WorldWideScience

Sample records for boron 12 target

  1. Low-dimensional boron structures based on icosahedron B12

    Science.gov (United States)

    Kah, C. B.; Yu, M.; Tandy, P.; Jayanthi, C. S.; Wu, S. Y.

    2015-10-01

    One-dimensional icosahedral boron chains and two-dimensional icosahedral boron sheets (icosahedral α, δ6, and δ4 sheets) that contain icosahedra B12 as their building units have been predicted in a computer simulation study using a state-of-the-art semi-empirical Hamiltonian. These novel low-dimensional icosahedral structures exhibit interesting bonding and electronic properties. Specifically, the three-center, two-electron bonding between icosahedra B12 of the boron bulk (rhombohedral boron) transforms into a two-center bonding in these new allotropes of boron sheets. In contrast to the previously reported stable buckled α and triangular boron monolayer sheets, these new allotropes of boron sheets form a planar network. Calculations of electronic density of states (DOS) reveal a semiconducting nature for both the icosahedral chain and the icosahedral δ6 and δ4 sheets, as well as a nearly gapless (or metallic-like) feature in the DOS for the icosahedral α sheet. The results for the energy barrier per atom between the icosahedral δ6 and α sheets (0.17 eV), the icosahedral δ6 and δ4 sheets (0.38 eV), and the icosahedral α and δ4 sheets (0.27 eV), as indicated in the respective parentheses, suggest that these new allotropes of boron sheets are relatively stable.

  2. Spectromicroscopy of boron in human glioblastomas following administration of Na2B12H11SH

    Science.gov (United States)

    Gilbert, B.; Perfetti, L.; Fauchoux, O.; Redondo, J.; Baudat, P.-A.; Andres, R.; Neumann, M.; Steen, S.; Gabel, D.; Mercanti, Delio; Ciotti, M. Teresa; Perfetti, P.; Margaritondo, G.; de Stasio, Gelsomina

    2000-07-01

    Boron neutron capture therapy (BNCT) is an experimental, binary treatment for brain cancer which requires as the first step that tumor tissue is targeted with a boron-10 containing compound. Subsequent exposure to a thermal neutron flux results in destructive, short range nuclear reaction within 10 μm of the boron compound. The success of the therapy requires than the BNCT agents be well localized in tumor, rather than healthy tissue. The MEPHISTO spectromicroscope, which performs microchemical analysis by x-ray absorption near edge structure (XANES) spectroscopy from microscopic areas, has been used to study the distribution of trace quantities of boron in human brain cancer tissues surgically removed from patients first administered with the compound Na2B12H11SH (BSH). The interpretation of XANES spectra is complicated by interference from physiologically present sulfur and phosphorus, which contribute structure in the same energy range as boron. We addressed this problem with the present extensive set of spectra from S, B, and P in relevant compounds. We demonstrate that a linear combination of sulfate, phosphate and BSH XANES can be used to reproduce the spectra acquired on boron-treated human brain tumor tissues. We analyzed human glioblastoma tissue from two patients administered and one not administered with BSH. As well as weak signals attributed to BSH, x-ray absorption spectra acquired from tissue samples detected boron in a reduced chemical state with respect to boron in BSH. This chemical state was characterized by a sharp absorption peak at 188.3 eV. Complementary studies on BSH reference samples were not able to reproduce this chemical state of boron, indicating that it is not an artifact produced during sample preparation or x-ray exposure. These data demonstrate that the chemical state of BSH may be altered by in vivo metabolism.

  3. Microstructure of a high boron 9-12% chromium steel

    Energy Technology Data Exchange (ETDEWEB)

    Andren, H.O. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Physics

    2008-07-01

    Additions of small amounts of boron (10-100 ppm) to 9-12% chromium steels are often made since they have been found to be beneficial for the creep strength up to and above 600 C. The effect of boron is to restrict the coarsening of M{sub 23}C{sub 6} precipitates during service. It was found that increasing the boron content from 9 to 40 ppm gave a decrease in coarsening constant at 600 C by a factor of 2. The present understanding of boron solution, non-equilibrium grain boundary segregation, incorporation into M{sub 23}C{sub 6}, and diffusion is reviewed in the paper. A very high boron addition (300 ppm) was made in the trial TAF steel already in the 1950'ies. The microstructure of a similar trial steel, FT3B, has been studied detail. In this steel large Mo, Cr, Fe and V containing metal borides are formed rather than the expected BN, with the crystal structure M{sub 2}B{sub 2}. Nitrogen is therefore still available for the formation of VN. Due to tempering at a low temperature (690 C) to a high strength (830 MPa), this steel contained a dense distribution of very small VN precipitates, 5-15 nm in size. A similar VN distribution is probably the cause of the still unsurpassed creep strength of the TAF steel. (orig.)

  4. Boron

    Science.gov (United States)

    ... an eye wash. Boron was used as a food preservative between 1870 and 1920, and during World Wars ... chemical symbol), B (symbole chimique), Borate, Borate de Sodium, Borates, Bore, Boric Acid, Boric Anhydride, Boric Tartrate, ...

  5. B4C solid target boronization of the MST reversed-field pinch

    International Nuclear Information System (INIS)

    A solid rod of hot-pressed boron carbide is being used as the source of boron during boronization of MST. The most striking result of this procedure is the reduction in oxygen contamination of the plasma (O III radiation, characteristic of oxygen at the edge, falls by about a factor of 3 after boronization.). The radiated power fraction drops to about half its initial value. Particle reflux from the wall is also lowered, making density control simpler. The rod (12.7 mm diameter) is inserted into the edge plasma of normal high-power RFP discharges. B4C is ablated from the surface of the rod and deposited in a thin film (a-B/C:H) on the walls and limiters. The energy flux carried by ''superthermal'' (not ''runaway'') electrons at the edge of MST appears to enhance the efficient, non-destructive ablation of the boron carbide rod

  6. The preparation and composition design of boron-rich lanthanum hexaboride target for sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Defang; Min, Guanghui; Wu, Yan; Yu, Huashun; Zhang, Lin, E-mail: zhanglin2007@sdu.edu.cn

    2015-07-25

    Highlights: • High-purity LaB{sub 6} powder was prepared due to significant reduction of residual B{sub 4}C and effective purification process. • The effects of raw materials ratio on the size, morphology, phase structure and crystalline size of LaB{sub 6} were studied. • The correlation of component between LaB{sub 6} films and boron-rich targets was established. • The variation of densities of LaB{sub 6} targets with sintering time and sintering temperature was investigated. - Abstract: Lanthanum Hexaboride (LaB{sub 6}) nano-film has been proved to be promising transparent thermal insulation material, while its properties are limited on purity and composition. High-purity LaB{sub 6} polycrystalline powder was prepared through boron carbide reduction method in this work. A series of techniques such as scanning electron microscopy, X-ray diffraction, laser particle analyzer and inductively coupled plasma emission spectrometer were employed to characterize LaB{sub 6} powder. As raising the content of La{sub 2}O{sub 3} in reactants, more uniform, finer (2.686 μm) and purer (99.5139 wt%) LaB{sub 6} powder is prepared, with only 0.4434 wt% residual B{sub 4}C. The density of targets increases with the rise of sintering temperature and the extension of sintering time, while crystallite size increases simultaneously with the extension of sintering time. The introduction of B powder in target is conductive to sintering process, increasing hardness and flexural strength of targets. X-ray photoelectron spectrometer was used to characterize the composition and microstructure of LaB{sub 6} nano-film which is tentatively considered to be composed of LaB{sub 6} nanocrystalline and amorphous microstructure of La and B atoms. The film LaB{sub 6.0627±0.02} was obtained when the ratio of B and La of sputtering target reached 12.5. The thickness and deposition rate decrease with the increase of B content in targets.

  7. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications.

    NARCIS (Netherlands)

    Mandal, S.; Bakeine, G.J.; Krol, S.; Ferrari, C.; Clerici, A.M.; Zonta, C.; Cansolino, L.; Ballarini, F.; Bortolussi, S.; Stella, S.; Protti, N.; Bruschi, P.; Altieri, S.

    2011-01-01

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coate

  8. Experimental evidence of orbital order in α-B12 and γ-B28 polymorphs of elemental boron

    Science.gov (United States)

    Mondal, Swastik; van Smaalen, Sander; Parakhonskiy, Gleb; Prathapa, Siriyara Jagannatha; Noohinejad, Leila; Bykova, Elena; Dubrovinskaia, Natalia; Chernyshov, Dmitry; Dubrovinsky, Leonid

    2013-07-01

    The electron density of the α form of boron has been obtained by multipole refinement against high-resolution, single-crystal x-ray diffraction data measured on a high-quality single crystal at a temperature of 100 K. Topological properties of this density have been used to show that all chemical bonds between B12 clusters in α-B12 are formed due to one orbital on each boron atom that is oriented perpendicular to the surface of the cluster. It is shown that the same orbital order on B12 clusters persists in both α-B12 and γ-B28 polymorphs and in several dodecaboranes, despite the fact that in every case the B12 clusters participate in entirely different kinds of exocluster bonds. It is likely that the same orbital order of B12 clusters can explain bonding in other boron polymorphs and boron-rich solids.

  9. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Subhra [Department of Tumor Immunology, Radboud University Nijmegen Medical Centre (Netherlands); Bakeine, Gerald J., E-mail: Jamesbakeine1@yahoo.com [Department of Internal Medicine and Therapeutics-Section of Clinical Toxicology, University of Pavia, Piazza Botta 10, 27100 Pavia (Italy); Krol, Silke [Institute of Neurology, Fondazione IRCCS Carlo Besta, Milan (Italy); Ferrari, Cinzia; Clerici, Anna M.; Zonta, Cecilia; Cansolino, Laura [Department of Surgery, Laboratory of Experimental Surgery, University of Pavia (Italy); Ballarini, Francesca [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bortolussi, Silva [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Stella, Subrina; Protti, Nicoletta [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bruschi, Piero [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Altieri, Saverio [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy)

    2011-12-15

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coated with multilayers of polyelectrolytes functionalized with the fluorescent dye (FITC), boronophenylalanine and folic acid. In vitro confocal fluorescence microscopy demonstrated significant uptake of the nanoparticles in cancer cells that are known to overexpress folate receptors. - Highlights: Black-Right-Pointing-Pointer Synthesis of multi-labeled gold nanoparticles for selective boron delivery to tumor cells. Black-Right-Pointing-Pointer Tumor selectivity is achieved through folic acid receptor targeting. Black-Right-Pointing-Pointer Optical fluorescent microscopy allows tracking of cellular uptake of the gold nanoparticle. Black-Right-Pointing-Pointer In vitro tests demonstrate selective nanoparticle up in folate receptor positive tumor cells.

  10. Structural, magnetic and magnetocaloric properties of Heusler alloys Ni50Mn38Sb12 with boron addition

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Tai, N.T.; Huy, N.T.;

    2011-01-01

    We report on the structural, magnetic and magnetocaloric properties of the Ni50Mn38Sb12Bx alloys in term of boron addition with x=1, 3 and 5. We have found that both the paramagnetic–ferromagnetic austenitic transition (TC) and the ferromagnetic–antiferromagnetic martensitic transition (TM......) are sensitively influenced by the boron addition: TC tends to increase, while TM decreases with increasing boron concentration. Temperature dependent X-ray diffraction in the range of 200–500K clearly shows an evolution of the structural transformation from orthorhombic to cubic structure phase transition...

  11. New concepts for compact accelerator/target for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Two new target concepts, NIFTI and DISCOS, that enable a large reduction in the proton beam current needed to produce epithermal neutrons for BNCT (Boron Neutron Capture Therapy) are described. In the NIFTI concept, high energy neutrons produced by (p, n) reactions of 2.5 MeV protons on Li are down scattered to treatment energies (∼ 20 keV) by relatively thin layers of PbF2 and iron. In the DISCOS concept, treatment energy neutrons are produced directly in a succession of thin (∼ 1 micron) liquid Li films on rotating Be foils. These foils interact with a proton beam that operates just above threshold for the (p, n) reaction, with an applied DC field to re-accelerate the proton beam between the target foils

  12. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drug

    Directory of Open Access Journals (Sweden)

    Feng S

    2016-09-01

    Full Text Available Shini Feng,1 Huijie Zhang,1 Ting Yan,1 Dandi Huang,1 Chunyi Zhi,2 Hideki Nakanishi,1 Xiao-Dong Gao1 1Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China Abstract: With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS with receptor-mediated targeting. Folic acid (FA was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 µg/mL. Then, doxorubicin hydrochloride (DOX, a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. Keywords: boron nitride nanospheres, folic acid, doxorubicin, targeted delivery, cancer therapy

  13. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs

    Science.gov (United States)

    Feng, Shini; Zhang, Huijie; Yan, Ting; Huang, Dandi; Zhi, Chunyi; Nakanishi, Hideki; Gao, Xiao-Dong

    2016-01-01

    With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN) has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS) with receptor-mediated targeting. Folic acid (FA) was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 μg/mL. Then, doxorubicin hydrochloride (DOX), a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. PMID:27695318

  14. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  15. Photoelectron spectroscopy of aromatic compound clusters of the B12 all-boron benzene: B12Au- and B12(BO)-.

    Science.gov (United States)

    Bai, Hui; Zhai, Hua-Jin; Li, Si-Dian; Wang, Lai-Sheng

    2013-06-28

    We report a photoelectron spectroscopy and density-functional theory study of the B12Au(-) and B13O(-) clusters and their neutrals, which are shown to be six π electron aromatic compounds between the quasi-planar all-boron B12 benzene-analogue and a monovalent Au or BO ligand. Electron affinities of B12Au and B13O are measured to be 3.48 ± 0.04 and 3.90 ± 0.04 eV, respectively. Structural searches are performed for B12Au(-) and B13O(-), which are compared with the isovalent B12H(-) cluster. The global minima of B12Au(-) and B13O(-) both feature an almost intact B12 cluster with the Au and BO ligands bonded to its periphery, respectively. For B12Au(-), a low-lying isomer is also identified, which is only 0.4 kcal mol(-1) above the global minimum, in agreement with the experimental observation of a weakly populated isomer in the cluster beam of B12Au(-). These aromatic compound clusters provide new examples for the Au/H isolobal analogy and the boronyl (BO) chemistry. PMID:23666408

  16. Boron carbide, B13-xC2-y (x = 0.12, y = 0.01

    Directory of Open Access Journals (Sweden)

    Oksana Sologub

    2012-08-01

    Full Text Available Boron carbide phases exist over a widely varying compositional range B12+xC3-x (0.06 < x < 1.7. One idealized structure corresponds to the B13C2 composition (space group R-3m and contains one icosahedral B12 unit and one linear C—B—C chain. The B12 units are composed of crystallographically distinct B atoms BP (polar, B1 and BEq (equatorial, B2. Boron icosahedra are interconnected by C atoms via their BEq atoms, forming layers parallel to (001, while the B12 units of the adjacent layers are linked through intericosahedral BP—BP bonds. The unique B atom (BC connects the two C atoms of adjacent layers, forming a C—B—C chain along [001]. Depending on the carbon concentration, the carbon and BP sites exhibit mixed B/C occupancies to varying degrees; besides, the BC site shows partial occupancy. The decrease in carbon content was reported to be realized via an increasing number of chainless unit cells. On the basis of X-ray single-crystal refinement, we have concluded that the unit cell of the given boron-rich crystal contains following structural units: [B12] and [B11C] icosahedra (about 96 and 4%, respectively and C—B—C chains (87%. Besides, there is a fraction of unit cells (13% with the B atom located against the triangular face of a neighboring icosahedron formed by BEq (B2 thus rendering the formula B0.87(B0.98C0.0212(B0.13C0.872 for the current boron carbide crystal.

  17. Complementary incorporation of boron compounds with different cellular targets in melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Morre, D.E. [University of Sydney, Dept. of Pharmacy, Sydney, NSW (Australia); Setiawan, Y.; Allen, B.J. [St George Cancer Care Centre, Kogarah, NSW (Australia)

    1996-12-31

    Full text. The heterogeneity of malignant tumours is well known, and post-surgical control may only be achieved by the application of a number of adjuvant therapies. In boron neutron capture therapy (BNCT), a similar effect could be achieved by utilising boron compounds with quite different uptake and incorporation mechanisms. While tumour growth delay or control can be induced by BNCT in animal models, long term control in human patients may be much more difficult. Thus we have carried out experiments with two boron compounds which exhibit quite different pharmacokinetics and interact with cancer cells by quite different mechanisms. The compounds studied were p-boronophenylalanine (BPA) and boronated low density lipoprotein (B-LDL). Non-specific boron compounds such as n-alkyl carboranes can be delivered to melanoma tumour cells when incorporated in reconstituted LDL. Biodistribution studies were performed with BALB/c mice bearing subcutaneous Harding-Passey melanoma xenografts. The mice were pretreated with a high fat diet and hydrocortisone to down regulate the non-autonomous LDL receptors. A tumour to blood boron concentration ratio of 5:1 was achieved 18 hours after administration of B-LDL. The same compound administered in a non-specific arachis oil vehicle failed to demonstrate selective uptake in the tumour. Neutron capture therapy using B-LDL as the boron delivery vehicle produced a growth delay effect on the tumours which was equivalent to that found when BPA was administered as the fructose complex to develop a similar boron concentration in the tumour. This is indicative that the boron microdistribution across different types of tumour cells achieved by B-LDL has a similar effect to that achieved by BPA in the tumour model, even though the uptake mechanisms for BPA and B-LDL are different. BPA uptake is thought to be dependent on the amino acid transport mechanism, whereas receptor density determines LDL incorporation. Thus the combined administration

  18. Structures, stability, mechanical and electronic properties of α-boron and α*-boron

    OpenAIRE

    Chaoyu He; Zhong, J. X.

    2013-01-01

    The structures, stability, mechanical and electronic properties of α-boron and a promising metastable boron phase (α*-boron) have been studied by first-principles calculations. α-boron and α*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of “3S-6D-3S” and “2S-6D-4S”, respectively. The total energy calculations show that α*-boron is less stable than α-boron but more favorable than the well-known β-boron and γ-boron at zero pressure. Both α-boron and...

  19. New targets in plant boron deficiency response: Nglycosylation and regulation of root developement

    OpenAIRE

    Abreu Sánchez, Isidro

    2016-01-01

    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología   Since Warington described in 1923 for first time boron (B) essentiality in plants, many authors have tried to understand what the micronutrient is doing, how the micronutrient is acquired, and what happens when the micronutrient is absent. First studies on B nutrition focused on physiological processes and biochemical pathways which appeared altered as a consequence of B d...

  20. Tumor-targeted boron-containing amino acids and their related compounds. Synthesis and biological activity

    International Nuclear Information System (INIS)

    In a series of our synthetic studies on boron-containing amino acids and their related compounds for BNCT (Boron Neutron Capture Therapy), p-boronophenylalanine (BPA), p-boronophenylserine (BPS), o-carboranylmethyl-3-hydroxytyrosine (CMHT) and their derivatives were designed and synthesized by using of isocyano compounds as a starting material. Two water-soluble amino alcohols, BPA-OH and BPS-OH, were prepared by the reduction of the corresponding N-formyl amino esters. On the other hand, CMHTA, an amide derivative of CMHT, was synthesized by an aldol-type condensation of isocyanoacetamide with 4-(o-carboranylmethyloxy)benz aldehyde as a key reaction. The relative tumor cell (human glioma T98G) killing effect of nBPS-OH, nBPA-OH and CMHTA against 10BPA was 0.7, 1.0 and 4.9, respectively. The uptake of CMHTA by the tumor cell increased with increasing cultivation time. (J.P.N.)

  1. Proton induced gamma-ray production cross sections and thick-target yields for boron, nitrogen and silicon

    Science.gov (United States)

    Marchand, Benoît; Mizohata, Kenichiro; Räisänen, Jyrki

    2016-07-01

    The excitation functions for the reactions 14N(p,p‧γ)14N, 28Si(p,p‧γ)28Si and 29Si(p,p‧γ)29Si were measured at an angle of 55° by bombarding a thin Si3N4 target with protons in the energy range of 3.6-6.9 MeV. The deduced γ-ray production cross section data is compared with available literature data relevant for ion beam analytical work. Thick-target γ-ray yields for boron, nitrogen and silicon were measured at 4.0, 4.5, 5.0, 5.5, 6.0 and 6.5 MeV proton energies utilizing thick BN and Si3N4 targets. The measured yield values are put together with available yield data found in the literature. The experimental yield data has been used to cross-check the γ-ray production cross section values by comparing them with calculated thick-target yields deduced from the present and literature experimental excitation curves. All values were found to be in reasonable agreement taking into account the experimental uncertainties.

  2. Structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron

    OpenAIRE

    He, Chaoyu; Zhong, Jianxin

    2013-01-01

    The structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron have been studied by first-principles calculations. Both a-boron and a*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of "3S-6D-3S" and "2S-6D-4S", respectively. The total energy calculations show that a*-boron is less stable than a-boron but more favorable than beta-boron and Gamma-boron at zero pressure. Both a-boron and a*-boron are confirm...

  3. Targeting ADAM12 in human disease: head, body or tail?

    DEFF Research Database (Denmark)

    Jacobsen, J; Wewer, U M

    2009-01-01

    ADAM12/meltrin alpha is a type I transmembrane multidomain protein involved in tumor progression and other severe diseases, including osteoarthritis, and as such could be considered as a potential drug target. In addition to protease activity, ADAM12 possesses cell binding and cell signaling...... properties. This functional trinity is reflected in the structure of ADAM12, which can be divided into head, body, and tail. The head of the protein (consisting of the pro and catalytic domains) mediates processing of growth factors and cytokines and has been implicated in epidermal growth factor (EGF...... of the cytoplasmic domain) is engaged in interactions with intracellular signaling molecules. In many studies, ADAM12 overexpression has been correlated with disease, and ADAM12 has been shown to promote tumor growth and progression in cancer. On the other hand, protective effects of ADAM12 in disease have also been...

  4. Preparation of catalyst composition comprising a boron containing crystalline material having the structure of zeolites ZSM-5, ZSM-11, ZSM-12, Beta or NU-1

    Energy Technology Data Exchange (ETDEWEB)

    Kuehl, G.H.

    1987-04-28

    A method is described for preparing a catalyst composition for processing high nitrogen-containing oils comprising a boron-containing crystalline material having the structure of zeolite ZSM-5, ZSM-11, ZSM-12, Beta or Nu-1. The sequential steps of synthesizing a boron-containing crystalline material having the structure of zeolite ZSM-5, ZSM-11, ZSM-12, Beta or Nu-1 are: drying the crystalline material at a temperature of from about ambient to less than about 170/sup 0/C; calcining the dried crystalline material in an oxygen- and water-free environment of anhydrous ammonia, anhydrous nitrogen, other anhydrous inert gases or a mixture thereof at a temperature of from about 200/sup 0/ to about 600/sup 0/C to minimize hydrolysis of boron in the boron-containing crystalline material; adsorbing ammonia on the calcined crystalline material; contacting the crystalline material with an ion-exchange solution at a pH of from about 7 to about 11; compositing the ion-exchange solution contacted crystalline material with an inorganic oxide material; drying the composite at a temperature of from about ambient to less than about 170/sup 0/C and calcining the dried composite at a temperature of from about 200/sup 0/ to about 600/sup 0/C.

  5. Analyzing ERK 1/2 signalling and targets.

    Science.gov (United States)

    Brietz, Alexandra; Schuch, Kristin Verena; Wangorsch, Gaby; Lorenz, Kristina; Dandekar, Thomas

    2016-07-19

    The ERK cascade (e.g. Raf-1) protects the heart from cell death and ischemic injury but can also turn maladaptive. Furthermore, an additional autophosphorylation of ERK2 at Thr188 (Erk1 at Thr208) allows ERK to phosphorylate nuclear targets involved in hypertrophy, stressing this additional phosphorylation as a promising pharmacological target. An in silico model was assembled and setup to reproduce different phosphorylation states of ERK 1/2 and various types of stimuli (hypertrophic versus non-hypertrophic). Synergistic and antagonistic receptor stimuli can be predicted in a semi-quantitative model, simulated time courses were experimentally validated. Furthermore, we detected new targets of ERK 1/2, which possibly contribute to the development of pathological hypertrophy. In addition we modeled further interaction partners involved in the protective and maladaptive cascade. Experimental validation included different gene expression data sets supporting key components and novel interaction partners as well as time courses in chronic heart failure.

  6. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Cory F. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  7. 12C+12C reactions at astrophysical energies: Tests of targets behaviour under beam bombardment

    International Nuclear Information System (INIS)

    12C(12C,α)20Ne and 12C(12C,p)23Na are the most important reactions during the carbon burning phase in stars. Direct measurements at the relevant astrophysical energy (E=1.5±0.3MeV) are very challenging because of the extremely small cross sections involved and of the high beam-induced background originating from impurities in the targets. In addition, persistent resonant structures at low energies are not well understood and make the extrapolation of the cross section from high energy data very uncertain. As a preliminary step towards the measurements of the 12C(12C,α)20Ne and 12C(12C,p)23Na reactions we intend to investigate the behaviour of targets under beam bombardment, specifically the quantitative measurement of hydrogen and deuterium content of highly pure stable carbon targets in relation to target temperature. Experiments are taking place at the CIRCE accelerator in Caserta, Italy and preliminary results are presented here

  8. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  9. A Solid Polarized Target for CLAS12 at Jefferson Lab

    Science.gov (United States)

    Ehrhart, Mathieu; CLAS Collaboration

    2014-03-01

    To be able to study the spin-dependence of the nucleon structure with electron scattering experiments, targets providing spin-polarized nuclei are needed. We report on the development of a new solid polarized target for the CLAS12 detector, presently being installed in Jefferson Lab's Hall B. The technique of dynamic nuclear polarization (DNP) requires very low temperatures around 1 Kelvin and a high magnetic field of around 5 Tesla. The very large natural polarization of free electrons inside the target material under these conditions is transferred to the nuclei via microwave radiation (electron Larmor frequency). The polarization of the protons and deuterons is measured with the nuclear magnetic resonance (NMR) technique.

  10. First boronization in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.H., E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, K.S.; Kim, K.M.; Kim, H.T.; Kim, G.P. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, J.H.; Woo, H.J. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Park, J.M.; Kim, W.C.; Kim, H.K.; Park, K.R.; Yang, H.L.; Na, H.K. [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Chung, K.S. [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-11-15

    First boronization in KSTAR is reported. KSTAR boronization system is based on a carborane (C{sub 2}B{sub 10}H{sub 12}) injection system. The design, construction, and test of the system are accomplished and it is tested by using a small vacuum vessel before it is mounted to a KSTAR port. After the boronization in KSTAR, impurity levels are significantly reduced by factor of 3 (oxygen) and by 10 (carbon). Characteristics of a-C/B:H thin films deposited by carborane vapor are investigated. Re-condensation of carborane vapor during the test phase has been reported.

  11. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  12. Transferrin-loaded nido-carborane liposomes. Synthesis and intracellular targeting to solid tumors for boron neutron capture therapy

    International Nuclear Information System (INIS)

    The boron ion cluster lipids, as a double-tailed boron lipid synthesized from heptadecanol, formed stable liposomes at 25% molar ratio toward DSPC with cholesterol. Transferrin was able to be introduced on the surface of boron liposomes (Tf-PEG-CL liposomes) by the coupling of transferrin to the PEG-CO2H moieties of PEG-CL liposomes. The biodistribution of Tf-PEG-CL liposomes showed that Tf-PEG-CL liposomes accumulated in tumor tissues and stayed there for a sufficiently long time to increase tumor:blood concentration ratio. A 10B concentration of 22 ppm in tumor tissues was achieved by the injection of Tf-PEG-CL liposome at 7.2 mg/kg body weight 10B in tumor-bearing mice. After neutron irradiation, the average survival rate of mice not treated with Tf-PEG-CL liposomes was 21 days, whereas that of the treated mice was 31 days. Longer survival rates were observed in the mice treated with Tf-PEG-CL liposomes; one of them even survived for 52 days after BNCT. (author)

  13. Raman spectroscopy of boron carbides and related boron-containing materials

    International Nuclear Information System (INIS)

    Raman spectra of crystalline boron, boron carbide, boron arsenide (B12As2), and boron phosphide (B12P2) are reported. The spectra are compared with other boron-containing materials containing the boron icosahedron as a structural unit. The spectra exhibit similar features some of which correlate with the structure of the icosahedral units of the crystals. The highest Raman lines appear to be especially sensitive to the B-B distance in the polar triangle of the icosahedron. Such Raman structural markers are potentially useful in efforts to tailor electronic properties of these high temperature semiconductors and thermoelectrics

  14. Measurements of the {sup 11}B(d,nγ{sub 15.1}){sup 12}C differential cross-section on thick and thin targets

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kevin W., E-mail: kc391106@ohio.edu; Massey, Thomas N.; Carter, D.E.; Ingram, David C.

    2013-06-15

    The differential cross-section for the 15.1 MeV gamma ray produced by the {sup 11}B(d,nγ){sup 12}C reaction in a thick natural boron target has been measured for incident deuteron energies ranging from reaction threshold to 5 MeV. Measurements for a thin natural boron target have been carried out over a similar incident deuteron energy range. These results are compared to previous measurements made by Kavanagh (1958) and Kuan (1964). Measurements of the combined thick target yield for the 6.129, 6.917, and 7.116 MeV gamma rays from the {sup 19}F(p,αγ){sup 16}O reaction have been carried out on a stopping thickness sulfur hexafluoride gas cell for effective incident proton energies ranging from 1 to 4 MeV as a consistency check on the procedure used for normalization of the detector response function. The results for the {sup 11}B(d,nγ{sub 15.1}){sup 12}C yield a significantly lower cross-section than that previously reported, while the measurements of the {sup 19}F(p,αγ) reaction are consistent with previous measurements made by Fessler (2000) and Micklich (2003)

  15. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  16. Interpenetration of a 3D Icosahedral M@Ni12 (M=Al, Ga) Framework with Porphyrin-Reminiscent Boron Layers in MNi9 B8.

    Science.gov (United States)

    Zheng, Qiang; Wagner, Frank R; Ormeci, Alim; Prots, Yurii; Burkhardt, Ulrich; Schmidt, Marcus; Schnelle, Walter; Grin, Yuri; Leithe-Jasper, Andreas

    2015-11-01

    Two ternary borides MNi9 B8 (M=Al, Ga) were synthesized by thermal treatment of mixtures of the elements. Single-crystal X-ray diffraction data reveal AlNi9 B8 and GaNi9 B8 crystallizing in a new type of structure within the space group Cmcm and the lattice parameters a=7.0896(3) Å, b=8.1181(3) Å, c=10.6497(4) Å and a=7.0897(5) Å, b=8.1579(4) Å, c=10.6648(7) Å, respectively. The boron atoms build up two-dimensional layers, which consist of puckered [B16 ] rings with two tailing B atoms, whereas the M atoms reside in distorted vertices-condensed [Ni12 ] icosahedra, which form a three-dimensional framework interpenetrated by boron porphyrin-reminiscent layers. An unusual local arrangement resembling a giant metallo-porphyrin entity is formed by the [B16 ] rings, which, due to their large annular size of approximately 8 Å, chelate four of the twelve icosahedral Ni atoms. An analysis of the chemical bonding by means of the electron localizability approach reveals strong covalent B-B interactions and weak Ni-Ni interactions. Multi-center dative B-Ni interaction occurs between the Al-Ni framework and the boron layers. In agreement with the chemical bonding analysis and band structure calculations, AlNi9 B8 is a Pauli-paramagnetic metal. PMID:26418894

  17. Path To Ignition: US Indirect Target Physics (LIRPP Vol. 12)

    Science.gov (United States)

    Cray, M.; Campbell, E. M.

    2016-10-01

    The United States ICF Program has been pursuing an aggressive research program in preparation for an ignition demonstration on the National Ignition Facility. Los Alamos and Livermore laboratories have collaborated on resolving indirect drive target physics issues on the Nova laser at Livermore National Laboratory. This combined with detailed modeling of laser heated indirectly driven targets likely to achieve ignition, has provided the basis for planning for the NIF. A detailed understanding of target physics, laser performance, and target fabrication is required for developing robust ignition targets. We have developed large-scale computational models to simulate complex physics which occurs in an indirectly driven target. For ignition, detailed understanding of hohlraum and implosion physics is required in order to control competing processes at the few percent level. From crucial experiments performed by Los Alamos and Livermore on the Nova laser, a comprehensive indirect drive database has been assembled. Time integrated and time dependent measurements of radiation drive and symmetry coupled with a detailed set of plasma instability measurements have confirmed our ability to predict hohlraum energetics. Implosion physics campaigns are focused on underdstanding detailed capsule hydrodynamics and instability growth. Target fabrication technology is also an active area of research at Los Alamos, Livermore, and General Atomics for NIF. NIF targets require developing technology in cryogenics and manufacturing in such areas as beryllium shell manufacture. Descriptions of our NIF target designs, experimental results, and fabrication technology supporting NIF target performance predictions will be given.

  18. Investigation of interactions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation

    Directory of Open Access Journals (Sweden)

    G Ciofani

    2010-04-01

    Full Text Available G Ciofani1, L Ricotti1, S Danti2,3, S Moscato4, C Nesti2, D D’Alessandro2,4, D Dinucci5, F Chiellini5, A Pietrabissa3, M Petrini2,3, A Menciassi1,61Scuola Superiore Sant’Anna, Pisa, Italy; 2CUCCS-RRMR, Center for the Clinical Use of Stem Cells – Regional Network of Regenerative Medicine, 3Department of Oncology, Transplants and Advanced Technologies, 4Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy; 5Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab, UdR INSTM, Department of Chemistry and Industrial Chemistry, University of Pisa, San Piero a Grado, Italy; 6Italian Institute of Technology, Genova, ItalyAbstract: Boron nitride nanotubes (BNNTs have generated considerable interest within the scientific community by virtue of their unique physical properties, which can be exploited in the biomedical field. In the present in vitro study, we investigated the interactions of poly-L-lysine-coated BNNTs with C2C12 cells, as a model of muscle cells, in terms of cytocompatibility and BNNT internalization. The latter was performed using both confocal and transmission electron microscopy. Finally, we investigated myoblast differentiation in the presence of BNNTs, evaluating the protein synthesis of differentiating cells, myotube formation, and expression of some constitutive myoblastic markers, such as MyoD and Cx43, by reverse transcription – polymerase chain reaction and Western blot analysis. We demonstrated that BNNTs are highly internalized by C2C12 cells, with neither adversely affecting C2C12 myoblast viability nor significantly interfering with myotube formation.Keywords: boron nitride nanotubes, C2C12 cells, cytocompatibility, up-take, differentiation, MyoD, connexin 43

  19. Synthesis and evaluation of thymidine kinase 1-targeting carboranyl pyrimidine nucleoside analogs for boron neutron capture therapy of cancer.

    Science.gov (United States)

    Agarwal, Hitesh K; Khalil, Ahmed; Ishita, Keisuke; Yang, Weilian; Nakkula, Robin J; Wu, Lai-Chu; Ali, Tehane; Tiwari, Rohit; Byun, Youngjoo; Barth, Rolf F; Tjarks, Werner

    2015-07-15

    A library of sixteen 2nd generation amino- and amido-substituted carboranyl pyrimidine nucleoside analogs, designed as substrates and inhibitors of thymidine kinase 1 (TK1) for potential use in boron neutron capture therapy (BNCT) of cancer, was synthesized and evaluated in enzyme kinetic-, enzyme inhibition-, metabolomic-, and biodistribution studies. One of these 2nd generation carboranyl pyrimidine nucleoside analogs (YB18A [3]), having an amino group directly attached to a meta-carborane cage tethered via ethylene spacer to the 3-position of thymidine, was approximately 3-4 times superior as a substrate and inhibitor of hTK1 than N5-2OH (2), a 1st generation carboranyl pyrimidine nucleoside analog. Both 2 and 3 appeared to be 5'-monophosphorylated in TK1(+) RG2 cells, both in vitro and in vivo. Biodistribution studies in rats bearing intracerebral RG2 glioma resulted in selective tumor uptake of 3 with an intratumoral concentration that was approximately 4 times higher than that of 2. The obtained results significantly advance the understanding of the binding interactions between TK1 and carboranyl pyrimidine nucleoside analogs and will profoundly impact future design strategies for these agents. PMID:26087030

  20. The separation and synthesis of lipidic 1,2- and 1,3-diols from natural phenolic lipids for the complexation and recovery of boron.

    Science.gov (United States)

    Tyman, John H P; Mehet, Satinderjit K

    2003-12-01

    A study has been made of the semi-synthesis of 1,3-diols (anacardic alcohols) from natural phenolic lipid resources from Anacardium occidentale and Anacardium giganteum which have given C15 and C11 derivatives, respectively. An isomeric 1,3-diol (isoanacardic alcohol) has been obtained from cardanol separated from technical cashew nut-shell liquid. Homologous 1,3-diols have been synthesised from a range of synthetic 2-alkyl-, 3-alkyl- and 4-alkylphenols and from 6-alkylsalicylic acids. The natural 1,2-diol, urushiol, from Rhus vernicifera has been purified. All these lipidic compounds have been studied for their complexation and the potential recovery of boron as boric acid. PMID:14623453

  1. Banishing brittle bones with boron

    Energy Technology Data Exchange (ETDEWEB)

    A 6-month study indicates that boron, not even considered an essential nutrient for people and animals, may be a key to preventing osteoporosis, say nutritionist Forrest H. Nielsen and anatomist Curtiss D. Hunt at ARS' Grand Forks, North Dakota, Human Nutrition Research Center. They believe the results of the study - the first to look at the nutritional effects of boron in humans - will generate a lot of interest in the element. In the study, 12 postmenopausal women consumed a very low boron diet (0.25 milligrams per day) for 17 weeks then were given a daily 3-mg supplement - representing the boron intake from a well-balanced diet - for 7 more weeks. Within 8 days after the supplement was introduced, the lost 40 percent less calcium, one-third less magnesium, and slightly less phosphorus through the urine. In fact, their calcium and magnesium losses were lower than prestudy levels, when they were on their normal diets. Since boron isn't considered essential for people, there is not recommended intake and no boron supplement on the market. Nielsen says the supplement of sodium borate used in the study was specially prepared based on the amount of boron a person would get from a well-balanced diet containing fruits and vegetables. He says the average boron intake is about 1.5 mg - or half the experimental dose - but average means a lot of people get less and a lot get more. Hunt cautioned that large doses of boron can be toxic, even lethal. The lowest reported lethal dose of boric acid is about 45 grams (1.6 ounces) for an adult and only 2 grams (0.07 ounce) for an infant.

  2. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  3. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  4. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  5. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  6. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  7. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  8. Boron Clusters as a Platform for New Materials: Synthesis of Functionalized o-Carborane (C2 B10 H12 ) Derivatives Incorporating DNA Fragments.

    Science.gov (United States)

    Janczak, Slawomir; Olejniczak, Agnieszka; Balabańska, Sandra; Chmielewski, Marcin K; Lupu, Marius; Viñas, Clara; Lesnikowski, Zbigniew J

    2015-10-19

    A synthetic strategy for functionalization of the three vertices of o-carborane and the attachment of the obtained triped to the solid support was developed. Further functionalization of the triped with short DNA sequences by automated DNA synthesis was achieved. The proposed methodology is a first example of boron cluster chemistry on a solid support opening new perspectives in boron cluster functionalization. PMID:26346614

  9. Direct evidence of metallic bands in a monolayer boron sheet

    Science.gov (United States)

    Feng, Baojie; Zhang, Jin; Liu, Ro-Ya; Iimori, Takushi; Lian, Chao; Li, Hui; Chen, Lan; Wu, Kehui; Meng, Sheng; Komori, Fumio; Matsuda, Iwao

    2016-07-01

    The search for metallic boron allotropes has attracted great attention in the past decades and recent theoretical works predict the existence of metallicity in monolayer boron. Here, we synthesize the β12-sheet monolayer boron on a Ag(111) surface and confirm the presence of metallic boron-derived bands using angle-resolved photoemission spectroscopy. The Fermi surface is composed of one electron pocket at the S ¯ point and a pair of hole pockets near the X ¯ point, which is supported by the first-principles calculations. The metallic boron allotrope in β12 sheet opens the way to novel physics and chemistry in material science.

  10. A Bulk Superconducting Magnetic System for the CLAS12 Target at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Statera, Marco [INFN, Ferrara, Italy; Contalbrigo, Marco [INFN, Ferrara, Italy; Ciullo, Giuseppe [Universite di Ferrara, Ferrara, Italy; Lenisa, Paulo [INFN, Ferrara, Italy; Lowry, Michael M. [JLAB; Sandorfi, Andrew M. [JLAB

    2015-06-01

    A feasibility study of a bulk magnetic system for the target of an experiment to measure the transverse spin effects in semi-inclusive deep inelastic scattering (SIDIS) at 11 GeV with a transversely polarized target using the CLAS12 detector is presented. An experiment has been approved with the highest priority rating to study spin azimuthal asymmetries in SIDIS using 11-GeV polarized electron beams from the upgraded CEBAF facility and the CLAS12 detector equipped with a transversely polarized target. The transverse target in CLAS12 requires the shielding of a volume inside the longitudinal field of the main solenoid. In the shielded region, a transverse target magnet can operate; for the proposed magnetic configuration, the main solenoid maximum magnetic induction is 2 T. A bulk MgB2 cylinder cooled in liquid helium is proposed both to shield the longitudinal field of the main solenoid and to provide a transverse field induction up to 1.2 T for the hydrogen deuteride ice (HD-ice) target. The installation and magnetization procedure will be described. The magnetization procedure has to be compatible with the polarization and installation procedure of the HD-ice target. The design of a test bench to measure the transverse magnetization of a MgB2 bulk cylinder cooled by a coldhead is presented together with the scheduled measurements.

  11. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  12. For boron neutron capture therapy,synthesizing boron-polymer compounds and testing in laboratory conditions

    International Nuclear Information System (INIS)

    The aim of this project is to establish a focus point at Turkish Atomic Energy Authority (TAEA) in the field of Boron Neutron Capture Therapy which is a binary radiotherapy method for brain tumours. Moreover in the scope of the project, a new alternative of 10B-carrier compounds will be synthesized, the neutron source will be determined and the infrastructure to start the clinical trials of BNCT in our country will be established. BNCT is a binary radiotherapy method and the successful of this method is depend on the synthesized boron compounds which have the selective targeting property with tumour cells and neutron optimization. The water-soluble polymer based boron compounds having biochemical and physiological properties will be synthesized and cell culture experiment will be done. In addition, after the neutron source is set up in our country, the infrastructure studies will be started in order to start the clinical trials of BNCT. In this project, there are three different groups as boron compounds, neutron physics and medical group. Neutron physics group is starting the calculations of neutron beam parameters using in BNCT application. But, medical group has no active studies yet. Boron compounds group has been carried out two different experimental studies. In the first experimental study, functional groups have been bound to boron containing polymers to enhance the selectively targeting property and characterized by various analysis methods. Later, cell culture experiment will be done. The first study has been carried out with Hacettepe University. Up to present, completed studies are listed as: -Maleic anhydride oligomer was synthesized and then 2-aminoethyl diphenyl borate (2-AEPB) and monomethoxy poly(ethylene glycol) (PEG) was bound to this oligomer, respectively. Thus, [MAH]n-g1-2-AEPB-g2-PEG was synthesized. -2-AEPB compound were bound to poly(acrylic acid) polymer at different three mole ratio.Then, the selected Poli(Ac)-g1-2-AEPB polymer was

  13. NGF-mediated transcriptional targets of p53 in PC12 neuronal differentiation

    Directory of Open Access Journals (Sweden)

    Labhart Paul

    2007-05-01

    Full Text Available Abstract Background p53 is recognized as a critical regulator of the cell cycle and apoptosis. Mounting evidence also suggests a role for p53 in differentiation of cells including neuronal precursors. We studied the transcriptional role of p53 during nerve growth factor-induced differentiation of the PC12 line into neuron-like cells. We hypothesized that p53 contributed to PC12 differentiation through the regulation of gene targets distinct from its known transcriptional targets for apoptosis or DNA repair. Results Using a genome-wide chromatin immunoprecipitation cloning technique, we identified and validated 14 novel p53-regulated genes following NGF treatment. The data show p53 protein was transcriptionally activated and contributed to NGF-mediated neurite outgrowth during differentiation of PC12 cells. Furthermore, we describe stimulus-specific regulation of a subset of these target genes by p53. The most salient differentiation-relevant target genes included wnt7b involved in dendritic extension and the tfcp2l4/grhl3 grainyhead homolog implicated in ectodermal development. Additional targets included brk, sdk2, sesn3, txnl2, dusp5, pon3, lect1, pkcbpb15 and other genes. Conclusion Within the PC12 neuronal context, putative p53-occupied genomic loci spanned the entire Rattus norvegicus genome upon NGF treatment. We conclude that receptor-mediated p53 transcriptional activity is involved in PC12 differentiation and may suggest a contributory role for p53 in neuronal development.

  14. Folate-Modified Lipoplexes Delivering the Interleukin-12 Gene for Targeting Colon Cancer Immunogene Therapy.

    Science.gov (United States)

    Luo, Min; Liang, Xiao; Luo, Shun-Tao; Wei, Xia-Wei; Liu, Ting; Ren, Jun; Ma, Cui-Cui; Yang, Yu-Han; Wang, Bi-Lan; Liu, Li; Song, Xiang-Rong; He, Zhi-Yao; Wei, Yu-Quan

    2015-11-01

    The incidence and mortality rate of colorectal cancer increase every year, making it a serious threat to human health. Targeted immunogene therapy is a novel method of treating this type of cancer. Colon cancer overexpresses folate receptor α (FRα) and folate-modified liposomes for colon cancer immunogene therapy may suppress tumor growth effectively. In this study, F-PLP/pIL12, an FRα-targeted lipoplex loading plasmid interleukin-12 (pIL12) was prepared and its physicochemical properties were characterized. Then the antitumor effect of F-PLP/pIL12 was studied in an in vivo model of CT-26 colon cancer. F-PLP/pIL12 was associated with about 56.6% tumor growth inhibition compared with the saline control. The production of malignant ascites was significantly less pronounced than in controls, and there were fewer tumor nodules and less overall tumor mass (P macrophages in the tumor microenvironment of tissues stimulated with F-PLP/pIL12, which also activated the natural killer cells. H&E staining of vital organs suggested that F-PLP/pIL12 is safe for use in intraperitoneally administered cancer therapy. It was here concluded that F-PLP/plL12 may be a suitable targeting formulation for colon cancer immunogene therapy. PMID:26554159

  15. Crystallography, semiconductivity, thermoelectricity, and other properties of boron and its compounds, especially B6O

    Science.gov (United States)

    Slack, G. A.; Morgan, K. E.

    2015-09-01

    Electron deficient and non-deficient boron compounds are discussed as potential thermoelectric generator materials. Particular attention is paid to carbon-doped beta-boron, high-carbon boron carbide, and the alpha-boron derivative compound boron suboxide. Stoichiometric B6O shows some promise, and may have a higher ZT than the other two compounds. Carbon saturated beta-boron appears to have a higher ZT than undoped samples. Carbon saturated boron carbide at B12C3 does exist. Its thermoelectric behavior is unknown.

  16. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  17. miR-155 Inhibits Nucleus Pulposus Cells’ Degeneration through Targeting ERK 1/2

    Directory of Open Access Journals (Sweden)

    Dongping Ye

    2016-01-01

    Full Text Available We first investigated the difference in microRNA expression between normal NP cells and degenerative NP cells using gene chip. We have found that the expression of ERK1/2 was decreased with overexpression of miR-155 in normal nucleus pulposus cell. Expression of ERK1/2 was increased with inhibition of miR-155. Overexpression or inhibition of miR-155 had no effects on the expression level of mRNA ERK1/2 in nucleus pulposus cell, which showed that miR-155 affected the expression of pERK1/2 after transcription of ERK1/2 mRNA indicating that ERK1/2 was a new target protein regulated by miR-155. In the degeneration of intervertebral disc, inhibited miR-155 decreased the expressions of extracellular main matrix collagen II and glycosaminoglycan and increased expression of ERK1/2. Taken together, our data suggested that miR-155 was the identified miRNA which regulated NP cells degenerated through directly targeting ERK1/2.

  18. miR-155 Inhibits Nucleus Pulposus Cells' Degeneration through Targeting ERK 1/2

    Science.gov (United States)

    Dai, Libing; Yao, Yicun; Qin, Shengnan; Xie, Han; Wang, Wen

    2016-01-01

    We first investigated the difference in microRNA expression between normal NP cells and degenerative NP cells using gene chip. We have found that the expression of ERK1/2 was decreased with overexpression of miR-155 in normal nucleus pulposus cell. Expression of ERK1/2 was increased with inhibition of miR-155. Overexpression or inhibition of miR-155 had no effects on the expression level of mRNA ERK1/2 in nucleus pulposus cell, which showed that miR-155 affected the expression of pERK1/2 after transcription of ERK1/2 mRNA indicating that ERK1/2 was a new target protein regulated by miR-155. In the degeneration of intervertebral disc, inhibited miR-155 decreased the expressions of extracellular main matrix collagen II and glycosaminoglycan and increased expression of ERK1/2. Taken together, our data suggested that miR-155 was the identified miRNA which regulated NP cells degenerated through directly targeting ERK1/2. PMID:27635110

  19. MiR-103 regulates hepatocellular carcinoma growth by targeting AKAP12.

    Science.gov (United States)

    Xia, Wei; Ni, Jing; Zhuang, Juhua; Qian, Leixing; Wang, Peng; Wang, Jiening

    2016-02-01

    AKAP12/Gravin (A kinase anchor protein 12) belongs to the group of A-kinase scaffold proteins and functions as a tumor suppressor in some human primary cancers. While AKAP12 is found consistently downregulated in hepatocellular carcinoma (HCC), its involvement in hepatocarcinogenesis has not been fully elucidated. We identified targeting sites for miR-103 in the 3'-untranslated region (3'-UTR) of AKAP12 by bioinformatic analysis and confirm their function by a luciferase reporter gene assay. We reveal miR-103 expression to be inversely correlated with AKAP12 in HCC tissue samples and show that overexpressed miR-103 promotes cell proliferation and inhibits apoptosis by downregulating AKAP12 expression in HCC cell lines. On the other hand, repression of miR-103 suppresses proliferation and promotes apoptosis in HCC cells by increasing AKAP12. In xenografted HCC tumors, overexpression of AKAP12 suppresses tumor growth whereas overexpression of miR-103 enhances tumor growth while repressing AKAP12. Since the activation of telomerase is crucial for cells to gain immortality and proliferation ability, we investigated whether AKAP12 expression affected telomerase activity in HCC cells. Both AKAP12 overexpression and protein kinase Cα (PKCα) inhibition prevent nuclear translocation and phosphorylation of TERT and reduce telomerase activity in HCC cells. These findings indicate that miR-103 potentially acts as an oncogene in HCC by inhibiting AKAP12 expression and raise the possibility that miR-103 increases telomerase activity by increasing PKCα activity. Thus, miR-103 may represent a new potential diagnostic and therapeutic target for HCC treatment. PMID:26646106

  20. Neutrons produced by 75 MeV/u 12C-ion on thick targets

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Fluence rates and angular distributions of the neutronemitted by 75 MeV/u 12C-ion bombardment on thick Be and Au targets havebeen measured by means of the threshold detector activation method.Based on that, the neutron yields, emission rates in the forward direction and neutron dose equivalent rate distributions werededuced.

  1. Neutrons produced by 75MeV/u 12C—ion on thick targets

    Institute of Scientific and Technical Information of China (English)

    LiGisheng; ZHANGTianmei; 等

    1999-01-01

    Fluence rates and angular distributions of the neutron emitted by 75MeV/u 12C-ion bombardment on thick Be and Au targets have been measured by means of the threshold detector activation method.Based on that,the neutron yields,emission rates in the forward direction and neutron dose equivalent rate distributions were deduced.

  2. Targeting of human interleukin-12B by small hairpin RNAs in xenografted psoriatic skin

    Directory of Open Access Journals (Sweden)

    Jakobsen Maria

    2011-02-01

    Full Text Available Abstract Background Psoriasis is a chronic inflammatory skin disorder that shows as erythematous and scaly lesions. The pathogenesis of psoriasis is driven by a dysregulation of the immune system which leads to an altered cytokine production. Proinflammatory cytokines that are up-regulated in psoriasis include tumor necrosis factor alpha (TNFα, interleukin-12 (IL-12, and IL-23 for which monoclonal antibodies have already been approved for clinical use. We have previously documented the therapeutic applicability of targeting TNFα mRNA for RNA interference-mediated down-regulation by anti-TNFα small hairpin RNAs (shRNAs delivered by lentiviral vectors to xenografted psoriatic skin. The present report aims at targeting mRNA encoding the shared p40 subunit (IL-12B of IL-12 and IL-23 by cellular transduction with lentiviral vectors encoding anti-IL12B shRNAs. Methods Effective anti-IL12B shRNAs are identified among a panel of shRNAs by potency measurements in cultured cells. The efficiency and persistency of lentiviral gene delivery to xenografted human skin are investigated by bioluminescence analysis of skin treated with lentiviral vectors encoding the luciferase gene. shRNA-expressing lentiviral vectors are intradermally injected in xenografted psoriatic skin and the effects of the treatment evaluated by clinical psoriasis scoring, by measurements of epidermal thickness, and IL-12B mRNA levels. Results Potent and persistent transgene expression following a single intradermal injection of lentiviral vectors in xenografted human skin is reported. Stable IL-12B mRNA knockdown and reduced epidermal thickness are achieved three weeks after treatment of xenografted psoriatic skin with lentivirus-encoded anti-IL12B shRNAs. These findings mimick the results obtained with anti-TNFα shRNAs but, in contrast to anti-TNFα treatment, anti-IL12B shRNAs do not ameliorate the psoriatic phenotype as evaluated by semi-quantitative clinical scoring and by

  3. Biodistribution of Boron compounds in an experimental model of liver metastases for Boron Neutron Capture (BNCT) Studies

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10B carriers in tumors followed by irradiation with thermal or epithermal neutrons. The high linear energy transfer alpha particles and recoiling 7Li nuclei emitted during the capture of a thermal neutron by a 10B nucleus have a short range and a high biological effectiveness. Thus, BNCT would potentially target neoplastic tissue selectively. In previous studies we demonstrated the therapeutic efficacy of different BNCT protocols in an experimental model of oral cancer. More recently we performed experimental studies in normal rat liver that evidenced the feasibility of treating liver metastases employing a novel BNCT protocol proposed by JEC based on ex-situ treatment and partial liver auto-transplant. The aim of the present study was to perform biodistribution studies with different boron compounds and different administration protocols to determine the protocols that would be therapeutically useful in 'in vivo' BNCT studies at the RA-3 Nuclear Reactor in an experimental model of liver metastases in rats. Materials and Methods. A total of 70 BDIX rats (Charles River Lab., MA, USA) were inoculated in the liver with syngeneic colon cancer cells DH/DK12/TRb (ECACC, UK) to induce the development of subcapsular metastatic nodules. 15 days post-inoculation the animals were used for biodistribution studies. A total of 11 protocols were evaluated employing the boron compounds boronophenylalanine (BPA) and GB-10 (Na210B1-0H10), alone or combined employing different doses and administration routes. Tumor, normal tissue and blood samples were processed for boron measurement by ICP-OES. Results. Several protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue, i.e. BPA 15.5 mg 10B/kg iv + GB-10 50 mg 10B/kg iv; BPA 46.5 mg 10B/kg ip; BPA 46.5 mg 10B/kg ip + iv; BPA 46

  4. Plasma deposition of boron films with high growth rate and efficiency using carborane

    International Nuclear Information System (INIS)

    The injection of carborane (C2B10H12) on the PISCES-B linear plasma device has been used to produce boron containing films on various target species. Film growth rates achieved are extremely high (up to 30 nm/s) compared to those typically found for glow discharges (∼0.01 nm/s). For low-Z target materials (C and Al) the film production is highly efficient, with the boron film growth rate comparable to the incident ion flux and the injection rate of boron atoms. The boron to carbon ratio is 3.0-3.6 for these films. Similarly high growth rates (∼10 nm/s) are obtained with high-Z target (W), but with lower deposition efficiency and higher B/C film ratio. The high film growth rate/efficiency are apparently linked to the high degree of carborane ionization and dissociation caused by the ∼40 eV PISCES-B plasma, compared with T<1 eV plasmas of glow discharges. This technique opens the possibility of continuously producing protective B films in thermonuclear devices where net erosion rates approach 10 nm/s

  5. Powerful 12-channel laser installation ''DELFIN'' for spherical heating of thermonuclear targets

    International Nuclear Information System (INIS)

    A 12-beam powerful laser installation ''DELFIN'' for high-temperature spherical heating of thermonuclear targets is described. The installation consists of a Nd-laser (ultimate energy about 10 kJ, pulse duration 1 ns and 0.1 ns, and divergence of 5 x 10-4 rad), target chamber for laser plasma interaction research, and a set of diagnostic systems to study laser and plasma parameters. The optical scheme and constructive peculiarities of the laser system are under consideration. Analysis of the focusing scheme is performed and a description of the focusing system of ''DELFIN,'' which makes it possible to obtain a high degree symmetry of spherical illumination of the target, is given. Expected flux density at the target is 1015 W/cm2, while the laser power is about 10 TW. The theoretical analysis of ultimate possibilities of concentration of the multi-beam laser radiation in the spherical target has been performed, when the really attainable radiation parameters have been taken into account. For a given target structure the ultimate energy, which can be focused in the target, seems to occur. The theoretical estimation has resulted in a successive-parallel scheme of the powerful laser, which is optimal. This scheme has been used in ''DELFIN.''

  6. Apparatus for the production of boron nitride nanotubes

    Science.gov (United States)

    Smith, Michael W; Jordan, Kevin

    2014-06-17

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  7. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kettenbach, Kathrin; Schieferstein, Hanno; Grunewald, Catrin; Hampel, Gabriele; Schuetz, Christian L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Iffland, Dorothee; Bings, Nicolas H. [Mainz Univ. (Germany). Inst. of Inorganic Chemistry and Analytical Chemistry; Reffert, Laura M. [Hannover Medical School (Germany). Radiopharmaceutical Chemistry; Ross, Tobias L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Hannover Medical School (Germany). Radiopharmaceutical Chemistry

    2015-07-01

    Boron neutron capture therapy (BNCT) employs {sup 10}B-pharmaceuticals administered for the treatment of malignancies, and subsequently irradiated with thermal neutrons. So far, clinical established pharmaceuticals like boron phenylalanine (BPA) or sodium boron mercaptate (BSH) use imperfect (BPA) or passive (BSH) targeting for accumulation at target sites. Due to the need of a selective transportation of boron drugs into cancer cells and sparing healthy tissues, we combined the BNCT approach with the specific and effective folate receptor (FR) targeting concept. The FR is overexpressed on many human carcinomas and provides a selective and specific target for molecular imaging as well as for tumor therapy. We synthesized and characterized a carborane-folate as well as a BSH-folate to study their in vitro characteristics and their potential as new boron-carriers for BNCT. Uptake studies were carried out using human KB cells showing a significant increase of the boron content in cells and demonstrating the successful combination of active FR-targeting and BNCT.

  8. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  9. Transtarget residue products of 47MeV/u 12C ions on 133Cs targets

    Institute of Scientific and Technical Information of China (English)

    LiZong-Wei; YangWei-Fan; 等

    1997-01-01

    The yield of transtarget produced in the reaction of 47MeV/u 12C bombardment on cesium compound targets are measured by means of nuclear chemical method and the offline γ spectrum technique.The measurement results show that reaction cross-sections of transtarget products are considerable.The isotope distribution peak position(mass number) of barium element is 129.7±0.2 and the distribution width parameter is 2.76±0.25,At the same time,the yields of products with up to five charge numbers larger than target nucleus have been obtained.

  10. New derivatives of vitamin B12 show preferential targeting of tumors.

    Science.gov (United States)

    Waibel, Robert; Treichler, Hansjörg; Schaefer, Niklaus G; van Staveren, Dave R; Mundwiler, Stefan; Kunze, Susanne; Küenzi, Martin; Alberto, Roger; Nüesch, Jakob; Knuth, Alexander; Moch, Holger; Schibli, Roger; Schubiger, Pius August

    2008-04-15

    Rapidly growing cells show an increased demand for nutrients and vitamins. The objective of our work is to exploit the supply route of vitamin B12 to deliver new derivatives of this vital vitamin to hyperproliferative cells. To date, radiolabeled ((57)Co and (111)In) vitamin B12 derivatives showed labeling of tumor tissue but also undesired high accumulation of radioactivity in normal tissue. By abolishing the interaction of a tailored vitamin B12 derivative to its transport protein transcobalamin II and therefore interrupting transcobalamin II receptor and megalin mediated uptake in normal tissue, preferential accumulation of a radiolabeled vitamin in cancer tissue could be accomplished. We identified transcobalamin I on tumors as a possible new receptor for this preferential accumulation of vitamin-mediated targeting. The low systemic distribution of radioactivity and the high tumor to blood ratio opens the possibility of a more successful clinical application of vitamin B12 for imaging or therapy.

  11. Spectromicroscopy in Boron Neutron Capture Therapy Research

    Science.gov (United States)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  12. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.; Redondo, J.; Baudat, P-A. [Institut de Physique Appliquee, Ecole Polytechnique Federale, Lausanne (Switzerland)] [and others

    1998-10-07

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of {sup 10}B in tumour cells after injection of a boron compound (in our case B{sub 12}H{sub 11}SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  13. Isotopic effects on the phonon modes in boron carbide.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-01

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  14. Manufacture of Boron-free Magnesia with High Purity from Residual Brine

    Institute of Scientific and Technical Information of China (English)

    Fa Qiang LI; Bao Ping LING; Pei Hua MA

    2004-01-01

    A novel method for removing boron with ion exchange resin from residual brines to manufacture boron-free magnesia is described. The concentration of boron in the target magnesia manufactured thereby from Qinghai salt lakes is lower than 5μg/g, and the typical D50 size of product is 10.625μm.

  15. Termite resistance of MDF panels treated with various boron compounds.

    Science.gov (United States)

    Usta, Mustafa; Ustaomer, Derya; Kartal, Saip Nami; Ondaral, Sedat

    2009-06-01

    In this study, the effects of various boron compounds on the termite resistance of MDF panels were evaluated. Either borax (BX), boric acid (BA), zinc borate (ZB), or sodium perborate tetrahydrate (SPT) were added to urea-formaldehyde (UF) resin at target contents of 1%, 1.5%, 2% and 2.5% based on dry fiber weight. The panels were then manufactured using 12% urea-formaldehyde resin and 1% NH(4)Cl. MDF samples from the panels were tested against the subterranean termites, Coptotermes formosanus Shiraki. Laboratory termite resistance tests showed that all samples containing boron compounds had greater resistance against termite attack compared to untreated MDF samples. At the second and third weeks of exposure, nearly 100% termite mortalities were recorded in all boron compound treated samples. The highest termite mortalities were determined in the samples with either BA or BX. Also, it was found that SPT showed notable performance on the termite mortality. As chemical loadings increased, termite mortalities increased, and at the same time the weight losses of the samples decreased. PMID:19582229

  16. Termite Resistance of MDF Panels Treated with Various Boron Compounds

    Directory of Open Access Journals (Sweden)

    Sedat Ondaral

    2009-06-01

    Full Text Available In this study, the effects of various boron compounds on the termite resistance of MDF panels were evaluated. Either borax (BX, boric acid (BA, zinc borate (ZB, or sodium perborate tetrahydrate (SPT were added to urea-formaldehyde (UF resin at target contents of 1%, 1.5%, 2% and 2.5% based on dry fiber weight. The panels were then manufactured using 12% urea-formaldehyde resin and 1% NH4Cl. MDF samples from the panels were tested against the subterranean termites, Coptotermes formosanus Shiraki. Laboratory termite resistance tests showed that all samples containing boron compounds had greater resistance against termite attack compared to untreated MDF samples. At the second and third weeks of exposure, nearly 100% termite mortalities were recorded in all boron compound treated samples. The highest termite mortalities were determined in the samples with either BA or BX. Also, it was found that SPT showed notable performance on the termite mortality. As chemical loadings increased, termite mortalities increased, and at the same time the weight losses of the samples decreased.

  17. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  18. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  19. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. PMID:24387907

  20. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors.

  1. Boron removal from aqueous solution by direct contact membrane distillation

    International Nuclear Information System (INIS)

    The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 μg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution.

  2. Inheritance of Boron Efficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; WANG Yun-Hua; NIAN Fu-Zhao; LU Jian-Wei; MENG Jin-Ling; XU Fang-Sen

    2009-01-01

    Field experiments were conducted to study the inheritance of boron efficiency in oilseed rape (Brassica napus L.) by evaluating the boron (B) efficiency coefficient (BEC,the ratio of the seed yield at below the critical boron level to that at the boron-sufficient level) with 657 F2:3 fines of a population derived from a cross between a B-efficient cultivar,Qingyou 10,and a B-inefficient cultivar,Bakow.Qingyou i0 had high BEC as well as high seed yield at low available soil B.On the contrary,Bakow produced low seed yield at low B status.Boron deficiency decreased the seed yield of the F2:3 lines to different extents and the distribution of BEC of the population showed a bimodal pattern.When the 657 F2:3 lines were grouped into B-efficient lines and B-inefficient lines according to their BEC,the ratio of B-efficient lines to B-inefficient lines fitted the expected ratio (3:1),indicating that one major gene controlled the B-efficiency trait.127 F2:3 lines selected from the population at random,with distribution of BEC similar to that of the overall population,were used to identify the target region for fine mapping of the boron efficiency gene.

  3. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  4. {sup 12}C+p resonant elastic scattering in the Maya active target

    Energy Technology Data Exchange (ETDEWEB)

    Sambi, S.; Raabe, R.; Flavigny, F.; Khodery, M. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Physics Department, Leuven (Belgium); Borge, M.J.G. [CERN, PH Department, Geneva (Switzerland); Caamano, M.; Fernandez-Dominguez, B. [Universidade de Santiago de Compostela, Department of Particle Physics, Santiago de Compostela (Spain); Damoy, S.; Grinyer, G.F.; Pancin, J.; Perez-Loureiro, D.; Roger, T. [CEA/DSM - CNRS/IN2P3, Grand Accelerateur National d' Ion Lourds (GANIL), Caen (France); Fynbo, H. [Aarhus University, Department of Physics and Astronomy, Aarhus (Denmark); Gibelin, J. [Universite de Caen, CNRS/IN2P3, LPC Caen, ENSICAEN, Caen Cedex (France); Heinz, A.; Jonson, B.; Nilsson, T.; Thies, R. [Chalmers University of Technology, Department of Physics, Goteborg (Sweden); Orlandi, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Physics Department, Leuven (Belgium); Instituto de Estructura de la Materia CSIC, Madrid (Spain); JAEA, ASRC, Tokai-mura (Japan); Randisi, G. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Physics Department, Leuven (Belgium); CEA/DSM - CNRS/IN2P3, Grand Accelerateur National d' Ion Lourds (GANIL), Caen (France); Ribeiro, G.; Tengblad, O. [Instituto de Estructura de la Materia CSIC, Madrid (Spain); Suzuki, D. [Universite Paris-Sud, Institut de Physique Nucleaire, CNRS/IN2P3, Orsay (France); Datta, U. [Saha Institute of Nuclear Physics, Kolkata (India)

    2015-03-01

    In a proof-of-principle measurement, the Maya active target detector was employed for a {sup 12}C(p, p) resonant elastic scattering experiment in inverse kinematics. The excitation energy region from 0 to 3MeV above the proton breakup threshold in {sup 13}N was investigated in a single measurement. By using the capability of the detector to localize the reaction vertex and record the tracks of the recoiling protons, data covering a large solid angle could be utilized, at the same time keeping an energy resolution comparable with that of direct-kinematics measurements. The excitation spectrum in {sup 13}N was fitted using the R-matrix formalism. The level parameters extracted are in good agreement with previous studies. The active target proved its potential for the study of resonant elastic scattering in inverse kinematics with radioactive beams, when detection efficiency is of primary importance. (orig.)

  5. 12C+p resonant elastic scattering in the Maya active target

    Science.gov (United States)

    Sambi, S.; Raabe, R.; Borge, M. J. G.; Caamano, M.; Damoy, S.; Fernández-Domínguez, B.; Flavigny, F.; Fynbo, H.; Gibelin, J.; Grinyer, G. F.; Heinz, A.; Jonson, B.; Khodery, M.; Nilsson, T.; Orlandi, R.; Pancin, J.; Perez-Loureiro, D.; Randisi, G.; Ribeiro, G.; Roger, T.; Suzuki, D.; Tengblad, O.; Thies, R.; Datta, U.

    2015-03-01

    In a proof-of-principle measurement, the Maya active target detector was employed for a 12C( p, p) resonant elastic scattering experiment in inverse kinematics. The excitation energy region from 0 to 3MeV above the proton breakup threshold in 13N was investigated in a single measurement. By using the capability of the detector to localize the reaction vertex and record the tracks of the recoiling protons, data covering a large solid angle could be utilized, at the same time keeping an energy resolution comparable with that of direct-kinematics measurements. The excitation spectrum in 13N was fitted using the R-matrix formalism. The level parameters extracted are in good agreement with previous studies. The active target proved its potential for the study of resonant elastic scattering in inverse kinematics with radioactive beams, when detection efficiency is of primary importance.

  6. Probing the direct step of relativistic heavy ion fragmentation: (12C, 11B+p) at 2.1 GeV/nucleon with C and CH2 targets

    International Nuclear Information System (INIS)

    Relativistic heavy ion collisions may be classified as central (and near central), peripheral, and grazing with each collision type producing different proton and other charged projectile fragment scattering mechanisms and characteristics. This report focuses on peripheral and grazing collisions in the fragmentation of Carbon-12 into Boron-11 and a proton, testing models of the kinetics involved in this reaction. The data were measured at the Heavy Ion Superconducting Spectrometer (HISS) at Lawrence Berkeley Laboratory and include excitation energy for the p/Boron-11 pair, and rapidity versus transverse momentum for protons and Boron-11. 58 refs., 35 figs., 8 tabs

  7. Near- and sub-barrier fusion of 20O incident ions with 12C target nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, M. J. [Indiana University; Gosser, Z. Q. [Indiana University; Brown, K [Indiana University; De Souza, R. T. [Indiana University; Chbihi, A. [GANIL, CEA, Caen, France & CNRS, IN2P3, Caen, France; Jacquot, B. [GANIL, CEA, Caen, France & CNRS, IN2P3, Caen, France; Famiano, M. [Western Michigan University; Liang, J Felix [ORNL; Shapira, Dan [ORNL; Mercier, D. [Centre de Calcul du CNRS, France

    2012-01-01

    Evaporation residues resulting from fusion of {sup 20}O incident ions with {sup 12}C target nuclei have been measured for the first time. The cross-section associated with compound nuclei that de-excite via emission of charged particles is extracted. The resulting excitation function is compared with the predictions of a standard fusion model followed by statistical decay code. A significant underprediction of the measured cross-section by the fusion-evaporation model raises the question of whether the fusion cross-section is larger for the neutron-rich projectile or the statistical de-excitation is incorrectly predicted.

  8. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na210B12H11SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author)

  9. Levels in 13N examined by 12C+p elastic resonance scattering with thick target

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The elastic resonance scattering of 12C+p has been studied in inverse kinematics via a novel thick target method at GIRAFFE facility of HI-13 tandem accelerator laboratory,Beijing.The recoil protons were measured by a △E-E counter telescope based on a large area double-sided silicon strip detector at laboratory angles around θ0=15°.The excitation function for 12C(p,p)elastic scattering has been obtained over a wide energy range of Ec.m.=0.31-3.45 MeV,which was explained quite well by the R-matrix calculation with known resonance parameters of the first three levels in 13N nucleus.Thus it is demonstrated that the present setup can be directly applied to the study of elastic resonance scattering with secondary radioactive beams.

  10. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis

    Directory of Open Access Journals (Sweden)

    Cojoc M

    2013-09-01

    Full Text Available Monica Cojoc,1 Claudia Peitzsch,1 Franziska Trautmann,1 Leo Polishchuk,2 Gennady D Telegeev,2 Anna Dubrovska11OncoRay National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany; 2Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, UkraineAbstract: The chemokine CXCL12 (SDF-1 and its cell surface receptor CXCR4 were first identified as regulators of lymphocyte trafficking to the bone marrow. Soon after, the CXCL12/CXCR4 axis was proposed to regulate the trafficking of breast cancer cells to sites of metastasis. More recently, it was established that CXCR4 plays a central role in cancer cell proliferation, invasion, and dissemination in the majority of malignant diseases. The stem cell concept of cancer has revolutionized the understanding of tumorigenesis and cancer treatment. A growing body of evidence indicates that a subset of cancer cells, referred to as cancer stem cells (CSCs, plays a critical role in tumor initiation, metastatic colonization, and resistance to therapy. Although the signals generated by the metastatic niche that regulate CSCs are not yet fully understood, accumulating evidence suggests a key role of the CXCL12/CXCR4 axis. In this review we focus on physiological functions of the CXCL12/CXCR4 signaling pathway and its role in cancer and CSCs, and we discuss the potential for targeting this pathway in cancer management.Keywords: epithelial-to-mesenchymal transition, cancer stem cells, metastasis

  11. Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan

    Energy Technology Data Exchange (ETDEWEB)

    Ohshita, Stephanie; Price, Lynn

    2011-03-21

    Experience with China's 20% energy intensity improvement target during the 11th Five-Year Plan (FYP) (2006-2010) has shown the challenges of rapidly setting targets and implementing measures to meet them. For the 12th FYP (2011-2015), there is an urgent need for a more scientific methodology to allocate targets among the provinces and to track physical and economic indicators of energy and carbon saving progress. This report provides a sectoral methodology for allocating a national energy intensity target - expressed as percent change in energy per unit gross domestic product (GDP) - among China's provinces in the 12th FYP. Drawing on international experience - especially the European Union (EU) Triptych approach for allocating Kyoto carbon targets among EU member states - the methodology here makes important modifications to the EU approach to address an energy intensity rather than a CO{sub 2} emissions target, and for the wider variation in provincial energy and economic structure in China. The methodology combines top-down national target projections and bottom-up provincial and sectoral projections of energy and GDP to determine target allocation of energy intensity targets. Total primary energy consumption is separated into three end-use sectors - industrial, residential, and other energy. Sectoral indicators are used to differentiate the potential for energy saving among the provinces. This sectoral methodology is utilized to allocate provincial-level targets for a national target of 20% energy intensity improvement during the 12th FYP; the official target is determined by the National Development and Reform Commission. Energy and GDP projections used in the allocations were compared with other models, and several allocation scenarios were run to test sensitivity. The resulting allocations for the 12th FYP offer insight on past performance and offer somewhat different distributions of provincial targets compared to the 11th FYP. Recommendations for

  12. Study of Target Fragmentation in the Interaction of 86 MeV/A $^{12}$Carbon with Tantalum, Bismuth and Uranium

    CERN Multimedia

    2002-01-01

    Using radiochemical techniques we will ; a)~~measure the target fragment mass and charge distributions from the interaction of 86~MeV/A |1|2C with Ta, Bi and U; ; b)~~measure the target fragment forward momentum and average kinetic energy using the thick target-thick catcher technique for the above reactions; and ; c)~~measure the target fragment angular and differential energy distributions using thin target-thin catcher techniques for the reactions with Ta and U. \\\\ \\\\ These measurements should allow us to better characterize the transition between low energy and realistic heavy ion reaction mechanisms.

  13. Predicted phase diagram of boron-carbon-nitrogen

    Science.gov (United States)

    Zhang, Hantao; Yao, Sanxi; Widom, Michael

    2016-04-01

    Noting the structural relationships between phases of carbon and boron carbide with phases of boron nitride and boron subnitride, we investigate their mutual solubilities using a combination of first-principles total energies supplemented with statistical mechanics to address finite temperatures. Thus we predict the solid-state phase diagram of boron-carbon-nitrogen (B-C-N). Owing to the large energy costs of substitution, we find that the mutual solubilities of the ultrahard materials diamond and cubic boron nitride are negligible, and the same for the quasi-two-dimensional materials graphite and hexagonal boron nitride. In contrast, we find a continuous range of solubility connecting boron carbide to boron subnitride at elevated temperatures. An electron-precise ternary compound B13CN consisting of B12 icosahedra with NBC chains is found to be stable at all temperatures up to melting. It exhibits an order-disorder transition in the orientation of NBC chains at approximately T =500 K. We also propose that the recently discovered binary B13N2 actually has composition B12.67N2 .

  14. Fragmentation of 400 MeV/u 12C on a thin graphite target

    International Nuclear Information System (INIS)

    Detailed understanding of high energetic heavy ions interacting with matter is of great interest in basic research and applied physics especially in radiotherapy and space radioprotection. Radiotherapy with carbon ions showed great success especially in the treatment of deep seated tumors due to the favorable depth-dose profile and increased biological effectiveness compared to photons or protons. Due to nuclear interactions between the primary beam and the patient's body, usually only 50% of the carbon ions will reach the target location. Thus, a detailed knowledge of the changes in the radiation field is required for delivering a successful treatment. The radiation environment in space is composed of high energy charged particles and can lead to serious health risks for astronauts. The assessment and mitigation of radioinduced health complications cannot be accomplished without a good understanding of the interaction of the mixed radiation field with e.g. the hull of the spaceship or lunar soil. In this work the fragmentation of 400 MeV/u 12C on a thin graphite target was investigated. The resulting angular yield distributions and differential energy spectra of charged and uncharged particles are presented and compared to two different Monte Carlo codes (PHITS and GEANT4).

  15. Fragmentation of 400 MeV/u {sup 12}C on a thin graphite target

    Energy Technology Data Exchange (ETDEWEB)

    Schuy, Christoph

    2015-07-01

    Detailed understanding of high energetic heavy ions interacting with matter is of great interest in basic research and applied physics especially in radiotherapy and space radioprotection. Radiotherapy with carbon ions showed great success especially in the treatment of deep seated tumors due to the favorable depth-dose profile and increased biological effectiveness compared to photons or protons. Due to nuclear interactions between the primary beam and the patient's body, usually only 50% of the carbon ions will reach the target location. Thus, a detailed knowledge of the changes in the radiation field is required for delivering a successful treatment. The radiation environment in space is composed of high energy charged particles and can lead to serious health risks for astronauts. The assessment and mitigation of radioinduced health complications cannot be accomplished without a good understanding of the interaction of the mixed radiation field with e.g. the hull of the spaceship or lunar soil. In this work the fragmentation of 400 MeV/u {sup 12}C on a thin graphite target was investigated. The resulting angular yield distributions and differential energy spectra of charged and uncharged particles are presented and compared to two different Monte Carlo codes (PHITS and GEANT4).

  16. Examination of 12-lipoxygenase (12-LOX) as a therapeutic target in non-small cell lung cancer (NSCLC): Mechanisms controlling survival and induction of apoptosis following selective inhibition

    LENUS (Irish Health Repository)

    Cathcart, Mary Clare

    2011-06-01

    Background: Platelet-type 12-LOX is an arachidonic acid metabolising enzyme resulting in the formation of 12(S)-HETE, which stimulates tumour cell adhesion, invasion and metastasis. This study aimed to examine the expression profile and role of this enzyme in NSCLC, and determine if it is a potential target for intervention. Methods: A panel of retrospective resected lung tumours was stained for 12-LOX expression by IHC. Levels of the 12-LOX metabolite, 12(S)-HETE, were examined in 50 NSCLC serum samples, and correlated with serum VEGF. A panel of NSCLC cell lines were treated with baicalein (10 uM), a selective inhibitor of 12-LOX, or 12(S)-HETE (100 ng\\/ml) and cell survival\\/proliferation examined by BrdU. Apoptosis following 12-LOX inhibition was examined by HCS and validated by FACS and DNA laddering. The effect of 12-LOX inhibition on NSCLC tumour growth and survival was examined in-vivo using an athymic nude mouse model. Gene alterations following 12-LOX inhibition in NSCLC cell lines were assessed by qPCR arrays and validated by RT-PCR. Transient transfection methods were used to examine the effects of 12-LOX overexpression in NSCLC cells. Results: 12-LOX expression was observed to a varying degree in human lung cancers of varying histological subtypes. 12(S)-HETE levels were correlated (p<0.05) with those of VEGF. Baicalein inhibited proliferation\\/survival in all cell lines, while 12(S)-HETE increased proliferation. 12-LOX inhibition increased apoptosis, indicated by a reduction in f-actin content and mitochondrial mass potential. Treatment with baicalein significantly reduced the growth of NSCLC tumours and increased overall survival in athymic nude mice. qPCR array data implicated a number of apoptosis\\/angiogenesis genes regulating these effects, including bcl-2, VEGF, integrin A2 and A4. 12-LOX overexpression resulted in an increase in VEGF secretion, confirming qPCR observations. Conclusions: 12-LOX is a survival factor\\/potential target in

  17. Tryptanthrin inhibits angiogenesis by targeting the VEGFR2-mediated ERK1/2 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Xuemei Liao

    Full Text Available Angiogenesis is a key step for tumour growth and metastasis, and anti-angiogenesis has been proposed as an important strategy for cancer therapy. Tryptanthrin is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants and has been shown to possess anti-tumour activities on various cancer cell types. This study aims to investigate the in vitro and in vivo anti-angiogenic activities of tryptanthrin and to unravel its underlying molecular action mechanisms. Our results show that tryptanthrin inhibited the in vitro proliferation, migration, and tube formation of the human microvascular endothelial cells (HMEC-1 in a concentration-dependent manner and significantly suppressed angiogenesis in Matrigel plugs in mice. Mechanistic studies indicated that tryptanthrin reduced the expression of several pro-angiogenic factors (Ang-1, PDGFB and MMP2. Tryptanthrin was also found to suppress the VEGFR2-mediated ERK1/2 signalling pathway in HMEC-1 cells and molecular docking simulation indicated that tryptanthrin could bound to the ATP-binding site of VEGFR2. Collectively, the present study demonstrated that tryptanthrin exhibited both in vitro and in vivo anti-angiogenic activities by targeting the VEGFR2-mediated ERK1/2 signalling pathway and might have therapeutic potential for the treatment of angiogenesis-related diseases.

  18. Electronic structure of the boron fullerene B14 and its silicon derivatives B13Si(+), B13Si(-) and B12Si2: a rationalization using a cylinder model.

    Science.gov (United States)

    Van Duong, Long; Nguyen, Minh Tho

    2016-06-29

    Geometric and electronic structures of the boron cluster B14 and its silicon derivatives B13Si(+), B13Si(-), and B12Si2 were determined using DFT calculations (TPSSh/6-311+G(d)). The B12Si2 fullerene, which is formed by substituting two B atoms at two apex positions of the B14 fullerene by two Si atoms, was also found as the global minimum structure. We demonstrated that the electronic structure and orbital configuration of these small fullerenes can be predicted by the wavefunctions of a particle on a cylinder. The early appearance of high angular node MOs in B14 and B12Si2 can be understood by this simple model. Replacement of one B atom at a top position of B14 by one Si atom, followed by the addition or removal of one electron does not lead to a global minimum fullerene structure for the anion B13Si(-) and cation B13Si(+). The early appearance of the 5σ1 orbital in B13Si(+) causes a lower stability for the fullerene-type structure. PMID:27306917

  19. Boron in sillimanite.

    Science.gov (United States)

    Grew, E S; Hinthorne, J R

    1983-08-01

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite. PMID:17830955

  20. Study of Reaction Mechanism in the Interaction 86 MeV/A $^{12}$C with Heavy Targets

    CERN Multimedia

    2002-01-01

    Using the thin target-thin catcher techniques and the off-line analysis of the activities induced in the irradiated foils by means of singles and coincidences spectra recorded with Ge(Li) @g-rays and Si X-rays detectors, we will measure: 1) The target fragment mass and charge distribution from the interact 2) 86 MeV/A |1|2C with silver, tin and gold. 3) The target fragment average kinetic energy. 4) The target fragment angular and differential kinetic energy distributions. These measurements should allow us to better understand the heavy ion reaction mechanisms at intermediate energy.

  1. First gaseous boronization during pulsed discharge cleaning

    Science.gov (United States)

    Ko, J.; Den Hartog, D. J.; Goetz, J. A.; Weix, P. J.; Limbach, S. T.

    2013-01-01

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C2B10H12) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  2. First gaseous boronization during pulsed discharge cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [Department of Physics, University of Wisconsin, Madison, WI (United States); Den Hartog, D.J.; Goetz, J.A.; Weix, P.J.; Limbach, S.T. [Department of Physics, University of Wisconsin, Madison, WI (United States)

    2013-01-15

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C{sub 2}B{sub 10}H{sub 12}) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  3. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  4. Enhanced Plasma Performance by ICRF Boronization

    Institute of Scientific and Technical Information of China (English)

    万宝年; 赵燕平; 李建刚; 宋梅; 吴振伟; 罗家融; 李成富; 王小明

    2002-01-01

    Boronization with carborane (C2B10H12) by ICRF has been applied routinely to the walls of HT-7 super-conducting tokamak for the reduction of impurity influx, especially carbon and oxygen. Significant suppression of metallic impurities and radiating power fraction are achieved. The improved confinement for both particle and energy is observed in full range of operation parameters. Energy balance analysis shows that electron heat diffusion coefficient is strongly reduced. Measurements by Langmuir probes at the edge plasma show that the poloidal velocity shear after boronization is changed to a profile favoring to good confinement. The main emphasis of this paper is to describe effects of boronization on aspects of the enhanced plasma performance.

  5. APPLICATION OF BORON MODIFIED SILICA SOL ON RETENTION AND DRAINAGE

    Institute of Scientific and Technical Information of China (English)

    JinxiaMa; YuxiuPeng; ZhongzhengLi

    2004-01-01

    In this paper it was studied that these dosage effectsof CPAM, cationic starch,boron modified silica sol(BMS), A12(SO4)3, pH value and electrolyte on theretention and drainage of different microparticulatesystems including CPAM, cationic starch and boronsilica sol. The research results indicated that CPAMhad no good retention when used with boron silicasol. The best retention efficiency was the micropar-ticulate system of CPAM + cationic starch withboron modified silica sol; Secondly was that ofcationic starch with boron modified silica sol; Theworst was that of CPAM with boron modified silicasol. The retention efficiency had no relation with theaddition order between CPAM and cationic starch. Itwas also found that the microparticulate retentionsystem of boron modified silica sol could be used inalum-rosin sizing and in acidity, neutral or alkalinepapermaking conditions. This system also could beused with close circulate water so that it could reducethe water pollution and waste.

  6. Optical characteristic analysis of the boronization process by using carborane

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonwook; Park, Kyungdeuk; Choi, Youngsun; Oh, Chahwan [Hanyang University, Seoul (Korea, Republic of)

    2014-09-15

    Boronization with carborane (C{sub 2}B{sub 10}H{sub 12}) was achieved in a vacuum vessel coupled to a filament discharge system. Optical emission spectroscopy was employed to characterize the boronization process. The Balmer lines of hydrogen and deuterium were measured, and the boronization process was analyzed by using the intensity ratio of the H{sub α} to the D{sub α} line (I{sub H}/I{sub D}). The relation between the pressure and the intensity ratio was investigated, and the thickness of the deposited boron film was predicted. Also, the dilution ratio H/(H + D) of the boron film was analyzed and compared with the one predicted from an optical analysis of the emission spectrum.

  7. Employment patterns of Notre Dame graduate physiotherapists 2006-12: targeting areas of workforce need.

    Science.gov (United States)

    Bacopanos, Eleni; Edgar, Susan

    2016-04-01

    Objectives The Australian physiotherapy workforce is changing both in demographics and service needs. Physiotherapy curriculum and clinical education focus is ideally based on up-to-date knowledge of this changing workforce. The aim of the present study was to determine the employment patterns of physiotherapy graduates from The University of Notre Dame Australia (Notre Dame). Methods An online survey was conducted of Notre Dame physiotherapy graduates (2006-12) with a 50% response rate (n=157). Results Survey results established the employment location, employment status, healthcare sector, area of practice, salary and employment history of Notre Dame graduates. The results highlighted links between curriculum, clinical placements and workforce areas, with the spread of workforce directly linked to focuses in the undergraduate curriculum. Conclusion The present study highlights the effect of directing undergraduate curriculum and clinical placement experiences towards areas of workforce need. The findings identify the importance of producing graduates equipped to meet the changing service needs of the healthcare industry. What is known about the topic? No previous studies have been conducted on the employment patterns of Notre Dame physiotherapy graduates and specifically the impact of targeting curriculum and clinical placements towards areas of workforce need. What does this paper add? Through a self-administered survey design, the present study demonstrated that Notre Dame physiotherapy graduates have increased uptake in areas targeted within the curriculum, specifically geriatrics, paediatrics and rural health. Although graduates were more attracted to the rural health setting, they were not retained. What are the implications for practitioners? The present study informs educational institutions and workforce planners on the importance of linking curriculum, clinical placements and workforce to develop a sustainable workforce adaptable to clinical settings and

  8. Characterization of a boron carbide-based polymer neutron sensor

    Science.gov (United States)

    Tan, Chuting; James, Robinson; Dong, Bin; Driver, M. Sky; Kelber, Jeffry A.; Downing, Greg; Cao, Lei R.

    2015-12-01

    Boron is used widely in thin-film solid-state devices for neutron detection. The film thickness and boron concentration are important parameters that relate to a device's detection efficiency and capacitance. Neutron depth profiling was used to determine the film thicknesses and boron-concentration profiles of boron carbide-based polymers grown by plasma enhanced chemical vapor deposition (PECVD) of ortho-carborane (1,2-B10C2H12), resulting in a pure boron carbide film, or of meta-carborane (1,7-B10C2H12) and pyridine (C5H5N), resulting in a pyridine composite film, or of pyrimidine (C4H4N2) resulting in a pure pyrimidine film. The pure boron carbide film had a uniform surface appearance and a constant thickness of 250 nm, whereas the thickness of the composite film was 250-350 nm, measured at three different locations. In the meta-carborane and pyridine composite film the boron concentration was found to increase with depth, which correlated with X-ray photoelectron spectroscopy (XPS)-derived atomic ratios. A proton peak from 14N (n,p)14C reaction was observed in the pure pyrimidine film, indicating an additional neutron sensitivity to nonthermal neutrons from the N atoms in the pyrimidine.

  9. The investigation of parameters affecting boron removal by electrocoagulation method

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey); Kocakerim, M. Muhtar [Department of Chemical Engineering, 25240, Atatuerk University, Faculty of Engineering Erzurum (Turkey); Keskinler, Buelent [Department of Environmental Engineering, Gebze Institute of Technology, Gebze/Kocaeli 41400 (Turkey)

    2005-10-17

    Boron removal from wastewaters by electrocoagulation using aluminum electrode material was investigated in this paper. Several working parameters, such as pH, current density, boron concentration and type and concentration of supporting electrolyte were studied in an attempt to achieve a higher removal capacity. The experiments were carried out by keeping the pH of solution constant and optimum pH of solution was determined 8.0 for the aluminum electrode. Although energy consumption increased with decreasing boron concentration, which conductivity of these solutions were low, boron removal efficiency was higher at 100 mg/L than that of 1000 mg/L. Current density was an important parameter affecting removal efficiency. Boron removal efficiency and energy consumption increased with increasing current density from 1.2 to 6.0 mA/cm{sup 2}. The types of different supporting electrolyte were experimented in order to investigate to this parameter effect on boron removal. The highest boron removal efficiency, 97%, was found by CaCl{sub 2}. Added CaCl{sub 2} increased more the conductivity of solution according to other supporting electrolytes, but decreased energy consumption. The results showed to have a high effectiveness of the electrocoagulation method in removing boron from aqueous solutions.

  10. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  11. Chemoradiotherapy of cancer using boronated monoclonal antibodies. Progress report, December 1, 1982-November 30, 1983

    International Nuclear Information System (INIS)

    The feasibility was established of using antibodies for the delivery of 10B. Problems faced included 1) preservation of antibody activity following boronation, 2) antigenic receptor site density of the target cells, and 3) delivery of a critical number of 10B atoms per cell. The linkage of a heavily boronated polymeric species to antibody by means of a single functional group allow for the delivery of a large number 10B atoms per antibody molecule without a significant reduction in affinity. Both the polyclonally derived anti-thymocyte globulin (ATG) and the monoclonal anti-colorectal carcinoma antibody (17-1A) recognize antigens that are expressed with a density of approximately 106 epitopes per cell. The major concept that we advance is that just as effective cancer chemotherapy is based on the use of a combination of drugs, similarly a combination of compounds could be employed to deliver the requisite amount of 10B to tumor target cells. This could include compounds such as Na2B12H11Sh together with boronated antibodies directed against tumor associated antigens. (DT)

  12. G3-C12 Peptide Reverses Galectin-3 from Foe to Friend for Active Targeting Cancer Treatment.

    Science.gov (United States)

    Sun, Wei; Li, Lian; Yang, Qingqing; Shan, Wei; Zhang, Zhirong; Huang, Yuan

    2015-11-01

    Galectin-3 is overexpressed by numerous carcinomas and is a potential target for active tumor treatments. On the other hand, galectin-3 also plays a key role in cancer progression and prevents cells from undergoing apoptosis, thereby offsetting the benefits of active targeting drugs. However, the relative contribution of the protective antiapoptotic effects of galectin-3 and the proapoptotic effects of galectin-3-targeted therapies has remained yet unrevealed. Here, we show that a galectin-3-binding peptide G3-C12 could reverse galectin-3 from foe to friend for active targeting delivery system. Results showed G3-C12 modified N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin conjugates (G3-C12-HPMA-Dox) could internalize into galectin-3 overexpressed PC-3 cells via a highly specific ligand-receptor pathway (2.2 times higher cellular internalization than HPMA-Dox). The internalized Dox stimulated the translocation of galectin-3 to the mitochondria to prevent from apoptosis. In turn, this caused G3-C12-HPMA-Dox to concentrate into the mitochondria after binding to galectin-3 intracellularly. Initially, mitochondrial galectin-3 weakened Dox-induced mitochondrial damage; however, as time progressed, G3-C12 active-mediation allowed increasing amounts of Dox to be delivered to the mitochondria, which eventually induced higher level of apoptosis than nontargeted copolymers. In addition, G3-C12 downregulates galectin-3 expression, 0.43 times lower than control cells, which could possibly be responsible for the suppressed cell migration. Thus, G3-C12 peptide exerts sequential targeting to both cell membrane and mitochondria via regulating galectin-3, and eventually reverses and overcomes the protective effects of galectin-3; therefore, it could be a promising agent for the treatment of galectin-3-overexpressing cancers. PMID:26393405

  13. Boronated liposome development and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M.F. [Univ. of California, Los Angeles, CA (United States)

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  14. SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large scale structure catalogues

    CERN Document Server

    Reid, Beth; Padmanabhan, Nikhil; Percival, Will J; Tinker, Jeremy; Tojeiro, Rita; White, Martin; Eisenstein, Daniel J; Maraston, Claudia; Ross, Ashley J; Sanchez, Ariel G; Schlegel, David; Sheldon, Erin; Strauss, Michael A; Thomas, Daniel; Wake, David; Beutler, Florian; Bizyaev, Dmitry; Bolton, Adam S; Brownstein, Joel R; Chuang, Chia-Hsun; Dawson, Kyle; Harding, Paul; Kitaura, Francisco-Shu; Leauthaud, Alexie; Masters, Karen; McBride, Cameron K; More, Surhud; Olmstead, Matthew D; Oravetz, Daniel; Nuza, Sebastian E; Pan, Kaike; Parejko, John; Pforr, Janine; Prada, Francisco; Rodriguez-Torres, Sergio; Salazar-Albornoz, Salvador; Samushia, Lado; Schneider, Donald P; Scoccola, Claudia G; Simmons, Audrey; Vargas-Magana, Mariana

    2015-01-01

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large scale structure catalogues for the final Data Release (DR12) samples and the associated ...

  15. Recent results of boronization on EAST and HT-7 superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.H., E-mail: wujinhua@ipp.ac.cn [Institute of Plasma Physics, P.O. Box 1126, Hefei, Anhui 230031 (China); Hu, J.S., E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, P.O. Box 1126, Hefei, Anhui 230031 (China); Chen, Y. [Institute of Plasma Physics, P.O. Box 1126, Hefei, Anhui 230031 (China); Ashikawa, N. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yu, Y.W.; Li, J.H.; Zuo, G.Z.; Wang, X.M.; Zhao, Y.P.; Li, J.G. [Institute of Plasma Physics, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2011-08-01

    The importance of wall conditionings for the reduction of the impurities in plasmas has been recognized in most tokamaks. Boronization associated with Ion Cyclotron Resonance Frequency discharge (ICRF boronization) has been developed on HT-7 superconducting tokamak since 1998, and now this boronization technique has become a routine method for wall conditioning on HT-7 and also on EAST. Carborane (C{sub 2}B{sub 10}H{sub 12}) was used for the boronization and helium was usually provided as the auxiliary gas. However, after this kind boronization, lots of H{sub 2} released from the boron film make the controlling of the plasma density very difficulty. Recently, to reduce H{sub 2} content in the film, we change the auxiliary gas from He to D{sub 2} during the whole boronization procedure and find the release of H{sub 2} during plasma discharges was greatly reduced.

  16. Novel Boron Based Multilayer Thermal Neutron Detector

    CERN Document Server

    SCHIEBER, M

    2010-01-01

    The detector contains four or more layers of natural Boron absorbing thermal neutrons. Thickness of a layer is 0.4 - 1.2 mg/cm2. The layers are deposited on one or on both sides of a metal surface used as contacts. Between the absorbing layers there are gas-filled gaps 3 - 6 mm thick. Electric field of 100 - 200 V/cm is applied to the gas-filled gaps. Natural Boron contains almost 20% of 10B isotope. When atoms of 10B capture a thermal neutron, nuclear reaction occurs, as a result of which two heavy particles - alpha particle and ion 7Li - from the thin absorber layer are emitted in opposing sides. One of the two particles penetrates into gas-filled gap between Boron layers and ionizes the gas. An impulse of electric current is created in the gas-filled gap actuated by the applied electric field. The impulse is registered by an electronic circuit. We have made and tested detectors containing from two to sixteen layers of natural Boron with an efficiency of thermal neutron registration from 2.9% to 12.5% accor...

  17. Boron complexing with H-resorcinol and acidic hydroxyxanthene dyes

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, V.A.; Flyantikova, G.V.; Chekirda, T.N. (AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.)

    1984-01-01

    Complex formation of boron with H-resorcinol (hr; 2,4-dihydroxybenzene-azo -8-hydroxynaphtalene-3,6-disulfonic acid) and acidic hydroxyxanthene dyes (hxd: fluorescein, eosine, erathrosine). Mixed-ligand complexes with a ratio of r:hr:hxd=1:1:1 are formed at pH=5-6. The chemism of the complex formation of boron with H-resorcinol and fluorescein has been studied. The stability constant of the complex is 1.12x10/sup 21/, the conditional molar absorptivitis 1.80x10/sup 0/. This complex formation reaction was used for photometric determination of boron in natural water.

  18. Lattice vibrations of icosahedral boron-rich solids

    Energy Technology Data Exchange (ETDEWEB)

    Beckel, C.L.; Yousaf, M. (The University of New Mexico, Albuquerque, New Mexico 87131 (United States))

    1991-07-01

    The rhombohedral lattices for {alpha}-boron, boron arsenide, and boron phosphide are each of D{sub 3d} symmetry and have bases that include B{sub 12} icosahedra. Boron carbide with B{sub 4}C stoichiometry has near-D{sub 3d} symmetry and is almost certainly composed of B{sub 11}C icosahedra and C-B-C chains. Comparable classical force field models are applied to each of these crystals to correlate q=0 phonon structure with experimental Raman and IR spectra. We here describe our methods and contrast interaction strengths for different materials. Vibrations are correlated in the different crystals through normal mode eigenvector expansions. Acoustic wave velocities from Brillouin zone dispersion curves in two distinct symmetry-axis directions are presented and contrasted for {alpha}-boron and B{sub 12}As{sub 2}. The origin of lines with anomalous polarization and width in {alpha}-boron, B{sub 12}As{sub 2}, and B{sub 12}P{sub 2} is considered.

  19. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  20. Contribution to the study of reactions induced by a low-energy He3 beam on a C12 target

    International Nuclear Information System (INIS)

    This research thesis reports the study concerning which reaction mode will better describe a nucleus in which the excitation energy is between two extremes. Due to experimental considerations and abilities, this study focuses on light target nuclei and carbon 12. The author describes experimental techniques used for angular distributions (targets, detection system), describes the experimental techniques for activation experiments (experimental set-up, targets, measurement of relative efficient cross section, result analysis, measurement of absolute efficient cross section). The author discusses the experimental results (excitation functions and angular distributions) and the interpretation of elastic scattering results (theoretical background, computation approach, analysis of elastic scattering) and the results of the C12(He3, α)C11 reaction

  1. Determination of boron in nuclear grade sodium metal

    International Nuclear Information System (INIS)

    Determination of boron in nuclear grade sodium metal as rosocyanin and rubrocurcumin complexes is described. Separation of sodium matrix was attempted by vacuum distillation of sodium, methyl borate distillation and ion exchange methods. The ion exchange method was found to be most suitable. Optimum conditions were standardised for the estimation of boron in nuclear grade sodium. In the 200 ppb range an RSD of 5 per cent was obtained. (author). 12 refs

  2. GGPPS, a new EGR-1 target gene, reactivates ERK 1/2 signaling through increasing Ras prenylation.

    Science.gov (United States)

    Shen, Ning; Shao, Yue; Lai, Shan-Shan; Qiao, Long; Yang, Run-Lin; Xue, Bin; Pan, Fei-Yan; Chen, Hua-Qun; Li, Chao-Jun

    2011-12-01

    Cigarette smoke activates the extracellular signal-regulated kinase (ERK) 1/2 mitogen activated-protein kinase pathway, which, in turn, is responsible for early growth response gene-1 (EGR-1) activation. Here we provide evidence that EGR-1 activation can also reactivate ERK 1/2 mitogen activated-protein kinase through a positive feedback loop through its target gene (geranylgeranyl diphosphate synthase) GGPPS. For the first time, the GGPPS gene is identified as a target of EGR-1, as EGR-1 can directly bind to the predicted consensus-binding site in the GGPPS promoter and regulate its transcription. Long-term observations show that there are two ERK 1/2 phosphorylation peaks after cigarette smoke extract stimulation in human lung epithelial Beas-2B cells. The first peak (at 10 minutes) is responsible for EGR-1 accumulation, and the second (at 4 hours) is diminished after the disruption of EGR-1 transcriptional activity. EGR-1 overexpression enhances Ras prenylation and membrane association in a GGPPS-dependent manner, and it augments ERK 1/2 activation. Likewise, a great reduction of the second peak of ERK 1/2 phosphorylation is observed during long-term cigarette smoke extract stimulation in cells where GGPPS is disrupted. Thus, we have uncovered an intricate positive feedback loop in which ERK 1/2-activated EGR-1 promotes ERK 1/2 reactivation through promoting GGPPS transcription, which might affect cigarette smoke-related lung pathological processes.

  3. B28: the smallest all-boron cage from an ab initio global search

    Science.gov (United States)

    Zhao, Jijun; Huang, Xiaoming; Shi, Ruili; Liu, Hongsheng; Su, Yan; King, R. Bruce

    2015-09-01

    Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures.Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures. Electronic supplementary information (ESI) available: Planar isomer structures of B28 and spatial distributions of front molecular orbitals. See DOI: 10.1039/c5nr04034e

  4. Bright prospects for boron

    NARCIS (Netherlands)

    Wassink, J.

    2012-01-01

    Professor Lis Nanver at Dimes has laid the foundation for a range of new photodetectors by creating a thin coating of boron on a silicon substrate. The sensors are used in ASML’s latest lithography machines and FEI’s most sensitive electron microscopes.

  5. Boron contamination in drinking - irrigation water and boron removal methods

    Directory of Open Access Journals (Sweden)

    Meltem Bilici Başkan

    2014-03-01

    Full Text Available Boron presents in IIIA group of periodic table and has high ionization capacity. Therefore it is classified as a metalloid. Average boron concentration in earth's crust is 10 mg/kg. It presents in the environment as a salts of Ca, Na, and Mg. Boron reserves having high concentration and economical extent are found mostly in Turkey and in arid, volcanic and high hydrothermal activity regions of U.S. as compounds of boron attached to oxygen. Boron is an essential micronutrient for plants, although it may be toxic at higher levels. The range in which it is converted from a nutrient to a contaminant is quite narrow. Boron presents in water environment as a boric acid and rarely borate salts. The main boron sources, whose presence is detected in surface waters, are urban wastes and industrial wastes, which can come from a wide range of different activities as well as several chemical products used in agriculture. In Turkey, the most pollutant toxic element in drinking and irrigation water is boron. Therefore boron removal is very important in terms of human health and agricultural products in high quality. Mainly boron removal methods from drinking water and irrigation water are ion exchange, ultrafiltration, reverse osmosis, and adsorption.

  6. Plasma boron and the effects of boron supplementation in males.

    Science.gov (United States)

    Green, N R; Ferrando, A A

    1994-11-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all.

  7. Targeting FAK Radiosensitizes 3-Dimensional Grown Human HNSCC Cells Through Reduced Akt1 and MEK1/2 Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hehlgans, Stephanie [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt am Main (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Eke, Iris [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Cordes, Nils, E-mail: Nils.Cordes@OncoRay.de [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany)

    2012-08-01

    Purpose: Focal adhesion kinase (FAK), a main regulator of integrin signaling and cell migration, is frequently overexpressed and hyperphosphorylated in human head-and-neck squamous cell carcinoma (HNSCC). We have previously shown that pharmacologic FAK inhibition leads to radiosensitization of 3-dimensionally grown HNSCC cell lines. To further evaluate the role of FAK in radioresistance and as a potential cancer target, we examined FAK and FAK downstream signaling in HNSCC cell lines grown in more physiologic extracellular matrix-based 3-dimensional cell cultures. Methods and Materials: Seven HNSCC cell lines were grown in 3-dimensional extracellular matrix and the clonogenic radiation survival, expression, and phosphorylation of FAK, paxillin, Akt1, extracellular signal-regulated kinase (ERK)1/2, and MEK1/2 were analyzed after siRNA-mediated knockdown of FAK, Akt1, MEK1, FAK+Akt1, or FAK+MEK1 compared with controls or stable overexpression of FAK. The role of MEK1/2 for clonogenic survival and signaling was investigated using the MEK inhibitor U0126 with or without irradiation. Results: FAK knockdown moderately or significantly enhanced the cellular radiosensitivity of 3-dimensionally grown HNSCC cells. The FAK downstream targets paxillin, Akt1, and ERK1/2 were substantially dephosphorylated under FAK depletion. FAK overexpression, in contrast, increased radiation survival and paxillin, Akt1, and ERK1/2 phosphorylation. The degree of radiosensitization upon Akt1, ERK1/2, or MEK1 depletion or U0126 was superimposable to FAK knockdown. Combination knockdown conditions (ie, Akt1/FAK, MEK1/FAK, or U0126/FAK) failed to provide additional radiosensitization. Conclusions: Our data provide further evidence for FAK as important determinant of radiation survival, which acts in the same signaling axis as Akt1 and ERK1/2. These data strongly support our hypothesis that FAK is a relevant molecular target for HNSCC radiotherapy.

  8. Synthetic siRNAs effectively target cystein protease 12 and α-actinin transcripts in Trichomonas vaginalis.

    Science.gov (United States)

    Ravaee, Roya; Ebadi, Parimah; Hatam, Gholamreza; Vafafar, Arghavan; Ghahramani Seno, Mohammad Mahdi

    2015-10-01

    The flagellated protozoan Trichomonas vaginalis (T. vaginalis) causes trichomoniasis, a reproductive tract infection, in humans. Trichomoniasis is the most common non-viral sexually transmitted disease worldwide. In addition to direct consequences such as infertility and abortion, there are indications that trichomoniasis favours development of prostate cancer and it has also been associated with increased risk of spreading human immunodeficiency virus and papillomavirus infections. Reports from around the world show that the rate of drug resistance in T. vaginalis is increasing, and therefore new therapeutic approaches have to be developed. Studying molecular biology of T. vaginalis will be quite helpful in identifying new drugable targets. RNAi is a powerful technique which allows biologist to specifically target gene products (i.e. mRNA) helping them in unravelling gene functions and biology of systems. However, due to lack of some parts of the required intrinsic RNAi machinery, the RNAi system is not functional in all orders of life. Here, by using synthetic siRNAs targeting two genes, i.e. α-actinin and cystein protease 12 (cp12), we demonstrate T. vaginalis cells are amenable to RNAi experiments conducted by extrinsic siRNAs. Electroporation of siRNAs targeting α-actinin or cp12 into T. vaginalis cells resulted in, respectively, 48-67% and 33-72% downregulation of the cognate transcripts compared to the T. vaginalis cells received siRNAs targeting GL2 luciferase as a control. This finding is helpful in that it demonstrates the potential of using extrinsically induced RNAi in studies on molecular biology of T. vaginalis such as those aiming at identifying new drug targets.

  9. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  10. SU-D-304-07: Application of Proton Boron Fusion Reaction to Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J; Yoon, D; Shin, H; Kim, M; Suh, T [The Catholic University Seoul (Korea, Republic of)

    2015-06-15

    Purpose: we present the introduction of a therapy method using the proton boron fusion reaction. The purpose of this study is to verify the theoretical validity of proton boron fusion therapy using Monte Carlo simulations. Methods: After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton’s maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here we show that the effectiveness of the proton boron fusion therapy (PBFT) was verified using Monte Carlo simulations. Results: We found that a dramatic increase by more than half of the proton’s maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton’s maximum dose point was located within the boron uptake region (BUR). In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. Conclusion: This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  11. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer.

    Science.gov (United States)

    Barth, Rolf F; Vicente, M Graca H; Harling, Otto K; Kiger, W S; Riley, Kent J; Binns, Peter J; Wagner, Franz M; Suzuki, Minoru; Aihara, Teruhito; Kato, Itsuro; Kawabata, Shinji

    2012-08-29

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or "BPA", and sodium borocaptate or "BSH" (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials

  12. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    Directory of Open Access Journals (Sweden)

    Barth Rolf F

    2012-08-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH. In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger

  13. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, the United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical

  14. Fragmentation Cross Sections of 12C on Different Targets at Beam Energies from 50 to 100 MeV/Nucleon

    Institute of Scientific and Technical Information of China (English)

    BIAN Bao-An; ZHANG Feng-Shou; ZHOU Hong-Yu

    2008-01-01

    The fragmentation cross sections of reactions 12C+2H,12C,14N,16O at beam energies from 50 to 100 MeV/nucleon are investigated using the isospin-dependent Boltzmann-Langevin equation model.It is found that fragment species increase approximately with the increasing target mass.The fragment species and some fragments production cross sections in reactions of 12C+12C,14N,16O show an obvious variation at the beam energies from 50 to 80 MeV/nucleon.However the calculated fragment production cross sections do not change much when the incident energy increases from 80 to 100 MeV/nucleon.

  15. Oxidation of Silicon and Boron in Boron Containing Molten Iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new process of directly smelting boron steel from boron-containing pig iron has been established. The starting material boron-containing pig iron was obtained from ludwigite ore, which is very abundant in the eastern area of Liaoning Province of China. The experiment was performed in a medium-frequency induction furnace, and Fe2O3 powder was used as the oxidizing agent. The effects of temperature, addition of Fe2O3, basicity, stirring, and composition of melt on the oxidation of silicon and boron were investigated respectively. The results showed that silicon and boron were oxidized simultaneously and their oxidation ratio exceeded 90% at 1 400 ℃. The favorable oxidation temperature of silicon was about 1 300-1 350 C. High oxygen potential of slag and strong stirring enhanced the oxidation of silicon and boron.

  16. ADAM12: a potential target for the treatment of chronic wounds

    DEFF Research Database (Denmark)

    Harsha, Asheesh; Stojadinovic, Olivera; Brem, Harold;

    2008-01-01

    Wound healing is a complex process involving multiple cellular events, including cell proliferation, migration, and tissue remodeling. A disintegrin and metalloprotease 12 (ADAM12) is a membrane-anchored metalloprotease, which has been implicated in activation-inactivation of growth factors...... that play an important role in wound healing, including heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) and insulin growth factor (IGF) binding proteins. Here, we report that expression of ADAM12 is fivefold upregulated in the nonhealing edge of chronic ulcers compared to healthy...... skin, based on microarrays of biopsies taken from five patients and from healthy controls (p = 0.013). The increase in ADAM12 expression in chronic ulcers was confirmed by quantitative real-time polymerase chain reaction (RT-PCR). Moreover, immunohistochemical analysis demonstrated a pronounced...

  17. Neutron production in the energy range 7 to 12 MeV using a gas-target

    International Nuclear Information System (INIS)

    A gas-target for operation at a tandem-accelerator is described. Using the DD-reaction, an energy range of neutrons between 7 and 12 MeV can be realised. Construction and operation are described in detail. For neutron energies below 9 MeV the neutron source is almost monoenergetic; above this energy the deuteron break-up limits the monoenergetic behaviour. (author)

  18. Comparative biodistribution of 12 111In-labelled gastrin/CCK2 receptor-targeting peptides

    NARCIS (Netherlands)

    P. Laverman (Peter); L. Joosten; A. Eek (Annemarie); S. Roosenburg (Susan); P.K. Peitl; T. Maina (Theodosia); H. Mäcke (Helmut); L. Aloj (Luigi); E. von Guggenber (Elisabeth); J.K. Sosabowski (Jane); M. de Jong (Marion); J.-C. Reubi (Jean-Claude); W.J.G. Oyen (Wim); O.C. Boerman (Otto)

    2011-01-01

    textabstractPurpose Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy

  19. Boron exposure assessment using drinking water and urine in the North of Chile

    International Nuclear Information System (INIS)

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3 mg L−1, with a median value of 2.9 mg L−1, while concentrations of boron in bottled water varied from 0.01 to 12.2 mg L−1. Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4 mg L−1, with a median of 4.28 mg L−1 and was found to be correlated with tap water sampled from the homes of the volunteers (r = 0.64). Authors highly recommend that in northern Chile – where levels of boron are naturally high – that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure.

  20. Boron exposure assessment using drinking water and urine in the North of Chile

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, S., E-mail: scortes@med.puc.cl [Departamento de Salud Publica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Reynaga-Delgado, E. [Centro de Investigaciones Biologicas del Noroeste, La Paz B.C.S. (Mexico); Sancha, A.M. [Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Ferreccio, C. [Departamento de Salud Publica, Pontificia Universidad Catolica de Chile, Santiago (Chile)

    2011-12-01

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3 mg L{sup -1}, with a median value of 2.9 mg L{sup -1}, while concentrations of boron in bottled water varied from 0.01 to 12.2 mg L{sup -1}. Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4 mg L{sup -1}, with a median of 4.28 mg L{sup -1} and was found to be correlated with tap water sampled from the homes of the volunteers (r = 0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure.

  1. Flexibility Required to Meet China's Mandatory Green Targets Set in the 12th Five-Year Plan

    Institute of Scientific and Technical Information of China (English)

    Jiahua Pan

    2011-01-01

    IntroductionDuring the past five years known as the period of the 11th Five-Year (2006-2010) Plan,China made great efforts on energy saving and emission reduction,and obtained great achievements,including a 19.06%drop of per unit GDP energy consumption.One of the major targets of China's development during the period of the 12th Five-Year (2011-2015) Plan or the next five years,is to lead China's economy on to the path of sustainable development,with emphasis on clean energy construction,emission reduction promotion,and a drastic reduction of energy intensity as well as carbon intensity.Therefore,a target for carbon reduction (a reduction goal for per unit GDP CO2emissions) was added in the 12th Five-Year Plan in addition to the target for energy saving and conventional pollutants emission reduction.The target has been set,but opinions [Yang et aL.,2011;Wu,2011;Liu,2011] still vary on whether it is optimal as well as how it should be comprehended and implemented.

  2. Boron biodistribution after boronophenylalanine-fructose (BPA-F) infusion

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, M.; Kulvik, M.; Laakso, J.; Ruokonen, I.; Vaehaetalo, J.; Faerkkilae, M. [University of Helsinki (Finland); Rasilainen, M.; Jaerviluoma, E. [Helsinki University Central Hospital, Pharmacy, Helsinki (Finland)

    2000-10-01

    In vivo dynamic tissue boron concentration measurements are not available for BNCT in clinical settings. Whole blood boron concentrations and converting factors are currently used in stead to estimate the boron concentrations in the target tissues and the ensuing radiation doses. We studied with ICP-AES the boron concentrations in blood after 2 hour intravenous infusions of BPA-F in 8 patients (290 mg/kg). As BPA-F is water soluble we calculated respective doses per lean body weight (LBW) (360 - 471 mg/kg) - the peak plasma concentrations and area under plasma boron concentration time curve correlated with the mg/LBW dose, but not with dose per skin surface area (mg/m{sup 2}). The mean boron concentrations in plasma, whole blood and red cells at the infusion were 32.1 {+-} 3.3, 23.3 {+-} 2.4 and 9.5 {+-} 2.8, respectively. LBW doses should be considered to ensure more homogenous dosing and BNCT irradiation. (author)

  3. Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire.

    Science.gov (United States)

    Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk

    2016-05-11

    Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials. PMID:27120101

  4. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  5. Fragmentation Cross Sections of 290 and 400 MeV/nucleon 12C Beamson Elemental Targets

    Energy Technology Data Exchange (ETDEWEB)

    Zeitlin, C.; Guetersloh, S.; Heilbronn, L.; Miller, J.; Fukumura,A.; Iwata, Y.; Murakami, T.

    2007-03-17

    Charge-changing and fragment production cross sections at 0circ have been obtained for interactions of 290 MeV/nucleon and 400MeV/nucleon carbon beams with C, CH2, Al, Cu, Sn, and Pb targets. Thesebeams are relevant to cancer therapy, space radiation, and the productionof radioactive beams. We compare to previously published results using Cand CH2 targets at similar beam energies. Due to ambiguities arising fromthe presence of multiple fragments on many events, previous publicationshave reported only cross sections for B and Be fragments. In this work wehave extracted cross sections for all fragment species, using dataobtained at three distinct values of angular acceptance, supplemented bydata taken with the detector stack placed off the beam axis. A simulationof the experiment with the PHITS Monte Carlo code shows fair agreementwith the data obtained with the large acceptance detectors, but agreementis poor at small acceptance. The measured cross sections are alsocompared to the predictions of the one-dimensional cross section modelsEPAX2 and NUCFRG2; the latter is presently used in NASA's space radiationtransport calculations. Though PHITS and NUCFRG2 reproduce thecharge-changing cross sections with reasonable accuracy, none of themodels is able to accurately predict the fragment cross sections for allfragment species and target materials.

  6. Experimental realization of two-dimensional boron sheets

    Science.gov (United States)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp2 hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  7. Experimental realization of two-dimensional boron sheets.

    Science.gov (United States)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future. PMID:27219700

  8. Mycobacterium tuberculosis Mce3E suppresses host innate immune responses by targeting ERK1/2 signaling.

    Science.gov (United States)

    Li, Jie; Chai, Qi-Yao; Zhang, Yong; Li, Bing-Xi; Wang, Jing; Qiu, Xiao-Bo; Liu, Cui Hua

    2015-04-15

    Crucial to the pathogenesis of the tuberculosis (TB)-causing pathogen Mycobacterium tuberculosis is its ability to subvert host immune defenses to promote its intracellular survival. The mammalian cell entry protein 3E (Mce3E), located in the region of difference 15 of the M. tuberculosis genome and absent in Mycobacterium bovis bacillus Calmette-Guérin, has an essential role in facilitating the internalization of mammalian cells by mycobacteria. However, relatively little is known about the role of Mce3E in modulation of host innate immune responses. In this study, we demonstrate that Mce3E inhibits the activation of the ERK1/2 signaling pathway, leading to the suppression of Tnf and Il6 expression, and the promotion of mycobacterial survival within macrophages. Mce3E interacts and colocalizes with ERK1/2 at the endoplasmic reticulum in a DEF motif (an ERK-docking motif)-dependent manner, relocates ERK1/2 from cytoplasm to the endoplasmic reticulum, and finally reduces the association of ERK1/2 with MEK1 and blocks the nuclear translocation of phospho-ERK1/2. A DEF motif mutant form of Mce3E (F294A) loses its ability to suppress Tnf and Il6 expression and to promote intracellular survival of mycobacteria. Inhibition of the ERK1/2 pathway in macrophages using U0126, a specific inhibitor of the ERK pathway, also leads to the suppressed Tnf and Il6 expression and the enhanced intracellular survival of mycobacteria. Taken together, these results suggest that M. tuberculosis Mce3E exploits the ERK1/2 signaling pathway to suppress host innate immune responses, providing a potential Mce3E-ERK1/2 interface-based drug target against M. tuberculosis. PMID:25780035

  9. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk, E-mail: suhsanta@catholic.ac.kr [Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 505 (Korea, Republic of)

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  10. Analysis of boron carbides' electronic structure

    Science.gov (United States)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  11. Quantitative analysis of proton boron fusion therapy (PBFT) in various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joo-Young; Yoon, Do-Kun; Suh, Tae Suk [College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of)

    2015-05-15

    From the theoretical point of view, the PBFT has some strong advantages over currently existing radiotherapy methods. First, boron-based tumor targeting is required prior to performing the treatments such as boron-neutron capture therapy (BNCT). Tumor targeting should be performed before the BNCT by injecting the boronate compound. If boron is not taken up by the normal tissue, the normal tissue can be spared the irradiation by alpha particles. When boron uptake occurs in the target region, selective therapy is possible by neutron capture reaction of labeled boron particles in the target region. Likewise, when boron is distributed in the tumor region for the PBFT, the proposed method can represent a more critical discriminative therapy than either the BNCT or conventional particle therapy. In the conventional proton therapy, in order to deliver a dose to a tumor, the proton beam energy has to be adjusted along the tumor region (e.g., shape and depth). The proton therapy aims at delivering the maximal dose to the tumor by using protons only. In this study, the effectiveness of the PBFT with respect to several physical parameters was evaluated quantitatively by using Monte Carlo simulations. We confirmed that the PBFT can be used to perform critical discriminative therapy. Also, the results of our studies can be used for constructing the PFBT dose database that can be utilized in treatment planning systems (TPSs)

  12. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  13. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

  14. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  15. Tumor cell killing effect of boronated dipeptide. Boromethylglycylphenylalanine on boron neutron capture therapy for malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Takagaki, Masao; Ono, Koji; Masunaga, Shinichiro; Kinashi, Yuko; Kobayashi, Toru [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Oda, Yoshifumi; Kikuchi, Haruhiko; Spielvogel, B.F.

    1994-03-01

    The killing effect of Boron Neutron Capture Therapy; BNCT, is dependant on the boron concentration ratio of tumor to normal brain (T/N ratio), and also that of tumor to blood (T/B ratio). The clinical boron carrier of boro-captate (BSH) showed the large T/N ratio of ca. 8, however the T/B ratio was around 1, which indicated nonselective accumulation into tumor. Indeed high boron concentration of blood restrict the neutron irradiation dose in order to circumvent the normal endothelial damage, especially in the case of deeply seated tumor. Phenylalanine analogue of para borono-phenylalanine (BPA) is an effective boron carrier on BNCT for malignant melanoma. For the BNCT on brain tumors, however, BPA concentration in normal brain was reported to be intolerably high. In order to improve the T/N ratio of BPA in brain, therefore, a dipeptide of boromethylglycylphenylalanine (BMGP) was synthesized deriving from trimethylglycine conjugated with BPA. It is expected to be selectively accumulated into tumor with little uptake into normal brain. Because a dipeptide might not pass through the normal blood brain barrier (BBB). Its killing effect on cultured glioma cell, T98G, and its distribution in rat brain bearing 9L glioma have been investigated in this paper. The BNCT effect of BMGP on cultured cells was nearly triple in comparison with DL-BPA. The neutron dose yielding 1% survival ratio were 7x10{sup 12}nvt for BMGP and 2x10{sup 13}nvt for BPA respectively on BNCT after boron loading for 16 hrs in the same B-10 concentration of 20ppm. Quantitative study of boron concentration via the {alpha}-auto radiography and the prompt gamma ray assay on 9L brain tumor rats revealed that T/N ratio and T/B ratio are 12.0 and 3.0 respectively. Those values are excellent for BNCT use. (author).

  16. Measurement of fragmentation cross sections of 12C ions on a thin gold target with the FIRST apparatus

    Science.gov (United States)

    Toppi, M.; Abou-Haidar, Z.; Agodi, C.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Böhlen, T. T.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cirio, R.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; de Napoli, M.; Durante, M.; Fernández-García, J. P.; Finck, Ch.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kummali, A. H.; Kurz, N.; Labalme, M.; Leifels, Y.; Le Fèvre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Piersanti, L.; Pleskac, R.; Randazzo, N.; Rescigno, R.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Salvador, S.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Tropea, S.; Vanstalle, M.; Younis, H.; Patera, V.; FIRST Collaboration

    2016-06-01

    A detailed knowledge of the light ions interaction processes with matter is of great interest in basic and applied physics. As an example, particle therapy and space radioprotection require highly accurate fragmentation cross-section measurements to develop shielding materials and estimate acute and late health risks for manned missions in space and for treatment planning in particle therapy. The Fragmentation of Ions Relevant for Space and Therapy experiment at the Helmholtz Center for Heavy Ion research (GSI) was designed and built by an international collaboration from France, Germany, Italy, and Spain for studying the collisions of a 12C ion beam with thin targets. The collaboration's main purpose is to provide the double-differential cross-section measurement of carbon-ion fragmentation at energies that are relevant for both tumor therapy and space radiation protection applications. Fragmentation cross sections of light ions impinging on a wide range of thin targets are also essential to validate the nuclear models implemented in MC simulations that, in such an energy range, fail to reproduce the data with the required accuracy. This paper presents the single differential carbon-ion fragmentation cross sections on a thin gold target, measured as a function of the fragment angle and kinetic energy in the forward angular region (θ ≲6° ), aiming to provide useful data for the benchmarking of the simulation softwares used in light ions fragmentation applications. The 12C ions used in the measurement were accelerated at the energy of 400 MeV/nucleon by the SIS (heavy ion synchrotron) GSI facility.

  17. Dietary boron, brain function, and cognitive performance.

    OpenAIRE

    Penland, J G

    1994-01-01

    Although the trace element boron has yet to be recognized as an essential nutrient for humans, recent data from animal and human studies suggest that boron may be important for mineral metabolism and membrane function. To investigate further the functional role of boron, brain electrophysiology and cognitive performance were assessed in response to dietary manipulation of boron (approximately 0.25 versus approximately 3.25 mg boron/2000 kcal/day) in three studies with healthy older men and wo...

  18. Nitrogen implantation effects on the chemical bonding and hardness of boron and boron nitride coatings

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S; Felter, T; Hayes, J; Jankowski, A F; Patterson, R; Poker, D; Stamler, T

    1999-02-08

    Boron nitride (BN) coatings are deposited by the reactive sputtering of fully dense, boron (B) targets utilizing an argon-nitrogen (Ar-N{sub 2}) reactive gas mixture. Near-edge x-ray absorption fine structure analysis reveals features of chemical bonding in the B 1s photoabsorption spectrum. Hardness is measured at the film surface using nanoindentation. The BN coatings prepared at low, sputter gas pressure with substrate heating are found to have bonding characteristic of a defected hexagonal phase. The coatings are subjected to post-deposition nitrogen (N{sup +} and N{sub 2}{sup +}) implantation at different energies and current densities. The changes in film hardness attributed to the implantation can be correlated to changes observed in the B 1s NEXAFS spectra.

  19. ET-14OPTIMISATION OF BORONOPHENYLALANINE (BPA) DELIVERY AND LAT1 EXPRESSION FOR THE CLINICAL APPLICATION OF BORON NEUTRON CAPTURE THERAPY (BNCT) IN GLIOBLASTOMA

    Science.gov (United States)

    Cruickshank, Garth; Detta, Allah; Green, Stuart; Lockyer, Nick; Ngoga, Desire; Ghani, Zahir; Phoenix, Ben

    2014-01-01

    BNCT is a biologically targeted radiotherapy where preferential boron uptake interacts with a neutron beam in cancerous cells causing irreparable alpha DNA damage. This requires the delivery of at least 30 parts per million (ppm) of 10B into tumour tissue and 30ppm boron) indicates potential BNCT targeting after surgery. Tumour boron uptake is governed by LAT-1 behaviour rather than BBB penetration and explains previous variable clinical results, whilst supporting the LAT1 determined selection of patients for BNCT

  20. PGNAA of human arthritic synovium for boron neutron capture synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Binello, E.; Yanch, J.C. [Massashucetts Institute of Technology, Cambridge, MA (United States); Shortkroff, S. [Brigham and Women`s Hospital, Boston, MA (United States)

    1997-12-01

    Boron neutron capture synovectomy (BNCS), is a proposed new therapy modality for the treatment of rheumatoid arthritis, an autoimmune disease afflicting the joints. The synovium, which is the membrane lining the joint, becomes inflamed and represents the target tissue for therapy. When a joint is unresponsive to drug treatment, physical removal of the synovium, termed synovectomy, becomes necessary. Existing options include surgery and radiation synovectomy. BNCS has advantages over these options in that it is noninvasive and does not require the administration of radioactive substances. Previous studies have shown that the uptake of {sup 10}B by human arthritic synovium ex vivo is high, ranging from 194 to 545 ppm with an unenriched boron compound. While tissue samples remain viable up to 1 week, ex vivo conditions do not accurately reflect those in vivo. This paper presents results from experiments assessing the washout of boron from the tissue and examines the implications for in vivo studies.

  1. Study of boron effect on FeAl alloys with an ordered B2 structure

    International Nuclear Information System (INIS)

    FeAl alloys with an ordered B2 structure have good corrosion resistance and mechanical properties at high temperature. Nevertheless, their use is limited by the intergranular embrittlement at ambient temperature. It has already been shown that a doping by low amounts of boron can solve the problem of intergranular embrittlement. The aim of this work is to better understand the boron effect on the FeAl alloys. It has been confirmed that the boron doping change the mode of rupture of the FeAl alloys with a B2 structure; their strain on breaking point is increased. The limit of solubility of boron in Fe-40Al has been estimated between 400 and 800 ppm at 500 degrees Celsius. Above this limit, Fe2B precipitates. The intergranular segregation of boron has been observed by Auger electron spectroscopy for all the FeAl alloys. The intergranular amount of boron is low (below 12%). In the range of boron solubility, the intergranular concentration of boron increases with its voluminal amount. From this result, boron segregation has been described by different models of equilibrium segregation; thus has been shown that it exists a strong repulsion energy between the segregated boron atoms. On the other hand, no equilibrium segregation model can describe the independence to temperature of the boron segregation and its very fast kinetics: these two characteristics have certainly to be explained by a segregation mechanism under equilibrium. The existence of a segregation mechanism under equilibrium has been confirmed by the observation of the acceleration of the vacancies elimination kinetics by boron. The interaction between the boron atoms and the thermal vacancies which migrates to grain boundaries lead to the formation of complexes. The importance of the boron effect is not limited to its role to grain boundaries. Indeed, has been observed a strong decrease of the long order distance in the alloys doped with boron. The structure of the dislocations created by the vacancies

  2. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    Science.gov (United States)

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  3. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    Science.gov (United States)

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  4. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    International Nuclear Information System (INIS)

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern

  5. Simulation of swift boron clusters traversing amorphous carbon foils

    OpenAIRE

    Heredia Ávalos, Santiago; Abril Sánchez, Isabel; Denton Zanello, Cristian D.; García Molina, Rafael

    2007-01-01

    We use a simulation code to study the interaction of swift boron clusters (Bn+, n=2–6, 14) with amorphous carbon foils. We analyze different aspects of this interaction, such as the evolution of the cluster structure inside the target, the energy and angle distributions at the detector or the stopping power ratio. Our simulation code follows in detail the motion of the cluster fragments through the target and in the vacuum until reaching a detector, taking into account the following interacti...

  6. Photoluminescence properties of boron doped InSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ertap, H., E-mail: huseyinertap@kafkas.edu.tr [Kafkas University, Faculty of Arts and Sciences, Department of Physics, 36100 Kars (Turkey); Bacıoğlu, A. [Hacattepe University, Department of Physics Engineering, 06800, Beytepe, Ankara (Turkey); Karabulut, M. [Kafkas University, Faculty of Arts and Sciences, Department of Physics, 36100 Kars (Turkey)

    2015-11-15

    Undoped and boron doped InSe single crystals were grown by Bridgman–Stockbarger technique. The PL properties of undoped, 0.1% and 0.5% boron doped InSe single crystals have been investigated at different temperatures. PL measurements revealed four emission bands labeled as A, B, C and D in all the single crystals studied. These emission bands were associated with the radiative recombination of direct free excitons (n=1), impurity-band transitions, donor–acceptor recombinations and structural defect related band (impurity atoms, defects, defect complexes, impurity-vacancy complex etc.), respectively. The direct free exciton (A) bands of undoped, 0.1% and 0.5% boron doped InSe single crystals were observed at 1.337 eV, 1.335 eV and 1.330 eV in the PL spectra measured at 12 K, respectively. Energy positions and PL intensities of the emission bands varied with boron addition. The FWHM of direct free exciton band increases while the FWHM of the D emission band decreases with boron doping. Band gap energies of undoped and boron doped InSe single crystals were calculated from the PL measurements. It was found that the band gap energies of InSe single crystals decreased with increasing boron content. - Highlights: • PL spectra of InSe crystals have been studied as a function of temperature. • Four emission bands were observed in the PL spectra at low temperatures. • PL intensity and position of free exciton band vary with doping and temperature. • Temperature dependences of the bands observed in the PL spectra were analyzed.

  7. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents. PMID:26877036

  8. Considerations for boron neutron capture therapy studies; Consideracoes sobre o estudo da BNCT (terapia de captura neutronica por boro)

    Energy Technology Data Exchange (ETDEWEB)

    Faria Gaspar, P. de

    1994-12-31

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps.

  9. Standard specification for nuclear-Grade boron carbide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This specification applies to boron carbide pellets for use as a control material in nuclear reactors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  10. Boron nitride elastic and thermal properties. Irradiation effects

    International Nuclear Information System (INIS)

    The anisotropy of boron nitride (BN) and especially thermal and elastic properties were studied. Specific heat and thermal conductivity between 1.2 and 300K, thermal conductivity between 4 and 350K and elastic constants C33 and C44 were measured. BN was irradiated with electrons at 77K and with neutrons at 27K to determine properties after irradiation

  11. Priority compositions of boron carbide crystals obtained by self-propagating high-temperature synthesis

    Science.gov (United States)

    Ponomarev, V. I.; Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I.

    2015-09-01

    Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide В15- х С х , (1.5 ≤ x ≤ 3) and its magnesium derivative C4B25Mg1.42. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from В12.9С2.1 to В12.4С2.6.

  12. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Chater, Richard J. [Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cañamares, Maria Vega [Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid (Spain); Marco, José F. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Castillejo, Marta, E-mail: marta.castllejo@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2015-02-15

    Highlights: • Micrometric rods obtained by ns pulsed laser deposition of boron carbide at 1064 and 266 nm. • At 1064 nm microrods display crystalline polyhedral shape with sharp edges and flat sides. • Microrods consist of a mixture of boron, boron oxide, boron carbide and aliphatic hydrocarbons. - Abstract: Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  13. Growth, yield, and calcium and boron uptake of tomato(Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.) asaffected by calcium and boron humate application in greenhouse conditions

    OpenAIRE

    EKİNCİ, MELEK; ESRİNGÜ, ASLIHAN; DURSUN, ATİLLA; YILDIRIM, Ertan; TURAN, METİN; KARAMAN, MEHMET RÜŞTÜ; ARJUMEND, TUBA

    2015-01-01

    The objective of this study was to examine the effect of calcium humate, boron humate, and humic acid solutions on growth, yield, quality, and calcium and boron uptake of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.), as well as changes in soil nutrient status after crop harvest. Four different concentrations (500, 1000, 3000, and 5000 mg kg-1) of calcium humate (12% CaO, 15% humic and fulvic acid), boron humate (10% BOH4, 15% humic and fulvic acid), and humic acid (15...

  14. Thermoelectric properties of β-boron and some boron compounds. Final report, August 1981-September 1984

    International Nuclear Information System (INIS)

    The thermoelectric properties, that is the Seebeck coefficient, and electrical and thermal conductivity, of doped β-boron have been measured from 300 to 1600 K. Most of the useful doping elements are transition metals and occupy interstitial sites in the lattice. The highest figure of merit so far achieved at 1000 K is ZT = 0.11 for P-type, polycrystalline, hot-pressed β-boron doped with copper. Higher values may be achievable once a better P-type dopant is found. Some experiments on B68Y, α-B12Al, B4C, and B6Si are described. Transition metals appear to be effective dopants for B68Y and B4C

  15. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Ashish Jain; C Ghosh; T R Ravindran; S Anthonysamy; R Divakar; E Mohandas; G S Gupta

    2013-12-01

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

  16. Synthesis of Boron Nitride Nanotubes for Engineering Applications

    Science.gov (United States)

    Hurst, Janet; Hull, David; Gorican, Dan

    2005-01-01

    Boron Nitride nanotubes (BNNT) are of interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted large amounts of attention. Both materials have potentially unique and significant properties which may have important structural and electronic applications in the future. However of even more interest than their similarities may be the differences between carbon and boron nanotubes. Whilt boron nitride nanotubes possess a very high modulus similaar to CNT, they are also more chemically and thermally inert. Additionally BNNT possess more uniform electronic properties, having a uniform band gap of approximately 5.5 eV while CNT vary from semi-conductin to conductor behavior. Boron Nitride nanotubes have been synthesized by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistently producing a reliable product has proven difficult. Progress in synthesis of 1-2 gram sized batches of Boron Nitride nanotubes will be discussed as well as potential uses for this unique material.

  17. New Ground-State Crystal Structure of Elemental Boron.

    Science.gov (United States)

    An, Qi; Reddy, K Madhav; Xie, Kelvin Y; Hemker, Kevin J; Goddard, William A

    2016-08-19

    Elemental boron exhibits many polymorphs in nature based mostly on an icosahedral shell motif, involving stabilization of 13 strong multicenter intraicosahedral bonds. It is commonly accepted that the most thermodynamic stable structure of elemental boron at atmospheric pressure is the β rhombohedral boron (β-B). Surprisingly, using high-resolution transmission electron microscopy, we found that pure boron powder contains grains of two different types, the previously identified β-B containing a number of randomly spaced twins and what appears to be a fully transformed twinlike structure. This fully transformed structure, denoted here as τ-B, is based on the Cmcm orthorhombic space group. Quantum mechanics predicts that the newly identified τ-B structure is 13.8  meV/B more stable than β-B. The τ-B structure allows 6% more charge transfer from B_{57} units to nearby B_{12} units, making the net charge 6% closer to the ideal expected from Wade's rules. Thus, we predict the τ-B structure to be the ground state structure for elemental boron at atmospheric pressure. PMID:27588864

  18. Proceedings of a specialist meeting on boron reactivity transients

    International Nuclear Information System (INIS)

    The CSNI Specialist Meeting on Boron Dilution Reactivity Transients was hosted by the Penn State University in collaboration with the US Nuclear Regulatory Commission and the TRAC Users Group. More than 70 experts from 12 OECD countries, as well as experts from Russia and other non-OECD countries attended the meeting. Thirty papers were presented in five technical sessions. The purpose of the meeting was to bring together experts involved in the different activities related to boron dilution transients. The experts came from all involved parties, including research organizations, regulatory authorities, vendors and utilities. Information was openly shared and discussed on the experimental results, plant and systems analysis, numerical analysis of mixing and probability and consequences of these transients. Regulatory background and licensing implications were also included to provide the proper frame work for the technical discussion. Each of these areas corresponded to a separate session. The meeting focused on the thermal-hydraulic aspects because of the current interest in that subject and the significant amount of new technical information being generated. Three papers of the same conference are already available in INIS as individual reports: Potential for boron dilution during small-break LOCAs in PWRs (Ref. number: 27029412); Analysis of boron dilution in a four-loop PWR (Ref. number: 27051651); Probability and consequences of a rapid boron dilution sequence in a PWR (Ref. number: 27029411)

  19. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  20. Boron toxicity in Lemna gibba

    OpenAIRE

    Mayra Sánchez Villavicencio; Carlos Álvarez Silva; Guadalupe Miranda Arce

    2007-01-01

    Total soluble phenols and total chlorophylls content, changes of biomass and concentration factor in Lemna gibba exposed to different concentrations of boron were measured. Day six soluble phenols showed significant differences in treatment with 10 mg/L of boron. At day ten, chlorophylls content in treatment 2 mg/L concentration increased respect to other experimental groups and control group, there were no significant differences. Biomass of Lemna gibba decreased significant in treatments wi...

  1. Atomic-Level Understanding of "Asymmetric Twins" in Boron Carbide

    Science.gov (United States)

    Xie, Kelvin Y.; An, Qi; Toksoy, M. Fatih; McCauley, James W.; Haber, Richard A.; Goddard, William A.; Hemker, Kevin J.

    2015-10-01

    Recent observations of planar defects in boron carbide have been shown to deviate from perfect mirror symmetry and are referred to as "asymmetric twins." Here, we demonstrate that these asymmetric twins are really phase boundaries that form in stoichiometric B4C (i.e., B12C3 ) but not in B13C2 . TEM observations and ab initio simulations have been coupled to show that these planar defects result from an interplay of stoichiometry, atomic positioning, icosahedral twinning, and structural hierarchy. The composition of icosahedra in B4C is B11C and translation of the carbon atom from a polar to equatorial site leads to a shift in bonding and a slight distortion of the lattice. No such distortion is observed in boron-rich B13C2 because the icosahedra do not contain carbon. Implications for tailoring boron carbide with stoichiometry and extrapolations to other hierarchical crystalline materials are discussed.

  2. Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters.

    Science.gov (United States)

    Ďorďovič, Vladimír; Tošner, Zdeněk; Uchman, Mariusz; Zhigunov, Alexander; Reza, Mehedi; Ruokolainen, Janne; Pramanik, Goutam; Cígler, Petr; Kalíková, Květa; Gradzielski, Michael; Matějíček, Pavel

    2016-07-01

    This is the first experimental evidence that both self-assembly and surface activity are common features of all water-soluble boron cluster compounds. The solution behavior of anionic polyhedral boranes (sodium decaborate, sodium dodecaborate, and sodium mercaptododecaborate), carboranes (potassium 1-carba-dodecaborate), and metallacarboranes {sodium [cobalt bis(1,2-dicarbollide)]} was extensively studied, and it is evident that all the anionic boron clusters form multimolecular aggregates in water. However, the mechanism of aggregation is dependent on size and polarity. The series of studied clusters spans from a small hydrophilic decaborate-resembling hydrotrope to a bulky hydrophobic cobalt bis(dicarbollide) behaving like a classical surfactant. Despite their pristine structure resembling Platonic solids, the nature of anionic boron cluster compounds is inherently amphiphilic-they are stealth amphiphiles. PMID:27287067

  3. A novel boron-loaded liquid scintillator for neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Bentoumi, G.; Dai, X.; Pruszkowski, E.; Li, L.; Sur, B., E-mail: bentoumg@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-06-15

    A boron-loaded liquid scintillator (LS) has been optimized for neutron detection application in a high gamma field environment. It is composed of the solvent linear alkylbenzene (LAB), a boron containing material, o-carborane (C{sub 2}B{sub 10}H{sub 12}); a fluor, 2,5-diphenyloxazole (PPO); and a wavelength shifter, 1,4-bis[2-methylstyryl] benzene (bis-MSB). Preparation of the liquid scintillator and optimization of its chemical composition are described. The boron-loaded LS has been tested with a neutron beam at the National Research Universal (NRU) reactor. A peak at an equivalent energy of 60 keV is observed in the energy spectrum and is attributed to neutrons. The results confirm the possibility of using B-10 loaded scintillator as a sensitive medium for neutron detection in a relatively large background of gamma rays. (author)

  4. Atomic-Level Understanding of "Asymmetric Twins" in Boron Carbide.

    Science.gov (United States)

    Xie, Kelvin Y; An, Qi; Toksoy, M Fatih; McCauley, James W; Haber, Richard A; Goddard, William A; Hemker, Kevin J

    2015-10-23

    Recent observations of planar defects in boron carbide have been shown to deviate from perfect mirror symmetry and are referred to as "asymmetric twins." Here, we demonstrate that these asymmetric twins are really phase boundaries that form in stoichiometric B(4)C (i.e., B(12)C(3)) but not in B(13)C(2). TEM observations and ab initio simulations have been coupled to show that these planar defects result from an interplay of stoichiometry, atomic positioning, icosahedral twinning, and structural hierarchy. The composition of icosahedra in B(4)C is B(11)C and translation of the carbon atom from a polar to equatorial site leads to a shift in bonding and a slight distortion of the lattice. No such distortion is observed in boron-rich B(13)C(2) because the icosahedra do not contain carbon. Implications for tailoring boron carbide with stoichiometry and extrapolations to other hierarchical crystalline materials are discussed.

  5. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.L. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Tang, Y.; Yang, L.; Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y.; Cui, X. [Canadian Light Source Inc., 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada)

    2015-08-31

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B{sub 4}C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B{sub 4}C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp{sup 3} bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp{sup 3} bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp{sup 3} bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films.

  6. Semiconducting boron carbides with better charge extraction through the addition of pyridine moieties

    Science.gov (United States)

    Echeverria, Elena; Dong, Bin; Peterson, George; Silva, Joseph P.; Wilson, Ethiyal R.; Sky Driver, M.; Jun, Young-Si; Stucky, Galen D.; Knight, Sean; Hofmann, Tino; Han, Zhong-Kang; Shao, Nan; Gao, Yi; Mei, Wai-Ning; Nastasi, Michael; Dowben, Peter A.; Kelber, Jeffry A.

    2016-09-01

    The plasma-enhanced chemical vapor (PECVD) co-deposition of pyridine and 1,2 dicarbadodecaborane, 1,2-B10C2H12 (orthocarborane) results in semiconducting boron carbide composite films with a significantly better charge extraction than plasma-enhanced chemical vapor deposited semiconducting boron carbide synthesized from orthocarborane alone. The PECVD pyridine/orthocarborane based semiconducting boron carbide composites, with pyridine/orthocarborane ratios ~3:1 or 9:1 exhibit indirect band gaps of 1.8 eV or 1.6 eV, respectively. These energies are less than the corresponding exciton energies of 2.0 eV-2.1 eV. The capacitance/voltage and current/voltage measurements indicate the hole carrier lifetimes for PECVD pyridine/orthocarborane based semiconducting boron carbide composites (3:1) films of ~350 µs compared to values of  ⩽35 µs for the PECVD semiconducting boron carbide films fabricated without pyridine. The hole carrier lifetime values are significantly longer than the initial exciton decay times in the region of ~0.05 ns and 0.27 ns for PECVD semiconducting boron carbide films with and without pyridine, respectively, as suggested by the time-resolved photoluminescence. These data indicate enhanced electron-hole separation and charge carrier lifetimes in PECVD pyridine/orthocarborane based semiconducting boron carbide and are consistent with the results of zero bias neutron voltaic measurements indicating significantly enhanced charge collection efficiency.

  7. Comparative biodistribution of 12 {sup 111}In-labelled gastrin/CCK2 receptor-targeting peptides

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Joosten, Lieke; Eek, Annemarie; Roosenburg, Susan; Oyen, Wim J.G.; Boerman, Otto C. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Peitl, Petra Kolenc [University Medical Centre Ljubljana, Department of Nuclear Medicine, Ljubljana (Slovenia); Maina, Theodosia [National Center for Scientific Research Demokritos, Molecular Radiopharmacy, Institute of Radioisotopes-Radiodiagnostic Products, Athens (Greece); Maecke, Helmut [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Aloj, Luigi [Fondazione ' ' G. Pascale' ' , Department of Nuclear Medicine, Istituto Nazionale Tumouri, Naples (Italy); Guggenberg, Elisabeth von [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria); Sosabowski, Jane K. [Queen Mary, University of London, Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, London (United Kingdom); Jong, Marion de [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Reubi, Jean-Claude [University of Berne, Institute of Pathology, Berne (Switzerland)

    2011-08-15

    Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several CCK-2 receptor-binding radiopeptides have been developed and some have been tested in patients. Here we aimed to compare the in vivo tumour targeting properties of 12 {sup 111}In-labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated gastrin/CCK2 receptor-binding peptides. Two CCK8-based peptides and ten gastrin-based peptide analogues were tested. All peptides were conjugated with DOTA and labelled with {sup 111}In. Biodistribution studies were performed in mice with subcutaneous CCK2/gastrin receptor-expressing tumours and with receptor-negative tumours contralaterally. Biodistribution was studied by counting dissected tissues at 1 and 4 h after injection. Both the CCK analogues displayed relatively low tumour uptake (approximately 2.5%ID/g) as compared to minigastrin analogues. Two linear minigastrin peptides (MG0 and sargastrin) displayed moderate tumour uptake at both 1 and 4 h after injection, but also very high kidney uptake (both higher than 48%ID/g). The linear MG11, lacking the penta-Glu sequence, showed lower tumour uptake and also low kidney uptake. Varying the N-terminal Glu residues in the minigastrin analogues led to improved tumour targeting properties, with PP-F11 displaying the optimal biodistribution. Besides the monomeric linear peptides, a cyclized peptide and a divalent peptide were tested. Based on these studies, optimal peptides for peptide receptor radionuclide targeting of CCK2/gastrin receptor-expressing tumours were the linear minigastrin analogue with six D-Glu residues (PP-F11), the divalent analogue MGD5 and the cyclic peptide cyclo-MG1. These peptides combined high tumour uptake with low kidney retention, and may

  8. Boron induced charge traps near the interface of Si/SiO{sub 2} probed by second harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Heungman; Varga, Kalman; Tolk, Norman [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Qi, Jingbo [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); National High Magnetic Field Laboratory, Tallahassee, Florida 32310 (United States); Xu, Ying [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Zomega Terahertz Corporation, Troy, New York 12180 (United States); Weiss, Sharon M. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Rogers, Bridget R. [Department of Chemical and Biomolecular Engineering, Nashville, Vanderbilt University, Tennessee 37235 (United States); Luepke, Gunter [Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23187 (United States)

    2010-08-15

    We review recent second harmonic generation (SHG) measurements for highly boron-doped Si/SiO{sub 2} systems. Using electric field sensitive time-dependent SHG (TD-SHG), we determined that the direction of the initial DC electric field at the interface induced by boron induced charge traps is from oxide to silicon thus demonstrating that the boron induced charge traps in the oxide are positively charged. For a thin oxide ({proportional_to}2 nm) both boron traps and O{sub 2} surface oxide traps contribute. However, for a highly boron-doped Si/SiO{sub 2} sample with a thick thermally grown oxide (thickness: 12 nm), the TD-SHG signal exhibits a monotonic decrease arising from filling only the boron charge traps. By fitting our data, we show that the interface effective susceptibility vertical stroke {chi}{sup (2)} vertical stroke is heavily dependent on doping concentration. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Environmental Engeneering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Environmental Engeneering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey); Yilmaz, M. Tolga [Environmental Engeneering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Chemical Engineering Department, Engineering Faculty, Atatuerk University, 25240 Erzurum (Turkey)

    2005-01-31

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions.

  10. The boron trifluoride nitromethane adduct

    Science.gov (United States)

    Ownby, P. Darrell

    2004-02-01

    The separation of the boron isotopes using boron trifluoride·organic-donor, Lewis acid·base adducts is an essential first step in preparing 10B enriched and depleted crystalline solids so vital to nuclear studies and reactor applications such as enriched MgB 2, boron carbide, ZrB 2, HfB 2, aluminum boron alloys, and depleted silicon circuits for radiation hardening and neutron diffraction crystal structure studies. The appearance of this new adduct with such superior properties demands attention in the continuing search for more effective and efficient means of separation. An evaluation of the boron trifluoride nitromethane adduct, its thermodynamic and physical properties related to large-scale isotopic separation is presented. Its remarkably high separation factor was confirmed to be higher than the expected theoretical value. However, the reportedly high acid/donor ratio was proven to be an order of magnitude lower. On-going research is determining the crystal structure of deuterated and 11B enriched 11BF 3·CD 3NO 2 by X-ray and neutron diffraction.

  11. Ion implantation of boron in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.S.

    1985-05-01

    Ion implantation of /sup 11/B/sup +/ into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of /sup 11/B/sup +/ into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10/sup 11//cm/sup 2/ to 1 x 10/sup 14//cm/sup 2/) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses (<1 x 10/sup 12//cm/sup 2/). Three damage related hole traps are produced by ion implantation of /sup 11/B/sup +/. Two of these hole traps have also been observed in ..gamma..-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures (<300/sup 0/C). Boron, from room temperature implantation of BF/sub 2//sup +/ into Ge, is not substitutionally active prior to a post implant annealing step of 250/sup 0/C for 30 minutes. After annealing additional shallow acceptors are observed in BF/sub 2//sup +/ implanted samples which may be due to fluorine or flourine related complexes which are electrically active.

  12. Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength

    Science.gov (United States)

    Laha, Kinkar; Kyono, J.; Shinya, Norio

    2012-04-01

    Type 347 austenitic stainless steel (18Cr-12Ni-Nb) was alloyed with copper (3 wt pct), boron (0.01 to 0.06 wt pct), and cerium (0.01 wt pct) with an aim to increase the creep rupture strength of the steel through the improved deformation and cavitation resistance. Short-term creep rupture strength was found to increase with the addition of copper in the 347 steel, but the long-term strength was inferior. Extensive creep cavitation deprived the steel of the beneficial effect of creep deformation resistance induced by nano-size copper particles. Boron and cerium additions in the copper-containing steel increased its creep rupture strength and ductility, which were more for higher boron content. Creep deformation, grain boundary sliding, and creep cavity nucleation and growth in the steel were found to be suppressed by microalloying the copper-containing steel with boron and cerium, and the suppression was more for higher boron content. An auger electron spectroscopic study revealed the segregation of boron instead of sulfur on the cavity surface of the boron- and cerium-microalloyed steel. Cerium acted as a scavenger for soluble sulfur in the steels through the precipitation of cerium sulfide (CeS). This inhibited the segregation of sulfur and facilitated the segregation of boron on cavity surface. Boron segregation on the nucleated cavity surface reduced its growth rate. Microalloying the copper-containing 347 steel with boron and cerium thus enabled to use the full extent of creep deformation resistance rendered by copper nano-size particle by increase in creep rupture strength and ductility.

  13. Stromal-Cell-Derived Factor-1 (SDF-1/CXCL12 as Potential Target of Therapeutic Angiogenesis in Critical Leg Ischaemia

    Directory of Open Access Journals (Sweden)

    Teik K. Ho

    2012-01-01

    Full Text Available In the Western world, peripheral vascular disease (PVD has a high prevalence with high morbidity and mortality. In a large percentage of these patients, lower limb amputation is still required. Studies of ischaemic skeletal muscle disclosed evidence of endogenous angiogenesis and adaptive skeletal muscle metabolic changes in response to hypoxia. Chemokines are potent chemoattractant cytokines that regulate leukocyte trafficking in homeostatic and inflammatory processes. More than 50 different chemokines and 20 different chemokine receptors have been cloned. The chemokine stromal-cell-derived factor-1 (SDF-1 aka CXCL12 is a constitutively expressed and inducible chemokine that regulates multiple physiological processes, including embryonic development and organ homeostasis. The biologic effects of SDF-1 are mediated by chemokine receptor CXCR4, a 352 amino acid rhodopsin-like transmembrane-specific G protein-coupled receptor (GPCR. There is evidence that the administration of SDF-1 increases blood flow and perfusion via recruitment of endothelial progenitor cells (EPCs. This review will focus on the role of the SDF-1/CXCR4 system in the pathophysiology of PVD and discuss their potential as therapeutic targets for PVD.

  14. TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor | Office of Cancer Genomics

    Science.gov (United States)

    TARGET researchers molecularly characterized favorable histology Wilms tumor (FHWT), a pediatric renal cancer. Comprehensive genome and transcript analyses revealed single-nucleotide substitution/deletion mutations in microRNA processing genes (15% of FHWT patients) and Sine Oculis Homeobox Homolog 1/2 (SIX1/2) genes (7% of FHWT patients). SIX1/2 genes play a critical role in renal development and were not previously associated with FHWT, thus presenting a novel role for SIX1/2 pathway aberrations in this disease.

  15. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  16. Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters.

    Science.gov (United States)

    Del-Campo Marín, Claudia M; Oron, Gideon

    2007-12-01

    Boron (B) is often found in polluted and desalinated waters. Despite its potentially environmental damaging effects, efficient treatments are lacking. The duckweed Lemna gibba has been shown to remove toxic elements from water; however, its applicability to B removal is unknown. In this study, L. gibba was examined for its tolerance to B in water and its B removal efficiency. Duckweed plants were grown in outdoor 12-day batch experiments in nutrient solution containing 0.3-10 mg B L(-1). Plant biomass production was not affected by B over the tested concentrations during the 12-day cultivation period. Boron removal and the bioconcentration factor of B in L. gibba were highest at initial B concentrations below 2 mg L(-1), and decreased as the initial B concentration increased. Boron content in the plants at the end of the experiment ranged between 930 and 1900 mg kg(-1) dry weight, and was comparable to that of wetland plants reported to be good B accumulators. Boron removal by L. gibba may therefore be a suitable option for the treatment of water containing B concentrations below 2 mg L(-1). PMID:17643472

  17. The fracture toughness of Fe{sub 2}B formed on boronized AISI 304

    Energy Technology Data Exchange (ETDEWEB)

    Topuz, Polat; Guendogdu, Emine; Yilamz, Eren; Guemues, Emre [Gedik Univ., Pendik Istanbul (Turkey). Gedik Vocational School

    2014-10-01

    In this study, the fracture toughness of Fe{sub 2}B boride layer on boronized AISI 304 stainless steel was investigated. Samples were boronized in an indirect heated fluidized bed furnace with Ekabor 1 trademark boronizing agent at 1123 K, 1223 K, and 1323 K for 1 h, 2 h, and 4 h, respectively. The boride phases were investigated by X-ray diffraction (XRD) analysis. Hardness and fracture toughness of borides were measured via Vickers indentation. With increasing boriding temperature and time the fracture toughness values were reduced. The boride layer thickness formed on the boronized samples ranged between 12 μm and 176 μm. The hardness of the borides ranged between 1709 HV{sub 0.1} and 2119 HV{sub 0.1} and fracture toughness was in the range of 2.19-4.47 MPa x m{sup 1/2} depending on the layer thickness and hardness.

  18. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  19. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  20. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  1. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  2. Mechanical properties of boron coatings

    International Nuclear Information System (INIS)

    Internal stress of coatings will cause reliability problems, such as adhesion failure and peeling. We measured the internal stress in boron coatings, which was prepared by the ion plating method, with an apparatus based on the optically levered laser technique. The boron coatings exhibited large compressive stress in the range from -0.5 GPa to -2.6 GPa. It was found that these compressive stresses were decreasing functions of the deposition rate and were increasing functions of the ion bombardment energy. ((orig.))

  3. Boron Clusters as Highly Stable Magnesium-Battery Electrolytes**

    OpenAIRE

    Carter, Tyler J; Mohtadi, Rana; Arthur, Timothy S; Mizuno, Fuminori; Zhang, Ruigang; Shirai, Soichi; Kampf, Jeff W.

    2014-01-01

    Boron clusters are proposed as a new concept for the design of magnesium-battery electrolytes that are magnesium-battery-compatible, highly stable, and noncorrosive. A novel carborane-based electrolyte incorporating an unprecedented magnesium-centered complex anion is reported and shown to perform well as a magnesium-battery electrolyte. This finding opens a new approach towards the design of electrolytes whose likelihood of meeting the challenging design targets for magnesium-battery electro...

  4. Proteomic identification of protein targets for 15-deoxy-Δ(12,14-prostaglandin J2 in neuronal plasma membrane.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Yamamoto

    Full Text Available 15-deoxy-Δ(12,14-prostaglandin J(2 (15d-PGJ(2 is one of factors contributed to the neurotoxicity of amyloid β (Aβ, a causative protein of Alzheimer's disease. Type 2 receptor for prostaglandin D(2 (DP2 and peroxysome-proliferator activated receptorγ (PPARγ are identified as the membrane receptor and the nuclear receptor for 15d-PGJ(2, respectively. Previously, we reported that the cytotoxicity of 15d-PGJ(2 was independent of DP2 and PPARγ, and suggested that 15d-PGJ(2 induced apoptosis through the novel specific binding sites of 15d-PGJ(2 different from DP2 and PPARγ. To relate the cytotoxicity of 15d-PGJ(2 to amyloidoses, we performed binding assay [(3H]15d-PGJ(2 and specified targets for 15d-PGJ(2 associated with cytotoxicity. In the various cell lines, there was a close correlation between the susceptibilities to 15d-PGJ(2 and fibrillar Aβ. Specific binding sites of [(3H]15d-PGJ(2 were detected in rat cortical neurons and human bronchial smooth muscle cells. When the binding assay was performed in subcellular fractions of neurons, the specific binding sites of [(3H]15d-PGJ(2 were detected in plasma membrane, nuclear and cytosol, but not in microsome. A proteomic approach was used to identify protein targets for 15d-PGJ(2 in the plasma membrane. By using biotinylated 15d-PGJ(2, eleven proteins were identified as biotin-positive spots and classified into three different functional proteins: glycolytic enzymes (Enolase2, pyruvate kinase M1 (PKM1 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH, molecular chaperones (heat shock protein 8 and T-complex protein 1 subunit α, cytoskeletal proteins (Actin β, F-actin-capping protein, Tubulin β and Internexin α. GAPDH, PKM1 and Tubulin β are Aβ-interacting proteins. Thus, the present study suggested that 15d-PGJ(2 plays an important role in amyloidoses not only in the central nervous system but also in the peripheral tissues.

  5. Determination of boron spectrophotometry in thorium sulfate

    International Nuclear Information System (INIS)

    A procedure for the determination of microquantities of boron in nuclear grade thorium sulfate is described. The method is based on the extraction of BF-4 ion associated to monomethylthionine (MMT) in 1,2 - dichloroethane. The extraction of the colored BF-4-MMT complex does not allow the presence of sulfuric and phosphoric acids; other anions interfere seriously. This fact makes the dissolution of the thorium sulfate impracticable, since it is insoluble in both acids. On the other hand, the quantitative separation of thorium is mandatory, to avoid the precipitation of ThF4. To overcome this difficulty, the thorium sulfate is dissolved using a strong cationic ion exchanger, Th4+ being totally retained into the resin. Boron is then analysed in the effluent. The procedure allows the determination of 0.2 to 10.0 microgramas of B, with a maximum error of 10%. Thorium sulfate samples with contents of 0.2 to 2.0μg B/gTh have being analysed

  6. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick [Univ. of California, Los Angeles, CA (United States)

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are

  7. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic

  8. miR-K12-7-5p encoded by Kaposi's sarcoma-associated herpesvirus stabilizes the latent state by targeting viral ORF50/RTA.

    Directory of Open Access Journals (Sweden)

    Xianzhi Lin

    Full Text Available Seventeen miRNAs encoded by Kaposi's sarcoma-associated herpesvirus (KSHV have been identified and their functions have begun to be characterized. Among these miRNAs, we report here that miR-K12-7 directly targets the replication and transcription activator (RTA encoded by open reading frame 50. We found that miR-K12-7 targeted the RTA 3' untranslated region (RTA3'UTR in a seed sequence-dependent manner. miR-K12-7-5p derived from miR-K12-7 mediates the inhibition of RTA expression, and the mutation of the seed match site totally abrogated the inhibitory effect of miR-K12-7 on RTA3'UTR. The inhibition of RTA expression by miR-K12-7 was further confirmed in the latently KSHV-infected 293/Bac36 cell line through transient transfection of miR-K12-7 expression plasmid or specific inhibitor of miR-K12-7-5p, respectively. The transient transfection of miR-K12-7 into 293/Bac36 cells reduced RTA expression and the expression of the downstream early genes regulated by RTA, and also the production of progeny virus was significantly reduced after treatment with chemical inducers. Our study revealed that another miRNA, miR-K12-7-5p, targets the viral immediate early gene RTA and that this miRNA contributes to the maintenance of viral latency.

  9. Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2015-09-01

    An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.

  10. Optimal timing of neutron irradiation for boron neutron capture therapy after intravenous infusion of sodium borocaptate in patients with glioblastoma

    International Nuclear Information System (INIS)

    Purpose: A cooperative study in Europe and Japan was conducted to determine the pharmacokinetics and boron uptake of sodium borocaptate (BSH: Na2B12H11SH), which has been introduced clinically as a boron carrier for boron neutron capture therapy in patients with glioblastoma. Methods and Materials: Data from 56 patients with glioblastoma who received BSH intravenous infusion were retrospectively reviewed. The pharmacokinetics were evaluated in 50 patients, and boron uptake was investigated in 47 patients. Patients received BSH doses between 12 and 100 mg/kg of body weight. For the evaluation, the infused boron dose was scaled linearly to 100 mg/kg BSH. Results: In BSH pharmacokinetics, the average value for total body clearance, distribution volume of steady state, and mean residence time was 3.6±1.5 L/h, 223.3±160.7 L, and 68.0±52.5 h, respectively. The average values of the boron concentration in tumor adjusted to 100 mg/kg BSH, the boron concentration in blood adjusted to 100 mg/kg BSH, and the tumor/blood boron concentration ratio were 37.1±35.8 ppm, 35.2±41.8 ppm, and 1.53±1.43, respectively. A good correlation was found between the logarithmic value of Tadj and the interval from BSH infusion to tumor tissue sampling. About 12-19 h after infusion, the actual values for Tadj and tumor/blood boron concentration ratio were 46.2±36.0 ppm and 1.70±1.06, respectively. The dose ratio between tumor and healthy tissue peaked in the same interval. Conclusion: For boron neutron capture therapy using BSH administered by intravenous infusion, this work confirms that neutron irradiation is optimal around 12-19 h after the infusion is started

  11. The isotopic effect and spectroscopic studies of boron orthophosphate (BPO 4)

    Science.gov (United States)

    Adamczyk, A.; Handke, M.

    2000-11-01

    Boron orthophosphate (BPO 4) belongs to the group of SiO 2-derivative structures. Its network is built up of boron and phosphorous tetrahedra, with boron and phosphorous atoms at almost the same positions as the silicon atoms in high-temperature cristobalite structure. In the present work, the interpretation of IR and Raman spectra of BPO 4 was carried out based on the model of PO 4 tetrahedron isolated by boron atoms. The factor group analysis enabled the separation of 12 bands due to the vibrations of PO 4 tetrahedron and three bands due to pseudo-lattice boron-oxygen bond vibrations. Substitution of boron atoms with 10B isotope caused shifts of the bands in the IR spectra, which made it possible to distinguish the bands due to boron-oxygen and phosphorus-oxygen bond vibrations. Based on the factor group analysis and isotopic effect, all bands in the IR and Raman spectra were assigned to the appropriate bond vibrations.

  12. Analysis of boronized wall in LHD

    International Nuclear Information System (INIS)

    Boronization has been carried out in some experimental fusion devices as one of wall conditioning Methods. The well-known merits of the boronization are as follows: 1) coated-boron on the first wall has strong gettering function for oxygen impurities and oxygen has been kept into boron films as a boron-oxide and 2) boron film covers first wall with apparently low Z materials facing the plasma. However, an operation scenario of boronization for next generation devices such as ITER is not optimized. In this paper, we discuss an optimized method of coated film uniformity in a wide area and a lifetime of boron film as an oxygen getter using experimental data in the large helical device (LHD). In LHD, boronization by glow discharges has been carried out a few times during each experimental campaign. Helium-diborane mixtured gas is used and plasma facing components (PFM) are stainless steel (SS) for the first wall and carbon for the divertor plates kept in the room temperature. Material probes made of SS316 and Si were installed in the vacuum vessel and exposed during the experimental campaign. Depth profiles of their impurities were analyzed using the X-ray Photoelectron Spectroscopy (XPS) and the Auger electron spectroscopy (AES). Two types of gettering process by boron film have been investigated. One is the process during boronization and the other is that after boronization. Concerning a lifetime of boron film, the distribution of oxygen near the top surface region (0 to 20 nm) indicates a process of oxygen gettering, it shows a contribution after boronization. In this paper, these kinds of process using material probes are shown. (authors)

  13. Boron Poisoning of Plutonium Solutions

    International Nuclear Information System (INIS)

    The results of a theoretical investigation into the possible relaxation of criticality concentration limits in wet chemical reprocessing plants, due to the introduction of boron poisoning, are reported. The following systems were considered: 1. 1 in. stainless steel tubes filled with boron carbide at various pitches in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 2. 1 in. and 2 in borosilicate glass Raschig rings in homogeneous mixtures of 239Pu (NO3)4, 5H2O and water. 3. The concentration of natural boron required for k∞ = 1 in homogeneous mixtures of 239Pu-B-H2O. The method of calculation was Monte Carlo using the GEM code with Nuclear Data File cross-sections. The Raschig rings used are those commercially available. The core model consisted of a cubic arrangement of unit cubes of solution within each of which a Raschig ring was centrally placed. The arrangement was such that the rings were regularly stacked with axes parallel, but the side of the unit cube was fixed to preserve the random packing density. Comparison is made with other reported results on boron poisoning. (author)

  14. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  15. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  16. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  17. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA.

  18. Laser-initiated primary and secondary nuclear reactions in Boron-Nitride

    Science.gov (United States)

    Labaune, C.; Baccou, C.; Yahia, V.; Neuville, C.; Rafelski, J.

    2016-02-01

    Nuclear reactions initiated by laser-accelerated particle beams are a promising new approach to many applications, from medical radioisotopes to aneutronic energy production. We present results demonstrating the occurrence of secondary nuclear reactions, initiated by the primary nuclear reaction products, using multicomponent targets composed of either natural boron (B) or natural boron nitride (BN). The primary proton-boron reaction (p + 11B → 3 α + 8.7 MeV), is one of the most attractive aneutronic fusion reaction. We report radioactive decay signatures in targets irradiated at the Elfie laser facility by laser-accelerated particle beams which we interpret as due to secondary reactions induced by alpha (α) particles produced in the primary reactions. Use of a second nanosecond laser beam, adequately synchronized with the short laser pulse to produce a plasma target, further enhanced the reaction rates. High rates and chains of reactions are essential for most applications.

  19. A new interlayer potential for hexagonal boron nitride

    Science.gov (United States)

    Akıner, Tolga; Mason, Jeremy K.; Ertürk, Hakan

    2016-09-01

    A new interlayer potential is developed for interlayer interactions of hexagonal boron nitride sheets, and its performance is compared with other potentials in the literature using molecular dynamics simulations. The proposed potential contains Coulombic and Lennard-Jones 6–12 terms, and is calibrated with recent experimental data including the hexagonal boron nitride interlayer distance and elastic constants. The potentials are evaluated by comparing the experimental and simulated values of interlayer distance, density, elastic constants, and thermal conductivity using non-equilibrium molecular dynamics. The proposed potential is found to be in reasonable agreement with experiments, and improves on earlier potentials in several respects. Simulated thermal conductivity values as a function of the number of layers and of temperature suggest that the proposed LJ 6–12 potential has the ability to predict some phonon behaviour during heat transport in the out-of-plane direction.

  20. MicroRNA-194 promotes the growth, migration, and invasion of ovarian carcinoma cells by targeting protein tyrosine phosphatase nonreceptor type 12

    Science.gov (United States)

    Liang, Tian; Li, Liru; Cheng, Yan; Ren, Chengcheng; Zhang, Guangmei

    2016-01-01

    Ovarian carcinoma is the most lethal gynecologic malignancy among women. Ovarian cancer metastasis is the main reason for poor prognosis. MicroRNAs (miRNAs) have been shown to play an important role in tumorigenesis and metastasis in various cancers by affecting the expression of their targets. In this study, we explored the role of miR-194 in ovarian cancer. Real-time polymerase chain reaction assays showed that miR-194 was significantly upregulated in ovarian cancer tissues. Overexpression of miR-194 in ovarian cancer cells promotes cell proliferation, migration, and invasion; in contrast, inhibition of the expression of miR-194 has the opposite effects. Meanwhile, bioinformatics tools were used to identify protein tyrosine phosphatase nonreceptor type 12 (PTPN12) as a potential target of miR-194. The luciferase assay showed that miR-194 directly binds to the 3′-untranslated region of PTPN12. Western blot analysis and quantitative real-time polymerase chain reaction assay revealed that PTPN12 expression was negatively associated with miR-194 expression in both ovarian cancer tissues and cells. Thus, we conclude that miR-194 targets PTPN12 and functions as an oncogene in ovarian cancer cells. This novel pathway may provide a new insight to explain ovarian cancer development and metastasis. PMID:27486333

  1. The EZH1-SUZ12 complex positively regulates the transcription of NF-κB target genes through interaction with UXT.

    Science.gov (United States)

    Su, Shuai-Kun; Li, Chun-Yuan; Lei, Pin-Ji; Wang, Xiang; Zhao, Quan-Yi; Cai, Yang; Wang, Zhen; Li, Lianyun; Wu, Min

    2016-06-15

    Unlike other members of the polycomb group protein family, EZH1 has been shown to positively associate with active transcription on a genome-wide scale. However, the underlying mechanism for this behavior still remains elusive. Here, we report that EZH1 physically interacts with UXT, a small chaperon-like transcription co-activator. UXT specifically interacts with EZH1 and SUZ12, but not EED. Similar to upon knockdown of UXT, knockdown of EZH1 or SUZ12 through RNA interference in the cell impairs the transcriptional activation of nuclear factor (NF)-κB target genes induced by TNFα. EZH1 deficiency also increases TNFα-induced cell death. Interestingly, chromatin immunoprecipitation and the following next-generation sequencing analysis show that H3K27 mono-, di- and tri-methylation on NF-κB target genes are not affected in EZH1- or UXT-deficient cells. EZH1 also does not affect the translocation of the p65 subunit of NF-κB (also known as RELA) from the cytosol to the nucleus. Instead, EZH1 and SUZ12 regulate the recruitment of p65 and RNA Pol II to target genes. Taken together, our study shows that EZH1 and SUZ12 act as positive regulators for NF-κB signaling and demonstrates that EZH1, SUZ12 and UXT work synergistically to regulate pathway activation in the nucleus. PMID:27127229

  2. Medical aspects of boron-slow neutron capture therapy

    International Nuclear Information System (INIS)

    Earlier radiations of patients with cerebral tumors disclosed the need: (1) to find a carrier of the boron compound which would leave the blood and concentrate in the tumor, (2) to use a more penetrating neutron beam, and (3) to develop a much faster method for assaying boron in blood and tissue. To some extent number1 has been accomplished in the form of Na2 B12 H11 SH, number2 has yet to be achieved, and number3 has been solved by the measurement of the 478-keV gamma ray when the 10B atom disintegrates following its capture of a slow neutron. The hitherto unreported data in this paper describe through the courtesy of Professor Hiroshi Hatanaka his studies on the pharmacokinetics and quality control of Na2 B12 H11SH based on 96 boron infusions in 86 patients. Simultaneous blood and tumor data are plotted here for 30 patients with glioblastomas (Grade III-IV gliomas), illustrating remarkable variability. Detailed autopsy findings on 18 patients with BNCT showed radiation injury in only 1. Clinical results in 12 of the most favorably situated glioblastomas reveal that 5 are still alive with a 5-year survival rate of 58% and the excellent Karnofsky performance rating of 87%. For the first time evidence is presented that slow-growing astrocytomas may benefit from BNCT. 10 references, 8 figures, 5 tables

  3. Jaguar Procedures for Detonation Behavior of Explosives Containing Boron

    Science.gov (United States)

    Stiel, L. I.; Baker, E. L.; Capellos, C.

    2009-12-01

    The Jaguar product library was expanded to include boron and boron containing products by analysis of Available Hugoniot and static volumetric data to obtain constants of the Murnaghan relationships for the components. Experimental melting points were also utilized to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX—boron mixtures calculated with these relationships using Jaguar are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that the boron does not react near the detonation front or that boron mixtures exhibit eigenvalue detonation behavior (as shown by some aluminized explosives), with higher detonation velocities at the initial points. Analyses of calorimetric measurements for RDX—boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the detonation properties of the formulation.

  4. Prediction of boron carbon nitrogen phase diagram

    Science.gov (United States)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  5. Synthesis of Boron Nanowires, Nanotubes, and Nanosheets

    Directory of Open Access Journals (Sweden)

    Rajen B. Patel

    2015-01-01

    Full Text Available The synthesis of boron nanowires, nanotubes, and nanosheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nanomaterials. The materials were made by using various combinations of MgB2, Mg(BH42, MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nanowires, boron nanotubes, and boron nanosheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  6. Heavy fragment energies and angular distributions in the reaction of 85 MeV/nucleon 12C with medium-A target

    International Nuclear Information System (INIS)

    Using the thin target - thin catchers techniques, masses, mean recoil energies and angular distributions of target residues have been measured for 86 MeV/nucleon 12C induced reactions. Several different nuclear reaction processes, from peripheral to central collisions have been observed. Experimental results are partly reproduced by intra-nuclear cascade + evaporation calculations. Up to now, the production of the lightest masses (44< A<71) recoiling with high kinetic energies is not correctly understood by theoretical models. More exclusive experiments are needful to check if the formation of a highly excited quasi-compound nucleus could be a possible explanation of the phenomena

  7. Assessment of experimental d-PIGE γ-ray production cross sections for 12C, 14N and 16O and comparison with absolute thick target yields

    Science.gov (United States)

    Csedreki, L.; Halász, Z.; Kiss, Á. Z.

    2016-08-01

    Measured differential cross sections for deuteron induced γ-ray emission from the reactions 12C(d,pγ)13C, (Eγ = 3089 keV), 14N(d,pγ)15N (Eγ = 8310 keV) and 16O(d,pγ)17O (Eγ = 871 keV) available in the literature were assessed. In order to cross check the assessed γ-ray production cross section data, thick target γ-yields calculated from the differential cross sections were compared with available measured thick target yields. Recommended differential cross section data for each reaction were deduced for particle induced γ-ray emission (PIGE) applications.

  8. Boron clusters in luminescent materials.

    Science.gov (United States)

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed. PMID:26574714

  9. CVD-produced boron filaments

    Science.gov (United States)

    Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.

    1980-01-01

    A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.

  10. Boron Enrichment in Martian Clay

    OpenAIRE

    James D Stephenson; Lydia J Hallis; Kazuhide Nagashima; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest minera...

  11. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  12. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  13. Secondary radiation measurements for particle therapy applications: Charged secondaries produced by 4He and 12C ion beams in a PMMA target at large angle

    CERN Document Server

    Rucinski, A; Battistoni, G; Collamati, F; Faccini, R; Frallicciardi, P M; Mancini-Terracciano, C; Marafini, M; Mattei, I; Muraro, S; Paramatti, R; Piersanti, L; Pinci, D; Russomando, A; Sarti, A; Sciubba, A; Camillocci, E Solfaroli; Toppi, M; Traini, G; Voena, C; Patera, V

    2016-01-01

    Measurements performed with the purpose of characterizing the charged secondary radiation for dose release monitoring in particle therapy are reported. Charged secondary yields, energy spectra and emission profiles produced in poly-methyl methacrylate (PMMA) target by 4He and 12C beams of different therapeutic energies were measured at 60 and 90 degree with respect to the primary beam direction. The secondary yields of protons produced along the primary beam path in PMMA target were obtained. The energy spectra of charged secondaries were obtained from time-of-flight information, whereas the emission profiles were reconstructed exploiting tracking detector information. The measured charged secondary yields and emission profiles are in agreement with the results reported in literature and confirm the feasibility of ion beam therapy range monitoring using 12C ion beam. The feasibility of range monitoring using charged secondary particles is also suggested for 4He ion beam.

  14. Comparative biodistribution of 12 (1)(1)(1)In-labelled gastrin/CCK2 receptor-targeting peptides

    NARCIS (Netherlands)

    Laverman, P.; Joosten, L.; Eek, A.; Roosenburg, S.; Peitl, P.K.; Maina, T.; Macke, H.; Aloj, L.; Guggenberg, E. von; Sosabowski, J.K.; Jong, M. de; Reubi, J.C.; Oyen, W.J.G.; Boerman, O.C.

    2011-01-01

    PURPOSE: Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several C

  15. Targeting TORC1/2 enhances sensitivity to EGFR inhibitors in head and neck cancer preclinical models.

    Science.gov (United States)

    Cassell, Andre; Freilino, Maria L; Lee, Jessica; Barr, Sharon; Wang, Lin; Panahandeh, Mary C; Thomas, Sufi M; Grandis, Jennifer R

    2012-11-01

    Head and neck squamous cell carcinoma (HNSCC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR) complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473), phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA)-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC. PMID:23226094

  16. Targeting TORC1/2 Enhances Sensitivity to EGFR Inhibitors in Head and Neck Cancer Preclinical Models

    Directory of Open Access Journals (Sweden)

    Andre Cassell

    2012-11-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is characterized by overexpression of the epidermal growth factor receptor (EGFR where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473, phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC.

  17. Setting Whole-Building Absolute Energy Use Targets for the K-12 School, Retail, and Healthcare Sectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Leach, M.; Bonnema, E.; Pless, S.; Torcellini, P.

    2012-08-01

    This paper helps owners' efficiency representatives to inform executive management, contract development, and project management staff as to how specifying and applying whole-building absolute energy use targets for new construction or renovation projects can improve the operational energy performance of commercial buildings.

  18. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Science.gov (United States)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  19. Method for determination of boron carbide in wurtzite-like boron nitride

    International Nuclear Information System (INIS)

    A technique for increase of sensitivity and analysis accuracy while boron carbide determination in wurtzite-like boron nitride is proposed. Boron nitride with an addition of boron carbide is bjected to treatment by the mixture of concentrated sulphuric acid and 0.1-0.5 N of porassium bichromate solution at ratio of (2-1):1 at the temperature of mixture boiling. Boron carboide content is calculated according to the quantity of restored Cr(3+), which is determined by titration of Cr(6+) excess with the Mohr's salt solution

  20. Boron water quality for the Plynlimon catchments

    Directory of Open Access Journals (Sweden)

    C. Neal

    1997-01-01

    Full Text Available Boron concentrations in rainfall, throughfall and stemflow for Spruce stands, mist, streamwater and groundwater are compared with chloride to assess atmospheric sources and catchment input-output balances for the Plynlimon catchments. In rainfall, boron concentration averages about 4.5 μg-B l-1 and approximately two thirds of this comes from anthropogenic sources. In through-fall and stemflow, boron concentrations are approximately a factor of ten times higher than in rainfall. This increase is associated with enhanced scavenging of mist and dry deposition by the trees. As the sampling sites were close to a forest edge, this degree of scavenging is probably far higher than in the centre of the forest. The throughfall and stemflow concentrations of boron show some evidence of periodic variations with time with peak concentrations occurring during the summer months indicating some vegetational cycling. In mist, boron concentrations are almost twenty times higher than in rainfall and anthropogenic sources account for about 86% of this. Within the Plynlimon streams, boron concentrations are about 1.4 to 1.7 times higher than in rainfall. However, after allowance for mist and dry deposition contributions to atmospheric deposition, it seems that, on average, about 30% of the boron input is retained within the catchment. For the forested catchments, felling results in a disruption of the biological cycle and a small increase in boron leaching from the catchment results in the net retention by the catchment being slightly reduced. Despite the net uptake by the catchment, there is clear evidence of a boron component of weathering from the bedrock. This is shown by an increased boron concentration in a stream influenced by a nearby borehole which increased groundwater inputs. The weathering component for boron is also observed in Plynlimon groundwaters as boron concentrations and boron to chloride ratios are higher than for the streams. For these

  1. Surface analysis of VPS-W coatings boronized by an ICRF discharge in HT-7

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhongshi, E-mail: zsyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, PO. Box 1126, Hefei 230031 (China); Wang Wanjing [Institute of Plasma Physics, Chinese Academy of Sciences, PO. Box 1126, Hefei 230031 (China); Radiosicence Research Laboratory, Shizuoka University, 836 Oya, Shizuoka 422-8529 (Japan); Li Qiang; Wu Jing [Institute of Plasma Physics, Chinese Academy of Sciences, PO. Box 1126, Hefei 230031 (China); Okuno, Kenji; Oya, Yasuhisa [Radiosicence Research Laboratory, Shizuoka University, 836 Oya, Shizuoka 422-8529 (Japan); Luo Guangnan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, PO. Box 1126, Hefei 230031 (China)

    2011-10-01

    To understand the surface compositions and the hydrogen isotope behavior in boronized Vacuum plasma spraying (VPS)-W, the boron coating has been achieved by means of Ion Cyclotron Radio Frequency (ICRF) boronization using carborane (C{sub 2}B{sub 10}H{sub 12}) powder as the precursor material in HT-7. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to observe the morphology of the VPS-W and boronized W surfaces. The X-ray Photoelectron Spectroscopy (XPS) of W-4f, O-1s, C-1s and B-1s on the VPS-W sample before and after boronization and after plasma exposure have been measured. The B-B and B-C bonds were observed after boronization treatment for VPS-W. Thermal Desorption Spectroscopy (TDS) experiments were also carried out to investigate the thermal desorption behavior of D implanted into the samples. After HT-7 plasma exposure, the desorption spectrum had a low temperature peak associated with trapping in intrinsic defects in polycrystalline W and a high temperature peak associated with B-O-D and B-C-D bonds.

  2. Ferrocenyl-substituted Schiff base complexes of boron: Synthesis, structural, physico-chemical and biochemical aspects

    Science.gov (United States)

    Yadav, Sunita; Singh, R. V.

    2011-01-01

    Biological important complexes of boron(III) derived from 1-acetylferrocenehydrazinecarboxamide (L 1H), 1-acetylferrocenehydrazinecarbothioamide (L 2H) and 1-acetylferrocene carbodithioic acid (L 3H) have been prepared and investigated using a combination of microanalytical analysis, melting point, electronic, IR, 1H NMR and 13C NMR spectral studies, cyclic voltammetry and X-ray powder diffraction studies. Boron isopropoxide interacts with the ligands in 1:1, 1:2 and 1:3 molar ratios (boron:ligand) resulting in the formation of coloured products. On the basis of conductance and spectral evidences, tetrahedral structures for boron(III) complexes have been assigned. The ligands are coordinated to the boron(III) via the azomethine nitrogen atom and the thiolic sulfur atom/enolic oxygen atom. On the basis of X-ray powder diffraction study one of the representative boron complex was found to have orthorhombic lattice, having lattice parameters: a = 9.9700, b = 15.0000 and c = 7.0000. Both the ligands and their complexes have been screened for their biological activity on several pathogenic fungi and bacteria and were found to possess appreciable fungicidal and bactericidal properties. Plant growth regulating activity of one of the ligand and its complexes has also been recorded on gram plant, and results have been discussed.

  3. A Preliminary experimental study of the boron concentration in vapor and the isotopic A preliminary experimental study of the boron concentrationin vapor and the isotopic fractionation of boron betweenseawater and vapor during evaporation of seawater

    Institute of Scientific and Technical Information of China (English)

    XIAO; Yingkai

    2001-01-01

    [1]Gast, J. A., Thompson, T. G., Evaporation of boric acid from seawater, Tellus, 1959, 6: 344-347.[2]Nishimura, M., Tanaka, K., Seawater may not be a source of boron in the atmosphere, J. Geoph. Res., 1972, 77: 5239-5242.[3]Fogg, T. R., Duce, R. A., Fasching, J. L., Sampling and determination of boron in the atmosphere, Anal. Chem., 1983, 55:2179-2184.[4]Fogg, T. R., Duce, R. A., Boron in the troposphere: Distribution and fluxes, J. Geoph. Res., 1985, 90: 3781-3796.[5]Spivack, A. J., Berndt, M. E., Seyfreid, W. E., Boron isotope fractionation during supercritical phase separation, Geochim.Cosmochim. Acta, 1990, 54: 2337-2339.[6]Palmer, M. R., London, D., Morgan, G. B. et al., Experimental determination of fractionation of 11B/10B between tourma-line and aqueous vapor: A temperature and pressure-dependent isotopic system, Chem. Geol., 1992, 101:123-129.[7]Hervig, R. L., London, D., Morgan, G. B. et al., Large boron isotope fractionation between hydrous vapor and silicate meltat igneous temperatures, in the Seventh Annual V. M. Goldschmidt Conf., LPI Contribution No. 921, Houston: Lunar and Planetary Institute, 1997, 93-94.[8]Vengosh, A., Starinsky, A., Kolodny, Y. et al., Boron isotope variations during fractional evaporation of seawater: New constraints on the marine vs. nonmarine debate, Geology, 1992, 20: 799-802.[9]Zhang, X. P., Shi, Y. E, Yao, T. D., The variation characteristics of δo18O in precipitation in Northeastern Qing-Zhang Plateau, Science in China, Series B (in Chinese), 1995, 25(5): 540-547.[10]Yu, J. S., Yu, E J., Liu, D. P., The hydrogen and oxygen of isotopic compositions of meteoric water in the eastern part of China, Geochimica (in Chinese), 1987, (1): 22-26.[11]Xiao, Y. K., Xiao, Y., Swihart, G. H. et al., Separation of boron by ion exchange with boron specific resin, Acta Geosci.Sinica (in Chinese), 1997, 18: 286-289.[12]Kiss, E., Ion-exchange separation and spectrophotometric determination of

  4. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John

    2016-09-22

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ³11 wt% and ³80 g/L that can deliver hydrogen and be recharged at moderate temperatures (£100 °C) and pressures (£100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement. For the first approach, possible pairs of ternary borides and mixed-metal borohydrides based on Mg with various first row transition metals were investigated both experimentally and theoretically. In particular, the Mg/Mn ternary boride and mixed-metal borohydride were found to be a suitable pair and

  5. Development of Enantiospecific Coupling of Secondary and Tertiary Boronic Esters with Aromatic Compounds.

    Science.gov (United States)

    Odachowski, Marcin; Bonet, Amadeu; Essafi, Stephanie; Conti-Ramsden, Philip; Harvey, Jeremy N; Leonori, Daniele; Aggarwal, Varinder K

    2016-08-01

    The stereospecific cross-coupling of secondary boronic esters with sp(2) electrophiles (Suzuki-Miyaura reaction) is a long-standing problem in synthesis, but progress has been achieved in specific cases using palladium catalysis. However, related couplings with tertiary boronic esters are not currently achievable. To address this general problem, we have focused on an alternative method exploiting the reactivity of a boronate complex formed between an aryl lithium and a boronic ester. We reasoned that subsequent addition of an oxidant or an electrophile would remove an electron from the aromatic ring or react in a Friedel-Crafts-type manner, respectively, generating a cationic species, which would trigger 1,2-migration of the boron substituent, creating the new C-C bond. Elimination (preceded by further oxidation in the former case) would result in rearomatization giving the coupled product stereospecifically. Initial work was examined with 2-furyllithium. Although the oxidants tested were unsuccessful, electrophiles, particularly NBS, enabled the coupling reaction to occur in good yield with a broad range of secondary and tertiary boronic esters, bearing different steric demands and functional groups (esters, azides, nitriles, alcohols, and ethers). The reaction also worked well with other electron-rich heteroaromatics and 6-membered ring aromatics provided they had donor groups in the meta position. Conditions were also found under which the B(pin)- moiety could be retained in the product, ortho to the boron substituent. This protocol, which created a new C(sp(2))-C(sp(3)) and an adjacent C-B bond, was again applicable to a range of secondary and tertiary boronic esters. In all cases, the coupling reaction occurred with complete stereospecificity. Computational studies verified the competing processes involved and were in close agreement with the experimental observations. PMID:27384259

  6. Development of Enantiospecific Coupling of Secondary and Tertiary Boronic Esters with Aromatic Compounds

    Science.gov (United States)

    2016-01-01

    The stereospecific cross-coupling of secondary boronic esters with sp2 electrophiles (Suzuki–Miyaura reaction) is a long-standing problem in synthesis, but progress has been achieved in specific cases using palladium catalysis. However, related couplings with tertiary boronic esters are not currently achievable. To address this general problem, we have focused on an alternative method exploiting the reactivity of a boronate complex formed between an aryl lithium and a boronic ester. We reasoned that subsequent addition of an oxidant or an electrophile would remove an electron from the aromatic ring or react in a Friedel–Crafts-type manner, respectively, generating a cationic species, which would trigger 1,2-migration of the boron substituent, creating the new C–C bond. Elimination (preceded by further oxidation in the former case) would result in rearomatization giving the coupled product stereospecifically. Initial work was examined with 2-furyllithium. Although the oxidants tested were unsuccessful, electrophiles, particularly NBS, enabled the coupling reaction to occur in good yield with a broad range of secondary and tertiary boronic esters, bearing different steric demands and functional groups (esters, azides, nitriles, alcohols, and ethers). The reaction also worked well with other electron-rich heteroaromatics and 6-membered ring aromatics provided they had donor groups in the meta position. Conditions were also found under which the B(pin)- moiety could be retained in the product, ortho to the boron substituent. This protocol, which created a new C(sp2)–C(sp3) and an adjacent C–B bond, was again applicable to a range of secondary and tertiary boronic esters. In all cases, the coupling reaction occurred with complete stereospecificity. Computational studies verified the competing processes involved and were in close agreement with the experimental observations. PMID:27384259

  7. Boron Separation by the Two-step Ion-Exchange for the Isotopic Measurement of Boron

    Institute of Scientific and Technical Information of China (English)

    WANG,Qing-Zhong(王庆忠); XIAO,Ying-Kai(肖应凯); WANG,Yun-Hui(王蕴惠); ZHANG,Chong-Geng(张崇耿); WEI,Hai-Zhen(魏海珍)

    2002-01-01

    An improved procedure for extraction and purification of boron from natural samples is presented. The separation and purification of boron was carried out using a boron-specific resin, Amberlite IRA743, and a mixed ion exchange resin,Dowex 50W × 8 and Ion Exchanger Ⅱ resin. Using the mixed ion exchange resin which adsorbs all cations and anions except boron, the HCl and other cations and anions left in eluant from the Amberlite IRA 743 were removed effectively. In this case, boron loss can be avoided because the boron-bearing solution does not have to be evaporated to reach dryness to dislodge HCl. The boron recovery ranged from 97.6% to 102% in this study. The isotopic fractionation of boron can be negligible within the precision of the isotopic measurement. The results show that boron separation for the isotopic measurement by using both Amberlite IRA 743 resin and the mixed rein is more effective than that using Amberlite IRA 743 resin alone. The boron in samples of brine, seawater, rock, coral and foraminifer were separated by this procedure. Boron isotopic compositions of these samples were measured by thermal ionization mass spectrometry in this study.

  8. Comparison of the Level of Boron Concentrations in Black Teas with Fruit Teas Available on the Polish Market

    Directory of Open Access Journals (Sweden)

    Anetta Zioła-Frankowska

    2014-01-01

    Full Text Available The determination of boron by inductively coupled plasma-atomic emission spectrometry has been carried in water-soluble and acid soluble (total content fractions of 36 samples of traditional black tea and fruit brew. The estimation of the impact of the type of tea on the concentration of boron in water-soluble and acid extracts and potential human health risk from the daily intake of boron was carried out in this study. The levels of boron differed significantly in black and fruit tea types. The mean total content of boron ranged from 8.31 to 18.40 mg/kg in black teas, from 12.85 to 15.13 mg/kg in black tea with fruit flavor, and from 12.09 to 22.77 mg/kg in fruit brews. The degree of extraction of boron in black tea ranged from 8% to 27% and for fruit tea from 17% to 69%. In addition, the values below 25% were of black teas with fruit flavors. The daily intake of B from tea infusions (three cups/day is still within the average daily intake except for some of the fruit brews which exceed acceptable regulations of the daily intake of total boron by humans. Hence, it may not produce any health risks for human consumption, if other sources of metal contaminated food are not taken at the same time.

  9. Some physical properties of compacted specimens of highly dispersed boron carbide and boron suboxide

    International Nuclear Information System (INIS)

    Structure, shear modulus and internal friction (IF) of compacted specimens of boron carbide and boron suboxide have been investigated. Microtwins and stacking faults were observed along the {100} plane systems of polycrystalline specimens of boron carbide. Electrical conductivity of the specimens was that of p-type. Concentration of holes varied from 1017 to 1019 cm-3. The IF was measured in the temperature range 80-300 K. It was shown that the IF of boron carbide and that of boron suboxide were characterized with a set of similar relaxation processes. Mechanisms of the relaxation processes in boron carbide and boron suboxide are discussed in terms of the Hasiguti model of interaction between dislocations and point defects

  10. SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12:galaxy target selection and large scale structure catalogues

    OpenAIRE

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; Percival, Will J.; Tinker, Jeremy; Tojeiro, Rita; White, Martin; Eisenstein, Daniel J.; Maraston, Claudia; Ross, Ashley J.; Sanchez, Ariel G.; Schlegel, David; Sheldon, Erin; Strauss, Michael A.; Thomas, Daniel

    2016-01-01

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target cat...

  11. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  12. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  13. Computational Evidence for the Smallest Boron Nanotube

    Institute of Scientific and Technical Information of China (English)

    Xian Jie LIN; Dong Ju ZHANG; Cheng Bu LIU

    2006-01-01

    The structure of boron nanotubes (BNTs) was found not to be limited to hexagonal pyramidal structures. Based on density functional theory calculations we provided evidence for the smallest boron nanotube, a geometrical analog of the corresponding carbon nanotube. As shown by our calculations, the smallest BNT possesses highly structural, dynamical, and thermal stability, which should be interest for attempts at its synthesis.

  14. Metallothionein-1+2 deficiency increases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin 6

    DEFF Research Database (Denmark)

    Giralt, Mercedes; Penkowa, Milena; Hernández, Joaquín;

    2002-01-01

    Transgenic expression of IL-6 under the control of the GFAP gene promoter (GFAP-IL6 mice) in the CNS causes significant damage and alters the expression of many genes, including the metallothionein (MT) family, especially in the cerebellum. The crossing of GFAP-IL6 mice with MT-1+2 knock out (MTK...

  15. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  16. Boronated mesophase pitch coke for lithium insertion

    Science.gov (United States)

    Frackowiak, E.; Machnikowski, J.; Kaczmarska, H.; Béguin, F.

    Boronated carbons from mesophase pitch have been used as materials for lithium storage in Li/carbon cells. Doping by boron has been realized by co-pyrolysis of coal tar pitch with the pyridine-borane complex. Amount of boron in mesocarbon microbeads (MCMB) varied from 1.4 to 1.8 wt.% affecting the texture of carbon. Optical microscopy and X-ray diffractograms have shown tendency to more disordered structure for boron-doped carbon. The values of specific reversible capacity ( x) varied from 0.7 to 1.1 depending significantly on the final temperature of pyrolysis (700-1150°C). The optimal charge/discharge performance was observed for boronated carbon heated at 1000°C.

  17. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  18. α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (KrasG12D, and KrasG12D/tp53R270H) mice

    Science.gov (United States)

    Verma, Raj Kumar; Yu, Wei; Shrivastava, Anju; Shankar, Sharmila; Srivastava, Rakesh K.

    2016-01-01

    Activation of sonic hedgehog (Shh) in cancer stem cell (CSC) has been demonstrated with aggressiveness of pancreatic cancer. In order to enhance the biological activity of α-mangostin, we formulated mangostin-encapsulated PLGA nanoparticles (Mang-NPs) and examined the molecular mechanisms by which they inhibit human and KC mice (PdxCre;LSL-KrasG12D) pancreatic CSC characteristics in vitro, and pancreatic carcinogenesis in KPC (PdxCre;LSLKrasG12D;LSL-Trp53R172H) mice. Mang-NPs inhibited human and KrasG12D mice pancreatic CSC characteristics in vitro. Mang-NPs also inhibited EMT by up-regulating E-cadherin and inhibiting N-cadherin and transcription factors Slug, and pluripotency maintaining factors Nanog, c-Myc, and Oct4. Furthermore, Mang-NPs inhibited the components of Shh pathway and Gli targets. In vivo, Mang-NPs inhibited the progression of pancreatic intraneoplasia to pancreatic ductal adenocarcinoma and liver metastasis in KPC mice. The inhibitory effects of Mang-NPs on carcinogenesis in KPC mice were associated with downregulation of pluripotency maintaining factors (c-Myc, Nanog and Oct4), stem cell markers (CD24 and CD133), components of Shh pathway (Gli1, Gli2, Patched1/2, and Smoothened), Gli targets (Bcl-2, XIAP and Cyclin D1), and EMT markers and transcription factors (N-cadherin, Slug, Snail and Zeb1), and upregulation of E-cadherin. Overall, our data suggest that Mang-NPs can inhibit pancreatic cancer growth, development and metastasis by targeting Shh pathway. PMID:27624879

  19. Enhanced survival of glioma bearing rats using a combination of boronated epidermal growth factor and boronophenylalanine

    International Nuclear Information System (INIS)

    Following intratumoral (i.t.) injection, boronated epidermal growth factor (BSD-EGF) selectively targeted F98EGFR gliomas. Using BSD-EGF as the capture agent survival times were significantly increased over those observed in rats bearing F98 wildtype tumors following BNCT. These were further increased by the combination BSD-EGF with i.v. BPA. (author)

  20. Boron enrichment in martian clay.

    Science.gov (United States)

    Stephenson, James D; Hallis, Lydia J; Nagashima, Kazuhide; Freeland, Stephen J

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  1. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  2. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambrosio, Steven M. [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 (United States); Han, Chunhua [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Pan, Li; Douglas Kinghorn, A. [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Ding, Haiming, E-mail: ding.29@osu.edu [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States)

    2011-06-10

    Highlights: {yields} The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). {yields} Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). {yields} Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. {yields} The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. {yields} Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like those found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not

  3. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    International Nuclear Information System (INIS)

    Highlights: → The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). → Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). → Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. → The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. → Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like those found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF

  4. Priority compositions of boron carbide crystals obtained by self-propagating high-temperature synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, V. I., E-mail: ksv17@ism.ac.ru; Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I. [Russian Academy of Sciences, Institute of Structural Macrokinetics and Materials Science (Russian Federation)

    2015-09-15

    Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide B{sub 15–x}C{sub x}, (1.5 ≤ x ≤ 3) and its magnesium derivative C{sub 4}B{sub 25}Mg{sub 1.42}. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from B{sub 12.9}C{sub 2.1} to B{sub 12.4}C{sub 2.6}.

  5. ESR and Microwave Absorption in Boron Doped Diamond Single Crystals

    Science.gov (United States)

    Timms, Christopher

    2015-03-01

    Superconductivity has been reportedly found in boron-doped diamond. Most research to date has only studied superconductivity in polycrystalline and thin film boron-diamonds, as opposed to a single crystal. In fact, only one other group has examined a macro scale boron-doped diamond crystal. Our group has successfully grown large single crystals by using the High Temperature High Pressure method (HTHP) and observed a transition to metallic and superconducting states for high B concentrations. For the present, we are studying BDD crystal using Electron Spin Resonance. We conducted our ESR analysis over a range of temperatures (2K to 300K) and found several types of signals, proving the existence of charge carriers with spin 1/2 in BDD. Moreover, we have found that with increasing B concentrations, from n ~ 1018 cm-3 to n of over 1020 cm-3, the ESR signal changes from that of localized spins to the Dysonian shape of free carriers. The low magnetic field microwave absorption has also been studied in BDD samples at various B concentrations and the clear transition to superconducting state has been found below Tc that ranges from 2K to 4 K depending on concentration and quality of crystal. Sergey Polyakov, Victor Denisov, Vladimir Blank, Ray Baughman, Anvar Zakhidov.

  6. Spectrophotometric determination of microamounts of boron in water

    International Nuclear Information System (INIS)

    A fast method of boron in water determination has been studied for the 0.5 .- 2 μg ml-1 concentration range. The procedure is based on the formation of a coloured complex of the tetrafluoroborate of a thionine derivate cation, its extraction by an organic solvent and the further absorptiometric measurement in such media. Methylene blue and azur C were comparatively tested as organic reagents, with 1.2-dichloroethane as the extractant. The absorbance was measured at the maximum (658 nm). The tetrafluoroboric acid formation was reached in 20 min on a water-bath kept at 60 deg C. The sensitivity with methylene blue was higher than with azur C. The molar absorptivities were 65,000 and 38,000 (l mol-1 cm-1) respectively. For a boron concentration of 0.1 μg ml-1 the relative standard deviation was 9% for methylene blue and 7% for azur C. The procedure is applicable to the control of boron traces in heavy water of nuclear reactors refrigerating loops. (author)

  7. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  8. Recent results at the SIRa test bench: diffusion properties of carbon graphite and B{sub 4}C targets

    Energy Technology Data Exchange (ETDEWEB)

    Landre-Pellemoine, F.; Barue, C.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Kandri-Rody, S.; Lecesne, N.; Leroy, R.; Lewitowicz, M.; Lichtenthaler, R.; Marry, C.; Maunoury, L.; Pacquet, J.Y.; Saint-Laurent, M.G.; Stodel, C.; Rataud, J.P.; Villari, A.C.C. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Angelique, J.C.; Orr, N.A. [Laboratoire de Physique Corpusculaire, LPC-ISMRa, CNRS-IN2P3, 14 - Caen (France); Lichtenthaler, R. [IFUSP, Sao Paulo, S.P. (Brazil); Bajeat, O.; Clapier, F.; Ducourtieux, M.; Lau, C.; Obert, J. [Institut de Physique Nucleaire (IN2P3/CNRS), 91 - Orsay (France); Bennett, R. [CLRC, RAL, Chilton Oxon (United Kingdom)

    2000-07-01

    The diffusion properties of graphite targets with 1, 4 and 15 microns microstructure has been measured for He and Ar isotopes. An important enhancement of the diffusion efficiency for the smaller microstructure is observed. A releasing efficiency of the order of 100% was obtained for {sup 6}He (T{sub 1/2} = 806 ms) at a temperature of 1600 K. The diffusion and production properties of He isotopes in a target of B{sub 4}C (Boron Carbide) have also been studied. Yields of 1.5 10{sup 8} pps and 10{sup 6} pps for {sup 6}He and {sup 8}He has been obtained. (authors)

  9. Avalanche proton-boron fusion based on elastic nuclear collisions

    Science.gov (United States)

    Eliezer, Shalom; Hora, Heinrich; Korn, Georg; Nissim, Noaz; Martinez Val, Josè Maria

    2016-05-01

    Recent experiments done at Prague with the 600 J/0.2 ns PALS laser interacting with a layer of boron dopants in a hydrogen enriched target have produced around 109 alphas. We suggest that these unexpected very high fusion reactions of proton with 11B indicate an avalanche multiplication for the measured anomalously high nuclear reaction yields. This can be explained by elastic nuclear collisions in the broad 600 keV energy band, which is coincident with the high nuclear p-11B fusion cross section, by the way of multiplication through generation of three secondary alpha particles from a single primarily produced alpha particle.

  10. CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting.

    Science.gov (United States)

    Courtney, D G; Moore, J E; Atkinson, S D; Maurizi, E; Allen, E H A; Pedrioli, D M L; McLean, W H I; Nesbit, M A; Moore, C B T

    2016-01-01

    CRISPR/Cas9-based therapeutics hold the possibility for permanent treatment of genetic disease. The potency and specificity of this system has been used to target dominantly inherited conditions caused by heterozygous missense mutations through inclusion of the mutated base in the short-guide RNA (sgRNA) sequence. This research evaluates a novel approach for targeting heterozygous single-nucleotide polymorphisms (SNPs) using CRISPR/Cas9. We determined that a mutation within KRT12, which causes Meesmann's epithelial corneal dystrophy (MECD), leads to the occurrence of a novel protospacer adjacent motif (PAM). We designed an sgRNA complementary to the sequence adjacent to this SNP-derived PAM and evaluated its potency and allele specificity both in vitro and in vivo. This sgRNA was found to be highly effective at reducing the expression of mutant KRT12 mRNA and protein in vitro. To assess its activity in vivo we injected a combined Cas9/sgRNA expression construct into the corneal stroma of a humanized MECD mouse model. Sequence analysis of corneal genomic DNA revealed non-homologous end-joining repair resulting in frame-shifting deletions within the mutant KRT12 allele. This study is the first to demonstrate in vivo gene editing of a heterozygous disease-causing SNP that results in a novel PAM, further highlighting the potential for CRISPR/Cas9-based therapeutics.

  11. Kinetic investigation of AISI 304 Stainless Steel boronized in indirect heated fluidized bed furnace

    Directory of Open Access Journals (Sweden)

    Topuz P.

    2016-01-01

    Full Text Available In this study, kinetic examinations on boronized AISI 304 Stainless Steel samples were described. Samples were boronized in indirect heated fluidized bed furnace consists of Ekabor 1™ boronizing agent at 1123, 1223 and 1323 K for 1,2 and 4 hours. Morphologically and typically examinations of borides formed on the surface of steel samples were studied by optical microscope, scanning electron microscope (SEM and X-Ray diffraction (XRD. Boride layer thickness formed on the steel X5CrNi 18-10 ranges from 12 to 176 μm. The hardness of the boride layer formed on the steel X5CrNi 18-10 varied between 1709 and 2119 Hv0,1. Layer growth kinetics were analyzed by measuring the extent of penetration of FeB and Fe2B sublayers as a function of boronizing time and temperature. The kinetics of the reaction has been determined with K=Ko exp (-Q/RT equation. Activation energy (Q of boronized steel X5CrNi 18-10 was determined as 244 kj/mol.

  12. RF plasma reactive pulsed laser deposition of boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mitu, B. [CNR-IMIP/PZ Zona Industriale di Tito Scalo, I - 85050 Tito Scalo (PZ) (Italy)]. E-mail: mitub@alpha1.infim.ro; Bilkova, P. [CNR-IMIP/PZ Zona Industriale di Tito Scalo, I - 85050 Tito Scalo (PZ) (Italy)]. E-mail: bilkova.petra@tiscali.cz; Marotta, V. [CNR-IMIP/PZ Zona Industriale di Tito Scalo, I - 85050 Tito Scalo (PZ) (Italy); Orlando, S. [CNR-IMIP/PZ Zona Industriale di Tito Scalo, I - 85050 Tito Scalo (PZ) (Italy)]. E-mail: orlando@imip.pz.cnr.it; Santagata, A. [CNR-IMIP/PZ Zona Industriale di Tito Scalo, I - 85050 Tito Scalo (PZ) (Italy)

    2005-07-15

    Thin films of boron nitride (BN) have been deposited on Si(1 0 0) substrates by reactive pulsed laser ablation (PLA) of a boron target in the presence of a 13.56 MHz radio frequency (RF) nitrogen plasma. The gaseous species have been deposited at several substrate temperatures, using the on-axis configuration. The film properties have been investigated by Scanning Electron Microscopy, Atomic Force Microscopy, Fourier Transformed Infrared Spectroscopy, and X-ray diffraction characterization techniques, and compared to those resulting from the conventional PLA method. The behavior of hexagonal-BN and cubic-BN phases grown by PLA as function of substrate temperature is also reported.

  13. Study of heavy products formed by rare earth target bombardment by 12C and 14N from 5 to 30 MeV/nucleon

    International Nuclear Information System (INIS)

    The individual evaporation residue cross sections have been measured for 12C and 14N induced reactions on 141Pr, 144Sm, 147Sm, 150Sm, 152Sm, 154Sm targets at energies of 5 to 30 MeV/nucleon. Gamma-ray detection techniques were used. Between 5 and 10 MeV/nucleon the observed mass and charge distributions are interpreted in terms of evaporation from compound nuclei. Statistical model calculations reproduce well the increasing charged particle emission far off the stability line. At 15 and 30 MeV/nucleon the reaction mechanism observed is different. The experimental results are interpreted in terms of the average mass transfer between projectile and target. This interpretation, based on the evaporation calculations, is consistent with the experimental systematic of the decrease of linear momentum transfer with projectile velocity

  14. Experimental and theoretical results on electron emission in collisions between He targets and dressed Li$^{q+}$ (q=1,2) projectiles

    CERN Document Server

    Fregenal, D; Fiol, J; Fainstein, P D; Rivarola, R D; Bernardi, G; Suárez, S

    2014-01-01

    We investigate experimentally and theoretically the electron emission in collisions between He atoms and Li$^{q+}$ (q=1,2) projectiles at intermediate-high incident energies. We report on measured absolute values of double differential cross-sections, as a function of the emitted electron energy and angle, at a collision energy of 440~keV/u. The different contributions from target-ionisation, projectile-ionisation, and simultaneous target-projectile ionisation are calculated with the quantum-mechanical Continuum Distorted Wave and Continuum Distorted Wave -- Eikonal Initial State models, and with Classical Trajectory Monte Carlo simulations. There is an overall good agreement of the calculations with the experimental data for electron emission cross-sections.

  15. Sodium borocaptate (BSH) for Boron Neutron Capture Therapy (BNCT) in the hamster cheek pouch oral cancer model: boron biodistribution at 9 post administration time-points

    International Nuclear Information System (INIS)

    The therapeutic success of Boron Neutron Capture Therapy (BNCT) depends centrally on boron concentration in tumor and healthy tissue. We previously demonstrated the therapeutic efficacy of boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) as boron carriers for BNCT in the hamster cheek pouch oral cancer model. Given the clinical relevance of sodium mercaptoundecahydro-closo-dodecaborate (BSH) as a boron carrier, the aim of the present study was to expand the ongoing BSH biodistribution studies in the hamster cheek pouch oral cancer model. In particular, we studied 3 additional post-administration time-points and increased the sample size corresponding to the time-points evaluated previously, to select more accurately the post-administration time at which neutron irradiation would potentially confer the greatest therapeutic advantage. BSH was dissolved in saline solution in anaerobic conditions to avoid the formation of the dimer BSSB and its oxides which are toxic. The solution was injected intravenously at a dose of 50 mg 10 B/kg (88 mg BSH / kg). Different groups of animals were killed humanely at 7, 8, and 10 h after administration of BSH. The sample size corresponding to the time-points 3, 4, 6, 9 and 12 h was increased. Samples of blood, tumor, precancerous tissue, normal pouch tissue, cheek mucosa, parotid gland, palate, skin, tongue, spinal cord marrow, brain, liver, kidney, spleen and lung were processed for boron measurement by Optic Emission Spectroscopy (ICP-OES). Boron concentration in tumor peaked to 24-34 ppm, 3-10 h post-administration of BSH, with a spread in values that resembled that previously reported in other experimental models and human subjects. The boron concentration ratios tumor/normal pouch tissue and tumor/blood ranged from 1.3 to 1.8. No selective tumor uptake was observed at any of the time points evaluated. The times post-administration of BSH that would be therapeutically most useful would be 5, 7 and 9 h. The

  16. Boron nanoparticles inhibit turnour growth by boron neutron capture therapy in the murine B16-OVA model

    DEFF Research Database (Denmark)

    Petersen, Mikkel Steen; Petersen, Charlotte Christie; Agger, Ralf;

    2008-01-01

    Background: Boron neutron capture therapy usually relies on soluble, rather than particulate, boron compounds. This study evaluated the use of a novel boron nanoparticle for boron neutron capture therapy. Materials and Methods: Two hundred and fifty thousand B16-OVA tumour cells, pre...

  17. A chemokine targets the nucleus: Cxcl12-gamma isoform localizes to the nucleolus in adult mouse heart.

    Directory of Open Access Journals (Sweden)

    Raul Torres

    Full Text Available Chemokines are extracellular mediators of complex regulatory circuits involved principally in cell-to-cell communication. Most studies to date of the essential chemokine Cxcl12 (Sdf-1 have focused on the ubiquitously expressed secreted isoforms alpha and beta. Here we show that, unlike these isoforms and all other known chemokines, the alternatively transcribed gamma isoform is an intracellular protein that localizes to the nucleolus in differentiated mouse Cardiac tissue. Our results demonstrate that nucleolar transportation is encoded by a nucleolar-localization signal in the unique carboxy-terminal region of Sdf-1gamma, and is competent both in vivo and in vitro. The molecular mechanism underlying these unusual chemokine properties involves cardiac-specific transcription of an mRNA containing a unique short-leader sequence lacking the signal peptide and translation from a non-canonical CUG codon. Our results provide an example of genome economy even for essential and highly conserved genes such as Cxcl12, and suggest that chemokines can exert tissue specific functions unrelated to cell-to-cell communication.

  18. Hormone-induced repression of genes requires BRG1-mediated H1.2 deposition at target promoters.

    Science.gov (United States)

    Nacht, Ana Silvina; Pohl, Andy; Zaurin, Roser; Soronellas, Daniel; Quilez, Javier; Sharma, Priyanka; Wright, Roni H; Beato, Miguel; Vicent, Guillermo P

    2016-08-15

    Eukaryotic gene regulation is associated with changes in chromatin compaction that modulate access to DNA regulatory sequences relevant for transcriptional activation or repression. Although much is known about the mechanism of chromatin remodeling in hormonal gene activation, how repression is accomplished is much less understood. Here we report that in breast cancer cells, ligand-activated progesterone receptor (PR) is directly recruited to transcriptionally repressed genes involved in cell proliferation along with the kinases ERK1/2 and MSK1. PR recruits BRG1 associated with the HP1γ-LSD1 complex repressor complex, which is further anchored via binding of HP1γ to the H3K9me3 signal deposited by SUV39H2. In contrast to what is observed during gene activation, only BRG1 and not the BAF complex is recruited to repressed promoters, likely due to local enrichment of the pioneer factor FOXA1. BRG1 participates in gene repression by interacting with H1.2, facilitating its deposition and stabilizing nucleosome positioning around the transcription start site. Our results uncover a mechanism of hormone-dependent transcriptional repression and a novel role for BRG1 in progestin regulation of breast cancer cell growth. PMID:27390128

  19. Full-scale simulation of seawater reverse osmosis desalination processes for boron removal: Effect of membrane fouling.

    Science.gov (United States)

    Park, Pyung-Kyu; Lee, Sangho; Cho, Jae-Seok; Kim, Jae-Hong

    2012-08-01

    The objective of this study is to further develop previously reported mechanistic predictive model that simulates boron removal in full-scale seawater reverse osmosis (RO) desalination processes to take into account the effect of membrane fouling. Decrease of boron removal and reduction in water production rate by membrane fouling due to enhanced concentration polarization were simulated as a decrease in solute mass transfer coefficient in boundary layer on membrane surface. Various design and operating options under fouling condition were examined including single- versus double-pass configurations, different number of RO elements per vessel, use of RO membranes with enhanced boron rejection, and pH adjustment. These options were quantitatively compared by normalizing the performance of the system in terms of E(min), the minimum energy costs per product water. Simulation results suggested that most viable options to enhance boron rejection among those tested in this study include: i) minimizing fouling, ii) exchanging the existing SWRO elements to boron-specific ones, and iii) increasing pH in the second pass. The model developed in this study is expected to help design and optimization of the RO processes to achieve the target boron removal at target water recovery under realistic conditions where membrane fouling occurs during operation. PMID:22578430

  20. Full-scale simulation of seawater reverse osmosis desalination processes for boron removal: Effect of membrane fouling.

    Science.gov (United States)

    Park, Pyung-Kyu; Lee, Sangho; Cho, Jae-Seok; Kim, Jae-Hong

    2012-08-01

    The objective of this study is to further develop previously reported mechanistic predictive model that simulates boron removal in full-scale seawater reverse osmosis (RO) desalination processes to take into account the effect of membrane fouling. Decrease of boron removal and reduction in water production rate by membrane fouling due to enhanced concentration polarization were simulated as a decrease in solute mass transfer coefficient in boundary layer on membrane surface. Various design and operating options under fouling condition were examined including single- versus double-pass configurations, different number of RO elements per vessel, use of RO membranes with enhanced boron rejection, and pH adjustment. These options were quantitatively compared by normalizing the performance of the system in terms of E(min), the minimum energy costs per product water. Simulation results suggested that most viable options to enhance boron rejection among those tested in this study include: i) minimizing fouling, ii) exchanging the existing SWRO elements to boron-specific ones, and iii) increasing pH in the second pass. The model developed in this study is expected to help design and optimization of the RO processes to achieve the target boron removal at target water recovery under realistic conditions where membrane fouling occurs during operation.

  1. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    OpenAIRE

    Yuya Egawa; Ryotaro Miki; Toshinobu Seki

    2014-01-01

    In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conj...

  2. Synthesis and characterization of ammonium phosphate fertilizers with boron

    OpenAIRE

    ANGELA MAGDA; RODICA PODE; CORNELIA MUNTEAN; MIHAI MEDELEANU; ALEXANDRU POPA

    2010-01-01

    The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the ...

  3. Measurement of resonances in {sup 12} C + {sup 4} He through inverse kinematics with thick targets; Medicion de resonancias en {sup 12} C + {sup 4} He mediante cinematica inversa con blancos gruesos

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, E.F.; Lizcano, D.; Martinez Q, E.; Fernandez, M.C.; Murillo, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Goldberg, V. [Cyclotron Institute, Texas A and M University, College Station, TX 77843 (United States); Skorodumov, B.B.; Rogachev, G. [Physics Department, University of Notre Dame, IN 46556 (United States)

    2003-07-01

    The excitation function of elastic scattering for the system {sup 12} C + {sup 4} He to energy from 0.5 to 3.5 MeV in the center of mass system (c.m.) was measured. We use a gassy thick target and the technique of inverse kinematics which allows to make measurements at 180 degrees in c.m. Using the R matrix theory those was deduced parameters of the resonances and the results were compared with measurements reported in the literature made with other techniques. (Author)

  4. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  5. Two-phase zirconium boride thin film obtained by ultra-short pulsed laser ablation of a ZrB{sub 12} target

    Energy Technology Data Exchange (ETDEWEB)

    De Bonis, A., E-mail: angela.debonis@unibas.it [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano, 10 -85100 Potenza (Italy); Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche, U.O.S. di Potenza, C.da Santa Loja, 85010 Tito Scalo, Potenza (Italy); Santagata, A. [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche, U.O.S. di Potenza, C.da Santa Loja, 85010 Tito Scalo, Potenza (Italy); Rau, J.V. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Latini, A. [Università di Roma “La Sapienza”, Dipartimento di Chimica, Piazzale Aldo Moro, 5 -00185 Rome (Italy); Mori, T. [National Institute for Materials Science (NIMS) WPI Materials Nanoarchitectonics Center (MANA), Namiki 1-1, Tsukuba 305-0044 (Japan); Medici, L. [Istituto di Metodologie per le Analisi Ambientali, Consiglio Nazionale delle Ricerche, U.O.S. di Potenza, C.da Santa Loja, 85010 Tito Scalo, Potenza (Italy); Teghil, R. [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano, 10 -85100 Potenza (Italy)

    2013-10-15

    Two-phase zirconium boride thin films have been obtained by ultra-short pulsed laser ablation (PLA) of a zirconium dodecaboride (ZrB{sub 12}) target performed in vacuum. The ablation source was a frequency doubled (λ = 527 nm) Nd:glass laser with a pulse duration of 250 fs. Laser induced plasma has been studied by ICCD imaging and time and space resolved optical emission spectroscopy (OES), whereas the deposited films have been characterized by atomic force microscopy, scanning electron microscopy, X-Ray diffraction and micro-Raman spectroscopy. The film morphology and composition have been interpreted on the basis of the laser ablation mechanism.

  6. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 3000C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 10500C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  7. Boronic Acid Group: A Cumbersome False Negative Case in the Process of Drug Design.

    Science.gov (United States)

    Katsamakas, Sotirios; Papadopoulos, Anastasios G; Hadjipavlou-Litina, Dimitra

    2016-01-01

    Herein we present, an exhaustive docking analysis considering the case of autotaxin (ATX). HA155, a small molecule inhibitor of ATX, is co-crystallized. In order to further extract conclusions on the nature of the bond formed between the ligands and the amino acid residues of the active site, density functional theory (DFT) calculations were undertaken. However, docking does not provide reproducible results when screening boronic acid derivatives and their binding orientations to protein drug targets. Based on natural bond orbital (NBO) calculations, the formed bond between Ser/Thr residues is characterized more accurately as a polar covalent bond instead of a simple nonpolar covalent one. The presented results are acceptable and could be used in screening as an active negative filter for boron compounds. The hydroxyl groups of amino acids are bonded with the inhibitor's boron atom, converting its hybridization to sp³. PMID:27617984

  8. Large-scale boron nanowire nanojunctions and their highly-oriented arrays

    Institute of Scientific and Technical Information of China (English)

    CAO Limin; ZHANG Ze; WANG Wenkui

    2004-01-01

    Highly oriented multiple boron nanowire nanojunctions with unilateral feather- like morphology were first successfully prepared using a radio-frequency magnetron sputtering method. The branched boron nano-feathers always nucleate and grow on the same sidewall of the stems, and align in parallel to form multiple T- and/or Y-type nanojunctions. The diameters of the branches and the stems are in the range of 20-40 and 60-80 nm, respectively. The thinner branches and thicker stems of the boron nanowires self-assembled into large-scale, highly ordered arrays on various substrates. During the formation and self-assembly of the arrays, no template or catalyst was needed. We believe that the approach presented here can be used to fabricate heterostructures with bottom-up assembly of a wide variety of one-dimensional nanostructures via the rational design of targets and the proper control of the experimental conditions.

  9. X-ray diffraction study of boron produced by pyrolysis of boron tribromide

    Science.gov (United States)

    Rosenberg, David

    The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its

  10. Targeting Transforming Growth Factor-Beta1 (TGF-β1) Inhibits Tumorigenesis of Anaplastic Thyroid Carcinoma Cells Through ERK1/2-NFκkB-PUMA Signaling.

    Science.gov (United States)

    Yin, Qiang; Liu, Shan; Dong, Anbing; Mi, Xiufang; Hao, Fengyun; Zhang, Kejun

    2016-01-01

    BACKGROUND The transforming growth factor-beta (TGF-β) signaling pathway plays a critical role in promoting tumor growth. TGF-β1was found to be overexpressed in anaplastic thyroid cancer (ATC). We therefore tested our hypothesis that targeting TGF-β1 inhibits tumorigenesis of ATC cells. MATERIAL AND METHODS Effects of TGF-β1 stimulation or TGF-β1 inhibition by small interfering RNA (TGF-β1siRNA) on proliferation, colony formation, and apoptosis in 8505C cells in vitro was detected using siRNAs and inhibitors to examine the TGF-β1 signaling pathway. A subcutaneously implanted tumor model of 8505C cells in nude mice was used to assess the effects of TGF-β1 inhibition on tumorigenesis development. RESULTS TGF-β1siRNAs decreased proliferation and colony formation, and increased apoptosis in 8505C cells in vitro and inhibited tumor growth in vivo. TGF-β1siRNA inhibited phosphorylation ERK1/2 (pERK1/2) and increased p65-dependant PUMA mRNA and protein expression. Knockdown of p65 or PUMA by siRNA reduced TGF-β1siRNA-induced apoptosis, as well as caspase-3 and PARP activation. Upregulation of p65 or PUMA expression by TGF-β1siRNA requires pERK1/2 inhibition. TGF-β1 shRNA inhibited tumor growth in vivo. CONCLUSIONS Therapies targeting the TGF-β1 pathway may be more effective to prevent primary tumor formation. The ability of this therapy to decrease tumorigenesis may be related to ERK1/2/NF-κB/PUMA signaling. PMID:27356491

  11. Nanotechnology of emerging targeting systems.

    Science.gov (United States)

    Smith, S S

    2008-09-01

    Recent developments in the design and testing of complex nanoscale payload-carrying systems (i.e. systems with payloads that do not exceed 100 nm in size) are the focus of this brief review. Emerging systems include targeted single-walled nanotubes, viral capsids, dendrimers, gold nanoparticles, milled boron carbide nanoparticles, and protein nucleic acid assemblies. Significant advances are emerging with each of these bionanotechnological approaches to cellular targeting.

  12. Nanotechnology of emerging targeting systems

    Science.gov (United States)

    SMITH, S. S.

    2011-01-01

    Recent developments in the design and testing of complex nanoscale payload-carrying systems (i.e. systems with payloads that do not exceed 100 nm in size) are the focus of this brief review. Emerging systems include targeted single-walled nanotubes, viral capsids, dendrimers, gold nanoparticles, milled boron carbide nanoparticles, and protein nucleic acid assemblies. Significant advances are emerging with each of these bionanotechnological approaches to cellular targeting. PMID:21687833

  13. Synthesis of Boron Nanorods by Smelting Non-Toxic Boron Oxide in Liquid Lithium

    OpenAIRE

    Amartya Chakrabarti; Tao Xu; Laura K. Paulson; Krise, Kate J.; Maguire, John A; Hosmane, Narayan S.

    2010-01-01

    In contrast to the conventional bottom-up syntheses of boron nanostructures, a unique top-down and greener synthetic strategy is presented for boron nanorods involving nontoxic boron oxide powders ultrasonically smelted in liquid lithium under milder conditions. The product was thoroughly characterized by energy dispersive X-ray analysis, atomic emission spectroscopy, thermogravimetric analysis and, UV-Vis spectroscopy, including structural characterization by transmission electron microscop...

  14. Developments in boron magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  15. First boronization in KSTAR: Experiences on carborane

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Suk-Ho, E-mail: sukhhong@nfri.re.kr [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Kun-Su; Kim, Kwang-Pyo; Kim, Kyung-Min; Kim, Hong-Tack [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Sun, Jong-Ho; Woo, Hyun-Jong [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Jae-Min [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Park, Eun-Kyong [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Woong-Chae; Kim, Hak-Kun; Park, Kap-Rai; Yang, Hyung-Lyeol; Oh, Yeong-Kook; Na, Hoon-Kyun [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Lho, Taehyeop [National Fusion Research Institute, 113 Gwahangno, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, Kyu-Sun [Center for Edge Plasma Science (cEps), Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2011-08-01

    First boronization was performed in KSTAR tokamak during 2009 campaign in order to reduce oxygen impurities and to lower the power loss due to radiation. We report the results from the experiences on carborane during the first boronization in KSTAR. After the boronization, H{sub 2}O and O{sub 2} level in the vacuum vessel are reduced significantly. The characteristics of the deposited thin films were analyzed by variable angle spectroscopic ellipsometry, XPS, and AES. {approx}1.78 x 10{sup 16} cm{sup -2} s{sup -1} of carbon flux on the wall is estimated by using cavity technique.

  16. From Boron Cluster to Two-Dimensional Boron Sheet on Cu(111) Surface: Growth Mechanism and Hole Formation

    OpenAIRE

    Hongsheng Liu; Junfeng Gao; Jijun Zhao

    2013-01-01

    As attractive analogue of graphene, boron monolayers have been theoretically predicted. However, due to electron deficiency of boron atom, synthesizing boron monolayer is very challenging in experiments. Using first-principles calculations, we explore stability and growth mechanism of various boron sheets on Cu(111) substrate. The monotonic decrease of formation energy of boron cluster BN with increasing cluster size and low diffusion barrier for a single B atom on Cu(111) surface ensure cont...

  17. Engineering design feasibility of low boron concentration core in PWR

    Energy Technology Data Exchange (ETDEWEB)

    Daing, A. T.; Kim, M. H. [Kyung Hee University, Yongin-shi, Gyeonggi-do, 446-701 Republic of Korea (Korea, Republic of); Woo, I.; Shon, S. R., E-mail: atdaing@khu.ac.k [Korea Nuclear Fuel, 1047 Daedukdaero, Yuseong-gu, Daejeon, 305-353 Republic of Korea (Korea, Republic of)

    2010-10-15

    In pressurized water reactor operation, higher level of soluble boron concentration could contribute higher impact from boron dilution situations, higher amount of liquid waste, and higher radiation dose to operators from higher corrosion potential to cladding and structure. Two practical and feasible means to reduce the maximum boron concentration were investigated in this study. A technically straightforward, possible means, can be achieved either by implementation of enriched boric acid (Eba) or by increasing more shim rod (fixed burnable absorber) worth. A simplest option is that the Eba is applied into reference core (Ref) design, OPR-1000 design, Ulchin unit-5 by allowing use of same fuel assemblies and core design without changing any nuclear design methodology used in that Ref design. Although results of Eba option proved its favorable power distribution and peaking factor, its moderator temperature coefficient (MTC) value reached positive, 3.25 pcm/ C at 40 EFPD which is beyond the design safety limit. An alternative option with more shim rods in fuel assemblies was tried with four types of integral burnable absorbers: gadolinia, integral fuel burnable absorber (Ifba), erbium and alumina boron carbide. Four core design candidates have been developed by keeping major engineering designs and preserving equivalent fuel enrichment level used in Ref design. However, all optimal designs were targeted to achieve comparable discharge burnup as well as favorable design safety parameters. The comparative analysis between Ref and optimal core designs is presented here. One of them is suggested as the most promising and favorable low boron core (Lbc) design in this framework. The proper combination of axial and radial enrichment zoning pattern in Lbc design candidate with Ifba-bearing fuel assemblies at equilibrium cycle, could bring 2 times narrower axial offset variation than that of Ref design, and maintain acceptable power peaking factor around 23% lower than

  18. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  19. Cyclooxygenase as a target in chemoprevention by probiotics during 1,2-dimethylhydrazine induced colon carcinogenesis in rats.

    Science.gov (United States)

    Walia, Sohini; Kamal, Rozy; Kanwar, Sarbjit Singh; Dhawan, Davinder Kumar

    2015-01-01

    The present study was undertaken to assess the effects of potential probiotics in regulating the activity of cyclooxygenase-2 (COX-2) along with other morphological and histological analysis during 1,2-dimethylhydrazine (DMH) induced colon carcinogenesis in rats. The rats were divided into 6 groups viz., normal control, Lactobacillus plantarum (AdF10) treated, Lactobacillus rhamnosus GG (LGG) treated, DMH treated, AdF10 + DMH treated and LGG + DMH treated. Probiotics were supplemented to rats at dose levels of 2 × 10(10) cells per day for 6 days in a week. All the treatments were continued for a period of 16 wk. DMH treatment resulted in a statistically significant increase in the levels of total sialic acid (TSA). However, on supplementation with probiotics, a significant reduction in TSA was observed. DMH treatment brought about a significant increase in the expression of COX-2. But, supplementation of probiotics brought down the protein expression to moderate level. Further, supplementation with probiotics was also able to reduce tumor incidence, tumor multiplicity and average tumor size. Therefore, treatment with probiotics has the potential of providing protection against colon cancer by suppressing the COX-2 expression as one of the protective mechanisms. PMID:25811420

  20. 12C fragmentation at 95 MeV per nucleon for hadron-therapy. Experimental study and simulation with thick PMMA targets

    International Nuclear Information System (INIS)

    A study of the 12C fragmentation at 95 MeV per nucleon on thick PMMA targets is presented on this document. This study is motivated by the development of a new technique for irradiation of malignant tumours: the carbon ion therapy. The purpose of this work is to compare experimental data against nuclear models used in GEANT4 tool-kit. The aim is to determine if the models are sufficiently predictive to the criteria of hadron-therapy. To achieve this goal, a first experiment was performed at GANIL with a 12C beam at 95 MeV/u and thick PMMA targets. This experiment has achieved the production rates, angular and energy distributions of different fragments produced in nuclear collisions. Comparisons between experimental data and simulated results obtained using the binary intra-nuclear cascade (BIC) and quantum molecular dynamics model (QMD) available in GEANT4 have been performed. These comparisons show the inability of the tested models to reproduce carbon fragmentation at 95 MeV per nucleon with the accuracy required in hadron-therapy. (author)

  1. Standard specification for nuclear-grade aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This specification applies to pellets composed of mixtures of aluminum oxide and boron carbide that may be ultimately used in a reactor core, for example, in neutron absorber rods. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  2. Depressurization amorphization of single-crystal boron carbide.

    Science.gov (United States)

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.

  3. Global boron cycle in the Anthropocene

    Science.gov (United States)

    Schlesinger, William H.; Vengosh, Avner

    2016-02-01

    This paper presents a revised and updated synthesis of the biogeochemical cycle of boron at the Earth's surface, where the largest fluxes are associated with the injection of sea-salt aerosols to the atmosphere (1.44 Tg B/yr), production and combustion of fossil fuels (1.2 Tg B/yr), atmospheric deposition (3.48 Tg B/yr), the mining of B ores (1.1 Tg B/yr), and the transport of dissolved and suspended matter in rivers (0.80 Tg B/yr). The new estimates show that anthropogenic mobilization of B from the continental crust exceeds the naturally occurring processes, resulting in substantial fluxes to the ocean and the hydrosphere. The anthropogenic component contributes 81% of the flux in rivers. The mean residence time for B in seawater supports the use of δ11B in marine carbonates as an index of changes in the pH of seawater over time periods of > 1 Ma.

  4. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization

    International Nuclear Information System (INIS)

    The measurement conditions for determining boron using graphite furnace–atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L−1 when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS. (author)

  5. Condensation-Driven Assembly of Boron-Containing Bis(Heteroaryl) Motifs Using a Linchpin Approach.

    Science.gov (United States)

    Adachi, Shinya; Liew, Sean K; Lee, C Frank; Lough, Alan; He, Zhi; St Denis, Jeffrey D; Poda, Gennady; Yudin, Andrei K

    2015-11-20

    Herein, we describe the bromomethyl acyl boronate linchpin--an enabling reagent for the condensation-driven assembly of novel bis(heteroaryl) motifs. This building block is readily accessible from commercially available starting materials. A variety of 2-amino- and 2-methylpyridines were reacted with MIDA-protected bromomethyl acylboronate to afford 2-boryl imidazo[1,2-a]pyridine and 2-boryl indolizine derivatives, respectively, in excellent yields. Subsequent condensation with hydroxyamidines and hydrazonamides converted the intermediate heterocycles into novel boron-containing bis(heteroaryl) units characterized by high thermal stability.

  6. Coupled-cluster calculations of properties of Boron atom as a monovalent system

    CERN Document Server

    Gharibnejad, H

    2015-01-01

    We present relativistic coupled-cluster (CC) calculations of energies, magnetic-dipole hyperfine constants, and electric-dipole transition amplitudes for low-lying states of atomic boron. The trivalent boron atom is computationally treated as a monovalent system. We explore performance of the CC method at various approximations. Our most complete treatment involves singles, doubles and the leading valence triples. The calculations are done using several approximations in the coupled-cluster (CC) method. The results are within 0.2-0.4% of the energy benchmarks. The hyperfine constants are reproduced with 1-2% accuracy.

  7. Boron-Filled Hybrid Carbon Nanotubes.

    Science.gov (United States)

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  8. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  9. High temperature thermoelectric properties of boron carbide

    International Nuclear Information System (INIS)

    Boron carbides are refractory solids with potential for application as very high temperature p-type thermoelectrics in power conversion applications. The thermoelectric properties of boron carbides are unconventional. In particular, the electrical conductivity is consistent with the thermally activated hopping of a high density (∼1021/cm3) of bipolarons; the Seebeck coefficient is anomalously large and increases with increasing temperature; and the thermal conductivity is surprisingly low. In this paper, these unusual properties and their relationship to the unusual structure and bonding present in boron carbides are reviewed. Finally, the potential for utilization of boron carbides at very high temperatures (up to 2200 degrees C) and for preparing n-type materials is discussed

  10. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  11. Dispersion of boron carbide in a tungsten carbide/cobalt matrix

    International Nuclear Information System (INIS)

    Particles of boron carbide (105-125 microns) were coated with a layer (10-12 microns) of titanium carbide in a fluidized bed. These coated particles have been successfully incorporated in a tungsten carbide--cobalt matrix by hot pressing at 1 tonf/in2, (15.44 MN/m2) at 13500C. Attempts to produce a similar material by a cold pressing and sintering technique were unsuccessful because of penetration of the titanium carbide layer by liquid cobalt. Hot-pressed material containing boron carbide had a static strength in bend of approximately 175,000 lbf/in2, (1206MN/m2) which compares favorably with the strength of conventionally produced tungsten carbide/cobalt. The impact strength of the material containing boron carbide was however considerably lower than tungsten carbide/cobalt. In rock drilling tests on Darley Dale sandstone at low speeds and low loads, the material containing boron carbide drilled almost ten times as far without seizure as tungsten carbide/cobalt. In higher speed and higher load rotary drilling tests conducted by the National Coal Board, the material containing boron carbide chipped badly compared with normal NCB hardgrade material

  12. Innovative boron nitride-doped propellants

    OpenAIRE

    Thelma Manning; Richard Field; Kenneth Klingaman; Michael Fair; John Bolognini; Robin Crownover; Carlton P. Adam; Viral Panchal; Eugene Rozumov; Henry Grau; Paul Matter; Michael Beachy; Christopher Holt; Samuel Sopok

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower ...

  13. Lithium-Beryllium-Boron : Origin and Evolution

    OpenAIRE

    Vangioni-Flam, Elisabeth; Casse, Michel; Audouze, Jean

    1999-01-01

    The origin and evolution of Lithium-Beryllium-Boron is a crossing point between different astrophysical fields : optical and gamma spectroscopy, non thermal nucleosynthesis, Big Bang and stellar nucleosynthesis and finally galactic evolution. We describe the production and the evolution of Lithium-Beryllium-Boron from Big Bang up to now through the interaction of the Standard Galactic Cosmic Rays with the interstellar medium, supernova neutrino spallation and a low energy component related to...

  14. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide powder and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Total Carbon by Combustion and Gravimetry 7-17 Total Boron by Titrimetry 18-28 Isotopic Composition by Mass Spectrometry 29-38 Chloride and Fluoride Separation by Pyrohydrolysis 39-45 Chloride by Constant-Current Coulometry 46-54 Fluoride by Ion-Selective Electrode 55-63 Water by Constant-Voltage Coulometry 64-72 Impurities by Spectrochemical Analysis 73-81 Soluble Boron by Titrimetry 82-95 Soluble Carbon by a Manometric Measurement 96-105 Metallic Impurities by a Direct Reader Spectrometric Method 106-114

  15. Dose calculation from a D-D-reaction-based BSA for boron neutron capture synovectomy

    International Nuclear Information System (INIS)

    Monte Carlo simulations were carried out to calculate dose in a knee phantom from a D-D-reaction-based Beam Shaping Assembly (BSA) for Boron Neutron Capture Synovectomy (BNCS). The BSA consists of a D(d,n)-reaction-based neutron source enclosed inside a polyethylene moderator and graphite reflector. The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield at the knee phantom. Then neutron dose was calculated at various depths in a knee phantom loaded with boron and therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose were determined. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values.

  16. Dose calculation from a D-D-reaction-based BSA for boron neutron capture synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Khalid [Department of Physics, Hail University, Hail (Saudi Arabia)], E-mail: khalidafnan@uoh.edu.sa; Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals and Center for Applied Physical Sciences, Box No. 1815, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Maalej, N.; Elshahat, B. [Department of Physics, King Fahd University of Petroleum and Minerals and Center for Applied Physical Sciences, Box No. 1815, Dhahran 31261 (Saudi Arabia)

    2010-04-15

    Monte Carlo simulations were carried out to calculate dose in a knee phantom from a D-D-reaction-based Beam Shaping Assembly (BSA) for Boron Neutron Capture Synovectomy (BNCS). The BSA consists of a D(d,n)-reaction-based neutron source enclosed inside a polyethylene moderator and graphite reflector. The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield at the knee phantom. Then neutron dose was calculated at various depths in a knee phantom loaded with boron and therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose were determined. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values.

  17. An atom probe field ion microscope investigation of the role of boron in precipitates and at grain boundaries in NiAl

    International Nuclear Information System (INIS)

    This paper reports that the high resolution analytical technique of Atom Probe Field Ion Microscopy (APFIM) has been used to characterize grain boundaries and the matrix of a stoichiometric NiAl alloy doped with 0.04 (100 wppm) and 0.12 at. % (300 wppm) boron. Field ion images revealed boron segregation to the grain boundaries. Atom probe elemental analysis of the grain boundaries measured a boron coverage of up to 30% of a monolayer. Extensive atom probe analyses also revealed a fine dispersion of nanoscale boride precipitates in the matrix. The boron segregation to the grain boundaries was found to correlate with the observed suppression of intergranular fracture. However, the decrease in ductility of boron-doped NiAl is attributed in part to the precipitation hardening effect of the boride phases

  18. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  19. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  20. Boronization of Russian tokamaks from carborane precursors

    International Nuclear Information System (INIS)

    A new and cheap boronization technique using the nontoxic and nonexplosive solid substance carborane has been developed and successfully applied to the Russian tokamaks T-11M, T-3M, T-10 and TUMAN-3. The glow discharge in a mixture of He and carborane vapor produced the amorphous B/C coating with the B/C ratio varied from 2.0-3.7. The deposition rate was about 150 nm/h. The primary effect of boronization was a significant reduction of the impurity influx and the plasma impurity contamination, a sharp decrease of the plasma radiated power, and a decrease of the effective charge. Boronization strongly suppressed the impurity influx caused by additional plasma heating. ECR- and ICR-heating as well as ECR current drive were more effective in boronized vessels. Boronization resulted in a significant extension of the Ne- and q-region of stable tokamak operation. The density limit rose strongly. In Ohmic H-mode energy confinement time increased significantly (by a factor of 2) after boronization. It rose linearly with plasma current Ip and was 10 times higher than Neo-Alcator time at maximum current. ((orig.))

  1. Discharge cleaning on TFTR after boronization

    International Nuclear Information System (INIS)

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 105 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  2. Large-angle production of charged pions by 3 GeV/c - 12.9 GeV/c protons on beryllium, aluminium and lead targets

    CERN Document Server

    Catanesi, M G; Edgecock, R; Ellis, Malcolm; Soler, F J P; Gössling, C; Bunyatov, S; Krasnoperov, A; Popov, B; Serdiouk, V; Tereschenko, V; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Chernyaev, E; Tsukerman, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Morone, M C; Prior, G; Schroeter, R; Meurer, C; Gastaldi, U; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; Ferri, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Bobisut, F; Gibin, D; Guglielmi, A; Mezzetto, M; Dumarchez, J; Dore, U; Orestano, D; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Howlett, L; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, Stefan; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Burguet-Castell, J; Cervera-Villanueva, A; Gómez-Cadenas, J J; Martín-Albo, J; Novella, P; Sorel, M; CERN. Geneva

    2008-01-01

    Measurements of the double-differential $\\pi^{\\pm}$ production cross-section in the range of momentum $100 \\MeVc \\leq p < 800 \\MeVc$ and angle $0.35 \\rad \\leq \\theta < 2.15 \\rad$ in proton--beryllium, proton--aluminium and proton--lead collisions are presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \\GeVc to 12.9 \\GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections at six incident proton beam momenta (3 \\GeVc, 5 \\GeVc, 8 \\GeVc, 8.9 \\GeVc (Be only), 12 \\GeVc and 12.9 \\GeVc (Al only)) and compared to previously available data.

  3. Large-angle production of charged pions by 3-12.9 GeV/c protons on beryllium, aluminium and lead targets

    Energy Technology Data Exchange (ETDEWEB)

    Catanesi, M.G.; Radicioni, E. [Univ. degli Studi e Sezione INFN, Bari (Italy); Edgecock, R.; Ellis, M.; Soler, F.J.P. [Chilton, Rutherford Appleton Lab., Didcot (United Kingdom); Goessling, C. [Univ. Dortmund, Inst. fuer Physik, Dortmund (Germany); Bunyatov, S.; Krasnoperov, A.; Popov, B.; Serdiouk, V.; Tereschenko, V. [JINR Dubna, Joint Inst. for Nuclear Research, Dubna (Russian Federation); Di Capua, E.; Vidal-Sitjes, G. [Univ. degli Studi e Sezione INFN, Ferrara (Italy); Artamonov, A.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Tcherniaev, E.; Tsukerman, I.; Veenhof, R.; Wiebusch, C.; Zucchelli, P. [CERN, Geneva (Switzerland); Blondel, A.; Borghi, S.; Morone, M.C.; Prior, G.; Schroeter, R. [Univ. de Geneve, Section de Physique, Geneve (Switzerland); Meurer, C. [Forschungszentrum Karlsruhe, Inst. fuer Physik, Karlsruhe (Germany); Gastaldi, U. [Lab. Nazionali di Legnaro dell' INFN, Legnaro (Italy); Mills, G.B. [Los Alamos National Lab., Los Alamos (United States); Graulich, J.S.; Gregoire, G. [UCL, Inst. de Physique Nucleaire, Louvain-la-Neuve (Belgium); Bonesini, M.; Ferri, F. [Univ. degli Studi e Sezione INFN Milano Bicocca, Milano (Italy); Kirsanov, M. [Inst. for Nuclear Research, Moscow (Russian Federation); Bagulya, A.; Grichine, V.; Polukhina, N. [Russian Academy of Sciences, P.N. Lebedev Inst. of Physics (FIAN), Moscow (Russian Federation); Palladino, V. [Univ. Federico II e Sezione INFN, Napoli (Italy); Coney, L.; Schmitz, D. [Columbia Univ., New York (United States); Barr, G.; De Santo, A. [Univ. of Oxford, Nuclear and Astrophysics Lab., Oxford (United Kingdom); Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M. [Univ. degli Studi e Sezione INFN, Padova (Italy); Dumarchez, J. [Univ. de Paris VI et VII, LPNHE, Paris (France); Dore, U. [Univ. La Sapienza e Sezione INFN Roma I, Roma (Italy)] [and others

    2008-03-15

    Measurements of the double-differential {pi}{sup {+-}} production cross-section in the range of momentum 100 MeV/c{<=}p< 800 MeV/c and angle 0.35 rad{<=}{theta}<2.15 rad in proton-beryllium, proton-aluminium and proton-lead collisions are presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections d{sup 2}{sigma}/dpd{theta} at six incident proton beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c, 8.9 GeV/c (Be only), 12 GeV/c and 12.9 GeV/c (Al only)) and compared to previously available data. (orig.)

  4. Synthesis and properties of low-carbon boron carbides

    International Nuclear Information System (INIS)

    This paper reports on the production of boron carbides of low carbon content (3 and CCl4 at 1273-1673 K in a chemical vapor deposition (CVD) reactor. Transmission electron microscopy (TEM) revealed that phase separation had occurred, and tetragonal boron carbide was formed along with β-boron or α-boron carbide under carbon-depleted gas-phase conditions. At temperatures greater than 1390 degrees C, graphite substrates served as a carbon source, affecting the phases present. A microstructure typical of CVD-produced α-boron carbide was observed. Plan view TEM of tetragonal boron carbide revealed a blocklike structure

  5. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Science.gov (United States)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  6. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  7. The energy landscape of fullerene materials: a comparison between boron, boron-nitride and carbon

    CERN Document Server

    De, Sandip; Amsler, Maximilian; Pochet, Pascal; Genovese, Luigi; Goedecker, Stefan

    2010-01-01

    Using the minima hopping global geometry optimization method on the density functional potential energy surface we study medium size and large boron clusters. Even though for isolated medium size clusters the ground state is a cage like structure they are unstable against external perturbations such as contact with other clusters. The energy landscape of larger boron clusters is glass like and has a large number of structures which are lower in energy than the cages. This is in contrast to carbon and boron nitride systems which can be clearly identified as structure seekers in our minima hopping runs. The differences in the potential energy landscape explain why carbon and boron nitride systems are found in nature whereas pure boron fullerenes have not been found.

  8. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  9. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  10. Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2 gene-amplified breast cancer cells with primary resistance to HER1/2-targeted therapies

    International Nuclear Information System (INIS)

    Highlights: → Intrinsic trastuzumab resistance occurs in ∼70% of metastatic HER2 + breast carcinomas (BC). → Approximately 15% of early HER2 + BC relapse in spite of treatment with trastuzumab-based therapies. → HER2-independent downstream pro-survival pathways might underlie trastuzumab refractoriness. → Survivin is indispensable for proliferation and survival of HER2 + BC unresponsive to HER2-targeted therapies ab initio. → Survivin antagonists may clinically circumvent the occurrence of de novo resistance to HER2-directed drugs. -- Abstract: Primary resistance of HER2 gene-amplified breast carcinomas (BC) to HER-targeted therapies can be explained in terms of overactive HER2-independent downstream pro-survival pathways. We here confirm that constitutive overexpression of Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2-positive BC cells with intrinsic cross-resistance to multiple HER1/2 inhibitors. The IC50 values for the HER1/2 Tyrosine Kinase Inhibitors (TKIs) gefitinib, erlotinib and lapatinib were up to 40-fold higher in trastuzumab-unresponsive JIMT-1 cells than in trastuzumab-naive SKBR3 cells. ELISA-based and immunoblotting assays demonstrated that trastuzumab-refractory JIMT-1 cells constitutively expressed ∼4 times more survivin protein than trastuzumab-responsive SKBR3 cells. In response to trastuzumab, JIMT-1 cells accumulated ∼10 times more survivin than SKBR3 cells. HER1/2 TKIs failed to down-regulate survivin expression in JIMT-1 cells whereas equimolar doses of HER1/HER2 TKIs drastically depleted survivin protein in SKBR3 cells. ELISA-based detection of histone-associated DNA fragments confirmed that trastuzumab-refractory JIMT-1 cells were intrinsically protected against the apoptotic effects of HER1/2 TKIs. Of note, when we knocked-down survivin expression using siRNA and then added trastuzumab, cell proliferation and colony formation were completely suppressed in JIMT-1 cells. Our current findings may

  11. Development of new highly potent imidazo[1,2-b]pyridazines targeting Toxoplasma gondii calcium-dependent protein kinase 1.

    Science.gov (United States)

    Moine, Espérance; Dimier-Poisson, Isabelle; Enguehard-Gueiffier, Cécile; Logé, Cédric; Pénichon, Mélanie; Moiré, Nathalie; Delehouzé, Claire; Foll-Josselin, Béatrice; Ruchaud, Sandrine; Bach, Stéphane; Gueiffier, Alain; Debierre-Grockiego, Françoise; Denevault-Sabourin, Caroline

    2015-11-13

    Using a structure-based design approach, we have developed a new series of imidazo[1,2-b]pyridazines, targeting the calcium-dependent protein kinase-1 (CDPK1) from Toxoplasma gondii. Twenty derivatives were thus synthesized. Structure-activity relationships and docking studies confirmed the binding mode of these inhibitors within the ATP binding pocket of TgCDPK1. Two lead compounds (16a and 16f) were then identified, which were able to block TgCDPK1 enzymatic activity at low nanomolar concentrations, with a good selectivity profile against a panel of mammalian kinases. The potential of these inhibitors was confirmed in vitro on T. gondii growth, with EC50 values of 100 nM and 70 nM, respectively. These best candidates also displayed low toxicity to mammalian cells and were selected for further in vivo investigations on murine model of acute toxoplasmosis.

  12. Large-angle production of charged pions with 3-12.9 GeV/c incident protons on nuclear targets

    CERN Document Server

    Catanesi, M G; Edgecock, R; Ellis, M; Soler, F J P; Goling, C; Bunyatov, S; Krasnoperov, A; Popov, B; Serdiouk, V; Tereschenko, V; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Ivanchenko, A; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Chernyaev, E; Tsukerman, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Morone, M C; Prior, G; Schroeter, R; Meurer, C; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; Ferri, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Bobisuta, F; Gibina, D; Guglielmib, A; Mezzettob, M; Dumarchez, J; Dore, U; Orestanoc, D; Pastorec, F; Tonazzoc, A; Tortorad, L; Booth, C; Howlett, L; Skoro, G; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Burguet-Castell, J; Cervera-Villanueva, Anselmo; Gómez-Cadenas, J J; Martn Albo, J; Novella, P; Sorel, M; Tornero, A

    2008-01-01

    Measurements of the double-differential charged pion production cross-section in the range of momentum 100 MeV/c < p < 800 MeV/c and angle 0.35 < \\theta < 2.15 rad in proton-beryllium, proton-carbon, proton-aluminium, proton-copper, proton-tin, proton-tantalum and proton-lead collisions are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a target with a thickness of 5% of a nuclear interaction length.

  13. Independent cross-sections of alkali isotopes produced in various targets bombarded by $^{12}C$ and $^{18}O$ ions up to 77 MeV/amu

    CERN Document Server

    De Saint-Simon, M; Coc, A; Epherre-Rey-Campagnolle, Marcelle; Guimbal, P; Haan, S; Langevin, M; Müller, A C; Thibault, C; Touchard, F

    1982-01-01

    The authors report on an online mass-spectrometric study of the isotopic distributions of nuclear reaction products. The two purposes of this experiment are the investigation of a particular aspect of reaction-mechanisms and the study of the possibility for exotic-nuclei production. The measurements have been carried out with the 86 MeV/amu /sup 12/C and /sup 18/O beams of the synchrocyclotron SC (CERN). By degradation in different sets of graphite slabs, three different energies: 13, 27 and 77 MeV/amu have been chosen. Due to the chemical selectivity for the alkali elements of the device, the isotopic distributions of Li, Na, K, Rb, Cs and Fr were measured in four targets: C, Nb, Ta and U. The independent yields obtained by direct ion counting are converted in cross-sections using a calibration of T. Lund et al.

  14. ASK1 (MAP3K5) as a potential therapeutic target in malignant fibrous histiocytomas with 12q14-q15 and 6q23 amplifications.

    Science.gov (United States)

    Chibon, Frédéric; Mariani, Odette; Derré, Josette; Mairal, Aline; Coindre, Jean-Michel; Guillou, Louis; Sastre, Xavier; Pédeutour, Florence; Aurias, Alain

    2004-05-01

    Malignant fibrous histiocytomas (MFHs) are aggressive tumors without any definable line of differentiation. We recently demonstrated that about 20% of them are characterized by high-level amplifications of the 12q14-q15 chromosome region, associated with either 1p32 or 6q23 band amplification. This genetic finding, very similar to that in well-differentiated liposarcomas, strongly suggests that these tumors actually correspond to undifferentiated liposarcomas. It also suggests that the lack of differentiation could be the consequence of amplification of target genes localized in the 1p32 or 6q23 bands. We report here the characterization by array CGH of the 6q23 minimal region of amplification. Our findings demonstrate that amplification and overexpression of ASK1 (MAP3K5), a gene localized in the 6q23 band and encoding a mitogen-activated protein kinase kinase kinase of the JNK-MAPK signaling pathway, could inhibit the adipocytic differentiation process of the tumor cells. Treatment of a cell line with specific inhibitors of ASK1 protein resulted in the bypass of the differentiation block and induction of a strong adipocytic differentiation. These observations indicate that ASK1 is a target for new therapeutic management of these aggressive tumors. PMID:15034865

  15. Boron remobilization at low boron supply in olive (Olea europaea) in relation to leaf and phloem mannitol concentrations.

    Science.gov (United States)

    Liakopoulos, Georgios; Stavrianakou, Sotiria; Filippou, Manolis; Fasseas, Costas; Tsadilas, Christos; Drossopoulos, Ioannis; Karabourniotis, George

    2005-02-01

    For plant species in which a considerable portion of the photoassimilates are translocated in the phloem as sugar alcohols, boron is freely translocated from mature organs to growing tissues. However, the effects of decreased plant boron status on boron remobilization are poorly understood. We conducted a growth chamber experiment (CE) and a field experiment (FE) to study the effects of low boron supply on boron remobilization in olive (Olea europaea L.), a species that transports considerable amounts of mannitol in the phloem. For the CE, several physiological parameters were compared between control (B+) and boron-deficient olive plants (B-) during the expansion of new leaves. Boron remobilization was assessed by measuring boron content of selected leaves at the beginning and at the end of the CE. As expected, boron was remobilized from mature leaves to young leaves of B+ plants; however, considerable boron remobilization was also observed in B- plants, suggesting a mechanism whereby olive can sustain a minimum boron supply for growth of new tissues despite an insufficient external boron supply. Boron deficiency caused inhibition of new growth but had no effect on photosynthetic capacity per unit leaf surface area of young and mature leaves, thereby altering the carbon utilization pattern and resulting in carbon allocation to structures within the source leaves and accumulation of soluble carbohydrates. Specifically, in mature B- leaves in the CE and in B- leaves in the FE, mannitol concentration on a leaf water content basis increased by 48 and 27% respectively, compared with controls. Carbon export ability (assessed by both phloem anatomy and phloem exudate composition of FE leaves) was enhanced at low boron supply. We conclude that, at low boron supply, increased mannitol concentrations maintain boron remobilization from source leaves to boron-demanding sink leaves. PMID:15574397

  16. Metallogenic Chronology of Boron Deposits in the Eastern Liaoning Paleoproterozoic Rift Zone

    Institute of Scientific and Technical Information of China (English)

    LU Yuanfa; CHEN Yuchuan; LI Huaqing; XUE Chunji; CHEN Fuwen

    2005-01-01

    Lead isotopic analytic data of 30 ores gathered from the Zhuanmiao boron deposit, Wengquangou boron (iron) deposit and its Dongtaizi Ore Member constitute three isochrons, the corresponding ages of which are 1902±12 Ma,1852±9 Ma and 1917±48 Ma. Lead isotopic analyses of marble from the Xiquegou Member of the Qingchenzi orefield yield a Pb-Pb isochron age of 1844±27 Ma. 40Ar-39Ar quick neutron activation dating of phlogopites and microclines coexisting with ore minerals in the Wengquangou boron (iron) and Zhuanmiao boron deposits shows that: (1) the phlogopite from the Wengquangou has a plateau age of 1923±1.5 Ma and an isochron age of 1924±2.5 Ma; (2) the microcline from the Wengquangou has the plateau age of 1407±5.4 Ma and 220±12 Ma and an isochron age of 1403±19Ma; (3) the phlogopites from the Zhuanmiao yield a plateau age 1918±1.3 Ma and an isochron age of 1918±2.9 Ma; (4) the microclines from the Zhuanmiao yield the plateau age of 1420±16 Ma and 250±8 Ma and an isochron age of 1425±19 Ma and 269±16 Ma. These ages indicate that the eastern Liaoning area happened around 1900 Ma, an important tectonomagmatic event, which is consistent with the worldwide Mid-Proterozoic tectonomagmatic event. During this period, the Proterozoic Liaohe Group was folded and underwent strong normal metamorphism, and the (hydrothermal)sedimentary boron deposits (or source beds) formed earlier were strongly superimposed by mineralization, resulting in enrichment of boron; later regional geological processes made little contribution to the formation of the boron deposits.Lead isotopic components show that the U-Pb and Th-Pb isotopic system reached homogenization in the ores whereas only the U-Pb isotopic system reached homogenization in the marble from the Xiquegou district, which indicates that the boron deposits superimposed in the studied area endured a relatively strong process of hydrothermal migmatization during the end phase of early Proterozoic metamorphism.

  17. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  18. Study of Nuclear Collisions of 86 MeV/a.m.u. $^{12}$C with Heavy Targets by Collection of the Heavy Recoil Nuclei

    CERN Multimedia

    2002-01-01

    The aim of this experiment is twofold:\\\\ \\\\ Firstly to test the possibilities of collection of the heavy recoil nuclei with the device presented schematically on the figure. The recoil nuclei escaping from the irradiated target are first thermalised in a gas (N^2). One then takes advantage of their remaining charge to collect them with an electric field on the surface of a solid state detector. Tests already performed with other beams give absolute efficiency around 5\\%. The best conditions of collections with very energetic |1|2C have first to be tested. Secondly to get some insight into nuclear reaction mechanisms induced by 86~MeV/a.m.u. |1|2C using the possibilities of this recoil chamber. Two kinds of mechanisms should occur in these interactions. If the incident energy is damped (deep inelastic reaction, fusion), the heavy nucleus will be highly excited and the residual nuclei will lie along the @G^n/@G^p~=~1~line. For heavy nuclei this line is located at about 25~mass units from the stability line. If ...

  19. Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

    CERN Document Server

    Catanesi, M G; Edgecock, R; Ellis, M; Robbins, S; Soler, F J P; Gössling, C; Bunyatov, S; Krasnoperov, A; Popov, B; Serdiouk, V; Tereschenko, V; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Arce, P; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Gruber, P; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Pasternak, J; Chernyaev, E; Tsukerman, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Campanelli, M; Morone, M C; Prior, G; Schroeter, R; Engel, R; Meurer, C; Kato, I; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; Ferri, F; Paganoni, M; Paleari, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Pattison, C; Zuber, K; Bobisut, F; Gibin, D; Guglielmi, A; Mezzetto, M; Dumarchez, J; Vannucci, F; Dore, U; Orestano, D; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Buttar, C; Hodgson, P; Howlett, L; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Santin, G; Burguet-Castell, J; Cervera-Villanueva, A; Gómez-Cadenas, J J; Martín-Albo, J; Novella, P; Sorel, M; Tornero, A

    2008-01-01

    A measurement of the double-differential $\\pi^{\\pm}$ production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum $100 \\MeVc \\leq p < 800 \\MeVc$ and angle $0.35 \\rad \\le \\theta <2.15 \\rad$ is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \\GeVc to 12 \\GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \\GeVc, 5 \\GeVc, 8 \\GeVc and 12 \\GeVc).

  20. Large-angle production of charged pions by 3 GeV/c-12 GeV/c protons on carbon, copper and tin targets

    Science.gov (United States)

    Catanesi, M. G.; Radicioni, E.; Edgecock, R.; Ellis, M.; Robbins, S.; Soler, F. J. P.; Gößling, C.; Bunyatov, S.; Krasnoperov, A.; Popov, B.; Serdiouk, V.; Tereschenko, V.; di Capua, E.; Vidal-Sitjes, G.; Arce, P.; Artamonov, A.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Gruber, P.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Pasternak, J.; Tcherniaev, E.; Tsukerman, I.; Veenhof, R.; Wiebusch, C.; Zucchelli, P.; Blondel, A.; Borghi, S.; Campanelli, M.; Morone, M. C.; Prior, G.; Schroeter, R.; Engel, R.; Meurer, C.; Kato, I.; Gastaldi, U.; Mills, G. B.; Graulich, J. S.; Grégoire, G.; Kirsanov, M.; Bonesini, M.; Ferri, F.; Paganoni, M.; Paleari, F.; Bagulya, A.; Grichine, V.; Polukhina, N.; Palladino, V.; Coney, L.; Schmitz, D.; Barr, G.; de Santo, A.; Pattison, C.; Zuber, K.; Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.; Dumarchez, J.; Vannucci, F.; Dore, U.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Booth, C.; Buttar, C.; Hodgson, P.; Howlett, L.; Bogomilov, M.; Chizhov, M.; Kolev, D.; Tsenov, R.; Piperov, S.; Temnikov, P.; Apollonio, M.; Chimenti, P.; Giannini, G.; Santin, G.; Burguet-Castell, J.; Cervera-Villanueva, A.; Gómez-Cadenas, J. J.; Martín-Albo, J.; Novella, P.; Sorel, M.; Tornero, A.

    2008-01-01

    A measurement of the double-differential π± production cross-section in proton-carbon, proton-copper and proton-tin collisions in the range of pion momentum 100 MeV/ c≤p<800 MeV/ c and angle 0.35 rad≤θ<2.15 rad is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 GeV/ c to 12 GeV/ c hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections d2σ/dpdθ at four incident proton beam momenta (3 GeV/ c, 5 GeV/ c, 8 GeV/ c and 12 GeV/ c).

  1. Effectiveness of boron neutron capture therapy for recurrent head and neck malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Itsuro [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan)], E-mail: katoitsu@dent.osaka-u.ac.jp; Fujita, Yusei [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan); Maruhashi, Akira [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan); Kumada, Hiroaki [Japan Atomic Energy Agency, Tokai Research and Development Center, Ibaraki (Japan); Ohmae, Masatoshi [Department of Oral and Maxillofacial Surgery, Izimisano Municipal Hospital, Rinku General Hospital, Izumisano, Osaka (Japan); Kirihata, Mitsunori [Graduate School of Environment and Life Science, Osaka prefectural University, Osaka (Japan); Imahori, Yoshio [Department of Neurosurgery, Kyoto Prefectural University, Kyoto (Japan); CEO of Cancer Intelligence Care Systems, Inc., Tokyo (Japan); Suzuki, Minoru [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan); Sakrai, Yoshinori [Graduate School of Medicine, Sapporo Medical University of Medicine, Hokkaido (Japan); Sumi, Tetsuro; Iwai, Soichi; Nakazawa, Mitsuhiro [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan); Murata, Isao; Miyamaru, Hiroyuki [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University (Japan); Ono, Koji [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan)

    2009-07-15

    It is necessary to explore new treatments for recurrent head and neck malignancies (HNM) to avoid severe impairment of oro-facial structures and functions. Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. We have treated with BNCT 42 times for 26 patients (19 squamous cell carcinomas (SCC), 4 salivary gland carcinomas and 3 sarcomas) with a recurrent and far advanced HNM since 2001. Results of (1) {sup 10}B concentration of tumor/normal tissue ratios (T/N ratio) of FBPA-PET studies were SCC: 1.8-5.7, sarcoma: 2.5-4.0, parotid tumor: 2.5-3.7. (2) Therapeutic effects were CR: 12 cases, PR: 10 cases, PD: 3 cases NE (not evaluated): 1 case. Response rate was 85%. (3) Improvement of QOL such as a relief of severe pain, bleeding, and exudates at the local lesion, improvement of PS, disappearance of ulceration, covered with normal skin and preserved oral and maxillofacial functions and tissues. (4) Survival periods after BNCT were 1-72 months (mean: 13.6 months). Six-year survival rate was 24% by Kaplan-Meier analysis. (5) Adverse-events were transient mucositis and alopecia in most of the cases; three osteomyelitis and one brain necrosis were recognized. These results indicate that BNCT represents a new and promising treatment approach for advanced HNM.

  2. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  3. Technology of boron-containing polyphosphate fertilizer 'Phosphobor'

    International Nuclear Information System (INIS)

    A technology is developed for producing 'Phosphobor' fertilizer based on the rock phosphate weal (17-18% P2O5) with additions of boron-magnesium compound. Boron is part of polyphosphate fertilizer in the form of polymeric compounds of phosphorus and boron. Phosphorus and boron copolymers -boratophosphates - are easily formed in the process of polyphosphate fertilizers production, since borates undergo a mutual polycondensation reaction with phosphates. 8 refs., 1 fig

  4. Photon energy absorption parameters for composite mixtures with boron compounds

    International Nuclear Information System (INIS)

    Highlights: → An experimental investigation of photon energy absorption parameters for 12 composite mixture samples with boron compounds. → Calculations of total mass attenuation coefficients and effective atomic numbers for the energy up to 100 keV. → Radiation shielding properties varied with concentration of composite materials. → In general, the mixture with K2B4O7· 4H2O is more absorber than with H3BO3. - Abstract: Boron compounds that are used in the manufacturing of a variety of products are introduced to the environment in the form of waste. The radiation shielding measurements of mixtures that contain boron compounds is considered to be a topic of concern. The mass attenuation coefficients of (PbO and K2B4O7.4H2O) and (PbO and H3BO3) as functions of their changing contents have been measured in the X-ray energy range from 25.191 to 57.903 keV. These values are used to determine the effective atomic number of mixtures. The γ-rays emitted from an Am241 annular source have been sent to secondary sources whose characteristic X-rays have been used for transmission arrangement. The characteristic X-rays of the secondary sources have been counted by a Si(Li) detector with a resolution of 149 eV at 5.9 keV. Also, the total effective atomic number of each mixture was determined by using the mixture rule. The measured values were compared with theoretically calculated values.

  5. Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes

    Science.gov (United States)

    Liao, Yunlong; Chen, Zhongfang; Connell, John W.; Fay, Catharine C.; Park, Cheol; Kim, Jae-Woo; Lin, Yi

    2014-01-01

    Boron nitride nanotubes (BNNTs), the one-dimensional member of the boron nitride nanostructure family, are generally accepted to be highly inert to oxidative treatments and can only be covalently modifi ed by highly reactive species. Conversely, it is discovered that the BNNTs can be chemically dispersed and their morphology modifi ed by a relatively mild method: simply sonicating the nanotubes in aqueous ammonia solution. The dispersed nanotubes are significantly corroded, with end-caps removed, tips sharpened, and walls thinned. The sonication treatment in aqueous ammonia solution also removes amorphous BN impurities and shortened BNNTs, resembling various oxidative treatments of carbon nanotubes. Importantly, the majority of BNNTs are at least partially longitudinally cut, or "unzipped". Entangled and freestanding BN nanoribbons (BNNRs), resulting from the unzipping, are found to be approximately 5-20 nm in width and up to a few hundred nanometers in length. This is the fi rst chemical method to obtain BNNRs from BNNT unzipping. This method is not derived from known carbon nanotube unzipping strategies, but is unique to BNNTs because the use of aqueous ammonia solutions specifi cally targets the B-N bond network. This study may pave the way for convenient processing of BNNTs, previously thought to be highly inert, toward controlling their dispersion, purity, lengths, and electronic properties.

  6. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    This volume contains the proceedings of the 4th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 24 in 1992. First, clinical experiences of BNCT in the Kyoto University Research Reactor in 1992 were briefly reported. Then, the killing effects of boron cluster-containing nucleic acid precursors on tumor cells were shown (Chap. 2). The various trials of the optical resolution of B-p-boronophenylalanine for neutron capture therapy were made (Chap. 3). The borate-dextran gel complexes were investigated by the nuclear magnetic resonance spectroscopy. The stability constants of borate complexes were listed, and are useful in the solution chemistry of boron compounds (Chap. 4). The interactions between boron compounds and biological materials were studied by the paper electrophoresis which had been developed by us (Chap. 5). Molecular design of boron-10 carriers and their organic synthesis were reported (Chap. 6). Carborane-containing aziridine boron carriers which were directed to the DNA alkylation were synthesized and their cancer cell killing efficacies were tested (Chap. 7). The solution chemistry of deuterium oxide which is a good neutron moderator was reported, relating to the BNCT (Chap. 8). (author)

  7. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2010-01-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  8. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    Directory of Open Access Journals (Sweden)

    Yuya Egawa

    2014-02-01

    Full Text Available In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye. Some boronic acid-substituted azobenzenes were attached to a polymer or utilized for supramolecular chemistry to produce glucose-selective binding, in which two boronic acid moieties cooperatively bind one glucose molecule. In addition, boronic acid-substituted azobenzenes have been applied not only for glucose monitoring, but also for the sensing of glycated hemoglobin and dopamine.

  9. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  10. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.

  11. Depth resolved investigations of boron implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sztucki, M. E-mail: michael@sztucki.de; Metzger, T.H.; Milita, S.; Berberich, F.; Schell, N.; Rouviere, J.L.; Patel, J

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6x10{sup 15} ions/cm{sup -2} at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {l_brace}1 1 1{r_brace} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  12. Geochemical study of boron isotopes in the process of loess weathering

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Zhiqi; (

    2003-01-01

    [1]Palmer, M. R., Swihart, G. H., Boron isotope geochemistry: An overview, in Rev. Mineral 33, Boron Mineralogy, Petrology and Geochemistry (eds. Grew, E. S., Anovitz, L. M.), Washington, D. C.: Mineral Soc. Am., 1996, 709-744.[2]Chaussidon, M., Albarède, F., Secular boron isotope variations in the continental crust: An ion microprobe study, Earth Planet Sci. Lett., 1992, 108: 229-241.[3]Spivack, A. J., Edmond, J. M., Boron isotope exchange between seawater and the oceanic crust, Geochim. Cosmochim. Acta, 1987, 51: 1033-1043.[4]Vengosh, A., Chivas, A. R., Mcculloch, M. T. et al., Boron isotope geochemistry of Australian salt lakes, Geochim. Cosmochim. Acta, 1991, 55: 2591-2606.[5]Xiao, Y. K., Sun, D. P., Wang, Y. H. et al., Boron isotopic compositions of brine, sediments and source water in Da Qaidam Lake, Qinghai, China, Geochim Cosmochim Acta, 1992,56: 1561-1568.[6]Mcmullen, C. C., Cragg, C. B., Thode, H. G., Absolute rations of 11B/10B in Searles Lake borax, Geochim. Cosmochim. Acta, 1961, 23: 147-150.[7]Palmer, M. R., Sturchio, N. C., The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance, Geochim. Cosmochim. Acta, 1990, 54: 2811-2815.[8]Arndsson, S., Andrèsdèttir, A., Processes controlling the distribution of boron and chlorine in natural waters in Iceland, Geochim. Cosmochim. Acta, 1995, 59: 4125-4146.[9]Aggarwal, J. K., Palmer, M. R., Bullen, T. D. et al., The boron isotope systematics of Iceland geothermal waters: 1. Meteoric water charged systems, Geochim. Cosmochim. Acta, 2000, 64: 579-585.[10]Spivack, A. J., Palmer, M. R., Edmond, J. M., The sedimentary cycle of the boron isotopes, Geochim. Cosmochim. Acta, 1987, 51: 1939-1949.[11]Liu Yingjun, Cao Liming, Li Zhaolin et al., Element Geochemistry (in Chinese), Beijing: Science Press, 1984, 422-428.[12]Schwarcz, H. P., Agyei, E. K., Mcmullen, C. C., Boron isotopic fractionation during clay adsorption

  13. Boron removal by electrocoagulation and recovery.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water.

  14. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    NARCIS (Netherlands)

    Mohammadi, V.; Nihtianov, S.

    2016-01-01

    The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and co

  15. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  16. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-01-01

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics. PMID:25248070

  17. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  18. The measurement of thermal neutron flux depression for determining the concentration of boron in blood

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a form of targeted radiotherapy that relies on the uptake of the capture element boron by the volume to be treated. The treatment procedure requires the measurement of boron in the patient's blood. The investigation of a simple and inexpensive method for determining the concentration of the capture element 10B in blood is described here. This method, neutron flux depression measurement, involves the determination of the flux depression of thermal neutrons as they pass through a boron-containing sample. It is shown via Monte Carlo calculations and experimental verification that, for a maximum count rate of 1x104 counts/s measured by the detector, a 10 ppm 10B sample of volume 20 ml can be measured with a statistical precision of 10% in 32±2 min. For a source activity of less than 1.11x1011 Bq and a maximum count rate of less than 1x104 counts/s, a 10 ppm 10B sample of volume 20 ml can be measured with a statistical precision of 10% in 58±3 min. It has also been shown that this technique can be applied to the measurement of the concentration of any element with a high thermal neutron cross section such as 157Gd. (author)

  19. Computational Aspects of Carbon and Boron Nanotubes

    Directory of Open Access Journals (Sweden)

    Paul Manuel

    2010-11-01

    Full Text Available Carbon hexagonal nanotubes, boron triangular nanotubes and boron a-nanotubes are a few popular nano structures. Computational researchers look at these structures as graphs where each atom is a node and an atomic bond is an edge. While researchers are discussing the differences among the three nanotubes, we identify the topological and structural similarities among them. We show that the three nanotubes have the same maximum independent set and their matching ratios are independent of the number of columns. In addition, we illustrate that they also have similar underlying broadcasting spanning tree and identical communication behavior.

  20. Short-Term Coral Bleaching Is Not Recorded by Skeletal Boron Isotopes

    Science.gov (United States)

    Schoepf, Verena; McCulloch, Malcolm T.; Warner, Mark E.; Levas, Stephen J.; Matsui, Yohei; Aschaffenburg, Matthew D.; Grottoli, Andréa G.

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  1. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model

    Energy Technology Data Exchange (ETDEWEB)

    A. Monti Hughes; ECC Pozzi; S. Thorp; M. A. Garabalino; R. O. Farias; S. J. Gonzalez; E. M. Heber; M. E. Itoiz; R. F. Aromando; A. J. Molinari; M. Miller; D. W. Nigg; P. Curotto; V. A. Trivillin; A. E. Schwint

    2013-11-01

    Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model.

  2. Standard specification for nuclear-grade boron carbide powder

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This specification defines the chemical and physical requirements for boron carbide powder intended for a variety of nuclear applications. Because each application has a different need for impurity and boron requirements, three different chemical compositions of powder are specified. In using this specification, it is necessary to dictate which type of powder is intended to be used. In general, the intended applications for the various powder types are as follows: 1.1.1 Type 1—For use as particulate material in nuclear reactor core applications. 1.1.2 Type 2—Powder that will be further processed into a fabricated shape for use in a nuclear reactor core or used in non-core applications when the powder directly or indirectly may cause adverse effects on structural components, such as halide stress corrosion of stainless steel. 1.1.3 Type 3—Powder that will be used for non-core applications or special in-core applications. 1.2 The values stated in SI units are to be regarded as standard. No other ...

  3. Exciton Effects in Optical Absorption of Boron-Nitride Nanotubes

    CERN Document Server

    Harigaya, Kikuo

    2007-01-01

    Exciton effects are studied in single-wall boron-nitride (BN) nanotubes. Linear absorption spectra are calculated with changing the chiral index of the zigzag nanotubes. We consider the extended Hubbard model with atomic energies at the boron and nitrogen sites. Exciton effects are calculated using the configuration interaction technique. The Coulomb interaction dependence of the band gap, the lowest exciton energy, and the binding energy of the exciton are discussed. The optical gap of the (5,0) nanotube is about 6 eV at the onsite interaction U=2t with the hopping integral t=1.2 eV. The binding energy of the exciton is 0.50 eV for these parameters. This energy agrees well with that of other theoretical investigations. We find that the energy gap and the binding energy are almost independent of the geometries of the nanotubes. This novel property is in contrast with that of the carbon nanotubes which show metallic and semiconducting properties depending on the chiral index.

  4. Automatic chemical analysis of traces of boron in steel

    International Nuclear Information System (INIS)

    The analyzer is composed of a sample changer, reagent addition devices, a distillation vessel, a color reaction vessel, a spectrophotometer, a controller, etc. The automatic procedure is performed according to the predetermined distillation and color reaction programs after dissolving 0.5 g of steel sample in aqua regia and fuming with sulfuric acid-phosphoric acid. The sample solution on the sample changer is transferred into the distillation vessel, where boron is distilled with methyl alcohol by heating and aeration. The distillate is collected in the distillate vessel, and a 1/2 aliquot is transferred into the color reaction vessel with small amounts of water. After the addition of glacial acetic acid and propionic anhydride, the distillate is circulated through the circulating pipe which is composed of an air blowing tube, a bubble remover, a flow cell and a drain valve. Oxalyl chloride (to eliminate water), sulfuric acid, the curcumin reagent (to form the boron complex) and an acetate buffer are added, and the absorbance of the solution is measured at 545 nm. The analytical results of steel samples were in good agreement with those obtained by the conventional method and with certified values. (auth.)

  5. Band gap effects of hexagonal boron nitride using oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sevak Singh, Ram; Leong Chow, Wai [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yingjie Tay, Roland [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Hon Tsang, Siu [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Mallick, Govind [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Tong Teo, Edwin Hang, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  6. A novel target of action of minocycline in NGF-induced neurite outgrowth in PC12 cells: translation initiation [corrected] factor eIF4AI.

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    Full Text Available BACKGROUND: Minocycline, a second-generation tetracycline antibiotic, has potential activity for the treatment of several neurodegenerative and psychiatric disorders. However, its mechanisms of action remain to be determined. METHODOLOGY/PRINCIPAL FINDINGS: We found that minocycline, but not tetracycline, significantly potentiated nerve growth factor (NGF-induced neurite outgrowth in PC12 cells, in a concentration dependent manner. Furthermore, we found that the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP3 receptors and several common signaling molecules (PLC-γ, PI3K, Akt, p38 MAPK, c-Jun N-terminal kinase (JNK, mammalian target of rapamycin (mTOR, and Ras/Raf/ERK/MAPK pathways might be involved in the active mechanism of minocycline. Moreover, we found that a marked increase of the eukaryotic translation initiation factor eIF4AI protein by minocycline, but not tetracycline, might be involved in the active mechanism for NGF-induced neurite outgrowth. CONCLUSIONS/SIGNIFICANCE: These findings suggest that eIF4AI might play a role in the novel mechanism of minocycline. Therefore, agents that can increase eIF4AI protein would be novel therapeutic drugs for certain neurodegenerative and psychiatric diseases.

  7. Discovery of 4,5,6,7-Tetrahydrobenzo[1,2-d]thiazoles as Novel DNA Gyrase Inhibitors Targeting the ATP-Binding Site.

    Science.gov (United States)

    Tomašič, Tihomir; Katsamakas, Sotirios; Hodnik, Žiga; Ilaš, Janez; Brvar, Matjaž; Solmajer, Tom; Montalvão, Sofia; Tammela, Päivi; Banjanac, Mihailo; Ergović, Gabrijela; Anderluh, Marko; Peterlin Mašič, Lucija; Kikelj, Danijel

    2015-07-23

    Bacterial DNA gyrase and topoisomerase IV are essential enzymes that control the topological state of DNA during replication and validated antibacterial drug targets. Starting from a library of marine alkaloid oroidin analogues, we identified low micromolar inhibitors of Escherichia coli DNA gyrase based on the 5,6,7,8-tetrahydroquinazoline and 4,5,6,7-tetrahydrobenzo[1,2-d]thiazole scaffolds. Structure-based optimization of the initial hits resulted in low nanomolar E. coli DNA gyrase inhibitors, some of which exhibited micromolar inhibition of E. coli topoisomerase IV and of Staphylococcus aureus homologues. Some of the compounds possessed modest antibacterial activity against Gram positive bacterial strains, while their evaluation against wild-type, impA and ΔtolC E. coli strains suggests that they are efflux pump substrates and/or do not possess the physicochemical properties necessary for cell wall penetration. Our study provides a rationale for optimization of this class of compounds toward balanced dual DNA gyrase and topoisomerase IV inhibitors with antibacterial activity.

  8. Relationship Between Soil Boron Adsorption Kinetics and Rape Plant Boron Response

    Institute of Scientific and Technical Information of China (English)

    ZHUDUANWEI; PIMEIMEI; 等

    1997-01-01

    The boron adsorption kinetic experiment in soil by means a flow displacement technique showed that the kinetic data could be described with some mathematic equations.The average values of the coorealtion coefficeint for zero-order,first-order,parabolic diffusion ,Elovich,power function and eponential equations were 0.957,0.982,0.981,0.984,0.981 and 0.902 ,respectively,The correlation between adsorbed boron or its other expression form and time were the highest for first-order ,parabloic diffusion Elovich,and pwer function equations,the second for the zeroorder equation,and the tlowest for the exponential equation.The parabloic diffusion equation fitted well the expermiental results,with the least standard error among the six kinetic equation,showing that the monvemetn of boron from soil solution to soil colloid surface may be controlled by boron diffusion speed.The boron content of rape seedling obtained from soil cultvation was correlated with the rate constants of the kinetic equations.The constants of first-order ,parabloic diffusion,and exponential equaitions were significanlty correlated with the boron content of the crop of NPK treatment at a 95% probaility level ,with correation coeffecients being 0.686,0.691 and 0.64 and 0.641,respectively.In the case of zero-order equation,it Was significant at 99% probability level(r=0.736),These results showed that the adsorption kinetic constants of soil boron were closely related with the rape plant response to boron.

  9. The structure and local chemical properties of boron-terminated tetravacancies in hexagonal boron-nitride

    OpenAIRE

    Cretu, Ovidiu; Lin, Yung-Chang; Koshino, Masanori; Tizei, Luiz H. G.; Liu, Zheng; Suenaga, Kazutomo

    2014-01-01

    Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope (LV-STEM) are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride (h-BN). We confirm earlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra (EELS) of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sampl...

  10. Effects of boron number per unit volume on the shielding properties of composites made with boron ores form China

    International Nuclear Information System (INIS)

    The total macroscopic removal cross sections, deposited energies and the absorbed doses of three new shielding composites loaded with specific boron-rich slag, boron concentrate ore and boron mud of China for 252Cf neutron source were investigated by experimental and Monte Carlo calculation. The results were evaluated by boron mole numbers per unit volume in composites. The half value layers of the composites were calculated and compared with that of Portland concrete, indicating that ascending boron mole numbers per unit volume in the composites can enhance the shielding properties of the composites for 252Cf neutron source. (authors)

  11. Multi-dimensional boron transport modeling in subchannel approach: Part II. Validation of CTF boron tracking model and adding boron precipitation model

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, Ozkan Emre, E-mail: ozdemir@psu.edu; Avramova, Maria N., E-mail: mna109@psu.edu

    2014-10-15

    Highlights: • Validation of implemented multi-dimensional subchannel boron transport model. • Extension of boron transport model to entrained droplets. • Implementation of boron precipitation model. • Testing of the boron precipitation model under transient condition. - Abstract: The risk of small-break loss of coolant accident (SB-LOCA) and other reactivity initiated transients caused by boron dilution in the light water reactors (LWRs), and the complications of tracking the soluble boron concentration experimentally inside the primary coolant have stimulated the interest in computational studies for accurate boron tracking simulations in nuclear reactors. In Part I of this study, the development and implementation of a multi-dimensional boron transport model with modified Godunov scheme based on a subchannel approach within the COBRA-TF (CTF) thermal-hydraulic code was presented. The modified Godunov scheme approach with a physical diffusion term was determined to provide the most accurate and precise solution. Current paper extends these conclusions and presents the model validation studies against experimental data from the Rossendorf coolant mixing model (ROCOM) test facility. In addition, the importance of the two-phase flow characteristics in modeling boron transient are emphasized, especially during long-term cooling period after the loss of coolant accident (LOCA) condition in pressurized water reactors (PWRs). The CTF capabilities of boron transport modeling are further improved based on the three-field representation of the two-phase flow utilized in the code. The boron transport within entrained droplets is modeled, and a model for predicting the boron precipitation under transient conditions is developed and tested. It is aimed to extend the applicability of CTF to reactor transient simulations, and particularly to a large-break loss of coolant accident (LB-LOCA) analysis.

  12. Multi-dimensional boron transport modeling in subchannel approach: Part II. Validation of CTF boron tracking model and adding boron precipitation model

    International Nuclear Information System (INIS)

    Highlights: • Validation of implemented multi-dimensional subchannel boron transport model. • Extension of boron transport model to entrained droplets. • Implementation of boron precipitation model. • Testing of the boron precipitation model under transient condition. - Abstract: The risk of small-break loss of coolant accident (SB-LOCA) and other reactivity initiated transients caused by boron dilution in the light water reactors (LWRs), and the complications of tracking the soluble boron concentration experimentally inside the primary coolant have stimulated the interest in computational studies for accurate boron tracking simulations in nuclear reactors. In Part I of this study, the development and implementation of a multi-dimensional boron transport model with modified Godunov scheme based on a subchannel approach within the COBRA-TF (CTF) thermal-hydraulic code was presented. The modified Godunov scheme approach with a physical diffusion term was determined to provide the most accurate and precise solution. Current paper extends these conclusions and presents the model validation studies against experimental data from the Rossendorf coolant mixing model (ROCOM) test facility. In addition, the importance of the two-phase flow characteristics in modeling boron transient are emphasized, especially during long-term cooling period after the loss of coolant accident (LOCA) condition in pressurized water reactors (PWRs). The CTF capabilities of boron transport modeling are further improved based on the three-field representation of the two-phase flow utilized in the code. The boron transport within entrained droplets is modeled, and a model for predicting the boron precipitation under transient conditions is developed and tested. It is aimed to extend the applicability of CTF to reactor transient simulations, and particularly to a large-break loss of coolant accident (LB-LOCA) analysis

  13. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst. PMID:18961131

  14. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst.

  15. Coadsorption of lanthanum with boron and gadolinium with boron on Mo(1 1 0)

    Science.gov (United States)

    Magkoev, Tamerlan T.; Vladimirov, Georgij G.; Rump, Gennadij A.

    2008-05-01

    Submonolayer to multilayer coadsorption of lanthanum (La) with boron (B) and gadolinium (Gd) with boron on the surface of Mo(1 1 0) has been studied by means of Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and work function ( ϕ) measurements. The equilibrium state of double adsorbate systems achieved either by adsorption of rare-earth metal (REM) on boron precovered Mo(1 1 0) surface held at room temperature or after moderate annealing of the system with opposite order of adsorption (B on REM films) is the layer which is the inhomogeneous mixture of boron and REM atoms with preferential concentration of boron in the surface area of the mixed film. The work function of such films even at REM to boron concentration ratio much higher than 1/6 are very close to the values of corresponding bulk LaB 6 and GdB 6, favoring assumption of surface rearrangement as the dominant reason of high electron emission efficiency of hexaborides. Almost total similarity of the results for La-B and Gd-B systems can be viewed as the consequence of weak participation of Gd f-electrons in determining the thermionic properties of corresponding double layers.

  16. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT

    Directory of Open Access Journals (Sweden)

    Joo-Young Jung

    2016-09-01

    Full Text Available We conducted a quantitative study to identify the effectiveness of proton boron fusion therapy (PBFT. Four simulation scenarios were designed to investigate the escalation in total dose with the proton boron reaction using a Monte Carlo n-particle extended (MCNPX 2.6.0 simulation. The peak integrated dose was obtained for three different physical conditions (i.e., boron uptake region (BUR thickness, BUR location, and boron concentration with differing proton beam energy (60–90 MeV. We found that the peak integrated dose was increased by up to 96.62% compared to the pristine proton Bragg-peak. For the synergetic effect to take place with 60–70 MeV proton beam, the BUR had to be at least 0.3 cm thick while spanning the Bragg-peak. Similarly to the thickness, the BUR location needed to be within 0.3 cm from the Bragg-peak when the thickness was maintained at 0.9 cm. An effective proton boron reaction required the boron concentration to be equal to or greater than 14.4 mg/g. These results demonstrate the impact of various physical and beam conditions of the PBFT, which are critical environmental factors for the treatment planning. We envision that this study will advance our understanding of the PBFT, which can be an invaluable treatment method for maximizing the potential of proton therapy.

  17. 硼中子捕获疗法中B12H11SH2-及二聚体和自由基的结构特性%Theoretical Study on the Structural Features of B12H11SH2-Used in Boron Neutron Capture Therapy

    Institute of Scientific and Technical Information of China (English)

    陈保国; 张明瑜

    2008-01-01

    利用密度泛函方法在B3LYP/6-31G++水平上对硼中子捕获疗法中使用的B12H11SH2-(BSH),B12H11SSB12H4-11(BSSB)和B12H11S2-(BS)的结构特性进行了计算研究.结果表明,BSH可以被氧化为二聚体,二聚体结构容易均裂成自由基BS,上述的氧化还原过程是通过分子内的电荷转移实现的.S原子处于各自结构中的活性部位,并且自由基BS的活性最强.

  18. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  19. New insight into pecan boron nutrition

    Science.gov (United States)

    Alternate bearing by individual pecan [Carya illinoinensis (Wangenh.) K. Koch] trees is problematic for nut producers and processors. There are many unknowns regarding alternate bearing physiology, such as the relationship between boron and fruit set, nutmeat quality, and kernel maladies. Evidence...

  20. Trapping and Sympathetic Cooling of Boron Ions

    CERN Document Server

    Rugango, Rene; Shu, Gang; Brown, Kenneth R

    2016-01-01

    We demonstrate the trapping and sympathetic cooling of B$^{+}$ ions in a Coulomb crystal of laser-cooled Ca$^{+}$, We non-destructively confirm the presence of the both B$^+$ isotopes by resonant excitation of the secular motion. The B$^{+}$ ions are loaded by ablation of boron and the secular excitation spectrum also reveals features consistent with ions of the form B$_{n}^{+}$.

  1. NEW ADVANCES IN BORON SOIL CHEMISTRY - Paper

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  2. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian;

    1993-01-01

    report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique...

  3. NEW ADVANCES IN BORON SOIL CHEMISTRY

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  4. Pechmann Reaction Promoted by Boron Trifluoride Dihydrate

    Directory of Open Access Journals (Sweden)

    J. Mezger

    2005-08-01

    Full Text Available The Pechmann reaction of substituted phenols 1a-e with methyl acetoacetate (2 can be activated by boron trifluoride dihydrate (3 to give the corresponding 4-methyl- coumarin derivatives 4a-e in excellent yield (98-99 %.

  5. Investigating the Boron Requirement of Plants.

    Science.gov (United States)

    Bohnsack, Charles W.

    1991-01-01

    This article describes a simple and rapid method for using summer squash to investigate born deficiency in plants. Author asserts that students are likely to feel challenged by laboratory exercises and projects that focus on the role boron plays in plant growth because it is an unresolved problem in biology. (PR)

  6. BCM6: New Generation of Boron Meter

    International Nuclear Information System (INIS)

    Full text of publication follows: Rolls-Royce has developed a new generation of boron meter, based on more than 30 years of experience. The Rolls-Royce BCM6 boron meter provides Nuclear Power Plant (NPP) operators with the boron concentration of the primary circuit. The meter provides continuous and safe measurements with no manual sampling and no human contact. In this paper, technical features, advantages and customer benefits of the use of the new generation of Rolls-Royce BCM6 boron meter will be detailed. Values and associated alarms are provides over different media: 4-20 mA outputs, relays, displays in the main control room and in the chemical lab, and digital links. A special alarm avoids unexpected homogeneous dilution of the primary circuit, which is a critical operational parameter. The Rolls-Royce BCM6 boron meter is fully configurable over a set of parameters allowing adaptation to customer needs. It has a differential capability, thus eliminating neutronic noise and keeping measurements accurate, even in the case of fuel clad rupture. Measurements are accurate, reliable, and have a quick response time. Equipment meets state-of-the-art qualification requests. Designed in 2008, the BCM6 boron meter is the newest equipment of Rolls-Royce boron meters product line. It has been chosen to equip the French EPR NPP and complies with the state-of-the-art of the technology. Rolls-Royce has more than 30 years of experience in Instrumentation and Controls with more than 75 NPP units operating worldwide. All of this experience return has been put in this new generation of equipment to provide the customer with the best operation. About Rolls-Royce Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design

  7. Study of boron effect on FeAl alloys with an ordered B2 structure; Etude de l'effet du bore sur les alliages FeAl ordonnes de structure B2

    Energy Technology Data Exchange (ETDEWEB)

    Gay-Brun, A.S

    1998-06-01

    FeAl alloys with an ordered B2 structure have good corrosion resistance and mechanical properties at high temperature. Nevertheless, their use is limited by the intergranular embrittlement at ambient temperature. It has already been shown that a doping by low amounts of boron can solve the problem of intergranular embrittlement. The aim of this work is to better understand the boron effect on the FeAl alloys. It has been confirmed that the boron doping change the mode of rupture of the FeAl alloys with a B2 structure; their strain on breaking point is increased. The limit of solubility of boron in Fe-40Al has been estimated between 400 and 800 ppm at 500 degrees Celsius. Above this limit, Fe{sub 2}B precipitates. The intergranular segregation of boron has been observed by Auger electron spectroscopy for all the FeAl alloys. The intergranular amount of boron is low (below 12%). In the range of boron solubility, the intergranular concentration of boron increases with its voluminal amount. From this result, boron segregation has been described by different models of equilibrium segregation; thus has been shown that it exists a strong repulsion energy between the segregated boron atoms. On the other hand, no equilibrium segregation model can describe the independence to temperature of the boron segregation and its very fast kinetics: these two characteristics have certainly to be explained by a segregation mechanism under equilibrium. The existence of a segregation mechanism under equilibrium has been confirmed by the observation of the acceleration of the vacancies elimination kinetics by boron. The interaction between the boron atoms and the thermal vacancies which migrates to grain boundaries lead to the formation of complexes. The importance of the boron effect is not limited to its role to grain boundaries. Indeed, has been observed a strong decrease of the long order distance in the alloys doped with boron. The structure of the dislocations created by the

  8. Comparison of Deep Brain Stimulation Lead Targeting Accuracy and Procedure Duration between 1.5-and 3-Tesla Interventional Magnetic Resonance Imaging Systems: An Initial 12-Month Experience

    OpenAIRE

    Southwell, DG; Narvid, JA; Martin, AJ; Qasim, SE; Starr, PA; Larson, PS

    2016-01-01

    Interventional magnetic resonance imaging (iMRI) allows deep brain stimulator lead placement under general anesthesia. While the accuracy of lead targeting has been described for iMRI systems utilizing 1.5-tesla magnets, a similar assessment of 3-tesla iMRI procedures has not been performed.To compare targeting accuracy, the number of lead targeting attempts, and surgical duration between procedures performed on 1.5- and 3-tesla iMRI systems.Radial targeting error, the number of targeting att...

  9. Fenretinide (4-HPR) Targets Caspase-9, ERK 1/2 and the Wnt3a/β-Catenin Pathway in Medulloblastoma Cells and Medulloblastoma Cell Spheroids

    Science.gov (United States)

    Bassani, Barbara; Bartolini, Desirèe; Pagani, Arianna; Principi, Elisa; Zollo, Massimo; Noonan, Douglas M.; Albini, Adriana; Bruno, Antonino

    2016-01-01

    Medulloblastoma (MB), a neuroectodermal tumor arising in the cerebellum, represents the most frequent childhood brain malignancy. Current treatments for MB combine radiation and chemotherapy and are often associated with relevant side effects; novel therapeutic strategies are urgently needed. N-(4-Hydroxyphenyl) retinamide (4-HPR, fenretinide), a synthetic analogue of all-trans retinoic acid, has emerged as a promising and well-tolerated cancer chemopreventive and chemotherapeutic agent for various neoplasms, from breast cancer to neuroblastoma. Here we investigated the effects of 4-HPR on MB cell lines and identified the mechanism of action for a potential use in therapy of MB. Flow cytometry analysis was performed to evaluate 4-HPR induction of apoptosis and oxygen reactive species (ROS) production, as well as cell cycle effects. Functional analysis to determine 4-HPR ability to interfere with MB cell migration and invasion were performed. Western Blot analysis were used to investigate the crucial molecules involved in selected signaling pathways associated with apoptosis (caspase-9 and PARP-1), cell survival (ERK 1/2) and tumor progression (Wnt3a and β-catenin). We show that 4-HPR induces caspase 9-dependent cell death in DAOY and ONS-76 cells, associated with increased ROS generation, suggesting that free radical intermediates might be directly involved. We observed 4-HPR induction of cell cycle arrest in G1/S phase, inactivated β-catenin, and inhibition of MB cell migration and invasion. We also evaluated the ability of 4-HPR to target MB cancer-stem/cancer-initiating cells, using an MB spheroids model, followed by flow cytometry and quantitative real-time PCR. 4-HPR treatment reduced DAOY and ONS-76 spheroid formation, in term of number and size. Decreased expression of the surface markers CD133+ and ABCG2+ as well as Oct-4 and Sox-2 gene expression were observed on BTICs treated with 4-HPR further reducing BITIC invasive activities. Finally, we analyzed 4

  10. Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Amos O. Abolaji

    2015-08-01

    Full Text Available The compounds 4-vinylcyclohexene 1,2-monoepoxide (VCM and 4-Vinylcyclohexene diepoxide (VCD are the two downstream metabolites of 4-vinylcyclohexene (VCH, an ovotoxic agent in mammals. In addition, VCM and VCD may be found as by-products of VCH oxidation in the environment. Recently, we reported the involvement of oxidative stress in the toxicity of VCH in Drosophila melanogaster. However, it was not possible to determine the individual contributions of VCM and VCD in VCH toxicity. Hence, we investigated the toxicity of VCM and VCD (10–1000 µM in flies after 5 days of exposure via the diet. Our results indicated impairments in climbing behaviour and disruptions in antioxidant balance and redox status evidenced by an increase in DCFH oxidation, decreases in total thiol content and glutathione-S-transferase (GST activity in the flies exposed to VCM and VCD (p<0.05. These effects were accompanied by disruptions in the transcription of the genes encoding the proteins superoxide dismutase (SOD1, kelch-like erythroid-derived cap-n-collar (CNC homology (ECH-associated protein 1 (Keap-1, mitogen activated protein kinase 2 (MAPK-2, catalase, Cyp18a1, JAFRAC 1 (thioredoxin peroxidase 1 and thioredoxin reductase 1 (TrxR-1 (p<0.05. VCM and VCD inhibited acetylcholinesterase (AChE and delta aminolevulinic acid dehydratase (δ-ALA D activities in the flies (p<0.05. Indeed, here, we demonstrated that different target enzymes and genes were modified by the electrophiles VCM and VCD in the flies. Thus, D. melanogaster has provided further lessons on the toxicity of VCM and VCD which suggest that the reported toxicity of VCH may be mediated by its transformation to VCM and VCD.

  11. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  12. Synthesis and characterization of ammonium phosphate fertilizers with boron

    Directory of Open Access Journals (Sweden)

    ANGELA MAGDA

    2010-07-01

    Full Text Available The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the reaction mixture at a NH3:H3PO4 molar ratio of 1.5. The fertilizers obtained with boron contents ranging from 0.05 to 1 % (w/w were fully characterized by chemical analysis, thermal analysis, X-ray diffraction and infrared spectrophotometry. The studies showed that up to 500 °C, regardless of the boron content, no significant changes concerning thermal stability and nutritional properties occurred. Above 500 °C, an increase of thermal stability with an increase of the boron content was observed. X-Ray diffraction of a heat-treated sample containing 5 % (w/w boron indicated the appearance of boron orthophosphate, BPO4, as a new crystalline phase, and the disappearance of the previous structures above 500 °C, which explains the increase in thermal stability.

  13. Heat affected zone (HAZ) hot cracking in 18 Cr.10 Ni stainless steels due to small boron content

    International Nuclear Information System (INIS)

    Boron lowers resistance to hot cracking in the heat affected zone of 18.10 Ti and 18.12 Mo stainless steels: this element brings down the temperature above which fusions occur. Those fusions occur in the metal when it is heated during welding. They concern a part of the heat affected zone which is all the more extended as the temperature at the start of the fusions is low, therefore as the boron content is high. Due to the welding strains, the zones in which the fusions occur get cracked

  14. Resonant transfer excitation followed by X-ray for boron-like ions

    OpenAIRE

    RAMADAN, Hassan

    2011-01-01

    Theoretical cross sections for resonant transfer excitation followed by x-ray emission (RTEX) are calculated for the collisions of some ions in the series of the Boron-like ions with H2 as a target. The calculations have been done for C II, N III, O IV, F V, Ar XIV and Fe XXII ions by folding their dielectronic recombination (DR) cross sections over the momentum distribution (Compton profile) of H2 target gas. Calculations have been performed from both ground and metastable initial st...

  15. Boron Drug Delivery via Encapsulated Magnetic Nanocomposites: A New Approach for BNCT in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Yinghuai Zhu

    2010-01-01

    Full Text Available Ortho-carborane cages have been successfully attached to modified magnetic nanoparticles via catalytic azide-alkyne cycloadditions between 1-R-2-butyl-Ortho-C2B10H10(R=Me,3;Ph,4 and propargyl group-enriched magnetic nanoparticles. A loading amount of 9.83 mmol boron atom/g starch-matrixed magnetic nanoparticles has been reached. The resulting nanocomposites have been found to be highly tumor-targeted vehicles under the influence of an external magnetic field (1.14T, yielding a high boron concentration of 51.4 μg/g tumor and ratios of around 10 : 1 tumor to normal tissues.

  16. Van Hove singularities of some icosahedral boron-rich solids by differential reflectivity spectra

    Science.gov (United States)

    Werheit, Helmut

    2015-09-01

    Differential reflectivity spectra of some icosahedral boron rich solids, β-rhombohedral boron, boron carbide and YB66-type crystals, were measured. The derivatives yield the van Hove singularities, which are compared with results obtained by other experimental methods.

  17. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F.; Lin, S.Y. [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Peir, J.J. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Liao, J.W. [Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan (China); Lin, Y.C. [Department of Veterinary Medicine, National Chung Hsing University, Taiwan (China); Chou, F.I., E-mail: fichou@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)] [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China)

    2011-12-15

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 {mu}g {sup 10}B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg {sup 10}B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  18. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    International Nuclear Information System (INIS)

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 μg 10B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague–Dawley (SD) rats were studied by administrating 25 mg 10B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4–6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  19. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  20. Boron Rich Solids Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  1. Measurement of boron isotopes by negative thermal ionization mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The isobaric interference for boron isotopic measurement by negative thermal ionization mass spectrometry (NTIMS) has been studied. The result shows that the CNO- is not only from the organic material, but also from nitrate in loading reagent in NTIMS. Monitoring the mass 43 ion intensity and 43/42 ratio of blank are also necessary for the boron isotopic measurement by NTIMS, other than is only boron content.

  2. Successive Boronizing and Austempering for GGG-40 Grade Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    Murat Baydogan; Seckin Izzet Akray

    2009-01-01

    Boronizing and austempering were successively applied to a GGG-40 grade ductile iron in order to combine the advantages of both process in a single treatment. This new procedure formed a 30 μm thick boride layer on the surface with subsurface matrix structure consisted of acicular ferrite and retained austenite. Reciprocating wear tests showed that successive boronizing and austempering exhibited considerably higher wear resistance than conventional boronizing having a subsurface matrix structure consisting of ferrite and pearlite.

  3. Characterization of boron doped nanocrystalline diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, 13083-852 Campinas SP Brasil (Brazil)], E-mail: vitor.baranauskas@gmail.com

    2008-03-15

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/{mu}m range.

  4. The spectrophotometric determination of boron in tourmalines

    Directory of Open Access Journals (Sweden)

    LJILJANA JAKSIC

    2005-02-01

    Full Text Available A procedure for the spectrophotometric determination of macro amounts of boron in tourmaline with azomethine H is described. The used tourmaline concentrate was obtained by magnetic separation and heavy-liquids purification of the schorl zone of pegmatite or granite aplite. The samples of tourmaline were decomposed by fusion with anhydrous sodium carbonate and taken up in dilute hydrochloric acid. The interfering effects of iron and aluminium were eliminated by masking with an EDTA – NTA solution. After pH adjustment, the boron was reacted with azomethine H and the absorbance of the obtained coloured complex was measured at 415 nm. The results are compared with those obtained by other procedures. The relative error of the determination was less than 3 %.

  5. Techniques for increasing boron fiber fracture strain

    Science.gov (United States)

    Dicarlo, J. A.

    1977-01-01

    Improvement in the strain-to-failure of CVD boron fibers is shown possible by contracting the tungsten boride core region and its inherent flaws. The results of three methods are presented in which etching and thermal processing techniques were employed to achieve core flaw contraction by internal stresses available in the boron sheath. After commercially and treatment induced surface flaws were removed from 203 micrometers (8 mil) fibers, the core flaw was observed to be essentially the only source of fiber fracture. Thus, fiber strain-to-failure was found to improve by an amount equal to the treatment induced contraction on the core flaw. Commercial feasibility considerations suggest as the most cost effective technique that method in which as-produced fibers are given a rapid heat treatment above 700 C. Preliminary results concerning the contraction kinetics and fracture behavior observed are presented and discussed both for high vacuum and argon gas heat treatment environments.

  6. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  7. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  8. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  9. Multidimensional boron transport modeling in subchannel approach

    International Nuclear Information System (INIS)

    The main objective of this study is to implement a solute tracking model into the subchannel code CTF for simulations of boric acid transients. Previously, three different boron tracking models have been implemented into CTF and based on the applied analytical and nodal sensitivity studies the Modified Godunov Scheme approach with a physical diffusion term has been selected as the most accurate and best estimate solution. This paper will present the implementation of a multidimensional boron transport modeling with Modified Godunov Scheme within a thermal-hydraulic code based on a subchannel approach. Based on the cross flow mechanism in a multiple-subchannel rod bundle geometry, heat transfer and lateral pressure drop effects will be discussed in deboration and boration case studies. (author)

  10. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Kang, Jin Ho; Sauti, Godfrey; Thibeault, Sheila A.; Yamakov, Vesselin; Wise, Kristopher E.; Su, Ji; Fay, Catharine C.

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  11. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  12. Functionalized boron-dipyrromethenes and their applications

    OpenAIRE

    M. Ravikanth, M; Vellanki,Lakshmi; Sharma,Ritambhara

    2016-01-01

    Vellanki Lakshmi, Ritambhara Sharma, Mangalampalli Ravikanth Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, IndiaAbstract: Boron-dipyrromethenes/BF2-dipyrrins (BODIPYs) are highly fluorescent dyes with a wide range of applications in various fields because of their attractive photophysical properties. One of the salient features of BODIPYs is that the properties of the BODIPY can be fine-tuned at will by selectively introducing the substituent(s) at the desired locati...

  13. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  14. Formation and Structure of Boron Nitride Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Jiang ZHANG; Zongquan LI; Jin XU

    2005-01-01

    Boron nitride (BN) nanotubes were simply synthesized by heating well-mixed boric acid, urea and iron nitrate powders at 1000℃. A small amount of BN nanowires was also obtained in the resultants. The morphological and structural characters of the BN nanostructures were studied using transmission electron microscopy. Other novel BN nanostructures, such as Y-junction nanotubes and bamboo-like nanotubes, were simultaneously observed. The growth mechanism of the BN nanotubes was discussed briefly.

  15. Boron Nitride Nanosheets for Metal Protection

    OpenAIRE

    Li, Lu Hua; Xing, Tan; Chen, Ying; Jones, Rob

    2015-01-01

    Although the high impermeability of graphene makes it an excellent barrier to inhibit metal oxidation and corrosion, graphene can form a galvanic cell with the underlying metal that promotes corrosion of the metal in the long term. Boron nitride (BN) nanosheets which have a similar impermeability could be a better choice as protective barrier, because they are more thermally and chemically stable than graphene and, more importantly, do not cause galvanic corrosion due to their electrical insu...

  16. Anomalous thermal conductivity of monolayer boron nitride

    Science.gov (United States)

    Tabarraei, Alireza; Wang, Xiaonan

    2016-05-01

    In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate the mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.

  17. Clinical aspects of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Boron neutron capture therapy is potentially useful in treating malignant tumors of the central nervous system and is technically possible. Additional in vitro and in vivo testing is required to determine toxicities, normal tissue tolerances and tissue responses to treatment parameters. Adequate tumor uptake of the capture agent can be evaluated clinically prior to implementation of a finalized treatment protocol. Phase I and Phase II protocol development, clinical pharmacokinetic studies and neutron beam development

  18. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model

    International Nuclear Information System (INIS)

    Unilamellar liposomes formulated with an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the lipid bilayer, and encapsulating Na3[ae-B10-H9)-2-NH3B10H8] were prepared by probe sonication and investigated in vivo. Microwave assisted digestion followed by inductively coupled plasma-optical emission spectroscopy was utilized to determine the biodistribution of boron in various tissues following either a single tail vein injection or two identical injections (separated by 24 hours) of the liposomal suspension in BALB/c mice bearing EMT6 mammary adenocarcinomas in their right flank. Double-injection protocols resulted in a boron content in the tumor exceeding 50 µg of boron per gram of tissue for 48 to 72 hours subsequent to the initial injection while tumor:blood boron ratios were more ideal from 54 hours (1.9:1) to 96 hours (5.7:1) subsequent to the initial injection. Tumor bearing mice were given a double-injection of liposomes containing the 10B-enriched analogs of the aforementioned agents and subjected to a 30 minute irradiation by thermal neutrons with a flux of 8.8 x 108 (±7%) neutrons/cm2 s integrated over the energy range of 0.0 - 0.414 eV. Significant tumor response for a single BNCT treatment was demonstrated by growth curves versus a control group. Vastly diminished tumor growth was witnessed at 14 days (186% increase versus 1551% in controls) in mice that were given a second injection/radiation treatment 7 days after the first. Mice given a one hour neutron irradiation following the double-injection of liposomes had a similar response (169% increase at 14 days) suggesting that neutron fluence is the limiting factor towards BNCT efficacy in this study.

  19. Dosage of boron traces in graphite, uranium and beryllium oxide

    International Nuclear Information System (INIS)

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.)

  20. Doping Silicon Wafers with Boron by Use of Silicon Paste

    Institute of Scientific and Technical Information of China (English)

    Yu Gao; Shu Zhou; Yunfan Zhang; Chen Dong; Xiaodong Pi; Deren Yang

    2013-01-01

    In this work we introduce recently developed silicon-paste-enabled p-type doping for silicon.Boron-doped silicon nanoparticles are synthesized by a plasma approach.They are then dispersed in solvents to form silicon paste.Silicon paste is screen-printed at the surface of silicon wafers.By annealing,boron atoms in silicon paste diffuse into silicon wafers.Chemical analysis is employed to obtain the concentrations of boron in silicon nanoparticles.The successful doping of silicon wafers with boron is evidenced by secondary ion mass spectroscopy (SIMS) and sheet resistance measurements.

  1. Boron removal from molten silicon using sodium-based slags

    Institute of Scientific and Technical Information of China (English)

    Yin Changhao; Hu Bingfeng; Huang Xinming

    2011-01-01

    Slag refining,as an important option for boron removal to produce solar grade silicon (SOG-Si) from metallurgical grade silicon (MG-Si),has attracted increasing attention.In this paper,Na2CO3-SiO2 systems were chosen as the sodium-based refining slag materials for boron removal from molten silicon.Furthermore,the effect of Al2O3 addition for boron removal was studied in detail,which showed that an appropriate amount of Al2O3 can help retention of the basicity of the slags,hence improving the boron removal rate.

  2. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, V., E-mail: V.Mohammadi@tudelft.nl; Nihtianov, S. [Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628 CD, Delft (Netherlands)

    2016-02-15

    The lateral gas phase diffusion length of boron atoms, L{sub B}, along silicon and boron surfaces during chemical vapor deposition (CVD) using diborane (B{sub 2}H{sub 6}) is reported. The value of L{sub B} is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and confirmed analytically in the boron deposition temperature range from 700 °C down to 400 °C. For this temperature range the local loading effect of the boron deposition is investigated on the micro scale. A L{sub B} = 2.2 mm was determined for boron deposition at 700 °C, while a L{sub B} of less than 1 mm was observed at temperatures lower than 500 °C.

  3. Production process for boron carbide coated carbon material and boron carbide coated carbon material obtained by the production process

    International Nuclear Information System (INIS)

    A boron carbide coated carbon material is used for a plasma facing material of a thermonuclear reactor. The surface of a carbon material is chemically reacted with boron oxide to convert it into boron carbide. Then, it is subjected to heat treatment at a temperature of not lower than 1600degC in highly evacuated or inactive atmosphere to attain a boron carbide coated carbon material. The carbon material used is an artificial graphite or a carbon fiber reinforced carbon composite material. In the heat treatment, when the atmosphere is in vacuum, it is highly evacuated to less than 10Pa. Alternatively, in a case of inactive atmosphere, argon or helium gas each having oxygen and nitrogen content of not more than 20ppm is used. With such procedures, there can be obtained a boron carbide-coated carbon material with low content of oxygen and nitrogen impurities contained in the boron carbide coating membrane thereby hardly releasing gases. (I.N.)

  4. Critical Range of Soil Boron for Prognosis of Boron Deficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Relationships between seed yields of oilseed rape (Brassica napus L.) and extractable boron concen- trations in three soil layers (A, P and W) were investigated through ten experiments on three types of soils (Alluvic Entisols, Udic Ferrisols and Stagnic Anthrosols) in northern, western and middle Zhejiang Province. Among several mathematical models used to described the relationships, the polynomial equation, y = a + bx + cx2 + dx3, where y is the yield of oilseed rape seed and x the extractable boron concentration in P layer of soil, was the best one. The critical range of the concentrations corresponding to 90% of the maximum oilseed rape yield was 0.40~0.52 mg kg-1. The extractable boron concentration of the P layers of the soils was the most stable. The critical range determined was verified through the production practices of oilseed rape in Zhejiang and Anhui provinces.

  5. Critical Range of Soil Boron for Prognosis of Boron Deficiency in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    WEIYOUZHANG

    2001-01-01

    Relationships between seed yields of oilseed rape(Brassica napus L.) and extractable boron concen-trations in three soil layers(A,P and W) were investigated through ten experiments on three types of soils(Alluvic Entisols,Udic Ferrisols and Sagnic Anthrosols) in northern,Western and middle Zhejing Province.Among several mathematical models used to described the relationships,the polynomial equation,y=a+bx+cx2+dx3,where y is the yield of oilseed rape seed and x the extractable boron concentration in P layer of soil,was the best one.The critical range of the concentrations corresponding to 90% of the maximum oilseed rape yield was 0.40-0.52 mg kg-1,The extractable boron concentration of the P layers of the soils was the most stable,The critical range determined was verified through the production practices of oilseed rape in Zhejiang and Anhui provinces.

  6. Ground-water pollution determined by boron isotope systematics

    International Nuclear Information System (INIS)

    Boron isotopic systematics as related to ground-water pollution is reviewed. We report isotopic results of contaminated ground water from the coastal aquifers of the Mediterranean in Israel, Cornia River in north-western Italy, and Salinas Valley, California. In addition, the B isotopic composition of synthetic B compounds used for detergents and fertilizers was investigated. Isotopic analyses were carried out by negative thermal ionization mass spectrometry. The investigated ground water revealed different contamination sources; underlying saline water of a marine origin in saline plumes in the Mediterranean coastal aquifer of Israel (δ11B=31.7 per mille to 49.9 per mille, B/Cl ratio ∼1.5x10-3), mixing of fresh and sea water (25 per mille to 38 per mille, B/Cl∼7x10-3) in saline water associated with salt-water intrusion to Salinas Valley, California, and a hydrothermal contribution (high B/Cl of ∼0.03, δ11B=2.4 per mille to 9.3 per mille) in ground water from Cornia River, Italy. The δ11B values of synthetic Na-borate products (-0.4 per mille to 7.5 per mille) overlap with those of natural Na-borate minerals (-0.9 per mille to 10.2 per mille). In contrast, the δ11B values of synthetic Ca-borate and Na/Ca borate products are significantly lower (-15 per mille to -12.1 per mille) and overlap with those of the natural Ca-borate minerals. We suggest that the original isotopic signature of the natural borate minerals is not modified during the manufacturing process of the synthetic products, and it is controlled by the crystal chemistry of borate minerals. The B concentrations in pristine ground-waters are generally low (11B=39 per mille), salt-water intrusion and marine-derived brines (40 per mille to 60 per mille) are sharply different from hydrothermal fluids (δ11B=10 per mille to 10 per mille) and anthropogenic sources (sewage effluent: δ11B=0 per mille to 10 per mille; boron-fertilizer: δ11B=-15 per mille to 7 per mille). some differences (up to 15

  7. Boron impregnation treatment of Eucalyptus grandis wood.

    Science.gov (United States)

    Dhamodaran, T K; Gnanaharan, R

    2007-08-01

    Eucalyptus grandis is suitable for small timber purposes, but its wood is reported to be non-durable and difficult to treat. Boron compounds being diffusible, and the vacuum-pressure impregnation (VPI) method being more suitable for industrial-scale treatment, the possibility of boron impregnation of partially dry to green timber was investigated using a 6% boric acid equivalent (BAE) solution of boric acid and borax in the ratio 1:1.5 under different treatment schedules. It was found that E. grandis wood, even in green condition, could be pressure treated to desired chemical dry salt retention (DSR) and penetration levels using 6% BAE solution. Up to a thickness of 50mm, in order to achieve a DSR of 5 kg/m(3) boron compounds, the desired DSR level as per the Indian Standard for perishable timbers for indoor use, it was found that neither the moisture content of wood nor the treatment schedule posed any problem as far as the treatability of E. grandis wood was concerned. PMID:17046244

  8. Longitudinal residual stresses in boron fibers

    Science.gov (United States)

    Behrendt, D. R.

    1976-01-01

    A technique is proposed for measuring the longitudinal residual stress distribution in commercial CVD (Chemical Vapor Deposition) boron on tungsten fibers of 102, 142, and 203 microns in diameter. The experimental apparatus is so designed that continuous measurements are made of the length changes of a boron fiber specimen as the surface of the fiber is removed by electropolishing. The effects of surface removal on core residual stress and core-initiated fracture are discussed. The three sizes of boron fibers investigated show similar residual stress distributions, i.e., compressive at the surface, tensile near the core, and for the 102-micron fiber compressive again in the core. It is shown that an increase in UTS is due to the increase in the compressive stress at the core produced by fiber contraction during surface removal. An expression is derived for calculating the longitudinal residual stress at a given radius for an as-received fiber of a certain radius from measurements of the axial strain produced by removal of the surface by electropolishing.

  9. Boron dose enhancement for Cf-252 brachytherapy

    International Nuclear Information System (INIS)

    Full text: Monte Carlo modelling of a Cf-252 source in water and in tissue has shown that there is a significant therapeutic advantage obtained if B-10 is present in the tumour cells. This study analyses the advantage in terms of therapeutic margin, defined as the distance from the border of the treatment volume where boron-loaded tumour cells will receive a therapeutic dose. Calculations were made with MCNP version 4a on a Pentium 60 MHz computer. Large voxel sizes allowed 70 minute runs to achieve statistical uncertainties of 5% or less for 100,000 source neutrons. Later runs with smaller voxels confirmed the accuracy of the initial calculations. Calculations were made for treatment volume radii up to 11 cm and 30 ppm boron-10. The therapeutic margin for radii in the range 3-9 cm is approximately 10% of the tumour radius. This results in a 30% increase in the volume inside which peripheral tumour cells may receive a therapeutic dose. The median therapeutic ratio within the therapeutic margin varied from 1.05 at 3 cm up to 1.25 at 10 cm. Thus there is little benefit for less advanced tumours with thickness less than 3 cm. However, cervical cancer frequently presents in an advanced state in Southeast Asia and in Aboriginal communities in Australia, partially attributable to low Pap smear screening rates. These conclusions support the development and testing of boron compounds in in vitro and in vivo models for cervical cancer

  10. Structure and local chemical properties of boron-terminated tetravacancies in hexagonal boron nitride.

    Science.gov (United States)

    Cretu, Ovidiu; Lin, Yung-Chang; Koshino, Masanori; Tizei, Luiz H G; Liu, Zheng; Suenaga, Kazutomo

    2015-02-20

    Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride. We confirm earlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sample regions. We correlate our experimental data with calculations which help explain our observations. PMID:25763963

  11. Synovectomy by neutron capture in boron

    International Nuclear Information System (INIS)

    The rheumatoid arthritis is an illness which affect approximately at 3% of the World population. This illness is characterized by the inflammation of the joints which reduces the quality of life and the productivity of the patients. Since, it is an autoimmune illness, the inflammation is due to the overproduction of synovial liquid by the increase in the quantity of synoviocytes. The rheumatoid arthritis does not have a definitive recovery and the patients have three options of treatment: the use of drugs, the surgery and the radio synovectomy. The synovectomy by neutron capture in Boron is a novel proposal of treatment of the rheumatoid arthritis that consists in using a charged compound with Boron 10 that is preferently incorporated in the synoviocytes and to a less extent in the rest of surrounding tissues of the joint. Then, the joint is exposed to a thermal neutron field that induces the reaction (n, α) in the 10 B. the products of this reaction place their energy inside synoviocytes producing their reduction and therefore the reduction of the joint inflammation. Since it is a novel procedure, the synovectomy by neutron capture in boron has two problems: the source design and the design of the adequate drug. In this work it has been realized a Monte Carlo study with the purpose to design a moderating medium that with a 239 Pu Be source in its center, produces a thermal neutron field. With the produced neutron spectra, the neutrons spectra and neutron doses were calculated in different sites inside a model of knee joint. In Monte Carlo studies it is necessary to know the elemental composition of all the joint components, for the case of synovia and the synovial liquid this information does not exist in such way that it is supposed that its composition is equal than the water. In this work also it has been calculated the kerma factors by neutrons of synovia and the synovial liquid supposing that their elemental composition are similar to the blood tissue

  12. Cosmis Lithium-Beryllium-Boron Story

    Science.gov (United States)

    Vangioni-Flam, E.; Cassé, M.

    Light element nucleosynthesis is an important chapter of nuclear astrophysics. Specifically, the rare and fragile light nuclei Lithium, Beryllium and Boron (LiBeB) are not generated in the normal course of stellar nucleosynthesis (except Lithium-7) and are, in fact, destroyed in stellar interiors. This characteristic is reflected in the low abundance of these simple species. Up to recently, the most plausible interpretation was that galactic cosmic rays (GCR) interact with interstellar CNO to form LiBeB. Other origins have been also identified, primordial and stellar (Lithium-7) and supernova neutrino spallation (Lithium-7 and Boron-11). In contrast, Beryllium-9, Boron-10 and Lithium-6 are pure spallative products. This last isotope presents a special interest since the Lithium-7/Lithium-6 ratio has been measured in a few halo stars offering a new constraint on the early galactic evolution. However, in the nineties, new observations prompted astrophysicists to reassess the question. Optical measurements of the beryllium and boron abundances in halo stars have been achieved by the 10 meters KECK telescope and the Hubble Space Telescope. These observations indicate a quasi linear correlation between Be and B vs Fe, at least at low metallicity, unexpected on the basis of GCR scenario, predicting a quadratic relationship. As a consequence, the origin and the evolution of the LiBeB nuclei has been revisited. This linearity implies the acceleration of C and O nuclei freshly synthesized and their fragmentation on the the interstellar Hydrogen and Helium. Wolf-Rayet stars and supernovae via the shock waves induced, are the best candidates to the acceleration of their own material enriched into C and O; so LiBeB is produced independently of the Interstellar Medium chemical composition. Moreover, neutrinos emitted by the newly born neutron stars interacting with the C layer of the supernova could produce specifically Lithium-7 and Boron-11. This process is supported by the

  13. Interaction of carbohydrate modified boron nitride nanotubes with living cells.

    Science.gov (United States)

    Emanet, Melis; Şen, Özlem; Çobandede, Zehra; Çulha, Mustafa

    2015-10-01

    Boron nitride nanotubes (BNNTs) are composed of boron and nitrogen atoms and they show significantly different properties from their carbon analogues (carbon nanotubes, CNTs). Due to their unique properties including low electrical conductivity, and imaging contrast and neutron capture properties; they can be used in biomedical applications. When their use in biological fields is considered, the route of their toxic effect should be clarified. Therefore, the study of interactions between BNNTs and living systems is important in envisaging biological applications at both cellular and sub-cellular levels to fully gain insights of their potential adverse effects. In this study, BNNTs were modified with lactose, glucose and starch and tested for their cytotoxicity. First, the interactions and the behavior of BNNTs with bovine serum albumin (BSA), Dulbecco's Modified Eagle's Medium (DMEM) and DMEM/Nutrient Mixture F-12Ham were investigated. Thereafter, their cellular uptake and the cyto- and genotoxicity on human dermal fibroblasts (HDFs) and adenocarcinoma human alveolar basal epithelial cells (A549) were evaluated. HDFs and A549 cells internalized the modified and unmodified BNNTs, and BNNTs were found to not cause significant viability change and DNA damage. A higher uptake rate of BNNTs by A549 cells compared to HDFs was observed. Moreover, a concentration-dependent cytotoxicity was observed on A549 cells while they were safer for HDFs in the same concentration range. Based on these findings, it can be concluded that BNNTs and their derivatives made with biomacromolecules might be good candidates for several applications in medicine and biomedical applications. PMID:26222410

  14. Boron in nuclear medicine: New synthetic approaches to PET, SPECT, and BNCT agents

    International Nuclear Information System (INIS)

    The primary objective of the DOE Nuclear Medicine Program at The University of Tennessee is the creation of new methods for introducing short-lived isotopes into agents for use in computerized tomography. A portion of the research effort is directed toward the development of new synthetic methods for the preparation of boron-containing neutron therapy agents. The uniqueness of the UT program is its focus on the design of new chemistry and technology as opposed to the application of known reactions to the synthesis of specific radiopharmaceuticals. The versatile organic boron reagents are utilized in most of the new chemistry. This new technology is then used in nuclear medicine research at the UT Biomedical Imaging Center and in collaborative research programs with colleagues at other DOE facilities. An important goal of the DOE Nuclear Medicine Program at UT is to provide training for students (predoctoral and postdoctoral) in the scientific aspects of nuclear medicine. 83 refs., 12 figs

  15. Feasibility study on nuclear core design for soluble boron free small modular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Hah, Chang Joo; Ju, Cho Sung [Department of NPP Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-04-29

    A feasibility study on nuclear core design of soluble boron free (SBF) core for small size (150MWth) small modular reactor (SMR) was investigated. The purpose of this study was to design a once through cycle SMR core, where it can be used to supply electricity to a remote isolated area. PWR fuel assembly design with 17×17 arrangement, with 264 fuel rods per assembly was adopted as the basis design. The computer code CASMO-3/MASTER was used for the search of SBF core and fuel assembly analysis for SMR design. A low critical boron concentration (CBC) below 200 ppm core with 4.7 years once through cycle length was achieved using 57 fuel assemblies having 170 cm of active height. Core reactivity controlled using mainly 512 number of 4 wt% and 960 12 wt% Gd rods.

  16. Feasibility study on nuclear core design for soluble boron free small modular reactor

    Science.gov (United States)

    Rabir, Mohamad Hairie; Hah, Chang Joo; Ju, Cho Sung

    2015-04-01

    A feasibility study on nuclear core design of soluble boron free (SBF) core for small size (150MWth) small modular reactor (SMR) was investigated. The purpose of this study was to design a once through cycle SMR core, where it can be used to supply electricity to a remote isolated area. PWR fuel assembly design with 17×17 arrangement, with 264 fuel rods per assembly was adopted as the basis design. The computer code CASMO-3/MASTER was used for the search of SBF core and fuel assembly analysis for SMR design. A low critical boron concentration (CBC) below 200 ppm core with 4.7 years once through cycle length was achieved using 57 fuel assemblies having 170 cm of active height. Core reactivity controlled using mainly 512 number of 4 wt% and 960 12 wt% Gd rods.

  17. Implementation of Low Boron Core for APR1400 Initial Cycle

    International Nuclear Information System (INIS)

    Low boron capability of a nuclear power plant is rather a qualitative specification requiring the nuclear power plant to be shut down by control rods alone at any time of a plant cycle according to EUR. The reduction of soluble boron is beneficial since it gives the reduction of the corrosive effects in the plant system and improves plant safety giving more negative MTC. Thus, it is necessary to reduce the amount of soluble boron for the criticality to achieve the low boron capability. However, the reduction of soluble boron has its own set of specific challenges that must be overcome. There are two methods to enable the reduction of soluble boron without modifying plant system significantly. The goal of this study is to investigate the loading pattern to achieve the soluble boron reduction for Shin-Kori Unit 5 APR1400 initial core using the low and high content gadolinia burnable absorbers with standard fuel rod enrichment and to verify the feasibility of low boron core with conventional gadolinia burnable absorbers only. For this study, KARMA has been employed to solve 2-D Transport equation, and ASTRA is used for full core analysis. It was possible to achieve the low boron core for APR1400 Cycle 1 using extended usage of two types of gadolinia burnable absorbers sacrificing fuel cycle economy a little bit while enhancing plant safety significantly. Gd rod patterns within an assembly were optimized through geometrical weighting and loading pattern was developed based on these patterns. The amount of soluble boron reduction achieved is 45.4%. The improvement in plant safety is significant resulting in the reduction of least negative best-estimate MTC by about 4 pcm. Also shutdown margin is increased slightly for low boron core. However, the behavior of axial power shape turns out to be undesirable showing a relatively large fluctuation caused by the more negative MTC. It was found that the low boron core might impose kind of operational difficulty. It is usually

  18. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration.

  19. Influence of Boron on transformation behavior during continuous cooling of low alloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Terzic, A., E-mail: Adnan.Terzic@imf.tu-freiberg.de [Technische Universität Bergakademie Freiberg, Institute of Metal Forming, Bernhard-von-Cotta-Str. 4, 09596 Freiberg (Germany); Calcagnotto, M. [Salzgitter Mannesmann Forschung GmbH, Eisenhüttenstr. 99, 38239 Salzgitter (Germany); Guk, S. [Technische Universität Bergakademie Freiberg, Institute of Metal Forming, Bernhard-von-Cotta-Str. 4, 09596 Freiberg (Germany); Schulz, T. [Salzgitter Mannesmann Forschung GmbH, Eisenhüttenstr. 99, 38239 Salzgitter (Germany); Kawalla, R. [Technische Universität Bergakademie Freiberg, Institute of Metal Forming, Bernhard-von-Cotta-Str. 4, 09596 Freiberg (Germany)

    2013-11-01

    Abstracts: The phase transformation behavior during continuous cooling of low-carbon (LC) Boron-treated steels was studied. Furthermore, the influence of combining Boron with Nb or Ti or V on transformation kinetics was investigated. Additions of Boron to LC steels have a strong influence on the ferrite transformation. By adding 30 ppm Boron to a Boron-free reference alloy the suppressing effect on the ferrite transformation is most pronounced, whereas 10 ppm Boron has almost no effect and 50 ppm Boron the same effect as 30 ppm Boron. Thereby the critical Boron concentration for transformation kinetics in this alloying concept is 30 ppm. The combination of Boron with Ti shifts the phase fields to shorter times and increase the ferrite start temperature, whereas the combination of B+V and B+Nb only affects the ferrite start temperature. Hardness values are mostly influenced by the presence of Boron and strongly depend on the cooling rate.

  20. Identification of novel drug targets in HpB38, HpP12, HpG27, Hpshi470, HpSJM180 strains of Helicobacter pylori : an in silico approach for therapeutic intervention.

    Science.gov (United States)

    Neelapu, Nageswara Rao Reddy; Pavani, T

    2013-05-01

    Helicobacter species colonizes the stomach and are associated with the development of gastritis disease. Drugs for treatment of Helicobacter infection relieve pain or gastritis symptoms but they are not targeted specifically to Helicobacter pylori. Therefore, there is dire need for discovery of new drug targets and drugs for the treatment of H. pylori. The main objective of this study is to screen the potential drug targets by in silico analysis for the potent strains of H. pylori which include HpB38, HpP12, HpG27, Hpshi470 and HpSJM180. Genome and metabolic pathways of pathogen H. pylori and the host Homosapien sapiens are compared and genes which were unique to H. pylori were filtered and catalogued. These unique genes were subjected to gene property analysis to identify the potentiality of the drug targets. Among the total number of genes analysed in different strains of H. pylori nearly 558, 569, 539, 569, 567 number of genes in HpB38, HpP12, HpG27, Hpshi470 and HpSJM180 found qualified as unique molecules and among them 17 qualified as potential drug targets. Membrane fusion protein of hefABC efflux system, 50 S ribosomal protein L33, Hydrogenase expression protein/formation of HypD, Cag pathogenecity island protein X, Apolipoprotein N acyl transferase, DNA methyalse, Histone like binding protein, Peptidoglycan-associated lipoprotein OprL were found to be critical drug targets to H. pylori. Three (hefABC efflux system, Hydrogenase expression protein/formation of HypD, Cag pathogenecity island protein X) of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lending credence to our unique approach. PMID:23410125

  1. PREFACE: The 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008)

    Science.gov (United States)

    Tanaka, Takaho

    2009-07-01

    This volume of Journal of Physics: Conference Series contains invited and contributed peer-reviewed papers that were presented at the 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008), which was held on 7-12 September 2008, at Kunibiki Messe, Matsue, Japan. This triennial symposium has a half-century long history starting from the 1st meeting in 1959 at Asbury Park, New Jersey. We were very pleased to organize ISBB 2008, which gathered chemists, physicists, materials scientists as well as diamond and high-pressure researchers. This meeting had a strong background in the boron-related Japanese research history, which includes the discovery of superconductivity in MgB2 and development of Nd-Fe-B hard magnets and of YB66 soft X-ray monochromator. The scope of ISBB 2008 spans both basic and applied interdisciplinary research that is centered on boron, borides and related materials, and the collection of articles defines the state of the art in research on these materials. The topics are centered on: 1. Preparation of new materials (single crystals, thin films, nanostructures, ceramics, etc) under normal or extreme conditions. 2. Crystal structure and chemical bonding (new crystal structures, nonstoichiometry, defects, clusters, quantum-chemical calculations). 3. Physical and chemical properties (band structure, phonon spectra, superconductivity; optical, electrical, magnetic, emissive, mechanical properties; phase diagrams, thermodynamics, catalytic activity, etc) in a wide range of temperatures and pressures. 4. Applications and prospects (thermoelectric converters, composites, ceramics, coatings, etc) There were a few discoveries of new materials, such as nanomaterials, and developments in applications. Many contributions were related to 4f heavy Fermion systems of rare-earth borides. Exotic mechanisms of magnetism and Kondo effects have been discussed, which may indicate another direction of development of boride. Two special sessions

  2. Preparation and properties of unidirectional boron nitride fibre reinforced boron nitride matrix composites via precursor infiltration and pyrolysis route

    International Nuclear Information System (INIS)

    Highlights: → BN fibres degrade little when exposed at elevated temperatures. → Precursor infiltration and pyrolysis route is useful to prepare BNf/BN composites. → Few reports have related to the preparation and properties of BNf/BN composites. → BNf/BN composites have desirable high-temperature mechanical properties. → BNf/BN composites have excellent dielectric properties at 2-18 GHz. - Abstract: The unidirectional boron nitride fibre reinforced boron nitride matrix (BNf/BN) composites were prepared via the precursor infiltration and pyrolysis (PIP) route, and the structure, composition, mechanical and dielectric properties were studied. The composites have a high content and fine crystallinity of BN. The density is 1.60 g cm-3 with a low open porosity of 4.66%. The composites display good mechanical properties with the average flexural strength, elastic modulus and fracture toughness being 53.8 MPa, 20.8 GPa and 6.88 MPa m1/2, respectively. Lots of long fibres pull-out from the fracture surface, suggesting a good fibre/matrix interface. As temperature increases, both of the flexural strength and elastic modulus exhibit a decreasing trend, with the lowest values being 36.2 MPa and 8.6 GPa at 1000 deg. C, respectively. The desirable residual ratios of the flexural strength and elastic modulus at 1000 deg. C are 67.3% and 41.3%, respectively. The composites have excellent dielectric properties, with the average dielectric constant and loss tangent being 3.07 and 0.0044 at 2-18 GHz, respectively.

  3. Safety and efficacy of a novel abluminal groove-filled biodegradable polymer sirolimus-eluting stent for the treatment of de novo coronary lesions: 12-month results from the TARGET Ⅱ trial

    Institute of Scientific and Technical Information of China (English)

    Xu Bo; Zhao Yelin; Yang Yuejin; Zhang Ruiyan; Li Hui; Ma Changsheng; Chen Shaoliang

    2014-01-01

    Background In the TARGET I randomized controlled trial,the novel abluminal groove-filled biodegradable polymer sirolimus-eluting stent FIREHAWK proved non-inferior to the everolimus-eluting stent in nine-month in-stent late loss in single de novo coronary lesions.This study was aimed at evaluating clinical safety and effectiveness of FIREHAWK in a moderately complex population (including patients with small vessels,long lesions and multi-vessels),and at validating the ability of the SYNTAX score (SS) to predict clinical outcomes in patients treated with this latest generation drug-eluting stent.Methods TARGET Ⅱ was a prospective,multicenter,single-arm study with primary outcome of 12-month target lesion failure (TLF),including cardiac death,target vessel myocardial infarction (TV-MI) and ischemia-driven target lesion revascularization (TLR).Stent thrombosis was defined according to the Academic Research Consortium (ARC) definition.Patients were grouped by tertiles of SS (≤6,>6 to ≤12,and >12).All patients were exclusively treated with the FIREHAWK stent and were followed up at 1,6,and 12 months,and annually thereafter up to five years.Results A total of 730 patients were included in this registry study.The 12-month incidence of TLF was 4.4% and the incidence of TLF components were,cardiac death 0.5%,TV-MI 3.2%,and TLR 2.2%.One definite/probable stent thrombosis was observed at 12-month follow-up.Mean SS was 10.87±6.87.Patients in the SS >12 tertile had significantly higher TLF (P=0.02) and TLR (P <0.01) rates than those in lower SS groups.In COX proportional-hazards regression analyses,TLF incidence was strongly related to lesion length (long lesion vs.non-long lesion patients; HR 3.416,95% CI,1.622-7.195),but unrelated to diabetic,small vessel,and multivessel subgroups.Conclusions The low TLF incidence in this study indicates that FIREHAWK is safe and effective in the treatment of moderately complex coronary disease.SS is also able to

  4. Electro-Explosive Doping of VT6 Titanium Alloy Surface by Boron Carbide

    Science.gov (United States)

    Kobzareva, T. Yu; Gromov, V. E.; Ivanov, Yu F.; Budovskkh, E. A.; Konovalov, S. V.

    2016-09-01

    The studies carried out in this work target detection of changes in the surface layer of titanium alloy VT6 after electro-explosive alloying (EEA) by boron carbide. EEA of VT6 titanium alloy surface is the plasma alloying formed during the electric explosion of foil with the sample powder of boron carbide. Carbon fibers with weight 140 mg were used as an explosive conductor. Sample powder of boron carbide B4C was placed in the area of explosion on the carbon fibers. It was revealed that EEA of the surface layers of titanium alloy samples VT6 leads to the modification of the layer, thickness of which changes from 10 pm to 50 pm. Heterogeneous distribution of alloying elements was found in the treatment zone by the methods of X-ray microanalysis. A significant difference in their concentration in the identified layers leads to difference in their structural and tribological behaviour. It was revealed that after electro-explosive alloying the microhardness of titanium alloy VT6 significantly increases. Electro-explosive alloying leads to the formation of a structure of submicro- and nano-scale level. It allows strength and tribological properties of the treated surface to be increased.

  5. Electron-impact excitation and ionization of atomic boron at low and intermediate energies

    Science.gov (United States)

    Wang, Kedong; Zatsarinny, Oleg; Bartschat, Klaus

    2016-05-01

    We present a comprehensive study of electron collisions with neutral boron atoms. The calculations were performed with the B-Spline R-matrix (close-coupling) method, by employing a parallelized version of the associated computer code. Elastic, excitation, and ionization cross sections were obtained for all transitions involving the lowest 11 states of boron, for incident electron energies ranging from threshold to 100 eV. A multiconfiguration Hartree-Fock method with nonorthogonal term-dependent orbitals was used to generate accurate wave functions for the target states. Close-coupling expansions including 13, 51, and 999 physical and pseudo states were set up to check the sensitivity of the predictions to variations in the theoretical model. The cross-section dataset generated in this work is expected to be the most accurate one available today and should be sufficiently comprehensive for most modeling applications involving neutral boron. Work supported by the China Scholarship Council and the United States National Science Foundation under Grants PHY-1403245 and PHY-1520970, and by the XSEDE allocation PHY-090031.

  6. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  7. Adsorption characteristics of arsenic and boron by soil

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, M.

    1986-01-01

    In order to obtain baseline data concerning the surface and ground water pollution caused by coal ash disposal, adsorption characteristics of arsenic (III) and boron by soil have been studied through laboratory experiments. The main results are as follows: (1) Arsenic (III) and boron adsorption on soil was strongly dependent on pH with adsorption maxima at pH 8 and 8-9, respectively. (2) Arsenic (III) and boron adsorption on soil over the entire concentration ranges investigated could be described by the Langmuir adsorption isotherm and the Freundlich adsorption isotherm, respectively. The Henry adsorption isotherm was also applicable over the lower concentration ranges of arsenic (III) and boron (As (III): < 0.1 deltag/ml; B: < 5deltag/ml.) (3) Arsenic (III) and boron adsorption on soil is controlled mainly by the contents of extractable Fe oxide and hydroxide for arsenic (III) and by the contents of extractable Al hydroxide and allophane (amorphous aluminium silicates) for boron. (4) Adsorption and movement of arsenic (III) and boron during the infiltration of coal ash leachate in soil layer were investigated by means of the unsteady-state, one-dimensional convective-diffusive mass transport model. This model is very useful for evaluation and prediction of the contamination of ground water by trace elements such as arsenic (III) and boron leached at coal ash disposal site.

  8. Removal of boron species by layered double hydroxides: a review.

    Science.gov (United States)

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2013-07-15

    Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants. PMID:23635479

  9. Design, Fabrication and Performance of Boron-Carbide Control Elements

    International Nuclear Information System (INIS)

    A control blade design, incorporating boron-carbide (B4C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compácted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author)

  10. Determination of boron in silicates after ion exchange separation

    Science.gov (United States)

    Kramer, H.

    1955-01-01

    Existing methods for the determination of boron in silicates are not entirely satisfactory. Separation as the methyl ester is lengthy and frequently erratic. An accurate and rapid method applicable to glass, mineral, ore, and water samples uses ion exchange to remove interfering cations, and boron is determined titrimetrically in the presence of mannitol, using a pH meter to indicate the end point.

  11. Finite Element Analysis Of Boron Diffusion In Wood

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl;

    2002-01-01

    The coupled heat and mass transfer equations for air, water and heat transfer are supplemented with a conservation equation for an additional species representing the concentration of boron in wood. Boundary conditions for wood-air. wood-soil and wood-boron interfaces arc discussed and finally...

  12. Eleventh international conference on boron chemistry. Programme and abstracts

    International Nuclear Information System (INIS)

    Abstracts of reports at the Eleventh International Conference on Boron Chemistry are presented. Born chemistry as a connecting bridge between many fields maintains one of the leading positions in modern chemistry. Methods of synthesis of different boron compounds, properties of the compounds, their use in other regions of chemistry and medicine are widely presented in reports

  13. Boron Speciation in Soda-Lime Borosilicate Glasses Containing Zirconium

    International Nuclear Information System (INIS)

    Boron speciation was investigated in soda-lime borosilicate glass containing zirconium. In such compositions, competition between charge compensators (here, sodium and calcium) can occur for the compensation of tetrahedral boron or octahedral zirconium units. 11B MAS NMR is particularly suitable for obtaining data on preferential compensation behavior that directly affects the boron coordination number. In addition to the classical proportions of tri- and tetrahedral boron, additional data can be obtained on the contributions involved in these two coordination numbers. An approach is described here based on simultaneous MAS spectrum analysis of borosilicate glass with variable Zr/Si and Ca/Na ratios at two magnetic field strengths (11. 7 and 18. 8 T), with constraints arising from MQMAS spectroscopy, detailed analysis of satellite transitions, and spin-echo experiments. New possibilities of 11B NMR were presented for improving the identification and quantification of the different contributions involved in tri- and tetrahedral boron coordination. Both NMR and Raman revealed a trend of decreased tetrahedral boron proportion with the increase of Ca/Na ratio or the Zr/Si ratio. This strongly suggests that zirconium compensation takes preference over boron compensation, and that zirconium and boron are both compensated mainly by sodium rather than calcium. (authors)

  14. Method for removal of phosgene from boron trichloride

    Science.gov (United States)

    Freund, S.M.

    1983-09-20

    Selective ultraviolet photolysis using an unfiltered mercury arc lamp has been used to substantially reduce the phosgene impurity in a mixture of boron trichloride and phosgene. Infrared spectrophotometric analysis of the sample before and after irradiation shows that it is possible to highly purify commercially available boron trichloride with this method. 5 figs.

  15. Contamination of urban garden soils with copper and boron

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D.

    1966-06-04

    Spectrochemical analyses of garden soils sampled in the Edinburgh and Dundee areas indicate that there is substantial contamination of urban soils with copper and boron. These soils were analyzed spectrochemically with respect to total copper and water-extractable boron content with the view of comparing the levels obtained in urban areas with levels in arable soils in rural areas. The results indicate that urban garden soils contain about four times as much copper and two to three times as much water-soluble boron as rural arable soils. The existence of such a marked disparity between the levels of two potentially toxic elements in urban and rural areas is evidence of slow poisoning of the soil environment in built-up areas and is cause for concern. While the major source of contamination of soils with copper and boron is still a matter for speculation, it is probable that the addition of soot to garden soils and the fall-out of sooty material in built-up areas where atmospheric pollution is a problem make a substantial contribution to the water-extractable boron content of urban soils. Three samples of soot from domestic chimneys, obtained from independent sources, were found on analysis to contain 640, 650 and 555 p.p.m. water-extractable boron, and it is evident that the addition to soil of even small amounts of soot with a boron content of this order would have a marked effect on its water-extractable boron content.

  16. Does boron affect hormone levels of barley cultivars?

    Directory of Open Access Journals (Sweden)

    Muavviz Ayvaz

    2012-11-01

    Full Text Available Background: When mineral nutrients are present in excess or in inadequate amounts, their effects can be severe in plants and can be considered as abiotic stress. In this study, we report how hormonal levels in barley cultivars respond to the toxic effect of boron, an essential plant micronutrient. Material and methods: Two different barley (Hordeum vulgare cultivars (Vamik Hoca and Efes 98 were used as a study material. Boron was applied in three different concentrations (0, 10, 20 ppm to plants that had grown from seeds for four weeks. Plants were harvested, stem-root length and stem-root dry-fresh weight content were determined. For further analysis, chlorophyll, total protein, endogenic IAA and ABA content analyses were carried out. Results: According to the data obtained, plant growth and development decreased with increasing boron concentrations. With increasing boron concentrations, soluble total protein increased in both cultivars. Boron application led to increased endogenic IAA content in both cultivars. 10 and 20 ppm boron application led to increased endogenic ABA content in Vamik Hoca cultivar whereas endogenic ABA content decreased in Efes 98. Absence of boron application led to increased endogenic IAA and ABA content in both cultivars. Conclusion: As a result, the response to boron is different in the two cultivars and Efes 98 may be more resistant to the toxicity than Vamik Hoca cultivar.

  17. Composition and microhardness of CAE boron nitride films

    International Nuclear Information System (INIS)

    The paper deals with boron nitride produced by cathodic arc evaporation techniques.The films were applied on titanium and cemented carbide substrates. Their characterization was carried out using X-ray diffraction and Knoop microhardness tests. Demonstrated are the high properties of two-phase films, containing β (cubic) and γ (wurtzitic) modifications of boron nitride. (author). 7 refs., 1 fig., 3 tabs

  18. Synthesis and photoluminescence property of boron carbide nanowires

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B2O3/C powder precursors under an argon flow at 1100~C. The boron carbide nanowires are 5-10 μm in length and 80-100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm.

  19. Safety Assessment of Boron Nitride as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations.

  20. Lattice vibrations of the icosahedral solid. alpha. -boron

    Energy Technology Data Exchange (ETDEWEB)

    Beckel, C.L.; Yousaf, M.; Fuka, M.Z.; Raja, S.Y.; Lu, N. (Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico (USA))

    1991-08-01

    Crystalline {alpha}-boron consists of B{sub 12} icosahedra in a rhombohedral lattice of {ital R}{bar 3}{ital m} space-group symmetry. We here carry out a classical force-field analysis of the lattice vibrations. The {bold q}={bold 0} Brillouin-zone vibrations are treated as those of a {ital D}{sub 3{ital d}}-point-group-symmetry B{sub 12} cluster perturbed by intericosahedral crystalline forces; valence-force constants are fitted to account for Raman and ir spectral data. Two-centered intericosahedral bonds are found to be twice as strong as intraicosahedral bonds, while three-centered crystalline bonds are almost as strong as those within a B{sub 12} unit. The highest-frequency Raman line arises from the breathing mode, strongly perturbed by the two-centered interactions. The lowest-observed-frequency Raman line is attributed to B{sub 12} libration. As crystal-force-field strengths are turned up, noncrossing of frequencies is encountered; we, therefore, correlate {alpha}-crystal modes with {ital I}{sub {ital h}} regular-icosahedral and {ital D}{sub 3{ital d}} B{sub 12}-cluster modes through eigenvector expansions. Useful classical predictions are made of ir intensities for wave vector {bold q}={bold 0} modes by considering adjacent bond stretching; a prediction of Raman intensities in terms of bond polarizabilities appears to be of very limited value. The phonon analysis is extended from the Brillouin-zone center to the edges by introducing phase-angle differences along two distinct (one {ital C}{sub 3} and one {ital C}{sub 2}) rotational-symmetry axes. The acoustical-branch wave speeds are predicted to be 1.1{times}10{sup 6} and 0.38{times}10{sup 6} cm/sec for the {ital c}-direction longitudinal and transverse components, respectively.

  1. Numerical simulation of boron injection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, Hernan, E-mail: htb@forsmark.vattenfall.s [Forsmarks Kraftgrupp AB, SE-742 03 Osthammar (Sweden); Buchwald, Przemyslaw [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Frid, Wiktor, E-mail: wiktor@reactor.sci.kth.s [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2010-02-15

    The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of

  2. Continued biological investigations of boron-rich oligomeric phosphate diesters (OPDs). Tumor-selective boron agents for BNCT

    International Nuclear Information System (INIS)

    Clinical success of Boron Neutron Capture Therapy will rely on the selective intracellular delivery of high concentrations of boron-10 to tumor tissue. In order for a boron agent to facilitate clinical success, the simultaneous needs of obtaining a high tumor dose, high tumor selectivity, and low systemic toxicity must be realized. Boron-rich oligomeric phosphate diesters (OPDs) are a class of highly water-soluble compounds containing up to 40% boron by weight. Previous work in our groups demonstrated that once placed in the cytoplasm of tumor cells, OPDs quickly accumulate within the cell nucleus. The objective of the current study was to determine the biodistribution of seven different free OPDs in BALB/c mice bearing EMT6 tumors. Fructose solutions containing between 1.4 and 6.4 micrograms of boron per gram of tissue were interveinously injected in mice seven to ten days after tumor implantation. At intervals during the study, animals were euthanized and samples of tumor, blood, liver, kidney, brain and skin were collected and analyzed for boron content using ICP-AES. Tumor boron concentrations of between 5 and 29 ppm were achieved and maintained over the 72-hour time course of each experiment. Several OPDs demonstrated high tumor selectivity with one oligomer exhibiting a tumor to blood ratio of 35:1. The apparent toxicity of each oligomer was assessed through animal behavior during the experiment and necropsy of each animal upon sacrifice. (author)

  3. pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli (Brassica oleracea L.)

    Science.gov (United States)

    Soil pH is known to influence many important biochemical processes in plants and soils, however its role in salinity - boron interactions affecting plant growth and ion relations has not been examined. The purpose of this research was to evaluate the interactive effects of salinity, boron and soil ...

  4. Ballistic thermoelectric properties in boron nitride nanoribbons

    Science.gov (United States)

    Xie, Zhong-Xiang; Tang, Li-Ming; Pan, Chang-Ning; Chen, Qiao; Chen, Ke-Qiu

    2013-10-01

    Ballistic thermoelectric properties (TPs) in boron nitride nanoribbons (BNNRs) are studied using the nonequilibrium Green's function atomistic simulation of electron and phonon transport. A comparative analysis for TPs between BNNRs and graphene nanoribbons (GNRs) is made. Results show that the TPs of BNNRs are better than those of GNRs stemming from the higher power factor and smaller thermal conductance of BNNRs. With increasing the ribbon width, the maximum value of ZT (ZTmax) of BNNRs exhibits a transformation from the monotonic decrease to nonlinear increase. We also show that the lattice defect can enhance the ZTmax of these nanoribbons strongly depending on its positions and the edge shape.

  5. Low-dimensional boron nitride nanomaterials

    Directory of Open Access Journals (Sweden)

    Amir Pakdel

    2012-06-01

    Full Text Available In this review, a concise research history of low-dimensional boron nitride (BN nanomaterials followed by recent developments in their synthesis, morphology, properties, and applications are presented. Seventeen years after the initial synthesis of BN nanotubes, research on BN nanomaterials has developed far enough to establish them as one of the most promising inorganic nanosystems. In this regard, it is envisaged that the unique properties of low-dimensional BN systems, such as superb mechanical stiffness, high thermal conductivity, wide optical bandgap, strong ultraviolet emission, thermal stability and chemical inertness will play a key role in prospective developments.

  6. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  7. Method for exfoliation of hexagonal boron nitride

    Science.gov (United States)

    Lin, Yi (Inventor); Connell, John W. (Inventor)

    2012-01-01

    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.

  8. Boron nitride nanomaterials for thermal management applications.

    Science.gov (United States)

    Meziani, Mohammed J; Song, Wei-Li; Wang, Ping; Lu, Fushen; Hou, Zhiling; Anderson, Ankoma; Maimaiti, Halidan; Sun, Ya-Ping

    2015-05-18

    Hexagonal boron nitride nanosheets (BNNs) are analogous to their two-dimensional carbon counterparts in many materials properties, in particular, ultrahigh thermal conductivity, but also offer some unique attributes, including being electrically insulating, high thermal stability, chemical and oxidation resistance, low color, and high mechanical strength. Significant recent advances in the production of BNNs, understanding of their properties, and the development of polymeric nanocomposites with BNNs for thermally conductive yet electrically insulating materials and systems are highlighted herein. Major opportunities and challenges for further studies in this rapidly advancing field are also discussed. PMID:25652360

  9. Target Window Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-11

    The target window design implemented and tested in experiments at ANL have performed without failure for the available beam of 6 mm FWHM on a 12 mm diameter target. However, scaling that design to a 25 mm diameter target size for a 12 mm FWHM beam has proven problematic. Combined thermal and mechanical (pressure induced) stresses and strains are too high to maintain the small coolant gaps and provide adequate fatigue lifetime.

  10. Synthetic and structural chemistry of amidinate-substituted boron halides.

    Science.gov (United States)

    Hill, Nicholas J; Findlater, Michael; Cowley, Alan H

    2005-10-01

    The following new amidinate-substituted boron halides are reported: [PhC{N(SiMe(3))}(2)]BCl(2)(6), [MeC{NCy}(2)]BCl(2)(10), [Mes*C{NCy}(2)]BCl(2)(11), [MeC{N(i)Pr}(2)]BCl(2)(12), and [FcC{NCy}(2)]BBr(2)(13). Compound 6 was prepared via the trimethylsilyl chloride elimination reaction of BCl(3) with N,N,N'-tris(trimethylsilyl)benzamidine, and compounds 10-12 were prepared by salt metathesis between the lithium amidinates [RC(NR')(2)]Li and BX(3). Compound 13 was prepared via the insertion of 1,3-dicyclohexylcarbodiimide into the B-C bond of ferrocenyldibromoborane FcBBr(2). The molecular structures of 6, 10, 11, 13 and the known compound [PhC{N(SiMe(3))}(2)]BBr(2)(1) were established by single-crystal X-ray diffraction. PMID:16172649

  11. Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation

    NARCIS (Netherlands)

    Brondani, Patricia B.; Dudek, Hanna; Reis, Joel S.; Fraaije, Marco W.; Andrade, Leandro H.

    2012-01-01

    The enantioselective carbon-boron bond oxidation of several chiral boron-containing compounds by Baeyer-Villiger monooxygenases was evaluated. PAMO and M446G PAMO conveniently oxidized 1-phenylethyl boronate into the corresponding 1-(phenyl)ethanol (ee = 82-91%). Cyclopropyl boronic esters were also

  12. Influence of the composition of the boroning mixture on the dimension change of pressed and boroned samples from iron powder

    Directory of Open Access Journals (Sweden)

    Ivanov S.

    2008-01-01

    Full Text Available Volume changes occur during sintering and chemical-thermal treatments of metal powder samples. The results of the investigation of the volume change of pressed and boroned samples from an iron powder, depending on the mixture composition used for the boroning process, are presented in this paper. The basic mixture, used for boroning of the investigated samples from iron powder, is modified by the addition of activators with different chemical compositions and in different concentrations, of up to 4 wt %. Mixtures with ammonium bifluoride, ammonium chloride and boron potassium fluoride were investigated. The research results and the mathematical modelling enable the choice of mixture compositions for boroning based on the volume change given in advance.

  13. The Adhesion Improvement of Cubic Boron Nitride Film on High Speed Steel Substrate Implanted by Boron Element

    Institute of Scientific and Technical Information of China (English)

    CAI Zhi-hai; ZHANG Ping; TAN Jun

    2005-01-01

    Cubic boron nitride(c-BN) films were deposited on W6Mo5Cr4V2 high speed steel(HSS) substrate implanted with boron ion by RF-magnetron sputtering. The films were analyzed by the bending beam method, scratch test, XPS and AFM. The experimental results show that the implantation of boron atom can reduce the in ternal stress and improve the adhesion strength of the films. The critical load of scratch test rises to 27.45 N, compared to 1.75 N of c-BN film on the unimplanted HSS. The AFM shows that the surface of the c-BN film on the implanted HSS is low in roughness and small in grain size. Then the composition of the boron implanted layer was analyzed by the XPS. And the influence of the boron implanted layer on the internal stress and adhesion strength of c-BN films were investigated.

  14. Determination of nitrogen in boron carbide by instrumental photon activation analysis.

    Science.gov (United States)

    Merchel, Silke; Berger, Achim

    2007-05-01

    Boron carbide is widely used as industrial material, because of its extreme hardness, and as a neutron absorber. As part of a round-robin exercise leading to certification of a new reference material (ERM-ED102) which was demanded by the industry we analysed nitrogen in boron carbide by inert gas fusion analysis (GFA) and instrumental photon activation analysis (IPAA) using the 14N(gamma,n)13N nuclear reaction. The latter approach is the only non-destructive method among all the methods applied. By using photons with energy below the threshold of the 12C(gamma,n)11C reaction, we hindered activation of matrix and other impurities. A recently installed beam with a very low lateral activating flux gradient enabled us to homogeneously activate sample masses of approximately 1 g. Taking extra precautions, i.e. self-absorption correction and deconvolution of the complex decay curves, we calculated a nitrogen concentration of 2260+/-100 microg g-1, which is in good agreement with our GFA value of 2303+/-64 microg g-1. The values are the second and third highest of a rather atypical (non-S-shape) distribution of data of 14 round-robin participants. It is of utmost importance for the certification process that our IPAA value is the only one not produced by inert gas fusion analysis and, therefore, the only one which is not affected by a possible incomplete release of nitrogen from high-melting boron carbide.

  15. Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy.

    Science.gov (United States)

    Altieri, S; Balzi, M; Bortolussi, S; Bruschi, P; Ciani, L; Clerici, A M; Faraoni, P; Ferrari, C; Gadan, M A; Panza, L; Pietrangeli, D; Ricciardi, G; Ristori, S

    2009-12-10

    Boron neutron capture therapy (BNCT) is an anticancer therapy based on the incorporation of (10)B in tumors, followed by neutron irradiation. Recently, the synthesis and delivery of new boronated compounds have been recognized as some of the main challenges in BNCT application. Here, we report on the use of liposomes as carriers for BNCT active compounds. Two carborane derivatives, i.e., o-closocarboranyl beta-lactoside (LCOB) and 1-methyl-o-closocarboranyl-2-hexylthioporphyrazine (H(2)PzCOB), were loaded into liposomes bearing different surface charges. The efficacy of these formulations was tested on model cell cultures, that is, DHD/K12/TRb rat colon carcinoma and B16-F10 murine melanoma. These induce liver and lung metastases, respectively, and are used to study the uptake of standard BNCT drugs, including borophenylalanine (BPA). Boron concentration in treated cells was measured by alpha spectrometry at the TRIGA mark II reactor (University of Pavia). Results showed high performance of the proposed formulations. In particular, the use of cationic liposomes increased the cellular concentration of (10)B by at least 30 times more than that achieved by BPA. PMID:19954249

  16. EPR observation of first point defects in cubic boron nitride crystalline powders

    Science.gov (United States)

    Nistor, S. V.; Stefan, M.; Schoemaker, D.; Dinca, G.

    2000-05-01

    An X-band electron paramagnetic resonance (EPR) study of nominally pure, diamond-like cubic boron nitride (c-BN) crystalline powders, has led to the first identification of a spectrum attributed to two related paramagnetic species. The composite EPR spectrum can be observed only in dark brown colored powders known to contain excess of boron. It consists of two superimposed lorentzian components, called D1 and D2, centered at g1=2.0063 and g2=2.0084, with peak-to-peak linewidths of 3.3 and 17.9 mT, respectively. The temperature dependence of the integrated intensities, their linewidths and intensity ratio D2/D1 allows one to conclude that the narrow line D1 originates from EPR transitions inside a S=1/2 ground doublet and the broad line D2 from transitions inside the excited levels of another center. Evidence suggests that both centers are boron related paramagnetic species.

  17. Experimental evaluation of neutron performance in boron-doped low activation concrete

    International Nuclear Information System (INIS)

    Reaction rate distribution in concrete with/without boron dopant up to a thickness of 60 cm was measured using Yayoi fast reactor located at Univ. of Tokyo. The 7 reaction rates such as 197Au(n, γ), 59Co(n, γ), 115In(n, n'), 55Mn(n, γ), 23Na(n, γ), 94Zr(n, γ) and 96Zr(n, γ) were measured at 12 different depths, and the reduction of the reaction rate as a result of boron doping was quantitatively analysed. These reaction rates were also used to determine epithermal neutron spectrum shape parameter. Monte Carlo simulations of the experimental setup were performed using the MCNP-5 code. Simulated depth profiles of reaction rates and the epithermal neutron spectrum shape parameter agreed with the experimental results with fair accuracy. This experimental results provide useful data to benchmark the accuracy of neutron transport codes in the prediction of transmission and neutron spectrum distortion in boron-doped concrete. (authors)

  18. Electronic structure of sub-surface Boron acceptors in silicon for potential qubits

    Science.gov (United States)

    Rahman, Rajib; Mol, Jan; Klimeck, Gerhard; Rogge, Sven

    2013-03-01

    Single acceptors in silicon are investigated as potential qubits. Due to the p-type nature of the valence band (VB), the acceptor states are less susceptible to the hyperfine interaction of the neighboring nuclear spins. The presence of a stronger spin-orbit coupling in the VB also enables the possibility of an all-electric qubit control. Whereas donor qubits exhibit exchange oscillation with separation distance due to conduction band valleys, Boron acceptors are expected to have smoother exchange curves. We investigate the electronic structure of single Boron acceptors in silicon in the presence of electric field, strain, magnetic field, and interfaces. Bulk Boron acceptors have a four-fold degenerate ground state 45 meV above the VB with angular momentum states of 3/2 and 1/2. An interface splits this manifold into Kramer's doublets. Application of E and B fields allow several possibilities for forming a two-level qubit driven by an ac electric field. We compare calculations from atomistic tight-binding theory to scanning tunneling microscope (STM) measurements and k.p calculations. The tight-binding method captures additional wavefunction symmetries due to the crystal that help to explain the STM measurements.

  19. Application of Cycloaddition Reactions to the Syntheses of Novel Boron Compounds

    Directory of Open Access Journals (Sweden)

    John A. Maguire

    2010-12-01

    Full Text Available This review covers the application of cycloaddition reactions in forming the boron-containing compounds such as symmetric star-shaped boron-enriched dendritic molecules, nano-structured boron materials and aromatic boronic esters. The resulting boron compounds are potentially important reagents for both materials science and medical applications such as in boron neutron capture therapy (BNCT in cancer treatment and as drug delivery agents and synthetic intermediates for carbon-carbon cross-coupling reactions. In addition, the use of boron cage compounds in a number of cycloaddition reactions to synthesize unique aromatic species will be reviewed briefly.

  20. A rich revenue from the use of radioactive beams and radioactive targets: recent highlights from the nTOF and ISOLDE facilities (1/2)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    The On-Line Isotope Mass Separator ISOLDE is a facility dedicated to the production of a large variety of radioactive ion beams for a great number of different experiments, e.g. in the field of nuclear and atomic physics, solid-state physics, life sciences and material science. At ISOLDE, radioactive nuclides are produced in thick high-temperature targets via spallation, fission or fragmentation reactions. The targets are placed in the external proton beam of the PSB, which has an energy of 1.0 or 1.4 GeV and an intensity of about 2 microA. The target and ion-source together represent a small chemical factory for converting the nuclear reaction products into a radioactive ion beam. An electric field accelerates the ions, which are mass separated and steered to the experiments. Until now more than 600 isotopes of more than 60 elements (Z=2 to 88) have been produced with half-lives down to milliseconds and intensities up to 1011 ions per second. Through the advent of post-accelerated beams with the REX-ISOLDE c...

  1. β-Rhombohedral Boron: At the Crossroads of the Chemistry of Boron and the Physics of Frustration [Boron: a frustrated element

    Energy Technology Data Exchange (ETDEWEB)

    Ogitsu, Tadashi [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Galli, Giulia [Univ. of California, Davis, CA (United States)

    2013-05-08

    In the periodic table boron occupies a peculiar, crossover position: on the first row, it is surrounded by metal forming elements on the left and by non-metals on the right. In addition, it is the only non-metal of the third column. Therefore it is perhaps not surprising that the crystallographic structure and topology of its stable allotrope at room temperature (β-boron) are not shared by any other element, and are extremely complex. The formidable intricacy of β- boron, with interconnecting icosahedra, partially occupied sites, and an unusually large number of atoms per unit cell (more than 300) has been known for more than 40 years. Nevertheless boron remains the only element purified in significant quantities whose ground state geometry has not been completely determined by experiments. However theoretical progress reported in the last decade has shed light on numerous properties of elemental boron, leading to a thorough characterization of its structure at ambient conditions, as well as of its electronic and thermodynamic properties. This review discusses in detail the properties of β-boron, as inferred from experiments and the ab-initio theories developed in the last decade.

  2. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.

  3. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies

  4. Microdosimetry for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    The specific aims of the research proposal were as follows: (1) To design and construct small volume tissue equivalent proportional counters for the dosimetry and microdosimetry of high intensity thermal and epithermal neutron beams used in BNCT, and of modified fast neutron beams designed for boron neutron capture enhanced fast neutron therapy (BNCEFNT). (2) To develop analytical methods for estimating the biological effectiveness of the absorbed dose in BNCT and BNCEFNT based on the measured microdosimetric spectra. (3) To develop an analytical framework for comparing the biological effectiveness of different epithermal neutron beams used in BNCT and BNCEFNT, based on correlated sets of measured microdosimetric spectra and radiobiological data. Specific aims (1) and (2) were achieved in their entirety and are comprehensively documented in Jay Burmeister's Ph.D. dissertation entitled ''Specification of physical and biologically effective absorbed dose in radiation therapies utilizing the boron neutron capture reaction'' (Wayne State University, 1999). Specific aim (3) proved difficult to accomplish because of a lack of sufficient radiobiological data

  5. Durability of tannin-boron-treated timber

    Directory of Open Access Journals (Sweden)

    Gianluca Tondi

    2012-11-01

    Full Text Available Tannin-boron wood preservatives were investigated for their resistance against outdoor agents. This work focused on the analysis of the causes that affect the durability of the tannin-hexamine-treated samples. In particular, dimensional stability, resistance to leaching, and resistance to biological agents were investigated. The combined effect of deterioration agents was evaluated by subjecting the treated samples to simulated and natural weathering tests. The study of the appearance and of the color components (L*, a*, and b* according to CIELAB space of the exposed samples was monitored to assess the efficacy of the tannin-boron formulations for outdoor applications. Significant resistance against the action of water (EN 84, ENV 1250-2 and insects (EN 47 has been demonstrated in specific tests. Conversely, the continuous stress due to artificial and natural weathering deteriorates the color and the visible features of the treated specimens. The combined effect of moisture modifications, solar exposition, and leaching cycles damages the structure of the tannin-based polymeric network and subsequently it negatively affects its preservation properties.

  6. Thermal properties of boron and borides

    International Nuclear Information System (INIS)

    The influence of point defects on the thermal conductivity of polycrystalline β-B has been measured from 1 to 1000 K. Above 300 K, samples containing 2 at. % Hf and Zr have thermal conductivities close to that of amorphous boron, indicating very strong phonon scattering. A thermal conductivity of equal magnitude has also been measured near and below room temperature for nearly stoichiometric single crystals of the theoretical composition YB68. On the basis of a comparison with earlier measurements to temperatures as low as 0.1 K, it is concluded that the thermal conductivity of crystalline YB68 is indeed very similar, if not identical, to that expected for amorphous boron over the entire temperature range of measurement (0.1--300 K). Measurements of the specific heat of nearly stoichiometric YB68 between 1.5 and 30 K also reveal a linear-specific-heat anomaly of the same magnitude as is characteristic for amorphous solids, in fair agreement with earlier measurements by Bilir et al. It is concluded that the lattice vibrations of crystalline YB68 are glasslike

  7. Target Price Accuracy

    OpenAIRE

    Alexander G. Kerl

    2011-01-01

    This study analyzes the accuracy of forecasted target prices within analysts’ reports. We compute a measure for target price forecast accuracy that evaluates the ability of analysts to exactly forecast the ex-ante (unknown) 12-month stock price. Furthermore, we determine factors that explain this accuracy. Target price accuracy is negatively related to analyst-specific optimism and stock-specific risk (measured by volatility and price-to-book ratio). However, target price accuracy is positive...

  8. Reprocessing of {sup 10}B-contaminated {sup 10}Be AMS targets

    Energy Technology Data Exchange (ETDEWEB)

    Simon, K.J., E-mail: ksz@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee NSW 2232 (Australia); Pedro, J.B. [Institute of Marine and Antarctic Studies, Private Bag 129, Hobart TAS 7001 (Australia); Antarctic Climate and Ecosystems Cooperative Research Centre, Private Bag 80, Hobart TAS 7001 (Australia); Smith, A.M.; Child, D.P.; Fink, D. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee NSW 2232 (Australia)

    2013-01-15

    {sup 10}Be accelerator mass spectrometry (AMS) is an increasingly important tool in studies ranging from exposure age dating and palaeo-geomagnetism to the impact of solar variability on the Earth's climate. High levels of boron in BeO AMS targets can adversely impact the quality of {sup 10}Be measurements through interference from the isobar {sup 10}B. Numerous methods in chemical sample preparation and AMS measurement have been employed in order to reduce the impact of excessive boron rates. We present details of a method developed to chemically reprocess a set of forty boron-contaminated BeO targets derived from modern Antarctic ice. Previously, the excessive boron levels in these samples, as measured in an argon-filled absorber cell preceding the ionisation detector, had precluded routine AMS measurement. The procedure involved removing the BeO + Nb mixture from the target holders and dissolving the BeO in hot concentrated H{sub 2}SO{sub 4}. The solution was then heated with HF to remove the boron as volatile BF{sub 3} before re-precipitating as Be(OH){sub 2} and calcining to BeO. This was again mixed with niobium and pressed into fresh target holders. Following reprocessing, the samples gave boron rates reduced by 10-100 Multiplication-Sign , which were sufficiently low and similar to previous successful batches of ice core, snow and associated blank samples, thus allowing a successful {sup 10}Be measurement in the absence of any boron correction. Overall recovery of the BeO for this process averaged 40%. Extensive testing of relevant processing equipment and reagents failed to determine the source of the boron. As a precautionary measure, a similar H{sub 2}SO{sub 4} + HF step has been subsequently added to the standard ice processing method.

  9. B12Hn and B12Fn: Planar vs Icosahedral Structures

    OpenAIRE

    Gonzalez Szwacki, Nevill; Tymczak, C. J.

    2012-01-01

    Using density functional theory and quantum Monte Carlo calculations, we show that B12H n and B12F n (n = 0 to 4) quasi-planar structures are energetically more favorable than the corresponding icosahedral clusters. Moreover, we show that the fully planar B12F6 cluster is more stable than the three-dimensional counterpart. These results open up the possibility of designing larger boron-based nanostructures starting from quasi-planar or fully planar building blocks.

  10. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.); Dorn, R.V. III.

    1990-08-01

    This report discusses monthly progress in the Power Boron Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program for Cancer Treatment. Highlights of the PBF/BNCT Program during August 1990 include progress within the areas of: Gross Boron Analysis in Tissue, Blood, and Urine, boron microscopic (subcellular) analytical development, noninvasive boron quantitative determination, analytical radiation transport and interaction modeling for BNCT, large animal model studies, neutron source and facility preparation, administration and common support and PBF operations.

  11. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    Science.gov (United States)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  12. Boron neutron capture therapy for recurrent head and neck malignancies

    International Nuclear Information System (INIS)

    To avoid severe impairment of oro-facial structures and functions, it is necessary to explore new treatments for recurrent head and neck malignancies (HNM). Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. So far for 4 years and 3 months, we have treated with 37 times of BNCT for 21 patients (14 squamous cell carcinomas (SCC), 4 salivary gland carcinomas and 3 sarcomas) with a recurrent and far advanced HNM since 2001. Results are (1) 10B concentration of tumor/normal tissue ratio (T/N ratio) of FBPA-PET studies were SCC: 1.8-5.7, sarcoma: 2.5-4.0, parotid tumor: 2.5-3.7. (2) Therapeutic effects were CR: 6cases, PR: 11cases, PD: 3cases NE (not evaluated): 1case. Response rate was 81%. (3) Improvement of QOL such as a relief of severe pain, bleeding, and exudates at the local lesion, improvement of PS, disappearance of ulceration, covered with normal skin and preserved oral and maxillofacial functions and tissues. (4) Survival periods after BNCT were 1-51 months (mean: 9.8 months). 4-year survival rate was 39% by Kaplan-Meier analysis. (5) A few adverse-effects such as transient mucositis, alopecia were recognized. These results indicate that BNCT represents a new and promising treatment approach for advanced HNM. (author)

  13. Physical properties of CVD boron-doped multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Kartick C. [Molecular Sciences Institute and School of Chemistry, University of the Witwatersrand, P.O. Wits, 2050 Johannesburg (South Africa); DST/NRF Centre of Excellence in Strong Materials, P.O. Wits, 2050 Johannesburg (South Africa); Strydom, Andre M. [Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa)], E-mail: amstrydom@uj.ac.za; Erasmus, Rudolph M.; Keartland, Jonathan M. [DST/NRF Centre of Excellence in Strong Materials, P.O. Wits, 2050 Johannesburg (South Africa); School of Physics, University of the Witwatersrand, P.O. Wits, 2050 Johannesburg (South Africa); Coville, Neil J. [Molecular Sciences Institute and School of Chemistry, University of the Witwatersrand, P.O. Wits, 2050 Johannesburg (South Africa); DST/NRF Centre of Excellence in Strong Materials, P.O. Wits, 2050 Johannesburg (South Africa)], E-mail: Neil.Coville@wits.ac.za

    2008-10-15

    The effects of boron doping and electron correlation on the transport properties of CVD boron-doped multiwalled carbon nanotubes are reported. The boron-doped multiwalled carbon nanotubes were characterized by TEM as well as Raman spectroscopy using different laser excitations (viz. 488, 514.5 and 647 nm). The intensity of the D-band laser excitation line increased after the boron incorporation into the carbon nanotubes. The G-band width increased on increasing the boron concentration, indicating the decrease of graphitization with increasing boron concentration. Electrical conductivity of the undoped and boron-doped carbon nanotubes reveal a 3-dimensional variable-range-hopping conductivity over a wide range of temperature, viz. from room temperature down to 2 K. The electrical conductivity is not found to be changed significantly by the present levels of B-doping. Electron Paramagnetic Resonance (EPR) results for the highest B-doped samples showed similarities with previously reported EPR literature measurements, but the low concentration sample gives a very broad ESR resonance line.

  14. APPLICATION OF BORON MODIFIED SILICA SOL ON RETENTION AND DRAINAGE

    Institute of Scientific and Technical Information of China (English)

    Jinxia Ma; Yuxiu Peng; Zhongzheng Li

    2004-01-01

    In this paper it was studied that these dosage effects of CPAM, cationic starch、boron modified silica sol (BMS), Al2(SO4)3, pH value and electrolyte on the retention and drainage of different microparticulate systems including CPAM, cationic starch and boron silica sol. The research results indicated that CPAM had no good retention when used with boron silica sol. The best retention efficiency was the microparticulate system of CPAM + cationic starch with boron modified silica sol; Secondly was that of cationic starch with boron modified silica sol; The worst was that of CPAM with boron modified silica sol. The retention efficiency had no relation with the addition order between CPAM and cationic starch. It was also found that the microparticulate retention system of boron modified silica sol could be used in alum-rosin sizing and in acidity, neutral or alkaline papermaking conditions. This system also could be used with close circulate water so that it could reduce the water pollution and waste.

  15. Boron Particle Ignition in Secondary Chamber of Ducted Rocket

    Directory of Open Access Journals (Sweden)

    J. X. Hu

    2012-01-01

    Full Text Available In the secondary chamber of ducted rocket, there exists a relative speed between boron particles and air stream. Hence, the ignition laws under static conditions cannot be simply applied to represent the actual ignition process of boron particles, and it is required to study the effect of forced convective on the ignition of boron particles. Preheating of boron particles in gas generator makes it possible to utilize the velocity difference between gas and particles in secondary chamber for removal of the liquid oxide layer with the aid of Stoke's forces. An ignition model of boron particles is formulated for the oxide layer removal by considering that it results from a boundary layer stripping mechanism. The shearing action exerted by the high-speed flow causes a boundary layer to be formed in the surface of the liquid oxide layer, and the stripping away of this layer accounts for the accelerated ignition of boron particles. Compared with the King model, as the ignition model of boron particles is formulated for the oxide layer removal by considering that it results from a boundary layer stripping mechanism, the oxide layer thickness thins at all times during the particle ignition and lower the ignition time.

  16. Computational Studies of Physical Properties of Boron Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  17. Nuclear characterizations and applications of boron-containing materials

    International Nuclear Information System (INIS)

    Materials either doped with traces of boron or containing this element as a matrix component have important technological and research applications. For most applications in technology, semiconductor doping, chemical vapor deposition of glass films, and optical waveguide fiber manufacture, boron levels or distribution must be controlled precisely. Thus, methods for quantitation of boron are needed, and its analytical chemistry still receives considerable study. Several nondestructive nuclear methods are described in this paper that have unique capabilities for quantitative analyses of boron at the trace and macro levels. Excellent high-sensitivity determinations are based on alpha track counting. For micro- and macroanalyses, the nuclear track technique using the 10B(n,α)7 Li reaction has been applied to map qualitatively the distribution of boron in borosilicate glass and in optical waveguide glass and fibers. Boron in the 1.59 to 7.75% range is determinable in silicate glasses. Similar information has also been obtained by prompt gamma neutron activation. Neuron depth profiling of boron in glass has been performed also. Results for several of these methods are reported

  18. Boron doping of graphene-pushing the limit.

    Science.gov (United States)

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-08-25

    Boron-doped derivatives of graphene have been intensely investigated because of their electronic and catalytic properties. The maximum experimentally observed concentration of boron atoms in graphite was 2.35% at 2350 K. By employing quantum chemistry coupled with molecular dynamics, we identified the theoretical doping limit for single-layer graphene at different temperatures, demonstrating that it is possible to achieve much higher boron doping concentrations. According to the calculations, 33.3 mol% of boron does not significantly undermine thermal stability, whereas 50 mol% of boron results in critical backbone deformations, which occur when three or more boron atoms enter the same six-member ring. Even though boron is less electro-negative than carbon, it tends to act as an electron acceptor in the vicinity of C-B bonds. The dipole moment of B-doped graphene depends strongly on the distribution of dopant atoms within the sheet. Compared with N-doped graphene, the dopant-dopant bonds are less destructive in the present system. The reported results motivate efforts to synthesize highly B-doped graphene for semiconductor and catalytic applications. The theoretical predictions can be validated through direct chemical synthesis. PMID:27533648

  19. Study of characteristics for heavy water photoneutron source in boron neutron capture therapy

    CERN Document Server

    Salehi, Danial; Sardari, Dariush

    2013-01-01

    Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors. Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head, patient's body, and treatment room ambient. Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons, the energy spectrum of which shows an end point equal to the electron beam energy. By varying the target thickness, an optimum thickness exists for which, at the given electron energy, maximum photon flux is achievable. If a source of high-energy photons i.e. bremsstrahlung, is conveniently directed to a suitable D2O target, a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible. This study consists of two parts. 1. Comparison and assessment of deuterium photonuclear cross section data. 2. Ev...

  20. The effect of boron implantation on the corrosion behaviour, microhardness and contact resistance of copper and silver surfaces

    International Nuclear Information System (INIS)

    In order to investigate the influence of boron implantation on the corrosion resistance of electrical contacts, a number of pure copper, pure silver and copper edge connector samples have been implanted with boron (40 keV) to fluences of 5.1020 m-2 and 2.1021 m-2. Atmospheric corrosion tests of the implanted species were conducted using the following exposures: H2S (12.5 ppm, 4 days), SO2 (25 ppm, 21 days), saltfog (5% NaCl, 1 day), moist air (93% RH, 56 days), and hot/dry air (70 C, 56 days). The boron implantations lead to a significant reduction in the sulphidation rate of copper and silver. The corrosive film formed during exposure in H2S and SO2 atmospheres is confined to pitted regions on the implanted areas, while a thick and relatively uniform film formation is observed on the unimplanted samples. The corrosion resistance of copper and silver in saltfog atmosphere is somewhat improved by boron implantation, whilst the results from exposures to moist air or hot/dry air are inconclusive. The improved corrosion behaviour is accompanied by an increase in the contact resistance and in the microhardness of the implanted samples. (orig.)