposited at 30mTorr. The results indicate successful doping for the film deposited at low nitrogen content. The J-V characteristics of N-incorporated carbon/silicon photovoltaic cell under illumination are observed to improve upon N-incorporation in carbon layer. (author)

  17. Structural investigation of two carbon nitride solids produced by cathodic arc deposition and nitrogen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, A.R.; McCulloch, D.; McKenzie, D.R.; Yin, Y.; Gerstner, E.G. [New South Wales Univ., Kensington, NSW (Australia)

    1996-12-31

    Carbon nitride materials have been the focus of research efforts worldwide. Most materials studied have been amorphous, with only a few groups claiming to have found a crystalline material. In this paper, carbon nitride materials prepared by two different techniques are analysed, and found to be remarkably similar in bonding and structure. The materials appear to have a primarily sp{sup 2} bonded carbon structure with a lower bond length than found in an amorphous carbon. This is explained by nitrogen substituting into `rings` to a saturation level of about one nitrogen per three carbon atoms. No evidence was found for a crystalline structure of formula C{sub 3}N{sub 4}, or any amorphous derivative of it. 16 refs., 1 tab., 5 figs.

  18. Electronic state modification in laser deposited amorphous carbon films by the inclusion of nitrogen

    OpenAIRE

    Y. Miyajima; Adamopoulos, G; Henley, SJ; V.Stolojan; Tison, Y; Garcia-Caurel, E; Drevillon, B.; Shannon, JM; Silva, SRP

    2008-01-01

    In this study, we investigate the effect of the inclusion of nitrogen in amorphous carbon thin films deposited by pulsed laser deposition, which results in stress induced modifications to the band structure and the concomitant changes to the electronic transport properties. The microstructural changes due to nitrogen incorporation were examined using electron energy-loss spectroscopy and Raman scattering. The band structure was investigated using spectroscopic ellipsometry data in the range o...

  19. Enhanced tunnel transport in disordered carbon superlattice structures incorporated with nitrogen

    Science.gov (United States)

    Katkov, Mikhail V.; Bhattacharyya, Somnath

    2012-06-01

    The possibility for enhanced tunnel transport through the incorporation of nitrogen in a quasi-one dimensional superlattice structure of amorphous carbon (a -C) made of sp2-C and sp3-C rich phases is shown by using a tight-binding model. The proposed superstructure can be described by a set of disordered graphite-like carbon clusters (acting as quantum wells) separated by a thin layer of diamond-like carbon (barriers) where the variation of the width and depth of the carbon clusters significantly control the electron transmission peaks. A large structural disorder in the pure carbon system, introduced through the variation of the bond length and associated deformation potential for respective carbon phases, was found to suppress the sharp features of the transmission coefficients. A small percentage of nitrogen addition to the carbon clusters can produce a distinct transmission peak at the low energy; however, it can be practically destroyed due to increase of the level of disorder of carbon sites. Whereas pronounced resonance peaks, both for C and N sites can be achieved through controlling the arrangement of the nitrogen sites of increased concentration within the disordered sp2-C clusters. The interplay of disorder associated with N and C sites illustrated the tunable nature of resistance of the structures as well as their characteristic times.

  20. Direct Electrochemistry of Glucose Oxidase on Novel Free-Standing Nitrogen-Doped Carbon Nanospheres@Carbon Nanofibers Composite Film

    OpenAIRE

    Xueping Zhang; Dong Liu; Libo Li; Tianyan You

    2015-01-01

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve ...

  1. The effects of contacts and ambipolar electrical transport in nitrogen doped multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W J; Zhang, J Y; Li, P J; Shen, X; Zhang, Q F; Wu, J L [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China)], E-mail: jlwu@pku.edu.cn

    2008-02-27

    The electrical transport properties of pristine single wall carbon nanotubes (SWCNTs) and lower nitrogen content doped multiwall carbon nanotubes (MWCNTs) (lower than in the experiments of Xiao et al (2005 J. Am. Chem. Soc. 127 8614)) in contact with Au and Pt were studied. Compared with pristine SWCNTs, the Fermi level of the lower nitrogen content doped MWCNTs also moved to the valence band edge with the contact metal's work function increasing. In contrast to Derycke et al' s results (2002 Appl. Phys. Lett. 80 2773), the lower nitrogen content doped MWCNTs exhibited ambipolar behavior, and increasing the doping level led to a reduction of the Schottky barrier height of electrons. Consistent with theoretical calculations, the results support the opinion that the degree of Fermi level pinning is minor for doped carbon nanotubes.

  2. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide

    DEFF Research Database (Denmark)

    Xu, Junyuan; Kan, Yuhe; Huang, Rui;

    2016-01-01

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst’s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90% current efficiency...... for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2, which leads to the formation of carbon dioxide radical anion (CO2C). The initial...... reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction.The doped nitrogen atoms stabilize the radical anion,thereby lowering the initial reduction barrier and improving the intrinsic activity. The most...

  3. Determination of organic milk authenticity using carbon and nitrogen natural isotopes.

    Science.gov (United States)

    Chung, Ill-Min; Park, Inmyoung; Yoon, Jae-Yeon; Yang, Ye-Seul; Kim, Seung-Hyun

    2014-10-01

    Natural stable isotopes of carbon and nitrogen ((12)C, (13)C, (14)N, (15)N) have abundances unique to each living creature. Therefore, measurement of the stable isotope ratio of carbon and nitrogen (δ(13)C=(13)C/(12)C, δ(15)N=(15)N/(14)N) in milk provides a reliable method to determine organic milk (OM) authenticity. In the present study, the mean δ(13)C value of OM was higher than that of conventional milk (CM), whereas the mean δ(15)N value of OM was lower than that of CM; nonetheless both δ(13)C and δ(15)N values were statistically different for the OM and CM (Pauthenticity using stable isotopes of carbon and nitrogen.

  4. Physisorbed o-carborane onto lyso-phosphatidylcholine-functionalized, single-walled carbon nanotubes: a potential carrier system for the therapeutic delivery of boron

    Energy Technology Data Exchange (ETDEWEB)

    Yannopoulos, S N; Bouropoulos, N [Foundation for Research and Technology, Hellas-Institute of Chemical Engineering and High Temperature Chemical Processes-FORTH/ICE-HT, PO Box 1414, GR-26504 Patras (Greece); Zouganelis, G D [School of Biological Sciences, University of Portsmouth, St Michael' s Building, White Swan Road, Portsmouth PO1 2DT (United Kingdom); Nurmohamed, S; Smith, J R; Fatouros, D G; Tsibouklis, J [School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael' s Building, White Swan Road, Portsmouth PO1 2DT (United Kingdom); Calabrese, G, E-mail: sny@iceht.forth.gr, E-mail: dimitris.fatouros@port.ac.uk [School of Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE (United Kingdom)

    2010-02-26

    A combination of data from ICP-MS, Raman spectroscopy, UV-vis spectrometry, atomic force microscopy, {zeta}-potential measurements and gel electorphoresis studies has shown that o-carborane may be immobilized on stable aqueous dispersions of lyso-phosphatidylcholine-functionalized single-walled carbon nanotubes, which in turn indicates the potential of such structures for deployment as carrier vehicles in boron neutron capture therapy.

  5. Aspects of Grafting Influence on Carbon and Nitrogen Movement of Some Pear (Pyrus sativa Cultivars

    Directory of Open Access Journals (Sweden)

    Gheorghii CIOBOTARI

    2009-11-01

    Full Text Available Among carbon and nitrogen contents, the interaction residing in the Interdependence Theory is one of the important components of plants. To elucidate how grafting influences the flow of carbon from shoots to tree roots and nitrogen from the roots to the shoots two sets of tests were carried out that have targeted the dosage of soluble sugars (to emphasize the relative flow of carbon and nitrogen content dosage around the grafting union area. After many laboratory analyses, we obtained average values that reflect the dynamics of soluble sugars content depending on grafting, namely: 24% in the scion, 41% into the union area and 35% in the rootstock, in a ratio of about 1:1.7:1.4. In what concerns the total nitrogen content, we observed that the values are very similar between variants. Instead, somewhat higher nitrogen quantities (36% were obtained in the rootstocks compared to the union area (32% and scions (32% representing a ratio of 1:1:1.1. Performing our experiments we found that the distribution of soluble sugars and nitrogen, in particular, in the grafting union area and the flow of photoassimilates and mineral elements, in general, for first year grafted trees depends not so much on the compatibility between scion and rootstock, but on grafting itself. Furthermore, we concluded that grafting itself is a barrier in photoassimilates and mineral elements flow in trees.

  6. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  7. Amorphous Hydrogenated Carbon-Nitrogen Alloy Thin Films for Solar Cell Application

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-Bin; DING Zheng-Ming; PANG Qian-Jun; CUI Rong-Qiang

    2001-01-01

    Amorphous hydrogenated carbon-nitrogen alloy (a-CNx :H) thin films have been deposited on silicon substratesby improved dc magnetron sputtering from a graphite target in nitrogen and hydrogen gas discharging. Thefilms are investigated by using Raman spectroscopy, x-ray photoelectron spectroscopy, spectral ellipsometer and electron spin resonance techniques. The optimized process condition for solar cell application is discussed. Thephotovoltaic property of a-CNx:H/silicon heterojunctions can be improved by the adjustment of the pressureratio of hydrogen to nitrogen and unbalanced magnetic field intensity. Open-circuit voltage and short-circuitcurrent reach 300mV and 5.52 Ma/cm2, respectively.

  8. Benthic biogeochemical cycling, nutrient stoichiometry, and carbon and nitrogen mass balances in a eutrophic freshwater bay

    Science.gov (United States)

    Klump, J.V.; Fitzgerald, S.A.; Waplesa, J.T.

    2009-01-01

    Green Bay, while representing only ,7% of the surface area and ??1.4% of the volume of Lake Michigan, contains one-third of the watershed of the lake, and receives approximately one-third of the total nutrient loading to the Lake Michigan basin, largely from the Fox River at the southern end of the bay. With a history of eutrophic conditions dating back nearly a century, the southern portion of the bay behaves as an efficient nutrient and sediment trap, sequestering much of the annual carbon and nitrogen input within sediments accumulating at up to 1 cm per year. Depositional fluxes of organic matter varied from ??0.1 mol C m-2 yr-1 to >10 mol C m-2 yr-1 and were both fairly uniform in stoichiometric composition and relatively labile. Estimates of benthic recycling derived from pore-water concentration gradients, whole-sediment incubation experiments, and deposition-burial models of early diagenesis yielded an estimated 40% of the carbon and 50% of the nitrogen recycled back into the overlying water. Remineralization was relatively rapid with ??50% of the carbon remineralized within <15 yr of deposition, and a mean residence time for metabolizable carbon and nitrogen in the sediments of 20 yr. On average, organic carbon regeneration occurred as 75% CO2, 15% CH4, and 10% dissolved organic carbon (DOC). Carbon and nitrogen budgets for the southern bay were based upon direct measurements of inputs and burial and upon estimates of export and production derived stoichiometrically from a coupled phosphorus budget. Loadings of organic carbon from rivers were ??3.7 mol m-2 yr-1, 80% in the form of DOC and 20% as particulate organic carbon. These inputs were lost through export to northern Green Bay and Lake Michigan (39%), through sediment burial (26%), and net CO2 release to the atmosphere (35%). Total carbon input, including new production, was 4.54 mol m-2 C yr-1, equivalent to ??10% of the gross annual primary production. Nitrogen budget terms were less well quantified

  9. The Effect of Different Nitrogen Form on Key Enzyme Activity of Sugarbeet (Vulgaris L.) Carbon and Nitrogen Metabolism

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This article analyses the effect of the proportion of the different nitrogen forms on key enzyme activity of carbon and nitrogen metabolism under the condition of nutritional water while Tian Yan-7 was used as experimental material. The result showed that nitrate reductase(NR) activity in the leaves gradually enhanced with the increase of NO-3. No matter in root or leaves ,glutamina synthetase (GS) activity first enhanced with increasing NH4+ when NH4+ was lower than that of NO-3 ,and GS activity was the highest when NH4+and NO3-was equal ,then GS activity declined with NH4+ increasing further. In the anaphase of growth ,synthetic activity in root of sucrose synthetase(SS) in the mixed NH4+ and NO3- was obviously highr than or NO3- alone. Both of the root and sugar yields were the highest when the proportion of NH4+ and NO3- was 1: 1.

  10. Theoretical study of interaction between Tacrine and finite-length Al-doped Carbon and Boron nitride Nanotubes: A Semiempirical drug delivery study in thermodynamic view

    Directory of Open Access Journals (Sweden)

    Nasrin Zeighami

    2014-12-01

    Full Text Available In order to extend our previous theoretical calculations that dealt with the thermochemistry of doping the single walled boron nitride nano tubes, BNNTs, and carbon nanotubes ,CNTs, with alminium atoms [1], we have used the AM 1, PM 3, and PM 6 semiempirical methods to investigate the interaction of the tacrine molecule (a drug for the treatment of Alzheimer's disease with the side-walls of aluminum doped boron nitride and carbon nano tubes in thermodynamic views.At first, the frequency calculations were carried out to confirm the stability of the involved structures. In addition, the theoretical thermodynamic study of tacrine adsorption onto the considered nanotubes was performed and the thermodynamic functions such as enthalpy changes, entropy changes and Gibbs free energy changes of the adsorption process were evaluated at different temperatures. Our results suggest the aluminum doped boron nitride nano tubes and alminium doped carbon nano tubes may be considered as the proper carries for the drug delivery of tacrine.

  11. First-Principles Studies on Properties of Boron-Related Impurities in c-BN

    Institute of Scientific and Technical Information of China (English)

    TIAN Fu-Bo; WANG Xiao-Li; MA Yan-Ming; CUI Tian; LIU Bing-Bing; ZOU Guang-Tian

    2009-01-01

    We investigate,by first-principles calculations,the pressure dependence of formation enthalpies and defective geometry and bulk modulus of boron-related impurities (VB,CB,NB,and OB ) with different charged states in cubic boron nitride (c-BN) using a supercell approach.It is found that the nitrogen atoms surrounding the defect relax inward in the case of CB,while the nitrogen atoms relax outward in the other cases.These boron-related impurities become much more stable and have larger concentration with increasing pressure.The impurity C+B1 is found to have the lowest formation enthalpy,make the material exhibit semiconductor characters and have the bulk modulus higher than ideal c-BN and than those in the cases of other impurities.Our results suggest that the hardness of c-BN may be strengthened when a carbon atom substitutes at a B site.

  12. Denitrification in an anoxic rotating biological contactor under two carbon/nitrogen ratios

    OpenAIRE

    Cortez, Susana; Teixeira, P; Oliveira, Rosário; Mota, M.

    2008-01-01

    The aim of the present work was to compare the performance of an anoxic bench-scale rotating biological contactor (RBC), in terms of the denitrification process, applied to treat synthetic wastewater under two carbon/nitrogen (C/N) molar ratios (1.5 and 3). The average removal efficiency in terms of nitrogen-nitrate was of about 90.4% at a C/N=1.5 lowering to 73.7% at a C/N=3. Considering carbon-acetate removal an overall efficiency of 82.0% and 63.6% was attained at a C/N rati...

  13. Quantum Chemistry Calculation on Oxygen and Nitrogen Adsorption in Carbon Nanotude

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Oxygen and nitrogen adsorption in single-walled carbon nanotube (SWCNT) is studied by density function and discrete variational (DFT-DVM) method.The models of O2 and N2 adsorption in the SWCNT are optimized based on the energy minimization.The calculated results of density of state,populations and energy gaps of the molecular orbitals show that oxygen adsorption in SWCNT increases the carbon nanotube`s electrical conductivity more notably than nitrogen adsorption,which is consistent with the experiment.

  14. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). PMID:25458677

  15. ZIF-Derived Nitrogen-Doped Porous Carbons for Xe Adsorption and Separation

    Science.gov (United States)

    Zhong, Shan; Wang, Qian; Cao, Dapeng

    2016-02-01

    Currently, finding high capacity adsorbents with large selectivity to capture Xe is still a great challenge. In this work, nitrogen-doped porous carbons were prepared by programmable temperature carbonization of zeolitic imidazolate framework-8 (ZIF-8) and ZIF-8/xylitol composite precursors and the resultant samples are marked as Carbon-Z and Carbon-ZX, respectively. Further adsorption measurements indicate that ZIF-derived nitrogen-doped Carbon-ZX exhibits extremely high Xe capacity of 4.42 mmol g-1 at 298 K and 1 bar, which is higher than almost all other pristine MOFs such as CuBTC, Ni/DOBDC, MOF-5 and Al-MIL-53, and even more than three times of the matrix ZIF-8 at similar conditions. Moreover, Carbon-ZX also shows the highest Xe/N2 selectivity about ~120, which is much larger than all other reported MOFs. These remarkable features illustrate that ZIF-derived nitrogen-doped porous carbon is an excellent adsorbent for Xe adsorption and separation at room temperature.

  16. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Science.gov (United States)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S.; Ahn, Jou-Hyeon

    2016-09-01

    Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g-1 and enhanced capacity retention of 862 mAh g-1 at 0.1 C after 100 cycles.

  17. ZIF-Derived Nitrogen-Doped Porous Carbons for Xe Adsorption and Separation.

    Science.gov (United States)

    Zhong, Shan; Wang, Qian; Cao, Dapeng

    2016-01-01

    Currently, finding high capacity adsorbents with large selectivity to capture Xe is still a great challenge. In this work, nitrogen-doped porous carbons were prepared by programmable temperature carbonization of zeolitic imidazolate framework-8 (ZIF-8) and ZIF-8/xylitol composite precursors and the resultant samples are marked as Carbon-Z and Carbon-ZX, respectively. Further adsorption measurements indicate that ZIF-derived nitrogen-doped Carbon-ZX exhibits extremely high Xe capacity of 4.42 mmol g(-1) at 298 K and 1 bar, which is higher than almost all other pristine MOFs such as CuBTC, Ni/DOBDC, MOF-5 and Al-MIL-53, and even more than three times of the matrix ZIF-8 at similar conditions. Moreover, Carbon-ZX also shows the highest Xe/N2 selectivity about ~120, which is much larger than all other reported MOFs. These remarkable features illustrate that ZIF-derived nitrogen-doped porous carbon is an excellent adsorbent for Xe adsorption and separation at room temperature. PMID:26883471

  18. Influence of carbon dioxide content in the biogas to nitrogen oxides emissions

    Directory of Open Access Journals (Sweden)

    Živković Marija A.

    2010-01-01

    Full Text Available Fuels derived from biomass are an alternative solution for the fossil fuel shortage. Usually this kind of fuels is called low calorific value fuels, due to the large proportion of inert components in their composition. The most common is carbon dioxide, and its proportion in biogas can be different, from 10 up to 40%, or even more. The presence of inert component in the composition of biogas causes the problems that are related with flame blow off limits. One of the possibilities for efficient combustion of biogas is the combustion in swirling flow including a pilot burner, aimed to expand the borders of stable combustion. This paper presents an analysis of the influence of the carbon dioxide content to the nitrogen oxides emissions. Laboratory biogas was used with different content of CO2 (10, 20, 30 and 40%. Investigation was carried out for different nominal powers, coefficients of excess air and carbon dioxide content. With increasing content of carbon dioxide, emission of nitrogen oxides was reduced, and this trend was the same throughout the whole range of excess air, carried out through measurements. Still, the influence of carbon dioxide content is significantly less than the influence of excess air. The coefficient of excess air greatly affects the production of radicals which are essential for the formation of nitrogen oxides, O, OH and CH. Also, the results show that the nominal power has no impact on the emission of nitrogen oxides.

  19. Carbon and nitrogen balances for six shrublands across Europe

    DEFF Research Database (Denmark)

    Beier, Claus; Emmett, Bridget A.; Tietema, Albert;

    2009-01-01

    Shrublands constitute significant and important parts of European landscapes providing a large number of important ecosystem services. Biogeochemical cycles in these ecosystems have gained little attention relative to forests and grassland systems, but data on such cycles are required...... for developing and testing ecosystem models. As climate change progresses, the potential feedback from terrestrial ecosystems to the atmosphere through changes in carbon stocks, carbon sequestration, and general knowledge on biogeochemical cycles becomes increasingly important. Here we present carbon...... that in the future a climate-driven land cover change between grasslands and shrublands in Europe will likely lead to increased ecosystem C where shrublands are promoted and less where grasses are promoted. However, it also emphasizes that if feedbacks on the global carbon cycle are to be predicted it is critically...

  20. Carbon and carbon dioxide accumulation by marandu grass under nitrogen fertilization and irrigation

    Directory of Open Access Journals (Sweden)

    Elisângela Dupas

    2016-06-01

    Full Text Available ABSTRACT Nitrogen (N is the most limiting nutrient for growth of forage grasses, especially in conditions of low water availability. Therefore, it is important to evaluate the effect of N fertilization and irrigation on the accumulation of carbon (C and carbon dioxide (CO2 by marandu grass in the Cerrado Paulista, in the rainy and dry seasons. Experiments were conducted to evaluate N fertilization in each season, with and without irrigation. Five N rates were used (0, 50, 100, 150 and 200 kg ha-1 per cutting, using urea as N source, totaling 0, 300, 600, 900 and 1200 kg ha-1 in the rainy season and 0, 100, 200, 300 and 400 kg ha-1 in the dry season. The experiments were arranged in a split-plot randomized block design. There was no significant interaction (p > 0.05 between N and time of fertilization in the irrigated experiment. However, N promoted a quadratic effect in organic matter production (OMP, accumulation of C and CO2 by marandu grass, while there was no influence of the seasons. In the non-irrigated experiment, the interaction between N rates and seasons was significant (p < 0.05 only for the rainy season. Organic matter production and C and CO2 accumulation was greater in the rainy season than in the dry season. Irrigation provided increases of approximately 20% in C and CO2 accumulation. The use of N and irrigation increases the accumulation of C and CO2 by marandu grass, and this increase is higher during the rainy season.

  1. Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China.

    Science.gov (United States)

    Niu, Li; Manxia, Chen; Xiumei, Gao; Xiaohua, Long; Hongbo, Shao; Zhaopu, Liu; Zed, Rengel

    2016-10-15

    Agriculture is an important source of greenhouse gases, but can also be a significant sink. Nitrogen fertilization is effective in increasing agricultural production and carbon storage. We explored the effects of different rates of nitrogen fertilization on biomass, carbon density, and carbon sequestration in fields under the cultivation of Jerusalem artichoke as well as in soil in a coastal saline zone for two years. Five nitrogen fertilization rates were tested (in guream(-2)): 4 (N1), 8 (N2), 12 (N3), 16 (N4), and 0 (control, CK). The biomass of different organs of Jerusalem artichoke during the growth cycle was significantly higher in N2 than the other treatments. Under different nitrogen treatments, carbon density in organs of Jerusalem artichoke ranged from 336 to 419gCkg(-1). Carbon sequestration in Jerusalem artichoke was higher in treatments with nitrogen fertilization compared to the CK treatment. The highest carbon sequestration was found in the N2 treatment. Soil carbon content was higher in the 0-10cm than 10-20cm layer, with nitrogen fertilization increasing carbon content in both soil layers. The highest soil carbon sequestration was measured in the N2 treatment. Carbon sequestration in both soil and Jerusalem artichoke residue was increased by nitrogen fertilization depending on the rates in the coastal saline zone studied. PMID:27317133

  2. Carbon and nitrogen flows during a bloom of the coccolithophore Emiliania huxleyi: Modelling a mesocosm experiment

    Science.gov (United States)

    Joassin, P.; Delille, B.; Soetaert, K.; Harlay, J.; Borges, A. V.; Chou, L.; Riebesell, U.; Suykens, K.; Grégoire, M.

    2011-04-01

    A dynamic model has been developed to represent biogeochemical variables and processes observed during experimental blooms of the coccolithophore Emiliania huxleyi induced in mesocosms over a period of 23 days. The model describes carbon (C), nitrogen (N), and phosphorus (P) cycling through E. huxleyi and the microbial loop, and computes pH and the partial pressure of carbon dioxide (pCO 2) from dissolved inorganic carbon (DIC) and total alkalinity (TA). The main innovations are: 1) the representation of E. huxleyi dynamics using an unbalanced growth model in carbon and nitrogen, 2) the gathering of formulations describing typical processes involved in the export of carbon such as primary production, calcification, cellular dissolved organic carbon (DOC) excretion, transparent exopolymer (TEP) formation and viral lyses, and 3) an original and validated representation of the calcification process as a function of the net primary production with a modulation by the intra-cellular N:C ratio mimicking the effect of nutrients limitation on the onset of calcification. It is shown that this new mathematical formulation of calcification provides a better representation of the dynamics of TA, DIC and calcification rates derived from experimental data compared to classicaly used formulations (e.g. function of biomass or of net primary production without any modulation term). In a first step, the model has been applied to the simulations of present pCO 2 conditions. It adequately reproduces the observations for chemical and biological variables and provides an overall view of carbon and nitrogen dynamics. Carbon and nitrogen budgets are derived from the model for the different phases of the bloom, highlighting three distinct phases, reflecting the evolution of the cellular C:N ratio and the interaction between hosts and viruses. During the first phase, inorganic nutrients are massively consumed by E. huxleyi increasing its biomass. Uptakes of carbon and nitrogen are

  3. Density functional theory study of ultrasmall diameter (2,2) boron nitride, silicon carbide, and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrabad, Davoud Vahedi; Shahtahmassebi, Nasser [Nano Research Center, Department of Physics, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Movlarooy, Tayebeh [Department of Physics, Shahrood University of Technology, Shahrood (Iran, Islamic Republic of)

    2012-05-15

    We present a first principles calculation on the electronic structure and optical properties of ultrasmall-diameter (2,2) boron nitride, silicon carbide, and carbon nanotubes (BNNT, SiCNT, and CNT) by using full potential linear augmented plane wave (FP-LAPW) and pseudo potential plane wave (PP-PW) methods. The atomic geometries of all considered models are optimized. Calculations of optical spectra are performed under electric fields polarized both parallel and perpendicular with respect to the nanotube (NT) axis. Our results show that the dielectric function is anisotropic and it is revealed that (2,2) SiCNT would be better dielectric material than (2,2) BNNT. We have calculated the first, second and third optical transitions for the considered models. The value of the optical gap for (2,2) BNNT is obtained much larger than that of (2,2) SiCNT and (2,2) CNT. The results show that contrary to the (2,2) CNT being metallic, the (2,2) BNNT, and (2,2) SiCNT are wide indirect gap semiconductors. We also present the energy loss function; in this case the intertube interactions play an important role with respect to the optical spectroscopy. Our results revealed that unlike the dielectric function, the calculated energy loss function show rather weak anisotropy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Torsional properties of hexagonal boron nitride nanotubes, carbon nanotubes and their hybrid structures: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Qi-lin, E-mail: xiongql@hust.edu.cn [Department of Mechanics, Huazhong University of Science & Technology, 1037 Luoyu Road, Wuhan 430074 (China); Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074 (China); Tian, Xiao Geng [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-10-15

    The torsional mechanical properties of hexagonal single-walled boron nitride nanotubes (SWBNNTs), single-walled carbon nanotubes (SWCNTs), and their hybrid structures (SWBN-CNTs) are investigated using molecular dynamics (MD) simulation. Two approaches - force approach and energy approach, are adopted to calculate the shear moduli of SWBNNTs and SWCNTs, the discrepancy between two approaches is analyzed. The results show that the shear moduli of single-walled nanotubes (SWNTs), including SWBNNTs and SWCNTs are dependent on the diameter, especially for armchair SWNTs. The armchair SWNTs show the better ability of resistance the twisting comparable to the zigzag SWNTs. The effects of diameter and length on the critical values of torque of SWNTs are obtained by comparing the torsional behaviors of SWNTs with different diameters and different lengths. It is observed that the MD results of the effect of diameter and length on the critical values of torque agrees well with the prediction of continuum shell model. The shear modulus of SWBN-CNT has a significant dependence on the percentages of SWCNT and the hybrid style has also an influence on shear modulus. The critical values of torque of SWBN-CNTs increase with the increase of the percentages of SWCNT. This phenomenon can be interpreted by the function relationship between the torque of different bonds (B-N-X, C-C-X, C-B-X, C-N-X) and the angles of bonds.

  5. Largely enhanced dielectric properties of carbon nanotubes/polyvinylidene fluoride binary nanocomposites by loading a few boron nitride nanosheets

    Science.gov (United States)

    Yang, Minhao; Zhao, Hang; He, Delong; Bai, Jinbo

    2016-08-01

    The ternary nanocomposites of boron nitride nanosheets (BNNSs)/carbon nanotubes (CNTs)/polyvinylidene fluoride (PVDF) are fabricated via a combination of solution casting and extrusion-injection processes. The effects of BNNSs on the electrical conductivity, dielectric behavior, and microstructure changes of CNTs/PVDF binary nanocomposites are systematically investigated. A low percolation value (fc) for the CNTs/PVDF binary system is obtained due to the integration of solution and melting blending procedures. Two kinds of CNTs/PVDF binary systems with various CNTs contents (fCNTs) as the matrix are discussed. The results reveal that compared with CNTs/PVDF binary systems at the same fCNTs, the ternary BNNSs/CNTs/PVDF nanocomposites exhibit largely enhanced dielectric properties due to the improvement of the CNTs dispersion state and the conductive network. The dielectric constant of CNTs/PVDF binary nanocomposite with 6 vol. % CNTs (fCNTs fc), it displays a 43.32% improvement from 1325 to 1899 after the addition of 3 vol. % BNNSs. The presence of BNNSs facilitates the formation of the denser conductive network. Meanwhile, the ternary BNNSs/CNTs/PVDF systems exhibit a low dielectric loss. The adjustable dielectric properties could be obtained by employing the ternary systems due to the microstructure changes of nanocomposites.

  6. Joining of SiC-ceramics by means of boron carbide, silicon and carbon for high temperature applications

    International Nuclear Information System (INIS)

    The present work is a contribution to joining of SiC-Ceramics for high temperature applications. The aim was to develop a joining technique for Silicon Carbide ceramics by means of boron, carbon and silicon. The joint is created by the formation of a welding zone, which consists of SiC as it is the material to be joined. For this purpose are used the follow means: (a) sputtering layers of B4C, Si and C, (b) vacuum coatings of Si or Si foils and C, (c) powder mixtures of B4C, Si and C. The joints were examined at ceramographic cross sections of the bonding zone, by means of XRD, REM/EDAX, TEM and EPMA. The bond strength was determined in the 4-point bend test at room temperature and at 1370 C. It was found that a useable result can be obtained, if the temperature of the joining process exceeds the melting point of Si (1410 C). A high bending strength with a high Weibull modulus was achieved by using sputter layers. The powder mixtures provided a satisfactory bending strength with a low Weibull modulus. (orig.)

  7. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    CERN Document Server

    He, X M; Peters, A M; Taylor, B; Nastasi, M

    2002-01-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C sub 2 H sub 2), diborane (B sub 2 H sub 6), and hexafluoroethane (C sub 2 F sub 6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C sub 2 H sub 2 , B sub 2 H sub 6 , and C sub 2 F sub 6 source gases. The incorporation of B sub 2 H sub 6 and C sub 2 F sub 6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition...

  8. First-principles study of hydrogen storage on Ti (Sc)-decorated boron-carbon-nitride sheet

    Energy Technology Data Exchange (ETDEWEB)

    Song Nahong [College of Computer and Information Engineering, Henan University of Economics and Law, Zhengzhou 450002 (China); Wang Yusheng [College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450011 (China); Center of Clean Energy and Quantum Structures, School of Physics and Engineering, Zhengzhou University, Zhengzhou, Henan 450052 (China); Sun Qiang [Center of Clean Energy and Quantum Structures, School of Physics and Engineering, Zhengzhou University, Zhengzhou, Henan 450052 (China); Jia Yu, E-mail: xxwysheng@163.com [Center of Clean Energy and Quantum Structures, School of Physics and Engineering, Zhengzhou University, Zhengzhou, Henan 450052 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The gravimetric densities of H{sub 2} are 7.6 wt% and 7.8 wt%, respectively. Black-Right-Pointing-Pointer The average adsorption energy of hydrogen molecule is in the range of 0.4-0.56 eV/H{sub 2} (0.13-0.27 eV/H{sub 2}). Black-Right-Pointing-Pointer It can operate under ambient thermodynamic conditions. - Abstract: Ab initio first-principles calculations are carried out to investigate Ti (Sc)-decorated two-dimensional boron-carbon-nitride (BC{sub 2}N) sheets for their application as hydrogen storage materials. The results show that with four H{sub 2} molecules attached to per metal atom the Ti (Sc)-decorated BC{sub 2}N can store up to 7.6 wt% (7.8 wt%) of hydrogen in molecular form. The Kubas interaction and the polarization mechanism lead to the adsorption energy within the range of 0.4-0.56 eV/H{sub 2} (0.13-0.27 eV/H{sub 2}), which is suitable for ambient temperature hydrogen storage.

  9. Torsional properties of hexagonal boron nitride nanotubes, carbon nanotubes and their hybrid structures: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Qi-lin Xiong

    2015-10-01

    Full Text Available The torsional mechanical properties of hexagonal single-walled boron nitride nanotubes (SWBNNTs, single-walled carbon nanotubes (SWCNTs, and their hybrid structures (SWBN-CNTs are investigated using molecular dynamics (MD simulation. Two approaches - force approach and energy approach, are adopted to calculate the shear moduli of SWBNNTs and SWCNTs, the discrepancy between two approaches is analyzed. The results show that the shear moduli of single-walled nanotubes (SWNTs, including SWBNNTs and SWCNTs are dependent on the diameter, especially for armchair SWNTs. The armchair SWNTs show the better ability of resistance the twisting comparable to the zigzag SWNTs. The effects of diameter and length on the critical values of torque of SWNTs are obtained by comparing the torsional behaviors of SWNTs with different diameters and different lengths. It is observed that the MD results of the effect of diameter and length on the critical values of torque agrees well with the prediction of continuum shell model. The shear modulus of SWBN-CNT has a significant dependence on the percentages of SWCNT and the hybrid style has also an influence on shear modulus. The critical values of torque of SWBN-CNTs increase with the increase of the percentages of SWCNT. This phenomenon can be interpreted by the function relationship between the torque of different bonds (B-N-X, C-C-X, C-B-X, C-N-X and the angles of bonds.

  10. Oxygen and nitrogen-doped metal-free carbon catalysts for hydrochlorination of acetylene☆

    Institute of Scientific and Technical Information of China (English)

    Tongtong Zhang; Jia Zhao; Jiangtao Xu; Jinhui Xu; Xiaoxia Di; Xiaonian Li

    2016-01-01

    Activated carbon was tested as metal-free catalyst for hydrochlorination of acetylene in order to circumvent the problem of environment pollution caused by mercury and high cost by noble metals. Oxygen-doped and nitrogen-doped activated carbons were prepared and characterized by XPS, TPD and N2 physisorption methods. The influences of the surface functional groups on the catalytic performance were discussed base on these results. Among al the samples tested, a nitrogen-doped sample, AC-n-U500, exhibited the best performance, the acety-lene conversion being 92%and vinyl chloride selectivity above 99%at 240 °C and C2H2 hourly space velocity 30 h−1. Moreover, the AC-n-U500 catalyst exhibited a stable performance during a 200 h test with a conversion of acetylene higher than 76%at 210 °C at a C2H2 hourly space velocity 50 h−1. In contrary, oxygen-doped catalyst had lower catalytic activities. A linear relationship between the amount of pyrrolic-N and quaternary-N species and the catalytic activity was observed, indicating that these nitrogen-doped species might be the active sites and the key in tuning the catalytic performance. It is also found that the introduction of nitrogen species into the sample could significantly increase the adsorption amount of acetylene. The deactivation of nitrogen-doped activated carbon might be caused by the decrease of the accessibility to or the total amount of active sites.

  11. Experimental evaluation of biomass burning emissions: Nitrogen and carbon containing compounds

    International Nuclear Information System (INIS)

    Data are presented on the nitrogen and carbon emissions of biomass burning. The results of the authors' experiments enable them to calculate new source strengths for many compounds, considering different burning stages and fire conditions on the one hand, and different fuel types and properties, on the other hand. They also presented a method for balancing elemental budgets of fires, which had already been described for carbon compounds by other authors but which is new for the nitrogen inventory. Based on their measurements they show that biomass burning contributes significantly to the global budgets of HCN, CH3CN (possibly the major source), NOx (12%), CO(22%), C2 to C4 hydrocarbons (14%), CH3Cl(41%), and probably also to the global source of C1-C5 aliphatic amines. Further, pyrogenic CO2 amounts are likely to represent a substantial contribution to the global greenhouse warming. An important result, from the study is the identification of N2 emissions, which causes a significant loss of fixed nitrogen (pyro-denitrification) in tropical ecosystems in the order of 5% to 20% of the global nitrogen fixation rate. Because of an interesting interplay between an enhanced postfire nitrogen fixation and an enhanced postfire N2O emission, it is not yet known if losses due to pyro-denitrification are balanced by nitrogen fixation

  12. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation.

    Science.gov (United States)

    Luo, Wei; Wang, Bao; Heron, Christopher G; Allen, Marshall J; Morre, Jeff; Maier, Claudia S; Stickle, William F; Ji, Xiulei

    2014-01-01

    Here, we present a simple one-step fabrication methodology for nitrogen-doped (N-doped) nanoporous carbon membranes via annealing cellulose filter paper under NH3. We found that nitrogen doping (up to 10.3 at %) occurs during cellulose pyrolysis under NH3 at as low as 550 °C. At 700 °C or above, N-doped carbon further reacts with NH3, resulting in a large surface area (up to 1973.3 m(2)/g). We discovered that the doped nitrogen, in fact, plays an important role in the reaction, leading to carbon gasification. CH4 was experimentally detected by mass spectrometry as a product in the reaction between N-doped carbon and NH3. When compared to conventional activated carbon (1533.6 m(2)/g), the N-doped nanoporous carbon (1326.5 m(2)/g) exhibits more than double the unit area capacitance (90 vs 41 mF/m(2)).

  13. Microtribology of Nitrogen-doped Amorphous Carbon Coatings

    Institute of Scientific and Technical Information of China (English)

    Dong F. Wang

    2004-01-01

    The friction, wear and lubrication of carbon nitride coatings on silicon substrates are studied using a spherical diamond counter-face with nano-scale asperities. The first part of this paper clarifies the coating thickness effect on frictional behavior of carbon nitride coatings. The second part of this paper reports empirical data on wear properties in repeated sliding contacts through in situ examination and post-sliding observation. The third part will concentrate on wear mechanisms for the transition from "No observable wear particles" to "Wear particle generation." In light of the above tribological study, the application of carbon nitride coatings to MicroElectroMechanical system (MEMS) is therefore discussed from view points of both microtribology and micromachining.

  14. Synthesis of Nitrogen-Doped Carbon Nanocoils with Adjustable Morphology using Ni–Fe Layered Double Hydroxides as Catalyst Precursors

    OpenAIRE

    Tomohiro Iwasaki; Masashi Tomisawa; Takuma Yoshimura; Hideya Nakamura; Masao Ohyama; Katsuya Asao; Satoru Watano

    2015-01-01

    Nitrogen-doped carbon nanocoils (CNCs) with adjusted morphologies were synthesized in a one-step catalytic chemical vapour deposition (CVD) process using acetoni‐ trile as the carbon and nitrogen source. The nickel iron oxide/nickel oxide nanocomposites, which were derived from nickel–iron layered double hydroxide (LDH) precur‐ sors, were employed as catalysts for the synthesis of CNCs. In this method, precursor-to-catalyst transformation, catalyst activation, formation of CNCs, and nitrogen ...

  15. Theoretical Investigation on Single-Wall Carbon Nanotubes Doped with Nitrogen, Pyridine-Like Nitrogen Defects, and Transition Metal Atoms

    Directory of Open Access Journals (Sweden)

    Michael Mananghaya

    2012-01-01

    Full Text Available This study addresses the inherent difficulty in synthesizing single-walled carbon nanotubes (SWCNTs with uniform chirality and well-defined electronic properties through the introduction of dopants, topological defects, and intercalation of metals. Depending on the desired application, one can modify the electronic and magnetic properties of SWCNTs through an appropriate introduction of imperfections. This scheme broadens the application areas of SWCNTs. Under this motivation, we present our ongoing investigations of the following models: (i (10, 0 and (5, 5 SWCNT doped with nitrogen (CNxNT, (ii (10, 0 and (5, 5 SWCNT with pyridine-like defects (3NV-CNxNT, (iii (10, 0 SWCNT with porphyrine-like defects (4ND-CNxNT. Models (ii and (iii were chemically functionalized with 14 transition metals (TMs: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Ag, Pt and Au. Using the spin-unrestricted density functional theory (DFT, stable configurations, deformations, formation and binding energies, the effects of the doping concentration of nitrogen, pyridine-like and porphyrine-like defects on the electronic properties were all examined. Results reveal that the electronic properties of SWCNTs show strong dependence on the concentration and configuration of nitrogen impurities, its defects, and the TMs adsorbed.

  16. Additional development of large diameter carbon monofilament. [from boron, hydrogen, and methane gas mixture

    Science.gov (United States)

    Jacob, B. A.; Veltri, R. D.

    1974-01-01

    The chemical vapor process for preparing a large diameter carbon-base monofilament from a BCl3, Ch4 and H2 gas mixture with a carbon substrate fiber was studied. The effect of reactor geometry, total gas flows and deposition temperature on the tensile strength of the monofilament were investigated. It was noted that consistent results could only be obtained when the carbon substrate fiber was cleaned. The strength of the monofilament was found to depend on the highest temperature and the temperature profile of the monofilament in the reactor. The strength of monofilament produced in the dc and RF reactors were found to be similar and similar alloy compositions in the monofilament were attained when the same gas ratios were used. The tensile strength of the monofilament at 500 C was found to be 60 to 70% of the room temperature tensile strength. No degradation was noted after exposure to molten aluminum.

  17. Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen.

    Science.gov (United States)

    Jiao, Yan; Zheng, Yao; Smith, Sean C; Du, Aijun; Zhu, Zhonghua

    2014-02-01

    Carbon nanotubes with specific nitrogen doping are proposed for controllable, highly selective, and reversible CO2 capture. Using density functional theory incorporating long-range dispersion corrections, we investigated the adsorption behavior of CO2 on (7,7) single-walled carbon nanotubes (CNTs) with several nitrogen doping configurations and varying charge states. Pyridinic-nitrogen incorporation in CNTs is found to induce an increasing CO2 adsorption strength with electron injecting, leading to a highly selective CO2 adsorption in comparison with N2 . This functionality could induce intrinsically reversible CO2 adsorption as capture/release can be controlled by switching the charge carrying state of the system on/off. This phenomenon is verified for a number of different models and theoretical methods, with clear ramifications for the possibility of implementation with a broader class of graphene-based materials. A scheme for the implementation of this remarkable reversible electrocatalytic CO2 -capture phenomenon is considered.

  18. BIOLOGICAL AERATED FILTERS (BAFs FOR CARBON AND NITROGEN REMOVAL: A REVIEW

    Directory of Open Access Journals (Sweden)

    ELSHAFIE AHMED

    2012-08-01

    Full Text Available Biological aerated filters (BAFs are an emerging wastewater treatment technology designed for a wide range of municipal and industrial applications. This review paper presents and discusses of the influence C/N ratio, nitrification and denitrification principle, effect of pH, DO and alkalinity on the nitrification and denitrification systems, organic and hydraulic loading of BAF reactor, etc. Results from upflow and downflow biofilter pilot at different condition, with nitrification and denitrification are reviewed. Under the optimal conditions, significant amount of COD, ammonia-nitrogen and total nitrogen were removed. Removal rates based on reactor volume for different carbon-aceous COD and ammonia loading rate are reported. The BAF system for the nitrification and denitrification processes for carbon and nitrogen removal from the wastewater need to be evaluated and applied properly to protect of our environment and resources.

  19. The interaction between Boron-carbon-nitride heteronanotubes and lithium atoms: Role of composition proportion

    Science.gov (United States)

    Zhong, Rong-Lin; Xu, Hong-Liang; Su, Zhong-Min

    2016-08-01

    A series of Li@BCN models were systematically investigated to explore the physical origin of the interaction between lithium atoms and BCNs. Theoretical results show that the crucial electron population in the BCNs of Li@B-BCN and Li@N-BCN series is dramatically different. As results, the first hyperpolarizability of Li@B-BCN series increases with the increase of carbon proportion whereas that of Li@N-BCN series significantly decreases with the increase of carbon proportion. The results indicate that the physical properties of Li@BCN models are significantly dependent on the different chemical environment of the tube termination.

  20. Phase Equilibria of Three Binary Mixtures: Methanethiol + Methane, Methanethiol + Nitrogen, and Methanethiol + Carbon Dioxide

    DEFF Research Database (Denmark)

    Awan, Javeed; Tsivintzelis, Ioannis; Coquelet, Christophe;

    2012-01-01

    New vapor–liquid equilibrium (VLE) data for methanethiol (MM) + methane (CH4), methanethiol (MM) + nitrogen (N2), and methanethiol (MM) + carbon dioxide (CO2) is reported for temperatures of (304, 334, and 364) K in the pressure range (1 to 8) MPa. A “static–analytic” method was used for performi...

  1. Contribution of chloroplast biogenesis to carbon-nitrogen balance during early leaf development in rice.

    Science.gov (United States)

    Kusumi, Kensuke; Hirotsuka, Shoko; Shimada, Hiroshi; Chono, Yoko; Matsuda, Osamu; Iba, Koh

    2010-07-01

    Chloroplast biogenesis is most significant during the changes in cellular organization associated with leaf development in higher plants. To examine the physiological relationship between developing chloroplasts and host leaf cells during early leaf development, we investigated changes in the carbon and nitrogen contents in leaves at the P4 developmental stage of rice, during which leaf blade structure is established and early events of chloroplast differentiation occur. During the P4 stage, carbon content on a dry mass basis remained constant, whereas the nitrogen content decreased by 30%. Among carbohydrates, sucrose and starch accumulated to high levels early in the P4 stage, and glucose, fructose and cellulose degradation increased during the mid-to-late P4 stage. In the chloroplast-deficient leaves of the virescent-1 mutant of rice, however, the carbon and nitrogen contents, as well as the C/N ratio during the P4 stage, were largely unaffected. These observations suggest that developing rice leaves function as sink organs at the P4 stage, and that chloroplast biogenesis and carbon and nitrogen metabolism in the leaf cell is regulated independently at this stage.

  2. The ternary Fe-C-N system: Homogeneous distributions of nitrogen and carbon

    DEFF Research Database (Denmark)

    Brink, Bastian; Ståhl, Kenny; Christiansen, Thomas Lundin;

    2017-01-01

    Porous iron foils were used for synthesizing homogeneous samples of iron carbides and (carbo)nitrides. Homogeneous distributions of interstitial nitrogen and carbon were obtained without long treatment times due to limited required diffusion distances in the porous material. By adjustments of the...

  3. Developing Ecological Models on Carbon and Nitrogen in Secondary Facultative Ponds

    Directory of Open Access Journals (Sweden)

    Aponte-Reyes Alexander

    2014-07-01

    Full Text Available Ecological models formulated for TOC, CO2, NH4+, NO3- and NTK, based in literature reviewed and field work were obtained monitoring three facultative secondary stabilization ponds, FSSP, pilots: conventional pond, CP, baffled pond, BP, and baffled-meshed pond, BMP. Models were sensitive to flow inlet, solar radiation, pH and oxygen content; the sensitive parameters in Carbon Model were KCOT Ba, umax Ba, umax Al, K1OX, VAl, R1DCH4, YBh. The sensitive parameters in the Nitrogen model were KCOT Ba, umax Ba, umax Al, VAl, KOPH, KOPA, r4An. The test t–paired showed a good simulating of Carbon model refers to TOC in FSSP; on the other side, the Nitrogen model showed a good simulating of NH4+. Different topological models modify ecosystem ecology forcing different transformation pathways of Nitrogen; equal transformations of the Carbon BMP topology could be achieved using lower volumes, however, a calibration for a new model would be required. Carbon and Nitrogen models developed could be coupled to hydrodynamics models for better modeling of FSSP.

  4. Long-term changes in soil organic carbon and nitrogen under semiarid tillage and cropping practices

    Science.gov (United States)

    Understanding long-term changes in soil organic carbon (SOC) and total soil nitrogen (TSN) is important for evaluating C fluxes and optimizing N management. We evaluated long-term SOC and TSN changes under dryland rotations for historical stubble-mulch (HSM) and graded terrace (GT) plots on a clay l...

  5. Soil organic carbon and total nitrogen responses after 34 years of tillage of a sandy ultisol

    Science.gov (United States)

    Conservation tillage and crop management strategies are available to increase soil organic carbon (SOC) and total nitrogen (TN) contents, but long-term (> 30 yrs) field results quantifying these increases are sparse. Our objectives were to quantity above ground biomass inputs and changes in vertica...

  6. Feeding ecology of harbour porpoises: stable isotope anlaysis of carbon and nitrogen in muscle and bone

    NARCIS (Netherlands)

    Jansen, O.E.; Aarts, G.M.; Das, K.; Lepoint, G.; Michel, L.; Reijnders, P.J.H.

    2012-01-01

    Harbour porpoises are the most common small cetaceans in the North Sea and Dutch coastal waters. To study their trophic level and feeding location, stable carbon and nitrogen isotope ratios (d13C and d15N) were analysed in muscle and bone samples collected from 157 porpoises stranded along the Dutch

  7. Carbon and nitrogen stocks in the soils of Central and Eastern Europe

    NARCIS (Netherlands)

    Batjes, N.H.

    2002-01-01

    Soil organic carbon and total nitrogen stocks are presented for Central and Eastern Europe. The study uses the soil geographic and attribute data held in a 1:2 500 000 scale Soil and Terrain (SOTER) database, covering Belarus, Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Moldova, P

  8. The QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions

    Science.gov (United States)

    The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua Quine Starch, At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates...

  9. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    Science.gov (United States)

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  10. ANALYTICAL EMPLOYMENT OF STABLE ISOTOPES OF CARBON, NITROGEN, OXYGEN AND HYDROGEN FOR FOOD AUTHENTICATION

    Directory of Open Access Journals (Sweden)

    E. Novelli

    2011-04-01

    Full Text Available Stable isotopes of carbon, nitrogen, oxygen and hydrogen were used for analytical purposes for the discrimination of the type of production (farming vs. fishing in the case of sea bass and for geographical origin in the case of milk. These results corroborate similar experimental evidences and confirm the potential of this analytical tool to support of food traceability.

  11. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO 2 capture

    KAUST Repository

    Zhao, Yunfeng

    2012-01-01

    Nitrogen-doped carbon materials were prepared by a nanocasting route using tri-continuous mesoporous silica IBN-9 as a hard template. Rationally choosing carbon precursors and carefully controlling activation conditions result in an optimized material denoted as IBN9-NC1-A, which possesses a very high nitrogen doping concentration (∼13 wt%) and a large surface area of 890 m 2 g -1 arising from micropores (<1 nm). It exhibits an excellent performance for CO 2 adsorption over a wide range of CO 2 pressures. Specifically, its equilibrium CO 2 adsorption capacity at 25 °C reaches up to 4.50 mmol g -1 at 1 bar and 10.53 mmol g -1 at 8 bar. In particular, it shows a much higher CO 2 uptake at low pressure (e.g. 1.75 mmol g -1 at 25 °C and 0.2 bar) than any reported carbon-based materials, owing to its unprecedented nitrogen doping level. The high nitrogen contents also give rise to significantly enhanced CO 2/N 2 selectivities (up to 42), which combined with the high adsorption capacities, make these new carbon materials promising sorbents for selective CO 2 capture from power plant flue gas and other relevant applications. © 2012 The Royal Society of Chemistry.

  12. Carbon and nitrogen flows through the benthic food web of a photic subtidal sandy sediment

    NARCIS (Netherlands)

    Evrard, V.P.E.; Soetaert, K.E.R.; Heip, C.H.R.; Huettel, M.; Xenopoulos, M.A.; Middelburg, J.J.

    2010-01-01

    Carbon and nitrogen flows within the food web of a subtidal sandy sediment were studied using stable isotope natural abundances and tracer addition. Natural abundances of 13C and 15N stable isotopes of the consumers and their potential benthic and pelagic resources were measured. δ13C data revealed

  13. Carbon and nitrogen assimilation activities of deep subseafloor microbes analyzed by NanoSIMS

    Science.gov (United States)

    Morono, Y.; Terada, T.; Inagaki, F.

    2009-12-01

    Deep subseafloor microbes play significant roles on biogeochemical cycles with extremely low metabolic activities. The subseafloor microbial community consists mainly of uncultured components; hence, their growth and metabolic characteristics remain almost completely unknown. Here, we presnet in vitro isotopic evidence that the deep subseafloor microbes actively incooporate multiple carbon and nitrogen compounds into their biomass using NanoSIMS. We incubated methane hydrate-bearing deep marine sediments with small 13C-labeled glucose, acetate, pyruvate, bicarbonate, amino-acids and methane in the presence of 15N-labeled ammonia as a nitrogen source for 2 and 6 monthes under the anaerobic condition. Using NanoSIMS, we observed the cells that incooprated 13C- or 15N-labeled substrates such as 13C-glucose, pyruvate, and 15N-ammonia up to 50% of their cellular carbon or nitrogen mass. Assimilation of 13C- and 15N-labeled amino acids as well as 13C-bicarbonates by autotrophs was also observed while 13C-methane was found to be difficult to be used for the carbon source, regardless of the presence of some additional electron acceptors for the energy respiration. These results indicate that the metabolic activities of deep subseafloor microbes can be stimulated in vitro by adding potential carbon and nitrogen sources, providing new insights into the biogeochemical functioning of the deep subseaflor microbes and its ecosystem.

  14. Carbon respiration and nitrogen dynamics in Corsican pine litter amended with aluminium and tannins

    NARCIS (Netherlands)

    P. Kraal; K.G.J. Nierop; J. Kaal; A. Tietema

    2009-01-01

    We investigated the carbon (C) mineralisation and nitrogen (N) dynamics in litter from a Corsican pine forest in response to individual and combined additions of aluminium (M), condensed tannin (extracted from fresh Corsican pine needles) and hydrolysable tannin (commercial tannic acid). Production

  15. Carbon and nitrogen in forest floor and mineral soil under six common European tree species

    DEFF Research Database (Denmark)

    Vesterdal, Lars; Schmidt, Inger K.; Callesen, Ingeborg;

    2007-01-01

    The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades...

  16. Enhancement of carbon and nitrogen transformations during composting of municipal solid waste.

    Science.gov (United States)

    Abu Qdais, H A; Hamoda, M F

    2004-01-01

    Appropriate management of municipal solid waste (MSW) is viewed as an integrated system encompassing waste minimization, recycling, and resource recovery. This has increased the interest in the composting process, in which the biodegradable portion of MSW is biologically converted into a valuable product that can be utilized as a soil conditioner or fertilizer. Effective operation of the composting process can be achieved by determining the optimal conditions for the controlling parameters in order to enhance the biological reactions during composting. Information on biodegradation rates are also essential for process design. Therefore, this study was conducted in order to examine the factors affecting process performance and transformation of essential elements of MSW such as carbon and nitrogen. A pilot study of in-vessel aerobic composting of MSW was carried out and the operating parameters, which affect biodegradation of carbonaceous and nitrogenous matter were studied using a specially designed rotating drum and a carbon-rich MSW. The effects of temperature, moisture content, and air flow rate were examined. The performance of the composting process was evaluated by measuring the carbon and nitrogen content during experiments, each of which lasted for 30 days. The study showed that enhanced transformations of carbon and nitrogen occur at 55 degrees C for temperature, 60% for moisture content, and 10L/kgh for air flow rate using the food-rich MSW generated in the Gulf countries. PMID:15027824

  17. Dust storm erosion and its impact on soil carbon and nitrogen losses in Northern China

    NARCIS (Netherlands)

    Wang Xiaobin,; Oenema, O.; Hoogmoed, W.B.; Perdok, U.D.; Cai, D.

    2006-01-01

    There is increased awareness of the environmental impacts of soil carbon (C) and nitrogen (N) losses through wind erosion, especially in areas heavily affected by dust storm erosion. This paper reviews the recent literature concerning dust storm-related soil erosion and its impact on soil C and N lo

  18. The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling

    Directory of Open Access Journals (Sweden)

    Hsien Ming eEaslon

    2013-08-01

    Full Text Available Terrestrial higher plants are composed of roots and shoots, distinct organs that conduct complementary functions in dissimilar environments. For example, roots are responsible for acquiring water and nutrients such as inorganic nitrogen from the soil, yet shoots consume the majority of these resources. The success of such a relationship depends on excellent root-shoot communications. Increased net photosynthesis and decreased shoot nitrogen and water use at elevated CO2 fundamentally alter these source-sink relations. Lower than predicted productivity gains at elevated CO2 under nitrogen or water stress may indicate shoot-root signaling lacks plasticity to respond to rising atmospheric CO2 concentrations. The following presents recent research results on shoot-root nitrogen and water signaling, emphasizing the influence that rising atmospheric carbon dioxide levels are having on these source-sink interactions.

  19. New phosphorus analogues of nitrogen classics--no carbon copies.

    Science.gov (United States)

    Gudat, Dietrich

    2014-05-01

    Getting heavy: The recently prepared phosphorus analogues of two old acquaintances, urea and dinitrogen tetroxide, bear some structural resemblance to their archetypes but are no carbon copies. Their syntheses and chemical properties reveal rather certain peculiarities, which back the doctrine that the electronic properties of the heavier elements in a group differ from those of the lightest congener. PMID:24718995

  20. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    Science.gov (United States)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  1. Nitrogen

    Science.gov (United States)

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  2. Palladium-catalyzed homo-coupling of boronic acids with supported reagents in supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Lei Zhou; Qiu Xiang Xu; Huan Feng Jiang

    2007-01-01

    Palladium-catalyzed homo-coupling of arylboronic acids could proceed smoothly with a commercially available resin functionlised by phosphino or amino group as the ligand in supercritical carbon dioxide thereby offering a simple and efficient protocol for the synthesis of symmetrical bi-aryl molecules and their higher homologues.

  3. The experimental studies on the carbon and nitrogen budgets of Pseudeuphausia sinica

    Institute of Scientific and Technical Information of China (English)

    Guo Donghui; Li Shaojing; Chen Feng; Wang Guizhong; Chen Gang

    2003-01-01

    The carbon and nitrogen budgets were estimated on the adult females, juveniles and postfurcilia larvae of Pseudeuphausia sinica fed on newly hatching nauplii of Artemia salina in the laboratory. It was found that the ingestion rate was linearly related to the food concentration, suggesting high feeding potential. The linear correlation could be established between the respirating rate (carbon consumption rate) and carbon ingestion rate, as well as carbon assimilation rate. The regression coefficients (i.e.specific dynamic action coefficients) were in the range from 9% to 16% (ingested C) or 10% to 17% (assimilated C) respectively, with lower in the post-furcilia larvae. There also existed a linear correlation equation between estimated total nitrogen excretion rate and the rates of nitrogen ingestion and assimilation separately, except for the juveniles. The defecation rates increased with the increase of the ingestion rate; as a result, assimilation efficiency was not related to the ingestion rate, ranging from 0.84 to 0.95. The results inducated that the nitrogen content in food particles was a key factor limiting the growth of P. sinica. The critical ingestion rate was 10 μgN@mg-1body dry weight per day. Assimilated N was lost mostly by excretion, following allocated to somatic growth. The nitrogen loss by moult only accounted for a minor part. As for carbon budget, respiration and somatic growth also accounted for most of assimilation, but varied with ingestion rates. Moult loss was minor. Estimated reproductive growth (C&N) in the adult females accounted for somewhat higher percent of assimilation than the moult growth. The net growth efficiency (K2) increased with the increase of the ingestion rates, but decreased slightly for juvenile and post-furcilia larvae after the rates up to a certain value.

  4. Selective adsorption for removal of nitrogen compounds from hydrocarbon streams over carbon-based adsorbents

    Science.gov (United States)

    Almarri, Masoud S.

    The ultimate goal of this thesis is to develop a fundamental understanding of the role of surface oxygen functional groups on carbon-based adsorbents in the adsorption of nitrogen compounds that are known to be present in liquid fuels. N2 adsorption was used to characterize pore structures. The surface chemical properties of the adsorbents were characterized by X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) techniques with a mass spectrometer to identify and quantify the type and concentration of oxygen functional groups on the basis of CO2 and CO evolution profiles. It was found that although surface area and pore size distribution are important for the adsorption process, they are not primary factors in the adsorption of nitrogen compounds. On the other hand, both the type and concentration of surface oxygen-containing functional groups play an important role in determining adsorptive denitrogenation performance. Higher concentrations of the oxygen functional groups on the adsorbents resulted in a higher adsorption capacity for the nitrogen compounds. A fundamental insight was gained into the contributions of different oxygen functional groups by analyzing the changes in the monolayer maximum adsorption capacity, qm, and the adsorption constant, K, for nitrogen compounds on different activated carbons. Acidic functional groups such as carboxylic acids and carboxylic anhydrides appear to contribute more to the adsorption of quinoline, while the basic oxygen functional groups such as carbonyls and quinones enhance the adsorption of indole. Despite the high number of publications on the adsorptive desulfurization of liquid hydrocarbon fuels, these studies did not consider the presence of coexisting nitrogen compounds. It is well-known that, to achieve ultraclean diesel fuel, sulfur must be reduced to a very low level, where the concentrations of nitrogen and sulfur compounds are comparable. The adsorptive denitrogenation and

  5. Changes in soil carbon, nitrogen, and phosphorus due to land-use changes in Brazil

    Science.gov (United States)

    Groppo, J. D.; Lins, S. R. M.; Camargo, P. B.; Assad, E. D.; Pinto, H. S.; Martins, S. C.; Salgado, P. R.; Evangelista, B.; Vasconcellos, E.; Sano, E. E.; Pavão, E.; Luna, R.; Martinelli, L. A.

    2015-08-01

    In this paper, soil carbon, nitrogen and phosphorus concentrations and stocks were investigated in agricultural and natural areas in 17 plot-level paired sites and in a regional survey encompassing more than 100 pasture soils In the paired sites, elemental soil concentrations and stocks were determined in native vegetation (forests and savannas), pastures and crop-livestock systems (CPSs). Nutrient stocks were calculated for the soil depth intervals 0-10, 0-30, and 0-60 cm for the paired sites and 0-10, and 0-30 cm for the pasture regional survey by sum stocks obtained in each sampling intervals (0-5, 5-10, 10-20, 20-30, 30-40, 40-60 cm). Overall, there were significant differences in soil element concentrations and ratios between different land uses, especially in the surface soil layers. Carbon and nitrogen contents were lower, while phosphorus contents were higher in the pasture and CPS soils than in native vegetation soils. Additionally, soil stoichiometry has changed with changes in land use. The soil C : N ratio was lower in the native vegetation than in the pasture and CPS soils, and the carbon and nitrogen to available phosphorus ratio (PME) decreased from the native vegetation to the pasture to the CPS soils. In the plot-level paired sites, the soil nitrogen stocks were lower in all depth intervals in pasture and in the CPS soils when compared with the native vegetation soils. On the other hand, the soil phosphorus stocks were higher in all depth intervals in agricultural soils when compared with the native vegetation soils. For the regional pasture survey, soil nitrogen and phosphorus stocks were lower in all soil intervals in pasture soils than in native vegetation soils. The nitrogen loss with cultivation observed here is in line with other studies and it seems to be a combination of decreasing organic matter inputs, in cases where crops replaced native forests, with an increase in soil organic matter decomposition that leads to a decrease in the long

  6. SINTERING MECHANISM OF PURE AND CARBON_DOPED BORON CARBIDE%纯B4C和掺碳B4C的烧结机制

    Institute of Scientific and Technical Information of China (English)

    尹邦跃; 王零森; 方寅初

    2001-01-01

    Sintering densificaton process of pure and carbon_doped boron carbide powders with 0.42 μm median particle size were studied. Their sintering kinetic equations were obtained according to the influence of sintering temperature and holding time on linear shrinkage rate. The sintering mechanisms were investigated by comparing the characteristic exponent n. It is deduced that the main sintering mechanisms shill be volume diffusion and grain boundary diffusion for pure boron carbide and grain boundary diffusion for carbon_doped boron carbide showing activated sintering. The relative density of the carbon_doped B4C sintered at 2 160 ℃ for 45 min is more than 90%. Apart from those dissolved in the sintered boron carbide, the rest of the added carbon is in the form of free carbon, no new phase formed. Carbon_doping also result in a great decrease of B4C grain size.%研究了中位粒径为0.42 μm的纯B4C和掺碳B4C粉末的烧结致密化过程. 根据烧结温度和保温时间对线收缩率的影响,得出了它们的烧结动力学方程;由特征指数n值对比研究了它们的烧结致密化机制. 纯B4C的烧结致密化机制为体扩散和晶界扩散,而掺碳B4C的烧结机制主要为晶界扩散,因此,掺碳对B4C起到了活化烧结的作用. 在2 160 ℃烧结45 min,掺碳B4C烧结后相对密度大于90%. 掺入的碳除了固溶于B4C晶格中之外,其它均以游离石墨形式存在,不形成新相. 掺碳还导致B4C晶粒尺寸大大减小.

  7. COMPLEX COMPOST AND CIRCULATION OF NITROGEN AND CARBON AT THE AGROLANDSCAPE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Belyuchenko I. S.

    2014-03-01

    Full Text Available Complex compost includes all elements of the periodic table and is valuable due to the complexity of its system. Among the elements forming a chemical composition of the complex compost we can identify two most important, which are distinguishing a specific character of the interaction with each other and defining the basic processes to ensure vegetation of living system - nitrogen and carbon. Nitrogen determines the rate of energy and connects with living forms of organic matter; it is included as the part of protein and is a major element in determining the productivity of ecosystems. At the cycle of carbon its organic forms and carbon dioxide take a part, presenting the main factors of the processes of respiration and photosynthesis

  8. Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific

    Directory of Open Access Journals (Sweden)

    Y. Miyazaki

    2010-11-01

    Full Text Available Marine aerosol samples were collected over the western North Pacific along the latitudinal transect from 44° N to 10° N in late summer 2008 for measurements of organic nitrogen (ON and organic carbon (OC as well as isotopic ratios of total nitrogen (TN and total carbon (TC. Increased concentrations of methanesulfonic acid (MSA and diethylammonium (DEA+ at 40–44° N and subtropical regions (10–20° N together with averaged satellite chlorophyll a data and 5-day back trajectories suggest a significant influence of marine biological activities on aerosols in these regions. ON exhibited increased concentrations up to 260 ngN m−3 in these marine biologically influenced aerosols. Water-insoluble organic nitrogen (WION was found to be the most abundant nitrogen in the aerosols, accounting for 55 ± 16% of total aerosol nitrogen. In particular, the average WION/ON ratio was as high as 0.93 ± 0.07 at 40–44° N. These results suggest that marine biological sources significantly contributed to ON, a majority of which is composed of water-insoluble fractions in the study region. Analysis of the stable carbon isotopic ratios (δ13C indicated that, on average, marine-derived carbon accounted for ~88 ± 12% of total carbon in the aerosols. In addition, the δ13C increased from −22 to −20‰ when ON/OC ratios increased from 0.15 to 0.35 in marine biologically influenced aerosols. These results clearly show that organic nitrogen is enriched in organic aerosols originated from an oceanic region with high biological productivity, indicating a preferential transfer of nitrogen-containing organic compounds from the sea surface to the marine atmosphere. Both WION concentrations and WION/water-insoluble organic carbon (WIOC ratios showed positive correlations with local wind speeds, suggesting that sea-to-air emissions of ON via sea spray significantly contributes to marine organic aerosols over the

  9. Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific

    Directory of Open Access Journals (Sweden)

    Y. Miyazaki

    2011-04-01

    Full Text Available Marine aerosol samples were collected over the western North Pacific along the latitudinal transect from 44° N to 10° N in late summer 2008 for measurements of organic nitrogen (ON and organic carbon (OC as well as isotopic ratios of total nitrogen (TN and total carbon (TC. Increased concentrations of methanesulfonic acid (MSA and diethylammonium (DEA+ at 40–44° N and subtropical regions (10–20° N together with averaged satellite chlorophyll-a data and 5-day back trajectories suggest a significant influence of marine biological activities on aerosols in these regions. ON exhibited increased concentrations up to 260 ngN m−3 in these marine biologically influenced aerosols. Water-insoluble organic nitrogen (WION was found to be the most abundant nitrogen in the aerosols, accounting for 55 ± 16% of total aerosol nitrogen. In particular, the average WION/ON ratio was as high as 0.93 ± 0.07 at 40–44° N. These results suggest that marine biological sources significantly contributed to ON, a majority of which is composed of water-insoluble fractions in the study region. Analysis of the stable carbon isotopic ratios (δ13C indicated that, on average, marine-derived carbon accounted for ~88 ± 12% of total carbon in the aerosols. In addition, the δ13C showed higher values (from −22 to −20‰ when ON/OC ratios increased from 0.15 to 0.35 in marine biologically influenced aerosols. These results clearly show that organic nitrogen is enriched in organic aerosols originated from an oceanic region with high biological productivity, indicating a preferential transfer of nitrogen-containing organic compounds from the sea surface to the marine atmosphere. Both WION concentrations and WION/water-insoluble organic carbon (WIOC ratios tended to increase with increasing local wind speeds, indicating that sea-to-air emissions of ON via sea spray contribute significantly to the marine organic

  10. Potentiometric application of boron- and phosphorus-doped glassy carbon electrodes

    Directory of Open Access Journals (Sweden)

    ZORAN V. LAUSEVIC

    2001-03-01

    Full Text Available Acomparative study was carried out of the potentiometric application of boronand phosphorus-doped and undoped glassy carbon samples prepared at the same heat treatment temperature (HTT 1000°C. The electrochemical activities of the obtained electrode materials were investigated on the example of argentometric titrations. It was found that the electrochemical behaviour of the doped glassy carbon samples are very similar to a Sigri (undoped glassy carbon sample (HTT 2400°C. The experiments showed that the potentiometric response depends on the polarization mode, the nature of the sample, the pretreatment of the electrode surface, and the nature of the supporting electrolyte. The amounts of iodide, bromide, and of chloridewere determined to be 1.27 mg, 0.80 mg and 0.54 mg, respectively, with a maximum relative standard deviation of less than 1.1%. The obtained results are in good agreement with the results of comparative potentiometric titrations using a silver indicator electrode. The titrationmethod was applied to the indirect determination of pyridoxine hydrochloride, i.e., vitamin B6.

  11. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands

    Science.gov (United States)

    Wu, Y.; Blodau, C.

    2013-08-01

    Elevated nitrogen deposition and climate change alter the vegetation communities and carbon (C) and nitrogen (N) cycling in peatlands. To address this issue we developed a new process-oriented biogeochemical model (PEATBOG) for analyzing coupled carbon and nitrogen dynamics in northern peatlands. The model consists of four submodels, which simulate: (1) daily water table depth and depth profiles of soil moisture, temperature and oxygen levels; (2) competition among three plants functional types (PFTs), production and litter production of plants; (3) decomposition of peat; and (4) production, consumption, diffusion and export of dissolved C and N species in soil water. The model is novel in the integration of the C and N cycles, the explicit spatial resolution belowground, the consistent conceptualization of movement of water and solutes, the incorporation of stoichiometric controls on elemental fluxes and a consistent conceptualization of C and N reactivity in vegetation and soil organic matter. The model was evaluated for the Mer Bleue Bog, near Ottawa, Ontario, with regards to simulation of soil moisture and temperature and the most important processes in the C and N cycles. Model sensitivity was tested for nitrogen input, precipitation, and temperature, and the choices of the most uncertain parameters were justified. A simulation of nitrogen deposition over 40 yr demonstrates the advantages of the PEATBOG model in tracking biogeochemical effects and vegetation change in the ecosystem.

  12. Effect of nitrogen post-doping on a commercial platinum-ruthenium/carbon anode catalyst

    Science.gov (United States)

    Corpuz, April R.; Wood, Kevin N.; Pylypenko, Svitlana; Dameron, Arrelaine A.; Joghee, Prabhuram; Olson, Tim S.; Bender, Guido; Dinh, Huyen N.; Gennett, Thomas; Richards, Ryan M.; O'Hayre, Ryan

    2014-02-01

    This work investigates the effects of after-the-fact chemical modification of a state-of-the-art commercial carbon-supported PtRu catalyst for direct methanol fuel cells (DMFCs). A commercial PtRu/C (JM HiSPEC-10000) catalyst is post-doped with nitrogen by ion-implantation, where "post-doped" denotes nitrogen doping after metal is carbon-supported. Composition and performance of the PtRu/C catalyst post-modified with nitrogen at several dosages are evaluated using X-ray photoelectron spectroscopy (XPS), rotating disk electrode (RDE), and membrane electrode assemblies (MEAs) for DMFC. Overall, implantation at high dosage results in 16% higher electrochemical surface area and enhances performance, specifically in the mass transfer region. Rotating disk electrode (RDE) results show that after 5000 cycles of accelerated durability testing to high potential, the modified catalyst retains 34% more electrochemical surface area (ECSA) than the unmodified catalyst. The benefits of nitrogen post-doping are further substantiated by DMFC durability studies (carried out for 425 h), where the MEA with the modified catalyst exhibits higher surface area and performance stability in comparison to the MEA with unmodified catalyst. These results demonstrate that post-doping of nitrogen in a commercial PtRu/C catalyst is an effective approach, capable of improving the performance of available best-in-class commercial catalysts.

  13. Simultaneous removal of COD and nitrogen using a novel carbon-membrane aerated biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A membrane aerated biofilm reactor is a promising technology for wastewater treatment. In this study, a carbon-membrane aerated biofilm reactor (CMABR) has been developed, to remove carbon organics and nitrogen simultaneously from one reactor. The results showed that CMABR has a high chemical oxygen demand (COD) and nitrogen removal efficiency, as it is operated with a hydraulic retention time (HRT) of 20 h, and it also showed a perfect performance, even if the HRT was shortened to 12 h. In this period, the removal efficiencies of COD, ammonia nitrogen (NH4+-N), and total nitrogen (TN) reached 86%, 94%, and 84%, respectively. However,the removal efficiencies of NH4+-N and TN declined rapidly as the HRT was shortened to 8 h. This is because of the excessive growth of biomass on the nonwoven fiber and very high organic loading rate. The fluorescence in situ hybridization (FISH) analysis indicated that the ammonia oxidizing bacteria (AOB) were mainly distributed in the inner layer of the biofilm. The coexistence of AOB and eubacteria in one biofilm can enhance the simultaneous removal of COD and nitrogen.

  14. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands

    Directory of Open Access Journals (Sweden)

    Y. Wu

    2013-03-01

    Full Text Available Elevated nitrogen deposition and climate change alter the vegetation communities and carbon (C and nitrogen (N cycling in peatlands. To address this issue we developed a new process-oriented biogeochemical model (PEATBOG for analyzing coupled carbon and nitrogen dynamics in northern peatlands. The model consists of four submodels, which simulate: (1 daily water table depth and depth profiles of soil moisture, temperature and oxygen levels; (2 competition among three plants functional types (PFTs, production and litter production of plants; (3 decomposition of peat; and (4 production, consumption, diffusion and export of dissolved C and N species in soil water. The model is novel in the integration of the C and N cycles, the explicit spatial resolution belowground, the consistent conceptualization of movement of water and solutes, the incorporation of stoichiometric controls on elemental fluxes and a consistent conceptualization of C and N reactivity in vegetation and soil organic matter. The model was evaluated for the Mer Bleue Bog, near Ottawa, Ontario, with regards to simulation of soil moisture and temperature and the most important processes in the C and N cycles. Model sensitivity was tested for nitrogen input, precipitation, and temperature, and the choices of the most uncertain parameters were justified. A simulation of nitrogen deposition over 40 yr demonstrates the advantages of the PEATBOG model in tracking biogeochemical effects and vegetation change in the ecosystem.

  15. Functionalization of terminal carbon atoms of hydroxyl terminated polybutadiene by polyazido nitrogen rich molecules

    Indian Academy of Sciences (India)

    Rajavelu Murali Sankar; Tapta Kanchan Roy; Tushar Jana

    2011-07-01

    We report a novel synthetic approach for the attachment of the polyazido nitrogen rich molecule on to the hydroxyl terminated polybutadiene (HTPB) backbone. The terminal carbon atoms of the HTPB are functionalized by attaching cyanuric chloride (CYC) covalently on the HTPB backbone. Further reaction of this modified HTPB with sodium azide yields polyazido nitrogen rich HTPB. The unique physico-chemical properties and the microstructure of the HTPB do not get affected upon modification. IR, gel permeable chromatography (GPC) and absorption spectroscopy studies prove that the polyazido nitrogen rich molecules are covalently attached at the terminal carbon atoms of the HTPB. The π electron delocalization owing to long butadiene chain, strong electron withdrawing effect of the triazine molecules are the major driving forces for the covalent attachment of the triazine at the terminal carbon atoms of the HTPB. The disruption of the intermolecular hydrogen bonding between the terminal hydroxyl groups of the HTPB chains and the presence of hydrogen bonding between the N atoms of the triazine ring with OH group of the HTPB are observed. Theoretical study also reveals the existence of the hydrogen bonding between the OH and N. Theoretical calculation shows that the detonation performance of the polyazido nitrogen rich HTPB are very promising.

  16. Correlation among carbon, nitrogen, sulphur and physiological parameters of Rinodina sophodes found at Kanpur city, India.

    Science.gov (United States)

    Satya; Upreti, D K

    2009-09-30

    Accumulation of carbon, nitrogen and sulphur content in Rinodina sophodes, crustose poleotolerent lichen growing naturally in and around six sites of Kanpur city was estimated, and their influence on the photosynthetic pigments of the lichen was studied. Maximum carbon concentration was recorded at highly polluted area while higher accumulation of nitrogen was recorded near village in outskirt of the city having higher ammonia emission. The concentration of sulphur was not detected in most of the sites except a single site where it had a quite lower value (0.22%). Photosynthetic pigments (chlorophyll a and b) increased parallel to the level of traffic density. Multiple correlation analysis revealed that chlorophyll a had highly significant correlation (1%) with chlorophyll b (r=0.9986) and total chlorophyll (r=0.9307). Carbon is directly correlated with nitrogen (r=0.3035), sulphur (r=0.1743) and chlorophyll degradation (r=0.2685) while negatively correlated with chlorophyll a (-0.3323), chlorophyll b (r=-0.3429) and total chlorophyll (r=-0.0824). Nitrogen showed negative correlation between all photosynthetic pigments and chlorophyll degradation, while in case of sulphur, it was high positive correlation at 1% with chlorophyll degradation (0.9445). PMID:19520501

  17. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus.

    Science.gov (United States)

    Stefanoni Rubio, P J; Godoy, M S; Della Mónica, I F; Pettinari, M J; Godeas, A M; Scervino, J M

    2016-01-01

    The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (L-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon-nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.

  18. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    Science.gov (United States)

    Shao, Yuyan; Wang, Xiqing; Engelhard, Mark; Wang, Chongmin; Dai, Sheng; Liu, Jun; Yang, Zhenguo; Lin, Yuehe

    We demonstrate an excellent performance of nitrogen-doped mesoporous carbon (N-MPC) for energy storage in vanadium redox flow batteries. Mesoporous carbon (MPC) is prepared using a soft-template method and doped with nitrogen by heat-treating MPC in NH 3. N-MPC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of [VO] 2+/[VO 2] + is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple [VO] 2+/[VO 2] + is significantly enhanced on N-MPC electrode compared with MPC and graphite electrodes. The reversibility of the redox couple [VO] 2+/[VO 2] + is greatly improved on N-MPC (0.61 for N-MPC vs. 0.34 for graphite), which is expected to increase the energy storage efficiency of redox flow batteries. Nitrogen doping facilitates the electron transfer on electrode/electrolyte interface for both oxidation and reduction processes. N-MPC is a promising material for redox flow batteries. This also opens up new and wider applications of nitrogen-doped carbon.

  19. The key role of metal dopants in nitrogen-doped carbon xerogel for oxygen reduction reaction

    Science.gov (United States)

    Liu, Sisi; Deng, Chengwei; Yao, Lan; Zhong, Hexiang; Zhang, Huamin

    2014-12-01

    Highly active non-precious metal catalysts based on nitrogen-doped carbon xerogel (NCX) for the oxygen reduction reaction (ORR) is prepared with resorcinol(R)-formaldehyde (F) resin as carbon precursor and NH3 as nitrogen source. NCX samples doped with various transition metal species are investigated to elucidate the effect of transition metals on the structure and ORR activity of the products. As-prepared NCX catalysts with different metals are characterized using nitrogen-adsorption analysis, X-ray diffractometry, X-ray photoelectron spectroscopy, and Raman spectroscopy. The structural properties and ORR activities of the catalysts are altered by addition of different metals, and NCX doped with iron exhibits the best ORR activity. Metal doping evidently promotes the formation of more micropores and mesopores. Raman and XPS studies reveal that iron, cobalt, and nickel can increase pyridinic-N contents and that iron can catalyse the formation of graphene structures and enhance quaternary-N contents. Whereas the total N-content does not determine ORR activity, Metal-N4/C-like species generated from the interaction of the metals with nitrogen and carbon atoms play important roles in achieving high ORR activity.

  20. Coupled, Nitrogen, Oxygen, Carbon and Ion Chemistry on Titan

    Science.gov (United States)

    Yelle, Roger; Vuitton, Veronique; Lavvas, Panayotis; Klippenstein, Stephen; Horst, Sarah

    2016-06-01

    We present simulations of the coupled nitrogen, oxygen, and ion chemistry on Titan using a state-of-the-art photochemical model. The model is one dimensional and extends from the surface to the exobase. The chemistry linking 160 neutral species and 172 ion species is described through networks including 1139 neutral reactions and 4361 ion reactions. UV photolysis of 59 species is included as well as dissociation and ionization of 16 species due to suprathermal electrons. Reaction rate coefficients are obtained from a thorough review of the literature supplemented by calculations of rates of important reactions when laboratory values are not available. Comparison of the model with available observational constraints helps to determine the fundamental chemical pathways in the atmosphere. We will discuss in particular the importance of recent measurements of HNC, HC15N, CO2, and H2O and the role of ion chemistry in the synthesis of neutral species. Key reactions that require further laboratory of theoretical study will be identified.

  1. Carbon and nitrogen abundance determinations from transition layer lines. [giant stars

    Science.gov (United States)

    Boehm-Vitense, Erika; Mena-Werth, Jose

    1988-01-01

    For red giants a smooth increase in the nitrogen to carbon abundance ratio for increasing B-V as is expected for the first dredge up phase when the outer convection zone deepens is found. An average increase in the nitrogen to silicon ratio for B-V = 0.6 which goes back to almost solar values for cool giants with B - V approximately 1.0 is reported. It looks as if Si would be enriched for deeper mixing contrary to expectations from standard evolution theory.

  2. Nitrogen input effectiveness on carbon sequestration in rainfed cropping system

    Science.gov (United States)

    Novara, Agata; Gristina, Luciano; Poma, Ignazio

    2016-04-01

    The combined effect of total N and C/N ratio had a large influence on the decomposition rate and consequently on potential soil organic carbon sequestration. The aim of the work was to evaluate Carbon sequestration potentiality under three mineral N fertilization levels in interaction with two cropping systems characterized by addition of N input due to leguminous species in the rotation. The study was carried out in the semiarid Mediterranean environment in a 18years long-term experiment. Is well know that in the semiarid environment the excess of N fertilization reduces biomass yield and the consequent C input. On the contrary, both N and C input determine high difference in C/N input ratio and faster organic matter mineralization. Results showed no influence of N fertilization on SOC sequestration and a reduction of SOC stock due to crop rotation due to lower C input. Crop residue quality of durum wheat-pea crop rotation characterized by a faster decomposition rate could explain the lower ability of crop rotation to sequester C in the semiarid environment.

  3. Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    McCann, R. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom); Roy, S.S. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom)]. E-mail: s.sinha-roy@ulster.ac.uk; Papakonstantinou, P. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom); Bain, M.F. [Queens University of Belfast, School of Elect and Elect Engineering, Belfast, Antrim, N. Ireland (United Kingdom); Gamble, H.S. [Queens University of Belfast, School of Elect and Elect Engineering, Belfast, Antrim, N. Ireland (United Kingdom); McLaughlin, J.A. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom)

    2005-06-22

    Tetrahedral amorphous carbon (ta-C) and nitrogenated tetrahedral amorphous carbon films (ta-CN {sub x}), deposited by double bend off plane Filtered Vacuum Cathodic Arc were annealed up to 1000 deg. C in flowing argon for 2 min. Modifications on the chemical bonding structure of the rapidly annealed films, as a function of temperature, were investigated by NEXAFS, X-ray photoelectron and Raman spectroscopies. The interpretation of these spectra is discussed. The results demonstrate that the structure of undoped ta-C films prepared at floating potential with an arc current of 80 A remains stable up to 900 deg. C, whereas that of ta-CN {sub x} containing 12 at.% nitrogen is stable up to 700 deg. C. At higher temperatures, all the spectra indicated the predominant formation of graphitic carbon. Through NEXAFS studies, we clearly observed three {pi}* resonance peaks at the {sup '}N K edge structure. The origin of these three peaks is not well established in the literature. However our temperature-dependant study ascertained that the first peak originates from C=N bonds and the third peak originates from the incorporation of nitrogen into the graphite like domains.

  4. Modification of diamond-like carbon films by nitrogen incorporation via plasma immersion ion implantation

    Science.gov (United States)

    Flege, S.; Hatada, R.; Hoefling, M.; Hanauer, A.; Abel, A.; Baba, K.; Ensinger, W.

    2015-12-01

    The addition of nitrogen to diamond-like carbon films affects properties such as the inner stress of the film, the conductivity, biocompatibility and wettability. The nitrogen content is limited, though, and the maximum concentration depends on the preparation method. Here, plasma immersion ion implantation was used for the deposition of the films, without the use of a separate plasma source, i.e. the plasma was generated by a high voltage applied to the samples. The plasma gas consisted of a mixture of C2H4 and N2, the substrates were silicon and glass. By changing the experimental parameters (high voltage, pulse length and repetition rate and gas flow ratio) layers with different N content were prepared. Additionally, some samples were prepared using a DC voltage. The nitrogen content and bonding was investigated with SIMS, AES, XPS, FTIR and Raman spectroscopy. Their influence on the electrical resistivity of the films was investigated. Depending on the preparation conditions different nitrogen contents were realized with maximum contents around 11 at.%. Those values were compared with the nitrogen concentration that can be achieved by implantation of nitrogen into a DLC film.

  5. Cobalt-Nickel-Boron Supported over Polypyrrole-Derived Activated Carbon for Hydrolysis of Ammonia Borane

    Directory of Open Access Journals (Sweden)

    Yongjin Zou

    2016-07-01

    Full Text Available In this study, polypyrrole (PPy nanofibers were used to synthesize a super-activated carbon material. A highly-dispersed Co-Ni-B catalyst was supported on PPy nanofiber-derived activated carbon (PAC by chemical reduction. The Co-Ni-B/PAC hybrid catalyst exhibited excellent catalytic performance for the decomposition of ammonia borane (AB in an aqueous alkaline solution at room temperature. The size of the metal particles, morphology of Co-Ni-B/PAC, and catalytic activity of the supported catalyst were investigated. Ni-B, Co-B, and Co-Ni-B catalysts were also synthesized in the absence of PAC under similar conditions for comparison. The maximum hydrogen generation rate (1451.2 mL−1·min−1·g−1 at 25 °C was obtained with Co-Ni-B/PAC. Kinetic studies indicated that the hydrolysis reaction of AB was first order with respect to Co-Ni-B/PAC, and the activation energy was 30.2 kJ·mol−1. Even after ten recycling experiments, the catalyst showed good stability owing to the synergistic effect of Co-Ni-B and PAC.

  6. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations

    Directory of Open Access Journals (Sweden)

    Ehrenfeld Nicole

    2008-12-01

    Full Text Available Abstract Background Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. Results In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. Conclusion The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms.

  7. Effects of nitrogen and carbon sources on the production of inulinase from strain Bacillus sp. SG113

    Science.gov (United States)

    Gavrailov, Simeon; Ivanova, Viara

    2016-03-01

    The effects of the carbon and nitrogen substrates on the growth of Bacillus sp. SG113 strain were studied. The use of organic nitrogen sources (peptone, beef extract, yeast extract, casein) leads to rapid cellular growth and the best results for the Bacillus strain were obtained with casein hydrolysate. From the inorganic nitrogen sources studied, the (NH4) 2SO4 proved to be the best nitrogen source. Casein hydrolysate and (NH4) 2SO4 stimulated the invertase synthesis. In the presence of Jerusalem artichoke, onion and garlic extracts as carbon sources the strain synthesized from 6 to 10 times more inulinase.

  8. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide

    Science.gov (United States)

    Plummer, Patrick; Tobias, Craig; Cady, David

    2015-10-01

    Potential rates of sediment denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were mapped across the entire Niantic River Estuary, CT, USA, at 100-200 m scale resolution consisting of 60 stations. On the estuary scale, denitrification accounted for ~ 90% of the nitrogen reduction, followed by DNRA and anammox. However, the relative importance of these reactions to each other was not evenly distributed through the estuary. A Nitrogen Retention Index (NIRI) was calculated from the rate data (DNRA/(denitrification + anammox)) as a metric to assess the relative amounts of reactive nitrogen being recycled versus retained in the sediments following reduction. The distribution of rates and accompanying sediment geochemical analytes suggested variable controls on specific reactions, and on the NIRI, depending on position in the estuary and that these controls were linked to organic carbon abundance, organic carbon source, and pore water sulfide concentration. The relationship between NIRI and organic carbon abundance was dependent on organic carbon source. Sulfide proved the single best predictor of NIRI, accounting for 44% of its observed variance throughout the whole estuary. We suggest that as a single metric, sulfide may have utility as a proxy for gauging the distribution of denitrification, anammox, and DNRA.

  9. Voltammetric Studies of Propranolol and Hydrochlorothiazide Oxidation in Standard and Synthetic Biological Fluids Using a Nitrogen-Containing Tetrahedral Amorphous Carbon (ta-C:N) Electrode

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Nitrogen-containing tetrahedral amorphous carbon electrode for electroanalysis. • Electrochemical behavior of propranolol (PROP) and hydrochlorothiazide (HTZ). • ta-C:N electrode presents good electrochemical performance for PROP and HTZ. • Electrochemical performance of ta-C:N electrode is similar to the BDD electrode. • PROP and HTZ are simultaneously quantified in artificial biological samples. - Abstract: The electrochemical detection of two pharmaceuticals, propranolol (PROP) and hydrochlorothiazide (HTZ), was studied using a nitrogen-containing tetrahedral amorphous carbon (ta-C:N) electrode. Measurements were also made using a boron-doped diamond (BDD) electrode, for comparison. The ta-C:N electrode functioned well for the simultaneous determination of PROP and HTZ in artificial urine and serum by square-wave voltammetry, both of which were detected at high positive potentials. The PROP (ca. 1.2 V) and HTZ (ca. 1.4 V) oxidation peak potentials were separated by about 200 mV. The respective analytical response curves presented good linearity in the investigated concentration range from 0.9 to 9.8 μmol L−1 for PROP and from 3.0 to 9.8 μmol L−1 for HTZ with calculated limits of detection (S/N = 3) of 0.75 μmol L−1 (∼194 ng/mL) for PROP and 2.50 μmol L−1 (∼744 ng/mL) for HTZ. Essentially, the lowest concentration measured voltammetrically was the LOD. The results indicate that the ta-C:N electrode could be an excellent new carbon material for electrochemically-active analytes requiring high potentials for detection

  10. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D; Wingreen, Ned s; Rabitz, Herschel A; Xu, Yifan

    2012-10-22

    A key challenge for living systems is balancing utilization of multiple elemental nutrients, such as carbon, nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli grows nearly optimally, balancing effectively the conversion of carbon into energy versus biomass. To investigate the link between the metabolism of different nutrients, we quantified metabolic responses to nutrient perturbations using LC-MS based metabolomics and built differential equation models that bridge multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation, -ketoglutarate, directly inhibits glucose uptake and that the upstream glycolytic metabolite, fructose-1,6-bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability. We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build-up of the most closely related product of carbon metabolism, which in turn feedback inhibits further carbon uptake.

  11. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D; Wingreen, Ned s; Rabitz, Herschel A; Xu, Yifan

    2012-10-22

    A key challenge for living systems is balancing utilization of multiple elemental nutrients, such as carbon, nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli grows nearly optimally, balancing effectively the conversion of carbon into energy versus biomass. To investigate the link between the metabolism of different nutrients, we quantified metabolic responses to nutrient perturbations using LC-MS based metabolomics and built differential equation models that bridge multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation, α-ketoglutarate, directly inhibits glucose uptake and that the upstream glycolytic metabolite, fructose-1,6-bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability. We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build-up of the most closely related product of carbon metabolism, which in turn feedback inhibits further carbon uptake.

  12. Boronic acid functionalized N-doped carbon quantum dots as fluorescent probe for selective and sensitive glucose determination

    Science.gov (United States)

    Jiang, Guohua; Jiang, Tengteng; Li, Xia; Wei, Zheng; Du, Xiangxiang; Wang, Xiaohong

    2014-04-01

    Nitrogen doped carbon quantum dots (NCQDs) of about 10 nm in diameter have been obtained by hydrothermal reaction from collagen. Because of the superiority of water dispersion, low toxicity and ease of functionlization, the NCQDs were designed as a glucose sensor after covalent grafting by 3-aminophenylboronic (APBA) (APBA-NCQDs). The as-prepared APBA-NCQDs were imparted with glucose sensitivity and selectivity from other saccharides via fluorescence (FL) quenching effect at physiological pH and at room temperature, which show high sensitivity and specificity for glucose determination with a wide range from 1 mM to 14 mM. FL quenching mechanism of APBA-NCQDs was also investigated by adding an external quencher. The APBA-NCQDs-based platform is an environmentally friendly way to substitute inorganic quantum dots containing heavy metals which offer a facile and low cost detection method.

  13. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions.

    Science.gov (United States)

    Li, Ling; Zheng, Wenguang; Zhu, Yanbing; Ye, Huaxun; Tang, Buyun; Arendsee, Zebulun W; Jones, Dallas; Li, Ruoran; Ortiz, Diego; Zhao, Xuefeng; Du, Chuanlong; Nettleton, Dan; Scott, M Paul; Salas-Fernandez, Maria G; Yin, Yanhai; Wurtele, Eve Syrkin

    2015-11-24

    The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance.

  14. Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micropolyhedra by direct carbonization of zeolitic imidazolate framework-11

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Fei; Li, Li; Zhang, Xiaohua, E-mail: mickyxie@hnu.edu.cn; Chen, Jinhua, E-mail: chenjinhua@hnu.edu.cn

    2015-06-15

    Highlights: • Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were prepared from ZIF-11. • The activated N-PCMPs with fused KOH (N-PCMPs-A) have high specific surface area. • N-PCMPs-A exhibits high specific capacitance. • N-PCMPs-A reveals good cycling performance even at a high current density. - Abstract: Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were successfully prepared by direct carbonization of ZIF-11 polyhedra and further activated with fused KOH to obtain N-PCMPs-A. The morphology and microstructure of samples were examined by scanning electron microscopy, X-ray diffraction, and micropore and chemisorption analyzer. Electrochemical properties were characterized by cyclic voltammetry and galvanostatic charge/discharge method in 1.0 M H{sub 2}SO{sub 4} aqueous solution on a standard three-electrode system. Results show that, compared with N-PCMPs, N-PCMPs-A has higher specific surface area (2188 m{sup 2} g{sup −1}) and exhibits improved electrochemical capacitive properties (307 F g{sup −1} at 1.0 A g{sup −1}). The mass specific capacitance of N-PCMPs-A is also higher than that of most MOF-derived carbons, some carbide-derived carbons and carbon aerogel-derived carbons. In addition, the capacitance of the N-PCMPs-A retains 90% after 4000 cycles even at a high current density of 10 A g{sup −1}. These imply that N-PCMPs-A is the promising materials for the construction of a high-performance supercapacitor.

  15. Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micropolyhedra by direct carbonization of zeolitic imidazolate framework-11

    International Nuclear Information System (INIS)

    Highlights: • Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were prepared from ZIF-11. • The activated N-PCMPs with fused KOH (N-PCMPs-A) have high specific surface area. • N-PCMPs-A exhibits high specific capacitance. • N-PCMPs-A reveals good cycling performance even at a high current density. - Abstract: Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were successfully prepared by direct carbonization of ZIF-11 polyhedra and further activated with fused KOH to obtain N-PCMPs-A. The morphology and microstructure of samples were examined by scanning electron microscopy, X-ray diffraction, and micropore and chemisorption analyzer. Electrochemical properties were characterized by cyclic voltammetry and galvanostatic charge/discharge method in 1.0 M H2SO4 aqueous solution on a standard three-electrode system. Results show that, compared with N-PCMPs, N-PCMPs-A has higher specific surface area (2188 m2 g−1) and exhibits improved electrochemical capacitive properties (307 F g−1 at 1.0 A g−1). The mass specific capacitance of N-PCMPs-A is also higher than that of most MOF-derived carbons, some carbide-derived carbons and carbon aerogel-derived carbons. In addition, the capacitance of the N-PCMPs-A retains 90% after 4000 cycles even at a high current density of 10 A g−1. These imply that N-PCMPs-A is the promising materials for the construction of a high-performance supercapacitor

  16. Vegetation Dynamics and Carbon-Nitrogen Cycles in NCAR CLM4-CNDV Under Changing Climate

    Science.gov (United States)

    Sakaguchi, K.; Zeng, X.; Shao, P.

    2012-12-01

    The global biogeochemical cycle has become a major component of climate change studies. There are numerous important aspects in the biogeochemical feedbacks to the externally forced climate, and two of them are vegetation dynamics and coupling of carbon-nitrogen cycles. It is well established that evolution of vegetation cover substantially influences biogeophysical interactions with the atmosphere. More recently several studies suggest that the nitrogen cycle can significantly change the feedback of the land biosphere to the warming climate (commonly noted as γ) and to the increase of CO2 (β) compared to the models considering only the carbon cycle. The number of such studies is still small, however, particularly with dynamic vegetation models. Here we report several characteristics of a global land model NCAR CLM4-CNDV, which simulates the interactions between the vegetation dynamics and carbon-nitrogen cycles (but not the anthropogenic land use and land cover changes). A series of global off-line simulations are run with reanalysis-based atmospheric data as well as the model output from one member of the fully coupled CCSM4 simulations contributing to phase five of the Coupled Model Intercomparison Project (CMIP5). They cover pre-industrial conditions, the historical period, and future projection under RCP8.5 scenario in CMIP5. The topics will include the diagnosis of the simulated vegetation distribution, global-scale quantities (total carbon storage, average albedo, etc), and the sensitivity of the land carbon pool to warming climate and CO2 (γ, β). For the vegetation dynamics, grid-level evolution in time from the initial conditions to quasi-equilibrium and the regional change over the tropics and Arctic regions in the future will be summarized. The other results will be compared to previous studies on carbon-nitrogen coupling within NCAR CLM to augment them by dynamic vegetation and/or transient simulations extending to the future. The results will be

  17. Tracking Nonpoint Source Nitrogen and Carbon in Watersheds of Chesapeake Bay

    Science.gov (United States)

    Kaushal, S.; Pennino, M. J.; Duan, S.; Blomquist, J.

    2012-12-01

    Humans have altered nitrogen and carbon cycles in rivers regionally with important impacts on coastal ecosystems. Nonpoint source nitrogen pollution is a leading contributor to coastal eutrophication and hypoxia. Shifts in sources of carbon impact downstream ecosystem metabolism and fate and transport of contaminants in coastal zones. We used a combination of stable isotopes and optical tracers to investigate fate and transport of nitrogen and carbon sources in tributaries of the largest estuary in the U.S., the Chesapeake Bay. We analyzed isotopic composition of water samples from major tributaries including the Potomac River, Susquehanna River, Patuxent River, and Choptank River during routine and storm event sampling over multiple years. A positive correlation between δ15N-NO3- and δ18O-NO3- in the Potomac River above Washington D.C. suggested denitrification or biological uptake in the watershed was removing agriculturally-derived N during summer months. In contrast, the Patuxent River in Maryland showed elevated δ15N-NO3- (5 - 12 per mil) with no relationship to δ18O-NO3- suggesting the importance of wastewater sources. From the perspective of carbon sources, there were distinct isotopic values of the δ13C-POM of particulate organic matter and fluorescence excitation emission matrices (EEMS) for rivers influenced by their dominant watershed land use. EEMS showed that there were increases in the humic and fulvic fractions of dissolved organic matter during spring floods, particularly in the Potomac River. Stable isotopic values of δ13C-POM also showed rapid depletion suggesting terrestrial carbon "pulses" in the Potomac River each spring. The δ15N-POM peaked to 10 - 15 per mil each spring suggested a potential manure source or result of biological processing within the watershed. Overall, there were considerable changes in sources and transformations of nitrogen and carbon that varied across rivers and that contribute to nitrogen and carbon loads

  18. Nitrogen deposition: how important is it for global terrestrial carbon uptake?

    Directory of Open Access Journals (Sweden)

    G. Bala

    2013-07-01

    Full Text Available Global carbon budget studies indicate that the terrestrial ecosystems have remained a~large sink for carbon despite widespread deforestation activities. CO2-fertilization, N deposition and re-growth of mid-latitude forests are believed to be key drivers for land carbon uptake. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4. In our equilibrium simulations, only 12–17% of the deposited Nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C : N ratio of 20:1. We calculate the sensitivity of the terrestrial biosphere for CO2-fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of Nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since preindustrial times terrestrial carbon losses due to warming may have been approximately compensated by effects of increased N deposition, whereas the effect of CO2-fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating climate warming effects on carbon storage may overwhelm N deposition effects in the future.

  19. Nitrogen deposition: how important is it for global terrestrial carbon uptake?

    Science.gov (United States)

    Bala, G.; Devaraju, N.; Chaturvedi, R. K.; Caldeira, K.; Nemani, R.

    2013-11-01

    Global carbon budget studies indicate that the terrestrial ecosystems have remained a large sink for carbon despite widespread deforestation activities. CO2 fertilization, N deposition and re-growth of mid-latitude forests are believed to be key drivers for land carbon uptake. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our equilibrium simulations, only 12-17% of the deposited nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C : N ratio of 20 : 1. We calculate the sensitivity of the terrestrial biosphere for CO2 fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, the terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since pre-industrial times terrestrial carbon losses due to warming may have been more or less compensated by effects of increased N deposition, whereas the effect of CO2 fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating that climate warming effects on carbon storage may overwhelm N deposition effects in the future.

  20. Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan

    2013-08-01

    A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater. PMID:23735800

  1. A Combined System for Biological Removal of Nitrogen and Carbon from Nylon-6 Production Wastewater

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; LIU Guo-hua; TIAN Qing; ZHANG Man; CHEN Ji-hua

    2007-01-01

    A combined system consisting of hydrolysisacidification, denitrification and nitrification reactors wasused to remove carbon and nitrogen from the nylon - 6production wastewater, which was characterized by goodbiodegradability and high nitrogen concentration. Theinfluences of Chemical Oxygen Demand(COD) in theinfluent, recirculation ratio, Hydraulic Residence Time(HRT) and Dissolved Oxygen(DO) concentration on thesystem performances were investigated. From results itcould be seen that good performances have been achievedduring the overall experiments periods, and COD, TotalNitrogen(TN), NH+-N and Suspended Solids(SS) in theeffluent were 53, 16, 2 and 24 mg·L-1, respectively,which has satisfied the first standard of wastewaterdischarge established by Environmental Protection Agency(EPA) of China. Furthermore, results showed thatoperation factors, viz. COD in the influent, recirculationratio, HRT and DO concentration, all had importantinfluences on the system performances.

  2. Boronated mesophase pitch coke for lithium insertion

    Science.gov (United States)

    Frackowiak, E.; Machnikowski, J.; Kaczmarska, H.; Béguin, F.

    Boronated carbons from mesophase pitch have been used as materials for lithium storage in Li/carbon cells. Doping by boron has been realized by co-pyrolysis of coal tar pitch with the pyridine-borane complex. Amount of boron in mesocarbon microbeads (MCMB) varied from 1.4 to 1.8 wt.% affecting the texture of carbon. Optical microscopy and X-ray diffractograms have shown tendency to more disordered structure for boron-doped carbon. The values of specific reversible capacity ( x) varied from 0.7 to 1.1 depending significantly on the final temperature of pyrolysis (700-1150°C). The optimal charge/discharge performance was observed for boronated carbon heated at 1000°C.

  3. Crystallography, semiconductivity, thermoelectricity, and other properties of boron and its compounds, especially B6O

    Science.gov (United States)

    Slack, G. A.; Morgan, K. E.

    2015-09-01

    Electron deficient and non-deficient boron compounds are discussed as potential thermoelectric generator materials. Particular attention is paid to carbon-doped beta-boron, high-carbon boron carbide, and the alpha-boron derivative compound boron suboxide. Stoichiometric B6O shows some promise, and may have a higher ZT than the other two compounds. Carbon saturated beta-boron appears to have a higher ZT than undoped samples. Carbon saturated boron carbide at B12C3 does exist. Its thermoelectric behavior is unknown.

  4. Cometary origin of carbon, nitrogen, and water on the earth

    Science.gov (United States)

    Delsemme, A. H.

    1992-01-01

    In this paper, two assumptions on the origin of the earth are substantiated: (1) that the earth accreted from fine hot degassed dust particles containing no volatiles; and (2) that, after the accretion was finished, all the volatiles of the biosphere, including the atmosphere and the oceans, were brought to the earth by cometary bombardment. A temperature of more than 1000 K is deduced at the time when the dust that was going to form the earth was separated from the gas phase. This implies grains of anhydrous silicates and of reduced iron, without either water, carbon, or any labile elements, which remained in gas phase; thus, the minor bodies could not produce atmosphere or oceans. The second assumption is based on the evidence that cometary nuclei are formed in the outer space, by accumulation of frosty particles containing large amounts of ice and volatile molecules. It is shown that the icy bodies which hit the earth are more than enough to explain the whole biosphere.

  5. Carbon dynamics in subtropical forest soil. Effects of atmospheric carbon dioxide enrichment and nitrogen addition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juxiu X.; Zhou, Guoyi Y.; Zhang, Deqiang Q.; Duan, Honglang L.; Deng, Qi; Zhao, Liang [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Xu, Zhihong H. [Griffith Univ., Nathan, Queensland (Australia). Environmental Futures Centre and School of Biomolecular and Physical Sciences

    2010-06-15

    The levels of atmospheric carbon dioxide concentration ([CO{sub 2}]) are rapidly increasing. Understanding carbon (C) dynamics in soil is important for assessing the soil C sequestration potential under elevated [CO{sub 2}]. Nitrogen (N) is often regarded as a limiting factor in the soil C sequestration under future CO{sub 2} enrichment environment. However, few studies have been carried out to examine what would happen in the subtropical or tropical areas where the ambient N deposition is high. In this study, we used open-top chambers to study the effect of elevated atmospheric [CO{sub 2}] alone and together with N addition on the soil C dynamics in the first 4 years of the treatments applied in southern China. Materials and methods Above- and below-ground C input (tree biomass) into soil, soil respiration, soil organic C, and total N as well as dissolved organic C (DOC) were measured periodically in each of the open-top chambers. Soil samples were collected randomly in each chamber from each of the soil layers (0-20, 20-40, and 40-60 cm) using a standard soil sampling tube (2.5-cm inside diameter). Soil leachates were collected at the bottom of the chamber below-ground walls in stainless steel boxes. Results and discussion The highest above- and below-ground C input into soil was found in the high CO{sub 2} and high N treatment (CN), followed by the only high N treatment (N+), the only high CO{sub 2} treatment (C+), and then the control (CK) without any CO{sub 2} enrichment or N addition. DOC in the leachates was small for all the treatments. Export of DOC played a minor role in C cycling in our experiment. Generally, soil respiration rate in the chambers followed the order: CN treatment > C + treatment > N + treatment > the control. Except for the C+ treatment, there were no significant differences in soil total N among the CN treatment, N + treatment, and the control. Overall, soil organic C (SOC) was significantly affected by the treatments (p < 0.0001). SOC

  6. The effect of nutrients on carbon and nitrogen fixation by the UCYN-A-haptophyte symbiosis.

    Science.gov (United States)

    Krupke, Andreas; Mohr, Wiebke; LaRoche, Julie; Fuchs, Bernhard M; Amann, Rudolf I; Kuypers, Marcel M M

    2015-07-01

    Symbiotic relationships between phytoplankton and N2-fixing microorganisms play a crucial role in marine ecosystems. The abundant and widespread unicellular cyanobacteria group A (UCYN-A) has recently been found to live symbiotically with a haptophyte. Here, we investigated the effect of nitrogen (N), phosphorus (P), iron (Fe) and Saharan dust additions on nitrogen (N2) fixation and primary production by the UCYN-A-haptophyte association in the subtropical eastern North Atlantic Ocean using nifH expression analysis and stable isotope incubations combined with single-cell measurements. N2 fixation by UCYN-A was stimulated by the addition of Fe and Saharan dust, although this was not reflected in the nifH expression. CO2 fixation by the haptophyte was stimulated by the addition of ammonium nitrate as well as Fe and Saharan dust. Intriguingly, the single-cell analysis using nanometer scale secondary ion mass spectrometry indicates that the increased CO2 fixation by the haptophyte in treatments without added fixed N is likely an indirect result of the positive effect of Fe and/or P on UCYN-A N2 fixation and the transfer of N2-derived N to the haptophyte. Our results reveal a direct linkage between the marine carbon and nitrogen cycles that is fuelled by the atmospheric deposition of dust. The comparison of single-cell rates suggests a tight coupling of nitrogen and carbon transfer that stays balanced even under changing nutrient regimes. However, it appears that the transfer of carbon from the haptophyte to UCYN-A requires a transfer of nitrogen from UCYN-A. This tight coupling indicates an obligate symbiosis of this globally important diazotrophic association.

  7. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].

    Science.gov (United States)

    Tan, Zhilei; Wang, Hongcui; Wei, Yuqiao; Li, Yanyan; Zhong, Cheng; Jia, Shiru

    2014-01-01

    Gluconobacter oxydans is known to oxidize glucose to gluconic acid (GA), and subsequently, to 2-keto-gluconic acid (2KGA) and 5-keto-gluconic acid (5KGA), while 5KGA can be converted to L-(+)-tartaric acid. In order to increase the production of 5KGA, Gluconobacter oxydans HGI-1 that converts GA to 5KGA exclusively was chosen in this study, and effects of carbon sources (lactose, maltose, sucrose, amylum and glucose) and nitrogen sources (yeast extract, fish meal, corn steep liquor, soybean meal and cotton-seed meal) on 5KGA production were investigated. Results of experiment in 500 mL shake-flask show that the highest yield of 5KGA (98.20 g/L) was obtained using 100 g/L glucose as carbon source. 5KGA reached 100.20 g/L, 109.10 g/L, 99.83 g/L with yeast extract, fish meal and corn steep liquor as nitrogen source respectively, among which the optimal nitrogen source was fish meal. The yield of 5KGA by corn steep liquor is slightly lower than that by yeast extract. For the economic reason, corn steep liquor was selected as nitrogen source and scaled up to 5 L stirred-tank fermentor, and the final concentration of 5KGA reached 93.80 g/L, with its maximum volumetric productivity of 3.48 g/(L x h) and average volumetric productivity of 1.56 g/(L x h). The result obtained in this study showed that carbon and nitrogen sourses for large-scale production of 5KGA by Gluconobacter oxydans HGI-1 were glucose and corn steep liquor, respectively, and the available glucose almost completely (85.93%) into 5KGA.

  8. Carbon, Nitrogen and Phosphorus Accumulation and Partitioning, and C:N:P Stoichiometry in Late-Season Rice under Different Water and Nitrogen Managements

    OpenAIRE

    Yushi Ye; Xinqiang Liang; Yingxu Chen; Liang Li; Yuanjing Ji; Chunyan Zhu

    2014-01-01

    Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD...

  9. Effects of Boron Nutrition and Water Stress on Nitrogen Fixation, Seed δ15N and δ13C Dynamics, and Seed Composition in Soybean Cultivars Differing in Maturities

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    2015-01-01

    Full Text Available Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG cultivars. Plants were well-watered with no foliar B (W − B, well-watered with foliar B (W + B, water-stressed with no foliar B (WS − B, and water-stressed with foliar B (WS + B. Foliar B was applied at rate of 0.45 kg·ha−1 and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W − B, WS + B, and WS − B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS − B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ15N and δ13C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use 15N/14N and 13C/12C ratios and stachyose to select for drought tolerance soybean.

  10. Evidence for carbon-boron disorder in YNi210B2C

    International Nuclear Information System (INIS)

    Complete text of publication follows. There has been a tremendous interest in the RNi2B2C (R = rare earth or Y) family of superconductors since their discovery five years ago. This results partly from their relatively high superconducting transition temperatures and partly from the opportunities they offer for the study of the coexistence of superconductivity and long range magnetic order. The compounds crystallise with a modified ThCr2Si2 structure (14/mmm) with carbon occupying the interstitial (0, 0, 1/2) sites. Several authors have reported a marked sensitivity of the electronic properties of the RNi2B2C compounds to thermal treatment and it has been suggested that B-C site disorder may be responsible for the observed behaviour. Whilst natural B and C have closely similar neutron and X-ray scattering lengths, and the low absorption 11B isotope has precisely the same neutron scattering length as C, that of the highly absorbing 10B isotope is significantly different from that of C. Pulsed neutron time-of-flight diffraction has been used to study a sample of isotopically enriched YNi210B2C. Rietveld refinement of the resulting diffraction pattern indeed confirms that the B-C site disorder may be as high as 10% in these compounds. The results of the structural refinement are presented. (author)

  11. Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4

    Directory of Open Access Journals (Sweden)

    Y. Fang

    2014-12-01

    Full Text Available The commonly adopted biogeochemistry spin-up process in earth system model is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbon-nitrogen (CN models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbon/nitrogen model. A gradient projection method was proposed and used to further reduce the computation time after examining the trend of the dominant carbon pools. The Community Land Model version 4 (CLM4 with carbon and nitrogen component was used in this study. From point scale simulations we found that the method can reduce the computation time by 20–69% compared to the fastest approach in the literature. We also found that the cyclic stability of total carbon for some cases differs from that of the periodic atmospheric forcing, and some cases even showed instability. Close examination showed that one case has a carbon periodicity much longer than that of the atmospheric forcing due to the annual fire disturbance that is longer than half a year. The rest was caused by the instability of water table calculation in the hydrology model of CLM4. The instability issue is resolved after we replaced the hydrology scheme in CLM4 with a low model for variably saturated porous media.

  12. Successive ionization of positive ions of carbon and nitrogen by electron bombardment

    International Nuclear Information System (INIS)

    Experimental studies of deep ionization of heavy ions are described. The applications of such studies in atomic physics, plasma physics and space physics are discussed. Investigations using intersecting ion-electron beams, shifted beams and ion trap sources are described, and data are presented for multi-charged ions of carbon, oxygen and nitrogen. A detailed description of the development of the IEL (electron beam ionizer) source, and the KRION (cryogenic version) source is given, and further data for the multiple ionization of carbon and nitrogen are given for charge states up to C6+ and N7+. The advantages and disadvantages of the KRION source are discussed, and preliminary studies of a new torroidal ion trap source (HIRAC) are presented. (11 figs, 57 refs) (U.S.)

  13. Changes in soil carbon, nitrogen and phosphorus due to land-use changes in Brazil

    Directory of Open Access Journals (Sweden)

    J. D. Groppo

    2015-02-01

    vegetation. The original vegetation soil phosphorus stocks were equal to 11, 22, and 43 kg ha−1 in the three soil depths, respectively. The soil phosphorus stocks increased in the CPS systems to 30, 50, and 63 kg ha−1, respectively, and in the pasture pair sites to 22, 47, and 68 kg ha−1, respectively. In the regional pasture survey, the soil phosphorus stocks were lower than in the native vegetation, and equal to 9 and 15 kg ha−1 at 0–10 and 0–30 depth layer. The findings of this paper illustrate that land-use changes that are currently common in Brazil alter soil concentrations, stocks and elemental ratios of carbon, nitrogen and phosphorus. These changes could have an impact on the subsequent vegetation, decreasing soil carbon, increasing nitrogen limitation, but alleviating soil phosphorus deficiency.

  14. Temporal Variations in Concentrations of Ozone, Nitrogen Dioxide, and Carbon Monoxide at Osijek, Croatia

    Directory of Open Access Journals (Sweden)

    Elvira Kovač-Andrić

    2013-01-01

    Full Text Available The purpose of this study was to investigate the ozone, carbon monoxide, and nitrogen dioxide variations and their correlation with meteorological parameters in Osijek (Eastern Croatia during the summer seasons of 2002, 2007, and 2012. The measured data are discussed in relation to the EU guidelines (Directive 2002/3/EC, Directive 2008/50/EC. In order to characterize ambient air with respect to ozone photochemical pollution we calculated three photochemical pollution indicators. These indicators may also be a valid measure for harmful effects on living organisms. The influence of local meteorological parameters on the measured concentrations of ozone, carbon monoxide, and nitrogen dioxide was also investigated. We have attempted to establish correlations between measured pollutant concentrations and meteorological parameters using the technique of multivariate principal component analysis (PCA.

  15. Reprocessing of Ices in Turbulent Protoplanetary Disks: Carbon and Nitrogen Chemistry

    CERN Document Server

    Furuya, Kenji

    2014-01-01

    We study the influence of the turbulent transport on ice chemistry in protoplanetary disks, focusing on carbon and nitrogen bearing molecules. Chemical rate equations are solved with the diffusion term, mimicking the turbulent mixing in the vertical direction. Turbulence can bring ice-coated dust grains from the midplane to the warm irradiated disk surface, and the ice mantles are reprocessed by photoreactions, thermal desorption, and surface reactions. The upward transport decreases the abundance of methanol and ammonia ices at r < 30 AU, because warm dust temperature prohibits their reformation on grain surfaces. This reprocessing could explain the smaller abundances of carbon and nitrogen bearing molecules in cometary coma than those in low-mass protostellar envelopes. We also show the effect of mixing on the synthesis of complex organic molecules (COMs) are two ways: (1) transport of ices from the midplane to the disk surface and (2) transport of atomic hydrogen from the surface to the midplane. The fo...

  16. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Wolf, A.P.

    1981-01-01

    A number of reviews, many of them recent, have appeared on various aspects of /sup 11/C, /sup 18/F and /sup 13/N-labeled radiotracers. This monograph treats the topic principally from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. Where possible, recent examples from the literature of organic synthesis are introduced to suggest potentially new routes which may be applied to problems in labeling organic molecules with the short-lived positron emitters, carbon-11, fluorine-18, and nitrogen-13. The literature survey of carbon-11, fluorine-18 and nitrogen-13 labeled compounds presented are of particular value to scientists working in this field. Two appendices are also included to provide supplementary general references. A subject index concludes this volume.

  17. Determination of the geographical origin of Chinese teas based on stable carbon and nitrogen isotope ratios

    Institute of Scientific and Technical Information of China (English)

    Long ZHANG; Jia-rong PAN; Cheng ZHU

    2012-01-01

    The objective of this study was to investigate the geographical origin of Chinese teas using carbon and nitrogen stable isotope ratio technology.The results showed that inter-provincial dispersion of teas in Guangdong (GD),Guangxi (GX),Hainan (HA),Fujian (F J),Shandong (SD),Sichuan (SC),Chongqing (CQ),and Henan (HN) provinces was high,while in Zhejiang (ZJ),Hubei (HB),Yunnan (YN),and Anhui (AH) provinces,it was low.Tea samples from GD,GX,HA,and FJ provinces were clustered in one group and separated from those from AH and HB provinces.Thus,carbon and nitrogen stable isotope ratio technology could discriminate teas from among some provinces of China,but not from among others.Better separation might be obtained with a combination of isotopic ratios and other indexes,such as elemental data and organic components.

  18. Mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growth.

    Science.gov (United States)

    Susi, Toma; Lanzani, Giorgio; Nasibulin, Albert G; Ayala, Paola; Jiang, Tao; Bligaard, Thomas; Laasonen, Kari; Kauppinen, Esko I

    2011-06-21

    We have studied the mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growth illustrated for the case of a floating catalyst chemical vapor deposition system, which uses carbon monoxide (CO) and ammonia (NH(3)) as precursors and iron as a catalyst. We performed first-principles electronic-structure calculations, fully incorporating the effects of spin polarization and magnetic moments, to investigate the bonding and chemistry of CO, NH(3), and their fragments on a model Fe(55) icosahedral cluster. A possible dissociation path for NH(3) to atomic nitrogen and hydrogen was identified, with a reaction barrier consistent with an experimentally determined value we measured by tandem infrared and mass spectrometry. Both C-C and C-N bond formation reactions were found to be barrierless and exothermic, while a parasitic reaction of HCN formation had a barrier of over 1 eV.

  19. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications

    International Nuclear Information System (INIS)

    A number of reviews, many of them recent, have appeared on various aspects of 11C, 18F and 13N-labeled radiotracers. This monograph treats the topic principally from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. Where possible, recent examples from the literature of organic synthesis are introduced to suggest potentially new routes which may be applied to problems in labeling organic molecules with the short-lived positron emitters, carbon-11, fluorine-18, and nitrogen-13. The literature survey of carbon-11, fluorine-18 and nitrogen-13 labeled compounds presented are of particular value to scientists working in this field. Two appendices are also included to provide supplementary general references. A subject index concludes this volume

  20. The influence of land use on soil organic carbon and nitrogen content and redox potential

    DEFF Research Database (Denmark)

    Kusliene, Gedrime

    2010-01-01

    The aim of the research was to evaluate organic matter status in the soil according to the organic carbon content, total and mineral nitrogen amounts, carbon to nitrogen (C:N) ratio and redox potential depending on land usage and plant spieces. Soil samples were taken from the fields under...... different farming systems (conventional and organic) as well as abandoned lands. We choose the plants of two botanical species (Poaceae and Fabaceae) in organic and conventional farming systems as well as abandoned lands. Experimental results show that the best soil organic matter status according...... to the investigated indexes is in the soils of conventional and orgaic farming systems occupied with mixtures of Poaceae and Fabaceae and the worst - in the soils of abandoned Poaceae meadowa. In the abandoned lands, Fabaceae (galega) had better influence on soil organic matter status than Poaceae....

  1. Biotransformation of Meloxicam by Cunninghamella blakesleeana: Significance of Carbon and Nitrogen Source.

    Science.gov (United States)

    Shyam Prasad, Gurram; Narasimha Rao, Kollu; Preethi, Rama; Girisham, Sivasri; Reddy, S M

    2011-01-01

    Influence of carbon and nitrogen source, on biotransformation of meloxicam was studied by employing Cunninghamella blakesleeana NCIM 687 with an aim to achieve maximum transformation of meloxicam and in search of new metabolites. The transformation was confirmed by HPLC and based on LC-MS-MS data and previous reports the metabolites were predicted as 5-hydroxymethyl meloxicam, 5-carboxy meloxicam and a novel metabolite. The quantification of metabolites was performed using HPLC peak areas. The results obtained indicate that glucose as carbon source, ammonium nitrate as nitrogen source, were found to be optimum for maximum transformation of meloxicam. The study suggests the significance of these factors in biotransformation of meloxicam using microbial cultures. The fermentation was scaled up to 1 l level. PMID:22282633

  2. Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by ATRP.

    Science.gov (United States)

    Wu, Dingcai; Li, Zhenghui; Zhong, Mingjiang; Kowalewski, Tomasz; Matyjaszewski, Krzysztof

    2014-04-01

    A facile templated synthesis of functional nanocarbon materials with well-defined spherical mesopores is developed using all-organic porogenic precursors comprised of hairy nanoparticles with nitrogen-rich polyacrylonitrile shells grafted from sacrificial cross-linked poly(methyl methacrylate) cores (xPMMA-g-PAN). Such shape-persistent all-organic nanostructured precursors, prepared using atom transfer radical polymerization (ATRP), assure robust formation of template nanostructures with continuous PAN precursor matrix over wide range of compositions, and allow for removal of the sacrificial template through simple thermal decomposition. Carbon materials prepared using this method combine nitrogen enrichment with hierarchical nanostructure comprised of microporous carbon matrix interspersed with mesopores originating from sacrificial xPMMA cores, and thus perform well as CO2 adsorbents and as supercapacitor electrodes. PMID:24596246

  3. Effect of Carbon and Nitrogen Content on Deformation and Fracture of AISI 304 Austenitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    C. Menapace

    2008-04-01

    Full Text Available The effect of small differences in the content of carbon and nitrogen on the room temperature tensile deformation and fracture behaviour of an AISI 304 stainless steel was studied. In the steel containing the lower amount of carbon and nitrogen, a higher amount of strain induced alfa’ martensite is formed, which increases strain hardening rate and both uniform and total elongation at fracture. The presence of large martensitic areas in the cross section causes strain localization at the austenite/martensite interface, which promotes the nucleation of cracks and their propagation along the interface. This results in a decrease of Ultimate Tensile Strength. Strain induced transformation slightly reduces strain rate sensitivity, as well.

  4. Changes of the electronic structure of the atoms of nitrogen in nitrogen-doped multiwalled carbon nanotubes under the influence of pulsed ion radiation

    Energy Technology Data Exchange (ETDEWEB)

    Korusenko, P.M., E-mail: korusenko@obisp.oscsbras.ru [Omsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, Karl Marx Avenue, 15, Omsk 644024 (Russian Federation); Bolotov, V.V.; Nesov, S.N.; Povoroznyuk, S.N. [Omsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, Karl Marx Avenue, 15, Omsk 644024 (Russian Federation); Khailov, I.P. [Tomsk Polytechnic University, Lenin Ave. 2a, Tomsk 634028 (Russian Federation)

    2015-09-01

    With the use of X-ray photoelectron spectroscopy (XPS) there have been investigated the changes of the chemical state of nitrogen atoms in the structure of nitrogen-doped multiwalled carbon nanotubes (CN{sub x}-MWCNTs) resulting from the impact of pulsed ion beam at various parameters of the beam (energy density, number of pulses). It has been established that irradiation with the pulsed ion beam leads to a reduction of the total amount of nitrogen in CN{sub x} nanotubes. It has been shown that a single pulse irradiation of ion beam at the energy densities of 0.5, 1, 1.5 J/cm{sup 2} leads to restructuring of the nitrogen from pyridinic and pyrrolic configuration to graphitic state. Complete removal of nitrogen (pyridinic, pyrrolic, graphitic) embedded in the structure of the walls of CN{sub x} nanotubes occurs at ten pulses and 1.5 J/cm{sup 2}.

  5. Fuzzy Control of Nitrate Recirculation and External Carbon Addition in A/O Nitrogen Removal Process

    Institute of Scientific and Technical Information of China (English)

    马勇; 彭永臻; 王淑莹; 王晓莲

    2005-01-01

    Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict.Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parazneter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at-86 mV and -90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.

  6. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil

    KAUST Repository

    Keuskamp, Joost A.

    2013-02-01

    Mangrove forests are sites of intense carbon and nutrient cycling, which result in soil carbon sequestration on a global scale. Currently, mangrove forests receive increasing quantities of exogenous nutrients due to coastal development. The present paper quantifies the effects of nutrient loading on microbial growth rates and the mineralisation of soil organic carbon (SOC) in two mangrove soils contrasting in carbon content. An increase in SOC mineralisation rates would lead to the loss of historically sequestered carbon and an enhanced CO2 release from these mangrove soils.In an incubation experiment we enriched soils from Avicennia and Rhizophora mangrove forests bordering the Red Sea with different combinations of nitrogen, phosphorus and glucose to mimic the effects of wastewater influx. We measured microbial growth rates as well as carbon mineralisation rates in the natural situation and after enrichment. The results show that microbial growth is energy limited in both soils, with nitrogen as a secondary limitation. Nitrogen amendment increased the rate at which labile organic carbon was decomposed, while it decreased SOC mineralisation rates. Such an inhibitory effect on SOC mineralisation was not found for phosphorus enrichment.Our data confirm the negative effect of nitrogen enrichment on the mineralisation of recalcitrant carbon compounds found in other systems. Based on our results it is not to be expected that nutrient enrichment by itself will cause degradation of historically sequestered soil organic carbon in nitrogen limited mangrove forests. © 2012 Elsevier Ltd.

  7. Discharge characteristics in liquid helium, liquid nitrogen and pure water preparatory to fabrication of carbon nanomaterials

    International Nuclear Information System (INIS)

    Discharge characteristics and emission spectra of the discharges in low-temperature liquid such as liquid helium have been measured to investigate the conditions for fabrication of carbon nanomaterial by arc discharge in low-temperature liquid. Measurements of the discharge characteristics of the resulting plasma and observation of the associated optical emission spectra show that the behaviour of discharge current over time and the associated spectra depend strongly on discharge voltage and both may be related to the temperature of the carbon target. However, discharge voltage and current with time are almost the same regardless of whether the liquid is pure water, liquid nitrogen, liquid helium and superfluid liquid helium

  8. Nitrogen and Carbon Cycling in a Grassland Community Ecosystem as Affected by Elevated Atmospheric CO2

    OpenAIRE

    Torbert, H.A.; Johnson, H. B.; H. W. Polley

    2012-01-01

    Increasing global atmospheric carbon dioxide (CO2) concentration has led to concerns regarding its potential effects on terrestrial ecosystems and the long-term storage of carbon (C) and nitrogen (N) in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L.) Willd (Huisache). Seedlings of Acacia along with grass species were grown for 13 months at CO2 concentrations of 385 (ambient), 690, and 980 μmol mol−1. Elevated CO2 ...

  9. Modelling the carbon and nitrogen balances of direct land use changes from energy crops in Denmark

    DEFF Research Database (Denmark)

    Hamelin, Lorie; Jørgensen, Uffe; Petersen, Bjørn Molt;

    2012-01-01

    rate reductions in response to the absence of tillage for some perennial crops (0%, 25%, 50%). For all crop systems, nutrient balances, balances between above- and below-ground residues, soil carbon changes, biogenic carbon dioxide flows, emissions of nitrogen compounds and losses of macro......This paper addresses the conversion of Danish agricultural land from food/feed crops to energy crops. To this end, a life cycle inventory, which relates the input and output flows from and to the environment of 528 different crop systems, is built and described. This includes seven crops (annuals...

  10. ADSORPTION ISOTHERMS AND POTENTIAL DISTRIBUTIONS OF NITROGEN ON VARIOUS ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The adsorption isotherms of four activated carbons (Norit RB1, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculation has been proposed based on the adsorption isotherms. This distribution provides information about possible changes in the Gibbs free energy caused by the energetic and geometrical heterogeneities of an activated carbon as well as by the adsorbate-related entropic effects. The general character of the adsorption potential distribution is clearly visible by its simple relation to the micropore and mesopore distribution.

  11. Nitrogen--sulfur--carbon nanocomposites and their application as cathode materials in lithium--sulfur batteries

    Science.gov (United States)

    Dai, Sheng; Sun, Xiao-Guang; Guo, Bingkun; Wang, Xiqing; Mayes, Richard T.; Ben, Teng; Qiu, Shilun

    2016-09-27

    The invention is directed in a first aspect to electron-conducting porous compositions comprising an organic polymer matrix doped with nitrogen atoms and having elemental sulfur dispersed therein, particularly such compositions having an ordered framework structure. The invention is also directed to composites of such S/N-doped electron-conducting porous aromatic framework (PAF) compositions, or composites of an S/N-doped mesoporous carbon composition, which includes the S/N-doped composition in admixture with a binder, and optionally, conductive carbon. The invention is further directed to cathodes for a lithium-sulfur battery in which such composites are incorporated.

  12. Bonding preference of carbon, nitrogen, and oxygen in niobium-based rock-salt structures.

    Science.gov (United States)

    Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro; Wada, Satoshi; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2013-09-01

    Carbon, nitrogen, and oxygen are essential components in solid-state materials. However, understanding their preference on the bonding to metals has not been straightforward. Here, niobium carbide, nitride, and oxide with simple rock-salt-based structures were analyzed by first-principles calculations and synchrotron X-ray diffraction. We found that an increase in the atomic number from carbon to oxygen formed fewer and shorter bonds to metals with better hybridization of atomic orbitals. This can provide a simple guiding principle for understanding the bonding and designing carbides, nitrides, oxides, and mixed-anion compounds. PMID:23937352

  13. Raman spectra of nitrogen-doped tetrahedral amorphous carbon from first principles

    Institute of Scientific and Technical Information of China (English)

    NIU Li; ZHU JiaQi; GAO Wei; HAN Xiao; DU ShanYi

    2009-01-01

    The non-resonant vibrational Raman spectra of nitrogen-doped tetrahedral amorphous carbon have been calculated from first principles, including the generation of s structural model, and the calculation of vibrational frequencies, vibrational eigenmodes and Raman coupling tensors. The calculated Raman spectra are in good agreement with the experimental results. The broad band at around 500 cm~(-1) arises from mixed bonds. The T peak originates from the vibrations of sp~3 carbon and the G peak comes from the stretching vibrations of sp~2-type bonding of C=C and C=N. The simulation results indicate the direct contribution of N vibrations to Raman spectra.

  14. Carbon and nitrogen mineralization and persistence of organic residues under conservation and conventional tillage

    OpenAIRE

    Mulvaney, Michael J.; Wood, C.W.; Balkcom, K.S.; D. A. Shannon; Kemble, J.M.

    2010-01-01

    Metadata only record Combining high biomass cover crops with in situ organic mulches may achieve adequate weed control for no-till production, but the persistence and nutrient release rates from cover crops and mulches is unknown. This article describes carbon and nitrogen mineralization rates from three organic mulches (mimosa (Albizia julibrissin Durazz.), lespedeza (Lespedeza cuneata (Dum. Cours.) G. Don)), and oat (Avena sativa L.) straw) and one summer cover crop (soybean (Glycine max...

  15. Temporal Variations in Concentrations of Ozone, Nitrogen Dioxide, and Carbon Monoxide at Osijek, Croatia

    OpenAIRE

    Elvira Kovač-Andrić; Tatjana Radanović; Iva Topalović; Berislav Marković; Nikola Sakač

    2013-01-01

    The purpose of this study was to investigate the ozone, carbon monoxide, and nitrogen dioxide variations and their correlation with meteorological parameters in Osijek (Eastern Croatia) during the summer seasons of 2002, 2007, and 2012. The measured data are discussed in relation to the EU guidelines (Directive 2002/3/EC, Directive 2008/50/EC). In order to characterize ambient air with respect to ozone photochemical pollution we calculated three photochemical pollution indicators. These indic...

  16. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    OpenAIRE

    Millstein, Dev

    2009-01-01

    Fine particulate matter (PM) affects public health, visibility, climate, and influences ecosystem productivity and species diversity. Diesel engines are an important source of air pollution and will face a variety of new regulations, so emissions from these vehicles are expected to undergo changes over the next decade that will have important effects on primary PM emissions, especially black carbon (BC) emissions, as well as nitrogen oxide (NOx) emissions and therefore secondary pollutants su...

  17. On the isotope ratio of hydrogen, oxygen, carbon, nitrogen, and sulfur in man

    International Nuclear Information System (INIS)

    Experimental investigations of the isotope ratio of hydrogen, oxygen, carbon, nitrogen and sulfur in urine of persons living at different locations show considerable variations. A distinct relation to the isotope ratio of the local drinking water has only been observed in the case of hydrogen. The variations are far from being within the experimental limits of error. Therefore, they are decisive in selecting the relative abundance of the labelling isotope in tracer experiments on human metabolism. (author)

  18. Energy spectra of secondary neutrons produced by high energy bremsstrahlung in carbon, nitrogen, oxygen and tissue

    International Nuclear Information System (INIS)

    Neutron energy spectra in carbon, nitrogen and oxygen were calculated for various bremsstrahlung end-point energies and, from these, tissue spectra were calculated using the tissue equivalent molecular formula C5H40O18N. The method involves folding the known bremsstrahlung spectrum shape with the cross section for each possible decay mode in each element which leads to neutron production. The partial photoneutron cross sections used have been derived from published data

  19. Carbon and nitrogen limitation increase chitosan antifungal activity in Neurospora crassa and fungal human pathogens

    OpenAIRE

    Lopez-Moya, Federico; Colom-Valiente, Maria F.; Martínez Peinado, Pascual; Martinez-Lopez, Jesus E.; Puelles, Eduardo; Sempere Ortells, José Miguel; López Llorca, Luis Vicente

    2015-01-01

    Chitosan permeabilizes plasma membrane and kills sensitive filamentous fungi and yeast. Membrane fluidity and cell energy determine chitosan sensitivity in fungi. A five-fold reduction of both glucose (main carbon (C) source) and nitrogen (N) increased 2-fold Neurospora crassa sensitivity to chitosan. We linked this increase with production of intracellular reactive oxygen species (ROS) and plasma membrane permeabilization. Releasing N. crassa from nutrient limitation reduced chitosan antifun...

  20. In vivo measurements of nitrogen, hydrogen, and carbon in genetically obese and lean pigs

    International Nuclear Information System (INIS)

    Characteristic gamma-rays are emitted promptly by elements during exposure to neutrons. These emissions enable a radioanalytical analysis of the body's composition of protein (nitrogen), water (hydrogen), and fat (carbon). We have used this method in vivo to determine the body composition of obese and lean pigs (10 to 20 kg body wt) fed an altered cholesterol diet. (author) 10 refs.; 5 figs.; 1 tab

  1. High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole

    International Nuclear Information System (INIS)

    Highlights: • N-enriched carbon nanofiber webs are prepared via direct carbonization route with polyporrole as template. • The pyrolysis time plays an important role in N doping level and existing type. • Effect of N-doping on performance of the carbon anode material is investigated. • High reversible capacity of 238 mAh g−1 at 5 A g−1 is attained. -- Abstract: Nitrogen-doped carbon nanofiber webs (N-CNFWs) are prepared by direct pyrolyzation of polypyrrole (PPy) nanofiber webs at 600 °C. The structure and morphology of N-CNFWs are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), Raman spectra and elemental analysis. Both the doped N content and the N existing type in carbon, change with the pyrolysis time. As anode material for lithium-ion battery, the N-CNFWs show high capacity and good rate capability. The reversible capacity is up to 668 mAh g−1 at a current density of 0.1 A g−1 and 238 mAh g−1 at 5 A g−1, which can be ascribed to the nanofiber structure and high nitrogen content

  2. Cement Pastes and Mortars Containing Nitrogen-Doped and Oxygen-Functionalized Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mauricio Martínez-Alanis

    2016-01-01

    Full Text Available Cement pastes and mortars based on ordinary Portland cement containing nitrogen-doped multiwalled carbon nanotubes (MWCNT-Nx or oxygen-functionalized multiwalled carbon nanotubes (MWCNT-Ox are investigated. To incorporate MWCNTs into the cementitious matrix, the as-produced carpets are dispersed over periods of 1 and 2 hours in distilled water at pH levels of 1 and 7. The cement pastes are prepared by adding 0.1 wt% of MWCNTs to cement powder, followed by characterization with SEM and X-ray diffraction (XRD at an early age (first hours of hydration. The mortars are mechanically characterized during the hydration process for a period of 28 days. SEM characterization of cement pastes revealed that the carbon nanotubes are well incorporated in the cementitious matrix, with the hydrated cement grains interconnected by long carbon nanotubes. XRD characterizations demonstrated that, during the hydration of cement pastes, different peaks emerged that were associated with ettringite, hydrated calcium silicate, and calcium hydroxide, among other structures. Results of the compressive strength measurements for mortars simultaneously mixed with MWCNT-Nx and MWCNT-Ox reached an increment of approximately 30% in compressive strength. In addition, density functional theory calculations were performed in nitrogen-doped and oxygen-functionalized carbon nanotubes interacting with a cement grain.

  3. Moisture effects on carbon and nitrogen emission from burning of wildland biomass

    Directory of Open Access Journals (Sweden)

    L.-W. A. Chen

    2010-03-01

    Full Text Available Carbon (C and nitrogen (N released from biomass burning have multiple effects on the Earth's biogeochemical cycle, climate change, and ecosystem. These effects depend on the relative abundances of C and N species emitted, which vary with fuel type and combustion conditions. This study systematically investigates the emission characteristics under different fuel moisture contents, through controlled burning experiments with biomass and soil collected from a typical alpine forest. Fuel moisture in general lowers combustion efficiency, shortens flaming phase, and introduces prolonged smoldering before ignition. It increases emission factors of incompletely oxidized C and N species, such as carbon monoxide (CO and ammonia (NH3. Substantial particulate carbon and nitrogen (up to 4 times C in CO and 75% of N in NH3 were measured mainly from the pre-flame smoldering of fuels with high moisture contents; this process emits particles larger than soot agglomerates commonly observed in flaming smoke. Hydrogen (H/C ratio and optical properties of particulate carbon from the high-moisture fuels show their resemblance to plant cellulous and brown carbon, respectively. These findings have implications for modeling biomass burning emission and impacts.

  4. CO{sub 2} removal potential of carbons prepared by co-pyrolysis of sugar and nitrogen containing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Drage, T.C.; Smith, K.; Snape, C.E. [University of Nottingham, Fuel Science Group, School of Chemical, Environmental and Mining Engineering, University Park, Nottingham NG7 2RD (United Kingdom)

    2005-08-15

    The nitrogen enrichment of active carbons is reported to be effective in enhancing the specific adsorbate-adsorbent interactions for CO{sub 2}. In this work, nitrogen-enriched carbons were prepared by co-pyrolysis of sugar and a series of nitrogen compounds with different nitrogen functionalities. The results show that although the amount of nitrogen incorporated to the final adsorbent is important, the N-functionality seems to be more relevant for increasing CO{sub 2} uptake. Thus, the adsorbent obtained from urea co-pyrolysis presents the highest nitrogen content but the lowest CO{sub 2} adsorption capacity. However, the adsorbent obtained from carbazole co-pyrolysis, despite the lower amount of N incorporated, shows high CO{sub 2} uptake, up to 9wt.%, probably because the presence of more basic functionalities as determined by XPS analysis.

  5. Reassessing carbon sequestration in the North China Plain via addition of nitrogen.

    Science.gov (United States)

    Dong, Wenxu; Duan, Yongmei; Wang, Yuying; Hu, Chunsheng

    2016-09-01

    Soil inorganic carbon (SIC) exerts a strong influence on the carbon (C) sequestered in response to nitrogen (N) additions in arid and semi-arid ecosystems, but limited information is available on in situ SIC storage and dissolution at the field level. This study determined the soil organic/inorganic carbon storage in the soil profile at 0-100cm depths and the concentration of dissolved inorganic carbon (DIC) in soil leachate in 4N application treatments (0, 200, 400, and 600kgNha(-1)yr(-)(1)) for 15years in the North China Plain. The objectives were to evaluate the effect of nitrogen fertilizer on total amount of carbon sequestration and the uptake of atmospheric CO2 in an agricultural system. Results showed that after 15years of N fertilizer application the SOC contents at depths of 0-100cm significantly increased, whereas the SIC contents significantly decreased at depths of 0-60cm. However, the actual measured loss of carbonate was far higher than the theoretical maximum values of dissolution via protons from nitrification. Furthermore, the amount of HCO3(-) and the HCO3(-)/(Ca(2+)+Mg(2+)) ratio in soil leachate were higher in the N application treatments than no fertilizer input (CK) for the 0-80cm depth. The result suggested that the dissolution of carbonate was mainly enhanced by soil carbonic acid, a process which can absorb soil or atmosphere CO2 and less influenced by protons through the nitrification which would release CO2. To accurately evaluate soil C sequestration under N input scenarios in semi-arid regions, future studies should include both changes in SIC storage as well as the fractions of dissolution with different sources of acids in soil profiles. PMID:27135576

  6. Carbon dioxide level and form of soil nitrogen regulate assimilation of atmospheric ammonia in young trees.

    Science.gov (United States)

    Silva, Lucas C R; Salamanca-Jimenez, Alveiro; Doane, Timothy A; Horwath, William R

    2015-08-21

    The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases ((13)CO2 and (15)NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH3 than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO2. However, unlike the (13)CO2 pulse, assimilation and transport of the (15)NH3 pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history.

  7. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition.

    Science.gov (United States)

    Wang, Wei; Ding, Yi; Wang, Yuhui; Song, Xinshan; Ambrose, Richard F; Ullman, Jeffrey L

    2016-10-01

    Nitrogen removal performance response of twelve constructed wetlands (CWs) to immobilized nitrifier pellets and different influent COD/N ratios (chemical oxygen demand: total nitrogen in influent) were investigated via 7-month experiments. Nitrifier was immobilized on a carrier pellet containing 10% polyvinyl alcohol (PVA), 2.0% sodium alginate (SA) and 2.0% calcium chloride (CaCl2). A batch experiment demonstrated that 73% COD and 85% ammonia nitrogen (NH4-N) were degraded using the pellets with immobilized nitrifier cells. In addition, different carbon source supplement strategies were applied to remove the nitrate (NO3-N) transformed from NH4-N. An increase in COD/N ratio led to increasing reduction in NO3-N. Efficient nitrification and denitrification promoted total nitrogen (TN) removal in immobilized nitrifier biofortified constructed wetlands (INB-CWs). The results suggested that immobilized nitrifier pellets combined with high influent COD/N ratios could effectively improve the nitrogen removal performance in CWs. PMID:27396293

  8. Effects of bimetallic catalysts on synthesis of nitrogen-doped carbon nanotubes as nanoscale energetic materials

    Institute of Scientific and Technical Information of China (English)

    Hao Liu; Yong Zhang; Ruying Li; Xueliang Sun; Hakima Abou-Rachid

    2011-01-01

    Well aligned nitrogen-doped carbon nanotubes (CNx-NTs),as energetic materials,are synthesized on a silicon substrate by aerosol-assisted chemical vapor deposition.Tungsten (W) and molybdenum (Mo) metals are respectively introduced to combine with iron (Fe) to act as a bimetallic co-catalyst layer.Correlations between the composition and shape of the co-catalyst and morphology,size,growth rate and nitrogen doping amount of the synthesized CNx-NTs are investigated by secondary and backscattered electron imaging in a field emission scanning electron microscope (FESEM) and X-ray photoelectron spectrometer (XPS).Compared to pure iron catalyst.W-Fe co-catalyst can result in lower growth rate,larger diameter and wider size distribution of the CNx-NTs; while incorporation of molybdenum into the iron catalyst layer can reduce the diameter and size distribution of the nanotubes.Compared to the sole iron catalyst,Fe-W catalyst impedes nitrogen doping while Fe-Mo catalyst promotes the incorporation of nitrogen into the nanotubes.The present work indicates that CNx-NTs with modulated size,growth rate and nitrogen doping concentration are expected to be synthesized by tuning the size and composition of co-catalysts,which may find great potential in producing CNx-NTs with controlled structure and properties.

  9. Influence of oxygen on nitrogen-doped carbon nanofiber growth directly on nichrome foil

    Science.gov (United States)

    Vishwakarma, Riteshkumar; Shinde, Sachin M.; Saufi Rosmi, Mohamad; Takahashi, Chisato; Papon, Remi; Mahyavanshi, Rakesh D.; Ishii, Yosuke; Kawasaki, Shinji; Kalita, Golap; Tanemura, Masaki

    2016-09-01

    The synthesis of various nitrogen-doped (N-doped) carbon nanostructures has been significantly explored as an alternative material for energy storage and metal-free catalytic applications. Here, we reveal a direct growth technique of N-doped carbon nanofibers (CNFs) on flexible nichrome (NiCr) foil using melamine as a solid precursor. Highly reactive Cr plays a critical role in the nanofiber growth process on the metal alloy foil in an atmospheric pressure chemical vapor deposition (APCVD) process. Oxidation of Cr occurs in the presence of oxygen impurities, where Ni nanoparticles are formed on the surface and assist the growth of nanofibers. Energy-dispersive x-ray spectroscopy (EDXS) and x-ray photoelectron spectroscopy (XPS) clearly show the transformation process of the NiCr foil surface with annealing in the presence of oxygen impurities. The structural change of NiCr foil assists one-dimensional (1D) CNF growth, rather than the lateral two-dimensional (2D) growth. The incorporation of distinctive graphitic and pyridinic nitrogen in the graphene lattice are observed in the synthesized nanofiber, owing to better nitrogen solubility. Our finding shows an effective approach for the synthesis of highly N-doped carbon nanostructures directly on Cr-based metal alloys for various applications.

  10. Incorporation of Nitrogen into Amorphous Carbon Films Produced by Surface-Wave Plasma Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    Wu Yuxiang(吴玉祥); Zhu Xiaodong(朱晓东); Zhan Rujuan(詹如娟)

    2003-01-01

    In order to study the influence of nitrogen incorporated into amorphous carbon films,nitrogenated amorphous carbon films have been deposited by using surface wave plasma chemical vapor deposition under various ratios of N2/CH4 gas flow. Optical emission spectroscopy has been used to monitor plasma features near the deposition zone. After deposition, the samples are checked by Raman spectroscopy and x-ray photo spectroscopy (XPS). Optical emission intensities of CH and N atom in the plasma are found to be enhanced with the increase in the N2/CH4 gas flow ratio, and then reach their maximums when the N2/CH4 gas flow ratio is 5%. A contrary variation is found in Raman spectra of deposited films. The intensity ratio of the D band to the G band (ID/IG) and the peak positions of the G and D bands all reach their minimums when the N2/CH4 gas flow ratio is 5%. These show that the structure of amorphous carbon films has been significantly modified by introduction of nitrogen.

  11. Seasonal Variation in Rates of Nitrification associated With Patterns of Carbon and Nitrogen Supply in a Southern Appalachian Headwater Stream

    OpenAIRE

    Starry, Olyssa Suzanne

    2004-01-01

    Abstract. Nitrification, the chemoautotrophic process via which ammonium-nitrogen (NH4-N) is converted to nitrate-nitrogen (NO3-N), is an important nitrogen (N) transformation in stream ecosystems. Experimental addition of dissolved organic carbon (DOC) has been shown to inhibit rates of nitrification, and rates have been stimulated by NH4-N addition. Insights regarding the role of particulate organic matter (POM) in this scenario could further enhance our understanding of linkages between...

  12. Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides

    Science.gov (United States)

    Spassova, I.; Stoeva, N.; Nickolov, R.; Atanasova, G.; Khristova, M.

    2016-04-01

    Composite catalysts, prepared by one or more active components supported on a support are of interest because of the possible interaction between the catalytic components and the support materials. The supports of combined hydrophilic-hydrophobic type may influence how these materials maintain an active phase and as a result a possible cooperation between active components and the support material could occur and affects the catalytic behavior. Silica-carbon nanocomposites were prepared by sol-gel, using different in specific surface areas and porous texture carbon materials. Catalysts were obtained after copper deposition on these composites. The nanocomposites and the catalysts were characterized by nitrogen adsorption, TG, XRD, TEM- HRTEM, H2-TPR, and XPS. The nature of the carbon predetermines the composite's texture. The IEPs of carbon materials and silica is a force of composites formation and determines the respective distribution of the silica and carbon components on the surface of the composites. Copper deposition over the investigated silica-carbon composites leads to formation of active phases in which copper is in different oxidation states. The reduction of NO with CO proceeds by different paths on different catalysts due to the textural differences of the composites, maintaining different surface composition and oxidation states of copper.

  13. Synthesis of High-Surface-Area Nitrogen-Doped Porous Carbon Microflowers and Their Efficient Carbon Dioxide Capture Performance.

    Science.gov (United States)

    Li, Yao; Cao, Minhua

    2015-07-01

    Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high-surface-area hierarchically porous N-doped carbon microflowers, which were assembled from porous nanosheets by a three-step route: soft-template-assisted self-assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure-directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N-doped carbon microflowers (A-NCF-4) have a hierarchically porous structure, high specific surface area (2309 m(2)  g(-1)), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm(3)  g(-1)). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g(-1) were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.

  14. Nitrogen and Carbon Cycling in Deforested and Pristine Upland (2400m) Forest Catchments in the Peruvian Andes

    Science.gov (United States)

    Townsend-Small, A.; Haberer, J.; McClain, M.; Ramos, O.; Gardner, W.; McCarthy, M.; Brandes, J.

    2001-12-01

    Nitrogen and carbon cycling were examined within two upland (2400m) forest catchments in the Peruvian Andes. One catchment was partially deforested within the last 3 years, while the other has remained untouched. Tracer amended samples were analyzed to determine the pathways and rates of nitrogen cycling in streams draining each catchment. Both streams exhibited very low inorganic nitrogen levels, on the order of 1 to 2 uM. A large percentage (>1/3) of the total fixed nitrogen flux from these systems was in the form of particulates. Preliminary results suggest a very high rate of nitrogen cycling in these systems. Isotopic measurements of plant samples from both catchments also suggest that these forests are highly efficient in trapping and using atmospheric nitrogen sources. The partially deforested catchment had significantly more species using C4 and CAM carbon fixation pathways. Leaf litter from both streams and leaves from trees in the area were also analyzed for carbon and nitrogen isotopes to compare and contrast nitrogen and carbon cycling between the two sites. This and other data to be presented suggest that deforestation has subtle but significant effects upon the ability of tropical upland forests to retain and use nutrients.

  15. Carbon and Nitrogen Use Efficiency in Microbial Communities in Antarctic Soils

    Science.gov (United States)

    Prommer, Judith; Spohn, Marie; Klaus, Karoline; Kusch, Stephanie; Wanek, Wolfgang; Dercon, Gerd; Richter, Andreas

    2016-04-01

    Terrestrial ecosystems in the Antarctic experience harsh environmental conditions including very low temperatures and a low carbon input leading to poorly developed ecosystems with low diversity and a low soil organic matter content, which may be vulnerable to perturbations in a future climate. Microbial transformation and decomposition of soil organic matter under the extreme climatic conditions in the Antarctic has received little attention so far. Specifically, little is known about microbial process rates and how they might be affected by climate warming. We here report on C and N transformation rates and their corresponding microbial use efficiencies in two soil horizons of two sites on King George Island, the maritime Antarctica. We used novel isotope techniques to estimate microbial carbon use efficiency (CUE; based on incorporation of 18O from water into DNA) and nitrogen use efficiency (NUE; based on a 15N isotope pool dilution assays). The investigated two contrasting sites at marine terraces on basaltic rocks that were characterized by a stable surface. While both sites were similar in exposition, distance from sea and elevation, they differed in their vegetation cover and several biogeochemical parameters, such as soil pH and soil organic carbon and nitrogen content. Surprisingly, we found low soil C:N ratios at both sites and for both horizons, i.e. below 12 in the organic crust and below 8 in the first mineral horizon. This indicates a low carbon availability relative to nitrogen and would thus imply a high microbial CUE. However, our results showed also a low CUE at both sites and in both horizons (CUE of 24% and 9% in the organic crust and mineral layer, respectively). In contrast, NUE was very high in organic layers (98%), pointing towards a strong nitrogen limitation, while in the mineral horizons, NUE was lower (between 84% and 72%), as expected for soil horizons with a C:N ratio below 8. Thus, the NUE pattern followed stoichiometric theory (i

  16. An Analysis of Nitrogen Controls on Terrestrial Carbon and Energy Dynamics Using the Carbon-Nitrogen Coupled CLASS-CTEMN+ Model

    Science.gov (United States)

    Arain, M. A.; Huang, S.; Bartlett, P. A.; Windeler, B. M.

    2015-12-01

    The advent of biophysical land surface schemes, in which photosynthesis and the structure of plant functional types is modelled explicitly, allows detailed carbon budgets to be simulated in Earth System Models (ESMs), including the response of ecosystems to increasing atmospheric CO2. Projections of future carbon balances are often viewed in terms of enhanced photosynthesis in response to increased atmospheric CO2, the so-called 'CO2 fertilization effect', versus increased respiration caused by warming. However, most ESMs do not represent nutrient cycles, most notably nitrogen (N), the availability of which can act as a strong constraint on photosynthesis, and carbon turnover in the soil.In the Canadian ESM (CanESM), surface processes are represented by the Canadian Land Surface Scheme (CLASS), which models surface energy and water exchanges, coupled with the Canadian Terrestrial Ecosystem Model (CTEM), which models carbon-related processes. We present global and site-level results from incorporating a nitrogen cycle (C-N coupled) into CLASS coupled with CTEM. Flux, forcing and initializing data sets developed by the North American Carbon Program (NACP) and NACP- Multi-Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) were used.The C-N coupled model yielded global annual estimates (over 1980-2010) of 122.7 Pg C yr-1 for gross ecosystem production (GEP), and 62.7 Pg C yr-1 for net primary productivity (NPP). Ecosystem respiration (Re) was 119.1 Pg C yr-1 which is about 25% larger than observed, and results in a low estimate of 3.64 Pg C yr-1 for net ecosystem productivity (NEP = GEP - Re). On regional and site-level scales, larger differences were seen between the C-only and C-N coupled model, especially at high latitudes during summer months where N is limiting. Analysis of the long-term annual variations over 1901-2010 also showed different responses to evolving climate, CO2 and N deposition. For 1970-2010, the C-N coupled model indicated a

  17. Primary carbon sources for juvenile penaeid shrimps in a mangrove-fringed Bay of Inhaca Island, Mozambique: a dual carbon and nitrogen isotope analysis.

    OpenAIRE

    Macia, A.

    2004-01-01

    A study to estimate the relative importance of mangrove primary carbon and nitrogen sources to five commercial penaeid shrimps species was done at Saco da Inhaca, a non-estuarine mangrove-fringed bay on Inhaca Island, southern Mozambique. Carbon and nitrogen stable isotope ratios were determined in a variety of primary producers (mangroves, epiphytes, phytoplankton and seagrasses), sediments and in five penaeid shrimp species (Penaeus (Fenneropenaeus) indicus, P. japonicus, P. semisulcatus, M...

  18. Changes in soil carbon, nitrogen and phosphorus due to land-use changes in Brazil

    Science.gov (United States)

    Groppo, J. D.; Lins, S. R. M.; Camargo, P. B.; Assad, E. D.; Pinto, H. S.; Martins, S. C.; Salgado, P. R.; Evangelista, B.; Vasconcellos, E.; Sano, E. E.; Pavão, E.; Luna, R.; Martinelli, L. A.

    2015-02-01

    In this paper soil carbon, nitrogen and phosphorus concentrations and related elemental ratios, as well as and nitrogen and phosphorus stocks were investigated in 17 paired sites and in a regional survey encompassing more than 100 pasture soils in the Cerrado, Atlantic Forest, and Pampa, the three important biomes of Brazil. In the paired sites, elemental soil concentrations and stocks were determined in native vegetation, pastures and crop-livestock systems (CPS). Overall, there were significant differences in soil element concentrations and ratios between different land uses, especially in the surface soil layers. Carbon and nitrogen contents were lower, while phosphorus contents were higher in the pasture and CPS soils than in forest soils. Additionally, soil stoichiometry has changed with changes in land use. The soil C : N ratio was lower in the forest than in the pasture and CPS soils; and the carbon and nitrogen to available phosphorus ratio (PME) decreased from the forest to the pasture to the CPS soils. The average native vegetation soil nitrogen stocks at 0-10, 0-30 and 0-60 cm soil depth layers were equal to approximately 2.3, 5.2, 7.3 Mg ha-1, respectively. In the paired sites, nitrogen loss in the CPS systems and pasture soils were similar and equal to 0.6, 1.3 and 1.5 Mg ha-1 at 0-10, 0-30 and 0-60 cm soil depths, respectively. In the regional pasture soil survey, nitrogen soil stocks at 0-10 and 0-30 soil layers were equal to 1.6 and 3.9 Mg ha-1, respectively, and lower than the stocks found in the native vegetation of paired sites. On the other hand, the soil phosphorus stocks were higher in the CPS and pasture of the paired sites than in the soil of the original vegetation. The original vegetation soil phosphorus stocks were equal to 11, 22, and 43 kg ha-1 in the three soil depths, respectively. The soil phosphorus stocks increased in the CPS systems to 30, 50, and 63 kg ha-1, respectively, and in the pasture pair sites to 22, 47, and 68 kg ha-1

  19. Synthesis and characterization of carbon or/and boron-doped CdS nanoparticles and investigation of optical and photoluminescence properties

    International Nuclear Information System (INIS)

    Un-doped and carbon or/and boron doped Cadmium sulfide nanoparticles were prepared via chemical co-precipitation procedure by Polyvinyl pyrrolidone (PVP) as a stabilizer. The optical and structural properties were investigated using several techniques. The morphology of CdS nanophotocatalyst was characterized using X-ray diffraction (XRD) and scanning electron microscopy. The optical properties of both un-doped and doped samples were carried out by photoluminescence (PL) spectroscopy and UV–vis Diffuse reflectance spectra (DRS). An optimum doping level of the atoms dopant for enhanced PL properties are found through optical study. Degradation of Amoxicillin under UV light elucidation was applied to appraise the photocatalytic efficiency. The results show that the carbon and boron doping CdS nanoparticles has high potential in green chemistry. - Highlights: • Un-doped, C or/and B-doped CdS nanoparticles were successfully synthesized. • The Blue shift was observed in UV–vis absorption spectra for the doped nanoparticles. • Doping of CdS with C and B enhances the fluorescence

  20. Synthesis and characterization of carbon or/and boron-doped CdS nanoparticles and investigation of optical and photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, Ali, E-mail: ali.fakhri88@yahoo.com [Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khakpour, Reza [Department of Physics, Tehran North Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-04-15

    Un-doped and carbon or/and boron doped Cadmium sulfide nanoparticles were prepared via chemical co-precipitation procedure by Polyvinyl pyrrolidone (PVP) as a stabilizer. The optical and structural properties were investigated using several techniques. The morphology of CdS nanophotocatalyst was characterized using X-ray diffraction (XRD) and scanning electron microscopy. The optical properties of both un-doped and doped samples were carried out by photoluminescence (PL) spectroscopy and UV–vis Diffuse reflectance spectra (DRS). An optimum doping level of the atoms dopant for enhanced PL properties are found through optical study. Degradation of Amoxicillin under UV light elucidation was applied to appraise the photocatalytic efficiency. The results show that the carbon and boron doping CdS nanoparticles has high potential in green chemistry. - Highlights: • Un-doped, C or/and B-doped CdS nanoparticles were successfully synthesized. • The Blue shift was observed in UV–vis absorption spectra for the doped nanoparticles. • Doping of CdS with C and B enhances the fluorescence.