WorldWideScience

Sample records for boron carbide b4c

  1. Structural modifications induced by ion irradiation and temperature in boron carbide B4C

    Science.gov (United States)

    Victor, G.; Pipon, Y.; Bérerd, N.; Toulhoat, N.; Moncoffre, N.; Djourelov, N.; Miro, S.; Baillet, J.; Pradeilles, N.; Rapaud, O.; Maître, A.; Gosset, D.

    2015-12-01

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B4C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B4C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (Se ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B4C structure under irradiation.

  2. Optimizing Grain Boundary Complexions to Produce Dense Pressure-Less Sintered Boron Carbide (B4C)

    Science.gov (United States)

    2008-11-14

    discontinuous distribution of the yttria. At this stage it is difficult to determine if the discontinuity is genuine or results from dewetting upon cooling...sample. However, the tendency of the film to form beads indicates a dewetting behavior. The weak interface between the yttria and the boron carbide...conform to the dewetting behavior. There is a possibility of a complexion transition as the sample is cooled down in the furnace. At high temperature the

  3. CODEX-B4C experiment. Core degradation test with boron carbide control rod

    International Nuclear Information System (INIS)

    Hozer, Z.; Nagy, I.; Windberg, P.; Balasko, M.; Matus, L.; Prokopiev, O.; Pinter, A.; Horvath, M.; Gyenes, Gy.; Czitrovszky, A.; Nagy, A.; Jani, P.

    2003-11-01

    The CODEX-B4C bundle test has been successfully performed on 25 th May 2001 in the framework of the COLOSS project of the EU 5 th FWP. The high temperature degradation of a VVER-1000 type bundle with B 4 C control rod was investigated with electrically heated fuel rods. The experiment was carried out according to a scenario selected in favour of methane formation. Degradation of control rod and fuel bundle took place at temperatures ∼2000 deg C, cooling down of the bundle was performed in steam atmosphere. The gas composition measurement indicated no methane production during the experiment. High release of aerosols was detected in the high temperature oxidation phase. The on-line measured data are collected into a database and are available for code validation and development. (author)

  4. Microstructural analysis of aluminum oxide boron carbide (Al2 O3-B4 C)

    International Nuclear Information System (INIS)

    Oliveira, E.E.M.; Bressiani, Ana H.A.; Bressiani, J.C.

    1996-01-01

    The densification Al 2 O 3 -B 4 C of composite was accomplished under two conditions: I- tungsten resistance furnace in commercial argon atmosphere without gas treatment system.II- graphite resistance furnace in argon atmosphere with gas treatment for humidity removal. The sintering with gas treatment showed higher density and smaller loss of mass for all composition related to the sintering in tungsten resistance furnace without gas treatment system. Microstructural characterization also showed that grain growth of alumina matrix is greatly influenced by particle size and concentration of B 4 C. Samples sintered at temperatures higher than 1750 deg C without gas treatment presented the formation of phase Al 3 B O 6 which was identified by transmission electron microscopy. (author)

  5. CODEX-B4C experiment. Core degradation test with boron carbide control rod

    Energy Technology Data Exchange (ETDEWEB)

    Hozer, Z; Nagy, I; Windberg, P; Balasko, M; Matus, L; Prokopiev, O; Pinter, A; Horvath, M; Gyenes, Gy [KFKI Atomic Energy Research Institute, Budapest (Hungary); Czitrovszky, A; Nagy, A; Jani, P [Research Institute for Solid State Physics and Optics, Budapest (Hungary)

    2003-11-01

    The CODEX-B4C bundle test has been successfully performed on 25{sup th} May 2001 in the framework of the COLOSS project of the EU 5{sup th} FWP. The high temperature degradation of a VVER-1000 type bundle with B{sub 4}C control rod was investigated with electrically heated fuel rods. The experiment was carried out according to a scenario selected in favour of methane formation. Degradation of control rod and fuel bundle took place at temperatures {approx}2000 deg C, cooling down of the bundle was performed in steam atmosphere. The gas composition measurement indicated no methane production during the experiment. High release of aerosols was detected in the high temperature oxidation phase. The on-line measured data are collected into a database and are available for code validation and development. (author)

  6. Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru/B4C multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Panzner, Tobias; Schlemper, Christoph; Morawe, Christian; Pietsch, Ullrich

    2009-12-10

    Soft-x-ray Bragg reflection from two Ru/B4C multilayers with 10 and 63 periods was used for independent determination of both real and imaginary parts of the refractive index n = 1 -{delta} + i{beta} close to the boron K edge ({approx}188 eV). Prior to soft x-ray measurements, the structural parameters of the multilayers were determined by x-ray reflectometry using hard x rays. For the 63-period sample, the optical properties based on the predictions made for elemental boron major deviations were found close to the K edge of boron for the 10-period sample explained by chemical bonding of boron to B4C and various boron oxides.

  7. Preparation and characteristics of epoxy/clay/B4C nanocomposite at high concentration of boron carbide for neutron shielding application

    Science.gov (United States)

    Kiani, Mohammad Amin; Ahmadi, Seyed Javad; Outokesh, Mohammad; Adeli, Ruhollah; Mohammadi, Aghil

    2017-12-01

    In this research, the characteristics of the prepared samples in epoxy matrix by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), as well as scanning electron microscope (SEM) are evaluated. Meanwhile, the obtained mechanical properties of the specimen are investigated. Thermogravimetric analysis (TGA) is also employed to evaluate the thermal degradation of manufactured nanocomposites. The thermal neutron absorption properties of nanocomposites containing 3 wt% of montmorillonite nanoclay (closite30B) have been studied experimentally, using an Am-Be point source. Mechanical tests reveal that the higher B4C concentrations, the more tensile strengths, but lower Young's modulus in all samples under consideration. TGA analysis also shows that thermal stability of the nanocomposite, increases in presence of B4C. Finally, neutron absorption analysis shows that increasing the B4C concentration leads to a nonlinearly build-up of neutron absorption cross section.

  8. B4C solid target boronization of the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Cekic, M.; Fiksel, G.; Hokin, S.A.; Kendrick, R.D.; Prager, S.C.; Stoneking, M.R.

    1992-10-01

    A solid rod of hot-pressed boron carbide is being used as the source of boron during boronization of MST. The most striking result of this procedure is the reduction in oxygen contamination of the plasma (O III radiation, characteristic of oxygen at the edge, falls by about a factor of 3 after boronization.). The radiated power fraction drops to about half its initial value. Particle reflux from the wall is also lowered, making density control simpler. The rod (12.7 mm diameter) is inserted into the edge plasma of normal high-power RFP discharges. B 4 C is ablated from the surface of the rod and deposited in a thin film (a-B/C:H) on the walls and limiters. The energy flux carried by ''superthermal'' (not ''runaway'') electrons at the edge of MST appears to enhance the efficient, non-destructive ablation of the boron carbide rod

  9. Resonant soft x-ray reflectivity of Me/B4C multilayers near the boron K edge

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Schlemper, Christoph; Pietsch, Ullrich

    2010-09-01

    Energy dependence of the optical constants of boron carbide in the short period Ru/B4C and Mo/B4C multilayers (MLs) are evaluated from complete reflectivity scans across the boron K edge using the energy-resolved photon-in-photon-out method. Differences between the refractive indices of the B4Cmaterial inside and close to the surface are obtained from the peak profile of the first order ML Bragg peak and the reflection profile near the critical angle of total external reflection close to the surface. Where a Mo/B4C ML with narrow barrier layers appears as a homogeneous ML at all energies, a Ru/B4C ML exhibits another chemical nature of boron at the surface compared to the bulk. From evaluation of the critical angle of total external reflection in the energy range between 184 and 186 eV, we found an enriched concentration of metallic boron inside the Ru-rich layer at the surface, which is not visible in other energy ranges.

  10. Reaction of boron carbide with molybdenum disilicide

    International Nuclear Information System (INIS)

    Novikov, A.V.; Melekhin, V.F.; Pegov, V.S.

    1989-01-01

    The investigation results of interaction in the B 4 C-MoSi 2 system during sintering in vacuum are presented. Sintering of boron carbide with molybdenum disilicide is shown to lead to the formation of MoB 2 , SiC, Mo 5 Si 3 compounds, the presence of carbon-containing covering plays an important role in sintering

  11. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Paschoal, J.O.A.

    1988-01-01

    Boron carbide (B 4 C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B 4 C by carbothermic reduction of B 2 O 3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B 4 C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author) [pt

  12. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  13. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  14. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  15. Oxidation of boron carbide at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, Martin

    2005-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) were investigated in the temperature range between 1073 and 1873 K. Oxidation rates were measured in transient and isothermal tests by means of mass spectrometric gas analysis. Oxidation of boron carbide is controlled by the formation of superficial liquid boron oxide and its loss due to the reaction with surplus steam to volatile boric acids and/or direct evaporation at temperatures above 1770 K. The overall reaction kinetics is paralinear. Linear oxidation kinetics established soon after the initiation of oxidation under the test conditions described in this report. Oxidation is strongly influenced by the thermohydraulic boundary conditions and in particular by the steam partial pressure and flow rate. On the other hand, the microstructure of the B 4 C samples has a limited influence on oxidation. Very low amounts of methane were produced in these tests

  16. Determination of isotopic composition of boron in boron carbide by TIMS and PIGE: an inter-comparison study

    International Nuclear Information System (INIS)

    Sasibhushan, K.; Rao, R.M.; Parab, A.R.; Alamelu, D.; Aggarwal, S.K.; Acharya, R.; Chhillar, S.; Pujari, P.K.

    2015-01-01

    The paper reports a comparison of results on the determination of isotopic composition of boron in boron carbide (B 4 C) samples by Thermal Ionisation Mass Spectrometry (TIMS) and Particle Induced Gamma ray Spectrometry (PIGE). B 4 C samples having varying boron isotopic composition (natural, enriched with respect to 10 B) and their synthetic mixtures) have been analysed by both the techniques. The 10 B atom% was found to be in the range of 20-67%. (author)

  17. Structure and single-phase regime of boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1988-01-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B 4 C (the boron carbide with nominally 20% carbon) has B/sub 11/C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B 4 C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C→C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B/sub 13/C 2 , subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B/sub 11/C→B/sub 12/. Maxima of the free energy occur at the most ordered compositions: B 4 C,B/sub 13/C 2 ,B/sub 14/C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides

  18. Design, Fabrication and Performance of Boron-Carbide Control Elements

    International Nuclear Information System (INIS)

    Brammer, H.A.; Jacobson, J.

    1964-01-01

    A control blade design, incorporating boron-carbide (B 4 C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compácted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author) [fr

  19. Comparative studies of electrochemical properties of carbon nanotubes and nanostructured boron carbide

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Singh, Kulwinder; Singh, Bikramjeet; Kaur, Manjot; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay

    2018-05-01

    Boron carbide (B4C) and carbon nanotubes (CNTs) have the potential to act as electrocatalyst as these material show bifunctional behavior. B4C and CNTs were synthesized using solvothermal method. B4C display great catalytic activity as compared to CNTs. Raman spectra confirmed the formation of nanostructured carbon nanotubes. The observed onset potential was smaller 1.58 V in case of B4C as compared to CNTs i.e. 1.96 V in cyclic voltammetry. B4C material can emerge as a promising bifunctional electrocatalyst for battery applications.

  20. The effect of hydrogen on B4C coatings fabrication in inductively coupled plasma torch

    Directory of Open Access Journals (Sweden)

    Q. J. Guo

    2018-02-01

    Full Text Available Boron carbide (B4C coatings are prepared by an RF inductively coupled plasma (ICP torch with different amounts of hydrogen introduced into the sheath gas. The effects of the added hydrogen on the characteristics of the plasma are diagnosed by optical emission spectroscopy and high speed photography. The effects on the melting of B4C particles in the plasma are studied by scanning electron microscopy (SEM. The microstructure of the B4C coatings was determined with SEM imaging and x-ray diffraction analysis. The results show that adding hydrogen to the sheath gas leads to plasma contraction, which results in higher gas temperature of plasma. It also enhances B4C particles spheroidizing and improves the compactness of B4C coatings. Plasma processing does not change the main phase of boron carbide. The obtained results on B4C coatings on Cu substrates allows for improving the B4C coatings fabrication process.

  1. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  2. Effect of sintering temperature on the densification of B4C pellets

    International Nuclear Information System (INIS)

    Gomide, R.G.; Durazzo, M.; Riella, H.G.

    1990-01-01

    Boron is largely used in several types of nuclear reactors control and safety systems. In the majority of these applications sintered boron carbide pellets are used. Near stoichiometric B 4 C hardly densifies during pressureless sintering. As a starting point of an overall program to produce > 70% TD B 4 C pellets pressing parameters have been studied for further study of the influence of sintering temperature in the densification of this ceramic material. Dilatometric analyses show that sintering starts at 1760 0 C for the F 1200 ESK - type boron carbide powders. Moreover, the sintering experiments show that up to 92% TD pellets can be obtained. (author) [pt

  3. Helium diffusion in irradiated boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1981-03-01

    Boron carbide has been internationally adopted as the neutron absorber material in the control and safety rods of large fast breeder reactors. Its relatively large neutron capture cross section at high neutron energies provides sufficient reactivity worth with a minimum of core space. In addition, the commercial availability of boron carbide makes it attractive from a fabrication standpoint. Instrumented irradiation experiments in EBR-II have provided continuous helium release data on boron carbide at a variety of operating temperatures. Although some microstructural and compositional variations were examined in these experiments most of the boron carbide was prototypic of that used in the Fast Flux Test Facility. The density of the boron carbide pellets was approximately 92% of theoretical. The boron carbide pellets were approximately 1.0 cm in diameter and possessed average grain sizes that varied from 8 to 30 μm. Pellet centerline temperatures were continually measured during the irradiation experiments

  4. Study of boron carbide evolution under neutron irradiation

    International Nuclear Information System (INIS)

    Simeone, D.

    1999-01-01

    Owing to its high neutron efficiency, boron carbide (B 4 C) is used as a neutron absorber in control rods of nuclear plants. Its behaviour under irradiation has been extensively studied for many years. It now seems clear that brittleness of the material induced by the 10 B(n,α) 7 Li capture reaction is due to penny shaped helium bubbles associated to a high strain field around them. However, no model explains the behaviour of the material under neutron irradiation. In order to build such a model, this work uses different techniques: nuclear microprobe X-ray diffraction profile analysis and Raman and Nuclear Magnetic Resonance Spectroscopy to present an evolution model of B 4 C under neutron irradiation. The use of nuclear reactions produced by a nuclear microprobe such as the 7 Li(p,p'γ) 7 Li reaction, allows to measure lithium profile in B 4 C pellets irradiated either in Pressurised Water Reactors or in Fast Breeder Reactors. Examining such profiles enables us to describe the migration of lithium atoms out of B 4 C materials under neutron irradiation. The analysis of X-ray diffraction profiles of irradiated B 4 C samples allows us to quantify the concentrations of helium bubbles as well as the strain fields around such bubbles.Furthermore Raman spectroscopy studies of different B 4 C samples lead us to propose that under neutron irradiation. the CBC linear chain disappears. Such a vanishing of this CBC chain. validated by NMR analysis, may explain the penny shaped of helium bubbles inside irradiated B 4 C. (author)

  5. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  6. Structure and properties of hot-pressed boron carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chenko, M S; Tkachenko, IU G; Koval' chuk, V V; Iurchenko, D Z; Satanin, S V [Institut Problem Materialovedeniia, Kiev (Ukrainian SSR)

    1990-07-01

    The microstructure and strength of B4C-TiB2-TiO{sub 2} ceramics samples, hot-compacted from a mixture of two types of B4C-TiO2-C powder, are examined. The two types are obtained by combining boric acid with either sucrose or carbon black. The grain-sizes of the two powders are found to be distinctly different from one another both before and after the grinding procedure and the degree of dispersion is not high. The strength tests show 600 MPa, the Vicker's hardness is 34.5 GPa, and the crack resistance coefficient of ceramics containing 15 percent TiB2 by mass is 5 MPa m exp 1/2. The use of soluble boron carbide powder helps achieve higher levels of strength and crack resistance. 5 refs.

  7. B4C control rod behavior during severe accident sequences

    International Nuclear Information System (INIS)

    Steinbrueck, M.

    2003-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) as well as the degradation of B 4 C control rod segments were investigated in the temperature range between 800 and 1600 deg C. Mass spectrometric gas analysis was used to determine oxidation rates in transient and isothermal tests. The oxidation kinetics of boron carbide are determined by the formation of a liquid boron oxide layer and its loss due to the reaction with surplus steam to form volatile boric acids and at temperatures above 1500 deg C by direct evaporation. Under these test conditions linear oxidation kinetics are established soon after oxidation has initiated. The oxidation kinetics are strongly influenced by the thermal-hydraulic boundary conditions, in particular by the steam flow rate. Only very low amounts of methane were ever produced in these tests. Enhanced degradation of B 4 C control rods starts with the rapid formation of eutectic melts in the systems B 4 C-stainless steel (SS) and SS-Zircaloy at temperatures above 1250 deg C. Initially, this melt is kept within a ZrO 2 scale externally formed at the Zircaloy guide tube. The absorber melt is rapidly oxidized after failure of the oxide shell and aggressively attacks adjacent fuel claddings. (author)

  8. Boron carbide-carbon composites and composites for cryogenic applications

    International Nuclear Information System (INIS)

    Sheinberg, H.

    1979-01-01

    Because of its neutronic properties, high hardness, and high melting temperature, boron carbide (B 4 C) is widely used at the Los Alamos Scientific Laboratory. However because of its hardness and mode of manufacture, it is expensive to machine finish to tight dimensional specifictions. For some neutronic applications, a density considerably below the theoretical 2.52 Mg/m 3 was acceptable, and this relaxation in density specification permitted addition of carbon as a second phase to reduce machining costs. We conducted an experimental program to prepare 50.8-mm-diam by 34.8-mm-thick cylinders of B 4 C and B 4 C-C composites with concentrations of carbon varying from 5.5 to 30 volume percent. Additionally we used three forms of carbon, natural flake graphite, synthetic graphite flour, and a fine furnace black as the source of the second phase. We determined the sound velocity, compressive strength, coefficient of thermal expansion, electrical resistivity, and microstructure as functions of composition. Additionally, an enriched boron ( 10 B)-carbon composite was studied as an alternate material

  9. Boron Carbide: Stabilization of Highly-Loaded Aqueous Suspensions, Pressureless Sintering, and Room Temperature Injection Molding

    Science.gov (United States)

    Diaz-Cano, Andres

    Boron carbide (B4C) is the third hardest material after diamond and cubic boron nitride. It's unique combination of properties makes B4C a highly valuable material. With hardness values around 35 MPa, a high melting point, 2450°C, density of 2.52 g/cm3, and high chemical inertness, boron carbide is used in severe wear components, like cutting tools and sandblasting nozzles, nuclear reactors' control rots, and finally and most common application, armor. Production of complex-shaped ceramic component is complex and represents many challenges. Present research presents a new and novel approach to produce complex-shaped B4C components. Proposed approach allows forming to be done at room temperatures and under very low forming pressures. Additives and binder concentrations are kept as low as possible, around 5Vol%, while ceramics loadings are maximized above 50Vol%. Given that proposed approach uses water as the main solvent, pieces drying is simple and environmentally safe. Optimized formulation allows rheological properties to be tailored and adjust to multiple processing approaches, including, injection molding, casting, and additive manufacturing. Boron carbide samples then were pressureless sintered. Due to the high covalent character of boron carbide, multiples sintering aids and techniques have been proposed in order to achieve high levels of densification. However, is not possible to define a clear sintering methodology based on literature. Thus, present research developed a comprehensive study on the effect of multiple sintering aids on the densification of boron carbide when pressureless sintered. Relative densities above 90% were achieved with values above 30MPa in hardness. Current research allows extending the uses and application of boron carbide, and other ceramic systems, by providing a new approach to produce complex-shaped components with competitive properties.

  10. Structural phase transitions in boron carbide under stress

    International Nuclear Information System (INIS)

    Korotaev, P; Pokatashkin, P; Yanilkin, A

    2016-01-01

    Structural transitions in boron carbide B 4 C under stress were studied by means of first-principles molecular dynamics in the framework of density functional theory. The behavior depends strongly on degree of non-hydrostatic stress. Under hydrostatic stress continuous bending of the three-atom C–B–C chain was observed up to 70 GPa. The presence of non-hydrostatic stress activates abrupt reversible chain bending, which is displacement of the central boron atom in the chain with the formation of weak bonds between this atom and atoms in the nearby icosahedra. Such structural change can describe a possible reversible phase transition in dynamical loading experiments. High non-hydrostatic stress achieved in uniaxial loading leads to disordering of the initial structure. The formation of carbon chains is observed as one possible transition route. (paper)

  11. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  12. Heat release from B4C oxidation in steam and air

    International Nuclear Information System (INIS)

    Belovsky, L.

    1996-01-01

    BWR and some PWR cores contain boron carbide (B 4 C) as neutron absorber. During a severe accident, the B 4 C can potentially react with steam under release of heat and hydrogen. Although models for B 4 C oxidation already exist in MELCOR and SCDAP/RELAP5, a development of a new model for another computer code seems to be difficult due to a missing comprehensive description of the current modelling methodology and scarce experimental data. The aim of this paper is to highlight the key points of the B 4 C oxidation using the existing available experimental data and to perform a simple heat balance analysis of the B 4 C/steam and B 4 C/air chemical reactions. The analysis of literature data shows that the B 4 C oxidation phenomenon is qualitatively well described below 1000 deg. C. However, no reliable data exist for the reaction kinetics especially above this temperature. It was found that the experimental results strongly depend on the experimental arrangement. The reaction heats, calculated in this study, indicate that the B 4 C oxidation is an exothermic reaction, releasing more heat in air than in steam. The formation of boric acids from the boron oxide increases the heat release from B 4 C by ∼ 10%, in the worst case. Although the total heat, released in a PWR core from the B 4 C oxidation, is probably much smaller than the heat released from the Zr/steam reaction, it is not excluded that the B 4 C oxidation can locally contribute to the damage of the control elements due to local overheating. Modelling of these phenomena is, however, very difficult due to the complex geometry of the liquefied control elements and due to absence of suitable data on the reaction kinetics. (author). 25 refs, 2 figs, 3 tabs

  13. Thermal expansion measurements on boron carbide and europium sesquioxide by laser interferometry

    International Nuclear Information System (INIS)

    Preston, S.D.

    1980-01-01

    A laser interferometer technique for measuring the absolute linear thermal expansion of small annular specimens is described. Results are presented for unirradiated boron carbide (B 4 C) and europia (Eu 2 O 3 ) up to 1000 0 C. Both compounds are neutron-absorbing materials of potential use in fast-reactor control rods and data on their thermophysical properties, in particular linear thermal expansion, are essential to the control rod designers. (author)

  14. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  15. Experimental determination of boron and carbon thermodynamic activities in the carbide phase of the boron-carbon system

    International Nuclear Information System (INIS)

    Froment, A.K.

    1990-01-01

    - The boron-carbon phase diagram presents a single phase area ranging from 9 to 20 atomic percent of carbon. The measurement of carbon activity, in this range of composition, has been measured according to the following methods: - quantitative analysis of the methane-hydrogen mixture in equilibrium with the carbide, - high temperature mass spectrometry measurements. The first method turned out to be a failure; however, the apparatus used enabled the elaboration of a B 4 C composition pure phase from a two-phase (B 4 C + graphite) industrial product. The results obtained with the other two methods are consistent and lead to a law expressing the increase of the carbon activity in relation with the amount of this element; the high temperature mass spectrometry method has also made it possible to measure the boron activity which decreases when the carbon activity increases, but with a variation of amplitude much lower, according to the theoretical calculations. These results are a first step towards the knowledge of the boron carbide thermodynamical data for compositions different from B 4 C [fr

  16. Frequency mixing in boron carbide laser ablation plasmas

    Science.gov (United States)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; de Nalda, R.; Castillejo, M.

    2015-05-01

    Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B4C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  17. Effect of the reinforced boron carbide particulate content of AA6061 alloy on formation of the passive film in seawater

    International Nuclear Information System (INIS)

    Katkar, V.A.; Gunasekaran, G.; Rao, A.G.; Koli, P.M.

    2011-01-01

    Highlights: → Presence of boron carbide increases the corrosion rate of A6061 alloy in seawater. → Increasing the B 4 C content decreases passive layer thickness. → Passive films formed on A6061 and its B 4 C composites are n-type semiconductors. - Abstract: The effect of boron carbide (B 4 C) reinforcement on the corrosion of AA6061 alloy was studied by investigating passive films formed in seawater. The higher passive current and its potential-dependence for these composites indicated formation of porous passive film. Electrochemical impedance spectroscopy (EIS) graph suggests that the alloy surface is partly or totally active. The formed passive film is n-type semiconductor junction in nature. The difference between corrosion potential (E corr ) and potential at zero charge (PZC) suggests that the chloride ions responsible for film breakdown exist within the passive film. A suitable mechanism is proposed for the passive film breakdown.

  18. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Vosughi, A.; Hadian, A. M.

    2008-01-01

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300 d eg C a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250 d eg C . The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  19. Tritium release from fast neutron irradiated boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1977-01-01

    A high-energy neutron reaction with boron produces tritium. In the LMFBR control material, B 4 C, most of the tritium that is generated remains in the pellets. Potential retention mechanisms are discussed. 5 figures

  20. Boron carbide nanostructures: A prospective material as an additive in concrete

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay

    2018-05-01

    In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.

  1. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  2. Interface interaction in the B4C/(Fe-B-C) system

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Mizrahi, I.; Froumin, N.; Hayun, S.; Dariel, M.P.; Frage, N.

    2008-01-01

    The wetting behavior in the B 4 C/(Fe-C-B) system was investigated in order to clarify the role of Fe additions on the sinterability of B 4 C. Iron and its alloys with C and B react with the boron carbide substrate and form a reaction zone consisting of a fine mixture of FeB and graphite. The apparent contact angles are relatively low for the alloys with a moderate concentration of the boron and carbon and allow liquid phase sintering to occur in the B 4 C-Fe mixtures. A dilatometric study of the sintering kinetics confirms that liquid phase sintering actually takes place and leads to improved mass transfer. A thermodynamic analysis of the ternary Fe-B-C system allows accounting for the experimental observations

  3. High pressure synthesis and investigations of properties of boron allotropes and boron carbide

    International Nuclear Information System (INIS)

    Chuvashova, Irina

    2017-01-01

    This work aimed at the development of the high-pressure high-temperature (HPHT) synthesis of single crystals of boron allotropes and boron-rich compounds, which could be used further for precise investigations of their structures, properties, and behavior at extreme conditions. To summarize, the present work resulted in the HPHT synthesis of the first previously unknown non-icosahedral boron allotrope ζ-B. This finding confirmed earlier theoretical predictions, which stayed unproven for decades because of experimental challenges which couldn't be overcome until recently. Structural stability of α-B and β-B in the Mbar pressure range and B 13 C 2 up to 68 GPa was experimentally proven. Accurate measurements of the unit cell and B 12 icosahedra volumes of the stoichiometric boron carbide B 13 C 2 as a function of pressure led to conclusion that they undergo a similar reduction upon compression that is typical for covalently bonded solids. Neither 'molecular-like' nor 'inversed molecular-like' solid behavior upon compression was detected that has closed a long-standing scientific dispute. A comparison of the compressional behavior of B 13 C 2 with that of α-B and γ-B allotropes and B 4 C showed that it is determined by the types of bonding involved in the course of compression.

  4. Effects of B4C control rod degradation under severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Si-Won; Park, Sang-Gil; Han, Sang-Ku [Atomic Creative Technology Co., Daejeon (Korea, Republic of)

    2016-10-15

    Boron carbide (B4C) is widely used as absorber material in western boiling water reactor (BWR), some PWR, EPR and Russian RBMK and VVERs. B4C oxidation is one of the important phenomena of in-vessel. In the present paper, the main results and knowledge gained regarding the B4C control rod degradation from above mentioned experiments are reviewed and arranged to inform its significance on the severe accident consequences. In this paper, the role of B4C control rod oxidation and the subsequent degradation on the severe accident consequences is reviewed with available literature and report of previous experimental program regarding the B4C oxidation. From this review, it seems that the contribution of this B4C oxidation on the accident progression to the further severe accident situation is not negligible. For the future work, the extensive experimental data interpretation will be performed to assess quantitatively the effect of B4C oxidation and degradation on the various postulated severe accident conditions.

  5. Neutron shielding behavior of thermoplastic natural rubber/boron carbide composites

    Science.gov (United States)

    Mat Zali, Nurazila; Yazid, Hafizal; Megat Ahmad, Megat Harun Al Rashid

    2018-01-01

    Many shielding materials have been designed against the harm of different types of radiation to the human body. Today, polymer-based lightweight composites have been chosen by the radiation protection industry. In the present study, thermoplastic natural rubber (TPNR) composites with different weight percent of boron carbide (B4C) fillers (0% to 30%) were fabricated as neutron shielding through melt blending method. Neutron attenuation properties of TPNR/B4C composites have been investigated. The macroscopic cross section (Σ), half value layer (HVL) and mean free path length (λ) of the composites have been calculated and the transmission curves have been plotted. The obtained results show that Σ, HVL and λ greatly depend on the B4C content. Addition of B4C fillers into TPNR matrix were found to enhance the macroscopic cross section values thus decrease the mean free path length (λ) and half value layer (HVL) of the composites. The transmission curves exhibited that the neutron transmission of the composites decreased with increasing shielding thickness. These results showed that TPNR/B4C composites have high potential for neutron shielding applications.

  6. Wetting and interface interactions in the B4C/Al-Me (Me=Cu, Sn) systems

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Froumin, N.; Dariel, M.P.; Frage, N.

    2008-01-01

    The wettability of B 4 C in contact with non-carbide and non-boride forming liquid metals (such as Cu or Sn) has been the subject of several studies. These metals do not wet boron carbide unless a reactive element is added to the melt. The present study is concerned with the addition of Al which completes the series of reactive elements added to the non-wetting metals. While Si represents the elements that form stable carbides and Ti represents the elements that form stable borides, Al belongs to the group of elements that form ternary borocarbides. The wetting experiments in the B 4 C/(Me-Al, Me=Cu, Sn) systems have shown that a ternary product, namely Al 8 B 4 C 7 was formed at the interface and that wetting is governed by the thermodynamic properties of the binary liquid system

  7. Auger electron spectroscopy studies of boron carbide

    International Nuclear Information System (INIS)

    Madden, H.H.; Nelson, G.C.; Wallace, W.O.

    1986-01-01

    Auger electron spectroscopy has been used to probe the electronic structure of ion bombardment (IB) cleaned surfaces of B 9 C and B 4 C samples. The shapes of the B-KVV and C-KVV Auger lines were found to be relatively insensitive to the bulk stoichiometry of the samples. This indicates that the local chemical environments surrounding B and C atoms, respectively, on the surfaces of the IB cleaned samples do not change appreciably in going from B 9 C to B 4 C. Fracturing the sample in situ is a way of producing a clean representative internal surface to compare with the IB surfaces. Microbeam techniques have been used to study a fracture surface of the B 9 C material with greater spatial resolution than in our studies of IB surfaces. The B 9 C fracture surface was not homogeneous and contained both C-rich and B-rich regions. The C-KVV line for the C-rich regions was graphitic in shape. Much of the C-rich regions was found by IB to be less than 100 nm in thickness. The C-KVV line from the B-rich regions was carbidic and did not differ appreciably in shape from those recorded for the IB cleaned surfaces

  8. Hydrothermal development and characterization of the wear-resistant boron carbide from Pandanus: a natural carbon precursor

    Science.gov (United States)

    Saritha Devi, H. V.; Swapna, M. S.; Ambadas, G.; Sankararaman, S.

    2018-04-01

    Boron carbide (B4C) is a prominent semiconducting material that finds applications in the field of science and technology. The excellent physical, thermal and electronic properties make it suitable as ceramic armor, wear-resistant, lens polisher and neutron absorber in the nuclear industry. The existing methods of synthesis of boron carbide involve the use of toxic chemicals that adversely affect the environment. In the present work, we report for the first time the use of the hydrothermal method, for converting the cellulose from Pandanus leaves as the carbon precursor for the synthesis of B4C. The carbon precursor is changed into porous functionalized carbon by treating with sodium borohydride (NaBH4), followed by treating with boric acid to obtain B4C. The samples are characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, Raman, photoluminescent and Ultraviolet-Visible absorption spectroscopy. The formation of B4C from natural carbon source— Pandanus presents an eco-friendly, economic and non-toxic approach for the synthesis of refractory carbides.

  9. Evaulation of B4C as an ablator material for NIF capsules. Revision 1

    International Nuclear Information System (INIS)

    Burnham, A.K.; Alford, C.S.; Makowiecki, D.M.; Dittrich, T.R.; Wallace, R.J.; Honea, E.C.; King, C.M.; Steinman, D.

    1997-01-01

    Boron carbide (B 4 C) is examined as a potential fuel container and ablator for implosion capsules on the National Ignition Facility (NIF). A capsule of pure B 4 C encasing a layer of solid DT implodes stably and ignites with anticipated NIF x-ray drives, producing 18 MJ of energy. Thin films of B 4 C were found to be resistant to oxidation and modestly transmitting in the infrared (IR), possibly enabling IR fuel characterization and enhancement for thin permeation barriers but not for full-thickness capsules. Polystyrene mandrels 0.5 mm in diameter were successfully coated with 0.15-2.0 micrometers of B 4 C. Thickness estimated from optical density agreed well with those measured by scanning electron microscopy (SEM). The B 4 C microstructure was columnar but finer than for Be made at the same conditions. B 4 C is a very strong material, with a fiber tensile strength capable of holding NIF fill pressures at room temperature, but it is also very brittle, and microscopic flaws or grain structure may limit the noncryogenic fill pressure. Argon (Ar) permeation rates were measured for a few capsules that had been further coated with 5 micrometers of plasma polymer. The B 4 C coatings tended to crack under tensile load. Some shells filled more slowly than they leaked, suggesting that the cracks open and close under opposite pressure loading. As observed earlier for Ti coatings, 0.15-micrometer layers of B 4 C had better gas retention properties than 2-micrometer layers, possibly because of fewer cracks. Permeation and fill strength issues for capsules with a full ablator thickness of B 4 C are unresolved. 21 refs., 6 figs

  10. Characterization of B4C-composite-reinforced aluminum alloy composites

    Science.gov (United States)

    Singh, Ram; Rai, R. N.

    2018-04-01

    Dry sliding wear tests conducted on Pin-on-disk wear test machine. The rotational speed of disc is ranging from (400-600rpm) and under loads ranging from (30-70 N) the contact time between the disc and pin is constant for each pin specimen of composites is 15 minute. In all manufacturing industries the uses of composite materials has been increasing globally, In the present study, an aluminum 5083 alloy is used as the matrix and 5% of weight percentage of Boron Carbide (B4C) as the reinforcing material. The composite is produced using stir casting technique. This is cost effective method. The aluminum 5083 matrix can be strengthened by reinforcing with hard ceramic particles like silicon carbide and boron carbide. In this experiment, aluminum 5083 alloy is selected as one of main material for making parts of the ship it has good mechanical properties, good corrosion resistance and it is can welded very easily and does have good strength. The samples are tested for hardness and tensile strength. The mechanical properties like Hardness can be increased by reinforcing aluminum 5083alloy 5% boron carbide (B4C) particles and tensile strength. Finally the Scanning Electron Microscope (SEM) analysis and EDS is done, which helps to study topography of composites and it produces images of a sample by scanning it with a focused beam of electrons and the presence of composition found in the matrix.

  11. Studies on the influence of surface pre-treatments on electroless copper coating of boron carbide particles

    International Nuclear Information System (INIS)

    Deepa, J.P.; Resmi, V.G.; Rajan, T.P.D.; Pavithran, C.; Pai, B.C.

    2011-01-01

    Boron carbide is one of the hard ceramic particles which find application as structural materials and neutron shielding material due to its high neutron capture cross section. Copper coating on boron carbide particle is essential for the synthesis of metal-ceramic composites with enhanced sinterability and dispersibility. Surface characteristics of the substrate and the coating parameters play a foremost role in the formation of effective electroless coating. The effect of surface pre-treatment conditions and pH on electroless copper coating of boron carbide particles has been studied. Surface pre-treatement of B 4 C when compared to acid treated and alkali treated particles were carried out. Uniform copper coating was observed at pH 12 in alkali treated particles when compared to others due to the effective removal of inevitable impurities during the production and processing of commercially available B 4 C. A threshold pH 11 was required for initiation of copper coating on boron carbide particles. The growth pattern of the copper coating also varies depending on the surface conditions from acicular to spherical morphology.

  12. Determination of free and combined carbon in boron carbide

    International Nuclear Information System (INIS)

    Shankaran, P.S.; Kulkarni, Amit S.; Pandey, K.L.; Ramanjaneyulu, P.S.; Yadav, C.S.; Sayi, Y.S.; Ramakumar, K.L.

    2009-01-01

    A simple, sensitive and fast method for the determination of free and combined carbon in boron carbide samples, based on combustion in presence of oxygen at different temperatures, has been developed. Method has been standardized by analyzing mixture of two different boron carbide samples. Error associated with the method in the determination of free carbon is less than 5%. (author)

  13. Graphite and boron carbide composites made by hot-pressing

    International Nuclear Information System (INIS)

    Miyazaki, K.; Hagio, T.; Kobayashi, K.

    1981-01-01

    Composites consisting of graphite and boron carbide were made by hot-pressing mixed powders of coke carbon and boron carbide. The change of relative density, mechanical strength and electrical resistivity of the composites and the X-ray parameters of coke carbon were investigated with increase of boron carbide content and hot-pressing temperature. From these experiments, it was found that boron carbide powder has a remarkable effect on sintering and graphitization of coke carbon powder above the hot-pressing temperature of 2000 0 C. At 2200 0 C, electrical resistivity of the composite and d(002) spacing of coke carbon once showed minimum values at about 5 to 10 wt% boron carbide and then increased. The strength of the composite increased with increase of boron carbide content. It was considered that some boron from boron carbide began to diffuse substitutionally into the graphite structure above 2000 0 C and densification and graphitization were promoted with the diffusion of boron. Improvements could be made to the mechanical strength, density, oxidation resistance and manufacturing methods by comparing with the properties and processes of conventional graphites. (author)

  14. Boron carbide reinforced aluminium matrix composite: Physical, mechanical characterization and mathematical modelling

    International Nuclear Information System (INIS)

    Shirvanimoghaddam, K.; Khayyam, H.; Abdizadeh, H.; Karbalaei Akbari, M.; Pakseresht, A.H.; Ghasali, E.; Naebe, M.

    2016-01-01

    This paper investigates the manufacturing of aluminium–boron carbide composites using the stir casting method. Mechanical and physical properties tests to obtain hardness, ultimate tensile strength (UTS) and density are performed after solidification of specimens. The results show that hardness and tensile strength of aluminium based composite are higher than monolithic metal. Increasing the volume fraction of B_4C, enhances the tensile strength and hardness of the composite; however over-loading of B_4C caused particle agglomeration, rejection from molten metal and migration to slag. This phenomenon decreases the tensile strength and hardness of the aluminium based composite samples cast at 800 °C. For Al-15 vol% B_4C samples, the ultimate tensile strength and Vickers hardness of the samples that were cast at 1000 °C, are the highest among all composites. To predict the mechanical properties of aluminium matrix composites, two key prediction modelling methods including Neural Network learned by Levenberg–Marquardt Algorithm (NN-LMA) and Thin Plate Spline (TPS) models are constructed based on experimental data. Although the results revealed that both mathematical models of mechanical properties of Al–B_4C are reliable with a high level of accuracy, the TPS models predict the hardness and tensile strength values with less error compared to NN-LMA models.

  15. Method for fabricating boron carbide articles

    International Nuclear Information System (INIS)

    Ardary, Z.; Reynolds, C.

    1980-01-01

    Described is a method for fabricating an essentially uniformly dense boron carbide article of a length-to-diameter or width ratio greater than 2 to 1 comprising the steps of providing a plurality of article segments to be joined together to form the article with each of said article segments having a length-to-diameter or width ratio less than 1.5 to 1. Each segment is fabricated by hot pressing a composition consisting of boron carbide powder at a pressure and temperature effective to provide the article segment with a density greater than about 85% of theoretical density, providing each article segment with parallel planar end surfaces, placing a plurality of said article segments in a hot-pressing die in a line with the planar surfaces of adjacent article segments being disposed in intimate contact, and hot pressing the aligned article segments at a temperature and pressure effective to provide said article with a density over the length thereof in the range of about 94 to 98 percent theoretical density and greater than the density provided in the discrete hot pressing of each of the article segments and to provide a bond between adjacent article segments with said bond being at least equivalent in hardness, strength and density to a remainder of said article

  16. Synergistic methods for the production of high-strength and low-cost boron carbide

    Science.gov (United States)

    Wiley, Charles Schenck

    2011-12-01

    Boron carbide (B4C) is a non-oxide ceramic in the same class of nonmetallic hard materials as silicon carbide and diamond. The high hardness, high elastic modulus and low density of B4C make it a nearly ideal material for personnel and vehicular armor. B4C plates formed via hot-pressing are currently issued to U.S. soldiers and have exhibited excellent performance; however, hot-pressed articles contain inherent processing defects and are limited to simple geometries such as low-curvature plates. Recent advances in the pressureless sintering of B4C have produced theoretically-dense and complex-shape articles that also exhibit superior ballistic performance. However, the cost of this material is currently high due to the powder shape, size, and size distribution that are required, which limits the economic feasibility of producing such a product. Additionally, the low fracture toughness of pure boron carbide may have resulted in historically lower transition velocities (the projectile velocity range at which armor begins to fail) than competing silicon carbide ceramics in high-velocity long-rod tungsten penetrator tests. Lower fracture toughness also limits multi-hit protection capability. Consequently, these requirements motivated research into methods for improving the densification and fracture toughness of inexpensive boron carbide composites that could result in the development of a superior armor material that would also be cost-competitive with other high-performance ceramics. The primary objective of this research was to study the effect of titanium and carbon additives on the sintering and mechanical properties of inexpensive B4C powders. The boron carbide powder examined in this study was a sub-micron (0.6 mum median particle size) boron carbide powder produced by H.C. Starck GmbH via a jet milling process. A carbon source in the form of phenolic resin, and titanium additives in the form of 32 nm and 0.9 mum TiO2 powders were selected. Parametric studies of

  17. Study of influence content of TiB2 by reaction in situ B4C and TiC in mechanical properties on B4C ceramics

    International Nuclear Information System (INIS)

    Coelho, M.L. Ramos; Bressiani, J.C.; Gomide, R.G.; Andrade, F.A. de

    2012-01-01

    The low density of ceramic materials promoted a change in research lines in the defense field. Research efforts and development directed to obtaining products of high density sintered of Al2O3, SiC and B4C, using different routes, both traditional as innovative, led to promising initial results, which justify the convergence of skills for the consolidation of research lines and the nationalization that sintered components of B4C with characteristics and properties compatible with the technical requirements established for the ballistic application. The low density of boron carbide (2.52 g/cm 3 ) gives in the final product a weight approximately 30% lower than armor made of alumina (3.96 g/cm 3 ). (author)

  18. Chemical erosion of sintered boron carbide due to H+ impact

    International Nuclear Information System (INIS)

    Davis, J.W.; Haasz, A.A.

    1990-06-01

    The production of hydrocarbons and boron hydrides due to H + bombardment of sintered B 4 C has been investigated as a function of sample temperature and incident ion energy. While hydrocarbon production was observed, the yields were approximately two orders of magnitude smaller than observed for graphite. There was no evidence to indicate the production of any volatile boron-containing compounds. (3 figs., 11 refs.)

  19. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  20. Effects of heat treatment on the microstructure of amorphous boron carbide coating deposited on graphite substrates by chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Siwei; Zeng Bin; Feng Zude; Liu Yongsheng; Yang Wenbin; Cheng Laifei; Zhang Litong

    2010-01-01

    A two-layer boron carbide coating is deposited on a graphite substrate by chemical vapor deposition from a CH 4 /BCl 3 /H 2 precursor mixture at a low temperature of 950 o C and a reduced pressure of 10 KPa. Coated substrates are annealed at 1600 o C, 1700 o C, 1800 o C, 1900 o C and 2000 o C in high purity argon for 2 h, respectively. Structural evolution of the coatings is explored by electron microscopy and spectroscopy. Results demonstrate that the as-deposited coating is composed of pyrolytic carbon and amorphous boron carbide. A composition gradient of B and C is induced in each deposition. After annealing, B 4 C crystallites precipitate out of the amorphous boron carbide and grow to several hundreds nanometers by receiving B and C from boron-doped pyrolytic carbon. Energy-dispersive spectroscopy proves that the crystallization is controlled by element diffusion activated by high temperature annealing, after that a larger concentration gradient of B and C is induced in the coating. Quantified Raman spectrum identifies a graphitization enhancement of pyrolytic carbon. Transmission electron microscopy exhibits an epitaxial growth of B 4 C at layer/layer interface of the annealed coatings. Mechanism concerning the structural evolution on the basis of the experimental results is proposed.

  1. Boron carbide in pile behaviour Rapsodie experience

    International Nuclear Information System (INIS)

    Kryger, B.; Colin, M.

    1983-04-01

    Results concerning boron carbide irradiation experiments performed in RAPSODIE up to 10 22 .cm - 3 capture density in the temperature range 600-1100 0 lead to the following main conclusions: initial density and grain size lowering contribute to swelling decrease but density is the major parameter for swelling limitation; swelling rate can vary in a wide range (ratio 1 to 3) according to combinations of density (1.8 to 2.3) and grain size (10 to 50 μm) values; a swelling balance reveals that the most important contribution to swelling should be a high density of helium small bubbles (<400 A); helium retention increases with density and grain size and decreases with temperature elevation. A diffusion law is proposed to describe the rate of helium release

  2. Structural models of increasing complexity for icosahedral boron carbide with compositions throughout the single-phase region from first principles

    Science.gov (United States)

    Ektarawong, A.; Simak, S. I.; Alling, B.

    2018-05-01

    We perform first-principles calculations to investigate the phase stability of boron carbide, concentrating on the recently proposed alternative structural models composed not only of the regularly studied B11Cp (CBC) and B12(CBC), but also of B12(CBCB) and B12( B4 ). We find that a combination of the four structural motifs can result in low-energy electron precise configurations of boron carbide. Among several considered configurations within the composition range of B10.5C and B4C , we identify in addition to the regularly studied B11Cp (CBC) at the composition of B4C two low-energy configurations, resulting in a new view of the B-C convex hull. Those are [B12 (CBC)]0.67[B12(B4)] 0.33 and [B12 (CBC)]0.67[ B12 (CBCB)]0.33, corresponding to compositions of B10.5C and B6.67C , respectively. As a consequence, B12(CBC) at the composition of B6.5C , previously suggested in the literature as a stable configuration of boron carbide, is no longer part of the B -C convex hull. By inspecting the electronic density of states as well as the elastic moduli, we find that the alternative models of boron carbide can provide a reasonably good description for electronic and elastic properties of the material in comparison with the experiments, highlighting the importance of considering B12(CBCB) and B12( B4 ), together with the previously proposed B11Cp (CBC) and B12(CBC), as the crucial ingredients for modeling boron carbide with compositions throughout the single-phase region.

  3. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  4. Thick boron carbide coatings for protection of tokamak first wall and divertor

    International Nuclear Information System (INIS)

    Buzhinskij, O.I.; Semenets, Yu.M.

    1999-01-01

    A review of characteristics of various types of boron carbide coatings considered as candidate materials for protection of tokamak inner surfaces against high energy heat fluxes is presented. Such coatings are produced by various methods: chemical vapor deposition by means of chloride and fluoride techniques, gas conversion, plasma spray and reaction-sintering. Contrary to pure carbon materials, B 4 C has much lower chemical and high-temperature sputtering, is capable to oxygen gettering and lower hydrogen recycling. In contrast to thin boronization films, the thick coatings can resist high heat fluxes such as in tokamak divertors. Comparative analysis shows that coatings produced by the diffusion methods, such as fluoride CVD and gas conversion, are more resistent to heat loads, and one of the most promising candidates are the fluoride CVD coatings. (orig.)

  5. Fine Structure Study of the Plasma Coatings B4C-Ni-P

    Science.gov (United States)

    Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.

    2017-12-01

    The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.

  6. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  7. Effect of mechanical and thermal loading on boron carbide particles reinforced Al-6061 alloy

    International Nuclear Information System (INIS)

    Manjunatha, B.; Niranjan, H.B.; Satyanarayana, K.G.

    2015-01-01

    Metal Matrix Composites (MMC) considered as one of the ‘advanced materials’ have evoked growing interest during the last three decades due to their high performance and applications in strategic sectors. These composites exhibit unique and attractive properties over the monolithic alloys, but suffer from low ductility, which makes them not so attractive for some of the applications where high toughness is one of the design criteria. This limitation of MMCs has been overcome by resorting to various treatments such as mechanical and thermal loading. Considering very limited reports available on Al alloy reinforced with boron carbide (B 4 C) particles, this paper presents (i) preparation of Al-6061 alloy reinforced with 1.5–10 wt% B 4 C, (ii) subjecting them to mechanical and thermal treatments and (iii) characterization of all the above samples. Specific ultimate tensile strength and hardness of all the composites were higher than those of matrix. Also, these values increased with increasing amount of particles, with composites containing 8 wt% B 4 C showing the maximum values in all the three conditions. These observations are supported by the uniform distribution of particles in the matrix as observed in their microstructure

  8. Production of boron carbide powder by carbothermal synthesis of ...

    Indian Academy of Sciences (India)

    TECS

    weight armour plates etc (Alizadeh et al 2004). It can also be used as a reinforcing material for ceramic matrix composites. It is an excellent neutron absorption material in nuclear industry due to its high neutron absorption co- efficient (Sinha et al 2002). Boron carbide can be prepared by reaction of elemental boron and ...

  9. Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments

    Directory of Open Access Journals (Sweden)

    Islak S.

    2015-01-01

    Full Text Available The aim of this study was to investigate the effect of sintering temperature and boron carbide content on wear behavior of diamond cutting segments. For this purpose, the segments contained 2, 5 and 10 wt.% B4C were prepared by hot pressing process carried out under a pressure of 35 MPa, at 600, 650 and 700 °C for 3 minutes. The transverse rupture strength (TRS of the segments was assessed using a three-point bending test. Ankara andesite stone was cut to examine the wear behavior of segments with boron carbide. Microstructure, surfaces of wear and fracture of segments were determined by scanning electron microscopy (SEM-EDS, and X-ray diffraction (XRD analysis. As a result, the wear rate decreased significantly in the 0-5 wt.% B4C contents, while it increased in the 5-10 wt.% B4C contents. With increase in sintering temperature, the wear rate decreased due to the hard matrix.

  10. Gaseous swelling of B4C and UO2 fuel: similarities and differences

    International Nuclear Information System (INIS)

    Evdokimov, I.; Khoruzhii, O.; Kourtchatov, S.; Likhanskii, V.; Matweev, L.

    2001-01-01

    A major factor limiting the resource of control rods (CRs) for WWER-1000 reactors is their radiation damage. Radiation induced embrittlement of the CRs cladding, core swelling and gaseous internal pressure in CRs result in mechanical core-cladding interaction. This work is devoted to the physical analysis of processes that control the structural changes in neutron absorber elements with B 4 C under irradiation in water reactors. Particularly, the analysis of mechanisms of the helium porosity formation in B 4 C is undertaken. In view of the deficiency of experimental data on the subject, a fruitful approach to the problem is a comparative analysis of the swelling mechanisms in B 4 C absorber and UO 2 fuel. Using this similarity a phenomenological model of fission gas behavior in boron carbide is proposed. The model predictions for radial profile of 10 B burnup under influence of thermal and epithermal neutrons are compared with experimental results. The main results show that despite the external similarity of the process of fission gas accumulation in UO 2 and in B 4 C, phenomenology of gaseous swelling is much different for the fuel and the CR core. The reason for that difference is the distinction of physical conditions in irradiated fuel and CR core

  11. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    Crossley, D.; Wood, A.J.; McInnes, C.A.J.; Jones, I.G.

    1978-09-01

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 300 0 C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 1050 0 C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  12. Specially designed B4C/SnO2 nanocomposite for photocatalysis: traditional ceramic with unique properties

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Singh, Kulwinder; Singh, Bikramjeet; Kaur, Manpreet; Kaur, Manjot; Krishnan, Unni; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay

    2018-02-01

    Boron carbide: A traditional ceramic material shows unique properties when explored in nano-range. Specially designed boron-based nanocomposite has been synthesized by reflux method. The addition of SnO2 in base matrix increases the defect states in boron carbide and shows unique catalytic properties. The calculated texture coefficient and Nelson-Riley factor show that the synthesized nanocomposite has large number of defect states. Also this composite is explored for the first time for catalysis degradation of industrial used dyes. The degradation analysis of industrial pollutants such as Novacron red Huntsman (NRH) and methylene blue (MB) dye reveals that the composite is an efficient catalyst. Degradation study shows that 1 g/L catalyst concentration of B4C/SnO2 degrades NRH and MB dye up to approximately 97.38 and 79.41%, respectively, in 20 min under sunlight irradiation. This water-insoluble catalyst can be recovered and reused.

  13. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    Science.gov (United States)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  14. Basic visualization experiments on eutectic reaction of boron carbide and stainless steel under sodium-cooled fast reactor conditions

    International Nuclear Information System (INIS)

    Yamano, Hidemasa; Suzuki, Tohru; Kamiyama, Kenji; Kudo, Isamu

    2016-01-01

    This paper describes basic visualization experiments on eutectic reaction and relocation of boron carbide (B 4 C) and stainless steel (SS) under a high temperature condition exceeding 1500degC as well as the importance of such behaviors in molten core during a core disruptive accident in a Generation-IV sodium-cooled fast reactor (750 MWe class) designed in Japan. At first, a reactivity history was calculated using an exact perturbation calculation tool taking into account expected behaviors. This calculation indicated the importance of a relocation behavior of the B 4 C-SS eutectic because its behavior has a large uncertainty in the reactivity history. To clarify this behavior, basic experiments were carried out by visualizing the reaction of a B 4 C pellet contacted with molten SS in a high temperature-heating furnace. The experiments have shown the eutectic reaction visualization as well as freezing and relocation of the B 4 C-SS eutectic in upper part of the solidified test piece due to the density separation. (author)

  15. Peculiar features of metallurgical processes at plasma-arc spraying of coatings, made of steel wire with powder fillers B4C and B4C+ZrO2

    Directory of Open Access Journals (Sweden)

    Георгій Михайлович Григоренко

    2016-11-01

    Full Text Available The interaction of metallurgical processes occurring in plasma-arc spraying between the steel shell and the carbide fillers of B4C and B4C cored wires with the addition of nanocrystalline ZrO2 powder has been analyzed. Iron-boron compounds alloyed with carbon are formed in ingots as a result of ferritiс coating of wire interacrion with fillers while the ferritic matrix contains boride and carboboride eutectics. Average microhardness of the carboboride compounds and the matrix is high – 17,78; 16,40 and 8,69; 9,95 GPa for the ingots with с B4C and B4C+ZrO2 respectively. The best quality coatings with low porosity (~1%, lamellar structure consisting of ferrite matrix reinforced with dispersed Fe borides, were obtained at a higher heat input (plasmatron current 240-250 A. The average amount of oxides in the coatings makes 15%. 0,5% addition of nanopowder ZrO2 accelerates dispersed iron-boron compounds forming, promotes their uniform distribution in the structure and improves coating microhardness up to 7,0 GPa. Application of the differential thermal analysis method to simulate the interaction processes between the steel shell and the filler during the heating of wire in the shielding gas makes it possible to promote formation of new phases (borides and carboborides of iron and to predict the phase composition of the coatings

  16. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  17. Electron microscopy of boron carbide before and after electron irradiation

    International Nuclear Information System (INIS)

    Stoto, T.; Zuppiroli, L.; Beauvy, M.; Athanassiadis, T.

    1984-06-01

    The microstructure of boron carbide has been studied by electron microscopy and related to the composition of the material. After electron irradiations in an usual transmission electron microscope and in a high voltage electron microscope at different temperatures and fluxes no change of these microstructures have been observed but a sputtering of the surface of the samples, which has been studied quantitatively [fr

  18. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...

  19. Porosity determination of alumina and boron carbide ceramic samples by gamma ray transmission

    International Nuclear Information System (INIS)

    Moreira, Anderson Camargo; Appoloni, Carlos Roberto

    2009-01-01

    The aim of this work is to apply the Gamma Ray Transmission (GRT), a non destructive technique, for structural characterization of ceramic samples. With this technique, the porosity of Alumina (Al 2 O 3 ) and Boron Carbide (B 4 C) ceramic samples, in tablet format, was determined. The equipment employed is constituted by a 241 Am gamma ray source (59.6 keV and 100mCi), a 2''x2'' diameter NaI (Tl) scintillation detector coupled to a standard gamma ray transmission electronic and a micrometric and automated table for sample movement. The porosity profile of the samples shows a homogeneous porosity distribution, within the spatial resolution of the employed transmission system. The mean porosity determined for Al 2 O 3 and B 4 C were 17.8±1.3% and 3.87±0.43%, respectively. A statistical treatment of these results was performed and showed that the mean porosity values determinate by the GRT are the same as those supplied by the manufacturer. (author)

  20. Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide

    Science.gov (United States)

    Akinlabi, E. T.; Erinosho, M. F.

    2017-11-01

    Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.

  1. Disorder and defects are not intrinsic to boron carbide

    Science.gov (United States)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  2. Epithermal neutron activation analysis using a boron carbide irradiation filter

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Brueckner, J.

    1980-01-01

    The use of boron carbide as a thermal neutron filter in epithermal neutron activation (ENAA) analysis has been investigated. As compared to the use of a cadmium filter, boron provides a greater reduction of activities from elements relatively abundant in terrestrial rocks and fossil fuels, such as Na, La, Sc and Fe. These elements have excitation functions which follow the 1/v law in the 1 to 10 eV lower epithermal region. This enhances the sensitivity of ENAA for elements such as U, Th, Ba and etc. which have strong resonances in the higher epithermal region above 10 eV. In addition, a boron carbide filter has the advantages over cadmium of acquiring a relatively low level of induced activity which poses minimal radiation safety problems, when used for ENAA. (author)

  3. Boriding with boron carbide base pastes

    International Nuclear Information System (INIS)

    Aliev, A.A.

    1978-01-01

    The aim of this paper is to develop an advanced technique of boriding using pastes under the conditions of furnace heating. The research is carried out on flat specimens of 20 and U8 steels pre-annealed in vacuum. B 4 C base pastes were used as saturating media, and the glue prepared by dissolving of nitrocellulose in the mixture of butylacetate and acetone was used as a bond. Measured was the depth of diffusion layers, produced on the 20 and u8 steels after boriding with the pastes under different temperatures and saturation times. The results of metallographic analysis show that borided layers have a specific needle-like structure. The surface of the specimens is clean and free from any paste residues and traces of partial melting

  4. Study of the processes of changing the crystal structure of boron carbide after the destruction of a nuclear reactor as a result of earthquake

    International Nuclear Information System (INIS)

    Mammadov, Kh.; Mirzayev, M.; Garibov, R.; Allahverdiyev, G.

    2017-01-01

    The territories of the Trans Caucasian Republics are characterized by high seismic activity. Therefore, the occurrence of cases of anthropogenic catastrophe including in the territories of nuclear reactors is not ruled out in case of natural disasters. Studies to create detectors based on B 4 C for recording ''cold'', ''hot'' and ''fast'' neutrons in order to increase the safety of nuclear reactors have been carried out in recent years. The B 4 C crystal structure is highly stable at relatively large intervals of temperature and pressure. The study of the thermo physical properties of samples of boron carbide irradiated with ionizing beams is interesting from the point of view to study of the stability of the structure and the stability of this compound. The thermal properties of B 4 C irradiated with ionizing γ radiation from a 60''Co source were investigated using the differential scanning calorimetric (DSC) methods. Upon irradiation with ionizing γ rays, a discrete change in the energy of the atoms occurs at the sites of the crystal lattice, the formation of active centers (radicals, ions, electrons), defects in the crystal lattice, the evaporation of crystalline hydrates, which are present in small amounts in bulk and crystalline compounds. The melting point of B 2 O 3 is 723 K, for boron 2348 K, for B 4 C 2623 K. The melting enthalpy for B 2 O 3 is 24.6 kJ/mol. With increasing temperature, the heat capacity and entropy of the non irradiated and irradiated B 4 C samples are increased. The nature of the change in the enthalpy and the Gibbs potential with increasing temperature depends on the presence of oxygen upon irradiation and during thermogravimetric analysis in the temperature range 298-1300 K. Changes in the values of thermodynamic functions occur due to the formation (under the influence of ionizing radiation) of excited atoms, active centers, defects in the crystal structure of

  5. Characterization and evaluation of boron carbide for plate-impact conditions

    International Nuclear Information System (INIS)

    Holmquist, T. J.; Johnson, G. R.

    2006-01-01

    This article addresses the response of boron carbide (B 4 C) to high-velocity impact. The authors previously characterized this material in 1999, using the Johnson-Holmquist [AIP Conf. Proc. 309, 981 (1994)] (JH-2) model. Since then, there have been additional experimental data presented in the literature that better describe the hydrostatic pressure (including a phase change). In addition, a series of plate-impact experiments (one-dimensional, uniaxial strain) that used configurations that produced either a shock, a shock release, or a shock reshock was performed. These experiments provide material behavior regarding the damage, failed strength, and hydrostat for which previously there has been little or no data. Constitutive model constants were obtained for the Johnson-Holmquist-Beissel [J. Appl. Phys. 94, 1639 (2003)] model using some of these plate-impact experiments. Computations of all the experiments were performed and analyzed to better understand the material response. The analysis provided the following findings: (1) The material fails and loses strength when the Hugoniot elastic limit (HEL) is exceeded. (2) The material has significant strength after failure and gradually increases as the pressure increases. (3) The shear modulus does not degrade when the material fails (as has been postulated), but rather increases. (4) When the material is reloaded from an initial shocked (failed) state, the loading appears to be elastic, indicating the material is not on the yield surface after failure. To provide more insight into the behavior of B 4 C, the strength versus pressure response was compared to that of silicon carbide (SiC). The strength of SiC increases as the pressure increases beyond the HEL, probably due to pressure hardening or strain hardening. It appears that B 4 C does not experience any hardening effects and fails at the HEL. Although the HEL for B 4 C is higher than that of SiC, the hardening ability of SiC produces a similar maximum strength

  6. Electronic and vibrational hopping transport in boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1991-01-01

    General concepts of hopping-type transport and localization are reviewed. Disorder, electronic correlations and atomic displacements, effects ignored in electronic band structure calculations, foster localization of electronic charge carriers. Examples are given that illustrate the efficacy of these effects in producing localization. This introduction is followed by a brief discussion of the relation between hopping-type transport and localization. The fundamentals of the formation, localization, and hopping transport of small polarons and/or bipolarons is then described. Electronic transport in boron carbides is presented as an example of the adiabatic hopping of small bipolarons. Finally, the notion of vibrational hopping is introduced. The high-temperature thermal diffusion in boron carbides is presented as a potential application of this idea

  7. Determination of soluble carbon in nuclear grade boron carbide

    International Nuclear Information System (INIS)

    Vega Bustillos, J.O.; Gomes, R.; Camaro, J.; Zorzetto, F.; Domingues, P.; Riella, H.

    1990-05-01

    The present work describes two different techniques (manometric and wet chemical) for the soluble carbon determination in nuclear grade boron carbide. The techniques are based on the reaction of the boron carbide with a sulfocromic mixture, generating CO 2 . The techniques differ on the mode they do the measurement of CO 2 produced. By wet chemical technique the CO 2 is absorved in a barium hydroxide solution and is determinated by titration. In the manometric technique the CO 2 gas is measured using a McLeod gauge. The gas produced by the latter technique is analysed by mass spectrometry. The details of the analytical technique and the data obtained are discussed. (author) [pt

  8. Ceramic composite resistors of B4C modified by TIO2 and glass phase

    International Nuclear Information System (INIS)

    Klimiec, E.; Zaraska, W.; Stobiecki, T.

    1998-01-01

    Technical progress in the manufacturing technology of composite materials resulted in arising of new generation of bulk resistors, resistant to high levels of overloads and high temperature. These resistors can be applied in extremely heavy working conditions, for instance in cooperation with ignition circuits. The resistors investigated in our research were performed on the basis of ceramic composite consisted of semiconductor boron carbide B 4 C as conductive phase, aluminium oxide Al 2 O 3 and non-alkali glass as insulators and titanium dioxide TiO 2 . The technological procedure of the fabrication of resistors and the results of the tests, such as temperature dependence of the electrical resistance exploitation trials, are presented. (author)

  9. Sodium erosion of boron carbide from breached absorber pins

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Baker, D.E.

    1981-03-01

    The purpose of the irradiation experiment was to provide an engineering demonstration of the irradiation behavior of breached boron carbide absorber pins. By building defects into the cladding of prototypic absorber pins, and performing the irradiation under typical FFTF operating conditions, a qualitative assessment of the consequences of a breach was achieved. Additionally, a direct comparison of pin behavior with that of the ex-reactor test could be made

  10. Correlation for boron carbide helium release in fast reactors

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Pitner, A.L.

    1977-04-01

    An empirical helium correlation for the helium release from boron carbide has been developed. The correlation provides a good fit to the experimental data in the temperature range from 800 to 1350 0 K, and burnup levels up to 80 x 10 20 captures/cm 3 . The correlation has the capability of extrapolation to 2200 0 K (3500 0 F) and 200 x 10 20 captures/cm 3 . In this range the helium release rate will not exceed the generation rate

  11. Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide

    Science.gov (United States)

    Peterson, George Glenn

    Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).

  12. First-principles investigation of neutron-irradiation-induced point defects in B4C, a neutron absorber for sodium-cooled fast nuclear reactors

    Science.gov (United States)

    You, Yan; Yoshida, Katsumi; Yano, Toyohiko

    2018-05-01

    Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.

  13. Characterization of Carbon-Contaminated B4C-Coated Optics after Chemically Selective Cleaning with Low-Pressure RF Plasma.

    Science.gov (United States)

    Moreno Fernández, H; Rogler, D; Sauthier, G; Thomasset, M; Dietsch, R; Carlino, V; Pellegrin, E

    2018-01-22

    Boron carbide (B 4 C) is one of the few materials that is expected to be most resilient with respect to the extremely high brilliance of the photon beam generated by free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at light source facilities, B 4 C-coated optics are subject to ubiquitous carbon contaminations. Carbon contaminations represent a serious issue for the operation of FEL beamlines due to severe reduction of photon flux, beam coherence, creation of destructive interference, and scattering losses. A variety of B 4 C cleaning technologies were developed at different laboratories with varying success. We present a study regarding the low-pressure RF plasma cleaning of carbon contaminated B 4 C test samples via inductively coupled O 2 /Ar, H 2 /Ar, and pure O 2 RF plasma produced following previous studies using the same ibss GV10x downstream plasma source. Results regarding the chemistry, morphology as well as other aspects of the B 4 C optical coating before and after the plasma cleaning are reported. We conclude that among the above plasma processes only plasma based on pure O 2 feedstock gas exhibits the required chemical selectivity for maintaining the integrity of the B 4 C optical coatings.

  14. Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites

    International Nuclear Information System (INIS)

    Kim, Jaewoo; Lee, Byung-Chul; Uhm, Young Rang; Miller, William H.

    2014-01-01

    Highlights: • Preparation of B 4 C and BN nanopowders using a simple ball milling process. • Homogeneous dispersion and strong adhesion of nano-B 4 C and -BN with polymer matrix. • Enhancement of mechanical properties of the nanocomposites compared to their micro counterparts. • Enhancement of thermal neutron attenuation of the nanocomposites. - Abstract: Nano-sized boron carbide (B 4 C) and boron nitride (BN) powder were prepared using ball milling. Micro- and milled nano-powders were melt blended with high density polyethylene (HDPE) using a polymer mixer followed by hot pressing to fabricate sheet composites. The tensile and flexural strengths of HDPE nanocomposites were ∼20% higher than their micro counterparts, while those for latter decreased compared to neat HDPE. Thermal neutrons attenuation of the prepared HDPE nanocomposites was evaluated using a monochromatic ∼0.025 eV neutron beam. Thermal neutron attenuation of the HDPE nanocomposites was greatly enhanced compared to their micro counterparts at the same B-10 areal densities. Monte Carlo n-Particles (MCNP) simulations based on the lattice structure modeling also shows the similar filler size dependent thermal neutron absorption

  15. Sintering of B4C powder obtained by a modified carbo-thermal reaction

    International Nuclear Information System (INIS)

    Rocha, R.M.; Kazumi, M.H.; Goncalves, D.P.; Melo, F.C.L.

    2005-01-01

    Boron carbide is one of the hardest materials and a highly refractory material that is of great interest for structural, electronic and nuclear applications. B 4 C is commercially manufactured by the carbo-thermal reduction of a mixture of boron oxide (B 2 O 3 ) in an batch electric arc furnace process. However the carbo-thermal reaction on the stoichiometric starting composition results an excess carbon residue because of the boron loss in the form of B 2 O 2 . Thus, a modified carbo-thermal reaction is applied with an excess B 2 O 3 to compensate the loss and to obtain stoichiometric powders. The aim of this work is to study the sinterability of this powder with the lower carbon residue acting as sintering additive. Pressureless sintering in the temperatures of 1900 deg. C/30 min and 2100 deg. C/30 min in argon atmosphere were applied. The synthesized powders were analysed by XRD and SEM. Density of 94% of theoretical density was achieved for sample prepared with the powder obtained with 50% B 2 O 3 excess synthesized at 1700 deg. C/15 min. (authors)

  16. Fabrication and thermal conductivity of boron carbide/copper cermet

    International Nuclear Information System (INIS)

    Maruyama, Tadashi; Onose, Shoji

    1999-01-01

    Studies on fabrication and thermal conductivity of B 4 C/Cu cermet were made to obtain high performance neutron absorber materials for Liquid Metal-cooled Fast Breeder Reactor (LMFBR). A mixed powder of B 4 C and Cu was mechanically blended at high speed thereby a coating layer of Cu was formed on the surface of B 4 C powder. Then the B 4 C powder with Cu coating was hot pressed at temperatures from 950 to 1,050degC to form a B 4 C cermet. A high density B 4 C/Cu cermet with 70 vol% of B 4 C and relative density higher than 90% was successfully fabricated. In spite of the low volume fraction of Cu, the B 4 C/Cu cermet exhibited high thermal conductivity which originated from the existence of continuous metallic phase Cu in B 4 C/Cu cermet. (author)

  17. Evidence for multiple polytypes of semiconducting boron carbide (C2B10) from electronic structure

    International Nuclear Information System (INIS)

    Lunca-Popa, Petru; Brand, J I; Balaz, Snjezana; Rosa, Luis G; Boag, N M; Bai Mengjun; Robertson, B W; Dowben, P A

    2005-01-01

    Boron carbides fabricated via plasma enhanced chemical vapour deposition from different isomeric source compounds with the same C 2 B 10 H 12 closo-icosahedral structure result in materials with very different direct (optical) band gaps. This provides compelling evidence for the existence of multiple polytypes of C 2 B 10 boron carbide and is consistent with electron diffraction results

  18. In search of amorphization-resistant boron carbide

    International Nuclear Information System (INIS)

    Subhash, Ghatu; Awasthi, Amnaya P.; Kunka, Cody; Jannotti, Phillip; DeVries, Matthew

    2016-01-01

    Despite its superior mechanical properties, boron carbide suffers from amorphization, a pressure-induced phenomenon that disturbs crystalline order and likely reduces shear strength. Numerous experimental and computational studies have investigated the structure and origins of amorphization, yet strategies to mitigate this deleterious phenomenon elude. However, recent investigations have revealed three new research avenues for addressing this issue. First, we identify crystallographic cage spaces that may accommodate foreign atoms to potentially prevent structural collapse. Second, we propose polymorph-level tailoring through strict control of processing conditions. Finally, we demonstrate that reducing grain size to nanometer scale increases hardness and may counter amorphization.

  19. Characterization of plastic and boron carbide additive manufactured neutron collimators

    Science.gov (United States)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  20. Kerma factors in interaction of neutrons with boron carbide

    International Nuclear Information System (INIS)

    Bondarenko, I.M.

    1979-01-01

    Heat generation in neutron interactions with boron carbide B 10 ; B 11 and 12 C is calculated. Kerma-factors (kerma-kinetic energy released in materials) were calculated for neutron energies between 10 -4 eV and 15 MeV. No major simplifying assumptions are introduced, and the accuracy of the calculated kerma-factors depends only on availability and accuracy of the basic nuclear data. The ENDF/B-4 data and recent experimental information are used for the calculation of kerma-factors. Plots of these kerma-factors are presented in units of eVxb/atom and wtxsec/(cmxn) as a function of neutron energy

  1. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  2. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  3. Preparation of fiber reinforced titanium diboride and boron carbide composite bodies

    International Nuclear Information System (INIS)

    Newkirk, L.R.; Riley, R.E.; Sheinberg, H.; Valencia, F.A.; Wallace, T.C.

    1979-01-01

    A process is described for uniformly infiltrating woven carbon cloth with either titanium diboride or boron carbide at reduced pressure (15 to 25 torr). The effects of deposition temperature on the uniformity of penetration and on coating rate are described for temperatures from 750 to 1000 0 C and deposit loadings from 20 to 43 vol. %. For the boron carbides, boron composition is discussed and evidence is presented suggesting that propene is the dominant rate controlling reactant

  4. TiO2 nanosheets decorated with B4C nanoparticles as photocatalysts for solar fuel production under visible light irradiation

    Science.gov (United States)

    Zhang, Xiaojie; Yang, Jipeng; Cai, Tiancong; Zuo, Guoqiang; Tang, Changqing

    2018-06-01

    Boron carbide (B4C) nanoparticles-decorated anatase titanium dioxide (TiO2) nanosheets photocatalysts were synthesized by a hydrothermal method in the presence of hydrofluoric acid and characterized by field emission scanning electron microscope, high-resolution transmission electron microscope, UV-vis diffuse reflectance spectra, photoluminescence spectra, etc. With metallic Pt nanoparticles as a co-catalyst, the as-synthesized B4C/TiO2 composites were evaluated using photocatalytic CO2 or H2O reduction to solar fuels such as methane and hydrogen. Under either simulated sunlight or visible light irradiation, coupling p-type B4C with n-type anatase TiO2 significantly improved the photocatalytic performance. Both photoluminescence and transient photocurrent measurements indicated that the interfacial coupling effect between B4C and anatase TiO2 could significantly promote photo-excited charges separations. On the basis of measurements and literatures, a possible mechanism of excited charges transfer at the B4C-anatase TiO2 heterojunction interface during irradiation was deduced.

  5. Electron microscopy study of radiation effects in boron carbide

    International Nuclear Information System (INIS)

    Stoto, T.

    1987-03-01

    Boron carbide is a disordered non-stoechiometric material with a strongly microtwinned polycristallyne microstructure. This ceramic is among the candidate materials for the first wall coating in fusion reactor and is used as a neutron absorber in the control rods of fast breeder reactors. The present work deals with the nature of radiation damage in this solid. Because of helium internal production, neutron irradiated boron carbide is affected by swelling and by a strong microcracking which can break up a pellet in fine powder. These processes are rather intensitive to the irradiation parameters (temperature, flux and even neutron spectrum). Transmission electron microscopy of samples irradiated by the fast neutrons of a reactor, the electrons of a high voltage electron microscope and of samples implanted with helium ions was used to understand the respective roles of helium and point defects in the processes of swelling and microcracking. The design of an irradiation chamber for helium implantation at controlled temperature from 600 to 1700 0 C was an important technical part of this work [fr

  6. Surface impurity removal from DIII-D graphite tiles by boron carbide grit blasting

    International Nuclear Information System (INIS)

    Lee, R.L.; Hollerbach, M.A.; Holtrop, K.L.; Kellman, A.G.; Taylor, P.L.; West, W.P.

    1993-11-01

    During the latter half of 1992, the DIII-D tokamak at General Atomics (GA) underwent several modifications of its interior. One of the major tasks involved the removal of accumulated metallic impurities from the surface of the graphite tiles used to line the plasma facing surfaces inside of the tokamak. Approximately 1500 graphite tiles and 100 boron nitride tiles from the tokamak were cleaned to remove the metallic impurities. The cleaning process consisted of several steps: the removed graphite tiles were permanently marked, surface blasted using boron carbide (B 4 C) grit media (approximately 37 μm. diam.), ultrasonically cleaned in ethanol to remove loose dust, and outgassed at 1000 degrees C. Tests were done using, graphite samples and different grit blaster settings to determine the optimum propellant and abrasive media pressures to remove a graphite layer approximately 40-50 μm deep and yet produce a reasonably smooth finish. EDX measurements revealed that the blasting technique reduced the surface Ni, Cr, and Fe impurity levels to those of virgin graphite. In addition to the surface impurity removal, tritium monitoring was performed throughout the cleaning process. A bubbler system was set up to monitor the tritium level in the exhaust gas from the grit blaster unit. Surface wipes were also performed on over 10% of the tiles. Typical surface tritium concentrations of the tiles were reduced from about 500 dpm/100 cm 2 to less than 80 dpm/100 cm 2 following the cleaning. This tile conditioning, and the installation of additional graphite tiles to cover a high fraction of the metallic plasma facing surfaces, has substantially reduced metallic impurities in the plasma discharges which has allowed rapid recovery from a seven-month machine opening and regimes of enhanced plasma energy confinement to be more readily obtained. Safety issues concerning blaster operator exposure to carcinogenic metals and radioactive tritium will also be addressed

  7. Micromechanical analysis of a hybrid composite—effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite

    Science.gov (United States)

    Krishna Golla, Sai; Prasanthi, P.

    2016-11-01

    A fiber reinforced polymer (FRP) composite is an important material for structural application. The diversified application of FRP composites has become the center of attention for interdisciplinary research. However, improvements in the mechanical properties of this class of materials are still under research for different applications. The reinforcement of inorganic particles in a composite improves its structural properties due to their high stiffness. The present research work is focused on the prediction of the mechanical properties of the hybrid composites where continuous fibers are reinforced in a micro boron carbide particle mixed polypropylene matrix. The effectiveness of the addition of 30 wt. % of boron carbide (B4C) particle contributions regarding the longitudinal and transverse properties of the basalt fiber reinforced polymer composite at various fiber volume fractions is examined by finite element analysis (FEA). The experimental approach is the best way to determine the properties of the composite but it is expensive and time-consuming. Therefore, the finite element method (FEM) and analytical methods are the viable methods for the determination of the composite properties. The FEM results were obtained by adopting a micromechanics approach with the support of FEM. Assuming a uniform distribution of reinforcement and considering one unit-cell of the whole array, the properties of the composite materials are determined. The predicted elastic properties from FEA are compared with the analytical results. The results suggest that B4C particles are a good reinforcement for the enhancement of the transverse properties of basalt fiber reinforced polypropylene.

  8. Compatibility of heat resistant alloys with boron carbide, 5

    International Nuclear Information System (INIS)

    Baba, Shinichi; Kurasawa, Toshimasa; Endow, Taichi; Someya, Hiroyuki; Tanaka, Isao.

    1986-08-01

    This paper includes an experimental result of out-of-pile compatibility and capsule design for irradiation test in Japan Materials Testing Reactor (JMTR). The compatibility between sheath material and neutron absorber materials for control rod devices (CRD) was examined for potential use in a very high temperature reactor (VHTR) which is under development at JAERI. The purpose of the compatibility tests are preliminary evaluation of safety prior to irradiation tests. Preliminary compatibility evaluation was concerned with three items as follows : 1) Lithium effects on the penetrating reaction of Incoloy 800H alloy in contact with a mixture of boronated graphite and lithium hydroxide powders, 2) Short term tensile properties of Incoloy 800H and Hastelloy XR alloy reacted with boronated graphite and fracture mode analysis, 3) Reaction behavior of both alloys under transient power conditions of a VHTR. It was clear that the reaction rate constant of the Incoloy 800H alloy was accelerated by doping lithium hydroxide into the boron carbide and graphite powder. The mechanical properties of Incoloy 800H and Hastelloy XR alloy reacted with boronated graphite were decreased. Ultimate tensile strength and tensile ductilities at temperatures over 850 deg C were reduced, but there was no change in the proof (yield) stress. Both alloys exhibited a brittle intergranular fracture mode during transient power conditions of a VHTR and also exhibited severe penetration. Irradiation capsules for compatibility test were designed to simulate three irradiation conditions of VHTR: 1) steady state for VHTR, 2) Transient power condition, 3) Service limited life of CRD. Capsule irradiation experiments have been carried out satisfactorily and thus confirm the validity of the capsule design procedure. (author)

  9. Size-scaling of tensile failure stress in boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Kirkland, Timothy Philip [ORNL; Strong, Kevin T [ORNL; Jadaan, Osama M. [University of Wisconsin, Platteville; Thompson, G. A. [U.S. Army Dental and Trauma Research Detachment, Greak Lakes

    2010-01-01

    Weibull strength-size-scaling in a rotary-ground, hot-pressed boron carbide is described when strength test coupons sampled effective areas from the very small (~ 0.001 square millimeters) to the very large (~ 40,000 square millimeters). Equibiaxial flexure and Hertzian testing were used for the strength testing. Characteristic strengths for several different specimen geometries are analyzed as a function of effective area. Characteristic strength was found to substantially increase with decreased effective area, and exhibited a bilinear relationship. Machining damage limited strength as measured with equibiaxial flexure testing for effective areas greater than ~ 1 mm2 and microstructural-scale flaws limited strength for effective areas less than 0.1 mm2 for the Hertzian testing. The selections of a ceramic strength to account for ballistically-induced tile deflection and to account for expanding cavity modeling are considered in context with the measured strength-size-scaling.

  10. Kerma factors in interaction of neutrons with boron carbide

    International Nuclear Information System (INIS)

    Bondarenko, I.M.

    1986-03-01

    Heat generation in neutron interactions with boron carbide B 10 ; B 11 and 12 C is calculated. Kerma-factors (kerma-kinetic energy released in materials) were calculated for neutron energies between 10 -4 eV and 15 MeV. No major simplifying assumptions are introduced, and the accuracy of the calculated kerma-factors depends only on availability and accuracy of the basic nuclear data. The ENDF/B-4 data and recent experimental information are used for the calculation of kerma-factors. Plots of these kerma-factors are presented in units of eVxb/atom and wtxsec/(cmxn) as a function of neutron energy [fr

  11. Investigations on the conditions for obtaining high density boron carbide by sintering

    International Nuclear Information System (INIS)

    Kislyj, P.S.; Grabtschuk, B.L.

    1975-01-01

    The results of investigations on kinetics of condensation and mechanisms of mass transfer in the process of sintering of technical, chemically pure and synthesized boron carbide are generalized. Laws on boron carbide densification depending upon temperature, time of isothermic endurance, thermal speed, size of powder particles and variable composition in homogeneity are determined. From the results obtained on condensation kinetics and special experiments on studying the changes in properties after heating under different conditions, the role of dislocation and diffusion processes in mass transfer during boron carbide sintering is exposed. The properties of sintered boron carbide are 15-20% lower than the properties of high-pressed one, that is conditioned by intercrystallite distortion of the first one and transcrystallite of the second one

  12. High pressure synthesis and investigations of properties of boron allotropes and boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Chuvashova, Irina

    2017-06-12

    This work aimed at the development of the high-pressure high-temperature (HPHT) synthesis of single crystals of boron allotropes and boron-rich compounds, which could be used further for precise investigations of their structures, properties, and behavior at extreme conditions. To summarize, the present work resulted in the HPHT synthesis of the first previously unknown non-icosahedral boron allotrope ζ-B. This finding confirmed earlier theoretical predictions, which stayed unproven for decades because of experimental challenges which couldn't be overcome until recently. Structural stability of α-B and β-B in the Mbar pressure range and B{sub 13}C{sub 2} up to 68 GPa was experimentally proven. Accurate measurements of the unit cell and B{sub 12} icosahedra volumes of the stoichiometric boron carbide B{sub 13}C{sub 2} as a function of pressure led to conclusion that they undergo a similar reduction upon compression that is typical for covalently bonded solids. Neither 'molecular-like' nor 'inversed molecular-like' solid behavior upon compression was detected that has closed a long-standing scientific dispute. A comparison of the compressional behavior of B{sub 13}C{sub 2} with that of α-B and γ-B allotropes and B{sub 4}C showed that it is determined by the types of bonding involved in the course of compression.

  13. Study and optimization of the carbothermic reduction process for obtaining boron carbide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de.

    1989-01-01

    Boron carbide - B sub(4)C - is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Moreover, its high neutron capture cross section makes it suitable for application as neutron absorber in nuclear technology. The process for obtaining carbothermally derived boron carbide has been studied in two steps: firstly, the parameters of the boric acid → boron oxide dehydration reaction have been defined; secondly, the optimization of the carbothermal reduction reaction using boron oxide has been undertaken looking for boron carbide having low level of free carbon. The starting materials as well as the main products have been studied by chemical and spectrographic analyses, X-ray diffractometry, granulometric classification and scanning electron microscopy. The optimization of the carbothermic reduction process allowed for the development and set up of a fabrication procedure yielding high quality B sub(4) C powders, starting from low cost and easily available (in the Brazilian market) raw materials. (author)

  14. Analysis of B4C influences on thermodynamic properties and phase separation of molten corium with ionic liquid U-Zr-Fe-O-B-C-FPs database

    International Nuclear Information System (INIS)

    Fukasawa, Masanori; Tamura, Shigeyuki; Saito, Masaki

    2009-01-01

    Boron carbide influences on thermodynamic properties and phase separation of molten corium such as liquidus temperature were estimated with our U-Zr-Fe-O-B-C-FPs thermodynamic database. The liquidus temperature of the oxide for the typical corium was estimated to increase by a hundred degrees with B 4 C addition when the corium included up to 10 wt% Fe. On the other hand, the liquidus temperature was hardly changed when the corium included 50 wt% Fe. The interaction temperature between the steel and the corium with B 4 C was estimated at 1130 K. We define the interaction temperature as the lowest temperature where the solid Fe and the liquid phase of a corium are in equilibrium, at which interactions such as microstructure change of the vessel were observed in test studies. Although it is 180 K lower than that without B 4 C, the estimated temperature is still over 200 K higher than the criterion temperature where the vessel loses its structural strength, which has been used in the feasibility evaluation of the in-vessel retention. Other thermodynamic influences of B 4 C were also estimated as not having a negative impact on the in-vessel retention. (author)

  15. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  16. Effect of boron on the microstructure and mechanical properties of carbidic austempered ductile iron

    International Nuclear Information System (INIS)

    Peng Yuncheng; Jin Huijin; Liu Jinhai; Li Guolu

    2011-01-01

    Highlights: → Boron are applied to carbidic austempered ductile iron (CADI). → Boron microalloying CADI is a new high hardenability of wear-resistant cast iron. → Addition of boron to CADI significantly improves hardenability. → Effect of boron on the CADI grinding ball were investigated. → Optimum property is obtained when boron content at 0.03 wt%. - Abstract: Carbidic austempered ductile iron (CADI) castings provide a unique combination of high hardness and toughness coupled with superior wear resistance properties, but their hardenability restricts their range of applications. The purpose of this study was to investigate the influence of boron on the microstructure and mechanical properties of CADI. The experimental results indicate that the CADI comprises graphite nodules, which are dispersive boron-carbides that are distributed in the form of strips, and the matrix is a typical ausferritic matrix. Microscopic amounts of boron can improve the hardenability of CADI, but higher boron content reduces the hardenability and toughness of CADI. The results are discussed in the context of the influence of boron content on the microstructure and mechanical properties of grinding balls.

  17. The preparation method of solid boron solution in silicon carbide in the form of micro powder

    International Nuclear Information System (INIS)

    Pampuch, R.; Stobierski, L.; Lis, J.; Bialoskorski, J.; Ermer, E.

    1993-01-01

    The preparation method of solid boron solution in silicon carbide in the form of micro power has been worked out. The method consists in introducing mixture of boron, carbon and silicon and heating in the atmosphere of inert gas to the 1573 K

  18. Lattice dynamics of {alpha} boron and of boron carbide; Proprietes vibrationnelles du bore {alpha} et du carbure de bore

    Energy Technology Data Exchange (ETDEWEB)

    Vast, N

    1999-07-01

    The atomic structure and the lattice dynamics of {alpha} boron and of B{sub 4}C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In {alpha} boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B{sub 4}C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  19. Amorphisation of boron carbide under slow heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D., E-mail: Dominique.gosset@cea.fr [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Miro, S. [CEA Saclay, DEN, DANS, DMN, SRMP, Laboratoire JANNUS, Université Paris-Saclay, 91191, Gif/Yvette (France); Doriot, S. [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Moncoffre, N. [CNRS/IN2P3/IPNL, 69622, Villeurbanne (France)

    2016-08-01

    Boron carbide B{sub 4}C is widely used as a neutron absorber in nuclear plants. Most of the post-irradiation examinations have shown that the structure of the material remains crystalline, in spite of very high atomic displacement rates. Here, we have irradiated B{sub 4}C samples with 4 MeV Au ions with different fluences at room temperature. Transmission electron microscopy (TEM) and Raman spectroscopy have been performed. The Raman analyses show a high structural disorder at low fluence, around 10{sup −2} displacements per atoms (dpa). However, the TEM observations show that the material remains crystalline up to a few dpa. At high fluence, small amorphous areas a few nanometers large appear in the damaged zone but the long range order is preserved. Moreover, the size and density of the amorphous zones do not significantly grow when the damage increases. On the other hand, full amorphisation is observed in the implanted zone at a Au concentration of about 0.0005. It can be inferred from those results that short range and long range damages arise at highly different fluences, that heavy ions implantation has drastic effects on the structure stability and that in this material self-healing mechanisms are active in the damaged zone.

  20. Pulverization of boron element and proportions of boron carbide in boron; Broyage de bore element et dosage de carbure de bore dans le bore

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F M; Finck, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 {mu}. Grain sizes smaller than 1{mu} are required for applying thin layers of such boron. (author) [French] Il est possible de pulveriser finement du bore element au moyen de mortier et pilon en carbure de bore fritte, le taux de carbure de bore introduit etant inferieur a 1 pour cent. Le bore element dont nous disposons est constitue de petits grains brun fonce, a aretes vives, de dimension moyenne superieure a 5 {mu}. L'application de ce bore en couches minces demande des grains de dimensions inferieures a 1 {mu}. (aute0008.

  1. Determination of boron in graphite, boron carbide and glass by ICP-MS, ICP-OES and conventional wet chemical methods

    International Nuclear Information System (INIS)

    Venkatesh, K.; Kamble, Granthali S.; Venkatesh, Manisha; Kumar, Sanjukta A.; Reddy, A.V.R.

    2014-01-01

    Boron is an important element of interest in nuclear reactor materials due to its high neutron absorption cross section (σ 0 =3837 barns for 10 B). In the present paper, R and D work and routinely used methods have been described for the analysis of case samples (1) Graphite where boron is present at trace levels, (2) Boron Carbide having boron concentration of about 80% and (3) Glass containing 4-6 % boron. (author)

  2. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

    International Nuclear Information System (INIS)

    Sabirianov, Ildar F.; Brand, Jennifer I.; Fairchild, Robert W.

    2008-01-01

    Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector). Diodes were fabricated from natural abundance boron (20% 10 B and 80% 11 B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and un-moderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models. (authors)

  3. Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites

    International Nuclear Information System (INIS)

    Vijaya Ramnath, B.; Elanchezhian, C.; Jaivignesh, M.; Rajesh, S.; Parswajinan, C.; Siddique Ahmed Ghias, A.

    2014-01-01

    Highlights: • Fabrication of MMC with aluminium alloy–alumina–boron carbide is done. • Different proportions of reinforcements are added. • The effects of varying proportions are studied. • Investigation on mechanical properties above composites is performed. • Failure morphology analysis is done using SEM. - Abstract: This paper deals with the fabrication and mechanical investigation of aluminium alloy, alumina (Al 2 O 3 ) and boron carbide metal matrix composites. Aluminium is the matrix metal having properties like light weight, high strength and ease of machinability. Alumina which has better wear resistance, high strength, hardness and boron carbide which has excellent hardness and fracture toughness are added as reinforcements. Here, the fabrication is done by stir casting which involves mixing the required quantities of additives into stirred molten aluminium. After solidification, the samples are prepared and tested to find the various mechanical properties like tensile, flexural, impact and hardness. The internal structure of the composite is observed using Scanning Electron Microscope (SEM)

  4. Irradiation damage in boron carbide: point defects, clusters and helium bubbles

    International Nuclear Information System (INIS)

    Stoto, T.; Zuppiroli, L.

    1986-06-01

    Boron carbide is a refractory hard and light material of interest in nuclear technology (fission and also fusion). Transmission electron microscopy was used to examine the properties of radiation induced damage. Firstly, the production of point defects and their clustering was studied in samples irradiated by 1 MeV electron in a high voltage electron microscope at selected temperatures from 12 K to 1000 K. Secondly, conventional transmission electron microscopy was used to understand the production of helium bubbles in neutron irradiated boron carbide and their role in the generation of microcracks. Finally, the interaction between point defects and bubbles was also examined

  5. Method of accurate thickness measurement of boron carbide coating on copper foil

    Science.gov (United States)

    Lacy, Jeffrey L.; Regmi, Murari

    2017-11-07

    A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

  6. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  7. Processing and microstructural characterization of B4C-Al cermets

    International Nuclear Information System (INIS)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-01-01

    Reaction thermodynamics and wetting studies were employed to evaluate boron carbide-aluminum cermets. Wetting phonomenon and interfacial reactions are characterized using ''macroscale'' and ''microscale'' techniques. Macroscale evaluation involved aluminium sessile drop studies on boron carbide substrates. Microscale evaluation involved the fabrication of actural cermet microstructures and their characterization through sem, x-ray diffraction, metallography, and electron microprobe. Contact-angle measurements and interfacial-reaction products are reported

  8. Evidence of amorphisation of B{sub 4}C boron carbide under slow, heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D., E-mail: dominique.gosset@cea.fr [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France); Miro, S. [CEA, DEN, DMN-SRMP-JANNUS, F-91191 Gif/Yvette (France); Doriot, S. [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France); Victor, G. [CNRS-IN2P3-IPNL, F-69622 Villeurbanne (France); Motte, V. [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France)

    2015-12-15

    Boron carbide is widely used either as armor-plate or neutron absorber. In both cases, a good structural stability is required. However, a few studies have shown amorphisation may occur in severe conditions. Hard impacts lead to the formation of amorphous bands. Some irradiations in electronic regime with H or He ions have also shown amorphisation of the material. Most authors however consider the structure is not drastically affected by irradiations in the ballistic regime. Here, we have irradiated at room temperature dense boron carbide pellets with Au 4 MeV ions, for which most of the damage is in the ballistic regime. This study is part of a program devoted to the behavior of boron carbide under irradiation. Raman observations have been performed after the irradiations together with transmission electron microscopy (TEM). Raman observations show a strong structural damage at moderate fluences (10{sup 14}/cm{sup 2}, about 0.1 dpa), in agreement with previous studies. On the other hand, TEM shows the structure remains crystalline up to 10{sup 15}/cm{sup 2} then partially amorphises. The amorphisation is heterogeneous, with the formation of nanometric amorphous zones with increasing density. It then appears short range and long range disorder occurs at quite different damage levels. Further experiments are in progress aiming at studying the structural stability of boron carbide and isostructural materials (α-B, B{sub 6}Si,…).

  9. Processing and characterization of laser sintered hybrid B4C/cBN reinforced Ti-based metal matrix composite

    Science.gov (United States)

    Gupta, Ankit; Hussain, Manowar; Misra, Saurav; Das, Alok Kumar; Mandal, Amitava

    2018-06-01

    The purpose of this study is to make a boron carbide (B4C) and cubic boron nitride (cBN) reinforced Ti6Al4V metal matrix composites (MMC's) by direct metal laser sintering (DMLS) technique using the continuous wave (CW) SPI fiber laser and to check the feasibility of the formation of three dimensional objects by this process. For this study, the process parameters like laser power density (3.528-5.172 W/cm2 (×104), scanning speed (3500-4500 mm/min), composition of the reinforced materials B4C (5-25% by volume) and cBN (3% by volume) were taken as input variables and hatching gap (0.2 mm), spot diameter (0.4 mm), layer thickness (0.4 mm) were taken as constant. It was analyzed that surface characteristic, density and the mechanical properties of sintered samples were greatly influenced by varying the input process parameters. Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and X-Ray diffraction (XRD) were performed for microstructural analysis, elemental analysis, and recognition of intermetallic compounds respectively. Mechanical properties like micro-hardness & wear rate were examined by Vickers micro-hardness tester & pin on disc arrangement respectively. From hardness tests, it was observed that hardness property of the sintered specimens was increased as compared to the parent material. The XRD results show that there is a good affinity between Ti6Al4V-B4C-cBN to produce various intermetallic compounds which themselves enhance the mechanical properties of the samples. From FESEM analysis, we can conclude that there is a uniform distribution of reinforcements in the titanium alloy matrix. Furthermore, the coefficient of friction (COF) was characterized by the irregular pattern and it tends to decrease with an increase in the volume % of reinforcement. The results obtained in this work may be useful in preparing the MMC's with improved mechanical properties and overall characteristics.

  10. Wetting of B4C, TiC and graphite substrates by molten Mg

    International Nuclear Information System (INIS)

    Zhang Dan; Shen Ping; Shi Laixin; Jiang Qichuan

    2011-01-01

    Highlights: → The wettability of TiC, B4C and C by molten Mg was determined using an improved sessile drop method. → A new method to evaluate the wetting behavior coupled with evaporation and reaction was proposed. → The bonding characteristics in the Mg/B4C, Mg/TiC and Mg/graphite systems were evaluated. - Abstract: The isotherm wetting of B 4 C, TiC and graphite substrates by molten Mg was studied in a flowing Ar atmosphere at 973-1173 K using an improved sessile drop method. The initial contact angles are in the ranges of 95-87 deg., 74-60 deg. and 142-124 deg., respectively, moderately depending on the temperature. All the systems are non-reactive in nature; however, the presence of impurity of free boron at the B 4 C surface gave rise to the chemical reaction with molten Mg and thus promoted the wettability to a certain degree. A new method was proposed to evaluate the wetting behavior coupled with evaporation and chemical reaction. Furthermore, based on the comparison of the work of adhesion and cohesion, the bonding in the Mg/B 4 C and Mg/TiC systems is presumably mainly chemical while that in the Mg/graphite system is physical.

  11. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lumin [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science; Wierschke, Jonathan Brett [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H3BO3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  12. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Wang, Lumin; Wierschke, Jonathan Brett

    2015-01-01

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H 3 BO 3 ). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  13. Equations of state and melting curve of boron carbide in the high-pressure range of shock compression

    Energy Technology Data Exchange (ETDEWEB)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Shakhrai, D. V. [Russian Academy of Sciences, Institute for Problems in Chemical Physics (Russian Federation)

    2017-03-15

    We have constructed the equations of state for crystalline boron carbide B{sub 11}C (C–B–C) and its melt under high dynamic and static pressures. A kink on the shock adiabat for boron carbide has been revealed in the pressure range near 100 GPa, and the melting curve with negative curvature in the pressure range 0–120 GPa has been calculated. The results have been used for interpreting the kinks on the shock adiabat for boron carbide in the pressure range of 0–400 GPa.

  14. High temperature heat capacities and electrical conductivities of boron carbides

    International Nuclear Information System (INIS)

    Matsui, Tsuneo; Arita, Yuri; Naito, Keiji; Imai, Hisashi

    1991-01-01

    The heat capacities and the electrical conductivities of B x C(x=3, 4, 5) were measured by means of direct heating pulse calorimetry in the temperature range from 300 to 1500 K. The heat capacities of B x C increased with increasing x value. This increase in the heat capacity is probably related to the change of the lattice vibration mode originated from the reduction of the stiffness of the intericosahedral chain accompanied with a change from C-B-C to C-B-B chains. A linear relationship between the logarithm of σT (σ is the electrical conductivity and T is the absolute temperature) of B x C and the reciprocal temperature was observed, indicating the presence of small polaron hopping as the predominant conduction mechanism. The electrical conductivity of B x C also increased with increasing x value (from 4 to 5) due to an increase of the polaron hopping of holes between carbon atoms at geometrically nonequivalent sites, since these nonequivalent sites of carbon atoms were considered to increase in either B 11 C icosahedra or in icosahedral chains with increasing x. The electrical conductivity of B 3 C was higher than that of B 4 C, which is probably due to the precipitation of high-conducting carbon. The thermal conductivity and the thermodynamic quantities of B 4 C were also determined precisely from the heat capacity value. (orig.)

  15. Erosion wear of boron carbide ceramic nozzles by abrasive air-jets

    International Nuclear Information System (INIS)

    Deng Jianxin

    2005-01-01

    Boron carbide nozzles were produced by hot pressing. The erosion wear of this nozzle caused by abrasive particle impact was investigated by abrasive air-jets. Silica, silicon carbide and alumina powders with different hardness were used as the erodent abrasive particles. Results showed that the hardness of the erodent particles played an important role with respect to the erosion wear of the boron carbide nozzles. As the hardness of the erodent particles increases, there is a dramatic increase in erosion rate of the nozzles. The nozzle entrance area suffered from severe abrasive impact under large impact angles, and generated maximum tensile stresses. The wear mechanisms of boron carbide nozzle at this area appeared to be entirely brittle in nature with the evidence of large scale-chipping, and exhibited a brittle fracture induced removal process. While at the nozzle center wall section, most of the particles traveled parallel to the nozzle wall, and showed minimum tensile stresses. The wear mode in this area of the nozzle changed from impact to sliding erosion, and the wear mechanisms appeared to be the lateral cracking owing to a surface fatigue fracture mechanism

  16. Defects in boron carbide: First-principles calculations and CALPHAD modeling

    International Nuclear Information System (INIS)

    Saengdeejing, Arkapol; Saal, James E.; Manga, Venkateswara Rao; Liu Zikui

    2012-01-01

    The energetics of defects in B 4+x C boron carbide and β-boron are studied through first-principles calculations, the supercell phonon approach and the Debye–Grüneisen model. It is found that suitable sublattice models for β-boron and B 4+x C are B 101 (B,C) 4 and B 11 (B,C) (B,C,Va) (B,Va) (B,C,Va), respectively. The thermodynamic properties of B 4+x C, β-boron, liquid and graphite are modeled using the CALPHAD approach based on the thermochemical data from first-principles calculations and experimental phase equilibrium data in the literature. The concentrations of various defects are then predicted as a function of carbon composition and temperature.

  17. Effect of material variables on the irradiation performance of boron carbide

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Hollenberg, G.W.

    1980-01-01

    Boron carbide pellets were fabricated with variations in material parameters. These pellets were irradiated in the Experimental Breeder Reactor-II (EBR-II) to determine the effect of these variations on the performance. Helium release from the material and swelling of the pellets are the primary measures of performance. It was determined that material with a smaller grain size released more helium and swelled less. The pellets with boron-to-carbon ratios greater than 4 to 1 did not perform well. Iron additions improved the performance of the material while density variations had little effect

  18. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Behzad, Somayeh, E-mail: somayeh.behzad@gmail.co [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physical Science Research Laboratory, Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2010-12-01

    The effects of boron doping on the structural and electronic properties of (6,0)-(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  19. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    International Nuclear Information System (INIS)

    Behzad, Somayeh; Moradian, Rostam; Chegel, Raad

    2010-01-01

    The effects of boron doping on the structural and electronic properties of (6,0)-(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  20. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Moradian, Rostam; Chegel, Raad

    2010-12-01

    The effects of boron doping on the structural and electronic properties of (6,0)@(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  1. Development of a process to recover boron carbide from nuclear reactor absorber rods

    International Nuclear Information System (INIS)

    Roth, C.; Lehnert, T.

    1991-01-01

    Boron carbide enriched with 10 B is used as a control rod in reactor engineering. At present spent rods are disposed of, although major amounts of 10 B are still 'unused'. The objective was to recover 10 B from the control rods by an energy and cost saving method in order to use it for making new control rods, thus saving raw materials and minimizing the radioactive waste volume. For this purpose, the well-known pyrohydrolysis process was taken and analysed for possible improvements. By mixing boron carbide with CO 2 as an oxidation-supporting agent, a lowering of the reaction temperature by 300deg C, and an increase in the oxidation speed by 350% were achieved. Since C0 2 is not consumed and can be circulated, the method for reprocessing spent control rods presented in this paper is both an economy-priced an energy-saving one. (orig.) With 98 refs., 9 tabs., 14 figs [de

  2. Role of intericosahedral chains on the hardness of sputtered boron carbide films

    International Nuclear Information System (INIS)

    Jacobsohn, L.G.; Averitt, R.D.; Wetteland, C.J.; Schulze, R.K.; Nastasi, M.; Daemen, L.L.; Jenei, Z.; Asoka-Kumar, P.

    2004-01-01

    The relationship between the structure and mechanical properties of sputter-deposited boron carbide films was investigated. Changes in the structure induced by annealing were characterized in terms of chemical composition, chemical bonding, and concentrations of defects and trapped impurities. The creation of intericosahedral chains for higher annealing temperatures was revealed by infrared and Raman measurements, and the intensity of the infrared band at 1500 cm-1 was found to be related to the hardness. The presence of residual trapped Ar atoms and of open-volume defects is insensitive to relatively high annealing temperatures and does not influence the recovery of the hardness. Our results suggest postdeposition annealing as a pathway to enhance the mechanical properties of boron carbide films

  3. Advanced Boron Carbide-Based Visual Obscurants for Military Smoke Grenades

    Science.gov (United States)

    2014-07-13

    components on grenade burning time must be accounted for. Also, how these factors affect smoke cloud thickness and perceived visible obscuration...of Boron Carbide-Based Smoke Compositions. Propellants, Explos., Pyrotech. 2013, 38, 622-628. (30) Commission Internationale de l’Éclairage ( CIE ...volume, gives equation 2. Since αm is only a characteristic of the aerosol, it does not account for

  4. Structural modifications induced by ion irradiation and temperature in boron carbide B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Victor, G., E-mail: g.victor@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pipon, Y.; Bérerd, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); CEA-DEN, Saclay, 91191 Gif-sur-Yvette (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Djourelov, N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd, BG-1784 Sofia (Bulgaria); ELI-NP, IFIN-HH, 30 Reactorului Str, MG-6 Bucharest-Magurele (Romania); Miro, S. [CEA-DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Baillet, J. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pradeilles, N.; Rapaud, O.; Maître, A. [SPCTS, UMR CNRS 7315, Centre Européen de la céramique, University of Limoges (France); Gosset, D. [CEA, Saclay, DMN-SRMA-LA2M, 91191 Gif-sur-Yvette (France)

    2015-12-15

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B{sub 4}C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B{sub 4}C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (S{sub e} ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B{sub 4}C structure under irradiation.

  5. Boron carbide-coated carbon material, manufacturing method therefor and plasma facing material

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Kikuchi, Yoshihiro; Hyakki, Yasuo.

    1997-01-01

    The present invention concerns a plasma facing material suitable to a thermonuclear device. The material comprises a carbon material formed by converting the surface of a carbon fiber-reinforced carbon material comprising a carbon matrix and carbon fibers to a boron carbide, the material has a surface comprising vertically or substantially vertically oriented carbon fibers, and the thickness of the surface converted to boron carbide is reduced in the carbon fiber portion than in the carbon matrix portion. Alternatively, a carbon fiber-reinforced carbon material containing carbon fibers having a higher graphitizing degree than the carbon matrix is converted to boron carbide on the surface where the carbon fibers are oriented vertically or substantially vertically. The carbon fiber-reinforced material is used as a base material, and a resin material impregnated into a shaped carbon fiber product is carbonized or thermally decomposed carbon is filled as a matrix. The material of the present invention has high heat conduction and excellent in heat resistance thereby being suitable to a plasma facing material for a thermonuclear device. Electric specific resistivity of the entire coating layer can be lowered, occurrence of arc discharge is prevented and melting can be prevented. (N.H.)

  6. Hot pressing of B4C/SiC composites

    International Nuclear Information System (INIS)

    Sahin, F.C.; Turhan, E.; Yesilcubuk, S.A.; Addemir, O.

    2005-01-01

    B 4 C/SiC ceramic composites containing 10-20-30 vol % SiC were prepared by hot pressing method. The effect of SiC addition and hot pressing temperature on sintering behaviour and mechanical properties of hot pressed composites were investigated. Microstructures of hot pressed samples were examined by SEM technique. Three different temperatures (2100 deg. C, 2200 deg. C and 2250 deg. C) were used to optimize hot pressing temperature applying 100 MPa pressure under argon atmosphere during the sintering procedure. The highest relative density of 98.44 % was obtained by hot pressing at 2250 deg. C. However, bending strengths of B 4 C/SiC composite samples were lower than monolithic B 4 C in all experimental conditions. (authors)

  7. Wetting and interface phenomena in the B4C/(Cu-B-Si) system

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Froumin, N.; Shapiro-Tsoref, E.; Dariel, M.P.; Frage, N.

    2005-01-01

    The addition of Si to a Cu-B liquid alloy improves wetting of the boron carbide substrate and allows maintaining a flat metal/ceramic interface. Improved wetting is associated with a shift of the boron content in the near surface layer of the substrate towards a higher B/C ratio. The experimental results are consistent with the thermodynamic analysis of the Cu-B-C-Si system

  8. Novel semiconducting boron carbide/pyridine polymers for neutron detection at zero bias

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Elena; Enders, A.; Dowben, P.A. [University of Nebraska-Lincoln, Department of Physics and Astronomy, Lincoln, NE (United States); James, Robinson; Chiluwal, Umesh; Gapfizi, Richard; Tae, Jae-Do; Driver, M. Sky; Kelber, Jeffry A. [University of North Texas, Department of Chemistry, Denton, TX (United States); Pasquale, Frank L. [University of North Texas, Department of Chemistry, Denton, TX (United States); Lam Research Corporation, PECVD Business Unit, Tualatin, OR (United States); Colon Santana, Juan A. [Center for Energy Sciences Research, Lincoln, NE (United States)

    2014-09-19

    Thin films containing aromatic pyridine moieties bonded to boron, in the partially dehydrogenated boron-rich icosahedra (B{sub 10}C{sub 2}H{sub X}), prove to be an effective material for neutron detection applications when deposited on n-doped (100) silicon substrates. The characteristic I-V curves for the heterojunction diodes exhibit strong rectification and largely unperturbed normalized reverse bias leakage currents with increasing pyridine content. The neutron capture generated pulses from these heterojunction diodes were obtained at zero bias voltage although without the signatures of complete electron-hole collection. These results suggest that modifications to boron carbide may result in better neutron voltaic materials. (orig.)

  9. The irradiation behaviour of boron carbide/graphite between 800 and 1,1000C

    International Nuclear Information System (INIS)

    Hattenbach, K.; Hilgendorff, W.; Weiler, K.; Zimmermann, H.U.

    1975-01-01

    64 samples of boron carbide/graphite, a material used as burnable poison in high temperature reactors, were irradiated at temperatures between 800 and 1,100 0 C up to a fluence of 1-2 x 10 20 nvt. The following post-investigations were extended to dimensional measurements to determime a possible swelling or shrinking of the pellet, corrosion tests in completely desalinated water at 300 0 C, preparation of metallographic microsections to check for crack formation, determination of the helium hold back power and the thus involved gas chromatic analysis, as well as burn-up determinations by determining the boron 10/boron 11 ratio and the lithium concentration. (orig./LN) [de

  10. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide powder and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Total Carbon by Combustion and Gravimetry 7-17 Total Boron by Titrimetry 18-28 Isotopic Composition by Mass Spectrometry 29-38 Chloride and Fluoride Separation by Pyrohydrolysis 39-45 Chloride by Constant-Current Coulometry 46-54 Fluoride by Ion-Selective Electrode 55-63 Water by Constant-Voltage Coulometry 64-72 Impurities by Spectrochemical Analysis 73-81 Soluble Boron by Titrimetry 82-95 Soluble Carbon by a Manometric Measurement 96-105 Metallic Impurities by a Direct Reader Spectrometric Method 106-114

  11. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation

    International Nuclear Information System (INIS)

    Mrotchek, I.

    2007-01-01

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and ∼5.10 17 ions/cm 2 fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co 3 W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load

  12. Compatibility of heat resistant alloys with boron carbide, (4)

    International Nuclear Information System (INIS)

    Baba, Sinichi; Saruta, Toru; Ooka, Kiichi; Tanaka, Isao; Aoyama, Isao

    1985-07-01

    This paper relates to the compatibility test of control rod sheath (Hastelloy XR alloy) and neutron absorber (boronated graphite) for the VHTR, which has been researched and developed by JAERI. The irradiation was conducted by using the OGL-1 irradiation facility in the JMTR in order to study reaction behaviour between Hastelloy XR alloy and boronated graphite as well as to determine a reaction barrier performance of refractory metal foils Nb, Mo, W and Re. Irradiation conditions were as follows. Neutron dose : 4.05 x 10 22 m -2 (E 18 m -2 (E > 0.16 pJ, 1 Mev). Helium coolant : Average temperature 855 0 C, Pressure 2.94 MPa, Total impurity concentration 400 kBq/m 3 . Irradiation time : 5.0 Ms (1390 hours). Post-irradiation examinations i.e. visual inspection, dimensional inspection, weight measurement, metallography, hardness test, morphological observations by SEM and analysis of element distributions by EPMA were carried out. In the result, reaction products of Hastelloy XR alloy were observed in the ellipsoidal form locally. These results were same as those of the out-of-pile tests. Obvious irradiation effects were not detectable but a little accelarated increase in reaction depth of Hastelloy XR alloy by heat effect of specimens was observed. The refractory metal foils had a good performance of reaction barrier between Hastelloy XR alloy and boronated graphite. Furthermore, movement of Ni, Fe and Cr in the reaction area of Hastelloy XR alloy, difference in the reaction depth of B and C, irradiation effects on diffusion coefficient, lithium production and heat effect are discussed. (author)

  13. Directional crystallization of B4C-NbB2 and B4C-MoB2 eutectic compositions

    International Nuclear Information System (INIS)

    Paderno, Varvara; Paderno, Y.B.; Filippov, Vladimir; Liashchenko, Alfred

    2004-01-01

    We studied the directional crystallization of different compositions in B 4 C-NbB 2 and B 4 C-MoB 2 systems. The eutectic compositions for both systems are evaluated. It is shown that in the first system the rod-like eutectic structure is formed, in second, the 'Chinese hieroglyphics'. In both cases high hardness and high microplasticity are observed, which are much more than for individual component phases. These compositions may be considered as a new kind of self-strengthening composite materials

  14. Natural cotton as precursor for the refractory boron carbide—a hydrothermal synthesis and characterization

    Science.gov (United States)

    Saritha Devi, H. V.; Swapna, M. S.; Raj, Vimal; Ambadas, G.; Sankararaman, S.

    2018-01-01

    Boron carbide (B4C) is an excellent covalent carbide that finds applications in industries and nuclear power plants. The present synthesis methods of boron carbide are expensive and involve the use of toxic chemicals that adversely affect environment. In the present work, we report for the first time the use of the hydrothermal method for converting the cellulose from cotton as the carbon precursor for B4C. The carbon precursor is converted into functionalized porous carbonaceous material by hydrothermal treatment followed by sodium borohydride. It is further treated with boric acid to make it a B4C precursor. The precursor is characterized by UV-visible diffuse reflectance, Raman, Fourier transform infrared, photoluminescent and energy dispersive spectroscopy. The morphology and structure analysis is carried out using field emission scanning electron microscopy and x-ray diffraction techniques. The results of structural and optical characterization of the sample synthesized are compared with the commercial B4C. The thermal stability of the sample is studied by thermogravimetric analysis. The sample annealed at 700 °C is found to be B4C devoid of amorphous carbon with a yield of 44.7%. The analysis reveals the formation of boron carbide from the sample.

  15. Manufacturing method for boron carbide/carbon composite neutron shielding material

    International Nuclear Information System (INIS)

    Inoue, Takenori; Ukai, Shigeharu; Maruyama, Tadashi; Suya, Kiyoshi; Sunami, Yoshihiko.

    1994-01-01

    A less volatile binder pitch which is melted upon heating is used as a binder. Raw materials mainly comprising 60 to 85% by volume of a boron carbide powder and 15 to 40% by volume of a binder pitch are mixed, molded under pressure and heating at 480 to 600degC, then baked under non-pressurization, further impregnated with pitch under a reduced pressure and then baked again. The volume percentage of each of the materials is calculated based on the volume obtained by dividing the blending weight for each of raw materials with the intrinsic density respectively. The binding property relative to the boron carbide powder is improved by using a pitch having satisfactory melting performance and reduction of strength is decreased. Moreover, if the binder pitch is baked at about 2,000degC, it is easily converted into a graphitized tissues to have excellent slidability and fabricability. With such procedures, high bending strength and high heat conductivity can be ensured while keeping high boron content and neutron absorbing performance. (T.M.)

  16. Process for manufacturing boron carbide pellets that can be used for the realization, of the control rods of water reactors

    International Nuclear Information System (INIS)

    Ballagny, Alain; Brie, Michel.

    1982-01-01

    The subject of the invention is a process for manufacturing boron carbide pellets with a boron carbide content of not less than 68% by volume and having an open porosity. This process consists in (a) preparing a mix comprising boron carbide powder of which at least 90% of the particles are under 3 μ in size, and an organic binder that can be transformed into carbon by thermal treatment, (b) compressing the hot mix thus obtained to form unbaked pellets, under a pressure of 1000 to 6000 bars, at a temperature of 80 to 250 0 C and (c) submitting the unbaked pellets thus obtained to vacuum thermal treatment to transform this binder into porous carbon. The finished pellets are used in the control rods of water reactors [fr

  17. Determination of nitrogen in boron carbide with the Leco UO-14 Nitrogen Determinator

    International Nuclear Information System (INIS)

    Gardner, R.D.; Ashley, W.H.; Henicksman, A.L.

    1977-11-01

    Use of various metals as fluxes for releasing nitrogen from boron carbide in the Leco Nitrogen Determinator was investigated. Metals such as iron, chromium, and molybdenum that wet the graphite crucible all promoted nitrogen release. Tin, copper, aluminum, and platinum did not wet the graphite and were of no value as fluxes. A procedure for sample handling and the resulting performance of the method are described. The precision at 0.06 to 0.6 percent nitrogen averaged 4 percent relative standard deviation

  18. Microscopic origin of the composition-dependent change of the thermal conductivity in boron carbides

    International Nuclear Information System (INIS)

    Emin, D.; Howard, I.A.; Green, T.A.; Beckel, C.L.

    1987-01-01

    Large grain polycrystalline boron carbides have a high-temperature thermal conductivity which changes from being characteristic of a crystal to being glass-like as the carbon content is reduced from its maximal value. We relate this phenomenon, to compositional changes within the three-atom intericosahedral chains. With a reduction of the carbon concentration from its maximal concentration (20%), a carbon atom within some of the three-atoms (CBC) intericosahedral chains is replaced by a boron atom, thereby producing CBB chains. We estimate that the CBB chains are significantly softer than the CBC chains. Thus, with this reduction of carbon content the intericosahedral chains are inhomogeneously softened. This suppresses the coherent transport of heat through the chains. The remaining thermal transport occurs incoherently through vibrationally inequivalent structural units, i.e. ''phonon hopping.''

  19. A combination method for simulation of secondary knock-on atoms of boron carbide induced by neutron irradiation in SPRR-300

    International Nuclear Information System (INIS)

    Wu, Jian-Chun; Feng, Qi-Jie; Liu, Xian-Kun; Zhan, Chang-Yong; Zou, Yu; Liu, Yao-Guang

    2016-01-01

    A multiscale sequence of simulation should be used to predict properties of materials under irradiation. Binary collision theory and molecular dynamics (MDs) method are commonly used to characterize the displacement cascades induced by neutrons in a material. In order to reduce the clock time spent for the MD simulation of damages induced by high-energy primary knock-on atoms (PKAs), the damage zones were split into sub-cascade according to the sub-cascade formation criteria. Two well-known codes, Geant4 and TRIM, were used to simulate high-energy PKA-induced cascades in B_4C and then produce the secondary knock-on atom (SKA) energy spectrum. It has been found that both high-energy primary knock-on B and C atoms move a long range in the boron carbide. These atoms produce sub-cascades at the tip of trajectory. The energy received by most of the SKAs is <10 keV, which can be used as input to reduce the clock time spent for MD simulation.

  20. The optical properties of boron carbide near boron K-edge inside periodical multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Schlemper, Christoph; Pietsch, Ullrich [University of Siegen (Germany)

    2010-07-01

    Multilayer mirrors made for the use in the wavelength range near K-edge of boron (188 eV) are of great interest for X-ray fluorescence analysis of boron content in doped semiconductors, plasma diagnostics, astronomy and lithography. Moreover, multilayer mirrors composed by a metal and a low Z element like boron are used as optical elements in both the soft x-ray spectral range as well as at higher photon energies on 3rd generation synchrotron beamlines. Using an energy-resolved photon-in-photon-out method we reconstructed the optical data from energy dependence of both integrated peak intensity and FWHM of the 1st order ML Bragg peak measured at the UHV triple axis soft-x-ray reflectometer at BESSY II. The experiments clearly demonstrate that the peak shape of the ML Bragg peak is most sensitive to any kind of electronic excitation and recombination in solid. The soft-ray reflectivity can give detailed information for MLs with thickness up to several tens of nanometers. In addition, measurements close to a resonance edge probe the chemical state of the respective constituent accompanied with a high sensitivity of changes close to the sample surface.

  1. The role of free carbon in the transport and magnetic properties of boron carbide

    International Nuclear Information System (INIS)

    Bandyopadhyay, A.K.; Beuneu, F.; Zuppiroli, L.; Beauvy, M.

    1984-01-01

    Boron carbide is a ceramic which has a wide field of application because of its mechanical and nuclear properties. This material is difficult to characterise due to the presence of different levels of disorder and inhomogeneities which are found in the usual available samples. The transport and magnetic properties of several samples of boron carbide have been measured from liquid helium to room temperature as a function of temperature and composition. We have attempted to attribute the different features of these properties to the different levels of disorder. The role of free carbon, in form of thin layers of graphite within the disordered semi-conducting matrix, was investigated in particular details, because it was either ignored or neglected by others. Free carbon is found to dominate the D.C. transport when its concentration is larger than 5%; while the principal features of the electron spin resonance (E.S.R.) line show a dominance of free carbon when the concentration is larger than 3.5%. Below these concentrations conductivities as well as spin relaxation rates do not depend very much on free carbon; neither these have been found to be correlated in a simple way to the stoichiometry. (author)

  2. Dynamic Failure and Fragmentation of a Hot-Pressed Boron Carbide

    Science.gov (United States)

    Sano, Tomoko; Vargas-Gonzalez, Lionel; LaSalvia, Jerry; Hogan, James David

    2017-12-01

    This study investigates the failure and fragmentation of a hot-pressed boron carbide during high rate impact experiments. Four impact experiments are performed using a composite-backed target configuration at similar velocities, where two of the impact experiments resulted in complete target penetration and two resulted in partial penetration. This paper seeks to evaluate and understand the dynamic behavior of the ceramic that led to either the complete or partial penetration cases, focusing on: (1) surface and internal failure features of fragments using optical, scanning electron, and transmission electron microscopy, and (2) fragment size analysis using state-of-the-art particle-sizing technology that informs about the consequences of failure. Detailed characterization of the mechanical properties and the microstructure is also performed. Results indicate that transgranular fracture was the primary mode of failure in this boron carbide material, and no stress-induced amorphization features were observed. Analysis of the fragment sizes for the partial and completely penetrated experiments revealed a possible correlation between larger fragment sizes and impact performance. The results will add insight into designing improved advanced ceramics for impact protection applications.

  3. Detection of a leaking boron-carbide control rod in a TRIGA Mark I reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blotcky, A J; Arsenault, L J [General Medical Research, Veterans Administration Hospital, Omaha (United States)

    1974-07-01

    During a routine quarterly inspection of the boron-carbide control rods of the Omaha Veterans Administration Hospital 18 kW Triga Mark I reactor, a pin hole leak was detected approximately 3 mm from the chamfered edge. The leak was found by observing bubbles when the rod was withdrawn from the reactor tank for visual observation, and could not be seen with the naked eye. This suggests that pin hole leaks could occur and not be visually detected in control rods and fuel elements examined underwater. A review of the rod calibrations showed that the leak had not caused a loss in rod worth. Slides will be presented showing the bubbles observed during the inspection, together with an unmagnified and magnified view of the pin hole. (author)

  4. Structural stability of boron carbide under pressure proven by spectroscopic studies up to 73 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Chuvashova, Irina [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth (Germany); Bayerisches Geoinstitut, University of Bayreuth (Germany); Gasharova, Biliana; Mathis, Yves-Laurent [IBPT, Karlsruhe Institute of Technology, Karlsruhe (Germany); Dubrovinsky, Leonid [Bayerisches Geoinstitut, University of Bayreuth (Germany); Dubrovinskaia, Natalia [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth (Germany)

    2017-11-17

    Being a material of choice for lightweight armor applications, boron carbide has been intensively studied. Its behavior under pressure was investigated using both theoretical and experimental methods, such as powder X-ray diffraction and vibrational spectroscopy. As there is a discrepancy in experimental observations, in the presented work we studied vibrational properties of commercially available, ''nearly stoichiometric'' B{sub 4}C using IR and Raman spectroscopy up to 73 GPa. No phase transitions were found in the entire pressure range. Our results are at odds with the recent report of a phase transition in B{sub 4.3}C at about 40 GPa. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Detection of a leaking boron-carbide control rod in a TRIGA Mark I reactor

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Arsenault, L.J.

    1974-01-01

    During a routine quarterly inspection of the boron-carbide control rods of the Omaha Veterans Administration Hospital 18 kW Triga Mark I reactor, a pin hole leak was detected approximately 3 mm from the chamfered edge. The leak was found by observing bubbles when the rod was withdrawn from the reactor tank for visual observation, and could not be seen with the naked eye. This suggests that pin hole leaks could occur and not be visually detected in control rods and fuel elements examined underwater. A review of the rod calibrations showed that the leak had not caused a loss in rod worth. Slides will be presented showing the bubbles observed during the inspection, together with an unmagnified and magnified view of the pin hole. (author)

  6. Atomization of JP-10/B4C gelled slurry fuel

    OpenAIRE

    Guglielmi, John David

    1992-01-01

    The atomization of a gelled boron slurry fuel using two commercially available airblast atomizers was studied at atmospheric pressure in non-reacting flow. The atomization of water was also characterized for comparison. Each atomizer was operated at two different liquid mass flow rates and several air/ fuel ratios. Drop size distribution was measured using a Malvern 2600 HSD Laser Diffraction Particle Sizer, Drop sizes acceptable for use in ramjet combustors could be obtained f...

  7. Effect of the Ti/B4C mole ratio on the reaction products and reaction mechanism in an Al–Ti–B4C powder mixture

    International Nuclear Information System (INIS)

    Zhang, Jingjing; Lee, Jung-Moo; Cho, Young-Hee; Kim, Su-Hyeon; Yu, Huashun

    2014-01-01

    The effect of the Ti/B 4 C mole ratio on the fabrication behavior of Al composites is investigated using Al–Ti–B 4 C powder mixtures as reactants. The quick spontaneous infiltration (QSI) process combined with the combustion reaction and DTA analysis were used. According to the thermodynamic predictions, which are verified in the experimental results, TiB 2 is formed in all the samples whereas TiC is only formed in reactants with a Ti/B 4 C mole ratio of more than two. The C atoms from the reacted B 4 C do not move into TiC but instead they move into Al 3 BC or Al 4 C 3 when the Ti/B 4 C mole ratio is less than two. In addition, the reaction mechanism with a Ti/B 4 C mole ratio of 0.75 is investigated extensively. - Highlights: • The critical role of the Ti/B 4 C mole ratio on the reaction products of Al–Ti–B 4 C was studied using experiments. • The experimental results are also supported by thermodynamic calculations presented in this paper. • The reaction mechanism with a Ti/B 4 C mole ratio of 0.75 is investigated extensively

  8. Design of boron carbide-shielded irradiation channel of the outer irradiation channel of the Ghana Research Reactor-1 using MCNP.

    Science.gov (United States)

    Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B

    2011-01-01

    The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites

    Science.gov (United States)

    Wang, Miao; Wang, Wen-xian; Chen, Hong-sheng; Li, Yu-li

    2018-03-01

    A Ni-B4C macroscopic diffusion welding couple and a Ni-15wt%B4C composite fabricated by spark plasma sintering (SPS) were used to understand the micro-scale diffusion bonding between metals and ceramics. In the Ni-B4C macroscopic diffusion welding couple a perfect diffusion welding joint was achieved. In the Ni-15wt%B4C sample, microstructure analyses demonstrated that loose structures occurred around the B4C particles. Energy dispersive X-ray spectroscopy analyses revealed that during the SPS process, the process of diffusion bonding between Ni and B4C particles can be divided into three stages. By employing a nano-indentation test, the room-temperature fracture toughness of the Ni matrix was found to be higher than that of the interface. The micro-diffusion bonding between Ni and B4C particles is quite different from the Ni-B4C reaction couple.

  10. Combustion of Na2B4O7 + Mg + C to synthesis B4C powders

    International Nuclear Information System (INIS)

    Jiang Guojian; Xu Jiayue; Zhuang Hanrui; Li Wenlan

    2009-01-01

    Boron carbide powder was fabricated by combustion synthesis (CS) method directly from mixed powders of borax (Na 2 B 4 O 7 ), magnesium (Mg) and carbon. The adiabatic temperature of the combustion reaction of Na 2 B 4 O 7 + 6 Mg + C was calculated. The control of the reactions was achieved by selecting reactant composition, relative density of powder compact and gas pressure in CS reactor. The effects of these different influential factors on the composition and morphologies of combustion products were investigated. The results show that, it is advantageous for more Mg/Na 2 B 4 O 7 than stoichiometric ratio in Na 2 B 4 O 7 + Mg + C system and high atmosphere pressure in the CS reactor to increase the conversion degree of reactants to end product. The final product with the minimal impurities' content could be fabricated at appropriate relative density of powder compact. At last, boron carbide without impurities could be obtained after the acid enrichment and distilled water washing.

  11. Properties of p-type amorphous silicon carbide window layers prepared using boron trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Gutierrez, M T [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Carabe, J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain)

    1993-03-01

    One set (A) of undoped and three sets (B, C and D) of doped hydrogenated amorphous silicon carbide samples have been made in the framework of a research plan for obtaining high quality p-type window layers by radiofrequency glow discharge of silane-based gas mixtures. The samples of sets A and B were made using different RF-power-density to mass-flow ratios for various methane percentages in the gas mixture. The best carbon incorporation in the amorphous silicon lattice was obtained at the highest RF-power density. The properties of sets C and D, prepared using different RF-power densities and silane and methane proportions have been analysed as functions of the concentration of boron trifluoride with respect to silane. In both cases, the optical gap E[sub G], after a slight initial decrease, remains at a value of approximately 2.1 eV without quenching in the doping ranges covered. The best conductivity obtained is 2x10[sup -7] ([Omega] cm)[sup -1]. IR spectra allow to associate these features with the structural quality of the films. (orig.)

  12. Densification of boron carbide at relatively low temperatures by hot pressing and hot isostatic pressing

    International Nuclear Information System (INIS)

    Telle, R.

    1988-01-01

    The poor sinterability of B 4 C limits its widespread application because both high temperatures and high pressures are required for a complete densification. Moreover, B 4 C suffers from a low strength and fracture toughness, possesses, however, a high potential because of its extreme hardness. Reaction hot pressing of B 4 C-WC-TiC-Si-Co mixtures resulting in B 4 C-TiB 2 -W 2 B 5 composites of high density exhibit remarkable mechanical properties. The influence of hot isostatic pressing (HIP) on the microstructure and the mechanical properties is investigated in cooperation with participants of the COST 503 activities and related to the strengthening and toughening mechanisms. Difficulties during densification by HIP arise from the evaporation of adsorbed volatiles as well as from the strong swelling of the powder compact due to the sintering reaction. Several HIP cycle designs were tested in order to prevent the bloating of the capsule and to control internal stresses due to the misfit of the thermal expansion of the entire phases. In comparison to single phase B 4 C ceramics, bending strength was improved to 1030 MPa, K Ic to 5.2 MPa/m, while hardness was comparable with HV1=38 GPa. Wear test were performed and related to the toughening mechanisms. (orig.) With 56 refs., 9 tabs., 64 figs

  13. Investigation of effects of boron additives and heat treatment on carbides and phase transition of highly alloyed duplex cast iron

    International Nuclear Information System (INIS)

    Tasgin, Yahya; Kaplan, Mehmet; Yaz, Mehmet

    2009-01-01

    The effect of boron additives and heat treatment on the microstructural morphology of the transition zone in a duplex cast iron, which has an outer shell of white cast iron (with a high Cr-content and containing boron additives) and an inner side composed of normal gray cast iron, has been investigated. For this purpose, two experimental materials possessing different compositions of white-gray duplex cast iron were produced. Subsequently, metallographic investigations were carried out to study the effect of heat treatment applied to the experimental materials by using the scanning electron microscopy technique, along with optical microscopy and energy dispersive X-ray spectroscopy. Moreover, the formation of various phases and carbide composites in the samples and their effects on the hardness were also investigated using X-ray diffraction techniques. The results of investigations, and hardness showed that addition of the elements Cr and B to high-alloyed white cast iron affected carbide formation significantly, while simultaneously hardening the microstructure, and consequently the carbide present in the transition area of white-gray cast iron was spread out and became thinner. However, B additives and heat treatment did not cause any damage to the transition region of high Cr-content duplex cast iron.

  14. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Unknown

    tions, they concluded that either reaction sintering or liquid phase .... α-6H silicon carbide single crystal by three different laboratories ... silicon carbide particles by the overall reaction .... layer displacement is likely to occur in such a manner as.

  15. Pressure effect on structural, elastic, and thermodynamic properties of tetragonal B4C4

    Directory of Open Access Journals (Sweden)

    Baobing Zheng

    2015-03-01

    Full Text Available The compressibility, elastic anisotropy, and thermodynamic properties of the recently proposed tetragonal B4C4 (t-B4C4 are investigated under high temperature and high pressure by using of first-principles calculations method. The elastic constants, bulk modulus, shear modulus, Young’s modulus, Vickers hardness, Pugh’s modulus ratio, and Poisson’s ratio for t-B4C4 under various pressures are systematically explored, the obtained results indicate that t-B4C4 is a stiffer material. The elastic anisotropies of t-B4C4 are discussed in detail under pressure from 0 GPa to 100 GPa. The thermodynamic properties of t-B4C4, such as Debye temperature, heat capacity, and thermal expansion coefficient are investigated by the quasi-harmonic Debye model.

  16. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Pawbake, Amit [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Mayabadi, Azam; Waykar, Ravindra; Kulkarni, Rupali; Jadhavar, Ashok [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Waman, Vaishali [Modern College of Arts, Science and Commerce, Shivajinagar, Pune 411 005 (India); Parmar, Jayesh [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Bhattacharyya, Somnath [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Ma, Yuan‐Ron [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Devan, Rupesh; Pathan, Habib [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, Sandesh, E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-15

    Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gas mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.

  17. Fabrication and tribological response of aluminium 6061 hybrid composite reinforced with bamboo char and boron carbide micro-fillers

    Science.gov (United States)

    Chethan, K. N.; Pai, Anand; Keni, Laxmikant G.; Singhal, Ashish; Sinha, Shubham

    2018-02-01

    Metal matrix composites (MMCs) have a wide scope of industrial applications and triumph over conventional materials due to their light weight, higher specific strength, good wear resistance and lower coefficient of thermal expansion. The present study aims at establishing the feasibility of using Bamboo charcoal particulate and boron carbide as reinforcements in Al-6061 alloy matrix and to investigate their effect on the wear of composites taking into consideration the interfacial adhesion of the reinforcements in the alloy. Al-6061 alloy was chosen as a base metallic alloy matrix. Sun-dried bamboo canes were used for charcoal preparation with the aid of a muffle furnace. The carbon content in the charcoal samples was determined by EDS (energy dispersive spectroscopy). In present study, stir casting technique was used to prepare the samples with 1%, 2%, and 3% weight of bamboo charcoal and boron carbide with Al-6061. The fabricated composites were homogenised at 570°C for 6 hours and cooled at room temperature. Wear studies were carried out on the specimens with different speed and loads. It was found that wear rate and coefficient of friction decreased with increase in the reinforcement content.

  18. Production and characterization of AA6061-B4C stir cast composite

    International Nuclear Information System (INIS)

    Kalaiselvan, K.; Murugan, N.; Parameswaran, Siva

    2011-01-01

    Highlights: → Stir casting of AA6061-B 4 C Composite. Color metallographic of composites → Enhanced wetting of B 4 C particles by K 2 TiF 6 flux. → Effect of B 4 C particles on mechanical properties of AA6061. -- Abstract: This work focuses on the fabrication of aluminum (6061-T6) matrix composites (AMCs) reinforced with various weight percentage of B 4 C particulates by modified stir casting route. The wettability of B 4 C particles in the matrix has been improved by adding K 2 TiF 6 flux into the melt. The microstructure and mechanical properties of the fabricated AMCs are analyzed. The optical microstructure and scanning electron microscope (SEM) images reveal the homogeneous dispersion of B 4 C particles in the matrix. The reinforcement dispersion has also been identified with X-ray diffraction (XRD). The mechanical properties like hardness and tensile strength have improved with the increase in weight percentage of B 4 C particulates in the aluminum matrix.

  19. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    International Nuclear Information System (INIS)

    Zhang, L.L.; Yang, Q.; Tang, Y.; Yang, L.; Zhang, C.; Hu, Y.; Cui, X.

    2015-01-01

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B 4 C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B 4 C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp 3 bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp 3 bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp 3 bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films

  20. Al/ B4C Composites with 5 and 10 wt% Reinforcement Content Prepared by Powder Metallurgy

    International Nuclear Information System (INIS)

    Yusof Abdullah; Mohd Reusmaazran Yusof; Azali Muhammad; Nadira Kamarudin; Wilfred Sylvester Paulus; Roslinda Shamsudin; Nasrat Hannah Shudin; Nurazila Mat Zali

    2012-01-01

    The preparation, physical and mechanical properties of Al/ B 4 C composites with 5 and 10 wt.% reinforcement content were investigated. In order to obtain the feedstock with a low powder loading, B 4 C mixtures containing fine powders were investigated to obtain the optimal particle packing. The experimental results indicated that the fine containing 5 and 10 wt.% particles are able to prepare the feedstock with a good flowability. The composites fabricated by powder metallurgy have low densities and homogeneous microstructures. Additionally there is no interface reaction observed between the reinforcement and matrix by XRD analysis. The hardness of Al/ B 4 C composites prepared by powder metallurgy was high. (Author)

  1. Methods for separating boron from borated paraffin wax and its determination by ion chromatography

    International Nuclear Information System (INIS)

    Jeyakumar, S.

    2015-01-01

    Boron compounds are found to be useful in shielding against high-energy neutrons. In radiotherapy treatments, in order to protect occupational workers and patients from the undesirable neutron and gamma doses, paraffin wax containing B 4 C/boric acid is used. Low-level borate wastes generated from the nuclear power plants have been immobilized with paraffin wax using a concentrate waste drying system (CWDS). Borated paraffin waxes are prepared by mixing calculated amounts of either boric acid or boron carbide with the molten wax. This necessitates the determination of boron at different locations in order to check the homogeneous distribution of B over the borated wax. The determination of boron in nuclear materials is inevitable due to its high neutron absorption cross section. For the determination of boron in borated waxes, not many methods have been reported. A method based on the pyrohydrolysis extraction of boron and its quantification with ion chromatography was proposed for paraffin waxes borated with H 3 BO 3 and B 4 C. The B 4 C optimum pyrohydrolysis conditions were identified. Wax samples were mixed with U 3 O 8 , which prevents the sample from flare up, and also accelerates the extraction of boron. Pyrohydrolysis was carried out with moist O 2 at 950℃ for 60 and 90 min for wax with H 3 BO 3 and wax with B 4 C, respectively. Two simple methods of separation based on alkali extraction and melting wax in alkali were also developed exclusively for wax with H 3 BO 3 . In all the separations, the recovery of B was above 98%. During IC separation, B was separated as boron-mannitol anion complex. Linear calibration was obtained between 0.1 and 50 ppm of B, and LOD was calculated as 5 ppb (S/N=3). The reproducibility was better than 5% (RSD)

  2. Heterogeneous free-surface profile of B4C polycrystal under shock compression

    International Nuclear Information System (INIS)

    Mashimo, T.; Uchino, M.

    1997-01-01

    Observations of the free-surface behavior under shock compression by the gapped-flat mirror method were performed on B 4 C and Si 3 N 4 ceramics to study their shock-yielding properties. Jagged profiles of the moving free-surface in the plastic region, with a special scale of about one mm and a maximum local displacement of a few 10s of μm, were observed for B 4 C polycrystals. Similar profiles for Si 3 N 4 polycrystals were smooth. Such profiles for B 4 C polycrystals were also observed in the elastic region. It is suggested that these observations reflect the heterogeneous nature of shock compression in solids, and further indicate that a macroscopic slip system plays an important role in the elastoplastic transition of B 4 C material under shock compression and decompression. copyright 1997 American Institute of Physics

  3. Arcing at B4C-covered limiters exposed to a SOL-plasma

    International Nuclear Information System (INIS)

    Laux, M.; Schneider, W.; Wienhold, P.; Juettner, B.; Huber, A.; Balden, M.; Linke, J.; Kostial, H.; Mayer, M.; Rubel, M.; Herrmann, A.; Pospieszczyk, A.; Jachmich, S.; Schweer, B.; Hildebrandt, D.; Bolt, H.

    2003-01-01

    Plasma sprayed B 4 C-layers considered as wall coatings for the W7X stellarator have been studied during and after exposure to TEXTOR and after arcing experiments in vacuum. Arcing through the B 4 C layer occurred favoured by high power fluxes and not restricted to less stable phases. But this arcing implies an especially noisy scrape-off layer (SOL). Instead of moving retrograde in the external magnetic field, the arc spot on the B 4 C-layer sticks to the same location for its whole lifetime. Consequently, the arc erodes the entire B 4 C layer, finally burning down to the Cu substrate. In the neighbourhood of craters the surface contains Cu originating from those craters. This material, hauled to the surface by the arc, is subject to subsequent erosion, transport, and redeposition by the SOL-plasma. The behaviour of arcs on B 4 C is most probably caused by the peculiar temperature dependences of the electrical and heat conductivity of B 4 C

  4. Chemical interaction of B4C, B, and C with Mo/Si layered structures

    International Nuclear Information System (INIS)

    Rooij-Lohmann, V. I. T. A. de; Veldhuizen, L. W.; Zoethout, E.; Yakshin, A. E.; Kruijs, R. W. E. van de; Thijsse, B. J.; Gorgoi, M.; Schaefers, F.; Bijkerk, F.

    2010-01-01

    To enhance the thermal stability, B 4 C diffusion barrier layers are often added to Mo/Si multilayer structures for extreme ultraviolet optics. Knowledge about the chemical interaction between B 4 C and Mo or Si, however is largely lacking. Therefore, the chemical processes during annealing up to 600 deg. C of a Mo/B 4 C/Si layered structure have been investigated in situ with hard x-ray photoelectron spectroscopy and ex situ with depth profiling x-ray photoelectron spectroscopy. Mo/B/Si and Mo/C/Si structures have also been analyzed as reference systems. The chemical processes in these systems have been identified, with two stages being distinguished. In the first stage, B and C diffuse and react predominantly with Mo. MoSi x forms in the second stage. If the diffusion barrier consists of C or B 4 C, a compound forms that is stable up to the maximum probed temperature and annealing time. We suggest that the diffusion barrier function of B 4 C interlayers as reported in literature can be caused by the stability of the formed compound, rather than by the stability of B 4 C itself.

  5. High temperature synthesis of ceramic composition by directed reaction of molten titanium or zirconium with boron carbide

    International Nuclear Information System (INIS)

    Johnson, W.B.

    1990-01-01

    Alternative methods of producing ceramics and ceramic composites include sintering, hot pressing and more recently hot isostatic pressing (HIP) and self-propagating high temperature synthesis (SHS). Though each of these techniques has its advantages, each suffers from several restrictions as well. Sintering may require long times at high temperatures and for most materials requires sintering aids to get full density. These additives can, and generally do, change (often degrade) the properties of the ceramic. Hot pressing and hot isostatic pressing are convenient methods to quickly prepare samples of some materials to full density, but generally are expensive and may damage some types of reinforcements during densification. This paper focuses on the preparation and processing of composites prepared by the directed reaction of molten titanium or zirconium with boron carbide. Advantages and disadvantages of this approach when compared to traditional methods are discussed, with reference to specific examples. Examples of microstructure are properties of these materials are reported

  6. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic

    Directory of Open Access Journals (Sweden)

    John D. Clayton

    2014-07-01

    Full Text Available A nonlinear continuum phase field theory is developed to describe amorphization of crystalline elastic solids under shear and/or pressure loading. An order parameter describes the local degree of crystallinity. Elastic coefficients can depend on the order parameter, inelastic volume change may accompany the transition from crystal to amorphous phase, and transitional regions parallel to bands of amorphous material are penalized by interfacial surface energy. Analytical and simple numerical solutions are obtained for an idealized isotropic version of the general theory, for an element of material subjected to compressive and/or shear loading. Solutions compare favorably with experimental evidence and atomic simulations of amorphization in boron carbide, demonstrating the tendency for structural collapse and strength loss with increasing shear deformation and superposed pressure.

  7. Interlayer growth in Mo/B4C multilayered structures upon thermal annealing

    International Nuclear Information System (INIS)

    Nyabero, S. L.; Kruijs, R. W. E. van de; Yakshin, A. E.; Zoethout, E.; Bosgra, J.; Loch, R. A.; Blanckenhagen, G. von; Bijkerk, F.

    2013-01-01

    Both multilayer period thickness expansion and compaction were observed in Mo/B 4 C multilayers upon annealing, and the physical causes for this were explored in detail. Using in situ time-dependent grazing incidence X-ray reflectometry, period changes down to picometer-scale were resolved. It was shown that the changes depend on the thickness of the B 4 C layers, annealing temperature, and annealing time. Although strong stress relaxation during annealing was observed, it was excluded as a cause for period expansion. Auger electron spectroscopy and wide angle X-ray diffraction measurements revealed the growth of interlayers, with associated period changes influenced by the supply of B and C atoms to the growing compound interlayers. For multilayers with a Mo thickness of 3 nm, two regimes were recognized, depending on the deposited B 4 C thickness: in multilayers with B 4 C ≤ 1.5 nm, the supply of additional Mo into the already formed MoB x C y interlayer was dominant and led to densification, resulting in period compaction. For multilayers with B 4 C ≥ 2 nm, the B and C enrichment of interlayers formed low density compounds and yielded period expansion.

  8. Wear behaviour of plasma-sprayed AlSi/B4C composite coatings

    International Nuclear Information System (INIS)

    Sarikaya, Ozkan; Anik, Selahaddin; Celik, Erdal; Okumus, S. Cem; Aslanlar, Salim

    2007-01-01

    This paper describes the wear behaviour of AlSi/B 4 C composite coatings with 0-25 wt% B 4 C particles for diesel engine motors. These coatings were successfully fabricated on AlSi substrates using an atmospheric plasma spray technique. The produced samples were characterized by means of an optical microscope, scanning electron microscope and microhardness tester. The obtained results pointed out that an increase of B 4 C particles in AlSi coatings was caused on the rising of the microhardness values and the decrease of the thermal expansion coefficient of the coatings. The friction and wear experiments were performed under dry conditions using a ball-on-dics configuration against WC/Co counter material for different loads. It was concluded that wear resistance of the coatings produced using B 4 C powders is greatly improved compared with the substrate material. The highest wear resistance of the coatings were also determined in the 20% B 4 C coating

  9. Polyethylene/boron-containing composites for radiation shielding

    International Nuclear Information System (INIS)

    Shin, Ji Wook; Lee, Jang-Woo; Yu, Seunggun; Baek, Bum Ki; Hong, Jun Pyo; Seo, Yongsok; Kim, Woo Nyon; Hong, Soon Man; Koo, Chong Min

    2014-01-01

    Graphical abstract: - Highlights: • HDPE/silane-treated boron nitride (mBN) composites were fabricated. • The HDPE/mBN composites revealed a strong adhesion behavior at the interface of matrix/filler. • The HDPE/mBN composites show superior radiation shielding, thermoconductive and mechanical properties to the composites containing pristine BN and B 4 C fillers. - Abstract: High-density polyethylene (HDPE) composites with modified boron nitride (mBN) fillers, functionalized with an organosilane, were fabricated through conventional melt-extrusion processing techniques. The properties and performances of these composites were compared with those of the composites containing pristine BN and boron carbide (B 4 C) fillers. The silane functionalization of the BN fillers strongly improved the interfacial adhesion between the polymer matrix and the filler. As a result, the HDPE/mBN composites showed a better dispersion state of the filler particles, larger tensile modulus, greater effective thermal conductivity, and better neutron shielding property compared with the HDPE/BN and HDPE/B 4 C composites

  10. Application of full factorial design to study the tribological properties of AA6061-B4C and AA6061-B4C-MoS2 composites

    Directory of Open Access Journals (Sweden)

    Monikandan V. V.

    2018-03-01

    Full Text Available This study statistically analyzes the tribological properties of AA6061-10 wt. % B4C mono composite and AA6061-10 wt.% B4C-7.5 wt. % MoS2 hybrid composite. The tribological behavior of the composites was studied at atmospheric conditions using a pin-on-disk tribo-tester. The tribological experiments were conducted as per the full factorial design (FFD experimental scheme. The ANOVA analysis of the wear rate revealed that the three factors, A (MoS2 particles addition, B (applied load, and D (sliding distance presented the physical and statistical significance on the wear rate. The ANOVA analysis of the friction coefficient revealed that the factors B (applied load and C (sliding speed and interaction AB (interaction of MoS2 particles addition and applied load presented the physical and statistical significance on the friction coefficient. It is observed from the main effects plots of the wear rate and friction coefficient that the increase in the levels of factors B (applied load and D (sliding distance increased the wear rate and friction coefficient. However, the wear rate and friction coefficient decreased with the increase in the level of factor A (MoS2 particles addition.

  11. Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions

    Science.gov (United States)

    2015-04-17

    volatilize and disperse reaction products and inert diluents. Unlike the refractory oxides of common pyrotechnic fuels such as magnesium and aluminum, boron...peaks marked. [1] Akagi, R.; Ohtori, N.; Umesaki, N. Raman spectra of K2O–B2O3 glasses and melts. Journal of Non-Crystalline Solids. 2001

  12. Boron

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  13. Nitridation and contrast of B4C/La interfaces and X-ray multilayer optics

    NARCIS (Netherlands)

    Tsarfati, T.; van de Kruijs, Robbert Wilhelmus Elisabeth; Zoethout, E.; Bijkerk, Frederik

    2010-01-01

    Chemical diffusion and interlayer formation in thin layers and at interfaces is of increasing influence in nanoscopic devices such as nano-electronics, magneto-optical storage and multilayer X-ray optics. We show that with the nitridation of reactive B4C/La interfaces, both the chemical and optical

  14. Grazing incidence Fe-line telescopes using W/B4C multilayers

    DEFF Research Database (Denmark)

    Joensen, K. D.; Gorenstein, P.; Christensen, Finn Erland

    1995-01-01

    The loss of throughput observed at higher energies for traditional grazing-incidence X-ray telescopes coated with high-Z elements can be partly countered by employing multilayers on the outermost reflectors. Using 8-keV reflectivity data from a periodic W/B4C multilayer, the expected performance...

  15. Alkynyl substituted carboranes as precursors to boron carbide thin films, fibers and composites

    International Nuclear Information System (INIS)

    Johnson, S.E.; Yang, X.; Hawthorne, M.F.; Mackenzie, J.D.; Thorne, K.J.; Zheng, H.

    1992-01-01

    In this paper the use of alkynyl substituted derivatives of o-carborane as precursors to boron containing ceramics is described. These compounds undergo a thermally or photochemically induced polymerization to afford cross linked polyakynyl-o-carborane derivatives. The increase in molecular weight should allow for increased Tg's and the retention of modelled polymer preforms. In this report, these modification reactions are described. In addition, the retention of molded polymer preforms were analyzed after UV exposure and inert atmosphere pyrolysis

  16. Deposition of multicomponent chromium carbide coatings using a non-conventional source of chromium and silicon with micro-additions of boron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Ruiz, Jesus Eduardo, E-mail: jesus.gonzalez@biomat.uh.cu [Biomaterials Center, University of Havana (Cuba); Rodriguez Cristo, Alejandro [Mechanical Plants Company, Road of the Sub-Plan, Farm La Cana, Santa Clara, Villa Clara (Cuba); Ramos, Adrian Paz [Department of Chemistry, Universite de Montreal, Quebec (Canada); Quintana Puchol, Rafael [Welding Research Center, Central University Marta Abreu of Las Villas, Villa Clara (Cuba)

    2017-01-15

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 deg for 4 hours. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectroscopy, optical microscopy, microhardness test method and pin-on-disc wear test. It was found that the coatings formed on W108 steel were mainly constituted by (Cr,Fe){sub 23}C{sub 6} , (Cr,Fe){sub 7} C{sub 3} , Cr{sub 5-x}Si{sub 3-x} C{sub x+z}, Cr{sub 3} B{sub 0,44}C{sub 1,4} and (or) Cr{sub 7} BC{sub 4} . The carbide layers showed thicknesses between 14 and 15 μm and maximum values of microhardness between 15.8 and 18.8 GPa. Also, the micro-additions of boron to the mixtures showed statistically significant influence on the thickness, microhardness and abrasive wear resistance of the carbide coatings. (author)

  17. X-ray and EPR study of reactions between B4C and TiO2

    International Nuclear Information System (INIS)

    Kakazey, M.; Vlasova, M.; Gonzalez-Rodriguez, J.G.; Dominguez-Patino, M.; Leder, R.

    2006-01-01

    X-ray diffraction and electron paramagnetic resonance (EPR) methods have been used to study the reaction process in a system of 95 wt.% of B 4 C + 5 wt.% TiO 2 . The addition of TiO 2 to B 4 C was effective in accelerating the removal of carbon inclusions. Two types of reactions between B 4 C and TiO 2 , starting at temperatures ∼1173 K, took place: (a) gas-transport exchange and (b) diffusion of Ti atoms into the B 4 C lattice. These reactions modify the number and type of donor centers in the B 4 C. The dependence of EPR line width on the number of donor centers in B 4 C (from conditions of sample treatment) is a useful method for investigating the formation of powders and ceramics based on B 4 C

  18. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Serra, R., E-mail: ricardo.serra@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Oliveira, V. [ICEMS-Instituto de Ciência e Engenharia de Materiais e Superfícies, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Oliveira, J.C. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Kubart, T. [The Ångström Laboratory, Solid State Electronics, P.O. Box 534, SE-751 21 Uppsala (Sweden); Vilar, R. [Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Instituto Superior Técnico, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal)

    2015-03-15

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm{sup 2}. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under

  19. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    International Nuclear Information System (INIS)

    Serra, R.; Oliveira, V.; Oliveira, J.C.; Kubart, T.; Vilar, R.; Cavaleiro, A.

    2015-01-01

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm 2 . Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different

  20. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation; Oberflaechenmodifikation des Hartmetalls Wolframkarbid-Kobalt durch Bor-Ionenimplantation

    Energy Technology Data Exchange (ETDEWEB)

    Mrotchek, I.

    2007-09-07

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and {approx}5.10{sup 17} ions/cm{sup 2} fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co{sub 3}W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load.

  1. Modeling of wear behavior of Al/B_4C composites produced by powder metallurgy

    International Nuclear Information System (INIS)

    Sahin, Ismail; Bektas, Asli; Guel, Ferhat; Cinci, Hanifi

    2017-01-01

    Wear characteristics of composites, Al matrix reinforced with B_4C particles percentages of 5, 10,15 and 20 produced by the powder metallurgy method were studied in this study. For this purpose, a mixture of Al and B_4C powders were pressed under 650 MPa pressure and then sintered at 635 C. The analysis of hardness, density and microstructure was performed. The produced samples were worn using a pin-on-disk abrasion device under 10, 20 and 30 N load through 500, 800 and 1200 mesh SiC abrasive papers. The obtained wear values were implemented in an artificial neural network (ANN) model having three inputs and one output using feed forward backpropagation Levenberg-Marquardt algorithm. Thus, the optimum wear conditions and hardness values were determined.

  2. Effect of Cutting Parameters on Thrust Force and Surface Roughness in Drilling of Al-2219/B4C/Gr Metal Matrix Composites

    Science.gov (United States)

    Ravindranath, V. M.; Basavarajappa, G. S. Shiva Shankar S.; Suresh, R.

    2016-09-01

    In aluminium matrix composites, reinforcement of hard ceramic particle present inside the matrix which causes tool wear, high cutting forces and poor surface finish during machining. This paper focuses on effect of cutting parameters on thrust force, surface roughness and burr height during drilling of MMCs. In the present work, discuss the influence of spindle speed and feed rate on drilling the pure base alloy (Al-2219), mono composite (Al- 2219+8% B4C) and hybrid composite (Al-2219+8%B4C+3%Gr). The composites were fabricated using liquid metallurgy route. The drilling experiments were conducted by CNC machine with TiN coated HSS tool, M42 (Cobalt grade) and carbide tools at various spindle speeds and feed rates. The thrust force, surface roughness and burr height of the drilled hole were investigated in mono composite and hybrid composite containing graphite particles, the experimental results show that the feed rate has more influence on thrust force and surface roughness. Lesser thrust force and discontinuous chips were produced during machining of hybrid composites when compared with mono and base alloy during drilling process. It is due to solid lubricant property of graphite which reduces the lesser thrust force, burr height and lower surface roughness. When machining with Carbide tool at low feed and high speeds good surface finish was obtained compared to other two types of cutting tool materials.

  3. ICP-MS determination of boron: method optimization during preparation of graphite reference material for boron

    International Nuclear Information System (INIS)

    Granthali, S.K.; Shailaja, P.P.; Mainsha, V.; Venkatesh, K.; Kallola, K.S.; Sanjukta, A.K.

    2017-01-01

    Graphite finds widespread use in nuclear reactors as moderator, reflector, and fuel fabricating components because of its thermal stability and integrity. The manufacturing process consists of various mixing, moulding and baking operations followed by heat-treatment between 2500 °C and 3000 °C. The high temperature treatment is required to drive the amorphous carbon-to-graphite phase transformation. Since synthetic graphite is processed at high temperature, impurity concentrations in the precursor carbon get significantly reduced due to volatilization. However boron may might partly gets converted into boron carbide at high temperatures in the carbon environment of graphite and remains stable (B_4C: boiling point 3500 °C) in the matrix. Literature survey reveals the use of various methods for determination of boron. Previously we have developed a method for determination of boron in graphite electrodes using inductively coupled plasma mass spectrometry (ICP-MS). The method involves removal of graphite matrix by ignition of the sample at 800°C in presence of saturated barium hydroxide solution to prevent the loss of boron. Here we are reporting a modification in the method by using calcium carbonate in place of barium hydroxide and using beryllium (Be) as an internal standard, which resulted in a better precession. The method was validated by spike recovery experiments as well as using another technique viz. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The modified method was applied in evaluation of boron concentration in the graphite reference material prepared

  4. Synthesis, characterization and thermoelectric properties of metal borides, boron carbides and carbaborides; Synthese, Charakterisierung und thermoelektrische Eigenschaften ausgewaehlter Metallboride, Borcarbide und Carbaboride

    Energy Technology Data Exchange (ETDEWEB)

    Guersoy, Murat

    2015-07-06

    This work reports on the solid state synthesis and structural and thermoelectrical characterization of hexaborides (CaB{sub 6}, SrB{sub 6}, BaB{sub 6}, EuB{sub 6}), diboride dicarbides (CeB{sub 2}C{sub 2}, LaB{sub 2}C{sub 2}), a carbaboride (NaB{sub 5}C) and composites of boron carbide. The characterization was performed by X-ray diffraction methods and Rietveld refinements based on structure models from literature. Most of the compounds were densified by spark plasma sintering at 100 MPa. As high-temperature thermoelectric properties the Seebeck coefficients, electrical conductivities, thermal diffusivities and heat capacities were measured between room temperature and 1073 K. ZT values as high as 0.5 at 1273 K were obtained for n-type conducting EuB{sub 6}. High-temperature X-ray diffraction also confirmed its thermal stability. The solid solutions Ca{sub x}Sr{sub 1-x}B{sub 6}, Ca{sub x}Ba{sub 1-x}B{sub 6} and Sr{sub x}Ba{sub 1-x}B{sub 6} (x = 0, 0.25, 0.5, 0.75, 1) are also n-type but did not show better ZT values for the ternary compounds compared to the binaries, but for CaB{sub 6} the values of the figure of merit (ca. 0.3 at 1073 K) were significantly increased (ca. 50 %) compared to earlier investigations which is attributed to the densification process. Sodium carbaboride, NaB{sub 5}C, was found to be the first p-type thermoelectric material that crystallizes with the hexaboride-structure type. Seebeck coefficients of ca. 80 μV . K{sup -1} were obtained. Cerium diboride dicarbide, CeB{sub 2}C{sub 2}, and lanthanum diboride dicarbide, LaB{sub 2}C{sub 2}, are metallic. Both compounds were used as model compounds to develop compacting strategies for such layered borides. Densities obtained at 50 MPa were determined to be higher than 90 %. A new synthesis route using single source precursors that contain boron and carbon was developed to open the access to new metal-doped boron carbides. It was possible to obtain boron carbide, but metal-doping could not be

  5. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

  6. Sputtering characteristics of B4C-overlaid graphite for keV energy deuterium ion irradiation

    International Nuclear Information System (INIS)

    Gotoh, Y.; Yamaki, T.; Ando, T.; Jimbou, R.; Ogiwara, N.; Saidoh, M.; Teruyama, K.

    1992-01-01

    Two types of B 4 C-overlaid graphite (CFC), conversion and CVD B 4 C, together with bare CFC (PCC-2S) and/or HP B 4 C, were investigated with respect to erosion yields for 1 keV D + , D 2 /CD 4 TDS after 1 keV D + implantation, and thermal diffusivity/conductivity, in a temperature range from 300 to 1400 K. The erosion yields of both conversion and CVD B 4 C were found to be much lower than that of the bare CFC (PCC-2S), in both chemical sputtering (600-1100 K) and RES (1200-1400 K) temperature regions. The D 2 TDS peak of the conversion B 4 C was found to be located at nearly 200 K lower temperature than that of the bare CFC (PCC-2S), indicating much lower activation energy for detrapping/recombination of trapped D in the conversion B 4 C and in the CFC. The CD 4 TDS peak of the conversion B 4 C was found to be much weaker in intensity than that of the bare CFC (PCC-2S), in agreement with the present erosion yield results. Thermal diffusivities and conductivities of both the conversion B 4 C/PCC-2S and the CVD B 4 C, were measured to be nearly 1/10 of that of the bare CFC (PCC-2S), and to decrease with increasing temperatures. (orig.)

  7. Computational-Experimental Processing of Boride/Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C

    Science.gov (United States)

    2015-09-16

    structure of a packed bed, Semlak-Rhines [18] developed expressions assuming flow through capillary parallel tubes. Martins, Olson and Edwards [19...F. N. Semlak, K.A.Rhines, Trans. Met. Soc. AIME 21, 325 (1958). 19. G. P. Martins, D. L. Olson, and G. R. Edwards , Metall. Trans. B 19, 95 (1988... Snowden , J. Am. Ceram Soc., 72[5], 775 (1989). 29. S. H. Zhou and R. E. Napolitano, Metall. Mater. Trans. A 38, 1145 (2007). 30. J. Viala, J. Bouix

  8. Modelling of the interactions between B4C and stainless steel at high temperatures

    International Nuclear Information System (INIS)

    Veshchunov, M.S.

    1995-01-01

    Results of detailed chemical-analytical examinations of B 4 C/stainless steel (s.s.) reaction couples obtained at temperatures of 1000, 1100 and 1200 C, and a theoretical model developed on the basis of these results, which describes the reaction layers growth kinetics, are presented. The examinations were carried out by AES and XMA methods to measure concentration profiles of different elements in the various phases and the thicknesses of the formed reaction layers as function of time to determine the growth kinetics. A new approach for modelling of diffusion mass transfer through a two-phase zone in multicomponent systems is further developed for the description of the growth kinetics of the reaction layer consisting of Me 2 B (Me≡Fe, Cr, Ni) precipitates in the stainless steel matrix. Diffusion coefficients of Cr in all phases of the reaction zone are calculated. These data together with the measured boundary concentrations of the elements allow the complete description of the B 4 C/s.s. interaction kinetics at the examined test temperatures by the proposed model. (orig.)

  9. Elastic moduli of boron carbide/copper composites from -400C to 8000C by ultrasonic methods

    International Nuclear Information System (INIS)

    Gieske, J.H.

    1980-10-01

    An ultrasonic through-transmission technique for high attenuating materials was developed to determine the ultrasonic longitudinal and shear velocities in B 4 C/Cu composites to 800 0 C. Ultrasonic velocity data was used to calculate Young's modulus, shear modulus, and Poisson's ratio for the composites from -40 0 C to 800 0 C. 5 figures, 1 table

  10. Optimization of laser cladding of cold spray coatings with B4C and Ni powders

    Science.gov (United States)

    Fomin, V. M.; Golyshev, A. A.; Malikov, A. G.; Orishich, A. M.; Filippov, A. A.; Ryashin, N. S.

    2017-12-01

    In the present work, a combined method is considered for the production of a metal-matrix composite coating based on Ni and B4C. The coating is created by consistently applied methods: cold spray and laser cladding. The conditions of obtaining cermet layers are investigated depending on the parameters of laser cladding and cold spray. It is shown that the laser track structure significantly changes in accordance to the size of ceramic particles ranging 3-75 µm and its concentration. It is shown that the most perspective layers for additive manufacturing could be obtain from cold spray coatings with ceramic concentrations more than 50% by weight treated in the heat-conductivity laser mode.

  11. The development of heterogeneous materials based on Ni and B4C powders using a cold spray and stratified selective laser melting technologies

    Science.gov (United States)

    Filippov, A. A.; Fomin, V. M.; Buzyurkin, A. E.; Kosarev, V. F.; Malikov, A. G.; Orishich, A. M.; Ryashin, N. S.

    2018-01-01

    The work is dedicated to the creation of new ceramic-composite materials based on boron carbide, nickel and using a laser welding in order to obtain three dimensional objects henceforth. The perspective way of obtaining which has been suggested by the authors combined two methods: cold spray technology and subsequent laser post-treatment. At this stage, the authors focused on the interaction of the laser with the substance, regardless of the multi-layer object development. The investigated material of this work was the metal-ceramic mixture based on boron carbide, which has high physical and mechanical characteristics, such as hardness, elastic modulus, and chemical resistance. The nickel powder as a binder and different types of boron carbide were used. The ceramic content varied from 30 to 70% by mass. Thin ceramic layers were obtained by the combined method and cross-sections of different seams were studied. It was shown that the most perspective layers for additive manufacturing could be obtained from cold spray coatings with ceramic concentrations more than 50% by weight treated when laser beam was defocused (thermal-conductive laser mode).

  12. Microstructural evolution and mechanical properties of Mg composites containing nano-B4C hybridized micro-Ti particulates

    International Nuclear Information System (INIS)

    Sankaranarayanan, S.; Sabat, R.K.; Jayalakshmi, S.; Suwas, S.; Gupta, M.

    2014-01-01

    In this work, the microstructural evolution and mechanical properties of extruded Mg composites containing micro-Ti particulates hybridized with varying contents of nano-B 4 C are investigated, and compared with Mg-5.6Ti. Microstructural characterization showed the presence of uniformly distributed micro-Ti particles embedded with nano-B 4 C particulates that resulted in significant grain refinement. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + x-B 4 C) BM hybrid composites showed that the addition of hybridized particle resulted in relatively more recrystallized grains, realignment of basal planes and extension of weak basal fibre texture when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated improved strength with ductility retention in Mg-(5.6Ti + x-B 4 C) BM hybrid composites. When compared to Mg-5.6Ti, the superior strength properties of the Mg-(5.6Ti + x-B 4 C) BM hybrid composites are attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles, better interfacial bonding between the matrix and the reinforcement particles and the matrix grain refinement achieved by nano-B 4 C addition. The ductility enhancement obtained in hybrid composites can be attributed to the fibre texture spread and favourable basal plane orientation achieved due to nano B 4 C addition. - Highlights: • Micro-Ti particulates are hybridized with varying weight fractions of nano-B 4 C. • The hybrid mixture was used as hybrid reinforcements in magnesium. • Microstructure and mechanical properties of Mg-(5.6Ti + x-B 4 C) BM are compared with Mg-5.6Ti. • Electron back scattered diffraction (EBSD) analysis conducted to study the microtexture evolution

  13. Heterogeneous burnable poisons. Sinterability study in oxidizing atmosphere of alumina-gadolinia and alumina-boron carbide compounds

    International Nuclear Information System (INIS)

    Agueda, H.C.; Leiva, S.F.; Russo, D.O.

    1990-01-01

    Solid burnable poisons are used in reactors cooled by pressure light water (PLWR) with the purpose of controlling initial reactivity in the first reactor's core. The burnable poisons may be uniformly mixed with the fuel -known as 'homogeneous' poisons-; or constituting separate elements -known as heterogeneous poisons-. The purpose of this work is to present the results of two sinterability studies, performed on Al 2 O 3 -Gd 2 O 3 and Al 2 O 3 -B 4 C, where alumina acts as inert matrix, storing the absorbing elements as Gd 2 O 3 or B 4 C. The elements were sintered at an air atmosphere and additives permitting the obtention of a greater density alumina were tested at lower temperatures than the characteristic for this material, in order to determine its compatibility with the materials dealt with herein. (Author) [es

  14. Creep behavior in interlaminar shear of a Hi-Nicalon™/SiC–B4C composite at 1200 °C in air and in steam

    International Nuclear Information System (INIS)

    Ruggles-Wrenn, M.B.; Pope, M.T.; Zens, T.W.

    2014-01-01

    Creep behavior in interlaminar shear of a non-oxide ceramic composite with a multilayered matrix was investigated at 1200 °C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated Hi-Nicalon™ fibers woven in a five-harness-satin weave. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. The interlaminar shear properties were measured. The creep behavior was examined for interlaminar shear stresses in the 16–22 MPa range. Primary and secondary creep regimes were observed in all tests conducted in air and in steam. In air and in steam, creep run-out defined as 100 h at creep stress was achieved at 16 MPa. Similar creep strains were accumulated in air and in steam. Furthermore, creep strain rates and creep lifetimes were only moderately affected by the presence of steam. The retained properties of all specimens that achieved run-out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated. The tested specimens were also examined using electron probe microanalysis (EPMA) with wavelength dispersive spectroscopy (WDS). Analysis of the fracture surfaces revealed significant surface oxidation, but only trace amounts of boron and carbon. Cross sectional analysis showed increasing boron concentration in the specimen interior

  15. Comparison of microstructural and mechanical properties of Al–TiC, Al–B4C and Al–TiC–B4C composites prepared by casting techniques

    International Nuclear Information System (INIS)

    Mazaheri, Y.; Meratian, M.; Emadi, R.; Najarian, A.R.

    2013-01-01

    In the present work, production of Al–10%TiC, Al–10% B 4 C, Al–5%TiC–5%B 4 C (volume fraction) composites by casting techniques were studied. However, casting techniques suffers from poor incorporation and distribution of the reinforcement particles in the matrix. These problems become especially significant as the reinforcement size decreases due to greater agglomeration tendency and reduced wettability of the particles with the melt. Microstructure characterization of the composite samples was investigated by using scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffractometer (XRD).The results showed heat treatment of B 4 C particles and addition of TiC particles with the flux improved the wettability and incorporation of reinforcement particles into melt. Mechanical characterization of samples showed that maximum hardness had belonged to Al–5%TiC–5%B 4 C composite, maximum yield and tensile strength had belonged to Al–10%B 4 C composite and maximum elongation had belonged to Al–10%TiC composite. Furthermore, wear properties of composites revealed the better behavior for Al–B 4 C composite.

  16. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Boron by Titrimetry 7 to 13 Separation of Boron for Mass Spectrometry 14 to 19 Isotopic Composition by Mass Spectrometry 20 to 23 Separation of Halides by Pyrohydrolysis 24 to 27 Fluoride by Ion-Selective Electrode 28 to 30 Chloride, Bromide, and Iodide by Amperometric Microtitrimetry 31 to 33 Trace Elements by Emission Spectroscopy 34 to 46 1.3 The values stated in SI units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (F...

  17. Progress on B4C control rod modeling in RELAP/SCDAPSIM with application to quench and Phebus

    International Nuclear Information System (INIS)

    Kawahara, Keisuke; Hohorst, Judith K.; Allison, Chris M.

    2014-01-01

    The RELAP/SCDAPSIM code is designed to predict the behavior of reactor systems during normal and accident conditions. RELAP/SCDAPSIM/MOD3.5 is an experimental version of the code with the most advanced fuel and severe accident behavior models and correlations. It includes modeling improvements that were specifically added to support (a) the ongoing experimental severe accident programs in Europe and Japan and (b) the analysis and assessment activities related to the accident at the Fukushima Daiichi NPS. One of the improved models describes the behavior of cylindrical B 4 C control rods used in selected PWR designs and in integral experiments used to assess the heating and melting of PWR, BWR, and VVER assemblies. It replaces an older model that was originally developed by the US Nuclear Regulatory Commission in the mid- 1980's. It includes a combination of new and improved models and correlations to more accurately describe (a) eutectic reactions between Zircaloy, B 4 C, and stainless steel, (b) oxidation for B 4 C, Zircaloy, and stainless steel, and (c) the effects of the gap between the Zircaloy guide tube and the stainless steel sheath surrounding B 4 C pellets used in many control rod designs. This paper will discuss the development of the new model and validation of the model using the PHEBUS B 4 C test, FPT-3, and the KIT quench experiments with a central B 4 C control rod. (authors)

  18. Analytical support for the B4C control rod test QUENCH-07

    International Nuclear Information System (INIS)

    Homann, C.; Hering, W.; Fernandez Benitez, J.A.; Ortega Bernardo, M.

    2003-04-01

    Degradation of B 4 C absorber rods during a beyond design accident in a nuclear power reactor may be a safety concern. Among others, the integral test QUENCH-07 is performed in the FZK QUENCH facility and supported by analytical work within the Euratom Fifth Framework Programme on Nuclear Fission Safety to get a more profound database. Since the test differed substantially from previous QUENCH tests, much more work had to be done for pretest calculations than usual to guarantee the safety of the facility and to derive the test protocol. Several institutions shared in this work with different computer code systems, as used for nuclear reactor safety analyses. Due to this effort, problems could be identified and solved, leading to several modifications of the originally planned test conduct, until a feasible test protocol could be derived and recommended. All calculations showed the same trends. Especially the high temperatures and hence the small safety margin for the facility were a concern. In this report, contributions of various authors, engaged in this work, are presented. The test QUENCH-07 and the related computational support by the engaged institutions were co-financed by the European Community under the Euratom Fifth Framework Programme on Nuclear Fission Safety 1998 - 2002 (COLOSS Project, contract No. FIKS-CT-1999-00002). (orig.)

  19. Study of filtration of reactor beam of neutrons with cadmium in a multilayer shielding containing boron carbide

    International Nuclear Information System (INIS)

    Megahid, R.M.; El-Kall, E.H.

    1986-01-01

    Experimental measurements were carried out to study the effect of cadmium on the distribution and attenuation of reactor thermal neutrons emitted from a reactor core and the new thermal neutrons produced in a heterogeneous shield of water, iron, iron + B 4 C and ordinary concrete. The measurements were made using a reactor beam of neutrons filtered with cadmium emitted from one of the horizontal channels of ET-RR-1. It is found that the presence of cadmium sheet at channel exit causes a marked decrease in the thickness of the shield required to attenuate the thermal neutron flux by a certain factor. 12 refs., 5 figures. (author)

  20. The influence of hydrogen on the chemical, mechanical, optical/electronic, and electrical transport properties of amorphous hydrogenated boron carbide

    International Nuclear Information System (INIS)

    Nordell, Bradley J.; Karki, Sudarshan; Nguyen, Thuong D.; Rulis, Paul; Caruso, A. N.; Paquette, Michelle M.; Purohit, Sudhaunshu S.; Li, Han; King, Sean W.; Dutta, Dhanadeep; Gidley, David; Lanford, William A.

    2015-01-01

    Because of its high electrical resistivity, low dielectric constant (κ), high thermal neutron capture cross section, and robust chemical, thermal, and mechanical properties, amorphous hydrogenated boron carbide (a-B x C:H y ) has garnered interest as a material for low-κ dielectric and solid-state neutron detection applications. Herein, we investigate the relationships between chemical structure (atomic concentration B, C, H, and O), physical/mechanical properties (density, porosity, hardness, and Young's modulus), electronic structure [band gap, Urbach energy (E U ), and Tauc parameter (B 1/2 )], optical/dielectric properties (frequency-dependent dielectric constant), and electrical transport properties (resistivity and leakage current) through the analysis of a large series of a-B x C:H y thin films grown by plasma-enhanced chemical vapor deposition from ortho-carborane. The resulting films exhibit a wide range of properties including H concentration from 10% to 45%, density from 0.9 to 2.3 g/cm 3 , Young's modulus from 10 to 340 GPa, band gap from 1.7 to 3.8 eV, Urbach energy from 0.1 to 0.7 eV, dielectric constant from 3.1 to 7.6, and electrical resistivity from 10 10 to 10 15 Ω cm. Hydrogen concentration is found to correlate directly with thin-film density, and both are used to map and explain the other material properties. Hardness and Young's modulus exhibit a direct power law relationship with density above ∼1.3 g/cm 3 (or below ∼35% H), below which they plateau, providing evidence for a rigidity percolation threshold. An increase in band gap and decrease in dielectric constant with increasing H concentration are explained by a decrease in network connectivity as well as mass/electron density. An increase in disorder, as measured by the parameters E U and B 1/2 , with increasing H concentration is explained by the release of strain in the network and associated decrease in structural disorder. All of these correlations in a

  1. Nanomechanical and in situ TEM characterization of boron carbide thin films on helium implanted substrates: Delamination, real-time cracking and substrate buckling

    Energy Technology Data Exchange (ETDEWEB)

    Framil Carpeño, David, E-mail: david.framil-carpeno@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Ohmura, Takahito; Zhang, Ling [Strength Design Group, Structural Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Leveneur, Jérôme [National Isotope Centre, GNS Science, 30 Gracefield Road, Gracefield, Lower Hutt 5010 (New Zealand); Dickinson, Michelle [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Seal, Christopher [International Centre for Advanced Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Kennedy, John [National Isotope Centre, GNS Science, 30 Gracefield Road, Gracefield, Lower Hutt 5010 (New Zealand); Hyland, Margaret [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand)

    2015-07-15

    Boron carbide coatings deposited on helium-implanted and unimplanted Inconel 600 were characterized using a combination of nanoindentation and transmission electron microscopy. Real-time coating, cracking and formation of slip bands were recorded using in situ TEM-nanoindentation, allowing site specific events to be correlated with specific features in their load–displacement curves. Cross-sections through the residual indent impression showed a correlation between pop-outs in the load–displacement curves and coating delamination, which was confirmed with cyclic indentation experiments. Inconel exhibits (-11-1) and (1-1-1) twin variants in its deformed region beneath the indenter, organized in bands with a ladder-like arrangement. The nanomechanical properties of the metal–ceramic coating combinations exhibit a marked substrate effect as a consequence of helium implantation.

  2. Nanomechanical and in situ TEM characterization of boron carbide thin films on helium implanted substrates: Delamination, real-time cracking and substrate buckling

    International Nuclear Information System (INIS)

    Framil Carpeño, David; Ohmura, Takahito; Zhang, Ling; Leveneur, Jérôme; Dickinson, Michelle; Seal, Christopher; Kennedy, John; Hyland, Margaret

    2015-01-01

    Boron carbide coatings deposited on helium-implanted and unimplanted Inconel 600 were characterized using a combination of nanoindentation and transmission electron microscopy. Real-time coating, cracking and formation of slip bands were recorded using in situ TEM-nanoindentation, allowing site specific events to be correlated with specific features in their load–displacement curves. Cross-sections through the residual indent impression showed a correlation between pop-outs in the load–displacement curves and coating delamination, which was confirmed with cyclic indentation experiments. Inconel exhibits (-11-1) and (1-1-1) twin variants in its deformed region beneath the indenter, organized in bands with a ladder-like arrangement. The nanomechanical properties of the metal–ceramic coating combinations exhibit a marked substrate effect as a consequence of helium implantation

  3. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B{sub 4}C)

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Ali [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Abdollahi, Alireza, E-mail: alirezaabdollahi1366@gmail.com [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Biukani, Hootan [Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-25

    In the current research, aluminum based hybrid composite reinforced with boron carbide (B{sub 4}C) and carbon nanotubes (CNTs) was produced by powder metallurgy method. creep behavior, wear resistance, surface roughness, and hardness of the samples were investigated. To prepare the samples, Al 5083 powder was milled with boron carbide particles and carbon nanotubes using planetary ball mill under argon atmosphere with ball-to-powder weight ratio of 10:1 for 5 h. Afterwards, the milled powders were formed by hot press process at 380{sup °}C and then were sintered at 585{sup °}C under argon atmosphere for 2 h. There was shown to be an increase in hardness values of composite with an increase in B{sub 4}C content. The micrograph of worn surfaces indicate a delamination mechanism due to the presence of CNTs and abrasion mechanism in composite containing 10 vol.%B{sub 4}C. Moreover, it was shown that increasing B{sub 4}C content increases the wear resistance by 3 times under a load of 20 N and 10 times under a load of 10 N compared to CNTs-reinforced composite. surface roughness of the composite containing 5 vol.%CNT has shown to be more than other samples. The results of creep test showed that adding carbon nanotubes increases creep rate of Al 5083 alloy; however, adding B{sub 4}C decreases its creep rate. - Highlights: • Al 5083/(CNTs + B{sub 4}C) hybrid composite was produced by powder metallurgy method. • Creep behavior, wear resistance, surface roughness, and Hardness of samples were investigated. • Addition of CNTs to Al 5083 matrix reduces alloy hardness, wear resistance and creep strength. • By addition of B{sub 4}C and composite hybridization, creep strength and wear resistance increased. • Surface roughness of Al-5 vol.%CNT has shown to be more than other samples.

  4. Spectral characterisation of aperiodic normal-incidence Sb/B4C multilayer mirrors for the λ < 124 Å range

    Science.gov (United States)

    Vishnyakov, E. A.; Kopylets, I. A.; Kondratenko, V. V.; Kolesnikov, A. O.; Pirozhkov, A. S.; Ragozin, E. N.; Shatokhin, A. N.

    2018-03-01

    Three broadband aperiodic Sb/B4C multilayer mirrors were synthesised for the purposes of soft X-ray optics and spectroscopy in the wavelength range beyond the L-edge of Si (λ plasma radiation source and an electronic detector with a 2D spatial resolution (a CCD matrix with 13 × 13 μm sized pixels). The experimental spectra are compared with theoretical calculations. The effect of lower antimony and B4C layer densities on the reflection spectra is discussed.

  5. Reinforcement against crack propagation of PWR absorbers by development of boron-carbon-hafnium composites

    International Nuclear Information System (INIS)

    Provot, B.; Herter, P.

    2000-01-01

    In order to improve the mechanical behaviour of materials used as neutron absorbers in nuclear reactors, we have developed CERCER or CERMET composites with boron and hafnium. Thus a new composite B 4 C/HfB 2 has been especially studied. We have identified three kinds of degradation under irradiation (thermal gradient, swelling due to fission products and accidental corrosion) that induce imposed deformations cracking phenomena. Mechanical behaviour and crack propagation resistance have been studied by ball-on-three-balls and double torsion tests. A special device was developed to enable crack propagation and associated stress intensity factor measurements. Effects of structure and of a second phase are underline. First results show that these materials present crack initiation and propagation resistance much higher than pure boron carbide or hafnium diboride. We observe R-Curves effects, crack bridging or branching, crack arrests, and toughness increases that we can relate respectively to the composite structures. (author)

  6. Notch Sensitivity of Fatigue Behavior of a Hi-Nicalon™/SiC-B4C Composite at 1,200 °C in Air and in Steam

    Science.gov (United States)

    Ruggles-Wrenn, M. B.; Kurtz, G.

    2013-10-01

    The effect of holes on the fatigue life of a non-oxide ceramic composite processed via chemical vapor infiltration (CVI) was examined at 1,200 °C in laboratory air and in steam. The effect of holes on tensile strength at 1,200 °C was also evaluated. The composite comprised laminated woven Hi-Nicalon™ fibers in an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. Unnotched specimens and specimens with a center hole having a radius to width ratio of 0.24 were tested in tension-tension fatigue at 0.1 Hz and at 1.0 Hz. The fatigue stresses ranged from 100 to 140 MPa in air and in steam. Fatigue run-out was defined as 105 cycles at 0.1 Hz and as 2 × 105 cycles at 1.0 Hz. The net-section strength was less than the unnotched ultimate tensile strength. Comparison of notched and unnotched data also revealed that the fatigue performance was notch insensitive in both air and steam environments. Composite microstructure, as well as damage and failure mechanisms were investigated.

  7. Doped Boron Carbide-Based Polymers: Fundamental Studies of a Novel Class of Materials for Enhanced Neutron Detection

    Science.gov (United States)

    2016-03-01

    heterojunction diodes fabricated from these films show no evidence of Schottky barrier formation or of significant leakage current in reverse bias [8...all of summer 2012 for this purpose. Related project work: measuring the electronic structure and the surface oxide of thorium oxide ThO2 with Tony...Detecting and Nanoelectronic Applications, Techon 2012. 4. “The History and Development of Boron Carbon Alloy Devices and Rare Earth Heterojunction

  8. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2 particulates using SHS reactions of Ni-Ti-B4C and Ni-Ti-B4C-C systems during casting

    International Nuclear Information System (INIS)

    Yang Yafeng; Wang Huiyuan; Liang Yunhong; Zhao Ruyi; Jiang Qichuan

    2007-01-01

    Steel matrix composites locally reinforced with different molar ratios of in situ TiC/TiB 2 particulates (2:1, 1:1 and 1:2, respectively) have been fabricated successfully utilizing the self-propagating high-temperature synthesis (SHS) reactions of Ni-Ti-B 4 C and Ni-Ti-B 4 C-C systems during casting. Differential thermal analysis (DTA) and X-ray diffraction (XRD) results reveal that the exothermic reactions of the Ni-Ti-B 4 C and Ni-Ti-B 4 C-C systems proceed in such a way that Ni initially reacts with B 4 C and Ti to form Ni 2 B and Ti 2 Ni compounds, respectively, with heat evolution at 1037 deg. C; Subsequently, the external heat and the evolved heat from these exothermic reactions promote the reactions forming TiC and TiB 2 at 1133 deg. C. In the composites reinforced with 1:2 molar ratio of TiC/TiB 2 , almost all TiB 2 grains have clubbed structures, while TiC grains exhibit near-spherical morphologies. Furthermore, TiB 2 grain sizes decrease, with the increase of TiC content. In particular, in the composites reinforced with 2:1 molar ratio of TiC/TiB 2 , it is difficult to find the clubbed TiB 2 grains. Macro-pores and blowholes are absent in the local reinforcing region of the composites reinforced with 1:1 and 1:2 molar ratios of TiC/TiB 2 , while a few macro-pores can be observed in the composite reinforced with 2:1 molar ratio of TiC/TiB 2 . Moreover, the densities of the composites reinforced with 1:1 and 1:2 molar ratios of TiC/TiB 2 are higher than that of the composite reinforced with 2:1 molar ratio of TiC/TiB 2 . The composite reinforced with 1:2 molar ratio of TiC/TiB 2 has the highest hardness and the best wear resistance

  9. Two-step infiltration of aluminum melts into Al-Ti-B4C-CuO powder mixture pellets

    Science.gov (United States)

    Zhang, Jingjing; Lee, Jung-Moo; Cho, Young-Hee; Kim, Su-Hyeon; Yu, Huashun

    2016-03-01

    Aluminum matrix composites with a high volume fraction of B4C and TiB2 were fabricated by a novel processing technique - a quick spontaneous infiltration process. The process combines a pressureless infiltration with the combustion reaction of Al-Ti-B4C-CuO in molten aluminum. The process is realized in a simple and economical way in which the whole process is performed in air in a few minutes. To verify the rapidity of the process, the infiltration kinetics was calculated based on the Washburn equation in which melt flows into a porous skeleton. However, there was a noticeable deviation from the calculated results with the experimental results. Considering the cross-sections of the samples at different processing times, a new infiltration model (two step infiltration) consisting of macro-infiltration and micro-infiltration is suggested. The calculated kinetics results in light of the proposed model agree well with the experimental results.

  10. Effect of sintering temperature on structure of C-B4C-SiC composites with silicon additive

    International Nuclear Information System (INIS)

    Wu Lijun; Academia Sinica, Shenyang; Huang Qizhong; Yang Qiaoqin; Zhao Lihu; Xu Zhongyu

    1996-01-01

    Carbon materials possess good electric conductivity, heat conductivity, corrosion-resistance, self-lubrication and hot-shocking resistance, and are easily machined. However, they have low mechanical strength, and are easily oxidized in air at high temperature. On the contrary, ceramic materials have high mechanical strength and hardness, and have good wear-resistance and oxidation-resistance. However, they have the shortages of poor thermal-shock resistance lubrication, and are difficult to machine. Therefore, carbon/ceramic composites with the advantages of both carbon and ceramic materials have been widely studied in the recent years. Huang prepared C-B 4 C-SiC composites with the free sintering method and the hot pressing method, and studied the effects of Si, Al, Al 2 O 3 , Ni and Ti additives on the properties of the composites. The results showed that these additives could improve the properties of the composites. Zhao et al. studies the structure of C-B 4 C-SiC composites with Si additive sintered at 2,000 C and found two c-center monoclinic phases. In this paper, the authors discussed the effect of the sintering temperature on the structure of C-B 4 C-SiC composites with Si additive by means of transmission electron microscope (TEM) and x-ray diffractometer (XRD)

  11. Mechanical performance optimization of neutron shielding material based on short carbon fiber reinforced B4C/epoxy resin

    International Nuclear Information System (INIS)

    Wang Peng; Tang Xiaobin; Chen Feida; Chen Da

    2013-01-01

    To satisfy engineering requirements for mechanics performance of neutron shielding material, short carbon fiber was used to reinforce the traditional containing B 4 C neutron shielding material and effects of fiber content, length and surface treatment to mechanics performance of material was discussed. Based on Americium-Beryllium neutron source, material's neutron shielding performance was tested. The result of experiment prove that tensile strength of material which the quality ratio of resin and fiber is 5:1 is comparatively excellent for 10wt% B 4 C of carbon fiber reinforced epoxy resin. The tensile properties of material change little with the fiber length ranged from 3-10 mm The treatment of fiber surface with silane coupling agent KH-550 can increase the tensile properties of materials by 20% compared with the untreated of that. A result of shielding experiment that the novel neutron shielding material can satisfy the neutron shielding requirements can be obtained by comparing with B 4 C/polypropylene materials. The material has good mechanical properties and wide application prospect. (authors)

  12. Influencing factors and kinetics analysis on the leaching of iron from boron carbide waste-scrap with ultrasound-assisted method.

    Science.gov (United States)

    Li, Xin; Xing, Pengfei; Du, Xinghong; Gao, Shuaibo; Chen, Chen

    2017-09-01

    In this paper, the ultrasound-assisted leaching of iron from boron carbide waste-scrap was investigated and the optimization of different influencing factors had also been performed. The factors investigated were acid concentration, liquid-solid ratio, leaching temperature, ultrasonic power and frequency. The leaching of iron with conventional method at various temperatures was also performed. The results show the maximum iron leaching ratios are 87.4%, 94.5% for 80min-leaching with conventional method and 50min-leaching with ultrasound assistance, respectively. The leaching of waste-scrap with conventional method fits the chemical reaction-controlled model. The leaching with ultrasound assistance fits chemical reaction-controlled model, diffusion-controlled model for the first stage and second stage, respectively. The assistance of ultrasound can greatly improve the iron leaching ratio, accelerate the leaching rate, shorten leaching time and lower the residual iron, comparing with conventional method. The advantages of ultrasound-assisted leaching were also confirmed by the SEM-EDS analysis and elemental analysis of the raw material and leached solid samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Effect of Boron and Zirconium on the Structure and Tensile Properties of the Cast Nickel-Based Superalloy ATI 718Plus

    Science.gov (United States)

    Hosseini, Seyed Ali; Abbasi, Seyed Mehdi; Madar, Karim Zangeneh

    2018-04-01

    The effects of boron and zirconium on cast structure, hardness, and tensile properties of the nickel-based superalloy 718Plus were investigated. For this purpose, five alloys with different contents of boron and zirconium were cast via vacuum induction melting and then purified via vacuum arc remelting. Microstructural analysis by light-optical microscope and scanning electron microscope equipped with energy-dispersive x-ray spectroscopy and phase studies by x-ray diffraction analysis were performed. The results showed that boron and zirconium tend to significantly reduce dendritic arm spacing and increase the amount of Laves, Laves/gamma eutectic, and carbide phases. It was also found that boron led to the formation of B4C and (Cr, Fe, Mo, Ni, Ti)3B2 phases and zirconium led to the formation of intermetallic phases and ZrC carbide. In the presence of boron and zirconium, the hardness and its difference between dendritic branches and inter-dendritic spaces increased by concentrating such phases as Laves in the inter-dendritic spaces. These elements had a negative effect on tensile properties of the alloy, including ductility and strength, mainly because of the increase in the Laves phase. It should be noted that the largest degradation of the tensile properties occurred in the alloys containing the maximum amount of zirconium.

  14. Thermal conductivity and retention characteristics of composites made of boron carbide and carbon fibers with extremely high thermal conductivity for first wall armour

    Science.gov (United States)

    Jimbou, R.; Kodama, K.; Saidoh, M.; Suzuki, Y.; Nakagawa, M.; Morita, K.; Tsuchiya, B.

    1997-02-01

    The thermal conductivity of the composite hot-pressed at 2100°C including B 4C and carbon fibers with a thermal conductivity of 1100 W/ m· K was nearly the same as that of the composite including carbon fibers with a thermal conductivity of 600 W/ m· K. This resulted from the higher amount of B diffused into the carbon fibers through the larger interface. The B 4C content in the composite can be reduced from 35 to 20 vol% which resulted from the more uniform distribution of B 4C by stacking the flat cloth woven of carbon fibers (carbon fiber plain fabrics) than in the composite with 35 vol% B 4C including curled carbon fiber plain fabrics. The decrease in the B 4C content does not result in the degradation of D (deuterium)-retention characteristics or D-recycling property, but will bring about the decreased amount of the surface layer to be melted under the bombardment of high energy hydrogen ions such as disruptions because of higher thermal conduction of the composite.

  15. Influence of trace boron on the morphology of titanium carbide in an Al-Ti-C-B master alloy

    International Nuclear Information System (INIS)

    Nie Jinfeng; Liu Xiangfa; Ma Xiaoguang

    2010-01-01

    The influence of trace B (boron) element on the morphology of TiC crystals in an Al-Ti-C-B master alloy prepared by a melt reaction method has been investigated in this paper. The morphology and chemical composition of TiC crystals are characterized from X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersion spectroscopy (EDS), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) analyses. It is found that both TiC hexagonal platelet and TiC polyhedron have formed in the Al-Ti-C-B master alloy. Furthermore, a trace amount of B element is found in TiC hexagonal platelets evidenced by the EDS spectrum. However, the SAED pattern confirms that the crystal structure of TiC has not changed. The formation and growth mechanism of the TiC hexagonal platelet have been discussed. It is considered that the trace B element in the aluminum melt promotes the transformation of TiC from polyhedron to hexagonal platelet at the initial growth stage.

  16. A comparison study on the densification behavior and mechanical properties of gelcast vs conventionally formed B4C sintered conventionally and by microwaves

    International Nuclear Information System (INIS)

    Menchhofer, P.A.; Kiggans, J.O.; Morrow, M.S.; Schechter, D.E.

    1996-01-01

    The utilization of microwave energy for reaching high temperatures necessary to densify B 4 C powder is compared with conventional means of sintering by evaluating the mechanical properties after densification. Microwave energy has been shown to be an effective means for achieving high sintered densities, even though temperatures of ∼ 2,250 C are required. In this study, green preforms of B 4 C specimens were sintered by both conventional and microwave heating. This study also utilized an advanced forming method called ''Gelcasting'' developed at ORNL. Gelcasting is a fluid forming process whereby high solids suspensions of powders containing dissolved monomers are cast into a mold, then polymerized or ''gelled'' in situ. This investigation compares microstructures and mechanical properties of both Gelcast B 4 C and ''conventionally'' die-pressed B 4 C. The microstructures and final mechanical properties of B 4 C specimens are discussed

  17. MICROSTRUCTURE, THERMO-PHYSICAL, MECHANICAL AND WEAR PROPERTIES OF IN-SITU FORMED BORON CARBIDE - ZIRCONIUM DIBORIDE COMPOSITE

    Directory of Open Access Journals (Sweden)

    T. S. R. Ch. Murthy

    2017-12-01

    Full Text Available Microstructure, thermos-physical, mechanical and wear properties of in-situ formed B₄C- ZrB₂ composite were investigated. Coefficient of thermal expansion, thermal diffusivity and electrical resistivity of the composite were measured at different temperatures up to 1000 °C in inert atmosphere. Flexural strength was measured up to 900 °C in air. Friction and wear properties have been studied at different loads under reciprocative sliding, using a counter body (ball of cemented tungsten carbide (WC-Co at ambient conditions. X-ray diffraction (XRD and electron probe microanalysis (EPMA confirmed the formation of ZrB₂ as the reaction product in the composite. Electrical resistivity was measured as 3.02 x 10-4Ω.m at 1000°C. Thermal conductivity measured at temperatures between 25°C and 1000 °C was in the range of 8 to 10 W/m-K. Flexural strength of the composite decreased with increase in temperature and reached a value of 92 MPa at 900°C. The average value of coefficient of friction (COF was measured as 0.15 at 20 N load and 10 Hz frequency. Increase of load from 5 N to 20 N resulted in decrease in COF from 0.24 to 0.15 at 10 Hz frequency. Specific wear rate data observed was of the order of 10-6 mm³/N-m. Both abrasive and tribo-chemical reaction wear mechanisms were observed on the worn surface of flat and counter body materials. At higher loads (≥10 N a tribo-chemical reaction wear mechanism was dominant.

  18. Optical-optical double resonance, laser induced fluorescence, and revision of the signs of the spin-spin constants of the boron carbide (BC) free radical

    Science.gov (United States)

    Sunahori, Fumie X.; Nagarajan, Ramya; Clouthier, Dennis J.

    2015-12-01

    The cold boron carbide free radical (BC X 4Σ-) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B 4Σ--X 4Σ- and E 4Π-X 4Σ- band systems of both 11BC and 10BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from the intermediate B state to the final E state with a second laser by monitoring the subsequent E-X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B 4Σ- excited state. It has been shown that λ″ expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E 4Π-X 4Σ- 0-0 and 1-0 bands of 11BC. The E-X 0-0 band of 10BC was found to be severely perturbed. The ground state main electron configuration is …3σ24σ25σ11π22π0 and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.

  19. Study of boron carbide evolution under neutron irradiation; Contribution a l'etude de l'evolution du carbure de bore sous irradiation neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Simeone, D. [CEA/Saclay, Dept. de Mecanique et de Technologie (DMT), 91 - Gif-sur-Yvette (France)]|[Universite Blaise Pascal, Clermont-Ferrand II, (CNRS), 63 - Aubiere (France)

    1999-07-01

    Owing to its high neutron efficiency, boron carbide (B{sub 4}C) is used as a neutron absorber in control rods of nuclear plants. Its behaviour under irradiation has been extensively studied for many years. It now seems clear that brittleness of the material induced by the {sup 10}B(n,{alpha}){sup 7}Li capture reaction is due to penny shaped helium bubbles associated to a high strain field around them. However, no model explains the behaviour of the material under neutron irradiation. In order to build such a model, this work uses different techniques: nuclear microprobe X-ray diffraction profile analysis and Raman and Nuclear Magnetic Resonance Spectroscopy to present an evolution model of B{sub 4}C under neutron irradiation. The use of nuclear reactions produced by a nuclear microprobe such as the {sup 7}Li(p,p'{gamma}){sup 7}Li reaction, allows to measure lithium profile in B{sub 4}C pellets irradiated either in Pressurised Water Reactors or in Fast Breeder Reactors. Examining such profiles enables us to describe the migration of lithium atoms out of B{sub 4}C materials under neutron irradiation. The analysis of X-ray diffraction profiles of irradiated B{sub 4}C samples allows us to quantify the concentrations of helium bubbles as well as the strain fields around such bubbles.Furthermore Raman spectroscopy studies of different B{sub 4}C samples lead us to propose that under neutron irradiation. the CBC linear chain disappears. Such a vanishing of this CBC chain. validated by NMR analysis, may explain the penny shaped of helium bubbles inside irradiated B{sub 4}C. (author)

  20. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    high temperature reaction between elemental boron and car- bon to form B4C is .... cible was used as the container for the electrolyte and also acted as an anode. ... chosen as cathode due to its availability, low cost, ease of fabrication and ...

  1. Reactivity and neutron flux measurements in IPEN/MB-01 reactor with B4C burnable poison

    International Nuclear Information System (INIS)

    Fer, Nelson Custodio; Moreira, Joao Manoel Losada

    2000-01-01

    Burnable poison rods, made of B 4 C- Al 2 O 3 pellets with 5.01 mg/cm 3 10 B concentration, have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. Several core parameters which are affected by the burnable poisons rods have been measured. The principal results, for the situation in which the burnable poison rods are located near the absorber rods of a control rod, are they cause a 29% rod worth shadowing, a reduction of 39% in the local void coefficient of reactivity, a reduction of 4.8% in the isothermal temperature coefficient of reactivity, and a reduction of 9% in the thermal neutron flux in the region where the burnable poison rods are located. These experimental results will be used for the validation of burnable poison calculation methods in the CTMSP. (author)

  2. Optical-optical double resonance, laser induced fluorescence, and revision of the signs of the spin-spin constants of the boron carbide (BC) free radical

    Energy Technology Data Exchange (ETDEWEB)

    Sunahori, Fumie X. [Department of Chemistry and Physics, Franklin College, Franklin, Indiana 46131 (United States); Nagarajan, Ramya; Clouthier, Dennis J., E-mail: dclaser@uky.edu [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States)

    2015-12-14

    The cold boron carbide free radical (BC X {sup 4}Σ{sup −}) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B {sup 4}Σ{sup −}–X {sup 4}Σ{sup −} and E {sup 4}Π–X {sup 4}Σ{sup −} band systems of both {sup 11}BC and {sup 10}BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from the intermediate B state to the final E state with a second laser by monitoring the subsequent E–X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B {sup 4}Σ{sup −} excited state. It has been shown that λ″ < 0 is in fact expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E {sup 4}Π–X {sup 4}Σ{sup −} 0-0 and 1-0 bands of {sup 11}BC. The E–X 0-0 band of {sup 10}BC was found to be severely perturbed. The ground state main electron configuration is …3σ{sup 2}4σ{sup 2}5σ{sup 1}1π{sup 2}2π{sup 0} and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.

  3. Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al–B4C composite material via hot isostatic pressing

    International Nuclear Information System (INIS)

    Park, Jin-Ju; Hong, Sung-Mo; Lee, Min-Ku; Rhee, Chang-Kyu; Rhee, Won-Hyuk

    2015-01-01

    Highlights: • 6061Al–B 4 C neutron shielding composites are fabricated by sintering and HIP. • HIP process improves the wettability of B 4 C particles into 6061Al matrix. • Neutron attenuation performance can be enhanced by application of HIP process. - Abstract: Sandwich type of 6061Al–B 4 C composite plates, which are used as a thermal neutron absorber for spent nuclear fuel pool storage rack, were fabricated using two different consolidation ways as sintering and hot isostatic pressing (HIP) processes and their thermal neutron shielding efficiency was investigated as a function of B 4 C concentration ranging from 0 to 40 wt.%. For this purpose, two respective inner core compaction parts of sintered and HIPped neutron absorbing composite materials were first produced and then cladded them between two outer plates by HIP process. The application of HIP process provided not only a lead of excellent interfacial adhesion due to the improved wettability but also an enhancement of thermal neutron shielding efficiency owing to the more uniform dispersion of B 4 C particles

  4. Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries

    Science.gov (United States)

    Jiang, H. R.; Shyy, W.; Wu, M. C.; Wei, L.; Zhao, T. S.

    2017-10-01

    The potential of B4C as a metal-free catalyst for vanadium redox reactions is investigated by first-principles calculations. Results show that the central carbon atom of B4C can act as a highly active reaction site for redox reactions, due primarily to the abundant unpaired electrons around it. The catalytic effect is then verified experimentally by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests, both of which demonstrate that B4C nanoparticles can enhance the kinetics for both V2+/V3+ and VO2+/VO2+ redox reactions, indicating a bi-functional effect. The B4C-nanoparticle-modified graphite felt electrodes are finally prepared and tested in vanadium redox flow batteries (VRFBs). It is shown that the batteries with the prepared electrodes exhibit energy efficiencies of 88.9% and 80.0% at the current densities of 80 and 160 mA cm-2, which are 16.6% and 18.8% higher than those with the original graphite felt electrodes. With a further increase in current densities to 240 and 320 mA cm-2, the batteries can still maintain energy efficiencies of 72.0% and 63.8%, respectively. All these results show that the B4C-nanoparticle-modified graphite felt electrode outperforms existing metal-free catalyst modified electrodes, and thus can be promising electrodes for VRFBs.

  5. Impurity and particle recycling reduction by boronization in JT-60U

    International Nuclear Information System (INIS)

    Higashijima, S.; Sugie, T.; Kubo, H.; Tsuji, S.; Shimada, M.; Asakura, N.; Hosogane, N.; Kawano, Y.; Nakamura, H.; Itami, K.; Sakasai, A.; Shimizu, K.; Ando, T.; Saidoh, M.

    1995-01-01

    In JT-60U boronization using decaborane was carried out. Boronization reduced the oxygen impurity in OH discharges and shortened the wall conditioning after the vacuum vessel vent and consequently enabled JT-60U to produce clean plasmas easily except for NB heated plasmas. After boronization, particle recycling was reduced drastically in OH and NB discharges. High confinement plasmas were obtained including high β p mode and H-mode discharges. In the latest boronization part of divertor plates were replaced with B 4 C coated tiles with a B 4 C thickness similar 300 μm. After introducing B 4 C divertor tiles, an explosive generation of boron particles from the tiles was observed. By the combined effects of boronization with decaborane and boron generation from B 4 C tiles, oxygen impurity was so low that oxygen line signals were reduced to noise levels after the latest boronization. On the other hand, boron burst from the B 4 C tiles restricted the operation of JT-60U. ((orig.))

  6. Optimization of friction and wear behaviour of Al7075-Al2O3-B4C metal matrix composites using Taguchi method

    Science.gov (United States)

    Dhanalakshmi, S.; Mohanasundararaju, N.; Venkatakrishnan, P. G.; Karthik, V.

    2018-02-01

    The present study deals with investigations relating to dry sliding wear behaviour of the Al 7075 alloy, reinforced with Al2O3 and B4C. The hybrid composites are produced through Liquid Metallurgy route - Stir casting method. The amount of Al2O3 particles is varied as 3, 6, 9, 12 and 15 wt% and the amount of B4C is kept constant as 3wt%. Experiments were conducted based on the plan of experiments generated through Taguchi’s technique. A L27 Orthogonal array was selected for analysis of the data. The investigation is to find the effect of applied load, sliding speed and sliding distance on wear rate and Coefficient of Friction (COF) of the hybrid Al7075- Al2O3-B4C composite and to determine the optimal parameters for obtaining minimum wear rate. The samples were examined using scanning electronic microscopy after wear testing and analyzed.

  7. Influence of B4C-doping and high-energy ball milling on phase formation and critical current density of (Bi,Pb)-2223 HTS

    Science.gov (United States)

    Margiani, N. G.; Mumladze, G. A.; Adamia, Z. A.; Kuzanyan, A. S.; Zhghamadze, V. V.

    2018-05-01

    In this paper, the combined effects of B4C-doping and planetary ball milling on the phase evolution, microstructure and transport properties of Bi1.7Pb0.3Sr2Ca2Cu3Oy(B4C)x HTS with x = 0 ÷ 0.125 were studied through X-ray diffraction (XRD), scanning electron microscopy (SEM), resistivity and critical current density measurements. Obtained results have shown that B4C additive leads to the strong acceleration of high-Tc phase formation and substantial enhancement in Jc. High-energy ball milling seems to produce a more homogeneous distribution of refined doped particles in the (Bi,Pb)-2223 HTS which results in an improved intergranular flux pinning and better self-field Jc performance.

  8. Effects of B4C Addition on the Laser Beam Welding Characteristics of Al/SiC MMCs Produced By P/M

    Directory of Open Access Journals (Sweden)

    Serdar KARAOĞLU

    2011-01-01

    Full Text Available Fusion weldability characteristics of metal matrix composites (MMC produced by powder metallurgy (P/M are usually insufficient due to unwanted micro-structural changes that occur during welding. This study aims to investigate the effects of B4C addition as reinforcement on the weld quality of Al/SiC MMCs. After the production of Al/SiC MMCs by P/M with or without the addition of B4C, laser beam welding (LBW characteristics of the materials were investigated by focusing on the integrity of the welds. Optical microscopy (OM, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX were utilized for the characterization of the welds. Results show that Al/SiC MMCs produced by P/M can not be easily welded by LBW, but weldability characteristics of the material can be improved by the addition of B4C.

  9. Friction Stir Welding of Al-B4C Composite Fabricated by Accumulative Roll Bonding: Evaluation of Microstructure and Mechanical Behavior

    Science.gov (United States)

    Moradi Faradonbeh, Alireza; Shamanian, Morteza; Edris, Hossein; Paidar, Moslem; Bozkurt, Yahya

    2018-02-01

    In this investigation, friction stir welding (FSW) of Al-B4C composite fabricated by 10 cycles accumulative roll bonding was conducted. In order to investigate the influences of pin geometry on microstructure and mechanical properties, four different pin geometries (cylindrical, square, triangular and hexagonal) were selected. It was found that FSW parameters had a major effect on the fragmentation and distribution of reinforcement particles in stir zone. When the tool travel speed was increased, the distribution of B4C particles was become gradually uniform in the aluminum matrix. The effect of tool rotational speed on the peak temperature was determined to be greater than the tool travel speed. The attained data of tensile properties and microhardness tests showed that the tool travel speed had bilateral effect on the tensile strength. The maximum tensile joint efficiency was obtained as 238% for FSWed of Al-2%B4C composite to annealed base Al sheet.

  10. Microstructure and electrical properties of slug-type resistors based on B4C and TiC - ESCA - XPS and impedance spectroscopy investigations

    International Nuclear Information System (INIS)

    Klimiec, E.; Zaraska, W.; Stobiecki, T.; Bak, W.; Starzyk, F.

    2000-01-01

    The microstructure and electrical properties of slug-type resistors based on B 4 C and TiC were investigated. From XPS measurements was deducted that Ti in TiO 2 is in intermediate oxidation number between Ti +4 and Ti +3 . The impedance of both type of resistors is independent on frequency in the range from 10 3 to 10 4 Hz, only very subtle differences above 10 4 Hz are observed. The metallic type conductivity in TiC and semiconducting in B 4 C was established. (author)

  11. The effect of strontium on the microstructure, porosity and tensile properties of A356-10%B4C cast composite

    International Nuclear Information System (INIS)

    Lashgari, H.R.; Emamy, M.; Razaghian, A.; Najimi, A.A.

    2009-01-01

    This study was undertaken to investigate the effect of different concentrations of strontium (0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5% and 1%) on the microstructure, porosity content and tensile properties of A356-10%B 4 C particulate metal matrix composite. In this work, the matrix alloy and composite were characterized by optical microscope, scanning electron microscope equipped with EDS and XRD. The composite ingots were made by stir casting process. The results showed that the addition of 0.03%Sr strongly modified silicon eutectic phase in A356 monolithic alloy, but 0.5%Sr was needed to complete the modification of A356-10%B 4 C composite. Results also demonstrated that Sr addition increases shrinkage porosity and generates new intermetallics in the microstructure. Further investigations on tensile tests revealed optimum strontium levels for improving tensile properties. In the point of fracture behavior of the composite, modified specimens with 0.2%Sr showed broken B 4 C particles and acceptable cohesion between B 4 C and matrix.

  12. Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356-10%B4C cast composites

    International Nuclear Information System (INIS)

    Lashgari, H.R.; Zangeneh, Sh.; Shahmir, H.; Saghafi, M.; Emamy, M.

    2010-01-01

    In present paper, an attempt was made to examine the influence of T6 heat treatment (solution treatment at 540 o C for 5 h, quenching in hot water and artificial aging at 170 o C for 8 h) on the microstructure, tensile properties and dry sliding wear behavior of A356-10%B 4 C cast composites. The composite ingots were made by stir casting process. In this work, the matrix alloy and composite were characterized by optical microscope, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, tensile tests and conventional pin-on-disk experiment. The obtained results showed that in Al-B 4 C composite, T6 treatment was a dominant factor on the hardness improvement in comparison with hardness increasing due to the addition of B 4 C hard particles. In addition, T6 treatment can contribute to the strong bonding between B 4 C and matrix alloy and also it can change eutectic silicon morphology from acicular to near spherical. This case can lead to higher strength and wear properties of heat treated metal matrix composites in comparison with unheat treated state. Observation of worn surfaces indicated detachment of mechanically mixed layer which can primarily due to the delamination wear mechanism under higher applied load.

  13. Dry sliding tribological behavior and mechanical properties of Al2024–5 wt.%B4C nanocomposite produced by mechanical milling and hot extrusion

    International Nuclear Information System (INIS)

    Abdollahi, Alireza; Alizadeh, Ali; Baharvandi, Hamid Reza

    2014-01-01

    Highlights: • Nanostructured Al2024 and Al2024–B 4 C nanocomposite prepared via mechanical milling. • The milled powders formed by hot pressing and then exposed to hot extrusion. • Tribological behavior and mechanical properties of samples were investigated. • Al2024–B 4 C nanocomposite showed a better wear resistance and mechanical properties. - Abstract: In this paper, tribological behavior and mechanical properties of nanostructured Al2024 alloy produced by mechanical milling and hot extrusion were investigated before and after adding B 4 C particles. Mechanical milling was used to synthesize the nanostructured Al2024 in attrition mill under argon atmosphere up to 50 h. A similar process was used to produce Al2024–5 wt.%B 4 C composite powder. The milled powders were formed by hot pressing and then were exposed to hot extrusion in 750 °C with extrusion ratio of 10:1. To study the microstructure of milled powders and hot extruded samples, optical microscopy, transmission electron microscopy and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS) were used. The mechanical properties of samples were also compared together using tension, compression and hardness tests. The wear properties of samples were studied using pin-on-disk apparatus under a 20 N load. The results show that mechanical milling decreases the size of aluminum matrix grains to less than 100 nm. The results of mechanical and wear tests also indicate that mechanical milling and adding B 4 C particles increase strength, hardness and wear resistance of Al2024 and decrease its ductility remarkably

  14. Laser cladding Ni-base composite coating on titanium alloy with pre-placed B4C+NiCoCrAlY

    International Nuclear Information System (INIS)

    Qingwu Meng; Lin Geng; Zhenzhu Zheng

    2005-01-01

    Using a CO 2 laser, a process of cladding Ni-base composite coating on Ti6Al4V with pre-placed B 4 C and NiCoCrAlY was studied. A good metallurgical bonding coating without cracks and pores was obtained in reasonable ratio of components and low energy laser process. Morphology and microstructure of the coating were analyzed with OM, XRD, SEM and EDS. It is certain that there was a reaction between B 4 C and Ti during in-situ producing TiB 2 and TiC. The Ni-base composite coating is strengthened with TiB 2 and TiC reinforcement phases. Vickers hardness tester measured that the average microhardness of the coating is HV1200 and it is 3.5 times of the Ti6Al4V substrate. The high hard coating containing several reinforcement phases greatly enhances wear resistance of titanium alloy. (orig.)

  15. Investigation of the microstructure of Ni and B4C ceramic-metal mixtures obtained by cold spray coating and followed by laser cladding

    Science.gov (United States)

    Filippov, A. A.; Fomin, V. M.; Orishich, A. M.; Malikov, A. G.; Ryashin, N. S.; Golyshev, A. A.

    2017-10-01

    In the present work, a combined method is considered for the production of a metal-matrix composite coating based on Ni and B4C. The coating is created by consistently applied methods: cold spray and laser cladding. Main focus of this work aimed to microstructure of coatings, element content and morphology of laser tracks. At this stage, the authors focused on the interaction of the laser unit with the substance without affecting the layer-growing technology products. It is shown that coating has deformed particles of nickel and the significantly decreased content of ceramic particles B4C after cold spray. After laser cladding there are no boundaries between nickel and dramatically changes in ceramic particles.

  16. A Tri-modal 2024 Al -B4C composites with super-high strength and ductility: Effect of coarse-grained aluminum fraction on mechanical behavior

    Directory of Open Access Journals (Sweden)

    Alireza Abdollahi

    2014-12-01

    Full Text Available In this study, ultrafine grained 2024 Al alloy based B4C particles reinforced composite was produced by mechanical milling and hot extrusion. Mechanical milling was used to synthesize the nanostructured Al2024 in attrition mill under argon atmosphere up to 50h. A similar process was used to produce Al2024-5%wt. B4C composite powder. To produce trimodal composites, milled powders were combined with coarse grained aluminum in 30 and 50 wt% and then were exposed to hot extrusion at 570°C. The microstructure of hot extruded samples were studied by optical microscope, Transmission electron microscope (TEM and scanning electron microscope (SEM equipped with EDS spectroscopy. The mechanical properties of samples were compared by using tensile, compression and hardness tests. The results showed that the strength, after 50 h milling and addition of 5wt% B4C, increased from 340 to 582 MPa and the hardness increased from 87 HBN to 173 HBN, but the elongation decreased from 14 to 0.5%. By adding the coarse-grained aluminum powder, the strength and hardness decreased slightly, but the increases in return. Ductility increase is the result of increase in dislocation movements and strength increase is the result of restriction in plastic deformation by nanostructured regions. Furthermore, the strength and hardness of trimodal composites were higher, but their ductility was lower.

  17. Measurements and Monte-Carlo simulations of the particle self-shielding effect of B4C grains in neutron shielding concrete

    Science.gov (United States)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Llamas-Jansa, I.; Kazi, S.; Bentley, P. M.

    2018-06-01

    A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 Å neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.

  18. In situ synthesis and formation mechanism of ZrC and ZrB2 by combustion synthesis from the Co-Zr-B4C system

    Directory of Open Access Journals (Sweden)

    Mengxian Zhang

    2015-09-01

    Full Text Available ZrC-ZrB2-based composites were prepared by combustion synthesis (CS reaction from 10 wt.% to 50 wt.% Co-Zr-B4C powder mixtures. With increasing Co contents, the particle sizes of near-spherical ZrC and platelet-like ZrB2 decreased from 1 μm to 0.5 μm and from 5 μm to 2 μm, respectively. In addition, the formation mechanism of ZrC and ZrB2 was explored by the phase transition and microstructure evolution on the combustion wave quenched sample in combination with differential scanning calorimeter analysis. The results showed that the production of ZrC was ascribed to the solid-solid reaction between Zr and C and the precipitation from the Co-Zr-B-C melt, while ZrB2 was prepared from the saturated liquid. The low B concentration in the Co-Zr-B-C liquid and high cooling rate during the CS process led to the presence of Co2B and ZrCo3B2 in the composites. The addition of Co in the Co-Zr-B4C system not only prevented ZrC and ZrB2 particulates from growing, but also promoted the occurrence of ZrC-ZrB2-forming reaction.

  19. Sliding-wear resistance of pure near fully-dense B4C under lubrication with water, diesel fuel, and paraffin oil

    DEFF Research Database (Denmark)

    Ortiz, Angel L.; Leal, Victor Manuel Candelario; Borrero-López, Oscar

    2017-01-01

    The sliding-wear resistance of pure near fully-dense B4C is investigated, and the wear mode/mechanisms identified, under lubrication with water, diesel fuel, and paraffin oil. It is found that the wear is mild in the three cases, with specific wear rates (SWRs) of 10−16–10−17 m3/N m. Nonetheless......, the wear resistance of the B4C ceramic is one order of magnitude greater under oil lubrication (1016 N m/m3) than under water lubrication (1015 N m/m3), and twice as great for the specific case of paraffin oil than diesel fuel, attributable to the lubricant’s viscosity. It is also found that the wear mode...... is always abrasion, and that the wear mechanisms are plastic deformation and localized fracture with grain pullout. However, in agreement with the macro-wear data, the severity of the wear damage is lower under lubrication with paraffin oil, followed by diesel fuel, and lastly water. Finally...

  20. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  1. Principles of Structure and Phase Composition Formation in Composite Master Alloys of the Al-Ti-B/B4c Systems Used for Aluminum Alloy Modification

    Science.gov (United States)

    Zhukov, I. A.; Promakhov, V. V.; Matveev, A. E.; Platov, V. V.; Khrustalev, A. P.; Dubkova, Ya. A.; Vorozhtsov, S. A.; Potekaev, A. I.

    2018-03-01

    The principles of formation of structure and properties of materials produced by self-propagating hightemperature synthesis (SHS) from the Al-Ti-B/B4C powder systems are identified. It is shown that the SHSmaterials produced from the Al-Ti-B powder systems consist of a TiAl intermetallic matrix with inclusions of titanium diboride particles. It is found out that an introduction of 1 wt.% of TiB2 particles into the melt of the AD35 aluminum alloy allows reducing the grain size from 620 to 220 μm and gives rise to an increase in the ultimate tensile strength of as-cast specimens from 100 to 145 MPa and in the plasticity from 7 to 9%.

  2. Behaviour of a VVER-1000 fuel element with boron carbide/steel absorber tested under severe fuel damage conditions in the CORA facility (Results of experiment CORA-W2)

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Schanz, G.; Schumacher, G.; Sepold, L.

    1994-10-01

    The 'Severe Fuel Damage' (SFD) experiments of the Kernforschungszentrum Karlsruhe (KfK), Federal Republic of Germany, were carried out in the out-of-pile facility 'CORA' as part of the international Severe Fuel Damage (SFD) research. The experimental program was set up to provide information on the failure mechanisms of Light Water Reactor (LWR) fuel elements in a temperature range from 1200 C to 2000 C and in few cases up to 2400 C. Between 1987 and 1992 a total of 17 CORA experiments with two different bundle configurations, i.e. PWR (Pressurized Water Reactor) and BWR (Boiling Water Reactor) bundles were performed. These assemblies represented 'Western-type' fuel elements with the pertinent materials for fuel, cladding, grid spacer, and absorber rod. At the end of the experimental program two VVER-1000 specific tests were run in the CORA facility with identical objectives but with genuine VVER-type materials. The experiments, designated CORA-W1 and CORA-W2 were conducted on February 18, 1993 and April 21, 1993, respectively. Test bundle CORA-W1 was without absorber material whereas CORA-W2 contained one absorber rod (boron carbide/steel). As in the earlier CORA tests the test bundles were subjected to temperature transients of a slow heatup rate in a steam environment. The transient phases of the tests were initiated with a temperature ramp rate of 1 K/s. With these conditions a so-called small-break LOCA was simulated. The temperature escalation due to the exothermal zircon/niobium-steam reaction started at about 1200 C, leading the bundles to maximum temperatures of approximately 1900 C. The thermal response of bundle CORA-W2 is comparable to that of CORA-W1. In test CORA-W2, however, the temperature front moved faster from the top to the bottom compared to test CORA-W1 [de

  3. Boron-coated straws as a replacement for 3He-based neutron detectors

    International Nuclear Information System (INIS)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-01-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3 He gas. It is estimated that the annual demand of 3 He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3 He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10 B-enriched boron carbide ( 10 B 4 C). In addition to the high abundance of boron on Earth and low cost of 10 B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3 He-based detectors, and alternate technologies such as 10 BF 3 tubes and 10 B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3 He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3 He tube, 187 cm long, pressurized to 3 atm.

  4. Boron-coated straws as a replacement for 3He-based neutron detectors

    Science.gov (United States)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  5. Thermoelectric properties of β-boron and some boron compounds. Final report, August 1981-September 1984

    International Nuclear Information System (INIS)

    Slack, G.A.; Rosolowski, J.H.; Miller, M.L.; Huseby, I.C.

    1984-12-01

    The thermoelectric properties, that is the Seebeck coefficient, and electrical and thermal conductivity, of doped β-boron have been measured from 300 to 1600 K. Most of the useful doping elements are transition metals and occupy interstitial sites in the lattice. The highest figure of merit so far achieved at 1000 K is ZT = 0.11 for P-type, polycrystalline, hot-pressed β-boron doped with copper. Higher values may be achievable once a better P-type dopant is found. Some experiments on B 68 Y, α-B 12 Al, B 4 C, and B 6 Si are described. Transition metals appear to be effective dopants for B 68 Y and B 4 C

  6. Reactivity determination of the Al2O3-B4C burnable poison as a function of its concentration in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Giada, Marino Reis

    2005-01-01

    Burnable poison rods made of Al 2 O 3 -B 4 C pellets with different concentrations of 10 B have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. The experiments evaluated the reactivity of the burnable poison rods as a function of the 10 B concentration, and the shadowing effect on the control rod reactivity worth as a function of the distance between the burnable position rods and the control rod. The results showed that the burnable poison rods have a non-linear behavior as function of the 10 B concentration, starting to reach an asymptotic value for concentrations higher than 7 g/cm 3 of 10 B. The shadowing effect on the control rods was substantial. When the burnable poison rods were beside the control rod, its reactivity worth decreased as much as 30 %, and when they were 10,5 cm distant, the control rod worth decreased by 7 %. The MCNP results for the burnable poison reactivity effects agreed within experimental errors with the measured values. (author)

  7. A temperature dependent ENDF/B-VI.8 ACE library for UO2, ThO2, Zirc4, SS AISI-348, H2O, B4C and Ag-In-Cd alloy

    International Nuclear Information System (INIS)

    Dalle, Hugo M.; Bianchini, Mario; Gomes, Paulo Cezar

    2009-01-01

    Most MCNP standard neutron ACE libraries are processed at room temperature, 293,6 deg K. The temperature enters into the processing of the evaluation of a data file through the Doppler broadening of cross-sections. The nuclear fuel burnup usually takes place at reactor core temperatures much higher than room temperature, consequently, Monte Carlo burnup calculations should not only use the best cross-sections evaluations available but also use evaluations that are at temperatures approximating the temperatures of the application. In order to face the scarcity of temperature dependent MCNP cross-sections data to most isotopes, CDTN is developing an in-house temperature dependent neutron library for those nuclides commonly necessary in the systems simulated for the ongoing projects demanding Monte Carlo burnup. This paper describes the data processing of the ENDF/B-VI, release 8, using the NJOY99 code, towards provides this temperature dependent ACE library. Up to now fifty one elements and isotopes of the materials uranium oxide, thorium oxide, zircaloy-4, stainless steel AISI-348, light water, boron carbide and the silver-indium-cadmium alloy were processed at temperatures range from 293,6 deg K to 1200 deg K. Some benchmarks for thorium cycle described in the 'OECD/NEA International Handbook of Evaluated Criticality Safety Benchmark Experiments' were simulated using MCNP5 and the data set of this in-house library and the results usually agree with those obtained for the .60c standard MCNP neutron library for room temperature. (author)

  8. Pyrotechnic Smoke Compositions Containing Boron Carbide

    Science.gov (United States)

    2012-06-10

    smoke. Experimentation and thermodynamic modeling were used in conjunction to develop the compositions which were then evaluated both visually and by...fuel to produce thick clouds of white smoke. Experimentation and thermodynamic modeling were used in conjunction to develop the compositions which...Transmittance-based measurements may be used to quantify the effectiveness of screening smokes. The Beer -Lambert law is used to define the figures of merit

  9. The preparation and composition design of boron-rich lanthanum hexaboride target for sputtering

    International Nuclear Information System (INIS)

    Chen, Defang; Min, Guanghui; Wu, Yan; Yu, Huashun; Zhang, Lin

    2015-01-01

    Highlights: • High-purity LaB 6 powder was prepared due to significant reduction of residual B 4 C and effective purification process. • The effects of raw materials ratio on the size, morphology, phase structure and crystalline size of LaB 6 were studied. • The correlation of component between LaB 6 films and boron-rich targets was established. • The variation of densities of LaB 6 targets with sintering time and sintering temperature was investigated. - Abstract: Lanthanum Hexaboride (LaB 6 ) nano-film has been proved to be promising transparent thermal insulation material, while its properties are limited on purity and composition. High-purity LaB 6 polycrystalline powder was prepared through boron carbide reduction method in this work. A series of techniques such as scanning electron microscopy, X-ray diffraction, laser particle analyzer and inductively coupled plasma emission spectrometer were employed to characterize LaB 6 powder. As raising the content of La 2 O 3 in reactants, more uniform, finer (2.686 μm) and purer (99.5139 wt%) LaB 6 powder is prepared, with only 0.4434 wt% residual B 4 C. The density of targets increases with the rise of sintering temperature and the extension of sintering time, while crystallite size increases simultaneously with the extension of sintering time. The introduction of B powder in target is conductive to sintering process, increasing hardness and flexural strength of targets. X-ray photoelectron spectrometer was used to characterize the composition and microstructure of LaB 6 nano-film which is tentatively considered to be composed of LaB 6 nanocrystalline and amorphous microstructure of La and B atoms. The film LaB 6.0627±0.02 was obtained when the ratio of B and La of sputtering target reached 12.5. The thickness and deposition rate decrease with the increase of B content in targets

  10. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    Science.gov (United States)

    Gephart, Sean

    The sintering behaviors of silicon carbide (SiC) and boron carbide (B4C) based materials were investigated using an emerging sintering technology known as field assisted sintering technology (FAST), also known as spark plasma sintering (SPS) and pulse electric current sintering (PECS). Sintering by FAST utilizes high density electric current, uniaxial pressure, and relatively high heating rate compared to conventional sintering techniques. This effort investigated issues of scaling from laboratory FAST system (25 ton capacity) to industrial FAST system (250 ton capacity), as well as exploring the difference in sintering behavior of single phase B4C and SiC using FAST and conventional sintering techniques including hot-pressing (HP) and pressure-less sintering (PL). Materials were analyzed for mechanical and bulk properties, including characterization of density, hardness, fracture toughness, fracture (bend) strength, elastic modulus and microstructure. A parallel investigation was conducted in the development of ceramic matrix composites (CMC) using SiC powder impregnation of fiber compacts followed by FAST sintering. The FAST technique was used to sinter several B4C and SiC materials to near theoretical density. Preliminary efforts established optimized sintering temperatures using the smaller 25 ton laboratory unit, targeting a sample size of 40 mm diameter and 8 mm thickness. Then the same B4C and SiC materials were sintered by the larger 250 ton industrial FAST system, a HP system, and PL sintering system with a targeted dense material geometry of 4 x 4 x 0.315 inches3 (101.6 x 101.6 x 8 mm3). The resulting samples were studied to determine if the sintering dynamics and/or the resulting material properties were influenced by the sintering technique employed. This study determined that FAST sintered ceramic materials resulted in consistently higher averaged values for mechanical properties as well as smaller grain size when compared to conventionally sintered

  11. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    Science.gov (United States)

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  12. Design, Fabrication and Performance of Boron-Carbide Control Elements; Conception, Fabrication et Comportement de Lames de Commande en Carbure de Bore; Raschety, izgotovlenie i kharakteristiki reguliruyushchikh sterzhnej. Iz karbida Bora; Proyecto, Elaboracion y Rendimiento de Elementos de Control de Carburo de Boro

    Energy Technology Data Exchange (ETDEWEB)

    Brammer, H. A.; Jacobson, J. [General Electric Company, San Jose, CA (United States)

    1964-06-15

    A control blade design, incorporating boron-carbide (B{sub 4}C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compacted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author) [French] Un modele de lame de commande en carbure de bore (B{sub 4}C) a ete mis en place dans des reacteurs a eau bouillante en avril 1961. Depuis lors, cette lame est devenue l 'element de commande temoin classique dans les reacteurs a eau bouillante de la General Electric et a remplace les lames en acier inoxydable a 2% de bore utilisees auparavant. Ces lames consistent en un assemblage gaine cruciforme comprenant de petits tubes d'acier inoxydable verticaux remplis de poudre de carbure de bore agglomeree. Dans le sens de la longueur, cette poudre est enfermee dans plusieurs

  13. Susceptibility of Meningococcal Strains Responsible for Two Serogroup B Outbreaks on U.S. University Campuses to Serum Bactericidal Activity Elicited by the MenB-4C Vaccine.

    Science.gov (United States)

    Rossi, Raffaella; Beernink, Peter T; Giuntini, Serena; Granoff, Dan M

    2015-12-01

    In 2013 and 2014, two U.S. universities had meningococcal serogroup B outbreaks (a total of 14 cases) caused by strains from two different clonal complexes. To control the outbreaks, students were immunized with a serogroup B meningococcal vaccine (Novartis) that was not yet licensed in the United States. The vaccine (referred to as MenB-4C) contains four components capable of eliciting bactericidal activity. Both outbreak strains had high expression levels of two of the vaccine antigens (subfamily B factor H binding protein [FHbp] and neisserial heparin binding antigen [NHba]); the university B outbreak strain also had moderate expression of a third antigen, NadA. We investigated the bactericidal activity of sera from mice immunized with FHbp, NHba, or NadA and sera from MenB-4C-immunized infant macaques and an adult human. The postimmunization bactericidal activity of the macaque or human serum against isolates from university B with FHbp identification (ID) 1 that exactly matched the vaccine FHbp sequence variant was 8- to 21-fold higher than that against isolates from university A with FHbp ID 276 (96% identity to the vaccine antigen). Based on the bactericidal activity of mouse antisera to FHbp, NadA, or NHba and macaque or human postimmunization serum that had been depleted of anti-FHbp antibody, the bactericidal activity against both outbreak strains largely or entirely resulted from antibodies to FHbp. Thus, despite the high level of strain expression of FHbp from a subfamily that matched the vaccine antigen, there can be large differences in anti-FHbp bactericidal activity induced by MenB-4C vaccination. Further, strains with moderate to high NadA and/or NHba expression can be resistant to anti-NadA or anti-NHba bactericidal activity elicited by MenB-4C vaccination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. In situ synthesis of TiB2-TiC particulates locally reinforced medium carbon steel-matrix composites via the SHS reaction of Ni-Ti-B4C system during casting

    International Nuclear Information System (INIS)

    Wang, H.Y.; Huang, L.; Jiang, Q.C.

    2005-01-01

    The fabrication of medium carbon steel-matrix composites locally reinforced with in situ TiB 2 -TiC particulates using self-propagating high-temperature synthesis (SHS) reaction of Ni-Ti-B 4 C system during casting was investigated. X-ray diffraction (XRD) results reveal that the exotherm of 1042 deg. C initiated by heat release of the solid state reaction in the differential thermal analysis (DTA) curve is an incomplete reaction in Ni-Ti-B 4 C system. As-cast microstructures of the in situ processed composites reveal a relatively uniform distribution of TiB 2 -TiC particulates in the locally reinforced regions. Furthermore, the particulate size and micro-porosity in the locally reinforced regions are significantly decreased with the increasing of the Ni content in the preforms. For a Ni content of 30 and 40 wt.%, near fully dense composites locally reinforced with in situ TiB 2 and TiC particulates can be fabricated. Although most of fine TiB 2 and TiC particulates which form by the reaction-precipitation mechanism during SHS reaction are present in the locally reinforced region, some large particulates which form by the nucleation-growth mechanism during solidification are entrapped inside the Fe-rich region located in the reinforcing region or inside the matrix region nearby the interface between matrix and reinforcing region. The hardness of the reinforcing region in the composite is significantly higher than that of the unreinforced medium carbon steel. Furthermore, the hardness values of the composites synthesized from 30 to 40 wt.% Ni-Ti-B 4 C systems are higher than those of the composites synthesized from 10 to 20 wt.% Ni-Ti-B 4 C systems

  15. Boron reclamation

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-07-01

    A process to recover high purity 10 B enriched crystalline boron powder from a polymeric matrix was developed on a laboratory basis and ultimately scaled up to production capacity. The process is based on controlled pyrolysis of boron-filled scrap followed by an acid leach and dry sieving operation to return the powder to the required purity and particle size specifications. Typically, the recovery rate of the crystalline powder is in excess of 98.5 percent, and some of the remaining boron is recovered in the form of boric acid. The minimum purity requirement of the recovered product is 98.6 percent total boron

  16. Seebeck effect of some thin film carbides

    International Nuclear Information System (INIS)

    Beensh-Marchwicka, G.; Prociow, E.

    2002-01-01

    Several materials have been investigated for high-temperature thin film thermocouple applications. These include silicon carbide with boron (Si-C-B), ternary composition based on Si-C-Mn, fourfold composition based on Si-C-Zr-B and tantalum carbide (TaC). All materials were deposited on quartz or glass substrates using the pulse sputter deposition technique. Electrical conduction and thermoelectric power were measured for various compositions at 300-550 K. It has been found, that the efficiency of thermoelectric power of films containing Si-C base composition was varied from 0.0015-0.034 μW/cmK 2 . However for TaC the value about 0.093 μW/cmK 2 was obtained. (author)

  17. Isotopic analysis of boron by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kakazu, M.H.; Sarkis, J.E.S.; Souza, I.M.S.

    1991-07-01

    This paper presents a methodology for isotopic analysis of boron by thermal ionization mass spectrometry technique through the ion intensity measurement of Na 2 BO + 2 in H 3 BO 3 , B o and B 4 C. The samples were loaded on single tantalum filaments by different methods. In the case of H 3 BO 3 , the method of neutralization with NaOH was used. For B 4 C the alcaline fusion with Na 2 CO 3 and for B o dissolution with 1:1 nitric sulfuric acid mixture followed by neutralization with NaOH was used. The isotopic ratio measurements were obtained by the use of s Faraday cup detector with external precision of ±0,4% and accuracy of ±0,1%, relative to H 3 BO 3 isotopic standard NBS 951. The effects of isotopic fractionation was studied in function of the time during the analyses and the different chemical forms of deposition. (author)

  18. Crack propagation and fracture in silicon carbide

    International Nuclear Information System (INIS)

    Evans, A.G.; Lange, F.F.

    1975-01-01

    Fracture mechanics and strength studies performed on two silicon carbides - a hot-pressed material (with alumina) and a sintered material (with boron) - have shown that both materials exhibit slow crack growth at room temperature in water, but only the hot-pressed material exhibits significant high temperature slow crack growth (1000 to 1400 0 C). A good correlation of the observed fracture behaviour with the crack growth predicted from the fracture mechanics parameters shows that effective failure predictions for this material can be achieved using macro-fracture mechanics data. (author)

  19. Corrosion resistant cemented carbide

    International Nuclear Information System (INIS)

    Hong, J.

    1990-01-01

    This paper describes a corrosion resistant cemented carbide composite. It comprises: a granular tungsten carbide phase, a semi-continuous solid solution carbide phase extending closely adjacent at least a portion of the grains of tungsten carbide for enhancing corrosion resistance, and a substantially continuous metal binder phase. The cemented carbide composite consisting essentially of an effective amount of an anti-corrosion additive, from about 4 to about 16 percent by weight metal binder phase, and with the remaining portion being from about 84 to about 96 percent by weight metal carbide wherein the metal carbide consists essentially of from about 4 to about 30 percent by weight of a transition metal carbide or mixtures thereof selected from Group IVB and of the Periodic Table of Elements and from about 70 to about 96 percent tungsten carbide. The metal binder phase consists essentially of nickel and from about 10 to about 25 percent by weight chromium, the effective amount of an anti-corrosion additive being selected from the group consisting essentially of copper, silver, tine and combinations thereof

  20. The human polynucleotide kinase/phosphatase (hPNKP) inhibitor A12B4C3 radiosensitizes human myeloid leukemia cells to Auger electron-emitting anti-CD123 111In-NLS-7G3 radioimmunoconjugates

    International Nuclear Information System (INIS)

    Zereshkian, Arman; Leyton, Jeffrey V.; Cai, Zhongli; Bergstrom, Dane; Weinfeld, Michael; Reilly, Raymond M.

    2014-01-01

    Introduction: Leukemia stem cells (LSCs) are believed to be responsible for initiating and propagating acute myeloid leukemia (AML) and for causing relapse after treatment. Radioimmunotherapy (RIT) targeting these cells may improve the treatment of AML, but is limited by the low density of target epitopes. Our objective was to study a human polynucleotide kinase/phosphatase (hPNKP) inhibitor that interferes with DNA repair as a radiosensitizer for the Auger electron RIT agent, 111 In-NLS-7G3, which recognizes the CD123 + /CD131 - phenotype uniquely displayed by LSCs. Methods: The surviving fraction (SF) of CD123 + /CD131 - AML-5 cells exposed to 111 In-NLS-7G3 (33–266 nmols/L; 0.74 MBq/μg) or to γ-radiation (0.25-5 Gy) was determined by clonogenic assays. The effect of A12B4C3 (25 μmols/L) combined with 111 In-NLS-7G3 (16–66 nmols/L) or with γ-radiation (0.25–2 Gy) on the SF of AML-5 cells was assessed. The density of DNA double-strand breaks (DSBs) in the nucleus was measured using the γ-H2AX assay. Cellular dosimetry was estimated based on the subcellular distribution of 111 In-NLS-7G3 measured by cell fractionation. Results: Binding of 111 In-NLS-7G3 to AML-5 cells was reduced by 2.2-fold in the presence of an excess (1 μM) of unlabeled NLS-7G3, demonstrating specific binding to the CD123 + /CD131 - epitope. 111 In-NLS-7G3 reduced the SF of AML-5 cells from 86.1 ± 11.0% at 33 nmols/L to 10.5 ± 3.6% at 266 nmols/L. Unlabeled NLS-7G3 had no significant effect on the SF. Treatment of AML-5 cells with γ-radiation reduced the SF from 98.9 ± 14.9% at 0.25 Gy to 0.03 ± 0.1% at 5 Gy. A12B4C3 combined with 111 In-NLS-7G3 (16–66 nmols/L) enhanced the cytotoxicity up to 1.7-fold compared to treatment with radioimmunoconjugates alone and was associated with a 1.6-fold increase in DNA DSBs in the nucleus. A12B4C3 enhanced the cytotoxicity of γ-radiation (0.25–0.5 Gy) on AML-5 cells by up to 1.5-fold, and DNA DSBs were increased by 1.7-fold. Exposure to

  1. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  2. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  3. Tribo-mechanical and electrical properties of boron-containing coatings

    Science.gov (United States)

    Qian, Jincheng

    . BCN films were synthesized by magnetron sputtering using a single B 4C target in an N2: Ar gas mixture. The BCN films exhibit an amorphous structure and contain a mixture of B-C, B-N, and C-N bonds. The films show p-type conductivity with an optical band gap of 1.0 eV. Subsequently, ZnO nanorods were grown on the BCN films using hydrothermal synthesis to form BCN/ZnO nanorods p-n heterojunctions. The performance of the junctions is evaluated by the I-V characterization, which shows a rectification behavior with a rectification ratio of 1500 at the bias voltages of +/-5 V.

  4. Helium generation and diffusion in graphite and some carbides

    International Nuclear Information System (INIS)

    Holt, J.B.; Guinan, M.W.; Hosmer, D.W.; Condit, R.H.; Borg, R.J.

    1976-01-01

    The cross section for the generation of helium in neutron irradiated carbon was found to be 654 mb at 14.4 MeV and 744 mb at 14.9 MeV. Extrapolating to 14.1 MeV (the fusion reactor spectrum) gives 615 mb. The diffusion of helium in dense polycrystalline graphite and in pyrographite was measured and found to be D = 7.2 x 10 -7 m 2 s -1 exp (-80 kJ/RT). It is assumed that diffusion is primarily in the basal plane direction in crystals of the graphite. In polycrystalline graphite the path length is a factor of √2 longer than the measured distance due to the random orientation mismatch between successive grains. Isochronal anneals (measured helium release as the specimen is steadily heated) were run and maximum release rates were found at 200 0 C in polycrystalline graphite, 1000 0 C in pyrographite, 1350 0 C in boron carbide, and 1350 0 and 2400 0 C (two peaks) in silicon carbide. It is concluded that in these candidates for curtain materials in fusion reactors the helium releases can probably occur without bubble formation in graphites, may occur in boron carbide, but will probably cause bubble formation in silicon carbide. 7 figures

  5. Manufacturing of porous boron steels potentially useful as nuclear materials

    International Nuclear Information System (INIS)

    Abenojar, Juana; Velasco, Francisco; Martinez, Miguel Angel

    2006-01-01

    B 4 C is a good neutron absorber, commonly used together with light materials in panels. The objective of this work is to manufacture high boron steels, using B 4 C additions, through mechanical alloying and sintering, to get a material potentially useful for nuclear waste management. The porosity of the material can help to the removal of helium bubbles. Iron and B 4 C powders were mechanically alloyed for different times, following the process studying apparent density, morphology (SEM) and structure (XRD). Powder was uniaxially compacted and sintered at different conditions. Specimens were analysed by SEM and physical and mechanical properties were evaluated (density, dimensional change and bending strength). Microstructures are very different and therefore, they have different properties depending on sintering temperature. Although boride formation always takes place, only ferritic areas were found at 600degC, meanwhile ferritic and perlitic areas appeared at 900degC, and both of them disappeared at 1,200degC. (author)

  6. Abrasive wear behavior of heat-treated ABC-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  7. Solid-state interfacial reaction in molybdenum-carbide systems at high temperature-pressure, and its application to bonding technique

    International Nuclear Information System (INIS)

    Horiguchi, Akihiro; Suganuma, Katsuaki; Miyamoto, Yoshinari; Koizumi, Mitsue; Shimada, Masahiko.

    1986-01-01

    Diffusion couples of molybdenum with several carbides, i.e. SiC, B 4 C, TiC, ZrC, HfC and TaC, were heated at various temperatures ranging from 1500 to 1840 deg C under high pressures of 3 GPa and 100 MPa for up to 4 hr. The couples were then examined for the composition of reaction products, the growth rate of reaction layers, interfacial structures, and tensile strength. In case of Mo-transition metal carbides, Mo 2 C layer was mainly formed, so that the carbides, which had supplied carbon, resulted in having the nonstoichiometric composition near the interface. The activation energy for the growth of Mo 2 C layer in Mo-TiC system was 332 kJ/mol, and that in Mo-TaC system was 366 kJ/mol. In Mo-SiC system, Mo 2 C layer, the mixed phase of Mo 2 C and Mo 5 Si 3 , and Mo 5 Si 3 C layer were formed in order from the Mo side. In Mo-B 4 C system, the mixed phase of Mo 2 B and MoB, and Mo 2 BC layer appeared. The decomposed graphite from B 4 C was also observed between B 4 C and Mo 2 BC phase. The activation energy for the growth of total reaction layer in Mo-SiC system was 531 kJ/mol, and that in Mo-B 4 C system was 183 kJ/mol. It can be said that the growth of reaction layers is controlled by diffusion. The orientation of crystals was observed in all reaction products except for Mo 2 BC phase in Mo-B 4 C system and (Mo, Ta) 2 C phase in Mo-TaC system. In HIPed couples, the magnitude of tensile strength was dependent on the difference in thermal expansion coefficient between Mo and carbides. HIPed Mo-TaC couple had the best weldability among the systems examined in the present investigation. (author)

  8. Study through potentiodynamic techniques of the corrosion resistance of different aluminium base MMC's with boron additions

    International Nuclear Information System (INIS)

    Abenojar, J.; Bautista, A.; Guzman, S.; Velasco, F.; Martinez, M.A.

    2009-01-01

    This paper compares a wrought aluminium with a PM aluminium and PM aluminium alloys with boron-base additions, containing boron carbide and Fe/B (obtained by mechanical alloying during 36 hours from a Fe-B 50% mixture by weight). The effect of sintering temperature for the Fe/B containing material and the effect of mechanical alloying for the boron carbide containing aluminium alloy on the corrosion resistance of those materials have been studied. Their behaviour is followed through cyclic anodic polarization curves in chloride media. In the Al+20%Fe/B composite, low sintering temperatures (650- 950 deg C) exert a negative effect. However, when the material was sintered at high temperature (1000-1100 deg C) its behaviour was very similar to the PM pure aluminium. The effect of mechanical alloying studied in aluminium with boron carbide was also important in corrosion resistance, finding a lower corrosion rate in the mechanically alloyed material. (author)

  9. Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.

    2017-12-01

    Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.

  10. White light emission from engineered silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan

    Silicon carbide (SiC) is a wide indirect bandgap semiconductor. The light emission efficiency is low in nature. But this material has very unique physical properties like good thermal conductivity, high break down field etc in addition to its abundance. Therefore it is interesting to engineer its...... light emission property so that to take fully potential applications of this material. In this talk, two methods, i.e. doping SiC heavily by donor-acceptor pairs and making SiC porous are introduced to make light emission from SiC. By co-doping SiC with nitrogen and boron heavily, strong yellow emission...... is demonstrated. After optimizing the passivation conditions, strong blue-green emission from porous SiC is demonstrated as well. When combining the yellow emission from co-doped SiC and blue-green from porous SiC, a high color rendering index white light source is achieved....

  11. Microstructure evolution of SiC sintered bodies activated by boron and carbon

    International Nuclear Information System (INIS)

    Gubernat, A.; Stobierski, L.

    2003-01-01

    Investigation on the role of sintering aids on densification of silicon carbide indicate that boron and carbon modify mass transport mechanisms. It leads to changes of microstructure of polycrystalline silicon carbide. In the present work the influence of varying proportions of sintering aids on the material microstructure was studied. The microstructural changes were related to the changes of the selected properties of the resulting materials. (author)

  12. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux

    International Nuclear Information System (INIS)

    Lang, F.M.; Magnier, P.; Finck, C.

    1956-01-01

    Preparation of boron thin film deposits of around 1 mg per cm 2 on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  13. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Luo, Ruiying [School of Science, Beihang University, Beijing 100083 (China); Yoon, Seong-Ho; Mochida, Isao [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2010-03-15

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g{sup -1} and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by ''molecular bridging'' between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper. (author)

  14. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Science.gov (United States)

    Liu, Tao; Luo, Ruiying; Yoon, Seong-Ho; Mochida, Isao

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g -1 and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by "molecular bridging" between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper.

  15. Electrocatalysis on tungsten carbide

    International Nuclear Information System (INIS)

    Fleischmann, R.

    1975-01-01

    General concepts of electrocatalysis, the importance of the equilibrium rest potential and its standardization on polished WC-electrodes, the influence of oxygen in the catalysts upon the oxidation of hydrogen, and the attained results of the hydrogen oxidation on tungsten carbide are treated. (HK) [de

  16. A Computational-Experimental Study of Plasma Processing of Carbides at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, Arturo [Univ. of Texas, El Paso, TX (United States); Kumar, Vinod [Univ. of Texas, El Paso, TX (United States)

    2016-02-01

    appears to grow with Ti ions migrating outward from the Ti3AlC/Ti2AlC/TiC core and oxygen ions diffusing inwardly toward the core. The transient temperature distribution of a cylindrical, carbide packed bed (i.e., B4C) was simulated with COMSOL software to determine the response of the bed to a sudden temperature spike exposed to the outer wall of the bed. The temperature distribution of B4C was similarly heated and compared with Hf and Zr metal. The thermal conductivity of Hf and Zr is higher than the B4C packed bed and hence they respond quicker than B4C. The packed bed still takes approximately 1200 s to plateau the temperature distribution between the cylinder surfaces to the centerline of the carbide packed bed of 5 cm diameter. Though the modeling of the distributions in the carbide packed bed gives an understanding of the transient heat response behavior driven by radiation, the effect of the plasma on the surface temperature of individual carbide particles needs further investigation to understand the plasma contribution to densification of a carbide packed bed.

  17. Silicon carbide layer structure recovery after ion implantation

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Demakov, K.D.; Kal'nin, A.A.; Nojbert, F.; Potapov, E.N.; Tairov, Yu.M.

    1984-01-01

    The process of recovery of polytype structure of SiC surface layers in the course of thermal annealing (TA) and laser annealing (LA) upon boron and aluminium implantation is studied. The 6H polytype silicon carbide C face (0001) has been exposed to ion radiation. The ion energies ranged from 80 to 100 keV, doses varied from 5x10 14 to 5x10 16 cm -2 . TA was performed in the 800-2000 K temperature range. It is shown that the recovery of the structure of silicon carbide layers after ion implantation takes place in several stages. Considerable effect on the structure of the annealed layers is exerted by the implantation dose and the type of implanted impurity. The recovery of polytype structure is possible only under the effect of laser pulses with duration not less than the time for the ordering of the polytype in question

  18. Development and Performance of Boron Carbide-Based Smoke Compositions

    Science.gov (United States)

    2013-03-06

    appears to be caused by multiple coinciding and reinforcing factors in- volving thermodynamics , thermal conductivity, and consoli- dation, as described...determined by using an equation based on the Beer Lambert law [28]: As none of the smokes had any distinct spectral features in the visible spectrum, the

  19. Effect of boron nitride coating on fiber-matrix interactions

    International Nuclear Information System (INIS)

    Singh, R.N.; Brun, M.K.

    1987-01-01

    Coatings can modify fiber-matrix reactions and consequently interfacial bond strengths. Commercially available mullite, silicon carbide, and carbon fibers were coated with boron nitride via low pressure chemical vapor deposition and incorporated into a mullite matrix by hot-pressing. The influence of fiber-matrix interactions for uncoated fibers on fracture morphologies was studied. These observations are related to the measured values of interfacial shear strengths

  20. Aspects of the chemistry of boron

    International Nuclear Information System (INIS)

    Moellinger, H.

    1976-01-01

    Crystal phases of elementary boron are reviewed as well as boron-sulphur, boron-selenum, boron-tellurium, and boron-nitrogen compounds, carboranes, and boron-carbohydrate complexes. A boron cadastre of rivers and lakes serves to illustrate the role of boron in environmental protection. Technically relevant boron compounds and their uses are mentioned. (orig.) 891 HK/orig. 892 MB [de

  1. Joining elements of silicon carbide

    International Nuclear Information System (INIS)

    Olson, B.A.

    1979-01-01

    A method of joining together at least two silicon carbide elements (e.g.in forming a heat exchanger) is described, comprising subjecting to sufficiently non-oxidizing atmosphere and sufficiently high temperature, material placed in space between the elements. The material consists of silicon carbide particles, carbon and/or a precursor of carbon, and silicon, such that it forms a joint joining together at least two silicon carbide elements. At least one of the elements may contain silicon. (author)

  2. Sintering of beryllium oxide with 3-4 per cent elemental boron

    International Nuclear Information System (INIS)

    Pointud, R.; Rispal, Ch.; Le Garec, M.

    1958-01-01

    In order to manufacture a baffle absorbing neutrons of various energies, there was developed or mixture of a slower and an absorber. It is made by hot pressing impure beryllium containing boron carbide. The dense briquette has 100 x 100 x 50 mm and is machined on all her faces. She is of 2,85 density and about 3 to 4 per cent porosity, according to 5 per cent of boron. Difference of boron amount is lower than ten per cent between any two points of the briquette. (author) [fr

  3. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    Science.gov (United States)

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  4. Impact strength of sintered astaloy CrM powders

    International Nuclear Information System (INIS)

    Kazior, J.; Ploszczak, J.; Nykiel, M.; Pieczonka, T.

    2003-01-01

    In this paper results of a series of impact tests on sintered Astaloy CrM powders alloys modified by boron are presented and discussed. Boron in different forms, i.e. as elemental boron powder, boron carbide B 4 C powder or mixture of boron and carbon elemental powders, was used in different weight percentage to activate sintering of Astaloy CrM powder and to increase hardenability, with aim of increasing impact strength in view of structural applications. (author)

  5. Metal Carbides for Biomass Valorization

    Directory of Open Access Journals (Sweden)

    Carine E. Chan-Thaw

    2018-02-01

    Full Text Available Transition metal carbides have been utilized as an alternative catalyst to expensive noble metals for the conversion of biomass. Tungsten and molybdenum carbides have been shown to be effective catalysts for hydrogenation, hydrodeoxygenation and isomerization reactions. The satisfactory activities of these metal carbides and their low costs, compared with noble metals, make them appealing alternatives and worthy of further investigation. In this review, we succinctly describe common synthesis techniques, including temperature-programmed reaction and carbothermal hydrogen reduction, utilized to prepare metal carbides used for biomass transformation. Attention will be focused, successively, on the application of transition metal carbide catalysts in the transformation of first-generation (oils and second-generation (lignocellulose biomass to biofuels and fine chemicals.

  6. Structure and photoluminescence of boron and nitrogen co-doped carbon nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Gao, B. [College of Computer Science, Chongqing University, Chongqing 400044 (China); Chongqing Municipal Education Examinations Authority, Chongqing 401147 (China); Zhong, X.X., E-mail: xxzhong@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Shao, R.W.; Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2016-07-15

    Graphical abstract: Boron- and nitrogen- doped carbon nanorods. - Highlights: • The co-doping of nitrogen and boron in carbon nanorods. • The doping mechanism of nitrogen and boron in carbon nanorods by plasma. • Photoluminescence properties of nitrogen- and boron-doped carbon nanorods. - Abstract: Boron and nitrogen doped carbon nanorods (BNCNRs) were synthesized by plasma-enhanced hot filament chemical vapor deposition, where methane, nitrogen and hydrogen were used as the reaction gases and boron carbide was the boron source. The results of scanning electron microscopy, micro-Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy indicate that boron and nitrogen can be used as co-dopants in amorphous carbon nanorods. Combined with the characterization results, the doping mechanism was studied. The mechanism is used to explain the formation of different carbon materials by different methods. The photoluminescence (PL) properties of BNCNRs were studied. The PL results show that the BNCNRs generate strong green PL bands and weak blue PL bands, and the PL intensity lowered due to the doping of boron. The outcomes advance our knowledge on the synthesis and optical properties of carbon-based nanomaterials and contribute to the development of optoelectronic nanodevices based on nano-carbon mateirals.

  7. Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition

    Science.gov (United States)

    Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.

    2016-02-01

    In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.

  8. The conflicting roles of boron on the radiation response of precipitate-forming austenitic alloys

    International Nuclear Information System (INIS)

    Okita, T.; Sekimura, N.; Garner, F.

    2007-01-01

    Full text of publication follows: Boron is often a deliberately added solute to improve the radiation resistance of austenitic structural alloys, with boron exerting its greatest influence on carbide precipitation. However, boron also a source of helium via transmutation and therefore tends to accelerate the onset of void nucleation. These conflicting contributions of boron with respect to radiation resistance are not easily separated, but are sometimes utilized to mimic fusion-relevant gas generation rates when testing in surrogate fission spectra. In an earlier study the authors demonstrated that in simple model ternary alloys that boron additions tended to homogenize swelling somewhat via increased helium generation but not to exert any significant influence on the total swelling. In these easily swelling alloys void nucleation was not significantly influenced by additional helium or by boron's chemical effect, with boron remaining primarily in solution. In the current study, Fe-15Cr-16Ni-0.25 Ti-0.05C alloys with four levels of natural boron addition (0, 100, 500, 2500 appm) were irradiated side-by-side at ∼400 deg. C in the Fast Flux Test Facility under active temperature control in the Materials Open Test Assembly. Although three sets of irradiation conditions were explored, the boron variation was the only variable operating in each data set. The bulk swelling was measured using an immersion density technique and electron microscopy was employed to determine the details of void, dislocation and precipitate microstructure. It was found that by 100 appm B the strongest and most immediate effect of boron was to reduce swelling at all irradiation conditions explored, but the boron-induced increases in overall helium content were rather small over the 0-100 appm B range. This indicates that boron's primary effect was chemical in nature, expressed via its effect on precipitation. As the boron level was progressively increased, however, there was a reversal in

  9. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  10. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  11. Single-Crystal Tungsten Carbide in High-Temperature In-Situ Additive Manufacturing Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kolopus, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boatner, Lynn A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-18

    Nanoindenters are commonly used for measuring the mechanical properties of a wide variety of materials with both industrial and scientific applications. Typically, these instruments employ an indenter made of a material of suitable hardness bonded to an appropriate shaft or holder to create an indentation on the material being tested. While a variety of materials may be employed for the indenter, diamond and boron carbide are by far the most common materials used due to their hardness and other desirable properties. However, as the increasing complexity of new materials demands a broader range of testing capabilities, conventional indenter materials exhibit significant performance limitations. Among these are the inability of diamond indenters to perform in-situ measurements at temperatures above 600oC in air due to oxidation of the diamond material and subsequent degradation of the indenters mechanical properties. Similarly, boron carbide also fails at high temperature due to fracture. [1] Transition metal carbides possess a combination of hardness and mechanical properties at high temperatures that offer an attractive alternative to conventional indenter materials. Here we describe the technical aspects for the growth of single-crystal tungsten carbide (WC) for use as a high-temperature indenter material, and we examine a possible approach to brazing these crystals to a suitable mount for grinding and attachment to the indenter instrument. The use of a by-product of the recovery process is also suggested as possibly having commercial value.

  12. Tungsten--carbide critical assembly

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.C.

    1975-06-01

    The tungsten--carbide critical assembly mainly consists of three close-fitting spherical shells: a highly enriched uranium shell on the inside, a tungsten--carbide shell surrounding it, and a steel shell on the outside. Ideal critical specifications indicate a rather low computed value of k/sub eff/. Observed and calculated fission-rate distributions for 235 U, 238 U, and 237 Np are compared, and calculated leakage neutrons per fission in various energy groups are given. (U.S.)

  13. Peculiarities of neutron interaction with boron containing semiconductors

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; ); Hofman, A.; Institute of Atomic Energy, Otwock/Swierk; Vlasukova, L.A.

    2009-01-01

    The results of point defect creation calculation in B 4 C, BN and BP semiconductor single crystals irradiated in the fast neutron reactor IBR-2 are presented. It has been shown that during the thermal neutron interaction with light isotope boron atoms ( 10 B) the damage creation by means of fission nuclear reaction fragments (alpha particles and 7 Li recoil nuclei) exceeds the damage created by fast neutrons (E n > 0.1 MeV) by more than two orders of value. It has been concluded that such irradiation can create a well developed radiation defect structure in boron-containing crystals with nearly homogeneous vacancy depth distribution. This may be used in technological applications for more effective diffusion of impurities implanted at low energies or deposited onto the semiconductor surface. The developed homogeneous vacancy structure is very suitable for the radiation enhanced diffusion of electrically charged or neutral impurities from the surface into the technological depth of semiconductor devices under post irradiation treatment. (authors)

  14. Reaction between molybdenum and carbon, and several carbides

    International Nuclear Information System (INIS)

    Morozumi, Shotaro; Kikuchi, Michio; Sugai, Shinzo; Hayashi, Masaaki.

    1980-01-01

    Diffusion couples of molybdenum with carbon and several carbides, i.e. B 4 C, SiC, TiC, and TaC, respectively, were heated for up to 3.6 x 10 5 s at various temperatures ranging from 1373 to 2223 K. The couples were then examined for composition, growth rate, structure, and hardness of reaction layers. Main results obtained are as follows: (1) In the Mo-C system, only Mo 2 C layer was formed at below 1873 K, while two sub- layers consisted of Mo 2 C and eta (MoC sub(1-x)), respectively, were found at above 1873 K. The activation energy for growth of total layer was 374 kJ/mol. (2) In the Mo-B 4 C system, two sub-layers consisted of Mo 2 B and MoB, respectively, with dispersed carbon particles were formed. (3) In the Mo-SiC system, Mo 2 C layer, including eta (MoC sub(1-x)) phase at high temperature, mixture of Mo 2 C and Mo 3 Si 2 phases, and Mo 3 Si 2 phase in order from the Mo side were formed. The activation energy for growth of total layer was 477 kJ/mol. (4) In the Mo-TiC system, two kinds of TiC in point of view of free carbon content were used; one is with 0.2% free carbon and the other is with 0.01%. In the Mo-TiC with 0.2% free carbon system, two sub-layers, i.e. relatively thick Mo 2 C layer and thin (Ti, Mo)C layer, were formed, while in the Mo-TiC with 0.01% free carbon system two thin sub-layers, Mo 2 C and (Ti, Mo)C, were formed; the Mo 2 C layer in the latter case was very thin and was not found after short time heating at low temperature. The activation energy for growth of Mo 2 C layer in the former system was 393 kJ/mol. (5) In the Mo-TaC with 0.02% free carbon system, two thin sub-layers, (Mo, Ta) 2 C and (Ta, Mo)C, were observed. (6) TEM studies on the interface between Mo (bcc) and Mo 2 C (hcp) showed that there was the following orientation relation, called as the Burgers relation, between these two phases; (110)sub(Mo)//(0001)sub(Mo 2 C), sub(Mo)// - 0>sub(Mo 2 C). (author)

  15. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux; Depots electrophoretiques de bore sur plaques de duralumin destines a des mesures de flux de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F M; Magnier, P; Finck, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    Preparation of boron thin film deposits of around 1 mg per cm{sup 2} on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  16. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  17. Attenuation of Neutron and Gamma Radiation by a Composite Material Based on Modified Titanium Hydride with a Varied Boron Content

    Science.gov (United States)

    Yastrebinskii, R. N.

    2018-04-01

    The investigations on estimating the attenuation of capture gamma radiation by a composite neutron-shielding material based on modified titanium hydride and Portland cement with a varied amount of boron carbide are performed. The results of calculations demonstrate that an introduction of boron into this material enables significantly decreasing the thermal neutron flux density and hence the levels of capture gamma radiation. In particular, after introducing 1- 5 wt.% boron carbide into the material, the thermal neutron flux density on a 10 cm-thick layer is reduced by 11 to 176 factors, and the capture gamma dose rate - from 4 to 9 times, respectively. The difference in the degree of reduction in these functionals is attributed to the presence of capture gamma radiation in the epithermal region of the neutron spectrum.

  18. Production of silicon carbide bodies

    International Nuclear Information System (INIS)

    Parkinson, K.

    1981-01-01

    A body consisting essentially of a coherent mixture of silicon carbide and carbon for subsequent siliconising is produced by casting a slip comprising silicon carbide and carbon powders in a porous mould. Part of the surface of the body, particularly internal features, is formed by providing within the mould a core of a material which retains its shape while casting is in progress but is compressed by shrinkage of the cast body as it dries and is thereafter removable from the cast body. Materials which are suitable for the core are expanded polystyrene and gelatinous products of selected low elastic modulus. (author)

  19. High yield silicon carbide prepolymers

    International Nuclear Information System (INIS)

    Baney, R.H.

    1982-01-01

    Prepolymers which exhibit good handling properties, and are useful for preparing ceramics, silicon carbide ceramic materials and articles containing silicon carbide, are polysilanes consisting of 0 to 60 mole% (CH 3 ) 2 Si units and 40 to 100 mole% CH 3 Si units, all Si valences being satisfied by CH 3 groups, other Si atoms, or by H atoms, the latter amounting to 0.3 to 2.1 weight% of the polysilane. They are prepared by reducing the corresponding chloro- or bromo-polysilanes with at least the stoichiometric amount of a reducing agent, e.g. LiAlH 4 . (author)

  20. Transition metal carbide and boride abrasive particles

    International Nuclear Information System (INIS)

    Valdsaar, H.

    1978-01-01

    Abrasive particles and their preparation are discussed. The particles consist essentially of a matrix of titanium carbide and zirconium carbide, at least partially in solid solution form, and grains of crystalline titanium diboride dispersed throughout the carbide matrix. These abrasive particles are particularly useful as components of grinding wheels for abrading steel. 1 figure, 6 tables

  1. Benefits of Low Boron Core Design Concept for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2009-10-15

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in {sup 10}B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts.

  2. Benefits of Low Boron Core Design Concept for PWR

    International Nuclear Information System (INIS)

    Daing, Aung Tharn; Kim, Myung Hyun

    2009-01-01

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in 10 B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts

  3. Structure and microhardness of alloy VT22 granules additionally doped with carbon and boron

    International Nuclear Information System (INIS)

    Sysoeva, N.V.; Polyakova, I.G.; Karpova, I.G.

    1996-01-01

    Aimed to improve heat resistance and strength of titanium base alloys due to carbon and boron additions (up to 0.3%) a study was made into regularities of phase decomposition in VT22 alloy during its rapid quenching from a liquid state on manufacturing granules 100-400 μm in size. Cooling rates on quenching were found to be sufficiently high to prevent precipitating carbides and borides. Subsequent annealing of granules promotes homogeneous precipitation of strengthening phases in the form of titanium carbides and borides, a reasonable amount of carbon and boron remaining in solid solution. An increase in microhardness of annealed granules reaches 20-25% compared to the standard alloy. 6 refs.; 2 figs.; 2 tabs

  4. Boronated liposome development and evaluation

    International Nuclear Information System (INIS)

    Hawthorne, M.F.

    1995-01-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues

  5. Implantation of boron in silicon

    International Nuclear Information System (INIS)

    Hofker, W.K.

    1975-01-01

    The distribution versus depth of boron implanted in silicon and the corresponding electrical activity obtained after annealing are studied. The boron distributions are measured by secondary-ion mass spectrometry. Boron distributions implanted at energies in the range from 30 keV to 800 keV in amorphous and polycrystalline silicon are analysed. Moments of these distributions are determined by a curve-fitting programme and compared with moments calculated by Winterbon. Boron distributions obtained by implantations along a dense crystallographic direction in monocrystalline silicon are found to have penetrating tails. After investigation of some possible mechanisms of tail formation it is concluded that the tails are due to channelling. It was found that the behaviour of boron during annealing is determined by the properties of three boron fractions consisting of precipitated boron, interstitial boron and substitutional boron. The electrical activity of the boron versus depth is found to be consistent with the three boron fractions. A peculiar redistribution of boron is found which is induced by the implantation of a high dose of heavy ions and subsequent annealing. Different mechanisms which may cause the observed effects, such as thermal diffusion which is influenced by lattice strain and damage, are discussed. (Auth.)

  6. Enrichment of boron 10

    International Nuclear Information System (INIS)

    Coutinho, C.M.M.; Rodrigues Filho, J.S.R.; Umeda, K.; Echternacht, M.V.

    1990-01-01

    A isotopic separation pilot plant with five ion exchange columns interconnected in series were designed and built in the IEN. The columns are charged with a strong anionic resin in its alkaline form. The boric acid solution is introduced in the separation columns until it reaches a absorbing zone length which is sufficient to obtain the desired boron-10 isotopic concentration. The boric acid absorbing zone movement is provided by the injection of a diluted hydrochloric acid solution, which replace the boric acid throughout the columns. The absorbing zone equilibrium length is proportional to its total length. The enriched boron-10 and the depleted boron are located in the final boundary and in the initial position of the absorbing zones, respectively. (author)

  7. Thermoelectric properties of boron and boron phosphide CVD wafers

    Energy Technology Data Exchange (ETDEWEB)

    Kumashiro, Y.; Yokoyama, T.; Sato, A.; Ando, Y. [Yokohama National Univ. (Japan)

    1997-10-01

    Electrical and thermal conductivities and thermoelectric power of p-type boron and n-type boron phosphide wafers with amorphous and polycrystalline structures were measured up to high temperatures. The electrical conductivity of amorphous boron wafers is compatible to that of polycrystals at high temperatures and obeys Mott`s T{sup -{1/4}} rule. The thermoelectric power of polycrystalline boron decreases with increasing temperature, while that of amorphous boron is almost constant in a wide temperature range. The weak temperature dependence of the thermal conductivity of BP polycrystalline wafers reflects phonon scattering by grain boundaries. Thermal conductivity of an amorphous boron wafer is almost constant in a wide temperature range, showing a characteristic of a glass. The figure of merit of polycrystalline BP wafers is 10{sup -7}/K at high temperatures while that of amorphous boron is 10{sup -5}/K.

  8. Application of in situ current normalized PIGE method for determination of total boron and its isotopic composition

    International Nuclear Information System (INIS)

    Chhillar, Sumit; Acharya, R.; Sodaye, S.; Pujari, P.K.

    2014-01-01

    A particle induced gamma-ray emission (PIGE) method using proton beam has been standardized for determination of isotopic composition of natural boron and enriched boron samples. Target pellets of boron standard and samples were prepared in cellulose matrix. The prompt gamma rays of 429 keV, 718 keV and 2125 keV were measured from 10 B(p,αγ) 7 Be, 10 B(p, p'γ) 10 B and 11 B(p, p'γ) 11 B nuclear reactions, respectively. For normalizing the beam current variations in situ current normalization method was used. Validation of method was carried out using synthetic samples of boron carbide, borax, borazine and lithium metaborate in cellulose matrix. (author)

  9. Superconductivity in borides and carbides

    International Nuclear Information System (INIS)

    Muranaka, Takahiro

    2007-01-01

    It was thought that intermetallic superconductors do not exhibit superconductivity at temperatures over 30 K because of the Bardeen-Cooper-Schrieffer (BCS) limit; therefore, researchers have been interested in high-T c cuprates. Our group discovered high-T c superconductivity in MgB 2 at 39 K in 2001. This discovery has initiated a substantial interest in the potential of high-T c superconductivity in intermetallic compounds that include 'light' elements (borides, carbides, etc.). (author)

  10. Crystallization of nodular cast iron with carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper a crystallization process of nodular cast iron with carbides having a different chemical composition have been presented. It have been found, that an increase of molybdenum above 0,30% causes the ledeburutic carbides crystallization after (γ+ graphite eutectic phase crystallization. When Mo content is lower, these carbides crystallize as a pre-eutectic phase. In this article causes of this effect have been given.

  11. Investigations of an advanced reactor with Pu fuel controlled without soluble boron

    International Nuclear Information System (INIS)

    Bergeron, J.; Lenain, R.

    1988-09-01

    This paper presents the neutronic investigations of a pressurized water reactor with spectral shift. The fuel is plutonium. The moderation ratio can vary from 1.45 to 1.15. The reactor is controlled and monitored by means of gadoliniated spectral shift rod clusters and by B4C control rod clusters enriched with boron 10. A sufficient Gd 2 O 3 content (6%) has been determined. The fissile material balance of the cycle is compiled by identifying the gains of the spectral shift: 14% of cycle time. The presence of an absorber in the spectral shift clusters is necessary to guarantee the subcriticality of the core in warm conditions (180 0 C)

  12. Boron-bearing species in ceramic matrix composites for long-term aerospace applications

    International Nuclear Information System (INIS)

    Naslain, R.; Guette, A.; Rebillat, F.; Pailler, R.; Langlais, F.; Bourrat, X.

    2004-01-01

    Boron-bearing refractory species are introduced in non-oxide ceramic matrix fibrous composites (such as SiC/SiC composites) to improve their oxidation resistance under load at high temperatures with a view to applications in the aerospace field. B-doped pyrocarbon and hex-BN have been successfully used as interphase (instead of pure pyrocarbon) either as homogeneous or multilayered fiber coatings, to arrest and deflect matrix cracks formed under load (mechanical fuse function) and to give toughness to the materials. A self-healing multilayered matrix is designed and used in a model composite, which combines B-doped pyrocarbon mechanical fuse layers and B- and Si-bearing compound (namely B 4 C and SiC) layers forming B 2 O 3 -based fluid healing phases when exposed to an oxidizing atmosphere. All the materials are deposited by chemical vapor infiltration. Lifetimes under tensile loading of several hundreds hours at high temperatures are reported

  13. Tribology of carbide derived carbon films synthesized on tungsten carbide

    Science.gov (United States)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  14. Polyethylene/boron-containing composites for radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ji Wook [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Jang-Woo; Yu, Seunggun; Baek, Bum Ki; Hong, Jun Pyo [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Seo, Yongsok [School of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Woo Nyon [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Hong, Soon Man, E-mail: smhong@kist.re.kr [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Koo, Chong Min, E-mail: koo@kist.re.kr [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2014-06-01

    Graphical abstract: - Highlights: • HDPE/silane-treated boron nitride (mBN) composites were fabricated. • The HDPE/mBN composites revealed a strong adhesion behavior at the interface of matrix/filler. • The HDPE/mBN composites show superior radiation shielding, thermoconductive and mechanical properties to the composites containing pristine BN and B{sub 4}C fillers. - Abstract: High-density polyethylene (HDPE) composites with modified boron nitride (mBN) fillers, functionalized with an organosilane, were fabricated through conventional melt-extrusion processing techniques. The properties and performances of these composites were compared with those of the composites containing pristine BN and boron carbide (B{sub 4}C) fillers. The silane functionalization of the BN fillers strongly improved the interfacial adhesion between the polymer matrix and the filler. As a result, the HDPE/mBN composites showed a better dispersion state of the filler particles, larger tensile modulus, greater effective thermal conductivity, and better neutron shielding property compared with the HDPE/BN and HDPE/B{sub 4}C composites.

  15. A New Boron Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Weitman, J; Daaverhoeg, N; Farvolden, S

    1970-07-01

    In connection with fast neutron (n, {alpha}) cross section measurements a novel boron analysis method has been developed. The boron concentration is inferred from the mass spectrometrically determined number of helium atoms produced in the thermal and epithermal B-10 (n, {alpha}) reaction. The relation between helium amount and boron concentration is given, including corrections for self shielding effects and background levels. Direct and diffusion losses of helium are calculated and losses due to gettering, adsorption and HF-ionization in the release stage are discussed. A series of boron determinations is described and the results are compared with those obtained by other methods, showing excellent agreement. The lower limit of boron concentration which can be measured varies with type of sample. In e.g. steel, concentrations below 10-5 % boron in samples of 0.1-1 gram may be determined.

  16. Muonium states in silicon carbide

    International Nuclear Information System (INIS)

    Patterson, B.D.; Baumeler, H.; Keller, H.; Kiefl, R.F.; Kuendig, W.; Odermatt, W.; Schneider, J.W.; Estle, T.L.; Spencer, D.P.; Savic, I.M.

    1986-01-01

    Implanted muons in samples of silicon carbide have been observed to form paramagnetic muonium centers (μ + e - ). Muonium precession signals in low applied magnetic fields have been observed at 22 K in a granular sample of cubic β-SiC, however it was not possible to determine the hyperfine frequency. In a signal crystal sample of hexagonal 6H-SiC, three apparently isotropic muonium states were observed at 20 K and two at 300 K, all with hyperfine frequencies intermediate between those of the isotropic muonium centers in diamond and silicon. No evidence was seen of an anisotropic muonium state analogous to the Mu * state in diamond and silicon. (orig.)

  17. Additive-assisted synthesis of boride, carbide, and nitride micro/nanocrystals

    International Nuclear Information System (INIS)

    Chen, Bo; Yang, Lishan; Heng, Hua; Chen, Jingzhong; Zhang, Linfei; Xu, Liqiang; Qian, Yitai; Yang, Jian

    2012-01-01

    General and simple methods for the syntheses of borides, carbides and nitrides are highly desirable, since those materials have unique physical properties and promising applications. Here, a series of boride (TiB 2 , ZrB 2 , NbB 2 , CeB 6 , PrB 6 , SmB 6 , EuB 6 , LaB 6 ), carbide (SiC, TiC, NbC, WC) and nitride (TiN, BN, AlN, MgSiN 2 , VN) micro/nanocrystals were prepared from related oxides and amorphous boron/active carbon/NaN 3 with the assistance of metallic Na and elemental S. In-situ temperature monitoring showed that the reaction temperature could increase quickly to ∼850 °C, once the autoclave was heated to 100 °C. Such a rapid temperature increase was attributed to the intense exothermic reaction between Na and S, which assisted the formation of borides, carbides and nitrides. The as-obtained products were characterized by XRD, SEM, TEM, and HRTEM techniques. Results in this report will greatly benefit the future extension of this approach to other compounds. - Graphical abstract: An additive-assisted approach is successfully developed for the syntheses of borides, carbides and nitrides micro/nanocrystals with the assistance of the exothermic reaction between Na and S. Highlights: ► An additive-assisted synthesis strategy is developed for a number of borides, carbides and nitrides. ► The reaction mechanism is demonstrated by the case of SiC nanowires. ► The formation of SiC nanowires is initiated by the exothermic reaction of Na and S.

  18. Low temperature study of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.

    2005-05-01

    By low temperature neutron diffraction method was studied structure in nonstoichiometric titanium carbide from room temperature up to 12K. It is found of low temperature phase in titanium carbide- TiC 0.71 . It is established region and borders of this phase. It is determined change of unit cell parameter. (author)

  19. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first...... example of a cationic terminal carbide complex, [RuC(Cl)(CH3CN)(PCy3)2]+, is described and characterized by NMR, MS, X-ray crystallography, and computational studies. The experimentally observed irregular variation of the carbide 13C chemical shift is shown to be accurately reproduced by DFT, which also...... demonstrates that details of the coordination geometry affect the carbide chemical shift equally as much as variations in the nature of the auxiliary ligands. Furthermore, the kinetics of formation of the sqaure pyramidal dicyano complex, trans-[RuC(CN)2(PCy3)2], from RuC has been examined and the reaction...

  20. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen.The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  1. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    Pietrowski S.

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  2. The morphology of ceramic phases in B x C-SiC-Si infiltrated composites

    International Nuclear Information System (INIS)

    Hayun, S.; Frage, N.; Dariel, M.P.

    2006-01-01

    The present communication is concerned with the effect of the carbon source on the morphology of reaction bonded boron carbide (B 4 C). Molten silicon reacts strongly and rapidly with free carbon to form large, faceted, regular polygon-shaped SiC particles, usually embedded in residual silicon pools. In the absence of free carbon, the formation of SiC relies on carbon that originates from within the boron carbide particles. Examination of the reaction bonded boron carbide revealed a core-rim microstructure consisting of boron carbide particles surrounded by secondary boron carbide containing some dissolved silicon. This microstructure is generated as the outcome of a dissolution-precipitation process. In the course of the infiltration process molten Si dissolves some boron carbide until its saturation with B and C. Subsequently, precipitation of secondary boron carbide enriched with boron and silicon takes place. In parallel, elongated, strongly twinned, faceted SiC particles are generated by rapid growth along preferred crystallographic directions. This sequence of events is supported by X-ray diffraction and microcompositional analysis and well accounted for by the thermodynamic analysis of the ternary B-C-Si system. - Graphical abstract: Bright field TEM image of the rim area between two boron carbide grains

  3. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    Directory of Open Access Journals (Sweden)

    Masafumi Matsushita

    2011-07-01

    Full Text Available Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride.

  4. Boron supplementation in broiler diets

    Directory of Open Access Journals (Sweden)

    EJ Fassani

    2004-12-01

    Full Text Available Boron supplementation in broiler feed is not a routine practice. However, some reports suggest a positive effect of boron on performance. This study assessed the effects of boron supplementation on broiler performance. Diets were based on maize and soybean meal, using boric acid P.A. as boron source. Six supplementation levels (0, 30, 60, 90, 120 and 150 ppm were evaluated using 1,440 one-day old males housed at a density of 30 chickens in each of 48 experimental plots of 3m². A completely randomized block design was used with 8 replicates. Feed intake, weight gain and feed conversion were assessed in the periods from 1 to 7 days, 1 to 21 days and 1 to 42 days of age, and viability was evaluated for the total 42-day rearing period. No performance variable was affected by boron supplementation (p>0.05 in the period from 1 to 7 days. The regression analysis indicated an ideal level of 37.4 ppm of boron for weight gain from 1 to 21 days (p0.05, although feed intake was reduced linearly with increased boron levels (p0.05. Ash and calcium percentages in the tibias of broilers and viability in the total rearing period were not affected by boron supplementation (p>0.05.

  5. Damage analysis of ceramic boron absorber materials in boiling water reactors and initial model for an optimum control rod management

    International Nuclear Information System (INIS)

    Schulz, W.

    2000-01-01

    Operating experience has proved so far that BWR control rods cannot be used for the total reactor life time as originally presumed, but instead has to be considered as a consumable article. After only few operating cycles, the mechanism of absorber failure has been shown to be neutron induced boron carbide swelling and stress cracking of the absorber tubes, followed by erosion of the absorber material. In the case that operation of such a control rod is continued in control cells, this can lead to an increase of the local power density distribution in the core and, under certain conditions, can even cause fuel rod damage. A non destructive testing method has been developed called 'UNDERWATER NEUTRON RADIOGRAPHY' applicable for any BWR control rod. 'Lead-control rods' being radiographed are used to evaluate their actual nuclear worth by the help of a special analytical procedure developed and verified by the author. Nuclear worth data plotted against bum up history data will allow to create an 'EMPIRIC MODEL'. This model includes the basic idea of operating control rods of a certain design first in a control position up to a target fluence limited to an amount just below the appearance of control rod washout. Afterwards they have to be moved in a shut down position to work therefor the total remaining holding period. The initial model is applicable to any CR-design as long as sufficient measuring-data and thus data about the nuclear worth are available. The results of these experiences are extrapolated to the whole reactor holding period. After modelling no further measurements of this particular control rod type are necessary in any reactor. The second focal point is to provide an APPROXIMATION EQUATION. By knowing the absorber radius, B 4 C density and absorber enclosure data an engineer will calculate reliably the working life of any control rod design on control position. indicated as maximum allowable neutron fluence margin until absorber wash-out starts. This

  6. Nondestructive ultrasonic characterization of armor grade silicon carbide

    Science.gov (United States)

    Portune, Andrew Richard

    Ceramic materials have traditionally been chosen for armor applications for their superior mechanical properties and low densities. At high strain rates seen during ballistic events, the behavior of these materials relies upon the total volumetric flaw concentration more so than any single anomalous flaw. In this context flaws can be defined as any microstructural feature which detriments the performance of the material, potentially including secondary phases, pores, or unreacted sintering additives. Predicting the performance of armor grade ceramic materials depends on knowledge of the absolute and relative concentration and size distribution of bulk heterogeneities. Ultrasound was chosen as a nondestructive technique for characterizing the microstructure of dense silicon carbide ceramics. Acoustic waves interact elastically with grains and inclusions in large sample volumes, and were well suited to determine concentration and size distribution variations for solid inclusions. Methodology was developed for rapid acquisition and analysis of attenuation coefficient spectra. Measurements were conducted at individual points and over large sample areas using a novel technique entitled scanning acoustic spectroscopy. Loss spectra were split into absorption and scattering dominant frequency regimes to simplify analysis. The primary absorption mechanism in polycrystalline silicon carbide was identified as thermoelastic in nature. Correlations between microstructural conditions and parameters within the absorption equation were established through study of commercial and custom engineered SiC materials. Nonlinear least squares regression analysis was used to estimate the size distributions of boron carbide and carbon inclusions within commercial SiC materials. This technique was shown to additionally be capable of approximating grain size distributions in engineered SiC materials which did not contain solid inclusions. Comparisons to results from electron microscopy

  7. Boron atom reactions

    International Nuclear Information System (INIS)

    Estes, R.; Tabacco, M.B.; Digiuseppe, T.G.; Davidovits, P.

    1982-01-01

    The reaction rates of atomic boron with various epoxides have been measured in a flow tube apparatus. The bimolecular rate constants, in units of cm 3 molecule -1 s -1 , are: 1,2-epoxypropane (8.6 x 10 -11 ), 1,2-epoxybutane (8.8 x 10 -11 ), 1,2,3,4-diepoxybutane (5.5 x 10 -11 ), 1-chloro-2,3-epoxypropane (5.7 x 10 -11 ), and 1,2-epoxy-3,3,3-trichloropropane (1.5 x 10 -11 ). (orig.)

  8. Doping of silicon carbide by ion implantation; Dopage du carbure de silicium par implantation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Gimbert, J

    1999-03-04

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  9. Plasma metallization of refractory carbide powders

    International Nuclear Information System (INIS)

    Koroleva, E.B.; Klinskaya, N.A.; Rybalko, O.F.; Ugol'nikova, T.A.

    1986-01-01

    The effect of treatment conditions in plasma on properties of produced metallized powders of titanium, tungsten and chromium carbides with the main particle size of 40-80 μm is considered. It is shown that plasma treatment permits to produce metallized powders of carbide materials with the 40-80 μm particle size. The degree of metallization, spheroidization, chemical and phase composition of metallized carbide powders are controlled by dispersivity of the treated material, concentration of a metal component in the treated mixtures, rate of plasma flow and preliminary spheroidization procedure

  10. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Borisova, A.; Borisov, Y.; Shavlovsky, E.; Mits, I.; Castermans, L.; Jongbloed, R.

    2001-01-01

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 o C. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  11. Effect of laser pulsed radiation on the properties of implanted layers of silicon carbide

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Voron'ko, O.N.; Nojbert, F.; Potapov, E.N.

    1984-01-01

    Results are presented of investigation into pulsed laser radiation effects on the layers of GH polytype silicon carbide converted to amorphous state by implantation of boron and aluminium ions. The implantation doses were selected to be 5x10 16 for boron and 5x10 15 cm -2 for aluminium, with the ion energies being 60 and 80 keV, respectively. The samples annealed under nanosecond regime are stated to posseys neither photoluminescence (PL) nor cathodoluminescence (CL). At the same time the layers annealed in millisecond regime have a weak PL at 100 K and CL at 300 K. The PL and CL are observed in samples, laser-annealed at radiation energy density above 150-160 J/cm 2 in case of boron ion implantation and 100-120 J/cm 2 in case of aluminium ion implantation. Increasing the radiation energy density under the nanosecond regime of laser annealing results in the surface evaporation due to superheating of amorphous layers. Increasing the energy density above 220-240 J/cm 2 results in destruction of the samples

  12. Separation process for boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S D

    1975-06-12

    The method according to the invention is characterized by the steps of preparing a gaseous mixture of BCl/sub 3/ containing the isotopes of boron and oxygen as the extractor, irradiating that mixture in the tube of the separator device by means of P- or R-lines of a CO/sub 2/ laser for exciting the molecules containing a given isotope of boron, simultaneously irradiating the mixture with UV for photodissociating the excited BCl/sub 3/ molecules and separating BCl/sub 3/ from the reaction products of photodissociation and from oxygen. Such method is suitable for preparing boron used in nuclear reactors.

  13. Stable carbides in transition metal alloys

    International Nuclear Information System (INIS)

    Piotrkowski, R.

    1991-01-01

    In the present work different techniques were employed for the identification of stable carbides in two sets of transition metal alloys of wide technological application: a set of three high alloy M2 type steels in which W and/or Mo were total or partially replaced by Nb, and a Zr-2.5 Nb alloy. The M2 steel is a high speed steel worldwide used and the Zr-2.5 Nb alloy is the base material for the pressure tubes in the CANDU type nuclear reactors. The stability of carbide was studied in the frame of Goldschmidt's theory of interstitial alloys. The identification of stable carbides in steels was performed by determining their metallic composition with an energy analyzer attached to the scanning electron microscope (SEM). By these means typical carbides of the M2 steel, MC and M 6 C, were found. Moreover, the spatial and size distribution of carbide particles were determined after different heat treatments, and both microstructure and microhardness were correlated with the appearance of the secondary hardening phenomenon. In the Zr-Nb alloy a study of the α and β phases present after different heat treatments was performed with optical and SEM metallographic techniques, with the guide of Abriata and Bolcich phase diagram. The α-β interphase boundaries were characterized as short circuits for diffusion with radiotracer techniques and applying Fisher-Bondy-Martin model. The precipitation of carbides was promoted by heat treatments that produced first the C diffusion into the samples at high temperatures (β phase), and then the precipitation of carbide particles at lower temperature (α phase or (α+β)) two phase field. The precipitated carbides were identified as (Zr, Nb)C 1-x with SEM, electron microprobe and X-ray diffraction techniques. (Author) [es

  14. Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature

    Science.gov (United States)

    Shakhov, Fedor M.; Abyzov, Andrey M.; Takai, Kazuyuki

    2017-12-01

    Boron doped diamond (BDD) was synthesized under high pressure and high temperature (HPHT) of 7 GPa, 1230 °C in a short time of 10 s from a powder mixtures of detonation nanodiamond (DND), pentaerythritol C5H8(OH)4 and amorphous boron. SEM, TEM, XRD, XPS, FTIR and Raman spectroscopy indicated that BDD nano- and micro-crystals have formed by consolidation of DND particles (4 nm in size). XRD showed the enlargement of crystallites size to 6-80 nm and the increase in diamond lattice parameter by 0.02-0.07% without appearance of any microstrains. Raman spectroscopy was used to estimate the content of boron atoms embedded in the diamond lattice. It was found that the Raman diamond peak shifts significantly from 1332 cm-1 to 1290 cm-1 without appearance of any non-diamond carbon. The correlation between Raman peak position, its width, and boron content in diamond is proposed. Hydrogenated diamond carbon in significant amount was detected by IR spectroscopy and XPS. Due to the doping with boron content of about 0.1 at%, the electrical conductivity of the diamond achieved approximately 0.2 Ω-1 cm-1. Reaction mechanism of diamond growth (models of recrystallization and oriented attachment) is discussed, including the initial stages of pentaerythritol pyrolysis and thermal desorption of functional groups from the surface of DND particles with the generation of supercritical fluid of low-molecular substances (H2O, CH4, CO, CO2, etc.), as well as byproducts formation (B2O3, B4C).

  15. Point defects and transport properties in carbides

    International Nuclear Information System (INIS)

    Matzke, Hj.

    1984-01-01

    Carbides of transition metals and of actinides are interesting and technologically important. The transition-metal carbides (or carbonitrides) are extensively being used as hard materials and some of them are of great interest because of the high transition temperature for superconductivity, e.g. 17 K for Nb(C,N). Actinide carbides and carbonitrides, (U,Pu)C and (U,Pu)(C,N) are being considered as promising advanced fuels for liquid metal cooled fast breeder nuclear reactors. Basic interest exists in all these materials because of their high melting points (e.g. 4250 K for TaC) and the unusually broad range of homogeneity of nonstoichiometric compositions (e.g. from UCsub(0.9) to UCsub(1.9) at 2500 K). Interaction of point defects to clusters and short-range ordering have recently been studied with elastic neutron diffraction and diffuse scattering techniques, and calculations of energies of formation and interaction of point defects became available for selected carbides. Diffusion measurements also exist for a number of carbides, in particular for the actinide carbides. The existing knowledge is discussed and summarized with emphasis on informative examples of particular technological relevance. (Auth.)

  16. Nothing Boring About Boron

    Science.gov (United States)

    Pizzorno, Lara

    2015-01-01

    The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body’s use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD+); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin’s lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron’s beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron—only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis

  17. Boronization in TEXTOR

    International Nuclear Information System (INIS)

    Winter, J.; Esser, H.G.; Koenen, L.; Reimer, H.; Seggern, J. v.; Schlueter, J.; Waelbroeck, F.; Wienhold, P.; Veprek, S.

    1989-01-01

    The liner and limiters of TEXTOR have been coated in situ with a boron containing carbon film using a RG discharge in a throughflow of 0.8 He + 0.1 B 2 H 6 + 0.1 CH 4 . The average film thickness was 30-50 nm, the ratio of boron and carbon in the layer was about 1:1 according to Auger Electron Spectroscopy. Subsequent tokamak discharges are characterized by a small fraction of radiated power ( eff lower than 1.2 are derived from conductivity measurements. The most prominent change in the impurity concentration compared to good conditions in a carbonized surrounding is measured for oxygen. The value OVI/anti n e of the OVI intensity normalized to the averaged plasma density anti n e decreases by more than a factor of four. The decrease in the oxygen content manifests itself also as a reduction of the CO and CO 2 partial pressures measured during and after the discharge with a sniffer probe. The carbon levels are reduced by a factor of about two as measured by the normalized intensity CII/anti n e of the CII line and via the ratio of the C fluxes and deuterium fluxed measured at the limiter (CI/D α ). The wall shows a pronounced sorption of hydrogen from the plasma, easing the density control and the establishment of low recycling conditions. The beneficial conditions did not show a significant deterioration during more than 200 discharges, including numerous shots at ICRH power levels >2 MW. (orig.)

  18. Note on boron toxicity in oats

    Energy Technology Data Exchange (ETDEWEB)

    Langille, W M; Mahoney, J F

    1959-01-01

    Boron was applied at the rate of 35 pounds per acre of borax to a field of oats. With the first noticeable growth there appeared a definite chlorotic condition of the oat seedlings on plots receiving boron treatments. Analysis of chlorotic tissue at 3 weeks after seeding indicated 110 ppm boron, while apparently healthy tissue contained 6.1 ppm boron at the same stage of growth. There was a rapid decline in the boron content of the oat tissue as the crop grew older. At maturity the oat tissue from the boron-treated plots contained an average of 14.15 ppm boron as compared with 4.10 boron from untreated areas. Boron toxicity had no harmful effect so far as yields were concerned, under the conditions of this experiment. 3 references.

  19. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  20. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64 ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  1. The influence of Boron on creep-rupture behaviour of austenitic unstabilized and Nb-stabilized stainless steel X8CrNi 1613 in unirradiated and irradiated condition

    International Nuclear Information System (INIS)

    Sen, Susant Kumar.

    1976-10-01

    The present study deals with influence of boron on creep-rupture behaviour in unirradiated condition at 650 0 C along with precipitation behaviour, heat-treatment and recrystallization of unstabilized and stabilized steel. The results of creep-rupture tests on unirradiated specimens show that boron exerts a beneficial effect on the rupture life and ductility. Boron losses its beneficial effect on creep properties in unstabilized steel by prolong creeping. The magnitude of beneficial effect of Boron on creep properties depends upon the initial boron distribution which influences the number, size and distribution of the precipitates. Boron promotes the precipitation of type M 23 C 6 Carbides in the grain as well as at the grain boundary. Boron segregates in atomic form during slow cooling from austenitizing temperature. The recrystallization will be delayed by the presence of boron. The results of creep tests at 650 0 C shows that boron exerts a beneficial effect on creep life of irradiated steels. (orig./GSC) [de

  2. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  3. Temperature dependence of the damage microstructures in neutron-irradiated vanadium

    International Nuclear Information System (INIS)

    Horton, L.L.; Farrell, K.

    1983-01-01

    Vanadium and vanadium with boron carbide additions (V-B 4 C) were irradiated to approx. 1 dpa in the Oak Ridge Research Reactor at controlled temperatures ranging from 455 to 925 K. The V-B 4 C alloy was enriched in 10 B, which produced approx. 3900 at. ppM helium. In the vanadium specimens, the dislocation microstructures varied from clusters of small ( . The V-B 4 C specimens contained only tangled dislocation segments. Cavities were observed in all specimens. The cavity concentration decrease and the average diameter increased with increasing irradiation temperature. At 725 K, the maximum swelling was observed in both the vanadium (0.1%) and V-B 4 C (1.4%). At comparable temperatures the cavities in the V-B 4 C specimens were smaller and more numerous than those in the vanadium specimens. Helium bubbles were found on the grain boundaries in all of the V-B 4 specimens

  4. Tungsten carbide and tungsten-molybdenum carbides as automobile exhaust catalysts

    International Nuclear Information System (INIS)

    Leclercq, L.; Daubrege, F.; Gengembre, L.; Leclercq, G.; Prigent, M.

    1987-01-01

    Several catalyst samples of tungsten carbide and W, Mo mixed carbides with different Mo/W atom ratios, have been prepared to test their ability to remove carbon monoxide, nitric oxide and propane from a synthetic exhaust gas simulating automobile emissions. Surface characterization of the catalysts has been performed by X-ray photoelectron spectroscopy (XPS) and selective chemisorption of hydrogen and carbon monoxide. Tungsten carbide exhibits good activity for CO and NO conversion, compared to a standard three-way catalyst based on Pt and Rh. However, this W carbide is ineffective in the oxidation of propane. The Mo,W mixed carbides are markedly different having only a very low activity. 9 refs.; 10 figs.; 5 tabs

  5. High temperature evaporation of titanium, zirconium and hafnium carbides

    International Nuclear Information System (INIS)

    Gusev, A.I.; Rempel', A.A.

    1991-01-01

    Evaporation of cubic nonstoichiometric carbides of titanium, zirconium and hafnium in a comparatively low-temperature interval (1800-2700) with detailed crystallochemical sample certification is studied. Titanium carbide is characterized by the maximum evaporation rate: at T>2300 K it loses 3% of sample mass during an hour and at T>2400 K titanium carbide evaporation becomes extremely rapid. Zirconium and hafnium carbide evaporation rates are several times lower than titanium carbide evaporation rates at similar temperatures. Partial pressures of metals and carbon over the carbides studied are calculated on the base of evaporation rates

  6. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  7. Alloy Design of Martensitic 9Cr-Boron Steel for A-USC Boiler at 650 °C — Beyond Grades 91, 92 and 122

    Science.gov (United States)

    Abe, Fujio; Tabuchi, M.; Tsukamoto, S.

    Boundary hardening is shown to be the most important strengthening mechanism in creep of tempered martensitic 9% Cr steel base metal and welded joints at 650 °C. The enrichment of soluble boron near prior austenite grain boundaries (PAGBs) by the GB segregation is essential for the reduction of coarsening rate of M23C6 carbides near PAGBs, enhancing the boundary and sub-boundary hardening near PAGBs, and also for the change in α/γ transformation behavior in heat-affected-zone (HAZ) of welded joints during heating of welding, producing the same microstructure in HAZ as in the base metal. Excess addition of nitrogen to the 9Cr-boron steel promotes the formation of boron nitrides during normalizing heat treatment, which consumes most of soluble boron and degrades the creep strength. A NIMS 9Cr steel (MARBN; Martensitic 9Cr steel strengthened by boron and MX nitrides) with 120-150 ppm boron and 60-90 ppm nitrogen, where no boron nitride forms during normalizing heat treatment, exhibits not only much higher creep strength of base metal than Grades 91, 92 and 122 but also substantially no degradation in creep strength due to Type IV fracture in HAZ of welded joints at 650°C. The protective Cr2O3-rich scale forms on the surface of 9Cr steel by pre-oxidation treatment in Ar gas, which significantly improves the oxidation resistance in steam at 650°C.

  8. Some problems connected with boron determination by atomic absorption spectroscopy and the sensitivity improvement

    Directory of Open Access Journals (Sweden)

    JELENA J. SAVOVIC

    2001-08-01

    Full Text Available Two atomizers were compared: an N2O–C2H2 flame and a stabilized U-shaped DC arc with aerosol supply. Both the high plasma temperature and the reducing atmosphere obtained by acetylene addition to the argon stream substantially increase the sensitivity of boron determination by atomic absorption spectroscopy (AAS when the arc atomizer is used. The results were compared with those for silicon as a control element. The experimental characteristic concentrations for both elements were compared with the computed values. The experimentally obtained characteristic concentration for boron when using the arc atomizer was in better agreement with the calculated value. It was estimated that the influence of stable monoxide formation on the sensitivity for both elements was about the same, but reduction of analyte and formation of non-volatile carbide particles was more important for boron, which is the main reason for the low sensitivity of boron determination using a flame atomizer. The use of an arc atomizer suppresses this interference and significantly improves the sensitivity of the determination.

  9. Combustion Enhancement of Liquid Fuels via Nanoparticle Additions: Screening, Dispersion, and Characterization

    Science.gov (United States)

    2015-06-04

    burning rates of nitromethane (a monopropellant) solutions with both n-Al and fumed silica 8 and functionalized graphene 9 in a liquid propellant...These include but are not limited to aluminum, boron, boron carbide (B4C), carbon ( graphene ), titanium, and tungsten nano-sized particles. When... paint at one corner. To dilute the particle number density to an appropriate level for imaging, the particle/fuel mixes were agitated using a

  10. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    International Nuclear Information System (INIS)

    Mejia, I.; Bedolla-Jacuinde, A.; Maldonado, C.; Cabrera, J.M.

    2011-01-01

    Research highlights: → Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. → Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. → Hot ductility improvement is associated with segregation/precipitation of boron. → Typical hot ductility recovery at lower temperatures does not appear in this steel. → Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of boron segregation towards

  11. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, I., E-mail: imejia@umich.mx [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Bedolla-Jacuinde, A.; Maldonado, C. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Cabrera, J.M. [Departament de Ciencia dels Materials i Enginyeria Metal.lurgica, ETSEIB - Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. de las Bases de Manresa 1, 08240 Manresa (Spain)

    2011-05-25

    Research highlights: {yields} Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. {yields} Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. {yields} Hot ductility improvement is associated with segregation/precipitation of boron. {yields} Typical hot ductility recovery at lower temperatures does not appear in this steel. {yields} Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s{sup -1}. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of

  12. New ceramics for nuclear industry. Case of fission and fusion reactors

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The ceramics used in the nuclear field are described as is their behaviour under radiation. 1) Power reactors - nuclear fission. Ceramics enter into the fabrication of nuclear fuels: oxides, carbides, uranium or plutonium nitrides or oxy-nitrides. Silicon carbide SiC is used for preparing the fuels of helium cooled high temperature reactors. Its use is foreseen in the design of gas high temperature gas thermal exchangers, as is silicon nitride (Si 3 N 4 ). In the materials for safety or control rods, the intense neutron flows induce nuclear reactions which increase the temperature of the neutron absorbing material. Boron carbide B 4 C, rare earth oxides Ln 2 O 3 , or B 4 C-Cu or B 4 C-Al cermets are employed. Burnable poison materials are formed of Al 2 O 3 -B 4 C or Al 2 O 3 -Ln 2 O 3 cermets. The moderators of thermal neutron reactors are in high purety polycrystalline graphite. For the thermal insulation of reactor vessels and jackets, honeycomb ceramics are used as well as ceramic fibres on an increasing scale (kaolin, alumina and other fibres). 2) fusion reactors (Tokomak). These require refractory materials with a low atomic number. Carbon fibres, boron carbide, some borons (Al B 12 ), silicon nitrides and oxy-nitrides and high density alumina are the substances considered [fr

  13. Critically designing today’s melt processed bulk magnesium alloys using boron rich nanoparticles

    International Nuclear Information System (INIS)

    Paramsothy, Muralidharan; Gupta, Manoj

    2015-01-01

    Highlights: • B 4 C nanoparticles increased the tensile ductility of Mg–Al alloy to about 25%. • SiB 6 nanoparticles increased the tensile ductility of Mg–Zn alloy to about 23%. • ZrB 2 nanoparticles increased the tensile strength of Mg–RE alloy to above 400 MPa. • Hypothetically, 5–10% cold working could significantly increase tensile strength. • Hypothetically, 5–10% cold working could maintain tensile ductility above 10%. - Abstract: In this work, boron rich nanoparticles (B 4 C, SiB 6 and ZrB 2 ) were added to bulk melt processed Mg–Al, Mg–Zn and Mg–RE (Rare Earth) series contemporary magnesium alloys, respectively. The most obvious positive effect when adding B 4 C nanoparticles to the Mg–Al alloy was the significant increase in tensile ductility (to about 25%). Here, there was no significant change in grain size or crystallographic texture due to nanoparticle addition. However, it was observed that stacking faults formed more easily in the magnesium matrix due to nanoparticle addition. Also, it was observed that coarser nanoparticles broke down high strain zones (HSZs) during tensile deformation. The addition of SiB 6 to Mg–Zn alloy also resulted in similar significant increase in tensile ductility (to about 23%). Tensile deformation induced alignment of more rounded and spherical nanoparticles was observed. Stacking faults forming more easily in the alloy matrix was also observed. However, the formation of nanograins (nanoscale recrystallization) during room temperature tensile deformation was observed in this system. This implied that nanograin rotation during deformation was also responsible for the observed enhanced tensile ductility. When ZrB 2 was added to Mg–RE alloy, the tensile strength was significantly enhanced (yield strength >400 MPa) after thermal ageing. Here, the ZrB 2 nanoparticles induced the formation of thermal ageing resistant long period stacking/ordered (LPSO) nanograins and nanolayers in the Mg

  14. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    Laterite obtained from Ikpayongo was stabilized with 2-10 % cement and 2-10 % Calcium Carbide waste, for use .... or open dumping which have effect on surface and ... Table 1: Chemical Composition of Calcium Carbide Waste and Cement.

  15. Method of fabricating porous silicon carbide (SiC)

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1995-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  16. Fission product phases in irradiated carbide fuels

    International Nuclear Information System (INIS)

    Ewart, F.T.; Sharpe, B.M.; Taylor, R.G.

    1975-09-01

    Oxide fuels have been widely adopted as 'first charge' fuels for demonstration fast reactors. However, because of the improved breeding characteristics, carbides are being investigated in a number of laboratories as possible advanced fuels. Irradiation experiments on uranium and mixed uranium-plutonium carbides have been widely reported but the instances where segregate phases have been found and subjected to electron probe analysis are relatively few. Several observations of such segregate phases have now been made over a period of time and these are collected together in this document. Some seven fuel pins have been examined. Two of the irradiations were in thermal materials testing reactors (MTR); the remainder were experimental assemblies of carbide gas bonded oxycarbide and sodium bonded oxycarbide in the Dounreay Fast Reactor (DFR). All fuel pins completed their irradiation without failure. (author)

  17. Joining of porous silicon carbide bodies

    Science.gov (United States)

    Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  18. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Catledge, Shane A., E-mail: catledge@uab.edu

    2016-02-28

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W{sub 2}CoB{sub 2}. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W{sub 2}CoB{sub 2} with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  19. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-01-01

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W_2CoB_2. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W_2CoB_2 with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  20. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Yilmaz, M. Tolga; Kocakerim, M. Muhtar

    2005-01-01

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions

  1. Lattice vibrations in α-boron

    International Nuclear Information System (INIS)

    Richter, W.

    1976-01-01

    α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)

  2. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm

  3. Morphology study of refractory carbide powders

    International Nuclear Information System (INIS)

    Vavrda, J.; Blazhikova, Ya.

    1982-01-01

    Refractory carbides were investigated using JSM-U3 electron microscope of Joelco company at 27 KV accelerating voltage. Some photographs of each powder were taken with different enlargements to characterise the sample upon the whole. It was shown that morphological and especially topographic study of powders enables to learn their past history (way of fabrication and treatment). The presence of steps of compact particle fractures and cracks is accompanied by occurence of fine dispersion of carbides subjected to machining after facrication. On the contrary, the character of crystallographic surfaces and features of surface growth testify to the way of crystallization

  4. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  5. Tool steel for cold worck niobium carbides

    International Nuclear Information System (INIS)

    Goldenstein, H.

    1984-01-01

    A tool steel was designed so as to have a microstructure with the matrix similar a cold work tool steel of D series, containing a dispersion of Niobium carbides, with no intention of putting Niobium in solution on the matrix. The alloy was cast, forged and heat treated. The alloy was easily forged; the primary carbide morfology, after forging, was faceted, tending to equiaxed. The hardness obtained was equivalent to the maximum hardness of a D-3 sttel when quenched from any temperature between 950 0 C, and 1200 0 , showing a very small sensitivy to the quenching temperature. (Author) [pt

  6. Boron steel. I Part. Preparation

    International Nuclear Information System (INIS)

    Jaraiz Franco, E.; Esteban Hernandez, J. A.

    1960-01-01

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe 2 B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs

  7. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  8. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  9. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2013-05-01

    Full Text Available In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250 篊 to 400 篊. The impact toughness is 4-11 J昪m-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.

  10. Preparation of aluminum nitride-silicon carbide nanocomposite powder by the nitridation of aluminum silicon carbide

    NARCIS (Netherlands)

    Itatani, K.; Tsukamoto, R.; Delsing, A.C.A.; Hintzen, H.T.J.M.; Okada, I.

    2002-01-01

    Aluminum nitride (AlN)-silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g-1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich

  11. Two-channel neutron boron meter

    International Nuclear Information System (INIS)

    Chen Yongqing; Yin Guowei; Chai Songshan; Deng Zhaoping; Zhou Bin

    1993-09-01

    The two-channel neutron boron meter is a continuous on-line measuring device to measure boron concentration of primary cooling liquid of reactors. The neutron-leakage-compensation method is taken in the measuring mechanism. In the primary measuring configuration, the mini-boron-water annulus and two-channel and central calibration loop are adopted. The calibration ring and constant-temperature of boron-water can be remotely controlled by secondary instruments. With the microcomputer data processing system the boron concentration is automatically measured and calibrated in on-line mode. The meter has many advantages such as high accuracy, fast response, multi-applications, high reliability and convenience

  12. Growth and structure of carbide nanorods

    International Nuclear Information System (INIS)

    Lieber, C.M.; Wong, E.W.; Dai, H.; Maynor, B.W.; Burns, L.D.

    1996-01-01

    Recent research on the growth and structure of carbide nanorods is reviewed. Carbide nanorods have been prepared by reacting carbon nanotubes with volatile transition metal and main group oxides and halides. Using this approach it has been possible to obtain solid carbide nanorods of TiC, SiC, NbC, Fe 3 C, and BC x having diameters between 2 and 30 nm and lengths up to 20 microm. Structural studies of single crystal TiC nanorods obtained through reactions of TiO with carbon nanotubes show that the nanorods grow along both [110] and [111] directions, and that the rods can exhibit either smooth or saw-tooth morphologies. Crystalline SiC nanorods have been produced from reactions of carbon nanotubes with SiO and Si-iodine reactants. The preferred growth direction of these nanorods is [111], although at low reaction temperatures rods with [100] growth axes are also observed. The growth mechanisms leading to these novel nanomaterials have also been addressed. Temperature dependent growth studies of TiC nanorods produced using a Ti-iodine reactant have provided definitive proof for a template or topotactic growth mechanism, and furthermore, have yielded new TiC nanotube materials. Investigations of the growth of SiC nanorods show that in some cases a catalytic mechanism may also be operable. Future research directions and applications of these new carbide nanorod materials are discussed

  13. Surface metallurgy of cemented carbide tools

    International Nuclear Information System (INIS)

    Chopra, K.L.; Kashyap, S.C.; Rao, T.V.; Rajagopalan, S.; Srivastava, P.K.

    1983-01-01

    Transition metal carbides, owing to their high melting point, hardness and wear resistance, are potential candidates for specific application in rockets, nuclear engineering equipment and cutting tools. Tungsten carbide sintered with a binder (either cobalt metal or a mixture of Co + TiC and/or TaC(NbC)) is used for cutting tools. The surface metallurgy of several commercially available cemented carbide tools was studied by Auger electron spectroscopy and X-ray photoelectron spectroscopy techniques. The tool surfaces were contaminated by adsorbed oxygen up to a depth of nearly 0.3 μm causing deterioration of the mechanical properties of the tools. Studies of fractured samples indicated that the tool surfaces were prone to oxygen adsorption. The fracture path passes through the cobalt-rich regions. The ineffectiveness of a worn cutting tool is attributed to the presence of excessive iron from the steel workpiece and carbon and oxygen in the surface layers of the tool. The use of appropriate hard coatings on cemented carbide tools is suggested. (Auth.)

  14. Silicon Carbide Power Devices and Integrated Circuits

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Samsel, Isaak; LaBel, Ken; Chen, Yuan; Ikpe, Stanley; Wilcox, Ted; Phan, Anthony; Kim, Hak; Topper, Alyson

    2017-01-01

    An overview of the NASA NEPP Program Silicon Carbide Power Device subtask is given, including the current task roadmap, partnerships, and future plans. Included are the Agency-wide efforts to promote development of single-event effect hardened SiC power devices for space applications.

  15. Low temperature CVD deposition of silicon carbide

    International Nuclear Information System (INIS)

    Dariel, M.; Yeheskel, J.; Agam, S.; Edelstein, D.; Lebovits, O.; Ron, Y.

    1991-04-01

    The coating of graphite on silicon carbide from the gaseous phase in a hot-well, open flow reactor at 1150degC is described. This study constitutes the first part of an investigation of the process for the coating of nuclear fuel by chemical vapor deposition (CVD)

  16. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  17. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...

  18. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    Agarwal, A.; Eaglesham, D.J.; Gossmann, H.J.; Pelaz, L.; Herner, S.B.; Jacobson, D.C.

    1998-01-01

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B + , the threshold implantation dose which leads to BED lies between 3 x 10 14 and of 1 x 10 15 /cm -2 . Formation of the shallowest possible junctions by 0.5 keV B + requires that the implant dose be kept lower than this threshold

  19. Chemical-vapor-infiltrated silicon nitride, boron nitride, and silicon carbide matrix composites

    International Nuclear Information System (INIS)

    Ventri, R.D.; Galasso, F.S.

    1990-01-01

    This paper reports composites of carbon/chemical-vapor-deposited (CVD) Si 3 N 4 , carbon/CVD BN, mullite/CVD SiC, and SiC yarn/CVD SiC prepared to determine if there were inherent toughness in these systems. The matrices were deposited at high enough temperatures to ensure that they were crystalline, which should make them more stable at high temperatures. The fiber-matrix bonding in the C/Si 3 N 4 composite appeared to be too strong; the layers of BN in the matrix of the C/BN were too weakly bonded; and the mullite/SiC composite was not as tough as the SiC/SiC composites. Only the SiC yarn/CVD SiC composite exhibited both strength and toughness

  20. New Low Temperature Processing for Boron Carbide/Aluminum Based Composite Armor

    Science.gov (United States)

    1990-06-01

    a A’ inLali LA COinitent OF 20 V d Ue to intrusion of the metal ’man during ROC. Subsequent evaluation of the part revealed cracks which had been...Varonic T-205 ethoxylated tallow amine 5.00 33.8 Witcamide 511 diethanol oleylamide 5.00 55.4 Adogen 115-D soya amine 5.25 47.5 Adogen 572 3...metal. A. LI&A JL %AP& La . &&%F" Much research work on ceramic containing systems is devoted to studies Involving the quality of starting po.wders

  1. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  2. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction ...

  3. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  4. Boron-11 MRI and MRS of intact animals infused with a boron neutron capture agent

    International Nuclear Information System (INIS)

    Kabalka, G.W.; Davis, M.; Bendel, P.

    1988-01-01

    Boron neutron capture therapy (BNCT) depends on the delivery of boron-containing drugs to a targeted lesion. Currently, the verification and quantification of in vivo boron content is a difficult problem. Boron-11 spectroscopy was utilized to confirm the presence of a dimeric sulfhydryl dodecaborane BNCT agent contained in an intact animal. Spectroscopy experiments revealed that the decay time of transverse magnetization of the boron-11 spins was less than 1 ms which precluded the use of a 2DFT imaging protocol. A back-projection protocol was developed and utilized to generate the first boron-11 image of a BNCT agent in the liver of an intact Fisher 344 rat

  5. Successive carbon- and boron saturation of KhVG steel in powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Alimov, Yu A; Gordienko, S I

    1975-01-01

    Method of successive saturation of KhVG steel with carbon and boron in powder mixtures is described. After carbonization of steel in a charcoal carburator at 930 deg C during 3 hrs a domain of equiaxial large grains is formed there the latter representing carbides of Fe/sub 3/C and (Fe, M)/sub 3/C. The increase of duration of carbonization up to 5 hrs and above results in formation of a cement grid greatly impairing the mechanical properties of the metal. Carbonization is followed by borating in powdered technical boron carbide at 900 deg C for 4 hrs which ensures formation on the sample surface of a borated layer with depth up to 65 mkm covering the carbonized zone. As followed from metallographic and x-ray structural analysis, the borated layer consists of boride needles with complex composition (Fe, Cr, Mn)B. Oil hardening of carbonized KhVG steel from 850 deg C and low-temperature tempering at 180 deg C for 1 hr results in formation in the main metal of martensite-carbide structure and, respectively, in the decrease of the microhardness gradient between the diffusion layers, as compared with borated KhVG steel. Operation tests of strengthened matrices of preforming machines under the conditions of application of dynamic pressing forces up to 1500 kg Fce/cm/sup 2/ demonstrated that the cyclical strength of carboborated coverings is 2.0-3.0 times higher than that of borated ones. The method of carboborating is recommended for strengthening the details of stamp and press tools.

  6. Oxidation protection and behavior of in-situ zirconium diboride–silicon carbide coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Li, Lu; Li, Hejun; Yin, Xuemin; Chu, Yanhui; Chen, Xi; Fu, Qiangang

    2015-01-01

    Highlights: • ZrB 2 –SiC coating was prepared on C/C composite by in-situ reaction. • A two-layered structure was obtained when the coating was oxidized at 1500 °C. • The formation and collapse of bubbles influenced the coating oxidation greatly. • The morphology evolution of oxide scale during oxidation was illuminated. - Abstract: To protect carbon/carbon (C/C) composites against oxidation, zirconium diboride–silicon carbide (ZrB 2 –SiC) coating was prepared by in-situ reaction using ZrC, B 4 C and Si as raw materials. The in-situ ZrB 2 –SiC coated C/C presented good oxidation resistance, whose weight loss was only 0.15% after isothermal oxidation at 1500 °C for 216 h. Microstructure evolution of coating at 1500 °C was studied, revealing a two-layered structure: (1) ZrO 2 (ZrSiO 4 ) embedded in SiO 2 -rich glass, and (2) unaffected ZrB 2 –SiC. The formation and collapse of bubbles influenced the coating oxidation greatly. A model based on the evolution of oxide scale was proposed to explain the failure mechanism of coating

  7. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  8. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  9. Alternative Process for Manufacturing of Thin Layers of Boron for Neutron Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Auge, Gregoire; Partyka, Stanislas [Onet Technologies (France); Guerard, Bruno; Buffet, Jean-Claude [Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Due to the worldwide shortage of helium 3, Boron-lined proportional counters are developed intensively by several groups. Up to now, thin boron containing layers for neutron detectors are essentially produced by sputtering of boron carbide (B{sub 4}C). This technology provides high quality films but it is slow and expensive. Our paper describes a novel and inexpensive technology for producing boron layers. This technology is based on chemical synthesis of boron 10 nanoparticles, and on electrophoretic deposition of these particles on metallic plates, or on metallic pieces with more complex shapes. The chemical synthesis consists in: - Heating boron 10 with lithium up to 700 deg. C under inert atmosphere: an intermetallic compound, LiB, is produced; - Hydrolysing this intermetallic compound: LiB + H{sub 2}O → B + Li{sup +} + OH{sup -} + 1/2H{sub 2}, where B is under the form of nanoparticles; - Purifying the suspension of boron nanoparticles in water, from lithium hydroxide, by successive membrane filtrations; - Evaporating the purified suspension, in order to get a powder of nanoparticles. The obtained nanoparticles have size around 300 nm, with a high porosity, of about 50%. This particle size is equivalent to about 150 nm massive particles. The nanoparticles are then put into suspension in a specific solvent, in order to perform deposition on metallic surfaces, by electrophoretic method. The solvent is chosen so that it is not electrolysed even under voltages of several tens of volts. An acid is dissolved into the solvent, so that the nanoparticles are positively charged. Deposition is performed on the cathode within about 10 min. The cathode could be an aluminium plate, or a nickel coated aluminium plate. Homogeneous deposition may also be performed on complex shapes, like grids in a Multigrid detector. A large volume of pieces, can be coated with a Boron-10 film in a few hours. The thickness of the layer can be adjusted according to the required neutron

  10. Method and apparatus for coating thin foil with a boron coating

    Science.gov (United States)

    Lacy, Jeffrey L.

    2018-01-16

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to a thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.

  11. Tribological Characteristics of Tungsten Carbide Reinforced Arc Sprayed Coatings using Different Carbide Grain Size Fractions

    Directory of Open Access Journals (Sweden)

    W. Tillmann

    2017-06-01

    Full Text Available Tungsten carbide reinforced coatings play an important role in the field of surface engineering to protect stressed surfaces against wear. For thermally sprayed coatings, it is already shown that the tribological properties get mainly determined by the carbide grain size fraction. Within the scope of this study, the tribological characteristics of iron based WC-W2C reinforced arc sprayed coatings deposited using cored wires consisting of different carbide grain size fractions were examined. Microstructural characteristics of the produced coatings were scrutinized using electron microscopy and x-ray diffraction analyses. Ball-on-disk test as well as Taber Abraser and dry sand rubber wheel test were employed to analyze both the dry sliding and the abrasive wear behavior. It was shown that a reduced carbide grain size fraction as filling leads to an enhanced wear resistance against sliding. In terms of the Taber Abraser test, it is also demonstrated that a fine carbide grain size fraction results in an improved wear resistant against abrasion. As opposed to that, a poorer wear resistance was found within the dry sand rubber wheel tests. The findings show that the operating mechanisms for both abrasion tests affect the stressed surface in a different way, leading either to microcutting or microploughing.

  12. Neutron irradiation damage in transition metal carbides

    International Nuclear Information System (INIS)

    Matsui, Hisayuki; Nesaki, Kouji; Kiritani, Michio

    1991-01-01

    Effects of neutron irradiation on the physical properties of light transition metal carbides, TiC x , VC x and NbC x , were examined, emphasizing the characterization of irradiation induced defects in the nonstoichiometric composition. TiC x irradiated with 14 MeV (fusion) neutrons showed higher damage rates with increasing C/Ti (x) ratio. A brief discussion is made on 'cascade damage' in TiC x irradiated with fusion neutrons. Two other carbides (VC x and NbC x ) were irradiated with fission reactor neutrons. The irradiation effects on VC x were not so simple, because of the complex irradiation behavior of 'ordered' phases. For instance, complete disordering was revealed in an ordered phase, 'V 8 C 7 ', after an irradiation dose of 10 25 n/m 2 . (orig.)

  13. METHOD FOR PRODUCING CEMENTED CARBIDE ARTICLES

    Science.gov (United States)

    Onstott, E.I.; Cremer, G.D.

    1959-07-14

    A method is described for making molded materials of intricate shape where the materials consist of mixtures of one or more hard metal carbides or oxides and matrix metals or binder metals thereof. In one embodiment of the invention 90% of finely comminuted tungsten carbide powder together with finely comminuted cobalt bonding agent is incorporated at 60 deg C into a slurry with methyl alcohol containing 1.5% paraffin, 3% camphor, 3.5% naphthalene, and 1.8% toluene. The compact is formed by the steps of placing the slurry in a mold at least one surface of which is porous to the fluid organic system, compacting the slurry, removing a portion of the mold from contact with the formed object and heating the formed object to remove the remaining organic matter and to sinter the compact.

  14. Radiation stability of proton irradiated zirconium carbide

    International Nuclear Information System (INIS)

    Yang, Yong; Dickerson, Clayton A.; Allen, Todd R.

    2009-01-01

    The use of zirconium carbide (ZrC) is being considered for the deep burn (DB)-TRISO fuel as a replacement for the silicon carbide coating. The radiation stability of ZrC was studied using 2.6 MeV protons, across the irradiation temperature range from 600 to 900degC and to doses up to 1.75 dpa. The microstructural characterization shows that the irradiated microstructure is comprised of a high density of nanometer-sized dislocation loops, while no irradiation induced amorphization or voids are observed. The lattice expansion induced by point defects is found to increase as the dose increases for the samples irradiated at 600 and 800degC, while for the 900degC irradiation, a slight lattice contraction is observed. The radiation hardening is also quantified using a micro indentation technique for the temperature and doses studies. (author)

  15. An improved method of preparing silicon carbide

    International Nuclear Information System (INIS)

    Baney, R.H.

    1979-01-01

    A method of preparing silicon carbide is described which comprises forming a desired shape from a polysilane of the average formula:[(CH 3 ) 2 Si][CH 3 Si]. The polysilane contains from 0 to 60 mole percent (CH 3 ) 2 Si units and from 40 to 100 mole percent CH 3 Si units. The remaining bonds on the silicon are attached to another silicon atom or to a halogen atom in such manner that the average ratio of halogen to silicon in the polysilane is from 0.3:1 to 1:1. The polysilane has a melt viscosity at 150 0 C of from 0.005 to 500 Pa.s and an intrinsic viscosity in toluene of from 0.0001 to 0.1. The shaped polysilane is heated in an inert atmosphere or in a vacuum to an elevated temperature until the polysilane is converted to silicon carbide. (author)

  16. Hadfield steels with Nb and Ti carbides

    International Nuclear Information System (INIS)

    Vatavuk, J.; Goldenstein, H.

    1987-01-01

    The Hadfield Steels and the mechanisms responsible for its high strain hardening rate were reviewed. Addition of carbide forming alloying elements to the base compostion was discussed, using the matrix sttel concept. Three experimental crusher jaws were cast, with Nb and Nb + Ti added to the usual Hadfiedl compostion, with enough excess carbon to allow the formation of MC carbides. Samples for metallographic analysis were prepared from both as cast and worn out castings. The carbic morphology was described. Partition of alloying elements was qualitatively studied, using Energy Dispersive Espectroscopy in SEM. The structure of the deformed layer near the worn surface was studied by optical metalography and microhardness measurements. The results showed that fatigue cracking is one of the wear mechanisms is operation in association with the ciclic work hardening of the surface of worn crusher jaws. (Author) [pt

  17. Chemical interactions at the interfaces of Mo/B4C/Si/B4C multilayers upon low-temperature annealing

    NARCIS (Netherlands)

    Nyabero, S.L.; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Bijkerk, Frederik

    2012-01-01

    Interactions at interfaces in thin films and multilayers play an important role for present day nano-scaled devices. For example, reducing thermally induced interdiffusion between Mo and Si layers is a key challenge in developing Mo/Si multilayers as reflective coatings for projection lithography

  18. Spark plasma sintering of tantalum carbide

    International Nuclear Information System (INIS)

    Khaleghi, Evan; Lin, Yen-Shan; Meyers, Marc A.; Olevsky, Eugene A.

    2010-01-01

    A tantalum carbide powder was consolidated by spark plasma sintering. The specimens were processed under various temperature and pressure conditions and characterized in terms of relative density, grain size, rupture strength and hardness. The results are compared to hot pressing conducted under similar settings. It is shown that high densification is accompanied by substantial grain growth. Carbon nanotubes were added to mitigate grain growth; however, while increasing specimens' rupture strength and final density, they had little effect on grain growth.

  19. HCl removal using cycled carbide slag from calcium looping cycles

    International Nuclear Information System (INIS)

    Xie, Xin; Li, Yingjie; Wang, Wenjing; Shi, Lei

    2014-01-01

    Highlights: • Cycled carbide slag from calcium looping cycles is used to remove HCl. • The optimum temperature for HCl removal of cycled carbide slag is 700 °C. • The presence of CO 2 restrains HCl removal of cycled carbide slag. • CO 2 capture conditions have important effects on HCl removal of cycled carbide slag. • HCl removal capacity of carbide slag drops with cycle number rising from 1 to 50. - Abstract: The carbide slag is an industrial waste from chlor-alkali plants, which can be used to capture CO 2 in the calcium looping cycles, i.e. carbonation/calcination cycles. In this work, the cycled carbide slag from the calcium looping cycles for CO 2 capture was proposed to remove HCl in the flue gas from the biomass-fired and RDFs-fired boilers. The effects of chlorination temperature, HCl concentration, particle size, presence of CO 2 , presence of O 2 , cycle number and CO 2 capture conditions in calcium looping cycles on the HCl removal behavior of the carbide slag experienced carbonation/calcination cycles were investigated in a triple fixed-bed reactor. The chlorination product of the cycled carbide slag from the calcium looping after absorbing HCl is not CaCl 2 but CaClOH. The optimum temperature for HCl removal of the cycled carbide slag from the carbonation/calcination cycles is 700 °C. The chlorination conversion of the cycled carbide slag increases with increasing the HCl concentration. The cycled carbide slag with larger particle size exhibits a lower chlorination conversion. The presence of CO 2 decreases the chlorination conversions of the cycled carbide slag and the presence of O 2 has a trifling impact. The chlorination conversion of the carbide slag experienced 1 carbonation/calcination cycle is higher than that of the uncycled calcined sorbent. As the number of carbonation/calcination cycles increases from 1 to 50, the chlorination conversion of carbide slag drops gradually. The high calcination temperature and high CO 2

  20. Time-Dependent Stress Rupture Strength Degradation of Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at Intermediate Temperatures

    Science.gov (United States)

    Sullivan, Roy M.

    2016-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide composites with a boron nitride fiber coating decreases with time within the intermediate temperature range of 700 to 950 degree Celsius. Various theories have been proposed to explain the cause of the time-dependent stress rupture strength. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of silicon carbide fiber-reinforced silicon carbide composites. This is achieved through the development of a numerically based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time-marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time-dependent behavior.

  1. Electronic specific heat of transition metal carbides

    International Nuclear Information System (INIS)

    Conte, R.

    1964-07-01

    The experimental results that make it possible to define the band structure of transition metal carbides having an NaCI structure are still very few. We have measured the electronic specific heat of some of these carbides of varying electronic concentration (TiC, either stoichiometric or non-stoichiometric, TaC and mixed (Ti, Ta) - C). We give the main characteristics (metallography, resistivity, X-rays) of our samples and we describe the low temperature specific heat apparatus which has been built. In one of these we use helium as the exchange gas. The other is set up with a mechanical contact. The two use a germanium probe for thermometer. The measurement of the temperature using this probe is described, as well as the various measurement devices. The results are presented in the form of a rigid band model and show that the density of the states at the Fermi level has a minimum in the neighbourhood of the group IV carbides. (author) [fr

  2. Laser deposition of carbide-reinforced coatings

    International Nuclear Information System (INIS)

    Cerri, W.; Martinella, R.; Mor, G.P.; Bianchi, P.; D'Angelo, D.

    1991-01-01

    CO 2 laser cladding with blown powder presents many advantages: fusion bonding with the substrate with low dilution, metallurgical continuity in the metallic matrix, high solidification rates, ease of automation, and reduced environmental contamination. In the present paper, laser cladding experimental results using families of carbides (tungsten and titanium) mixed with metallic alloys are reported. As substrates, low alloy construction steel (AISI 4140) (austenitic stainless steel) samples have been utilized, depending on the particular carbide reinforcement application. The coating layers obtained have been characterized by metallurgical examination. They show low dilution, absence of cracks, and high abrasion resistance. The WC samples, obtained with different carbide sizes and percentages, have been characterized with dry and rubber wheel abrasion tests and the specimen behaviour has been compared with the behaviour of materials used for similar applications. The abrasion resistance proved to be better than that of other widely used hardfacing materials and the powder morphology have a non-negligible influence on the tribological properties. (orig.)

  3. Complete Decomposition of Li 2 CO 3 in Li–O 2 Batteries Using Ir/B 4 C as Noncarbon-Based Oxygen Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shidong; Xu, Wu; Zheng, Jianming; Luo, Langli; Engelhard, Mark H.; Bowden, Mark E.; Liu, Bin; Wang, Chong-Min; Zhang, Ji-Guang

    2017-02-10

    Incomplete decomposition of Li2CO3 during charge process is a critical barrier for rechargeable Li-O2 batteries. Here we report complete decomposition of Li2CO3 in Li-O2 batteries using ultrafine iridium-decorated boron carbide (Ir/B4C) nanocomposite as oxygen electrode. The systematic investigation on charging the Li2CO3 preloaded Ir/B4C electrode in an ether-based electrolyte demonstrates that Ir/B4C electrode can decompose Li2CO3 with an efficiency close to 100% at below 4.37 V. In contrast, the bare B4C without Ir electrocatalyst can only decompose 4.7% of preloaded Li2CO3. The reaction mechanism of Li2CO3 decomposition in the presence of Ir/B4C electrocatalyst has been further investigated. A Li-O2 battery using Ir/B4C as oxygen electrode material shows highly enhanced cycling stability than that using bare B4C oxygen electrode. These results clearly demonstrate that Ir/B4C is an effecitive oxygen electrode amterial to completely decompose Li2CO3 at relatively low charge voltages and is of significant importance in improving the cycle performanc of aprotic Li-O2 batteries.

  4. The coloring problem in the solid-state metal boride carbide ScB{sub 2}C{sub 2}. A theoretical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lassoued, Souheila [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques; Universite Kasdi Merbah-Ouargla (Algeria). Faculte des Mathematiques et des Sciences de la Matiere; Boucher, Benoit [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques; Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany); Boutarfaia, Ahmed [Universite Kasdi Merbah-Ouargla (Algeria). Faculte des Mathematiques et des Sciences de la Matiere; Gautier, Regis; Halet, Jean-Francois [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques

    2016-08-01

    The electronic properties of the layered ternary metal boride carbide ScB{sub 2}C{sub 2}, the structure of which consists of B/C layers made of fused five- and seven-membered rings alternating with scandium sheets, are analyzed. In particular, the respective positions of the B and C atoms (the so-called coloring problem) are tackled using density functional theory, quantum theory of atoms in molecules, and electron localizability indicator calculations. Results reveal that (i) the most stable coloring minimizes the number of B-B and C-C contacts and maximizes the number of boron atoms in the heptagons, (ii) the compound is metallic in character, and (iii) rather important covalent bonding occurs between the metallic sheets and the boron-carbon network.

  5. Primary system boron dilution analysis

    International Nuclear Information System (INIS)

    Crump, R.J.; Naretto, C.J.; Borgen, R.A.; Rockhold, H.C.

    1978-01-01

    The results are presented for an analysis conducted to determine the potential paths through which nonborated water or water with insufficient boron concentration might enter the LOFT primary coolant piping system or reactor vessel to cause dilution of the borated primary coolant water. No attempt was made in the course of this analysis to identify possible design modifications nor to suggest changes in administrative procedures or controls

  6. TEM Studies of Boron-Modified 17Cr-7Ni Precipitation-Hardenable Stainless Steel via Rapid Solidification Route

    Science.gov (United States)

    Gupta, Ankur; Bhargava, A. K.; Tewari, R.; Tiwari, A. N.

    2013-09-01

    Commercial grade 17Cr-7Ni precipitation-hardenable stainless steel has been modified by adding boron in the range 0.45 to 1.8 wt pct and using the chill block melt-spinning technique of rapid solidification (RS). Application of RS has been found to increase the solid solubility of boron and hardness of 17Cr-7Ni precipitation-hardenable stainless steel. The hardness of the boron-modified rapidly solidified alloys has been found to increase up to ~280 pct after isochronal aging to peak hardness. A TEM study has been carried out to understand the aging behavior. The presence of M23(B,C)6 and M2(B,C) borocarbides and epsilon-carbide in the matrix of austenite and ferrite with a change in heat treatment temperature has been observed. A new equation for Creq is also developed which includes the boron factor on ferrite phase stability. The study also emphasizes that aluminum only takes part in ferrite phase stabilization and remains in the solution.

  7. Microhardness and grain size of disordered nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.

    1999-01-01

    Effect of the disordered nonstoichiometric titanium carbide on its microhardness and grain size is studied. It is established that decrease in defectiveness of carbon sublattice of disordered carbide is accompanied by microhardness growth and decrease in grain size. Possible causes of the TiC y microhardness anomalous behaviour in the area 0.8 ≤ y ≤ 0.9 connected with plastic deformation mechanism conditioned by peculiarities of the electron-energetic spectrum of nonstoichiometric carbide are discussed [ru

  8. Fabrication of chamfered uranium-plutonium mixed carbide pellets

    International Nuclear Information System (INIS)

    Arai, Yasuo; Iwai, Takashi; Shiozawa, Kenichi; Handa, Muneo

    1985-10-01

    Chamfered uranium-plutonium mixed carbide pellets for high burnup irradiation test in JMTR were fabricated in glove boxes with purified argon gas. The size of die and punch in a press was decided from pellet densities and dimensions including the angle of chamfered parts. No chip or crack caused by adopting chamfered pellets was found in both pressing and sintering stages. In addition to mixed carbide pellets, uranium carbide pellets used as insulators were also successfully fabricated. (author)

  9. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  10. Boron removal from geothermal waters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar; Yilmaz, M. Tolga; Paluluoglu, Cihan

    2008-01-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm 2 , but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%

  11. Removal of boron (B) from waste liquors.

    Science.gov (United States)

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  12. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  13. Silicon Carbide Corrugated Mirrors for Space Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  14. A technique to prepare boronated B72.3 monoclonal antibody for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Ranadive, G.N.; Rosenzweig, H.S.; Epperly, M.W.

    1993-01-01

    B72.3 monoclonal antibody has been successfully boronated using mercaptoundecahydro-closo-dodecaborate (boron cage compound). The reagent was incorporated by first reacting the lysine residues of the antibody with m-maleimidobenzoyl succinimide ester (MBS), followed by Michael addition to the maleimido group by the mercapto boron cage compound to form a physiologically stable thioether linkage. Boron content of the antibody was determined by atomic absorption spectroscopy. For biodistribution studies, boronated antibody was radioiodinated with iodogen. 125 I-labeled and boronated B72.3 monoclonal antibody demonstrated clear tumor localization when administered via tail vein injections to athymic nude mice bearing LS174-T tumor xenografts. Boronated antibody was calculated to deliver 10 6 boron atoms per tumor cell. Although this falls short of the specific boron content originally proposed as necessary for boron neutron capture therapy (BNCT), recent calculations suggest that far fewer atoms of 10 B per tumor cell would be necessary to effect successful BNCT when the boron is targeted to the tumor cell membrane. (author)

  15. Fracture and Residual Characterization of Tungsten Carbide Cobalt Coatings on High Strength Steel

    National Research Council Canada - National Science Library

    Parker, Donald S

    2003-01-01

    Tungsten carbide cobalt coatings applied via high velocity oxygen fuel thermal spray deposition are essentially anisotropic composite structures with aggregates of tungsten carbide particles bonded...

  16. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    Directory of Open Access Journals (Sweden)

    Matus K.

    2016-06-01

    Full Text Available The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary hardness effect observed for this material to a higher tempering temperature range. Determined influence of the atmosphere in the sintering process on precipitations formed during tempering of carbide-steel cermets. So far examination of carbidesteel cermet produced by powder injection moulding was carried out mainly in the scanning electron microscope. A proper description of nanosized particles is both important and difficult as achievements of nanoscience and nanotechnology confirm the significant influence of nanocrystalline particles on material properties even if its mass fraction is undetectable by standard methods. The following research studies have been carried out using transmission electron microscopy, mainly selected area electron diffraction and energy dispersive spectroscopy. The obtained results and computer simulations comparison were made.

  17. Reactor irradiation effect on the physical-mechanical properties of zirconium carbides and niobium carbides

    International Nuclear Information System (INIS)

    Andrievskij, R.A.; Vlasov, K.P.; Shevchenko, A.S.; Lanin, A.G.; Pritchin, S.A.; Klyushin, V.V.; Kurushin, S.P.; Maskaev, A.S.

    1978-01-01

    A study has been made of the effect of the reactor radiation by a flux of neutrons 1.5x10 20 n/cm 2 (E>=1 meV) at radiation temperatures of 150 and 1100 deg C on the physico-mechanical properties of carbides of zirconium and niobium and their equimolar hard solution. A difference has been discovered in the behaviour of the indicated carbides under the effect of radiation. Under the investigated conditions of radiation the density of zirconium carbide is being decreased, while in the niobium carbide no actual volumetric changes occur. The increase of the lattice period in ZrC is more significant than in NbC. The electric resistance of ZrC is also changed more significantly than in the case of NbC, while for the microhardness a reverse relationship is observed. Strength and elasticity modulus change insignificantly in both cases. Resistance to crack formation shows a higher reduction for ZrC than for NbC, while the thermal strength shows an approximately similar increase. The equimolar hard solution of ZrC and NbC behaves to great extent similar to ZrC, although the change in electric resistance reminds of NbC while thermal strength changes differently. The study of the microstructure of the specimens has shown that radiation causes a large number of etching patterns-dislocations in NbC which are almost absent in ZrC

  18. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    Thomas, G.E.

    1988-01-01

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  19. Boron rates for triticale and wheat crops

    Directory of Open Access Journals (Sweden)

    Corrêa Juliano Corulli

    2005-01-01

    Full Text Available No reports are registered on responses to boron fertilization nutrient deficiency and toxicity in triticale crops. The aim of this study was to evaluate triticale response to different rates of boron in comparison to wheat in an hapludox with initial boron level at 0.08 mg dm-3 4 4 factorial design trial completely randomized blocks design (n = 4. Boron rates were 0; 0.62; 1.24 and 1.86 mg dm-3; triticale cultivars were IAC 3, BR 4 and BR 53 and IAPAR 38 wheat crop was used for comparison. The wheat (IAPAR 38 crop presented the highest boron absorption level of all. Among triticale cultivars, the most responsive was IAC 53, presenting similar characteristics to wheat, followed by BR 4; these two crops are considered tolerant to higher boron rates in soil. Regarding to BR 53, no absorption effect was observed, and the cultivars was sensitive to boron toxicity. Absorption responses differed for each genotype. That makes it possible to choose and use the best-adapted plants to soils with different boron rates.

  20. Hot flow behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; El-Wahabi, M.; Cabrera, J.M.

    2008-01-01

    This research work studies the effect of boron contents on the hot flow behavior of boron microalloyed steels. For this purpose, uniaxial hot-compression tests were carried out in a low carbon steel microalloyed with four different amounts of boron over a wide range of temperatures (950, 1000, 1050 and 1100 deg. C) and constant true strain rates (10 -3 , 10 -2 and 10 -1 s -1 ). Experimental results revealed that both peak stress and peak strain tend to decrease as boron content increases, which indicates that boron additions have a solid solution softening effect. Likewise, the flow curves show a delaying effect on the kinetics of dynamic recrystallization (DRX) when increasing boron content. Deformed microstructures show a finer austenitic grain size in the steel with higher boron content (grain refinement effect). Results are discussed in terms of boron segregation towards austenitic grain boundaries during plastic deformation, which increases the movement of dislocations, enhances the grain boundary cohesion and modificates the grain boundary structure

  1. Nondestructive neutron activation analysis of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T. T.; Wikjord, A. G.

    1973-10-15

    Instrumentel neutron activation analysis was used to determine trace constituents in silicon carbide. Four commercial powders of different origin, an NBS reference material, and a single crystal were characterized. A total of 36 activation species were identified nondestructively by high resolution gamma spectrometry; quantitative results are given for 12 of the more predominant elements. The limitations of the method for certain elements are discussed. Consideration is given to the depression of the neutron flux by impurities with large neutron absorption cross sections. Radiation fields from the various specimens were estimated assuming all radionuclides have reached their saturation activities. (auth)

  2. An improved method for preparing silicon carbide

    International Nuclear Information System (INIS)

    Baney, R.H.

    1980-01-01

    A desired shape is formed from a polysilane and the shape is heated in an inert atmosphere or under vacuum to 1150 to 1600 0 C until the polysilane is converted to silicon carbide. The polysilane contains from 0 to 60 mole percent of (CH 3 ) 2 Si units and from 40 to 100 mole percent of CH 3 Si units. The remaining bonds on silicon are attached to another silicon atom or to a chlorine or bromine atom, such that the polysilane contains from 10 to 43 weight percent of hydrolyzable chlorine or from 21 to 63 weight percent of hydrolyzable bromine. (author)

  3. Hardness of carbides, nitrides, and borides

    International Nuclear Information System (INIS)

    Schroeter, W.

    1981-01-01

    Intermetallic compounds of metals with non-metals such as C, N, and B show different hardness. Wagner's interaction parameter characterizes manner and extent of the interaction between the atoms of the substance dissolved and the additional elements in metallic mixed phases. An attempt has been made to correlate the hardness of carbides, nitrides, and borides (data taken from literature) with certain interaction parameters and associated thermodynamic quantities (ΔH, ΔG). For some metals of periods 4, 5, and 6 corresponding relations were found between microhardness, interaction parameters, heat of formation, and atomic number

  4. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  5. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H J; Nesper, R [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  6. The chemical vapor deposition of zirconium carbide onto ceramic substrates

    International Nuclear Information System (INIS)

    Glass A, John Jr.; Palmisiano, Nick Jr.; Welsh R, Edward

    1999-01-01

    Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system

  7. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  8. Stress in tungsten carbide-diamond like carbon multilayer coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.

    2007-01-01

    Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature.

  9. Process for the preparation of fine grain metal carbide powders

    International Nuclear Information System (INIS)

    Gortsema, F.P.

    1976-01-01

    Fine grain metal carbide powders are conveniently prepared from the corresponding metal oxide by heating in an atmosphere of methane in hydrogen. Sintered articles having a density approaching the theoretical density of the metal carbide itself can be fabricated from the powders by cold pressing, hot pressing or other techniques. 8 claims, no drawings

  10. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    the stabilization of soil will ensure economy in road construction, while providing an effective way of disposing calcium carbide waste. KEYWORDS: Cement, Calcium carbide waste, Stabilization, Ikpayongo laterite, Pavement material. INTRODUCTION. Road building in the developing nations has been a major challenge to ...

  11. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  12. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  13. Ternary carbide uranium fuels for advanced reactor design applications

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    1999-01-01

    Solid-solution mixed uranium/refractory metal carbides such as the pseudo-ternary carbide, (U, Zr, Nb)C, hold significant promise for advanced reactor design applications because of their high thermal conductivity and high melting point (typically greater than 3200 K). Additionally, because of their thermochemical stability in a hot-hydrogen environment, pseudo-ternary carbides have been investigated for potential space nuclear power and propulsion applications. However, their stability with regard to sodium and improved resistance to attack by water over uranium carbide portends their usefulness as a fuel for advanced terrestrial reactors. An investigation into processing techniques was conducted in order to produce a series of (U, Zr, Nb)C samples for characterization and testing. Samples with densities ranging from 91% to 95% of theoretical density were produced by cold pressing and sintering the mixed constituent carbides at temperatures as high as 2650 K. (author)

  14. Chemistry and technology of boron and its compounds

    International Nuclear Information System (INIS)

    Zhigach, A.F.; Parfenov, B.P.; Svitsyn, R.A.

    1995-01-01

    The results of research dealing with development of technologies of boron trichloride, boron hydride, aminoderivative boron hydrides, metal borohydrides, carboranes, carborane-containing polymers, carried out at the institute of organoelemental compounds, are presented. Physicochemical properties of the compounds have been studied and analytical methods have been developed. Data on toxicity and fire hazard of boron compounds are provided

  15. Analysis of boron nitride by flame spectrometry methods

    International Nuclear Information System (INIS)

    Telegin, G.F.; Chapysheva, G.Ya.; Shilkina, N.N.

    1989-01-01

    A rapid method has been developed for determination of free and total boron contents as well as trace impurities in boron nitride by using autoclave sample decomposition followed by atomic emission and atomic absorption determination. The relative standard deviation is not greater than 0.03 in the determination of free boron 0.012 in the determination of total boron content

  16. Carbon potential measurement on some actinide carbides

    International Nuclear Information System (INIS)

    Anthonysamy, S.; Ananthasivan, K.; Kaliappan, I.; Chandramouli, V.; Vasudeva Rao, P.R.; Mathews, C.K.; Jacob, K.T.

    1994-01-01

    Uranium-Plutonium mixed carbides with a Pu/(U+Pu) ratio of 0.55 are to be used as the fuel in the Fast Breeder Test Reactor (FBTR) at Kalpakkam, India. Carburization of the stainless steel clad by this fuel is determined by its carbon potential. Because the carbon potential of this fuel composition is not available in the literature, it was measured by the methane-hydrogen gas equilibration technique. The sample was equilibrated with purified hydrogen and the equilibrium methane-to-hydrogen ratio in the gas phase was measured with a flame ionization detector. The carbon potential of the ThC-ThC 2 as well as Mo-Mo 2 C system, which is an important binary in the actinide-fission product-carbon systems, were also measured by this technique in the temperature range 973 to 1,173 K. The data for the Mo-Mo 2 C system are in agreement with values reported in the literature. The results for the ThC-ThC 2 system are different from estimated values with large uncertainty limits given in the literature. The data on (U, Pu) mixed carbides indicates the possibility of stainless steel clad attack under isothermal equilibrium conditions

  17. Development of silicon carbide composites for fusion

    International Nuclear Information System (INIS)

    Snead, L.L.

    1993-01-01

    The use of silicon carbide composites for structural materials is of growing interest in the fusion community. However, radiation effects in these materials are virtually unexplored, and the general state of ceramic matrix composites for nonnuclear applications is still in its infancy. Research into the radiation response of the most popular silicon carbide composite, namely, the chemically vapor-deposited (CVD) SiC-carbon-Nicalon fiber system is discussed. Three areas of interest are the stability of the fiber and matrix materials, the stability of the fiber-matrix interface, and the true activation of these open-quotes reduced activityclose quotes materials. Two methods are presented that quantitatively measure the effect of radiation on fiber and matrix elastic modulus as well as the fiber-matrix interfacial strength. The results of these studies show that the factor limiting the radiation performance of the CVD SiC-carbon-Nicalon system is degradation of the Nicalon fiber, which leads to a weakened carbon interface. The activity of these composites is significantly higher than expected and is dominated by impurity isotopes. 52 refs., 12 figs., 3 tabs

  18. Study of ceramic mixed boron element as a neutron shielding

    International Nuclear Information System (INIS)

    Ismail Mustapha; Mohd Reusmaazran Yusof; Md Fakarudin Ab Rahman; Nor Paiza Mohamad Hasan; Samihah Mustaffha; Yusof Abdullah; Mohamad Rabaie Shari; Airwan Affandi Mahmood; Nurliyana Abdullah; Hearie Hassan

    2012-01-01

    Shielding upon radiation should not be underestimated as it can causes hazard to health. Precautions on the released of radioactive materials should be well concerned and considered. Therefore, the combination of ceramic and boron make them very useful for shielding purpose in areas of low and intermediate neutron. A six grades of ceramic tile have been produced namely IMN05 - 5 % boron, IMN06 - 6 % boron, IMN07 - 7 % boron, IMN08 - 8 % boron, IMN09 - 9 % boron, IMN10 - 10 % boron from mixing, press and sintered process. Boron is a material that capable of absorbing and capturing neutron, so that neutron and gamma test were conducted to analyze the effectiveness of boron material in combination with ceramic as shielding. From the finding, percent reduction number of count per minute shows the ceramic tiles are capable to capture neutron. Apart from all the percentage of boron used, 10 % is the most effective shields since the percent reduction indicating greater neutron captured increased. (author)

  19. Microstructural stability and mechanical properties of a boron modified Ni–Fe based superalloy for steam boiler applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changshuai, E-mail: cswang@imr.ac.cn; Guo, YongAn; Guo, Jianting; Zhou, Lanzhang, E-mail: lzz@imr.ac.cn

    2015-07-15

    Ni–Fe based superalloys are being considered as boiler materials in 700 °C advanced ultra-supercritical (A-USC) coal fired power plants due to their excellent oxidation and hot corrosion resistance, outstanding workability and low cost. In this paper, the microstructural stability and mechanical properties of a boron (B) modified Ni–Fe based superalloy designed for 700 °C A-USC during thermal exposure at 650–750 °C for up to 5000 h were investigated. The results show that adding boron has no apparent influence on the major precipitates, including spherical γ′ and blocky MC. However, the amount of M{sub 23}C{sub 6} decreases markedly after standard heat treatment. During long-term thermal exposure, the addition of boron has no influence on γ′ coarsening, η phase precipitation and primary MC degeneration, but decreases the growth rate of M{sub 23}C{sub 6} along grain boundary. The stress rupture life and ductility are obviously improved after the addition of B. Meanwhile, the yield strength of B-doped alloy almost keeps the same level as that without boron addition. The fracture surface characterization exhibits that the dimples increase significantly after adding boron. During long-term thermal exposure, the elongation of the alloy with B addition increases slightly, but, for the alloy without B addition, the elongation obviously increases. The improvement of the stress rupture life and ductility can be attributed to the increase of grain boundary strength and the optimization of M{sub 23}C{sub 6} carbide distribution at grain boundary.

  20. Microstructural stability and mechanical properties of a boron modified Ni–Fe based superalloy for steam boiler applications

    International Nuclear Information System (INIS)

    Wang, Changshuai; Guo, YongAn; Guo, Jianting; Zhou, Lanzhang

    2015-01-01

    Ni–Fe based superalloys are being considered as boiler materials in 700 °C advanced ultra-supercritical (A-USC) coal fired power plants due to their excellent oxidation and hot corrosion resistance, outstanding workability and low cost. In this paper, the microstructural stability and mechanical properties of a boron (B) modified Ni–Fe based superalloy designed for 700 °C A-USC during thermal exposure at 650–750 °C for up to 5000 h were investigated. The results show that adding boron has no apparent influence on the major precipitates, including spherical γ′ and blocky MC. However, the amount of M 23 C 6 decreases markedly after standard heat treatment. During long-term thermal exposure, the addition of boron has no influence on γ′ coarsening, η phase precipitation and primary MC degeneration, but decreases the growth rate of M 23 C 6 along grain boundary. The stress rupture life and ductility are obviously improved after the addition of B. Meanwhile, the yield strength of B-doped alloy almost keeps the same level as that without boron addition. The fracture surface characterization exhibits that the dimples increase significantly after adding boron. During long-term thermal exposure, the elongation of the alloy with B addition increases slightly, but, for the alloy without B addition, the elongation obviously increases. The improvement of the stress rupture life and ductility can be attributed to the increase of grain boundary strength and the optimization of M 23 C 6 carbide distribution at grain boundary

  1. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  2. Density separation of boron particles. Final report

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-04-01

    A density distribution much broader than expected was observed in lots of natural boron powder supplied by two different sources. The material in both lots was found to have a rhombohedral crystal structure, and the only other parameters which seemed to account for such a distribution were impurities within the crystal structure and varying isotopic ratios. A separation technique was established to isolate boron particles in narrow densty ranges. The isolated fractions were subsequently analyzed for B 10 and total boron content in an effort to determine whether selective isotopic enrichment and nonhomogeneous impurity distribution were the causes for the broad density distribution of the boron powders. It was found that although the B 10 content remained nearly constant around 18%, the total boron content varied from 37.5 to 98.7%. One of the lots also was found to contain an apparently high level of alpha rhombohedral boron which broadened the density distribution considerably. During this work, a capability for removing boron particles containing gross amounts of impurities and, thereby, improving the overall purity of the remaining material was developed. In addition, the separation technique used in this study apparently isolated particles with alpha and beta rhombohedral crystal structures, although the only supporting evidence is density data

  3. Cell cycle dependence of boron uptake in various boron compounds used for neutron capture therapy

    International Nuclear Information System (INIS)

    Yoshida, F.; Matsumura, A.; Shibata, Y.; Yamamoto, T.; Nose, T.; Okumura, M.

    2000-01-01

    In neutron capture therapy, it is important that the tumor take boron in selectively. Furthermore, it is ideal when the uptake is equal in each tumor cell. Some indirect proof of differences in boron uptake among neoplastic cell cycles has been documented. However, no investigation has yet measured boron uptake directly. Using flow cytometry, in the present study cells were sorted by G0/G1 phase and G2/M phase, and the boron concentration of each fraction was measured with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results were that BSH (sodiumborocaptate) and BPA (p-boronophenylalanine) had higher rates of boron uptake in the G2/M group than in the G0/G1 group. However, in BPA the difference was more prominent, which revealed a 2.2-3.3 times higher uptake of boron in the G2/M group than in the G0/G1 group. (author)

  4. Developments in boron magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Schweizer, M.

    1995-01-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain

  5. Chemical, mechanical, and tribological properties of pulsed-laser-deposited titanium carbide and vanadium carbide

    International Nuclear Information System (INIS)

    Krzanowski, J.E.; Leuchtner, R.E.

    1997-01-01

    The chemical, mechanical, and tribological properties of pulsed-laser-deposited TiC and VC films are reported in this paper. Films were deposited by ablating carbide targets using a KrF (λ = 248 nm) laser. Chemical analysis of the films by XPS revealed oxygen was the major impurity; the lowest oxygen concentration obtained in a film was 5 atom%. Oxygen was located primarily on the carbon sublattice of the TiC structure. The films were always substoichiometric, as expected, and the carbon in the films was identified primarily as carbidic carbon. Nanoindentation hardness tests gave values of 39 GPa for TiC and 26 GPa for VC. The friction coefficient for the TiC films was 0.22, while the VC film exhibited rapid material transfer from the steel ball to the substrate resulting in steel-on-steel tribological behavior

  6. Study on the performance of fuel elements with carbide and carbide-nitride fuel

    International Nuclear Information System (INIS)

    Golovchenko, Yu.M.; Davydov, E.F.; Maershin, A.A.

    1985-01-01

    Characteristics, test conditions and basic results of material testing of fuel elements with carbide and carbonitride fuel irradiated in the BOR-60 reactor up to 3-10% burn-up at specific power rate of 55-70 kW/m and temperatures of the cladding up to 720 deg C are described. Increase of cladding diameter is stated mainly to result from pressure of swelling fuel. The influence of initial efficient porosity of the fuel on cladding deformation and fuel stoichiometry on steel carbonization is considered. Utilization of carbide and carbonitride fuel at efficient porosity of 20% at the given test modes is shown to ensure their operability up to 10% burn-up

  7. Preparation and Fatigue Properties of Functionally Graded Cemented Carbides

    International Nuclear Information System (INIS)

    Liu Yong; Liu Fengxiao; Liaw, Peter K.; He Yuehui

    2008-01-01

    Cemented carbides with a functionally graded structure have significantly improved mechanical properties and lifetimes in cutting, drilling and molding. In this work, WC-6 wt.% Co cemented carbides with three-layer graded structure (surface layer rich in WC, mid layer rich in Co and the inner part of the average composition) were prepared by carburizing pre-sintered η-phase-containing cemented carbides. The three-point bending fatigue tests based on the total-life approach were conducted on both WC-6wt%Co functionally graded cemented carbides (FGCC) and conventional WC-6wt%Co cemented carbides. The functionally graded cemented carbide shows a slightly higher fatigue limit (∼100 MPa) than the conventional ones under the present testing conditions. However, the fatigue crack nucleation behavior of FGCC is different from that of the conventional ones. The crack nucleates preferentially along the Co-gradient and perpendicular to the tension surface in FGCC, while parallel to the tension surface in conventional cemented carbides

  8. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  9. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Balapanova, B.S.; Zhajmina, R.E.; Serazetdinov, D.Z.

    1988-01-01

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  10. Precipitation behavior of carbides in high-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Shi, Chang-min [University of Science and Technology, Beijing (China). State Key Laboratory of Advanced Metallurgy; Li, Ji-hui [Yang Jiang Shi Ba Zi Group Co., Ltd, Guangdong (China)

    2017-01-15

    A fundamental study on the precipitation behavior of carbides was carried out. Thermo-calc software, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, X-ray diffractometry and high-temperature confocal laser scanning microscopy were used to study the precipitation and transformation behaviors of carbides. Carbide precipitation was of a specific order. Primary carbides (M7C3) tended to be generated from liquid steel when the solid fraction reached 84 mol.%. Secondary carbides (M7C3) precipitated from austenite and can hardly transformed into M23C6 carbides with decreasing temperature in air. Primary carbides hardly changed once they were generated, whereas secondary carbides were sensitive to heat treatment and thermal deformation. Carbide precipitation had a certain effect on steel-matrix phase transitions. The segregation ability of carbon in liquid steel was 4.6 times greater that of chromium. A new method for controlling primary carbides is proposed.

  11. Plasma spraying process of disperse carbides for spraying and facing

    International Nuclear Information System (INIS)

    Blinkov, I.V.; Vishnevetskaya, I.A.; Kostyukovich, T.G.; Ostapovich, A.O.

    1989-01-01

    A possibility to metallize carbides in plasma of impulsing capacitor discharge is considered. Powders granulation occurs during plasma spraying process, ceramic core being completely capped. X-ray phase and chemical analyses of coatings did not show considerable changes of carbon content in carbides before and after plasma processing. This distinguishes the process of carbides metallization in impulsing plasma from the similar processing in arc and high-frequency plasma generator. Use of powder composites produced in the impulsing capacitor discharge, for plasma spraying and laser facing permits 2-3 times increasing wear resistance of the surface layer as against the coatings produced from mechanical powders mixtures

  12. On the carbide formation in high-carbon stainless steel

    International Nuclear Information System (INIS)

    Mujahid, M.; Qureshi, M.I.

    1996-01-01

    Stainless steels containing high Cr as well as carbon contents in excess of 1.5 weight percent have been developed for applications which require high resistance erosion and environmental corrosion. Formation of carbides is one of important parameters for controlling properties of these materials especially erosion characteristics. Percent work includes the study of different type of carbides which from during the heat treatment of these materials. It has been found that precipitation of secondary carbides and the nature of matrix transformation plays an important role in determining the hardness characteristics of these materials. (author)

  13. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    Baney, Ronald

    2008-01-01

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  14. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  15. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  16. Oxide film assisted dopant diffusion in silicon carbide

    International Nuclear Information System (INIS)

    Tin, Chin-Che; Mendis, Suwan; Chew, Kerlit; Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin; Atabaev, Bakhtiyar; Adedeji, Victor; Rusli

    2010-01-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  17. Silver diffusion through silicon carbide in microencapsulated nuclear fuels TRISO

    International Nuclear Information System (INIS)

    Cancino T, F.; Lopez H, E.

    2013-10-01

    The silver diffusion through silicon carbide is a challenge that has persisted in the development of microencapsulated fuels TRISO (Tri structural Isotropic) for more than four decades. The silver is known as a strong emitter of gamma radiation, for what is able to diffuse through the ceramic coatings of pyrolytic coal and silicon carbide and to be deposited in the heat exchangers. In this work we carry out a recount about the art state in the topic of the diffusion of Ag through silicon carbide in microencapsulated fuels and we propose the role that the complexities in the grain limit can have this problem. (Author)

  18. Method of producing silicon carbide articles

    International Nuclear Information System (INIS)

    Milewski, J.V.

    1985-01-01

    A method of producing articles comprising reaction-bonded silicon carbide (SiC) and graphite (and/or carbon) is given. The process converts the graphite (and/or carbon) in situ to SiC, thus providing the capability of economically obtaining articles made up wholly or partially of SiC having any size and shape in which graphite (and/or carbon) can be found or made. When the produced articles are made of an inner graphite (and/or carbon) substrate to which SiC is reaction bonded, these articles distinguish SiC-coated graphite articles found in the prior art by the feature of a strong bond having a gradual (as opposed to a sharply defined) interface which extends over a distance of mils. A method for forming SiC whisker-reinforced ceramic matrices is also given. The whisker-reinforced articles comprise SiC whiskers which substantially retain their structural integrity

  19. Carbon in palladium catalysts: A metastable carbide

    International Nuclear Information System (INIS)

    Seriani, Nicola; Mittendorfer, Florian; Kresse, Georg

    2010-01-01

    The catalytic activity of palladium towards selective hydrogenation of hydrocarbons depends on the partial pressure of hydrogen. It has been suggested that the reaction proceeds selectively towards partial hydrogenation only when a carbon-rich film is present at the metal surface. On the basis of first-principles simulations, we show that carbon can dissolve into the metal because graphite formation is delayed by the large critical nucleus necessary for graphite nucleation. A bulk carbide Pd 6 C with a hexagonal 6-layer fcc-like supercell forms. The structure is characterized by core level shifts of 0.66-0.70 eV in the core states of Pd, in agreement with experimental x-ray photoemission spectra. Moreover, this phase traps bulk-dissolved hydrogen, suppressing the total hydrogenation reaction channel and fostering partial hydrogenation. (author)

  20. Production of titanium carbide from ilmenite

    Directory of Open Access Journals (Sweden)

    Sutham Niyomwas

    2008-03-01

    Full Text Available The production of titanium carbide (TiC powders from ilmenite ore (FeTiO3 powder by means of carbothermal reduction synthesis coupled with hydrochloric acid (HCl leaching process was investigated. A mixture of FeTiO3 and carbon powders was reacted at 1500oC for 1 hr under flowing argon gas. Subsequently, synthesized product of Fe-TiC powders were leached by 10% HCl solutions for 24 hrs to get final product of TiC powders. The powders were characterized using X-ray diffraction, scanning electron and transmission electron microscopy. The product particles were agglomerated in the stage after the leaching process, and the size of this agglomerate was 12.8 μm with a crystallite size of 28.8 nm..

  1. Stored energy in irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Burchell, T.D. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This report presents a short review of the phenomenon of Wigner stored energy release from irradiated graphite and discusses it in relation to neutron irradiation of silicon carbide. A single published work in the area of stored energy release in SiC is reviewed and the results are discussed. It appears from this previous work that because the combination of the comparatively high specific heat of SiC and distribution in activation energies for recombining defects, the stored energy release of SiC should only be a problem at temperatures lower than those considered for fusion devices. The conclusion of this preliminary review is that the stored energy release in SiC will not be sufficient to cause catastrophic heating in fusion reactor components, though further study would be desirable.

  2. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Hay, J.C.

    1998-01-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 10 25 n/m 2 . Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  3. Texaco, carbide form hydrogen plant venture

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Texaco Inc. and Union Carbide Industrial Gases Inc. (UCIG) have formed a joint venture to develop and operate hydrogen plants. The venture, named HydroGEN Supply Co., is owned by Texaco Hydrogen Inc., a wholly owned subsidiary of Texaco, and UCIG Hydrogen Services Inc., a wholly owned subsidiary of UCIG. Plants built by HydroGEN will combine Texaco's HyTEX technology for hydrogen production with UCIG's position in cryogenic and advanced air separation technology. Texaco the U.S. demand for hydrogen is expected to increase sharply during the next decade, while refinery hydrogen supply is expected to drop. The Clean Air Act amendments of 1990 require U.S. refiners to lower aromatics in gasoline, resulting in less hydrogen recovered by refiners from catalytic reforming units. Meanwhile, requirements to reduce sulfur in diesel fuel will require more hydrogen capacity

  4. Ordering effects in nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.; Kottar, A.

    2000-01-01

    The effect of nonstoichiometry and ordering on crystalline structure and specific electric resistance (ρ) of TiC y (0.52≤y≤0.98) is studied within the temperature range of 300-1100 K. It is shown that the titanium carbide ordering in the areas 0.52≤y≤0.55, 0.56≤y≤0.58 and 0.62≤y≤0.68 leads to formation of the Ti 2 C cubic and trigonal ordered phase and the Ti 3 C 2 rhombic ordered phase correspondingly. Availability of hysteresis on the ρ(T) dependences in the area of the disorder-order reversible equilibrium transition points out to the fact that the TiC y ↔Ti 2 C and TiC y ↔Ti 3 C 2 transformations are the first order phase transitions [ru

  5. Oxalate complexation in dissolved carbide systems

    International Nuclear Information System (INIS)

    Choppin, G.R.; Bokelund, H.; Valkiers, S.

    1983-01-01

    It has been shown that the oxalic acid produced in the dissolution of mixed uranium, plutonium carbides in nitric acid can account for the problems of incomplete uranium and plutonium extraction on the Purex process. Moreover, it was demonstrated that other identified products such as benzene polycarboxylic acids are either too insoluble or insufficiently complexing to be of concern. The stability constants for oxalate complexing of UO 2 +2 and Pu +4 ions (as UO 2 (C 2 O 4 ), Pu(C 2 O 4 ) 2+ and Pu(C 2 O 4 ) 2 , respectively) were measured in nitrate solutions of 4.0 molar ionic strength (0-4 M HNO 3 ) by extraction of these species with TBP. (orig.)

  6. Study on niobium carbide dispersed superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Wada, H; Tachikawa, K [National Research Inst. for Metals, Tokyo (Japan); Oh' asa, M [Science Univ. of Tokyo (Japan)

    1977-11-01

    Niobium carbide (NbC) dispersed superconducting tapes have been fabricated by two metallurgical processes. In the first process, Ni-Nb-C alloys are directly arc melted and hot worked in air and the NbC phase is distributed in the form of fine discrete particles. In the second process, Ni-Nb and Ni-Nb-Cu alloys are arc melted, hot worked and subjected to solid-state carburization. NbC then precipitates along the grain boundaries, forming a network. The highest superconducting transition temperature attained is about 11 K. Taken together with the lattice parameter measurement, this indicates that NbC with a nearly perfect NaCl structure is formed in both processes. Measured values of the upper critical field, the critical current density and the volume fraction of the NbC phase are also discussed.

  7. Single Photon Sources in Silicon Carbide

    International Nuclear Information System (INIS)

    Brett Johnson

    2014-01-01

    Single photon sources in semiconductors are highly sought after as they constitute the building blocks of a diverse range of emerging technologies such as integrated quantum information processing, quantum metrology and quantum photonics. In this presentation, we show the first observation of single photon emission from deep level defects in silicon carbide (SiC). The single photon emission is photo-stable at room temperature and surprisingly bright. This represents an exciting alternative to diamond color centers since SiC possesses well-established growth and device engineering protocols. The defect is assigned to the carbon vacancy-antisite pair which gives rise to the AB photoluminescence lines. We discuss its photo-physical properties and their fabrication via electron irradiation. Preliminary measurements on 3C SiC nano-structures will also be discussed. (author)

  8. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...... lattice mismatch. Secondly, SiC material is abundant, containing no rear-earth element material as commercial phosphor. In this paper, fabrication of porous SiC is introduced, and their morphology and photoluminescence are characterized. Additionally, the carrier lifetime of the porous SiC is measured...... by time-resolved photoluminescence. The ultrashort lifetime in the order of ~70ps indicates porous SiC is very promising for the application in the ultrafast visible light communications....

  9. Comparison of damage microstructures in neutron-irradiated vanadium and iron

    International Nuclear Information System (INIS)

    Horton, L.L.; Farrell, K.

    1983-01-01

    The cavity morphology and dislocation loop geometry in bcc vanadium are compared with the previously reported observations for neutron-irradiated iron. The specimens were vanadium (V) with 100 wppM of interstitial impurities and vanadium with boron carbide additions (V-B 4 C) which were irradiated to approx. 1 dpa in the same Oak Ridge Research Reactor capsules as the iron specimens

  10. Mechanical-thermal synthesis of chromium carbides

    International Nuclear Information System (INIS)

    Cintho, Osvaldo Mitsuyuki; Favilla, Eliane Aparecida Peixoto; Capocchi, Jose Deodoro Trani

    2007-01-01

    The present investigation deals with the synthesis of chromium carbides (Cr 3 C 2 and Cr 7 C 3 ), starting from metallic chromium (obtained from the reduction of Cr 2 O 3 with Al) and carbon (graphite). The synthesis was carried out via high energy milling, followed by heat-treating of pellets made of different milled mixtures at 800 o C, for 2 h, under an atmosphere of argon. A SPEX CertPrep 8000 Mixer/Mill was used for milling under argon atmosphere. A tool steel vat and two 12.7 mm diameter chromium steel balls were used. The raw materials used and the products were characterized by differential thermal analysis, thermo gravimetric analysis, X-ray diffraction, electronic microscopy and X-ray fluorescence chemical analysis. The following variables were investigated: the quantity of carbon in the mixture, the milling time and the milling power. Mechanical activation of the reactant mixture depends upon the milling power ratio used for processing. The energy liberated by the reduction of the chromium oxide with aluminium exhibits a maximum for milling power ratio between 5:1 and 7.5:1. Self-propagating reaction occurred for all heat-treated samples whatever the carbon content of the sample and the milling power ratio used. Bearing carbon samples exhibited hollow shell structures after the reaction. The level of iron contamination of the milled samples was kept below 0.3% Fe. The self-propagated reaction caused high temperatures inside the samples as it may be seen by the occurrence of spherules, dendrites and whiskers. The carbon content determines the type of chromium carbide formed

  11. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zaitsev, A.M.

    1985-01-01

    Three types of optically active defect were observed in single-crystal and polycrystalline cubic boron nitride (β-BN). An analysis of the temperature dependences of the intensity, half-width, and energy shift of a narrow zero-phonon line at 1.76 eV (GC-1 center) made it possible to interpret the observed cathodoluminescence spectra as an optical analog of the Moessbauer effect. A comparison of the results obtained in the present study with the available data on diamond single crystals made it possible to identify the observed GC-1 center as a nitrogen vacancy. It was concluded that optical Moessbauer-type spectra can be used to analyze structure defects in the crystal lattice of β-BN

  12. Behaviour of boron in Mandovi estuary (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Anand, S.P.

    and alkalinity gave positive correlations with a linear variation. Though the overall behavioural pattern of boron indicated non-conservative nature, it showed a quasi-conservative character during premonsoon and a non-conservative during rest of the seasons...

  13. Internal stress control of boron thin film

    International Nuclear Information System (INIS)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M.

    1998-01-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s -1 and substrate temperature of 300 C. (orig.)

  14. Internal stress control of boron thin film

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M. [Osaka Univ., Suita (Japan). Graduate Sch. of Eng.

    1998-09-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s{sup -1} and substrate temperature of 300 C. (orig.) 12 refs.

  15. Determination of boron in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grazhulene, S.S.; Grossman, O.V.; Kuntscher, K.K.; Malygina, L.I.; Muller, E.N.; Telegin, G.F.

    1985-10-01

    In the determination of boron in amorphous alloys containingFe, Co, B, Si, Ni, and P having unusal magnetic and electrical properties, precise analysis and rapid analysis are necessary. To improve the metrological properties of the existing procedure, to find a rapid determination of boron in amorphous alloys, and to verify the accuracy of the results, in the present work the optimization of the photometric determination after extraction of the BF/sup -//sub 4/ ion pair with methylene blue has been studied, and a boron determination by flame photometry using selective methylation has been developed. The determination of boron by the flame photometric and spectrophotometric methods is shown. When a highly precise determination is needed, the spectrophotometric procedure can be used. This procedure is distinguished by its labor intensity and duration. When the need for reproducibility is less severe, the rapid flame photometric procedure is best.

  16. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    Gainer, G.M.

    1993-01-01

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  17. Boron-isotope fractionation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Marentes, E [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada); Vanderpool, R A [USDA/ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota (United States); Shelp, B J [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada)

    1997-10-15

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, {sup 11}B and {sup 10}B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in {sup 11}B relative to the nutrient solution, and the leaves were enriched in {sup 10}B and the stem in {sup 11}B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  18. Boron-isotope fractionation in plants

    International Nuclear Information System (INIS)

    Marentes, E.; Vanderpool, R.A.; Shelp, B.J.

    1997-01-01

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, 11 B and 10 B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in 11 B relative to the nutrient solution, and the leaves were enriched in 10 B and the stem in 11 B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  19. Development of carbon-ceramic composites

    International Nuclear Information System (INIS)

    Raman, V.; Bhatia, G.; Mishra, A.; Sengupta, P.R.; Saha, M.; Rashmi

    2005-01-01

    Carbon-ceramic composites (C-SiC-B 4 C) were developed through in situ formation of silicon carbide by mixing coal-tar based green coke and silicon as silicon carbide (SiC) precursor, boron carbide (B 4 C) and heat-treatment to 2200 deg. C. These composites were characterised for their physical, mechanical and oxidation resistance properties. The formation of protective coatings during oxidation of the composites was confirmed by using X-ray diffraction, energy-dispersive X-ray spectrometry, scanning electron microscopy and porosity measurement. Carbon-ceramic composites, which could withstand oxidation at 800-1200 deg. C for about 10 h in air have been developed

  20. Preparation and investigation of Al–4 wt % B4C nanocomposite ...

    Indian Academy of Sciences (India)

    cal behaviour including light weight, electrical and thermal conductivity (Boey et ... cle sizes, density, geometries, flow or the development of an electrical charge ... 2. Experimental. Argon gas atomized Al–2 wt % Cu powders with a mean size.