WorldWideScience

Sample records for boron 10 reactions

  1. Substitution reactions at boron atoms in metallacarboranes

    Energy Technology Data Exchange (ETDEWEB)

    Bregadze, Vladimir I; Timofeev, Sergei V; Sivaev, Igor B; Lobanova, Irina A [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation)

    2004-05-31

    Data on substitution reactions at boron atoms in 10-12-vertex metallacarboranes, which are of fundamental and applied significance, are generalised. The possible mechanisms of substitution reactions and the influence of the metal fragment on substitution positions in the polyhedron are discussed.

  2. Boron-10 ABUNCL Active Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-07-09

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from testing of the active mode of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) at Los Alamos National Laboratory using sources and fuel pins.

  3. Pechmann Reaction Promoted by Boron Trifluoride Dihydrate

    Directory of Open Access Journals (Sweden)

    J. Mezger

    2005-08-01

    Full Text Available The Pechmann reaction of substituted phenols 1a-e with methyl acetoacetate (2 can be activated by boron trifluoride dihydrate (3 to give the corresponding 4-methyl- coumarin derivatives 4a-e in excellent yield (98-99 %.

  4. Boron-10 loaded inorganic shielding material

    Science.gov (United States)

    Baker, S. I.; Ryskiewicz, R. S.

    1972-01-01

    Shielding material containing Boron 10 and gadoliunium for neutron absorption has been developed to reduce interference from low energy neutrons in measurement of fission neutron spectrum using Li-6 fast neutron spectrometer.

  5. Separation of the isotopes of boron by chemical exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  6. Untangling the Energetics and Dynamics of Boron Monoxide Radical Reactions (11BO; X2Sigma+)

    Science.gov (United States)

    2015-04-15

    Crossed Beam Reaction of Boron Monoxide with Benzene (P6) Organyl oxoboranes (RBO) are valuable reagents in organic synthesis due to their role in... silicon nitride (SiN), and ethynyl (C2H), and their reactions with simple prototype hydrocarbons acetylene (C2H2) and ethylene (C2H4). The fact...Reaction products of isoelectronic boron monoxide (BO), cyano (CN), ethynyl (CCH), and silicon nitride (SiN) radicals with acetylene and ethylene. 3.10

  7. Boron-10 ABUNCL Models of Fuel Testing

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, Edward R.; Lintereur, Azaree T.; Kouzes, Richard T.; Ely, James H.

    2013-10-01

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNP simulations of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) active configuration model with fuel pins previously measured at Los Alamos National Laboratory. A comparison of the GE-ABUNCL simulations and simulations of 3He based UNCL-II active counter (the system for which the GE-ABUNCL was targeted to replace) with the same fuel pin assemblies is also provided.

  8. Click Reactions and Boronic Acids: Applications, Issues, and Potential Solutions

    Directory of Open Access Journals (Sweden)

    Chaofeng Dai

    2010-08-01

    Full Text Available Boronic acids have been widely used in a wide range of organic reactions, in the preparation of sensors for carbohydrates, and as potential pharmaceutical agents. With the growing importance of click reactions, inevitably they are also applied to the synthesis of compounds containing the boronic acid moiety. However, such applications have unique problems. Chief among them is the issue of copper-mediated boronic acid degradation in copper-assisted [2,3]-cycloadditions involving an alkyne and an azido compound as the starting materials. This review summarizes recent developments, analyzes potential issues, and discusses known as well as possible solutions.

  9. DABO Boronates: Stable Heterocyclic Boronic Acid Complexes for Use in Suzuki-Miyaura Cross-Coupling Reactions.

    Science.gov (United States)

    Reilly, Maureen K; Rychnovsky, Scott D

    2011-10-01

    Diethanolamine complexed heterocyclic boronic acids (DABO boronates) are air-stable reagents that can be used directly in Suzuki-Miyaura reactions in the presence of water or a protic co-solvent. Interestingly, heterocyclic DABO boronates can be stored for extended periods of time at room temperature with no noticeable degradation, unlike their boronic acid counterparts. Heterocyclic DABO boronates constitute an operationally simple and efficient alternative to other boronic acid derivatives as coupling partners in palladium catalyzed cross-coupling reactions under standard Suzuki-Miyaura conditions.

  10. Boron-10 ABUNCL Prototype Initial Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-12-01

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results of initial testing of an Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Several configurations of the ABUNCL models, which use 10B-lined proportional counters in place of 3He proportional counters for the neutron detection elements, were previously reported. The ABUNCL tested is of a different design than previously modeled. Initial experimental testing of the as-delivered passive ABUNCL was performed, and modeling will be conducted. Testing of the system reconfigured for active testing will be performed in the near future, followed by testing with nuclear fuel.

  11. Application of Cycloaddition Reactions to the Syntheses of Novel Boron Compounds

    OpenAIRE

    Maguire, John A.; Hosmane, Narayan S; Yinghuai Zhu; Xiao Siwei

    2010-01-01

    This review covers the application of cycloaddition reactions in forming the boron-containing compounds such as symmetric star-shaped boron-enriched dendritic molecules, nano-structured boron materials and aromatic boronic esters. The resulting boron compounds are potentially important reagents for both materials science and medical applications such as in boron neutron capture therapy (BNCT) in cancer treatment and as drug delivery agents and synthetic intermediates for carbon-carbon cross-c...

  12. Application of cycloaddition reactions to the syntheses of novel boron compounds.

    Science.gov (United States)

    Zhu, Yinghuai; Siwei, Xiao; Maguire, John A; Hosmane, Narayan S

    2010-12-21

    This review covers the application of cycloaddition reactions in forming the boron-containing compounds such as symmetric star-shaped boron-enriched dendritic molecules, nano-structured boron materials and aromatic boronic esters. The resulting boron compounds are potentially important reagents for both materials science and medical applications such as in boron neutron capture therapy (BNCT) in cancer treatment and as drug delivery agents and synthetic intermediates for carbon-carbon cross-coupling reactions. In addition, the use of boron cage compounds in a number of cycloaddition reactions to synthesize unique aromatic species will be reviewed briefly.

  13. Application of Cycloaddition Reactions to the Syntheses of Novel Boron Compounds

    Directory of Open Access Journals (Sweden)

    John A. Maguire

    2010-12-01

    Full Text Available This review covers the application of cycloaddition reactions in forming the boron-containing compounds such as symmetric star-shaped boron-enriched dendritic molecules, nano-structured boron materials and aromatic boronic esters. The resulting boron compounds are potentially important reagents for both materials science and medical applications such as in boron neutron capture therapy (BNCT in cancer treatment and as drug delivery agents and synthetic intermediates for carbon-carbon cross-coupling reactions. In addition, the use of boron cage compounds in a number of cycloaddition reactions to synthesize unique aromatic species will be reviewed briefly.

  14. A boron-boron coupling reaction between two ethyl cation analogues.

    Science.gov (United States)

    Litters, Sebastian; Kaifer, Elisabeth; Enders, Markus; Himmel, Hans-Jörg

    2013-12-01

    The design of larger architectures from smaller molecular building blocks by element-element coupling reactions is one of the key concerns of synthetic chemistry, so a number of strategies were developed for this bottom-up approach. A general scheme is the coupling of two elements with opposing polarity or that of two radicals. Here, we show that a B-B coupling reaction is possible between two boron analogues of the ethyl cation, resulting in the formation of an unprecedented dicationic tetraborane. The bonding properties in the rhomboid B₄ core of the product can be described as two B-B units connected by three-centre, two-electron bonds, sharing the short diagonal. Our discovery might lead the way to the long sought-after boron chain polymers with a structure similar to the silicon chains in β-SiB₃. Moreover, the reaction is a prime textbook example of the influence of multiple-centre bonding on reactivity.

  15. Advances in boron-10 isotope separation by chemical exchange distillation

    Energy Technology Data Exchange (ETDEWEB)

    Song Shuang, E-mail: chengruoyu2@sina.co [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Mu Yujun; Li Xiaofeng; Bai Peng [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2010-01-15

    Advances in boron-10 isotope separation by chemical exchange distillation are reviewed in this article. With a brief introduction of the principle of the separation, the progress on the research of this method and the problems relating to the separation coefficient are discussed. Several new donors, including nitromethane, acetone, methyl isobutyl ketone (MIBK) and diisobutyl ketone (DIBK), which have large separation factors are introduced. The complexes of these new donors and boron trifluoride (BF{sub 3}) are more stable than those of using the donors examined before. Among these new donors nitromethane could be a promising substitute for donors in present use to develop new technology of separating boron-10.

  16. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).

    Science.gov (United States)

    Capoulat, M E; Minsky, D M; Kreiner, A J

    2014-03-01

    The 9Be(d,n)10B reaction was studied as an epithermal neutron source for brain tumor treatment through Boron Neutron Capture Therapy (BNCT). In BNCT, neutrons are classified according to their energies as thermal (epithermal (from 0.5 eV to 10 keV) or fast (>10 keV). For deep-seated tumors epithermal neutrons are needed. Since a fraction of the neutrons produced by this reaction are quite fast (up to 5-6 MeV, even for low-bombarding energies), an efficient beam shaping design is required. This task was carried out (1) by selecting the combinations of bombarding energy and target thickness that minimize the highest-energy neutron production; and (2) by the appropriate choice of the Beam Shaping Assembly (BSA) geometry, for each of the combinations found in (1). The BSA geometry was determined as the configuration that maximized the dose deliverable to the tumor in a 1 h treatment, within the constraints imposed by the healthy tissue dose adopted tolerance. Doses were calculated through the MCNP code. The highest dose deliverable to the tumor was found for an 8 μm target and a deuteron beam of 1.45 MeV. Tumor weighted doses ≥40 Gy can be delivered up to about 5 cm in depth, with a maximum value of 51 Gy at a depth of about 2 cm. This dose performance can be improved by relaxing the treatment time constraint and splitting the treatment into two 1-h sessions. These good treatment capabilities strengthen the prospects for a potential use of this reaction in BNCT.

  17. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jannotti, Phillip; Subhash, Ghatu, E-mail: subhash@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Zheng, James Q.; Halls, Virginia [Program Executive Office—Soldier Protection and Individual Equipment, US Army, Fort Belvoir, Virginia 22060 (United States); Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K. [M-Cubed Technologies, Inc., Newark, Delaware 19711 (United States)

    2015-01-26

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  18. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    Science.gov (United States)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  19. Laser-initiated primary and secondary nuclear reactions in Boron-Nitride

    Science.gov (United States)

    Labaune, C.; Baccou, C.; Yahia, V.; Neuville, C.; Rafelski, J.

    2016-02-01

    Nuclear reactions initiated by laser-accelerated particle beams are a promising new approach to many applications, from medical radioisotopes to aneutronic energy production. We present results demonstrating the occurrence of secondary nuclear reactions, initiated by the primary nuclear reaction products, using multicomponent targets composed of either natural boron (B) or natural boron nitride (BN). The primary proton-boron reaction (p + 11B → 3 α + 8.7 MeV), is one of the most attractive aneutronic fusion reaction. We report radioactive decay signatures in targets irradiated at the Elfie laser facility by laser-accelerated particle beams which we interpret as due to secondary reactions induced by alpha (α) particles produced in the primary reactions. Use of a second nanosecond laser beam, adequately synchronized with the short laser pulse to produce a plasma target, further enhanced the reaction rates. High rates and chains of reactions are essential for most applications.

  20. Boron-10 ABUNCL Prototype Models And Initial Active Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-04-23

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNPX model simulations and initial testing of the active mode variation of the Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Initial experimental testing of the as-delivered passive ABUNCL was previously reported.

  1. Boron

    Science.gov (United States)

    ... an eye wash. Boron was used as a food preservative between 1870 and 1920, and during World Wars ... chemical symbol), B (symbole chimique), Borate, Borate de Sodium, Borates, Bore, Boric Acid, Boric Anhydride, Boric Tartrate, ...

  2. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%

    KAUST Repository

    Li, Xiaohang

    2017-01-11

    Growing thicker BAlN films while maintaining single-phase wurtzite structure and boron content over 10% has been challenging. In this study, we report on the growth of 100 nm-thick single-phase wurtzite BAlN films with boron contents up to 14.4% by MOCVD. Flow-modulated epitaxy was employed to increase diffusion length of group-III atoms and reduce parasitic reactions between the metalorganics and NH3. A large growth efficiency of ∼2000 μm mol−1 was achieved as a result. Small B/III ratios up to 17% in conjunction with high temperatures up to 1010 °C were utilized to prevent formation of the cubic phase and maintain wurtzite structure.

  3. Double helix boron-10 powder thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui; Morris, Christopher L.; Bacon, Jeffrey D.

    2015-06-02

    A double-helix Boron-10 powder detector having intrinsic thermal neutron detection efficiency comparable to 36'' long, 2-in diameter, 2-bar Helium-3 detectors, and which can be used to replace such detectors for use in portal monitoring, is described. An embodiment of the detector includes a metallic plate coated with Boron-10 powder for generating alpha and Lithium-7 particles responsive to neutrons impinging thereon supported by insulators affixed to at least two opposing edges; a grounded first wire wound in a helical manner around two opposing insulators; and a second wire having a smaller diameter than that of the first wire, wound in a helical manner around the same insulators and spaced apart from the first wire, the second wire being positively biased. A gas, disposed within a gas-tight container enclosing the plate, insulators and wires, and capable of stopping alpha and Lithium-7 particles and generating electrons produces a signal on the second wire which is detected and subsequently related to the number of neutrons impinging on the plate.

  4. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction

    Science.gov (United States)

    Mir, Showkat H.; Chakraborty, Sudip; Jha, Prakash C.; Wärnâ, John; Soni, Himadri; Jha, Prafulla K.; Ahuja, Rajeev

    2016-08-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of the boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.

  5. Dynamic strength of reaction-sintered boron carbide ceramic

    Science.gov (United States)

    Savinykh, A. S.; Garkushin, G. V.; Razorenov, S. V.; Rumyantsev, V. I.

    2015-06-01

    The shock compression wave profiles in three modifications of boron carbide ceramic are studied in the compressive stress range 3-19 GPa. The Hugoniot elastic limit and the spall strength of the materials are determined. It is confirmed that the spall strength of high-hardness ceramic changes nonmonotonically with the compressive stress in a shock wave.

  6. NHC Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions of Aryl Boronate Esters with Perfluorobenzenes.

    Science.gov (United States)

    Zhou, Jing; Berthel, Johannes H J; Kuntze-Fechner, Maximilian W; Friedrich, Alexandra; Marder, Todd B; Radius, Udo

    2016-07-01

    An efficient Suzuki-Miyaura cross-coupling reaction of perfluorinated arenes with aryl boronate esters using NHC nickel complexes as catalysts is described. The efficiencies of different boronate esters (p-tolyl-Beg, p-tolyl-Bneop, p-tolyl-Bpin, p-tolyl-Bcat) and the corresponding boronic acid (p-tolyl-B(OH)2) in this type of cross-coupling reaction were evaluated (eg, ethyleneglycolato; neop, neopentylglycolato; pin, pinacolato; cat, catecholato). Aryl-Beg was shown to be the most reactive boronate ester among those studied. The use of CsF as an additive is essential for an efficient reaction of hexafluorobenzene with aryl neopentylglycolboronates.

  7. Controlling the Morphology and Oxidation Resistance of Boron Carbide Synthesized Via Carbothermic Reduction Reaction

    Science.gov (United States)

    Ahmed, Yasser M. Z.; El-Sheikh, Said M.; Ewais, Emad M. M.; Abd-Allah, Asmaa A.; Sayed, Said A.

    2017-03-01

    Boron carbide powder was synthesized from boric acid and lactose mixtures via easy procedure. Boric acid and lactose solution mixtures were roasted in stainless steel pot at 280 °C for 24 h. Boron carbide was obtained by heating the roasted samples under flowing of industrial argon gas at 1500 °C for 3 h. The amount of borate ester compound in the roasted samples was highly influenced by the boron/carbon ratio in the starting mixtures and plays a versatile role in the produced boron carbide. The high-purity boron carbide powder was produced with a sample composed of lowest boron/carbon ratio of 1:1 without calcination step. Particle morphology was changed from nano-needles like structure of 8-10 nm size with highest carbon ratio mixture to spherical shape of >150 nm size with lowest one. The oxidation resistance performance of boron carbide is highly dependent on the morphology and grain size of the synthesized powder.

  8. Boron-10 layers, Neutron Reflectometry and Thermal Neutron Gaseous Detectors

    CERN Document Server

    Piscitelli, Francesco

    2014-01-01

    Nowadays neutron facilities are going toward higher fluxes, e.g. the European Spallation Source (ESS) in Lund (Sweden), and this translates into a higher demand in the instrument performances. Because of its favorable properties,He-3 has been the main actor in thermal neutron detection for years. Starting in about 2001 the He-3 stockpile has been declining. The world is now experiencing the shortage of He-3. This makes the construction of large area detectors (several squared meters) not realistic anymore. A way to reduce the He-3 demand for those applications is to move users to alternative technologies, such as Boron-10. Although it is absolutely necessary to replace He-3 for large area applications, this is not the main issue for what concerns small area detectors for which the research is focused on improving their performances. Some technologies appear promising, though implementation would likely present technical challenges. There are several aspects that must be investigated in order to validate those...

  9. CASCADE - a multi-layer Boron-10 neutron detection system

    CERN Document Server

    Köhli, M; Allmendinger, F; Perrevoort, A -K; Schröder, T; Martin, N; Schmidt, C J; Schmidt, U

    2016-01-01

    The globally increased demand for helium-3 along with the limited availability of this gas calls for the development of alternative technologies for the large ESS instrumentation pool. We report on the CASCADE Project - a novel detection system, which has been developed for the purposes of neutron spin echo spectroscopy. It features 2D spatially resolved detection of thermal neutrons at high rates. The CASCADE detector is composed of a stack of solid boron-10 coated Gas Electron Multiplier foils, which serve both as a neutron converter and as an amplifier for the primary ionization deposited in the standard Argon-CO2 counting gas environment. This multi-layer setup efficiently increases the detection efficiency and serves as a helium-3 alternative. It has furthermore been possible to extract the signal of the charge traversing the stack to identify the very thin conversion layer of about 1 micrometer. This allows the precise determination of the time-of-flight, necessary for the application in MIEZE spin echo...

  10. Hexagonal boron nitride thin film thermal neutron detectors with high energy resolution of the reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Doan, T.C.; Majety, S.; Grenadier, S.; Li, J.; Lin, J.Y.; Jiang, H.X., E-mail: hx.jiang@ttu.edu

    2015-05-21

    Hexagonal boron nitride (h-BN) is highly promising for solid-state thermal neutron detector applications due to its many outstanding physical properties, especially its very large thermal neutron capture cross-section (~3840 barns for {sup 10}B), which is several orders of magnitude larger than those of most other isotopes. The focus of the present work is to carry out studies on h-BN thin film and detector properties to lay the foundation for the development of a direct-conversion solid-state thermal neutron detector with high sensitivity. The measured carrier mobility-lifetime (μτ) product of h-BN thin films grown on sapphire substrates is 2.83×10{sup −7} cm{sup 2}/V for electrons and holes, which is comparable to the value of about 10{sup −7} cm{sup 2}/V for GaN thin films grown on sapphire. Detectors based on h-BN thin films were fabricated and the nuclear reaction product pulse height spectra were measured. Under a bias of 20 V, very narrow individual peaks corresponding to the reaction product energies of α and Li particles as well as the sum peaks have been clearly resolved in the pulse height spectrum for the first time by a B-based direct-conversion semiconductor neutron detector. Our results indicate that h-BN thin film detectors possess unique advantages including small size, low weight, portability, low voltage operation and high energy resolution of specific reaction products.

  11. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Y.; Grush, M.; Callcott, T.A. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reaction process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.

  12. Introduction to Neutron Coincidence Counter Design Based on Boron-10

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-01-22

    The Department of Energy Office of Nonproliferation Policy (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is ultimately to design, build and demonstrate a boron-lined proportional tube based alternative system in the configuration of a coincidence counter. This report, providing background information for this project, is the deliverable under Task 1 of the project.

  13. Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Nigg; Various Others

    2014-06-01

    BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25–76 ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung.

  14. Convert Graphene Sheets to Boron Nitride and Boron Nitride-Carbon Sheets via a Carbon-Substitution-Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Han, W.; Yu, H.-G.; Liu. Z.

    2011-05-16

    Here we discuss our synthesis of highly crystalline pure boron nitride (BN) and BN-carbon (BN-C) sheets by using graphene sheets as templates via a carbon-substitution reaction. Typically, these sheets are several micrometers wide and have a few layers. The composition ratios of BN-C sheets can be controlled by the post-treatment (remove carbon by oxidation) temperature. We also observed pure BN and BN-C nanoribbons. We characterized the BN-C sheets via Raman spectroscopy and density functional theory calculations. The results reveal that BN-C sheets with an armchair C-BN chain, and embedded C{sub 2} or C{sub 6} units in BN-dominated regions energetically are the most favorable.

  15. Selective and Serial Suzuki-Miyaura Reactions of Polychlorinated Aromatics with Alkyl Pinacol Boronic Esters.

    Science.gov (United States)

    Laulhé, Sébastien; Blackburn, J Miles; Roizen, Jennifer L

    2016-09-01

    Among cross-coupling reactions, the Suzuki-Miyaura transformation stands out because of its practical advantages, including the commercial availability and low toxicity of the required reagents, mild reaction conditions, and functional group compatibility. Nevertheless, few conditions can be used to cross-couple alkyl boronic acids or esters with aryl halides, especially 2-pyridyl halides. Herein, we describe two novel Suzuki-Miyaura protocols that enable selective conversion of polychlorinated aromatics, with a focus on reactions to convert 2,6-dichloropyridines to 2-chloro-6-alkylpyridines or 2-aryl-6-alkylpyridines.

  16. Characterization of boron carbide nanoparticles prepared by a solid state thermal reaction

    Science.gov (United States)

    Chang, B.; Gersten, B. L.; Szewczyk, S. T.; Adams, J. W.

    2007-01-01

    The production of boron carbide (B4C) nanoparticles was investigated in a conventional high temperature furnace reactor. The reaction was carried out by heating a mixture of amorphous carbon and amorphous boron at 1550 °C to efficiently obtain a quantity of B4C. Scanning electron microscopy studies showed the average size of B4C particles was 200 nm, ranging from 50 nm to 350 nm. X-ray diffraction transmission electron microscopy and electron diffraction studies indicated that the prepared nanoparticles were crystalline B4C with a high density twin structure. High resolution transmission electron microscopy and selected area diffraction were also used to further characterize the structure of the prepared B4C particles, while energy dispersive spectroscopy and electron energy loss spectroscopy were used to determine the stoichiometry of the product. A solid state diffusion reaction mechanism is proposed.

  17. Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules.

    Science.gov (United States)

    Xu, Liang; Zhang, Shuai; Li, Pengfei

    2015-12-21

    In the context of modular and rapid construction of molecular diversity and complexity for applications in organic synthesis, biomedical and materials sciences, a generally useful strategy has emerged based on boron-selective chemical transformations. In the last decade, these types of reactions have evolved from proof-of-concept to some advanced applications in the efficient preparation of complex natural products and even automated precise manufacturing on the molecular level. These advances have shown the great potential of boron-selective reactions in simplifying synthetic design and experimental operations, and should inspire new developments in related chemical and technological areas. This tutorial review will highlight the original contributions and representative advances in this emerging field.

  18. A suggestion for B-10 imaging during boron neutron capture therapy

    CERN Document Server

    Cortesi, M

    2007-01-01

    Selective accumulation of B-10 compound in tumour tissue is a fundamental condition for the achievement of BNCT (Boron Neutron Capture Therapy), since the effectiveness of therapy irradiation derives just from neutron capture reaction of B-10. Hence, the determination of the B-10 concentration ratio, between tumour and healthy tissue, and a control of this ratio, during the therapy, are essential to optimise the effectiveness of the BNCT, which it is known to be based on the selective uptake of B-10 compound. In this work, experimental methods are proposed and evaluated for the determination in vivo of B-10 compound in biological samples, in particular based on neutron radiography and gammaray spectroscopy by telescopic system. Measures and Monte Carlo calculations have been performed to investigate the possibility of executing imaging of the 10B distribution, both by radiography with thermal neutrons, using 6LiF/ZnS:Ag scintillator screen and a CCD camera, and by spectroscopy, based on the revelation of gamm...

  19. Effect of reaction time on the characteristics of catalytically grown boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Ahmad, Pervaiz, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Saheed, Mohamed Shuaib Mohamed, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Burhanudin, Zainal Arif, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my [Center of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak (Malaysia)

    2014-10-24

    The paper reports on the growth of boron nitride nanotube (BNNTs) on Si substrate by catalytic chemical vapor deposition technique and the effect of reaction time and temperature on the size and purity were investigated. Scanning electron microscopy image revealed the bamboo-like BNNTs of multiwalled type with interlayer spacing of 0.34 nm. EDX analysis described the presence of a small percentage of Mg in the sample, indicating the combination of base-tip growth model for the sample synthesized at 1200°C. The reaction time has an effect of extending the length of the BNNTs until the catalyst is oxidized or covered by growth precursor.

  20. High Intrinsic Catalytic Activity of Two-Dimensional Boron Monolayers for Hydrogen Evolution Reaction

    CERN Document Server

    Shi, Li; Ouyang, Yixin; Wang, Jinlan

    2016-01-01

    Two-dimensional (2D) boron monolayers have been successfully synthesized on silver substrate very recently. Their potential application is thus of great significance. In this work, we explore the possibility of boron monolayers (BMs) as electrocatalysts for hydrogen evolution reaction (HER) by first-principle method. Our calculations show that the BMs are active catalysts for HER with nearly zero free energy of hydrogen adsorption, metallic conductivity and plenty of active sites in the basal plane. The effect of the substrate on the HER activity is further assessed. It is found that the substrate has a positive effect on the HER performance caused by the competitive effect of mismatch strain and charge transfer. The indepth understanding of the structure dependent HER activity is also provided.

  1. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    Science.gov (United States)

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  2. Ring Enlargement of Three-Membered Boron Heterocycles upon Reaction with Organic π Systems: Implications for the Trapping of Borylenes.

    Science.gov (United States)

    Krasowska, Małgorzata; Bettinger, Holger F

    2016-07-18

    New low-energy pathways for the reaction between substituted boriranes and borirenes with unsaturated hydrocarbons (ethyne or ethene) were discovered using density functional and coupled cluster theory. The interaction between the π bond of the hydrocarbon and the empty p orbital of the boron center leads to ring expansion of the three-membered to a five-membered boron heterocycle. The reactions are strongly exothermic and have low or even no barriers. They involve intermediates with a pentacoordinate boron center with two hydrocarbon molecules coordinating to boron akin to metal-olefin complexes. These borylene complexes are shallow minima on the potential energy surfaces. But significantly higher barriers for ring formation are computed for 1,5-cyclooctadiene and dibenzocyclooctatetraene complexes of borylenes, making these complexes likely detectable under appropriate experimental conditions. Our computational findings have implications for the interpretation of trapping experiments of thermally generated small borylenes with excess of small π systems. Because of very low barriers for reactions of three-membered boron heterocycles with π systems and the at least locally large excess of the latter under such conditions, formation of five-membered boron heterocycles should be considered.

  3. Highly-focused boron implantation in diamond and imaging using the nuclear reaction 11B(p, α)8Be

    Science.gov (United States)

    Ynsa, M. D.; Ramos, M. A.; Skukan, N.; Torres-Costa, V.; Jakšić, M.

    2015-04-01

    Diamond is an especially attractive material because of its gemological value as well as its unique mechanical, chemical and physical properties. One of these properties is that boron-doped diamond is an electrically p-type semiconducting material at practically any boron concentration. This property makes it possible to use diamonds for multiple industrial and technological applications. Boron can be incorporated into pure diamond by different techniques including ion implantation. Although typical energies used to dope diamond by ion implantation are about 100 keV, implantations have also been performed with energies above MeV. In this work CMAM microbeam setup has been used to demonstrate capability to implant boron with high energies. An 8 MeV boron beam with a size of about 5 × 3 μm2 and a beam current higher than 500 pA has been employed while controlling the beam position and fluence at all irradiated areas. The subsequent mapping of the implanted boron in diamond has been obtained using the strong and broad nuclear reaction 11B(p, α)8Be at Ep = 660 keV. This reaction has a high Q-value (8.59 MeV for α0 and 5.68 MeV for α1) and thus is almost interference-free. The sensitivity of the technique is studied in this work.

  4. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Science.gov (United States)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  5. In-plane graphene/boron-nitride heterostructures as an efficient metal-free electrocatalyst for the oxygen reduction reaction

    Science.gov (United States)

    Sun, Qiao; Sun, Caixia; Du, Aijun; Dou, Shixue; Li, Zhen

    2016-07-01

    Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a four-electron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next cycle. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for the ORR in FCs.Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a four-electron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next cycle. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for the ORR in FCs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03288e

  6. In vivo prompt gamma neutron activation analysis for the screening of boron-10 distribution in a rabbit knee: a simulation study

    Science.gov (United States)

    Zhu, X.; Clackdoyle, R.; Shortkroff, S.; Yanch, J.

    2008-05-01

    Boron neutron capture synovectomy (BNCS) is under development as a potential treatment modality for rheumatoid arthritis (RA). RA is characterized by the inflammation of the synovium (the membrane lining articular joints), which leads to pain and a restricted range of motion. BNCS is a two-part procedure involving the injection of a boronated compound directly into the diseased joint followed by irradiation with a low-energy neutron beam. The neutron capture reactions taking place in the synovium deliver a local, high-linear energy transfer (LET) dose aimed at destroying the inflamed synovial membrane. For successful treatment via BNCS, a boron-labeled compound exhibiting both high synovial uptake and long retention time is necessary. Currently, the in vivo uptake behavior of potentially useful boronated compounds is evaluated in the knee joints of rabbits in which arthritis has been induced. This strategy involves the sacrifice and dissection of a large number of animals. An in vivo 10B screening approach is therefore under investigation with the goal of significantly reducing the number of animals needed for compound evaluation via dissection studies. The 'in vivo prompt gamma neutron activation analysis' (IVPGNAA) approach uses a narrow neutron beam to irradiate the knee from several angular positions following the intra-articular injection of a boronated compound whose uptake characteristics are unknown. A high-purity germanium detector collects the 478 keV gamma photons produced by the 10B capture reactions. The 10B distribution in the knee is then reconstructed by solving a system of simultaneous equations using a weighted least squares algorithm. To study the practical feasibility of IVPGNAA, simulation data were generated with the Monte Carlo N-particle transport code. The boron-containing region of a rabbit knee was partitioned into 8 compartments, and the 10B prompt gamma signals were tallied from 16 angular positions. Results demonstrate that for this

  7. Phosphine-directed C-H borylation reactions: facile and selective access to ambiphilic phosphine boronate esters.

    Science.gov (United States)

    Crawford, Kristina M; Ramseyer, Timothy R; Daley, Christopher J A; Clark, Timothy B

    2014-07-14

    Ambiphilic ligands have received considerable attention over the last two decades due to their unique reactivity as organocatalysts and ligands. The iridium-catalyzed C-H borylation of phosphines is described in which the phosphine is used as a directing group to provide selective formation of arylboronate esters with unique scaffolds of ambiphilic compounds. A variety of aryl and benzylic phosphines were subjected to the reaction conditions, selectively providing stable, isolable boronate esters upon protection of the phosphine as the borane complex. After purification, the phosphine-substituted boronate esters could be deprotected and isolated in pure form.

  8. Studies on Separation Process and Production Technology of Boron Isotope

    Directory of Open Access Journals (Sweden)

    LI Jian-ping

    2014-02-01

    Full Text Available The boron isotopes separation test was performed by chemical exchange reaction in the benzene ether -three boron fluoride system, which resulted to the boron isotopic enrichment of -10 in the liquid phase, the boron isotopic enrichment of -11 in the gas phase. After then, boron isotope separation trial production has been finished. In this process, the exchange column and complex tower normal operating parameters and the complex tower technology have been obtained, the problems of material distillation purification is solved, boron isotopes feasibility with PTFE packing enrichment is verified in an exchange column. Also, effect of operating pressure, flow and other parameters on boron -10 isotopic enrichment experiments and the effect and properties of the PTFE packing have been investigated in the existing system. All the results are very useful for the industrialization of the boron isotopes separation system.

  9. Catalytic growth of vertically aligned neutron sensitive {sup 10}Boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Pervaiz, E-mail: pervaizahmad@siswa.um.edu.my, E-mail: Pervaiz-pas@yahoo.com; Khandaker, Mayeen Uddin, E-mail: mu-khandaker@yahoo.com, E-mail: mu-khandaker@um.edu.my; Amin, Yusoff Mohd [University of Malaya, Department of Physics, Faculty of Science (Malaysia); Khan, Ghulamullah [University of Malaya, Department of Mechanical Engineering (Malaysia); Ramay, Shahid M. [King Saud University, Department of Physics and Astronomy, College of Science (Saudi Arabia); Mahmood, Asif [King Saud University, Department of Chemical Engineering, College of Engineering (Saudi Arabia); Amin, Muhammad [University of the Punjab, Department of Physics (Pakistan); Muhammad, Nawshad [Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology (Pakistan)

    2016-01-15

    {sup 10}Boron nitride nanotubes ({sup 10}BNNTs) are a potential neutron sensing element in a solid-state neutron detector. The aligned {sup 10}BNNT can be used for its potential application without any further purification. Argon-supported thermal CVD is used to achieve vertically aligned {sup 10}BNNT with the help of nucleation sites produced in a thin layer of magnesium–iron alloy deposited at the top of Si substrate. FESEM shows vertically aligned {sup 10}BNNTs with ball-like catalytic tips at top. EDX reveals magnesium (Mg) contents in the tips that refer to catalytic growth of {sup 10}BNNT. HR-TEM shows tubular morphology of the synthesized {sup 10}BNNT with lattice fringes on its outer part having an interlayer spacing of ∼0.34 nm. XPS shows B 1 s and N 1 s peaks at 190.5 and 398 eV that correspond to hexagonal {sup 10}Boron nitride ({sup 10}h-BN) nature of the synthesized {sup 10}BNNT, whereas the Mg kll auger peaks at ∼301 and ∼311 eV represents Mg contents in the sample. Raman spectrum has a peak at 1390 (cm{sup −1}) that corresponds to E{sub 2g} mode of vibration in {sup 10}h-BN.

  10. Observation of Spontaneous C=C Bond Breaking in the Reaction between Atomic Boron and Ethylene in Solid Neon.

    Science.gov (United States)

    Jian, Jiwen; Lin, Hailu; Luo, Mingbiao; Chen, Mohua; Zhou, Mingfei

    2016-07-11

    A ground-state boron atom inserts into the C=C bond of ethylene to spontaneously form the allene-like compound H2 CBCH2 on annealing in solid neon. This compound can further isomerize to the propyne-like HCBCH3 isomer under UV light excitation. The observation of this unique spontaneous C=C bond insertion reaction is consistent with theoretical predictions that the reaction is thermodynamically exothermic and kinetically facile. This work demonstrates that the stronger C=C bond, rather than the less inert C-H bond, can be broken to form organoboron species from the reaction of a boron atom with ethylene even at cryogenic temperatures.

  11. Boron neutron capture therapy design calculation of a 3H(p,n) reaction based BSA for brain cancer setup

    OpenAIRE

    Bassem Elshahat; Akhtar Naqvi; Nabil Maalej

    2015-01-01

    Purpose: Boron neutron capture therapy (BNCT) is a promising technique for the treatment of malignant disease targeting organs of the human body. Monte Carlo simulations were carried out to calculate optimum design parameters of an accelerator based beam shaping assembly (BSA) for BNCT of brain cancer setup.Methods: Epithermal beam of neutrons were obtained through moderation of fast neutrons from 3H(p,n) reaction in a high density polyethylene moderator and a graphite reflector. The dimensio...

  12. 1,6-asymmetric induction in boron-mediated aldol reactions: application to a practical total synthesis of (+)-discodermolide.

    Science.gov (United States)

    Paterson, Ian; Delgado, Oscar; Florence, Gordon J; Lyothier, Isabelle; Scott, Jeremy P; Sereinig, Natascha

    2003-01-01

    By relying solely on substrate-based stereocontrol, a practical total synthesis of the microtubule-stabilizing anticancer agent (+)-discodermolide has been realized. This exploits a novel aldol bond construction with 1,6-stereoinduction from the boron enolate of (Z)-enone 3 in addition to aldehyde 2. The 1,3-diol 7 is employed as a common building block for the C(1)-C(5), C(9)-C(16), and C(17)-C(24) subunits. [reaction--see text

  13. High sensitivity boron quantification in bulk silicon using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Marcos V.; Silva, Tiago F. da; Added, Nemitala; Rizutto, Marcia A.; Tabacniks, Manfredo H. [Instituto de Fisica da Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Neira, John B.; Neto, Joao B. F. [Institute of Research Tecnology, Cidade Universitaria, SP, 05508-091 (Brazil)

    2013-05-06

    There is a great need to quantify sub-ppm levels of boron in bulk silicon. There are several methods to analyze B in Si: Nuclear Reaction Analysis using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be reaction exhibits a quantification limit of some hundreds ppm of B in Si. Heavy Ion Elastic Recoil Detection Analysis offers a detection limit of 5 to 10 at. ppm. Secondary Ion Mass Spectrometry is the method of choice of the semiconductor industry for the analysis of B in Si. This work verifies the use of NRA to quantify B in Si, and the corresponding detection limits. Proton beam with 1.6 up to 2.6 MeV was used to obtain the cross-section of the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction at 170 Degree-Sign scattering angle. The results show good agreementwith literature indicating that the quantification of boron in silicon can be achieved at 100 ppm level (high sensitivity) at LAMFI-IFUSP with about 16% uncertainty. Increasing the detection solid angle and the collected beam charge, can reduce the detection limit to less than 100 ppm meeting present technological needs.

  14. DNA double-strand break induction in Ku80-deficient CHO cells following Boron Neutron Capture Reaction

    Directory of Open Access Journals (Sweden)

    Masunaga Shinichiro

    2011-09-01

    Full Text Available Abstract Background Boron neutron capture reaction (BNCR is based on irradiation of tumors after accumulation of boron compound. 10B captures neutrons and produces an alpha (4He particle and a recoiled lithium nucleus (7Li. These particles have the characteristics of high linear energy transfer (LET radiation and have marked biological effects. The purpose of this study is to verify that BNCR will increase cell killing and slow disappearance of repair protein-related foci to a greater extent in DNA repair-deficient cells than in wild-type cells. Methods Chinese hamster ovary (CHO-K1 cells and a DNA double-strand break (DSB repair deficient mutant derivative, xrs-5 (Ku80 deficient CHO mutant cells, were irradiated by thermal neutrons. The quantity of DNA-DSBs following BNCR was evaluated by measuring the phosphorylation of histone protein H2AX (gamma-H2AX and 53BP1 foci using immunofluorescence intensity. Results Two hours after neutron irradiation, the number of gamma-H2AX and 53BP1 foci in the CHO-K1 cells was decreased to 36.5-42.8% of the levels seen 30 min after irradiation. In contrast, two hours after irradiation, foci levels in the xrs-5 cells were 58.4-69.5% of those observed 30 min after irradiation. The number of gamma-H2AX foci in xrs-5 cells at 60-120 min after BNCT correlated with the cell killing effect of BNCR. However, in CHO-K1 cells, the RBE (relative biological effectiveness estimated by the number of foci following BNCR was increased depending on the repair time and was not always correlated with the RBE of cytotoxicity. Conclusion Mutant xrs-5 cells show extreme sensitivity to ionizing radiation, because xrs-5 cells lack functional Ku-protein. Our results suggest that the DNA-DSBs induced by BNCR were not well repaired in the Ku80 deficient cells. The RBE following BNCR of radio-sensitive mutant cells was not increased but was lower than that of radio-resistant cells. These results suggest that gamma-ray resistant cells have

  15. Study of the {sup 10}B(p,α){sup 7}Be reaction through the indirect Trojan Horse method

    Energy Technology Data Exchange (ETDEWEB)

    Puglia, S. M. R., E-mail: puglia@lns.infn.it [INFN Laboratori Nazionali del Sud and CSFNM-Centrosiciliano Fisica Nucleare e Struttura della Materia,Catania (Italy); Spitaleri, C.; Lamia, L.; Romano, S.; La Cognata, M.; Pizzone, R. G.; Rapisarda, G. G.; Sergi, M. L. [INFN Laboratori Nazionali del Sud and DMFCI- Università di Catania, Catania (Italy); Burjan, V.; Kroha, V.; Hons, Z.; Mrazek, J. [Institute for Nuclear Physics, Prague-Rez (Czech Republic); Carlin, N.; Del Santo, M. G.; Munhoz, M. G.; Souza, F.; Szanto de Toledo, A. [Universidade de São Paulo - DFN, São Paulo (Brazil); Chengbo, L.; Qungang, W.; Shu-Hua, Z. [China Institute of Atomic Energy, Beijing (China); and others

    2015-02-24

    Boron abundances in stellar atmospheres, as well as berillium and lithium ones, can give useful hints for non-standard transport processes discrimination in stars. They can also be relevant for understanding several astrophysical processes (e.g. primordial nucleosynthesis and spallation reactions in ISM). A comprehensive study of Li Be B abundances can therefore confirm or not the presence of non-standard mixing processes in stellar envelopes. For this reason nuclear processes producing or depleting boron isotope abundance need to be studied at astrophysical energies. The {sup 10}B(p,α){sup 7}Be reaction has been studied by means of the Trojan Horse Method. The Trojan Horse Method was thus applied to the {sup 10}B(d,α{sup 7}Be)n reaction, studied at 24 MeV. The obtained results will be discussed.

  16. Amine and Titanium (IV Chloride, Boron (III Chloride or Zirconium (IV Chloride-Promoted Baylis-Hillman Reactions

    Directory of Open Access Journals (Sweden)

    Shi-Cong Cui

    2001-10-01

    Full Text Available The Baylis-Hillman reactions of various aryl aldehydes with methyl vinyl ketone at temperatures below -20oC using Lewis acids such as titanium (IV chloride, boron (III chloride or zirconium (IV chloride in the presence of a catalytic amount of selected amines used as a Lewis bases afford the chlorinated compounds 1 as the major product in very high yields. Acrylonitrile can also undergo the same reaction to give the corresponding chlorinated product in moderate yield. A plausible reaction mechanism is proposed. However, if the reaction was carried out at room temperature (ca. 20oC, then the Z-configuration of the elimination product 3, derived from 1, was formed as the major product.

  17. A Theoretical Study on a Reaction of Iron(III) Hydroxide with Boron Trichloride by Ab Initio Calculation

    CERN Document Server

    Ichikawa, Kazuhide; Fukushima, Akinori; Ishihara, Yoshio; Isaki, Ryuichiro; Takeguchi, Toshio; Tachibana, Akitomo; 10.1016/j.theochem.2009.08.026

    2009-01-01

    We investigate a reaction of boron trichloride (BCl3) with iron(III) hydroxide (Fe(OH)3) by ab initio quantum chemical calculation as a simple model for a reaction of iron impurities in BCl3 gas. We also examine a reaction with water. We find that compounds such as Fe(Cl)(OBCl2)2(OHBCl2) and Fe(Cl)2(OBCl2)(OHBCl2) are formed while producing HCl and reaction paths to them are revealed. We also analyze the stabilization mechanism of these paths using newly-developed interaction energy density derived from electronic stress tensor in the framework of the Regional DFT (Density Functional Theory) and Rigged QED (Quantum ElectroDynamics).

  18. Modelling active sites for the Beckmann rearrangement reaction in boron-containing zeolites and their interaction with probe molecules.

    Science.gov (United States)

    Lezcano-González, Inés; Vidal-Moya, Alejandro; Boronat, Mercedes; Blasco, Teresa; Corma, Avelino

    2010-06-28

    Theoretical calculations and in situ solid state NMR spectroscopy have been combined to get insight on the nature of the active sites for the Beckmann rearrangement reaction in borosilicate zeolites. The interaction of a B site in zeolite Beta with a series of probe molecules (ammonia, pyridine, acetone and water) has been modelled and the (15)N and (11)B NMR isotropic chemical shift of the resulting complexes calculated and compared with experimental in situ NMR results. This approach has allowed validation of the methodology to model the adsorption on a zeolite boron site of molecules of varying basicity which are either protonated or non-protonated. The limitation is that theoretical calculations overestimate the effect of molecular adsorption through hydrogen bonds on the calculated isotropic (11)B NMR chemical shift.Theoretical and experimental results on the adsorption of acetophenone and cyclohexanone oximes on zeolite B-Beta indicate that Brønsted acid sites protonate the oximes, changing the boron coordination from trigonal to tetrahedral. Comparison of theoretical and experimental (15)N NMR chemical shifts of the adsorbed amides (acetanilide and epsilon-caprolactam) indicates that they are non-protonated, and the (11)B NMR spectra show that, as expected, boron remains in trigonal coordination with an isotropic delta(11)B(exp) which differs from the calculated value delta(11)B(calc).

  19. Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water.

    Science.gov (United States)

    Kitanosono, Taku; Xu, Pengyu; Kobayashi, Shū

    2014-01-01

    We have developed Cu(II)-catalyzed enantioselective conjugate-addition reactions of boron to α,β-unsaturated carbonyl compounds and α,β,γ,δ-unsaturated carbonyl compounds in water. In contrast to the previously reported Cu(I) catalysis that required organic solvents, chiral Cu(II) catalysis was found to proceed efficiently in water. Three catalyst systems have been exploited: cat. 1: Cu(OH)2 with chiral ligand L1; cat. 2: Cu(OH)2 and acetic acid with ligand L1; and cat. 3: Cu(OAc)2 with ligand L1. Whereas cat. 1 is a heterogeneous system, cat. 2 and cat. 3 are homogeneous systems. We tested 27 α,β-unsaturated carbonyl compounds and an α,β-unsaturated nitrile compound, including acyclic and cyclic α,β-unsaturated ketones, acyclic and cyclic β,β-disubstituted enones, acyclic and cyclic α,β-unsaturated esters (including their β,β-disubstituted forms), and acyclic α,β-unsaturated amides (including their β,β-disubstituted forms). We found that cat. 2 and cat. 3 showed high yields and enantioselectivities for almost all substrates. Notably, no catalysts that can tolerate all of these substrates with high yields and high enantioselectivities have been reported for the conjugate addition of boron. Heterogeneous cat. 1 also gave high yields and enantioselectivities with some substrates and also gave the highest TOF (43,200 h(-1) ) for an asymmetric conjugate-addition reaction of boron. In addition, the catalyst systems were also applicable to the conjugate addition of boron to α,β,γ,δ-unsaturated carbonyl compounds, although such reactions have previously been very limited in the literature, even in organic solvents. 1,4-Addition products were obtained in high yields and enantioselectivities in the reactions of acyclic α,β,γ,δ-unsaturated carbonyl compounds with diboron 2 by using cat. 1, cat. 2, or cat. 3. On the other hand, in the reactions of cyclic α,β,γ,δ-unsaturated carbonyl compounds with compound 2, whereas 1,4-addition products

  20. Multi-Grid Boron-10 detector for large area applications in neutron scattering science

    CERN Document Server

    Andersen, Ken; Birch, Jens; Buffet, Jean-Claude; Correa, Jonathan; van Esch, Patrick; Guerard, Bruno; Hall-Wilton, Richard; Hultman, Lars; Höglund, Carina; Jensen, Jens; Khaplanov, Anton; Kirstein, Oliver; Piscitelli, Francesco; Vettier, Christian

    2012-01-01

    The present supply of 3He can no longer meet the detector demands of the upcoming ESS facility and continued detector upgrades at current neutron sources. Therefore viable alternative technologies are required to support the development of cutting-edge instrumentation for neutron scattering science. In this context, 10B-based detectors are being developed by collaboration between the ESS, ILL, and Link\\"{o}ping University. This paper reports on progress of this technology and the prospects applying it in modern neutron scattering experiments. The detector is made-up of multiple rectangular gas counter tubes coated with B4C, enriched in 10B. An anode wire reads out each tube, thereby giving position of conversion in one of the lateral co-ordinates as well as in depth of the detector. Position resolution in the remaining co-ordinate is obtained by segmenting the cathode tube itself. Boron carbide films have been produced at Link\\"{o}ping University and a detector built at ILL. The characterization study is pres...

  1. Effect of reaction conditions on methyl red degradation mediated by boron and nitrogen doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Galenda, A., E-mail: galenda@ieni.cnr.it [CNR-IENI, Istituto per l’Energetica e le Interfasi, Corso Stati Uniti, 4 35127 Padova (Italy); Crociani, L.; Habra, N. El; Favaro, M. [CNR-IENI, Istituto per l’Energetica e le Interfasi, Corso Stati Uniti, 4 35127 Padova (Italy); Natile, M.M. [CNR-IENI, Istituto per l’Energetica e le Interfasi, Dipartimento di Scienze Chimiche, Università di Padova, via F. Marzolo, 1 35131 Padova (Italy); Rossetto, G. [CNR-IENI, Istituto per l’Energetica e le Interfasi, Corso Stati Uniti, 4 35127 Padova (Italy)

    2014-09-30

    Highlights: • Boron and/or nitrogen-doped TiO{sub 2} for photocatalytic wastewater treatment. • Methyl red degradation/mineralisation as a function of pH, acids and dopants. • Adsorption time influence on photocatalytic process. • Recovery of worn-out catalyst. - Abstract: Nowadays the employment of renewable and sustainable energy sources, and solar light as main option, becomes an urgent need. Photocatalytic processes received great attention in wastewater treatment due to their cheapness, environmental compatibility and optimal performances. Despite the general low selectivity of the photocatalysts, an accurate optimisation of the operational parameters needs to be carried out in order to maximise the process yield. Because of this reason, the present contribution aims to deepen either the knowledge in boron and/or nitrogen doped TiO{sub 2}-based systems and their employment in methyl red removal from aqueous solutions. The samples were obtained by coprecipitation and characterised by XRD, SEM, BET specific surface area, UV–vis and XPS techniques. The catalytic activity was for the first time carefully evaluated with respect to methyl red photodegradation in different conditions as a function of working pH, counter-ions and pre-adsorption time. An ad-hoc study was performed on the importance of the pre-adsorption of the dye, suggesting that an extended adsorption is useless for the catalyst photoactivity, while a partial coverage is preferable. The photocatalytic tests demonstrate the positive influence of boron doping in photo-activated reactions and the great importance of the operational parameters with respect to the simple methyl red bleaching rather than the overall pollutant mineralisation. It is proved, indeed, that different working pH, acidifying means and substrate pre-adsorption time can enhance or limit the catalyst performances with respect to the complete pollutant degradation rather than its partial breakage.

  2. Controlling the reaction between boron-containing sealing glass and a lanthanum-containing cathode by adding Nb2O5

    Science.gov (United States)

    Zhao, Dandan; Fang, Lihua; Tang, Dian; Zhang, Teng

    2016-09-01

    In solid oxide fuel cell (SOFC) stacks, the volatile boron species present in the sealing glass often react with the lanthanum-containing cathode, degrading the activity of the cathode (this phenomenon is known as boron poisoning). In this work, we report that this detrimental reaction can be effectively reduced by doping bismuth-containing borosilicate sealing glass-ceramic with a niobium dopant. The addition of Nb2O5 not only condenses the [SiO4] structural units in the glass network, but also promotes the conversion of [BO3] to [BO4]. Moreover, the Nb2O5 dopant enhances the formation of boron-containing phases (Ca3B2O6 and CaB2Si2O8), which significantly reduces the volatility of boron compounds in the sealing glass, suppressing the formation of LaBO3 in the reaction couple between the glass and the cathode. The reported results provide a new approach to solve the problem of boron poisoning.

  3. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells.

    Science.gov (United States)

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru; Murakami, Yasufumi; Baiseitov, Diaz; Berikkhanova, Kulzhan; Zhumadilov, Zhaxybay; Imahori, Yoshio; Itami, Jun; Ono, Koji; Masunaga, Shinichiro; Masutani, Mitsuko

    2015-12-01

    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(-) conditions. BNCR mainly induced typical apoptosis in SAS cells 24h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR.

  4. Carbon Nanotube/Boron Nitride Nanocomposite as a Significant Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions.

    Science.gov (United States)

    Patil, Indrajit M; Lokanathan, Moorthi; Ganesan, Balakrishnan; Swami, Anita; Kakade, Bhalchandra

    2017-01-12

    It is an immense challenge to develop bifunctional electrocatalysts for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) in low temperature fuel cells and rechargeable metal-air batteries. Herein, a simple and cost-effective approach is developed to prepare novel materials based on carbon nanotubes (CNTs) and a hexagonal boron nitride (h-BN) nanocomposite (CNT/BN) through a one-step hydrothermal method. The structural analysis and morphology study confirms the formation of a homogeneous composite and merging of few exfoliated graphene layers of CNTs on the graphitic planes of h-BN, respectively. Moreover, the electrochemical study implies that CNT/BN nanocomposite shows a significantly higher ORR activity with a single step 4-electron transfer pathway and an improved onset potential of +0.86 V versus RHE and a current density of 5.78 mA cm(-2) in alkaline conditions. Interestingly, it exhibits appreciably better catalytic activity towards OER at low overpotential (η=0.38 V) under similar conditions. Moreover, this bifunctional catalyst shows substantially higher stability than a commercial Pt/C catalyst even after 5000 cycles. Additionally, this composite catalyst does not show any methanol oxidation reactions that nullify the issues due to fuel cross-over effects in direct methanol fuel cell applications.

  5. Effect of reaction conditions on methyl red degradation mediated by boron and nitrogen doped TiO2

    Science.gov (United States)

    Galenda, A.; Crociani, L.; Habra, N. El; Favaro, M.; Natile, M. M.; Rossetto, G.

    2014-09-01

    Nowadays the employment of renewable and sustainable energy sources, and solar light as main option, becomes an urgent need. Photocatalytic processes received great attention in wastewater treatment due to their cheapness, environmental compatibility and optimal performances. Despite the general low selectivity of the photocatalysts, an accurate optimisation of the operational parameters needs to be carried out in order to maximise the process yield. Because of this reason, the present contribution aims to deepen either the knowledge in boron and/or nitrogen doped TiO2-based systems and their employment in methyl red removal from aqueous solutions. The samples were obtained by coprecipitation and characterised by XRD, SEM, BET specific surface area, UV-vis and XPS techniques. The catalytic activity was for the first time carefully evaluated with respect to methyl red photodegradation in different conditions as a function of working pH, counter-ions and pre-adsorption time. An ad-hoc study was performed on the importance of the pre-adsorption of the dye, suggesting that an extended adsorption is useless for the catalyst photoactivity, while a partial coverage is preferable. The photocatalytic tests demonstrate the positive influence of boron doping in photo-activated reactions and the great importance of the operational parameters with respect to the simple methyl red bleaching rather than the overall pollutant mineralisation. It is proved, indeed, that different working pH, acidifying means and substrate pre-adsorption time can enhance or limit the catalyst performances with respect to the complete pollutant degradation rather than its partial breakage.

  6. Reactions of pulsed laser produced boron and nitrogen atoms in a condensing argon stream

    Science.gov (United States)

    Andrews, Lester; Hassanzadeh, Parviz; Burkholder, Thomas R.; Martin, J. M. L.

    1993-01-01

    Reactions of pulsed laser produced B and N atoms at high dilution in argon favored diboron species. At low laser power with minimum radiation, the dominant reaction with N2 gave BBNN (3Π). At higher laser power, reactions of N atoms contributed the B2N (2B2), BNB (2Σu+), NNBN (1Σ+), and BNBN (3Π) species. These new transient molecules were identified from mixed isotopic patterns, isotopic shifts, and ab initio calculations of isotopic spectra.

  7. Boron-Doped Graphene As Active Electrocatalyst For Oxygen Reduction Reaction At A Fuel-Cell Cathode

    CERN Document Server

    Fazio, Gianluca; Di Valentin, Cristiana

    2016-01-01

    Boron-doped graphene was reported to be the best non-metal doped graphene electrocatalyst for the oxygen reduction reaction (ORR) working at an onset potential of 0.035 V [JACS 136 (2014) 4394]. In the present DFT study, intermediates and transition structures along the possible reaction pathways are determined. Both Langmuir-Hinschelwood and Eley-Rideal mechanisms are discussed. Molecular oxygen binds the positively charged B atom and forms an open shell end-on dioxygen intermediate. The associative path is favoured with respect to the dissociative one. The free energy diagrams along the four-reduction steps are investigated with the methodology by N{\\o}rskov and co. [JPC B 108 (2004) 17886] in both acidic and alkaline conditions. The pH effect on the stability of the intermediates of reduction is analyzed in terms of the Pourbaix diagram. At pH = 14 we compute an onset potential value for the electrochemical ORR of U = 0.05 V, which compares very well with the experimental value in alkaline conditions.

  8. Boron complexing with H-resorcinol and acidic hydroxyxanthene dyes

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, V.A.; Flyantikova, G.V.; Chekirda, T.N. (AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.)

    1984-01-01

    Complex formation of boron with H-resorcinol (hr; 2,4-dihydroxybenzene-azo -8-hydroxynaphtalene-3,6-disulfonic acid) and acidic hydroxyxanthene dyes (hxd: fluorescein, eosine, erathrosine). Mixed-ligand complexes with a ratio of r:hr:hxd=1:1:1 are formed at pH=5-6. The chemism of the complex formation of boron with H-resorcinol and fluorescein has been studied. The stability constant of the complex is 1.12x10/sup 21/, the conditional molar absorptivitis 1.80x10/sup 0/. This complex formation reaction was used for photometric determination of boron in natural water.

  9. Combined crossed molecular beam and ab initio investigation of the multichannel reaction of boron monoxide (BO; X2Σ+) with Propylene (CH3CHCH2; X1A'): competing atomic hydrogen and methyl loss pathways.

    Science.gov (United States)

    Maity, Surajit; Dangi, Beni B; Parker, Dorian S N; Kaiser, Ralf I; An, Yi; Sun, Bing-Jian; Chang, A H H

    2014-10-16

    The reaction dynamics of boron monoxide ((11)BO; X(2)Σ(+)) with propylene (CH(3)CHCH(2); X(1)A') were investigated under single collision conditions at a collision energy of 22.5 ± 1.3 kJ mol(-1). The crossed molecular beam investigation combined with ab initio electronic structure and statistical (RRKM) calculations reveals that the reaction follows indirect scattering dynamics and proceeds via the barrierless addition of boron monoxide radical with its radical center located at the boron atom. This addition takes place to either the terminal carbon atom (C1) and/or the central carbon atom (C2) of propylene reactant forming (11)BOC(3)H(6) intermediate(s). The long-lived (11)BOC(3)H(6) doublet intermediate(s) underwent unimolecular decomposition involving at least three competing reaction mechanisms via an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group elimination to form cis-/trans-1-propenyl-oxo-borane (CH(3)CHCH(11)BO), 3-propenyl-oxo-borane (CH(2)CHCH(2)(11)BO), and ethenyl-oxo-borane (CH(2)CH(11)BO), respectively. Utilizing partially deuterated propylene (CD(3)CHCH(2) and CH(3)CDCD(2)), we reveal that the loss of a vinyl hydrogen atom is the dominant hydrogen elimination pathway (85 ± 10%) forming cis-/trans-1-propenyl-oxo-borane, compared to the loss of a methyl hydrogen atom (15 ± 10%) leading to 3-propenyl-oxo-borane. The branching ratios for an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group loss are experimentally derived to be 26 ± 8%:5 ± 3%:69 ± 15%, respectively; these data correlate nicely with the branching ratios calculated via RRKM theory of 19%:5%:75%, respectively.

  10. Boron-Based Drug Design.

    Science.gov (United States)

    Ban, Hyun Seung; Nakamura, Hiroyuki

    2015-06-01

    The use of the element boron, which is not generally observed in a living body, possesses a high potential for the discovery of new biological activity in pharmaceutical drug design. In this account, we describe our recent developments in boron-based drug design, including boronic acid containing protein tyrosine kinase inhibitors, proteasome inhibitors, and tubulin polymerization inhibitors, and ortho-carborane-containing proteasome activators, hypoxia-inducible factor 1 inhibitors, and topoisomerase inhibitors. Furthermore, we applied a closo-dodecaborate as a water-soluble moiety as well as a boron-10 source for the design of boron carriers in boron neutron capture therapy, such as boronated porphyrins and boron lipids for a liposomal boron delivery system.

  11. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We present results from an investigation of boron uptake in vivo by the synovium.

  12. Boron neutron capture therapy design calculation of a 3H(p,n reaction based BSA for brain cancer setup

    Directory of Open Access Journals (Sweden)

    Bassem Elshahat

    2015-09-01

    Full Text Available Purpose: Boron neutron capture therapy (BNCT is a promising technique for the treatment of malignant disease targeting organs of the human body. Monte Carlo simulations were carried out to calculate optimum design parameters of an accelerator based beam shaping assembly (BSA for BNCT of brain cancer setup.Methods: Epithermal beam of neutrons were obtained through moderation of fast neutrons from 3H(p,n reaction in a high density polyethylene moderator and a graphite reflector. The dimensions of the moderator and the reflector were optimized through optimization of epithermal / fast neutron intensity ratio as a function of geometric parameters of the setup. Results: The results of our calculation showed the capability of our setup to treat the tumor within 4 cm of the head surface. The calculated peak therapeutic ratio for the setup was found to be 2.15. Conclusion: With further improvement in the polyethylene moderator design and brain phantom irradiation arrangement, the setup capabilities can be improved to reach further deep-seated tumor.

  13. Total Synthesis of the Antimicrotubule Agent (+)-Discodermolide Using Boron-Mediated Aldol Reactions of Chiral Ketones.

    Science.gov (United States)

    Paterson; Florence; Gerlach; Scott

    2000-01-01

    With a similar mechanism of action to taxol, the title compound 1 is a particularly promising candidate for development in cancer chemotherapy. This efficient synthesis, based on stereocontrolled aldol reactions, should help to overcome the scarce natural supply of 1 from the rare sponge source.

  14. Electrochemical Study on Ligand Substitution Reactions in Oxofluoro Boron Containing Melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Bukatova, G.A.; Polyakov, E.G.;

    1997-01-01

    Linear voltammetry was used for study of the ligand substitution reactions in the process of titration of FLINAK-KBF4, melt with different oxides. At molar ratio O/B=1 complexes BF4- which are characteristic for oxygenless melt transform into BOF2- Further increasing of O/B ratio up to 2 leads to...

  15. The role of boron oxide and carbon amounts in the mechanosynthesis of ZrB{sub 2}–SiC–ZrC nanocomposite via a self-sustaining reaction in the zircon/magnesium/boron oxide/graphite system

    Energy Technology Data Exchange (ETDEWEB)

    Jalaly, M., E-mail: maisam_jalaly@iust.ac.ir [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Bafghi, M.Sh.; Tamizifar, M. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Gotor, F.J. [Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Americo Vespucio 49, 41092 Sevilla (Spain)

    2014-06-15

    Highlights: • Synthesis of the ZrB{sub 2}-based composite by magnesiothermic reduction of zircon. • Study of boron oxide amount on the triggering reaction. • Investigation of the carbon role on the reaction progression. - Abstract: Herein, ZrSiO{sub 4}/B{sub 2}O{sub 3}/Mg/C system was used to synthesize a ZrB{sub 2}-based composite by means of a high energy ball milling process. A mechanically induced self-sustaining reaction was achieved in this system. A nanocomposite powder of ZrB{sub 2}–SiC–ZrC was prepared with an ignition time of approximately 6 min of milling. The role of the stoichiometric amounts of B{sub 2}O{sub 3} and carbon was investigated to clarify the governing mechanism for the formation of the product.

  16. Synthesis and Suzuki Cross-Coupling Reactions of 2,6-Bis(trifluoromethyl)pyridine-4-boronic Acid Pinacol Ester

    KAUST Repository

    Batool, Farhat

    2016-11-18

    Iridium-catalyzed aromatic borylation provides quick one-step access to 2,6-bis(trifluoromethyl)pyridine-4-boronic acid pinacol ester. Suzuki couplings of this highly electron-deficient pyridine-4-boronic ester with various (hetero)aryl bromides was successfully carried out and the coupled products were obtained in 46–95% isolated yields. Double and triple Suzuki couplings, with dibromo- and tribromoarenes, respectively, were also achieved. Thus demonstrating that this pyridine-4-boronic ester can be a useful source for the installation of one of the strongest electron-withdrawing aromatic group in organic compounds. Copyright © 2016, Georg Thieme Verlag. All rights reserved.

  17. Synthesis of 7-Ethyl-10-hydroxycamptothecin and Proposed Reaction Mechanism

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The improved 3-step preparation of a key antitumor agent, 7-ethyl-10-hydroxycamptothecin(SN-38), which consists of ethylation, oxidation and photo-chemical rearrangement, is described. The proposed reaction mechanism is also discussed.

  18. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction

    Science.gov (United States)

    Masunaga, S; Sakurai, Y; Tanaka, H; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M; Kondo, N; Narabayashi, M; Maruhashi, A; Ono, K

    2013-01-01

    Objective To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). Methods EL4 tumour-bearing C57BL/J mice received 5-bromo-29-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with c-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of a 10B-carrier. Responses of intratumour Q and total (P+Q) cell populations were assessed based on frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of pimonidazole-unlabelled tumour cells was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. Results Following c-ray irradiation, the pimonidazole-unlabelled tumour cell fraction showed significantly enhanced radiosensitivity compared with the whole tumour cell fraction, more remarkably in the Q than total cell populations. However, a significantly greater decrease in radiosensitivity in the pimonidazole-unlabelled cell fraction, evaluated using a delayed assay or a decrease in radiation dose rate, was more clearly observed among the Q than total cells. These changes in radiosensitivity were suppressed following carbon ion beam and neutron beam-only irradiaton. In the BNCR, the use of a 10B-carrier, especially L-para-boronophenylalanine-10B, enhanced the sensitivity of the pimonidazole-unlabelled cells more clearly in the Q than total cells. Conclusion The radiosensitivity of the pimonidazole-unlabelled cell fraction depends on the quality of radiation delivered and characteristics of the 10B-carrier used in the BNCR. Advances in knowledge The pimonidazole-unlabelled subfraction of Q tumour cells may be a critical target in tumour control. PMID:23255546

  19. Studies of One-Nucleon Transfer Reactions on Boron -11 and CARBON-12.

    Science.gov (United States)

    Foot, Penelope Bernadette

    This thesis describes a study of the ^{11}B(d,n)^{12 }C and ^{12}C(t, alpha)^{11} B reactions. The Indiana University Cyclotron Facility produced the 79 MeV deuterons for the ^{11} B(d,n)^{12}C experiment. Time of flight measurements were performed to obtain neutron energy spectra. The energy resolution was typically 300 keV (~{1over 2} nsec). Cross sections were extracted for five well-resolved bound states in ^{12}C at 0.00, 4.44, 9.64, 12.71 and 15.11 MeV. The experimental cross sections were compared with the results of theoretical predictions. The effect of including, in these calculations, the breakup of the deuteron into low energy relative S states during the course of the reaction was investigated. Spectroscopic factors were then determined for the above five states in ^{12}C and compared with theoretical values. A subsequent experiment was performed at the same energy with vector polarized deuterons in order to study the effects of deuteron breakup on the corresponding analysing powers. This was the first time that analysing powers had been measured for this reaction. The effects on the cross section and analysing power calculations of exact finite range and the D state of the deuteron were investigated using the Reid soft-core potential for the proton-neutron interaction. The possible role of a two step process in the population of the 2 ^{+} state at 4.44 MeV in ^{12}C was examined. The effects on the analysing power for this state, of contributions from the 2p-1f shell in the 4.44 MeV wavefunction, were also discussed. Differential cross sections for the ^ {12}C(t,alpha) ^{11}B reaction, using 33 MeV tritons from the Daresbury Nuclear Structure Facility, were extracted for transitions to the 0.00, 2.125, 4.445, 5.021, 6.743, 7.286, 7.978 and 8.559 MeV states in ^{11 }B. The results of CRC calculations were compared with DWBA and CCBA calculation for the single step and two step transitions respectively. The spin of the 8.559 MeV state in ^{11}B, which

  20. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    Science.gov (United States)

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  1. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Soshi, E-mail: sato.soshi@cies.tohoku.ac.jp; Honjo, Hiroaki; Niwa, Masaaki [Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); JST-ACCEL, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); Ikeda, Shoji [Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); JST-ACCEL, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Ohno, Hideo [Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Endoh, Tetsuo [Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); JST-ACCEL, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Graduate School of Engineering, Tohoku University, 6-6 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer. The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.

  2. Preparation and responsive behaviors of chitosan-functionalized nanoparticles via a boronic acid-related reaction.

    Science.gov (United States)

    Wang, Yanxia; Chai, Zhihua; Wang, Na; Ren, Xuejun; Gao, Ming

    2015-01-01

    We presented here a facile strategy for constructing chitosan-functionalized nanoparticles through the coordinating interaction between phenylboronic acids in poly(3-methacrylamido phenylboronic acid) and amine groups in chitosan. The formation of nanoparticles was confirmed by Fourier transform infrared spectrometer, thermal analysis, dynamic light scattering, and transmission electron micrographs, and the nanoparticles were stable over three days in aqueous solution. The pH-sensitivity of the nanoparticles was revealed by the light scattering intensity ratio (I/I0) at different pH values. I/I0 kept constant at pH 7.0 and 8.0. When the pH value was further increased in the range of 8.0-10, I/I0 reduced. As the pH value increased above 10, I/I0 kept constant. The nanoparticles were also sensitive to glucose, and the glucose-responsive behavior was dependent on the pH values, nanoparticle concentrations, and nanoparticle compositions.

  3. Boron removal by electrocoagulation and recovery.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water.

  4. Detection of KPC Carbapenemase in Pseudomonas aeruginosa Isolated From Clinical Samples Using Modified Hodge Test and Boronic Acid Phenotypic Methods and Their Comparison With the Polymerase Chain Reaction

    Science.gov (United States)

    Falahat, Saeed; Shojapour, Mana; Sadeghi, Abdorrahim

    2016-01-01

    Background Bacterial resistance to antibiotics has become a major source of concern for public health. Pseudomonas aeruginosa strains are important opportunistic pathogens. These bacteria have a high resistance to a wide range of existing antimicrobials and antibiotics. Objectives The present study was performed to evaluate the frequency of KPC in P. aeruginosa isolated from clinical samples of educational hospitals of Arak University of Medical Sciences, using the mentioned phenotypic and genotypic methods. Materials and Methods One hundred and eight non-duplicate clinical isolates of P. aeruginosa were collected from hospitals of Arak University of Medical Sciences, Arak, Iran. Antibacterial susceptibility was determined by the disk diffusion method. KPC production was confirmed by the Modified Hodge Test (MHT), which is a phenotypic test, and combined-disk test with boronic acid and the Polymerase Chain Reaction (PCR). Results In the present study, 13 isolates (12%) of P. aeruginosa were positive for KPC, using PCR. Comparison of the two phenotypic methods used in this study showed that boronic acid is more sensitive than MHT in identification of KPC-producing strains (84.6% vs. 77%). Conclusions Utilization of reliable methods for identifying carbapenemase-producing strains and determining their antibiotic resistance pattern could have a very important role in treatment of infections caused by these strains. A substantial amount of P. aeruginosa isolated from clinical samples of hospitals in Arak (Iran) produce KPC carbapenemase. Due to their low specificity, MHT and boronic acid phenotypic methods could not completely identify KPC-producing P. aeruginosa. However, the sensitivity of boronic acid phenotypic method in detection of KPC was higher than MHT.

  5. Characterization of a boron carbide-based polymer neutron sensor

    Science.gov (United States)

    Tan, Chuting; James, Robinson; Dong, Bin; Driver, M. Sky; Kelber, Jeffry A.; Downing, Greg; Cao, Lei R.

    2015-12-01

    Boron is used widely in thin-film solid-state devices for neutron detection. The film thickness and boron concentration are important parameters that relate to a device's detection efficiency and capacitance. Neutron depth profiling was used to determine the film thicknesses and boron-concentration profiles of boron carbide-based polymers grown by plasma enhanced chemical vapor deposition (PECVD) of ortho-carborane (1,2-B10C2H12), resulting in a pure boron carbide film, or of meta-carborane (1,7-B10C2H12) and pyridine (C5H5N), resulting in a pyridine composite film, or of pyrimidine (C4H4N2) resulting in a pure pyrimidine film. The pure boron carbide film had a uniform surface appearance and a constant thickness of 250 nm, whereas the thickness of the composite film was 250-350 nm, measured at three different locations. In the meta-carborane and pyridine composite film the boron concentration was found to increase with depth, which correlated with X-ray photoelectron spectroscopy (XPS)-derived atomic ratios. A proton peak from 14N (n,p)14C reaction was observed in the pure pyrimidine film, indicating an additional neutron sensitivity to nonthermal neutrons from the N atoms in the pyrimidine.

  6. ortho-Selective phenol-coupling reaction by anodic treatment on boron-doped diamond electrode using fluorinated alcohols.

    Science.gov (United States)

    Kirste, Axel; Nieger, Martin; Malkowsky, Itamar M; Stecker, Florian; Fischer, Andreas; Waldvogel, Siegfried R

    2009-01-01

    Enlarged scope by fluorinated mediators: Oxyl radicals are easily formed on boron-doped diamond (BDD) electrodes and can be exploited for the ortho-selective coupling to the corresponding biphenols (see scheme). At partial conversion, a clean transformation is achieved that can be applied to electron-rich as well as fluorinated phenols.

  7. Characterisation of neutron and gamma-ray emission from thick target Be(p,n) reaction for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Guzek, J.; Mateva, T.; Tapper, U.A.S. [De Beers Diamond Res. Lab., Southdale (South Africa); McMurray, W.R. [National Accelerator Centre, Van de Graaff Group, P.O. Box 72, Faure 7131 (South Africa); Franklyn, C.B. [Atomic Energy Corporation of South Africa, P.O. Box 582, Pretoria (South Africa)

    1998-04-01

    Low energy accelerator-based neutron sources have promising potential for use in a clinical treatment of cancer with boron neutron capture therapy (BNCT) and boron neutron capture synovectomy (BNCS). Such sources often utilise a thick target Be(p,n) reaction using incident proton energies from several hundred keV to 1-2 MeV above the reaction threshold of 2.06 MeV. The resulting neutron and gamma-ray beams require considerable moderation and filtration in order to obtain thermal and epithermal neutron fluxes for therapy. The detailed knowledge of neutron and gamma-ray spectra, yield and angular distribution are necessary in order to design effective moderators and filters to be used for the treatment. Thick and thin beryllium target neutron and gamma spectra have been investigated in detail using the time-of-flight (TOF) technique, for incident proton energies from above threshold to 4 MeV. The results show characteristics of neutron and gamma-ray production of importance for the application of this neutron source for BNCT and BNCS. (orig.) 6 refs.

  8. Synthesis of Boron Carbide Nano Powder by Solid State Reaction%固相反应法合成碳化硼纳米粉体

    Institute of Scientific and Technical Information of China (English)

    曾洪; 阚艳梅; 徐常明; 王佩玲; 张国军

    2011-01-01

    Boron carbide (B4C) powder was synthesized by solid state reaction of hexagonal boron nitride with carbon black (or graphite). The phase assemblages of synthesized powders were influenced by carbon source, atmosphere and temperature. Boron carbide powder with an average particle size of about 100 nm was obtained using carbon black as the carbon source at 1900℃ for 5 h in vacuum. The relative density of the sintered sample (2000℃/30 Mpa/1 h) derived from the synthesized powder reached 97.9%, while that prepared from the commercial powder was 93.1%. The better sinterability of the synthesized powder than the commercial one can be attributed to the finer particle size, lower oxygen content and the twin structure of the powder.%以六方氮化硼和炭黑(或石墨)为原料,采用固相反应法合成了碳化硼粉体.碳源、反应气氛和温度对粉体合成产生重要影响.以炭黑为碳源,在1900℃真空下保温5h,得到了平均粒径约为100 nm的碳化硼纳米粉体.与商业粉体相比,合成的粉体具有较好的烧结活性.在2000℃/30 MPa/1 h条件下烧结,样品的相对密度达到97.9%(商业粉体样品为93.1%),这可归结于合成的粉体具有细小的粒径、低的氧含量和一定程度的孪晶结构.

  9. Separation of primary Si and impurity boron removal from Al-30%Si-10%Sn melt under a traveling magnetic ifeld

    Institute of Scientific and Technical Information of China (English)

    Jin-ling Sun; Qing-chuan Zou; Jin-chuan Jie; Ting-ju Li

    2016-01-01

    Separation of primary Si phase and removal of boron in the primary Si phase during the solidiifcation process of the Al-30%Si-10%Sn melt under a traveling magnetic field (TMF) were investigated. The results showed that the agglomeration layer of the primary Si can be formed in the periphery of the ingot while the inner microstructures mainly consist of the eutectic α-Al+Si and β-Sn phases. The intense melt lfow carries the bulk liquid with higher Si content to promote the growth of the primary Si phase which is ifrst precipitated close to the inner wal of crucible with a relatively lower temperature, resulting in the remarkable segregation of the primary Si phase. The content of impurity B in the primary Si phase can be removed effectively with an increase in magnetic lfux intensity. The results of electron probe microanalysis (EPMA) clearly indicated that the average intensity of the B Ka line in theα-Al phase region of Al-Si-Sn aloy is higher in the case of solidiifcation under TMF than that of normal solidiifcation condition, suggesting that the electromagnetic stirring can promote the B removal from the primary Si phase.

  10. Palladium-catalyzed cross-coupling reactions of organosilanols and their salts: practical alternatives to boron- and tin-based methods.

    Science.gov (United States)

    Denmark, Scott E; Regens, Christopher S

    2008-11-18

    In the panoply of modern synthetic methods for forming carbon-carbon and carbon-heteroatom bonds, the transition metal-catalyzed cross-coupling of organometallic nucleophiles with organic electrophiles enjoys a preeminent status. The preparative utility of these reactions is, in large measure, a consequence of the wide variety of organometallic donors that have been conscripted into service. The most common of these reagents are organic derivatives of tin, boron, and zinc, which each possess unique advantages and shortcomings. Because of their low cost, low toxicity, and high chemical stability, organosilanes have emerged as viable alternatives to the conventional reagents in recent years. However, unlike the tin- and zinc-based reactions, which require no activation, or the boron-based reactions, which require only heating with mild bases, silicon-based cross-coupling reactions often require heating in the presence of a fluoride source; this has significantly hampered the widespread acceptance of organosilanes. To address the "fluoride problem", we have introduced a new paradigm for palladium-catalyzed, silicon-based cross-coupling reactions that employs organosilanols, a previously underutilized class of silicon reagents. The use of organosilanols either in the presence of Brønsted bases or as their silanolate salts represents a simple and mild alternative to the classic fluoride-based activation method. Organosilanols are easily available by many well-established methods for introducing carbon-silicon bonds onto alkenes, alkynes, and arenes and heteroarenes. Moreover, we have developed four different protocols for the generation of alkali metal salts of vinyl-, alkenyl-, alkynyl-, aryl-, and heteroarylsilanolates: (1) reversible deprotonation with weak Brønsted bases, (2) irreversible deprotonation with strong Brønsted bases, (3) isolation of the salts from irreversible deprotonation, and (4) silanolate exchange with disiloxanes. We have demonstrated the

  11. Utilization of Boron (10B) derived from fertilizer by sugar cane

    OpenAIRE

    2009-01-01

    The response to B in agricultural systems of sugar cane is still an unexplored issue; B application has however recently been widely publicized and used with a certain degree of frequency. The use of 10B-labeled fertilizers may further contribute to clarify this practice. With the objective of evaluating sugar cane use of B (10B) derived from fertilizer (boric acid), an experiment was conducted under field conditions in the 2005/2006 growing season. The experiment consisted of the installatio...

  12. Boron contamination in drinking - irrigation water and boron removal methods

    Directory of Open Access Journals (Sweden)

    Meltem Bilici Başkan

    2014-03-01

    Full Text Available Boron presents in IIIA group of periodic table and has high ionization capacity. Therefore it is classified as a metalloid. Average boron concentration in earth's crust is 10 mg/kg. It presents in the environment as a salts of Ca, Na, and Mg. Boron reserves having high concentration and economical extent are found mostly in Turkey and in arid, volcanic and high hydrothermal activity regions of U.S. as compounds of boron attached to oxygen. Boron is an essential micronutrient for plants, although it may be toxic at higher levels. The range in which it is converted from a nutrient to a contaminant is quite narrow. Boron presents in water environment as a boric acid and rarely borate salts. The main boron sources, whose presence is detected in surface waters, are urban wastes and industrial wastes, which can come from a wide range of different activities as well as several chemical products used in agriculture. In Turkey, the most pollutant toxic element in drinking and irrigation water is boron. Therefore boron removal is very important in terms of human health and agricultural products in high quality. Mainly boron removal methods from drinking water and irrigation water are ion exchange, ultrafiltration, reverse osmosis, and adsorption.

  13. Effects of boron addition on a-Si90Ge10:H films obtained by low frequency plasma enhanced chemical vapour deposition

    Science.gov (United States)

    Pérez, Arllene M.; Renero, Francisco J.; Zúñiga, Carlos; Torres, Alfonso; Santiago, César

    2005-06-01

    Optical, structural and electric properties of (a-(Si90Ge10)1-yBy:H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10-3 to 101 Ω-1 cm-1 when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  14. Boron depletion: indirect measurement of the 10B(p,α)7Be S(E)-factor

    Science.gov (United States)

    Lamia, L.; Romano, S.; Carlin, N.; Cherubini, S.; Crucillà, V.; de Moura, M. M.; Del Santo, M. G.; Munhoz, M. G.; Gulino, M.; Liguori Neto, R.; La Cognata, M.; Mudò, F.; Pizzone, R. G.; Puglia, S. M. R.; Sergi, M. L.; Souza, F. A.; Spitaleri, C.; Suaide, A. A. P.; Szanto, E.; Szanto de Toledo, A.; Tudisco, S.; Tumino, A.

    2007-05-01

    The 10B(p,α)7Be reaction is the main responsible for 10B destruction in stellar interior. In such environments this p-capture process occurs at a Gamow energy of ˜10 keV, and takes places mainly through a resonant state (E=8.701 MeV) of the compound 11C nucleus. Thus, a resonance right in the region of the Gamow peak is expected to significantly influence the behaviour of the astrophysical S(E)-factor. The 10B(p,α)7Be reaction has been investigated by means of the Trojan Horse Method (THM) applied to the 2H(10B,α7Be)n three-body process. The experiment was performed at E=27 MeV at the Instituto de Fisica Nuclear de São Paulo. Preliminary results concerning the extraction of the bare-nucleus S(E)-factor will be presented.

  15. A microdosimetric study of {sup 10}B(n,{alpha}){sup 7}Li and {sup 157}Gd(n,{gamma}) reactions for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.K.C.; Sutton, M.; Evans, T.M. [Georgia Inst. of Tech., Atlanta, GA (United States); Laster, B.H. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1999-01-01

    This paper presents the microdosimetric analysis for the most interesting cell survival experiment recently performed at the Brookhaven National Laboratory (BNL). In this experiment, the cells were first treated with a gadolinium (Gd) labeled tumor-seeking boronated porphyrin (Gd-BOPP) or with BOPP alone, and then irradiated with thermal neutrons. The resulting cell-survival curves indicate that the {sup 157}Gd(n,{gamma}) reactions are very effective in cell killing. The death of a cell treated with Gd-BOPP was attributed to either the {sup 10}B(n,{alpha}){sup 7}Li reactions or the {sup 157}Gd(n,{gamma}) reactions (or both). However, the quantitative relationship between the two types of reaction and the cell-survival fraction was not clear. This paper presents the microdosimetric analysis for the BNL experiment based on the measured experimental parameters, and the results clearly suggest a quantitative relationship between the two types of reaction and the cell survival fraction. The results also suggest new research in gadolinium neutron capture therapy (GdNCT) which may lead to a more practical modality than the boron neutron capture therapy (BNCT) for treating cancers.

  16. Utilization of boron ({sup 10}B) derived from fertilizer by sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Henrique Coutinho Junqueira; Trivelin, Paulo Cesar Ocheuze, E-mail: hjfranco@cena.usp.b, E-mail: pcotrive@cena.usp.b [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Vitti, Andre Cesar, E-mail: acvitti@apta.sp.gov.b [Agencia Paulista de Tecnologia dos Agronegocios (APTA), Piracicaba, SP (Brazil). Polo Centro Sul; Otto, Rafael, E-mail: rotto@esalq.usp.b [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz; Faroni, Carlos Eduardo, E-mail: cfaroni@ctc.com.b [Centro de Tecnologia Canavieira (CTC), Piracicaba, SP (Brazil); Tovajar, Joao Gabriel, E-mail: jgtoaliari@bol.com.b [Cosan S.A., Valparaiso, SP (Brazil). Unidade Univalem

    2009-11-15

    The response to B in agricultural systems of sugar cane is still an unexplored issue; B application has however recently been widely publicized and used with a certain degree of frequency. The use of {sup 10}B-labeled fertilizers may further contribute to clarify this practice. With the objective of evaluating sugar cane use of B ({sup 10}B) derived from fertilizer (boric acid), an experiment was conducted under field conditions in the 2005/2006 growing season. The experiment consisted of the installation of microplots (2 x 1.5 m) where 4 kg ha{sup -1} B (boric acid with 85.95 % in {sup 10}B atoms) dissolved in water was applied 90 days after planting (May 2005). The solution was applied to the soil on both sides of the plant row at a distance of 20 cm. After harvest (June 2006) the B content and {sup 10}B abundance in % atoms in all parts of the sugar cane plants (stalks, dry leaves, tips and roots) were determined. Results showed that the total B accumulated was 471 g ha{sup -1} in the entire plant (35 % in the stalks, 22 % in the dry leaves, 9 % in the tips and 34 % in the roots). The sugar cane plants used on average 14 % of the total accumulated B in the above-ground part (44 g ha{sup -1}) and 11 % in the roots (19 g ha{sup -1}), totaling 13 % in the entire plant (63 g ha{sup -1}). The recovery of 10B-fertilizer by sugar cane plants was low, around 2 % of the total applied amount. (author)

  17. Boron concentration measurement in biological tissues by charged particle spectrometry.

    Science.gov (United States)

    Bortolussi, S; Altieri, S

    2013-11-01

    Measurement of boron concentration in biological tissues is a fundamental aspect of boron neutron capture therapy, because the outcome of the therapy depends on the distribution of boron at a cellular level, besides on its overall concentration. This work describes a measurement technique based on the spectroscopy of the charged particles emitted in the reaction (10)B(n,α)(7)Li induced by thermal neutrons, allowing for a quantitative determination of the boron concentration in the different components that may be simultaneously present in a tissue sample, such as healthy cells, tumor cells and necrotic cells. Thin sections of tissue containing (10)B are cut at low temperatures and irradiated under vacuum in a thermal neutron field. The charged particles arising from the sample during the irradiation are collected by a thin silicon detector, and their spectrum is used to determine boron concentration through relatively easy calculations. The advantages and disadvantages of this technique are here described, and validation of the method using tissue standards with known boron concentrations is presented.

  18. Dose point kernel for boron-11 decay and the cellular S values in boron neutron capture therapy.

    Science.gov (United States)

    Ma, Yunzhi; Geng, JinPeng; Gao, Song; Bao, Shanglian

    2006-12-01

    The study of the radiobiology of boron neutron capture therapy is based on the cellular level dosimetry of boron-10's thermal neutron capture reaction 10B(n,alpha)7Li, in which one 1.47 MeV helium-4 ion and one 0.84 MeV lithium-7 ion are spawned. Because of the chemical preference of boron-10 carrier molecules, the dose is heterogeneously distributed in cells. In the present work, the (scaled) dose point kernel of boron-11 decay, called 11B-DPK, was calculated by GEANT4 Monte Carlo simulation code. The DPK curve drops suddenly at the radius of 4.26 microm, the continuous slowing down approximation (CSDA) range of a lithium-7 ion. Then, after a slight ascending, the curve decreases to near zero when the radius goes beyond 8.20 microm, which is the CSDA range of a 1.47 MeV helium-4 ion. With the DPK data, S values for nuclei and cells with the boron-10 on the cell surface are calculated for different combinations of cell and nucleus sizes. The S value for a cell radius of 10 microm and a nucleus radius of 5 microm is slightly larger than the value published by Tung et al. [Appl. Radiat. Isot. 61, 739-743 (2004)]. This result is potentially more accurate than the published value since it includes the contribution of a lithium-7 ion as well as the alpha particle.

  19. Heavy ion collision dynamics of 10,11B+10,11B reactions

    Directory of Open Access Journals (Sweden)

    Singh BirBikram

    2015-01-01

    Full Text Available The dynamical cluster-decay model (DCM of Gupta and collaborators has been applied successfully to the decay of very-light (A ∼ 30, light (A ∼ 40−80, medium, heavy and super-heavy mass compound nuclei for their decay to light particles (evaporation residues, ER, fusion-fission (ff, and quasi-fission (qf depending on the reaction conditions. We intend to extend here the application of DCM to study the extreme case of decay of very-light nuclear systems 20,21,22Ne∗ formed in 10,11B+10,11B reactions, for which experimental data is available for their binary symmetric decay (BSD cross sections, i.e., σBSD. For the systems under study, the calculations are presented for the σBSD in terms of their preformation and barrier penetration probabilities P0 and P. Interesting results are that in the decay of such lighter systems there is a competing reaction mechanism (specifically, the deep inelastic orbiting of non-compound nucleus (nCN origin together with ff. We have emipirically estimated the contribution of σnCN. Moreover, the important role of nuclear structure characteristics via P0 as well as angular momentum ℓ in the reaction dynamics are explored in the study.

  20. Measurement of the 10 keV resonance in the $^{10}$B($p, \\alpha_0$)$^7$Be reaction via the Trojan Horse Method

    CERN Document Server

    Spitaleri, C; Puglia, S M R; Romano, S; La Cognata, M; Crucilla, V; Pizzone, R G; Rapisarda, G G; Sergi, M L; Del Santo, M Gimenez; Carlin, N; Munhoz, M G; Souza, F A; de Toledo, A Szanto; Tumino, A; Irgaziev, B; Mukhamedzhanov, A; Tabacaru, G; Burjan, V; Kroha, V; Hons, Z; Mrazek, J; Zhou, Shu-Hua; Li, Chengbo; Wen, Qungang; Wakabayashi, Y; Yamaguchi, H

    2014-01-01

    The $^{10}$B(p,$\\alpha_0$)$^7$Be bare nucleus astrophysical S(E)-factor has been measured for the first time at energies from about 100 keV down to about 5 keV by means of the Trojan Horse Method (THM). In this energy region, the S(E)-factor is strongly dominated by the 8.699 MeV $^{11}$C level (J$^{\\pi}$=$\\frac{5}{2}$$^+$), producing an s-wave resonance centered at about 10 keV in the entrance channel. Up to now, only the high energy tail of this resonant has been measured, while the low-energy trend is extrapolated from the available direct data. The THM has been applied to the quasi-free $^2$H($^{10}$B,$\\alpha_0$$^7$Be)n reaction induced at a boron-beam energy of 24.5 MeV. An accurate analysis brings to the determination of the $^{10}$B(p,$\\alpha_0$)$^7$Be S(E)-factor and of the corresponding electron screening potential $U_e$, thus giving for the first time an independent evaluation of it.

  1. Design of multidirectional neutron beams for boron neutron capture synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Gierga, D.P.; Yanch, J.C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Shefer, R.E. [Newton Scientific, Inc., Cambridge, MA (United States)

    1997-12-01

    Boron neutron capture synovectomy (BNCS) is a potential application of the {sup 10}B(n, a) {sup 7}Li reaction for the treatment of rheumatoid arthritis. The target of therapy is the synovial membrane. Rheumatoid synovium is greatly inflamed and is the source of the discomfort and disability associated with the disease. The BNCS proposes to destroy the synovium by first injecting a boron-labeled compound into the joint space and then irradiating the joint with a neutron beam. This study discusses the design of a multidirectional neutron beam for BNCS.

  2. A crossed beam and ab initio investigation of the reaction of boron monoxide ((11)BO; X(2)Σ+) with acetylene (C2H2; X(1)Σ(g)+).

    Science.gov (United States)

    Parker, Dorian S N; Zhang, Fangtong; Maksyutenko, Pavlo; Kaiser, Ralf I; Chang, Agnes H H

    2011-05-14

    The reaction dynamics of boron monoxide (BO; X(2)Σ(+)) with acetylene (C(2)H(2); X(1)Σ(g)(+)) were investigated under single collision conditions at a collision energy of 13 kJ mol(-1) employing the crossed molecular beam technique; electronic structure RRKM calculations were conducted to complement the experimental data. The reaction was found to have no entrance barrier and proceeded via indirect scattering dynamics initiated by an addition of the boron monoxide radical with its boron atom to the carbon-carbon triple bond forming the O(11)BHCCH intermediate. The latter decomposed via hydrogen atom emission to form the linear O(11)BCCH product through a tight exit transition state. The experimentally observed sideways scattering suggests that the hydrogen atom leaves perpendicularly to the rotational plane of the decomposing complex and almost parallel to the total angular momentum vector. RRKM calculations indicate that a minor micro channel could involve a hydrogen migration in the initial collision to form an O(11)BCCH(2) intermediate, which in turn can also emit atomic hydrogen. The overall reaction to form O(11)BCCH plus atomic hydrogen from the separated reactants was determined to be exoergic by 62 ± 8 kJ mol(-1). The reaction dynamics were also compared with the isoelectronic reaction of the cyano radical (CN; X(2)Σ(+)) with acetylene (C(2)H(2); X(1)Σ(g)(+)) studied earlier.

  3. A crossed molecular beam and ab initio investigation of the exclusive methyl loss pathway in the gas phase reaction of boron monoxide (BO; X2Σ+) with dimethylacetylene (CH3CCCH3; X1A(1g)).

    Science.gov (United States)

    Kaiser, Ralf I; Maity, Surajit; Dangi, Beni B; Su, Yuan-Siang; Sun, B J; Chang, Agnes H H

    2014-01-21

    The crossed molecular beam reaction of boron monoxide ((11)BO; X(2)Σ(+)) with dimethylacetylene (CH3CCCH3; X(1)A(1g)) was investigated at a collision energy of 23.9 ± 1.5 kJ mol(-1). The scattering dynamics were suggested to be indirect (complex forming reaction) and were initiated by the addition of (11)BO(X(2)Σ(+)) with the radical center located at the boron atom to the π electron density at the acetylenic carbon-carbon triple bond without entrance barrier leading to cis-trans(11)BOC4H6 doublet radical intermediates. cis-(11)BOC4H6 underwent cis-trans isomerization followed by unimolecular decomposition via a methyl group (CH3) loss forming 1-propynyl boron monoxide (CH3CC(11)BO) in an overall exoergic reaction (experimental: -91 ± 22 kJ mol(-1); theoretical: -105 ± 9 kJ mol(-1); NIST: -104 ± 12 kJ mol(-1)) via a tight exit transition state; trans-(11)BOC4H6 was found to lose a methyl group instantaneously. Neither atomic nor molecular hydrogen loss pathways were detectable. The experimental finding of an exclusive methyl loss pathway gains full support from our computational study predicting a methyl group versus atomic hydrogen loss branching ratio of 99.99% to 0.01% forming 1-propynyl boron monoxide (CH3CC(11)BO) and 1-methyl-propadienyl boron monoxide (CH3((11)BO)CCCH2), respectively.

  4. Combustion of boron containing compositions

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Y.; Pivkina, A. [Institute of Chemical Physics, Russian Academy of Science, Moscow (Russian Federation)

    1996-12-31

    Boron is one of the most energetic components for explosives, propellants and for heterogeneous condensed systems in common. The combustion process of mixtures of boron with different oxidizers was studied. The burning rate, concentration combustion limits, the agglomeration and dispersion processes during reaction wave propagation were analysed in the respect of the percolation theory. The linear dependence of the burning rate on the contact surface value was demonstrated. The percolative model for the experimental results explanation is proposed. (authors) 5 refs.

  5. Experimental Studies of Boronophenylalanine ({sup 10}BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Carpano, Marina; Perona, Marina; Rodriguez, Carla [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); Nievas, Susana; Olivera, Maria; Santa Cruz, Gustavo A. [Department of Boron Neutron Capture Therapy, National Atomic Energy Commission, San Martín (Argentina); Brandizzi, Daniel; Cabrini, Romulo [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); School of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Pisarev, Mario [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires (Argentina); Juvenal, Guillermo Juan [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Dagrosa, Maria Alejandra, E-mail: dagrosa@cnea.gov.ar [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina)

    2015-10-01

    Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ({sup 10}BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10{sup 6} MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of {sup 10}B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R{sup 2} = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R{sup 2} = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT

  6. Effects of boron addition on a-Si{sub 90}Ge{sub 10}:H films obtained by low frequency plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Arllene M [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa Maria Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Universidad Popular Autonoma del Estado de Puebla (UPAEP), 21 Sur 1103 Colonia Santiago, CP 72160, Puebla, Puebla (Mexico); Renero, Francisco J [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa Maria Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Zuniga, Carlos [Instituto Nacional de AstrofIsica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa MarIa Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Torres, Alfonso [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis E Erro no. 1, Santa MarIa Tonantzintla, CP 72840, Puebla, Puebla (Mexico); Santiago, Cesar [Universidad Politecnica de Tulancingo, Prolongacion Guerrero 808 Colonia Caltengo, CP 43626, Tulancingo, Hidalgo (Mexico)

    2005-06-29

    Optical, structural and electric properties of (a-(Si{sub 90}Ge{sub 10}){sub 1-y}B{sub y}:H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10{sup -3} to 10{sup 1} {omega}{sup -1} cm{sup -1} when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  7. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    Science.gov (United States)

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  8. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  9. Using the Doppler broadened γ line of the {sup 10}B(n,αγ){sup 7}Li reaction for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Galim, Y., E-mail: ybgx3@walla.com [Department of Nuclear Engineering, Ben Gurion University (BGU) of the Negev (Israel); Wengrowicz, U. [Department of Nuclear Engineering, Ben Gurion University (BGU) of the Negev (Israel); NRC-Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben Gurion University (BGU) of the Negev, Beer-Sheva 84105 (Israel); Orion, I. [Department of Nuclear Engineering, Ben Gurion University (BGU) of the Negev (Israel); Raveh, A. [Advanced Coatings Center at Rotem Industries Ltd., MishorYamin D.N. Arava 86800 (Israel)

    2016-02-21

    When a thermal neutron is absorbed by {sup 10}B in the {sup 10}B(n,α){sup 7}Li reaction, there is a chance of 94% that a 478 keV photon be emitted by an excited {sup 7}Li nucleus. This reaction is exothermic with a Q-value of 2.31 MeV and the nuclei are emitted with kinetic energies of E(α)=1.47 MeV and E({sup 7}Li*)=0.84 MeV. This implies that the 478 keV γ line is emitted by a moving {sup 7}Li nucleus and hence is expected to be Doppler broadened. In the present work we suggest to use this broadening of the γ line as a fingerprint for the detection of thermal neutrons using a high resolution gamma spectrometer. We thus developed a Monte Carlo program using a MATLAB code based on a High Purity Germanium (HPGe) detector coupled with a Boron Carbide (B{sub 4}C) sheet to calculate the γ line broadening. Our simulation shows that the FWHM width of the resulting γ line is 12.6 keV, in good agreement with our measurement. Hence the broadened γ line emitted by the {sup 10}B(n,αγ){sup 7}Li reaction and detected by a HPGe detector shows that this method is an effective tool for neutron detection while maintaining good gamma discrimination. - Highlights: • Thermal neutron detection by measuring the Doppler broadened 478 keV γ line from the {sup 10}B(n,αγ){sup 7}Li interaction. • Natural Boron Carbide coupled with a HPGe detector were used in this study. • A mathematical Monte-Carlo model for the suggested detector was introduced. • A calibration tool for the suggested detector is introduced. • Experimental results show that the suggested method can be used for neutron detection.

  10. Degradation of the beta-blocker propranolol by electrochemical advanced oxidation processes based on Fenton's reaction chemistry using a boron-doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Isarain-Chavez, Eloy; Rodriguez, Rosa Maria; Garrido, Jose Antonio; Arias, Conchita; Centellas, Francesc; Cabot, Pere Lluis [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric, E-mail: brillas@ub.ed [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)

    2010-12-15

    The electro-Fenton (EF) and photoelectro-Fenton (PEF) degradation of solutions of the beta-blocker propranolol hydrochloride with 0.5 mmol dm{sup -3} Fe{sup 2+} at pH 3.0 has been studied using a single cell with a boron-doped diamond (BDD) anode and an air diffusion cathode (ADE) for H{sub 2}O{sub 2} electrogeneration and a combined cell containing the above BDD/ADE pair coupled in parallel to a Pt/carbon felt (CF) cell. This naphthalene derivative can be mineralized by both methods with a BDD anode. Almost overall mineralization is attained for the PEF treatments, more rapidly with the combined system due to the generation of higher amounts of hydroxyl radical from Fenton's reaction by the continuous Fe{sup 2+} regeneration at the CF cathode, accelerating the oxidation of organics to Fe(III)-carboxylate complexes that are more quickly photolyzed by UVA light. The homologous EF processes are less potent giving partial mineralization. The effect of current density, pH and Fe{sup 2+} and drug concentrations on the oxidation power of PEF process in combined cell is examined. Propranolol decay follows a pseudo first-order reaction in most cases. Aromatic intermediates such as 1-naphthol and phthalic acid and generated carboxylic acids such as maleic, formic, oxalic and oxamic are detected and quantified by high-performance liquid chromatography. The chloride ions present in the starting solution are slowly oxidized at the BDD anode. In PEF treatments, all initial N of propranolol is completely transformed into inorganic ions, with predominance of NH{sub 4}{sup +} over NO{sub 3}{sup -} ion.

  11. Reaction hot-pressing and property-composition relationships of modified sialon - boron nitride hetero-modulus ceramics

    Science.gov (United States)

    Wang, Y.; Shabalin, I. L.; Zhang, L.; Zhdanov, V. B.

    2011-10-01

    Hetero-modulus ceramics (HMC) present the combination of a ceramic matrix with inclusions of a dispersed phase with considerably lower values of Young's modulus, resulting in a material with significantly advanced properties. Densified '-Si6-xAlxOxN8-x based HMC materials, with various volume contents of low-modulus α-BN phase and modifiers such as TiN or ZrO2 in sialon matrix, were prepared by high-temperature reaction hot-pressing in nitrogen atmosphere. The pristine blend composition for reaction hot-pressing consisted of mixed fine powders of Si, Al, B, Ti nitrides and Al, Zr oxides. Statistical design of 25-2 fractional factorial and third-order simplex-grid types was used for the experimental studies to estimate the effects of some technological factors on the densification of hot-pressed products and the property-composition relationships of modified HMC materials.

  12. Spectromicroscopy of boron in human glioblastomas following administration of Na2B12H11SH

    Science.gov (United States)

    Gilbert, B.; Perfetti, L.; Fauchoux, O.; Redondo, J.; Baudat, P.-A.; Andres, R.; Neumann, M.; Steen, S.; Gabel, D.; Mercanti, Delio; Ciotti, M. Teresa; Perfetti, P.; Margaritondo, G.; de Stasio, Gelsomina

    2000-07-01

    Boron neutron capture therapy (BNCT) is an experimental, binary treatment for brain cancer which requires as the first step that tumor tissue is targeted with a boron-10 containing compound. Subsequent exposure to a thermal neutron flux results in destructive, short range nuclear reaction within 10 μm of the boron compound. The success of the therapy requires than the BNCT agents be well localized in tumor, rather than healthy tissue. The MEPHISTO spectromicroscope, which performs microchemical analysis by x-ray absorption near edge structure (XANES) spectroscopy from microscopic areas, has been used to study the distribution of trace quantities of boron in human brain cancer tissues surgically removed from patients first administered with the compound Na2B12H11SH (BSH). The interpretation of XANES spectra is complicated by interference from physiologically present sulfur and phosphorus, which contribute structure in the same energy range as boron. We addressed this problem with the present extensive set of spectra from S, B, and P in relevant compounds. We demonstrate that a linear combination of sulfate, phosphate and BSH XANES can be used to reproduce the spectra acquired on boron-treated human brain tumor tissues. We analyzed human glioblastoma tissue from two patients administered and one not administered with BSH. As well as weak signals attributed to BSH, x-ray absorption spectra acquired from tissue samples detected boron in a reduced chemical state with respect to boron in BSH. This chemical state was characterized by a sharp absorption peak at 188.3 eV. Complementary studies on BSH reference samples were not able to reproduce this chemical state of boron, indicating that it is not an artifact produced during sample preparation or x-ray exposure. These data demonstrate that the chemical state of BSH may be altered by in vivo metabolism.

  13. Reaction hot-pressing and property-composition relationships of modified sialon - boron nitride hetero-modulus ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Shabalin, I L [Materials and Physics Research Centre, University of Salford, Salford, Greater Manchester, M5 4WT (United Kingdom); Zhang, L [Department of Ceramic and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Zhdanov, V B, E-mail: i.shabalin@salford.ac.uk [Department of Less-Common Metals, Ural State Technical University, Yekaterinburg 620002 (Russian Federation)

    2011-10-29

    Hetero-modulus ceramics (HMC) present the combination of a ceramic matrix with inclusions of a dispersed phase with considerably lower values of Young's modulus, resulting in a material with significantly advanced properties. Densified '-Si{sub 6-x}Al{sub x}O{sub x}N{sub 8-x} based HMC materials, with various volume contents of low-modulus {alpha}-BN phase and modifiers such as TiN or ZrO{sub 2} in sialon matrix, were prepared by high-temperature reaction hot-pressing in nitrogen atmosphere. The pristine blend composition for reaction hot-pressing consisted of mixed fine powders of Si, Al, B, Ti nitrides and Al, Zr oxides. Statistical design of 2{sup 5-2} fractional factorial and third-order simplex-grid types was used for the experimental studies to estimate the effects of some technological factors on the densification of hot-pressed products and the property-composition relationships of modified HMC materials.

  14. Ring expansion reactions of pentaphenylborole with dipolar molecules as a route to seven-membered boron heterocycles.

    Science.gov (United States)

    Huang, Kexuan; Martin, Caleb D

    2015-02-16

    Reactions of pentaphenylborole with isocyanates, benzophenone, and benzaldehyde produced new seven-membered heterocycles in high yields. For 1-adamantyl isocyanate, a BNC5 heterocycle was obtained from the insertion of the C-N moiety into the five-membered borole, whereas for 4-methoxyphenyl isocyanate, a BOC5 heterocycle was generated from the insertion of the C-O unit. These reactions are believed to occur via a mechanism wherein coordination of the nucleophile to the borole (1-adamantyl, N-coordination or O-coordination for 4-methoxyphenyl) is followed by ring expansion to afford the observed seven-membered heterocycles. The selectivity to form B-O- or B-N-containing heterocycles is based on the polarization of the isocyanate implying tunable reactivity for the system. Having observed that isocyanates react as 1,2-dipoles with pentaphenylborole, we examined benzophenone and benzaldehyde, which both reacted to insert C-O units into the ring. This represents a new efficient method for preparing rare seven-membered boracycles.

  15. Boron-mediated sequential alkyne insertion and C–C coupling reactions affording extended π-conjugated molecules

    Science.gov (United States)

    Shoji, Yoshiaki; Tanaka, Naoki; Muranaka, Sho; Shigeno, Naoki; Sugiyama, Haruka; Takenouchi, Kumiko; Hajjaj, Fatin; Fukushima, Takanori

    2016-01-01

    C–C bond coupling reactions illustrate the wealth of organic transformations, which are usually mediated by organotransition metal complexes. Here, we show that a borafluorene with a B–Cl moiety can mediate sequential alkyne insertion (1,2-carboboration) and deborylation/Csp2–Csp2 coupling reactions, leading to aromatic molecules. The first step, which affords a borepin derivative, proceeds very efficiently between the borafluorene and various alkynes by simply mixing these two components. The second step is triggered by a one-electron oxidation of the borepin derivative, which results in the formation of a phenanthrene framework. When an excess amount of oxidant is used in the second step, the phenanthrene derivatives can be further transformed in situ to afford dibenzo[g,p]chrysene derivatives. The results presented herein will substantially expand the understanding of main group chemistry and provide a powerful synthetic tool for the construction of a wide variety of extended π-conjugated systems. PMID:27581519

  16. A Glycosidation Reaction Employing Montmorillonite K-10 as Catalyst

    Science.gov (United States)

    Bedell, Brooke L.; Crouch, R. David; Holden, Michael S.; Martinson, Heidi E.

    1996-11-01

    The large number of biology majors and prehealth students enrolled in Organic Chemistry makes it desirable to have laboratories that involve biologically interesting molecules. Although many laboratory manuals contain sections on carbohydrate chemistry, the experiments are typically limited to esterification or hydrolysis reactions. A recent publication (Toshima, K.; Ishizuka, T.; Matsuo, G.; Nakata, M. Synlett. 1995, 306. ) on the glycosidation of glycals offered a different possibility.

  17. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS).

    Science.gov (United States)

    Chandra, S; Ahmad, T; Barth, R F; Kabalka, G W

    2014-06-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 ((10)B) atoms to individual tumour cells. Cell killing results from the (10)B (n, α)(7) Li neutron capture and fission reactions that occur if a sufficient number of (10)B atoms are localized in the tumour cells. Intranuclear (10)B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of (10)B atoms reflects both bound and free pools of boron in individual tumour cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular-scale resolution by clinically applicable techniques such as positron emission tomography and magnetic resonance imaging. In this study, a secondary ion mass spectrometry based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high-grade gliomas, recurrent tumours of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumour cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This

  18. Composite Reinforcement using Boron Nitride Nanotubes

    Science.gov (United States)

    2014-05-09

    Final 3. DATES COVERED (From - To) 11-Mar-2013 to 10-Mar-2014 4. TITLE AND SUBTITLE Composite Reinforcement using Boron Nitride Nanotubes...AVAILABILITY STATEMENT Approved for public release. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Boron nitride nanotubes have been proposed as a...and titanium (Ti) metal clusters with boron nitride nanotubes (BNNT). First-principles density-functional theory plus dispersion (DFT-D) calculations

  19. Study of boron detection limit using the in-air PIGE set-up at LAMFI-USP

    Energy Technology Data Exchange (ETDEWEB)

    Moro, M. V.; Silva, T. F.; Trindade, G. F.; Added, N.; Tabacniks, M. H. [Institute of Physics, University of São Paulo, SP (Brazil)

    2014-11-11

    The quantification of small amounts of boron in materials is of extreme importance in different areas of materials science. Boron is an important contaminant and also a silicon dopant in the semiconductor industry. Boron is also extensively used in nuclear power plants, either for neutron shielding or for safety control and boron is an essential nutrient for life, either vegetable or animal. The production of silicon solar cells, by refining metallurgical-grade silicon (MG-Si) requires the control and reduction of several silicon contaminants to very low concentration levels. Boron is one of the contaminants of solar-grade silicon (SG-Si) that must be controlled and quantified at sub-ppm levels. In the metallurgical purification, boron quantification is usually made by Inductive Coupled Plasma Mass Spectrometry, (ICP-MS) but the results need to be verified by an independent analytical method. In this work we present the results of the analysis of silicon samples by Particle Induced Gamma-Ray Emission (PIGE) aiming the quantification of low concentrations of boron. PIGE analysis was carried out using the in-air external beam line of the Laboratory for Materials Analysis with Ion Beams (LAMFI-USP) by the {sup 10}B(p,αγ({sup 7}Be nuclear reaction, and measuring the 429 keV γ-ray. The in-air PIGE measurements at LAMFI have a quantification limit of the order of 10{sup 16} at/cm{sup 2}.

  20. Monte-Carlo simulation of primary stochastic effects induced at the cellular level in boron neutron capture therapy; Simulation Monte-Carlo des effets stochastiques primaires induits au niveau cellulaire lors de la therapie par capture de neutrons sur le {sup 10}B

    Energy Technology Data Exchange (ETDEWEB)

    Cirioni, L.; Patau, J.P.; Nepveu, F. [Universite Paul Sabatier, 31 - Toulouse (France)

    1998-04-01

    A Monte Carlo code is developed to study the action of particles in Boron Neutron Capture Therapy (BNCT). Our aim is to calculate the probability of dissipating a lethal dose in cell nuclei. Cytoplasmic and nuclear membranes are considered as non-concentric ellipsoids. All geometrical parameters may be adjusted to fit actual configurations. The reactions {sup 10}B(n,{gamma} {alpha}){sup 7}Li and {sup 14}N(n,p) {sup 14}C create heavy ions which slow clown losing their energy. Their trajectories can be simulated taking into account path length straggling. The contribution of each reaction to the deposited dose in different cellular compartments can be studied and analysed for any distribution of {sup 10}B. (authors)

  1. A crossed molecular beam and ab-initio investigation of the reaction of boron monoxide (BO; X2Σ+) with methylacetylene (CH3CCH; X1A1): competing atomic hydrogen and methyl loss pathways.

    Science.gov (United States)

    Maity, Surajit; Parker, Dorian S N; Dangi, Beni B; Kaiser, Ralf I; Fau, Stefan; Perera, Ajith; Bartlett, Rodney J

    2013-11-21

    The gas-phase reaction of boron monoxide ((11)BO; X(2)Σ(+)) with methylacetylene (CH3CCH; X(1)A1) was investigated experimentally using crossed molecular beam technique at a collision energy of 22.7 kJ mol(-1) and theoretically using state of the art electronic structure calculation, for the first time. The scattering dynamics were found to be indirect (complex forming reaction) and the reaction proceeded through the barrier-less formation of a van-der-Waals complex ((11)BOC3H4) followed by isomerization via the addition of (11)BO(X(2)Σ(+)) to the C1 and/or C2 carbon atom of methylacetylene through submerged barriers. The resulting (11)BOC3H4 doublet radical intermediates underwent unimolecular decomposition involving three competing reaction mechanisms via two distinct atomic hydrogen losses and a methyl group elimination. Utilizing partially deuterated methylacetylene reactants (CD3CCH; CH3CCD), we revealed that the initial addition of (11)BO(X(2)Σ(+)) to the C1 carbon atom of methylacetylene was followed by hydrogen loss from the acetylenic carbon atom (C1) and from the methyl group (C3) leading to 1-propynyl boron monoxide (CH3CC(11)BO) and propadienyl boron monoxide (CH2CCH(11)BO), respectively. Addition of (11)BO(X(2)Σ(+)) to the C1 of methylacetylene followed by the migration of the boronyl group to the C2 carbon atom and/or an initial addition of (11)BO(X(2)Σ(+)) to the sterically less accessible C2 carbon atom of methylacetylene was followed by loss of a methyl group leading to the ethynyl boron monoxide product (HCC(11)BO) in an overall exoergic reaction (78 ± 23 kJ mol(-1)). The branching ratios of these channels forming CH2CCH(11)BO, CH3CC(11)BO, and HCC(11)BO were derived to be 4 ± 3%, 40 ± 5%, and 56 ± 15%, respectively; these data are in excellent agreement with the calculated branching ratios using statistical RRKM theory yielding 1%, 38%, and 61%, respectively.

  2. Elastic scattering and fusion studies in the reactions $^{10,11}$Be + $^{64}$Zn

    CERN Multimedia

    2002-01-01

    We propose to measure elastic scattering and fusion excitation functions for the reactions $^{10,11}$Be + $^{64}$Zn at 3.1 MeV/u . The aim of the experiment is to investigate possible effects of the halo structure of the $^{11}$Be nucleus on the reaction mechanisms at energy around the Coulomb barrier. For this purpose a comparison with the reaction induced by the $^{10}$Be nucleus is required.

  3. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  4. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  5. Using the Doppler broadened γ line of the 10B(n,αγ)7Li reaction for thermal neutron detection

    Science.gov (United States)

    Ben-Galim, Y.; Wengrowicz, U.; Moreh, R.; Orion, I.; Raveh, A.

    2016-02-01

    When a thermal neutron is absorbed by 10B in the 10B(n,α)7Li reaction, there is a chance of 94% that a 478 keV photon be emitted by an excited 7Li nucleus. This reaction is exothermic with a Q-value of 2.31 MeV and the nuclei are emitted with kinetic energies of E(α)=1.47 MeV and E(7Li*)=0.84 MeV. This implies that the 478 keV γ line is emitted by a moving 7Li nucleus and hence is expected to be Doppler broadened. In the present work we suggest to use this broadening of the γ line as a fingerprint for the detection of thermal neutrons using a high resolution gamma spectrometer. We thus developed a Monte Carlo program using a MATLAB code based on a High Purity Germanium (HPGe) detector coupled with a Boron Carbide (B4C) sheet to calculate the γ line broadening. Our simulation shows that the FWHM width of the resulting γ line is 12.6 keV, in good agreement with our measurement. Hence the broadened γ line emitted by the 10B(n,αγ)7Li reaction and detected by a HPGe detector shows that this method is an effective tool for neutron detection while maintaining good gamma discrimination.

  6. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    Science.gov (United States)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  7. Design of low-energy neutron beams for boron neutron capture synovectomy

    Science.gov (United States)

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Binello, E.

    1997-02-01

    A novel application of the 10B(n, (alpha) )7Li nuclear reaction for the treatment of rheumatoid arthritis is under development. this application, called Boron Neutron Capture Synovectomy (BNCS), is briefly described here and the differences between BNCS and Boron Neutron Capture Therapy (BNCT) are discussed in detail. These differences lead to substantially altered demands on neutron beam design for each therapy application. In this paper the considerations for neutron beam design for the treatment of arthritic joints via BNCS are discussed, and comparisons with the design requirements for BNCT are made. This is followed by a description of potential moderator/reflector assemblies that are calculated to produce intense, high- quality neutron beams based on the 7Li(p,n) accelerator- based reactions. Total therapy time and therapeutic ratios are given as a function of both moderator length and boron concentration. Finally, a means of carrying out multi- directional irradiations of arthritic joints is proposed.

  8. X-ray diffraction study of boron produced by pyrolysis of boron tribromide

    Science.gov (United States)

    Rosenberg, David

    The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its

  9. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  10. Study of boron detection limit using the in-air PIGE set-up at LAMFI-USP

    Science.gov (United States)

    Moro, M. V.; Silva, T. F.; Trindade, G. F.; Added, N.; Tabacniks, M. H.

    2014-11-01

    The quantification of small amounts of boron in materials is of extreme importance in different areas of materials science. Boron is an important contaminant and also a silicon dopant in the semiconductor industry. Boron is also extensively used in nuclear power plants, either for neutron shielding or for safety control and boron is an essential nutrient for life, either vegetable or animal. The production of silicon solar cells, by refining metallurgical-grade silicon (MG-Si) requires the control and reduction of several silicon contaminants to very low concentration levels. Boron is one of the contaminants of solar-grade silicon (SG-Si) that must be controlled and quantified at sub-ppm levels. In the metallurgical purification, boron quantification is usually made by Inductive Coupled Plasma Mass Spectrometry, (ICP-MS) but the results need to be verified by an independent analytical method. In this work we present the results of the analysis of silicon samples by Particle Induced Gamma-Ray Emission (PIGE) aiming the quantification of low concentrations of boron. PIGE analysis was carried out using the in-air external beam line of the Laboratory for Materials Analysis with Ion Beans (LAMFI-USP) by the 10B ( p ,αγ(7Be nuclear reaction, and measuring the 429 keV γ-ray. The in-air PIGE measurements at LAMFI have a quantification limit of the order of 1016 at/cm2.

  11. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  12. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  13. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  14. Nuclear Physics meets Medicine and Biology: Boron Neutron Capture Therapy

    CERN Document Server

    F. Ballarini, F; S. Bortolussi, S; P. Bruschi, P; A.M. Clerici, A M; A. De Bari, A; P. Dionigi, P; C. Ferrari, C; M.A. Gadan, M A; N. Protti, N; S. Stella, S; C. Zonta, C; A. Zonta, A; S. Altieri, S

    2010-01-01

    BNCT is a tumour treatment based on thermal-neutron irradiation of tissues enriched with 10B, which according to the 10B(n, )7Li reaction produces particles with high Linear Energy Transfer and short range. Since this treatment can deliver a therapeutic tumour dose sparing normal tissues, BNCT represents an alternative for diffuse tumours and metastases, which show poor response to surgery and photontherapy. In 2001 and 2003, in Pavia BNCT was applied to an isolated liver, which was infused with boron, explanted, irradiated and re-implanted. A new project was then initiated for lung tumours, developing a protocol for Boron concentration measurements and performing organ-dose Monte Carlo calculations; in parallel, radiobiology studies are ongoing to characterize the BNCT effects down to cellular level. After a brief introduction, herein we will present the main activities ongoing in Pavia including the radiobiological ones, which are under investigation not only experimentally but also theoretically, basing on...

  15. Electronic Properties of Boron and Silicon Doped (10, 0 Zigzag Single-Walled Carbon Nanotube upon Gas Molecular Adsorption: A DFT Comparative Study

    Directory of Open Access Journals (Sweden)

    P. A. Gowri sankar

    2013-01-01

    Full Text Available We have performed a comparative study of nine predominant gas molecules (H2, H2O, O2, CO, CO2, NO, NO2, NH3, and CH3OH adsorption property on the top surface of the (10, 0 zigzag single-walled pristine Carbon nanotube (C-CNT, Boron doped carbon nanotube (B-CNT, and Silicon doped carbon nanotube (Si-CNT are investigated by using density functional theory (DFT computations to exploit their potential applications as gas sensors. For the first time, we calculated the optimal equilibrium position, absorption energy (Ead, and density of states (DOS of the considered gas molecules adsorbed on the open end of zigzag single-walled (10, 0 B-CNT and Si-CNT. Our first principle calculations demonstrate that the B-CNT and Si-CNT adsorbent materials are able to adsorb the considered gas molecules with variety of adsorption energy and their electronic structure dramatic changes in the density of states near the Fermi level. The obtained comparative DFT studies results are useful for designing a high-fidelity gas sensor materials and selective adsorbents for a selective gas sensor.

  16. Effects of employing a 10B-carrier and manipulating intratumour hypoxia on local tumour response and lung metastatic potential in boron neutron capture therapy

    Science.gov (United States)

    Masunaga, S; Sakurai, Y; Tanaka, H; Suzuki, M; Liu, Y; Kondo, N; Maruhashi, A; Kinashi, Y; Ono, K

    2012-01-01

    Objectives To evaluate the effects of employing a 10B-carrier and manipulating intratumour hypoxia on local tumour response and lung metastatic potential in boron neutron capture therapy (BNCT) by measuring the response of intratumour quiescent (Q) cells. Methods B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2′-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumours received reactor thermal neutron beam irradiation following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)] in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumour-bearing mice, macroscopic lung metastases were enumerated 17 days after irradiation. Results BPA-BNCT increased the sensitivity of the total tumour cell population more than BSH-BNCT. However, the sensitivity of Q cells treated with BPA was lower than that of BSH-treated Q cells. With or without a 10B–carrier, MTH enhanced the sensitivity of the Q cell population. Without irradiation, nicotinamide treatment decreased the number of lung metastases. With irradiation, BPA-BNCT, especially in combination with nicotinamide treatment, showed the potential to reduce the number of metastases more than BSH-BNCT. Conclusion BSH-BNCT in combination with MTH improves local tumour control, while BPA-BNCT in combination with nicotinamide may reduce the number of lung metastases. PMID:22391496

  17. A γ-ray telescope for on-line measurements of low boron concentrations in a head phantom for BNCT

    Science.gov (United States)

    Verbakel, W. F. A. R.; Stecher-Rasmussen, F.

    1997-02-01

    In Boron Neutron Capture Therapy the 10B(n, α)7 Li reaction is used to create a tumour-destructing field of high Linear Energy Transfer (LET) particles. The therapy requires a high boron concentration in the tumour and a low boron concentration in the healthy tissue. The boron neutron capture reaction is accompanied by the emission of a photon of energy 478 keV. It is investigated whether measuring of these photons can serve as a tool to determine the boron concentration during therapy in the tumour as well as in the healthy tissue. Such a measurement is complicated by the presence of a large background photon field. To study the feasibility, an experimental configuration has been designed at a test facility of the Low-Flux Reactor (LFR). The LFR provides an epithermal neutron beam for irradiation of a head phantom which simulates a human head with a tumour. This paper shows that the reconstruction of the position and the size of the tumour as well as the ratio of the boron concentrations appeared to be possible. In a second stage it is shown that these measurements can be expanded to experiments with the therapy neutron beam of the High-Flux Reactor (HFR).

  18. Research in boron neutron capture synovectomy

    Science.gov (United States)

    Binello, E.; Shortkroff, S.; Jones, A.; Viveiros, C.; Ly, A.; Sledge, C. B.; Davison, A.; Shefer, Ruth E.; Yanch, Jacquelyn C.

    1997-02-01

    Boron Neutron Capture Synovectomy (BNCS) is a novel application of the 10B(n, (alpha) )7Li reaction for the treatment of Rheumatoid Arthritis. This potential treatment modality is in its developmental stages; in this paper results of research in two aspects of BNCS are presented. First, quantification of 10B-uptake in samples of human arthritic tissue by Prompt Gamma Neutron Activation Analysis is presented. 10B concentrations from 1625 to 2726 ppm are readily achieved. Second, ideal neutron beam studies have been undertaken and indicate that neutrons from thermal energies to 1 keV are useful for BNCS. This information is of use in designing practical therapy beams should this treatment modality be realized.

  19. Methods of forming boron nitride

    Science.gov (United States)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  20. Beryllium-Boron Systematics of Refractory Inclusions in CR2 and CV3 Chondrites: Evidence for 10Be Heterogeneity

    Science.gov (United States)

    Dunham, E.; Wadhwa, M.; Simon, S.; Grossman, L.

    2016-08-01

    Be-B systematics of Allende (CV3), Axtell (CV3), and NWA 5028 (CR2) CAIs suggests that 10Be was distributed heterogeneously in the early solar system which implies that 10Be was produced in the solar nebula by irradiation of nebular gas or dust.

  1. A Four‐Component Reaction for the Synthesis of Dioxadiazaborocines

    DEFF Research Database (Denmark)

    Flagstad, Thomas; Petersen, Mette Terp; Nielsen, Thomas E.

    2015-01-01

    A four‐component reaction for the synthesis of heterocyclic boronates is reported. Readily available hydrazides, α‐hydroxy aldehydes, and two orthogonally reactive boronic acids are combined in a single step to give structurally distinct bicyclic boronates, termed dioxadiazaborocines (DODA...... borocines). In this remarkable process, one boronic acid reacts as a carbon nucleophile and the other as a boron electrophile to provide enantio‐ and diastereomerically pure heterocyclic boronates with multiple stereocenters in high yields....

  2. Efficient syntheses of 5-X-B(10)H(13) Halodecaboranes via the photochemical (X = I) and/or base-catalyzed (X = Cl, Br, I) isomerization reactions of 6-X-B(10)H(13).

    Science.gov (United States)

    Ewing, William C; Carroll, Patrick J; Sneddon, Larry G

    2010-02-15

    High yield syntheses of the 5-X-B(10)H(13) (5X) halodecaboranes have been achieved through the photochemical (X = I) or base-catalyzed (X = Cl, Br, I) isomerization reactions of their 6-X-B(10)H(13) (6X) isomers. 5I was obtained in 80% isolated yield upon the UV photolysis of 6I. Treatment of 6X (X = Cl, Br, I) with catalytic amounts of triethylamine at 60 degrees C led to the formation of 78:22 (Cl), 82:18 (Br), and 86:14 (I) ratio 5X/6X equilibrium mixtures. The 5X isomers were then separated from these mixtures by selective crystallization (Br and I) or column chromatography (Cl), with the supernatant mixtures in each case then subjected to another round of isomerization/separation to harvest a second crop of 5X. The combined isolated yields of pure products after two cycles were 71% 5-Cl-B(10)H(13), 83% 5-Br-B(10)H(13), and 68% 5-I-B(10)H(13). The previously proposed structures of 5-Br-B(10)H(13) and 5-I-B(10)H(13) were crystallographically confirmed. Deprotonation of 6X and 5X with 1,8-bis(dimethylamino)naphthalene (PS) resulted in the formation of [PSH(+)][6X(-)] and [PSH(+)][5X(-)]. Density functional theory-gauge-independent atomic orbital (DFT/GIAO) calculations and crystallographic determinations of [PSH(+)][6Cl(-)] and [PSH(+)][6Cl(-)] confirmed bridge-deprotonation at a site adjacent to the halogen-substituted borons. NMR studies of the 6-Br-B(10)H(13) isomerization induced by stoichiometric amounts of PS showed that following initial deprotonation to form 6-Br-B(10)H(12)(-), isomerization occurred at 60 degrees C to form an equilibrium mixture of 6-Br-B(10)H(12)(-) and 5-Br-B(10)H(12)(-). DFT calculations also showed that the observed 5-X-B(10)H(13)/6-X-B(10)H(13) equilibrium ratios in the triethylamine-catalyzed reactions were consistent with the energetic differences of the 5-X-B(10)H(12)(-) and 6-X-B(10)H(12)(-) anions. These results strongly support a mechanistic pathway for the base-catalyzed 6X to 5X conversions involving the formation and

  3. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  4. New insight in boron chemistry: Application in two-photon absorption

    Science.gov (United States)

    Bolze, F.; Hayek, A.; Sun, X. H.; Baldeck, P. L.; Bourgogne, C.; Nicoud, J.-F.

    2011-07-01

    Two groups of one-dimensional (1D) boron containing two-photon absorbing fluorophores have been prepared and characterized. One group includes boron atoms incorporated in the conjugated or pseudo conjugated central core and the other contain a boron cluster as an acceptor group at one end of the fluorophores. Two boron containing central cores (with two boron atoms) have been explored: the cyclodiborazane and the pyrazabole moieties. The chosen boron cluster, p-carborane, contains 10 boron atoms. All the prepared fluorophores present high two-photon absorption cross-sections. Some water-soluble as well as lipophylic dyes have been prepared and used in bio-imaging.

  5. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  6. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  7. All-optical radiation reaction at 10²¹ W/cm².

    Science.gov (United States)

    Vranic, M; Martins, J L; Vieira, J; Fonseca, R A; Silva, L O

    2014-09-26

    Using full-scale 3D particle-in-cell simulations we show that the radiation reaction dominated regime can be reached in an all-optical configuration through the collision of a ~1 GeV laser wakefield accelerated electron bunch with a counterpropagating laser pulse. In this configuration the radiation reaction significantly reduces the energy of the particle bunch, thus providing clear experimental signatures for the process with currently available lasers. We also show that the transition between the classical and quantum radiation reaction could be investigated in the same configuration with laser intensities of 10²³ W/cm².

  8. Boron nitride converted carbon fiber

    Science.gov (United States)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  9. Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Pradip, E-mail: pradipcha@gmail.com [Semiconductor Thin Films and Plasma Processing Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai – 400076 (India); Singh, Arvind, E-mail: arvindsingh1884@gmail.com [Electronics Division, Bhabha Atomic Research Centre, Trombay, Mumbai – 400085 (India); Topkar, Anita, E-mail: anita.topkar@gmail.com [Electronics Division, Bhabha Atomic Research Centre, Trombay, Mumbai – 400085 (India); Dusane, Rajiv, E-mail: rodusane@iitb.ac.in [Semiconductor Thin Films and Plasma Processing Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai – 400076 (India)

    2015-04-11

    In order to utilize the well established silicon detector technology for neutron detection application, a silicon based thermal neutron detector was fabricated by integrating a thin boron carbide layer as a neutron converter with a silicon PIN detector. Hot wire chemical vapor deposition (HWCVD), which is a low cost, low temperature process for deposition of thin films with precise thickness was explored as a technique for direct deposition of a boron carbide layer over the metalized front surface of the detector chip. The presence of B-C bonding and {sup 10}B isotope in the boron carbide film were confirmed by Fourier transform infrared spectroscopy and secondary ion mass spectrometry respectively. The deposition of HWCVD boron carbide layer being a low temperature process was observed not to cause degradation of the PIN detector. The response of the detector with 0.2 µm and 0.5 µm thick boron carbide layer was examined in a nuclear reactor. The pulse height spectrum shows evidence of thermal neutron response with signature of (n, α) reaction. The results presented in this article indicate that HWCVD boron carbide deposition technique would be suitable for low cost industrial fabrication of PIN based single element or 1D/2D position sensitive thermal neutron detectors.

  10. Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter

    Science.gov (United States)

    Chaudhari, Pradip; Singh, Arvind; Topkar, Anita; Dusane, Rajiv

    2015-04-01

    In order to utilize the well established silicon detector technology for neutron detection application, a silicon based thermal neutron detector was fabricated by integrating a thin boron carbide layer as a neutron converter with a silicon PIN detector. Hot wire chemical vapor deposition (HWCVD), which is a low cost, low temperature process for deposition of thin films with precise thickness was explored as a technique for direct deposition of a boron carbide layer over the metalized front surface of the detector chip. The presence of B-C bonding and 10B isotope in the boron carbide film were confirmed by Fourier transform infrared spectroscopy and secondary ion mass spectrometry respectively. The deposition of HWCVD boron carbide layer being a low temperature process was observed not to cause degradation of the PIN detector. The response of the detector with 0.2 μm and 0.5 μm thick boron carbide layer was examined in a nuclear reactor. The pulse height spectrum shows evidence of thermal neutron response with signature of (n, α) reaction. The results presented in this article indicate that HWCVD boron carbide deposition technique would be suitable for low cost industrial fabrication of PIN based single element or 1D/2D position sensitive thermal neutron detectors.

  11. Utilization of Boron (10B derived from fertilizer by sugar cane Aproveitamento do Boro (10B proveniente do fertilizante pela cana-de-açúcar

    Directory of Open Access Journals (Sweden)

    Henrique Coutinho Junqueira Franco

    2009-12-01

    Full Text Available The response to B in agricultural systems of sugar cane is still an unexplored issue; B application has however recently been widely publicized and used with a certain degree of frequency. The use of 10B-labeled fertilizers may further contribute to clarify this practice. With the objective of evaluating sugar cane use of B (10B derived from fertilizer (boric acid, an experiment was conducted under field conditions in the 2005/2006 growing season. The experiment consisted of the installation of microplots (2 x 1.5 m where 4 kg ha-1 B (boric acid with 85.95 % in 10B atoms dissolved in water was applied 90 days after planting (May 2005. The solution was applied to the soil on both sides of the plant row at a distance of 20 cm. After harvest (June 2006 the B content and 10B abundance in % atoms in all parts of the sugar cane plants (stalks, dry leaves, tips and roots were determined. Results showed that the total B accumulated was 471 g ha-1 in the entire plant (35 % in the stalks, 22 % in the dry leaves, 9 % in the tips and 34 % in the roots. The sugar cane plants used on average 14 % of the total accumulated B in the above-ground part (44 g ha-1 and 11 % in the roots (19 g ha-1, totaling 13 % in the entire plant (63 g ha-1. The recovery of 10B-fertilizer by sugar cane plants was low, around 2 % of the total applied amount.No agrossistema da cana-de-açúcar a resposta à aplicação de B é ainda uma questão não esclarecida, porém é um procedimento que vem sendo utilizado com certa frequência. O uso de fertilizantes marcados com 10B pode auxiliar no entendimento dessa prática. Com o objetivo de avaliar o aproveitamento do B (10B proveniente do fertilizante (ácido bórico pela cana-de-açúcar, realizou-se um experimento em campo, na safra de 2005/2006, que consistiu na instalação de microparcelas (2 m de comprimento por 1,5 de largura, que, após 90 dias do plantio (maio de 2005, receberam 4 kg ha-1 de B (ácido bórico com 85,95 % em

  12. Synthesis and characterization of ammonium phosphate fertilizers with boron

    Directory of Open Access Journals (Sweden)

    ANGELA MAGDA

    2010-07-01

    Full Text Available The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the reaction mixture at a NH3:H3PO4 molar ratio of 1.5. The fertilizers obtained with boron contents ranging from 0.05 to 1 % (w/w were fully characterized by chemical analysis, thermal analysis, X-ray diffraction and infrared spectrophotometry. The studies showed that up to 500 °C, regardless of the boron content, no significant changes concerning thermal stability and nutritional properties occurred. Above 500 °C, an increase of thermal stability with an increase of the boron content was observed. X-Ray diffraction of a heat-treated sample containing 5 % (w/w boron indicated the appearance of boron orthophosphate, BPO4, as a new crystalline phase, and the disappearance of the previous structures above 500 °C, which explains the increase in thermal stability.

  13. Studies on electron transfer reactions: Reduction of heteropoly 10-tungstodivanadophosphate by thioglycolic acid in aqueous medium

    Indian Academy of Sciences (India)

    Ponnusamy Sami; Natarajan Mariselvi; Kandasamy Venkateshwari; Arunachalam Sarathi; Kasi Rajasekaran

    2010-05-01

    Rates of electron transfer reaction of thioglycolic acid with vanadium(V) substituted Keggintype heteropolyanion, [PVVVVW10O40]5-, in acetate-acetic acid buffers have been measured spectrophotometrically at 25°C. The order of the reaction with respect to substrate and oxidant is unity. The reaction shows simple second order kinetics at constant pH. The rate of the reaction increases with increase of pH of the medium. The mono-anion HSCH2COO- and di-anion -SCH2COO- are found to be the reactive species. Rate constants for mono-anion and di-anion are evaluated from rate law derived from the mechanism. By applying Rehm-Weller relationship, self exchange rate constant for the -SCH2COO-/S$^{\\bullet}$ CH2COO- couple was evaluated as 3.3 × 103 dm3 mol-1 s-1 at 25°C.

  14. Reaction Mechanism Dependence Of The Population And Decay Of 10HE

    Science.gov (United States)

    Liu, Han; Redpath, Thomas; Thoennessen, Michael; MoNA Collaboration

    2017-01-01

    Measurements of neutron unbound systems allow for stringent tests of theoretical nuclear structure models at extreme neutron-to-proton ratios. It was recently suggested that the decay of broad neutron unbound states would be sensitive to the incoming channel wavefunction. Thus, the extended wavefunctions of halo nuclei could significantly affect the observed decay energy spectra for broad neutron unbound resonances. Experimental evidence for such an effect had been suggested in the case of 10He. Its ground state resonance decaying to 8He +n +n exhibited a shift of about 500 keV when populated in a proton removal reaction from 11Li compared to the transfer reaction 8He(t,p). In order to test this effect we measured the 10He ground state resonance in two reactions using beams with different wavefunctions. We compared the decay energy spectrum of 10He populated in a three-proton removal reaction from the (non-halo) nucleus 13B with the spectrum from the one-proton removal reaction using the halo-nucleus 11Li. The decay energy spectra were reconstructed from the measured momenta of the 8He fragment and two coincident neutrons. The experiments were performed at the Coupled Cyclotron Facility of the NSCL with the Sweeper magnet and the MoNA-LISA array. This work is supported by NSF Grant PHY-1002511 and NNSA Grant DE-NA0000979.

  15. Boron microquantification in oral mucosa and skin following administration of a neutron capture therapy agent

    Energy Technology Data Exchange (ETDEWEB)

    Kiger, S.W. III; Micca, P.L.; Morris, G.M.; Coderre, J.A

    2002-07-01

    Clinical trials of boron neutron capture therapy (BNCT) for intracranial tumours using boronphenylalanine-fructose undertaken at Harvard-MIT and Brookhaven National Laboratory have observed acute normal tissue reactions in the skin and oral mucosa. Because the range of the {sup 10}B(n,a){sup 7}Li reaction products is very short, 10-14 {mu}m combined, knowledge of the 10B microdistribution in tissue is critical for understanding the microdosimetry and radiobiology of BNCT. This paper reports measurements of the microdistribution of {sup 10}B in an animal model, rat skin and tongue, using high resolution quantitative autoradiography (HRQAR), a neutron-induced track etch autoradiographic technique. The steep spatial gradient and high absolute value relative to blood of the {sup 10}B concentration observed in some strata of the rat tongue epithelium and skin are important for properly evaluating the radiobiology and the biological effectiveness factors for normal tissue reactions such as oral mucositis, which are generally assessed using the blood boron concentration rather than the tissue boron concentration. (author)

  16. Boron nanoparticles inhibit turnour growth by boron neutron capture therapy in the murine B16-OVA model

    DEFF Research Database (Denmark)

    Petersen, Mikkel Steen; Petersen, Charlotte Christie; Agger, Ralf;

    2008-01-01

    Background: Boron neutron capture therapy usually relies on soluble, rather than particulate, boron compounds. This study evaluated the use of a novel boron nanoparticle for boron neutron capture therapy. Materials and Methods: Two hundred and fifty thousand B16-OVA tumour cells, pre......-incubated with boron nanoparticles for 12 hours, were injected subcutaneously into C57BL16J mice. The tumour sites were exposed to different doses of neutron radiation one, four, or eight days after tumour cell inoculation. Results: When the tumour site was irradiated with thermal neutrons one day after injection......, tumour growth was delayed and the treated mice survived longer than untreated controls (median survival time 20 days (N=8) compared with 10 days (N=7) for untreated mice). Conclusion: Boron nanoparticles significantly delay the growth of an aggressive B16-OVA tumour in vivo by boron neutron capture...

  17. Reactions of OH Radicals with Tris (1,10-Phenanthroline) Iron (II) Studied by Pulse Radiolysis

    DEFF Research Database (Denmark)

    Siekierska Floryan, E.; Pagsberg, Palle Bjørn

    1976-01-01

    The reaction of OH radicals with aqueous tris(1,10-phenanthroline)iron(II) leads to the formation of an adduct, which exhibits a broad absorption band at rmpH = 6, λmax = 460 nm, and epsilon (Porson)460 = 6700 (molar, decadic, 1 mol−1 cm−1). The rate of formation of the adduct is first order in c...

  18. Combustion synthesis of novel boron carbide

    Science.gov (United States)

    Harini, R. Saai; Manikandan, E.; Anthonysamy, S.; Chandramouli, V.; Eswaramoorthy, D.

    2013-02-01

    The solid-state boron carbide is one of the hardest materials known, ranking third behind diamond and cubic boron nitride. Boron carbide (BxCx) enriched in the 10B isotope is used as a control rod material in the nuclear industry due to its high neutron absorption cross section and other favorable physico-chemical properties. Conventional methods of preparation of boron carbide are energy intensive processes accompanied by huge loss of boron. Attempts were made at IGCAR Kalpakkam to develop energy efficient and cost effective methods to prepare boron carbide. The products of the gel combustion and microwave synthesis experiments were characterized for phase purity by XRD. The carbide formation was ascertained using finger-print spectroscopy of FTIR. Samples of pyrolized/microwave heated powder were characterized for surface morphology using SEM. The present work shows the recent advances in understanding of structural and chemical variations in boron carbide and their influence on morphology, optical and vibrational property results discussed in details.

  19. Radiation quality evaluation in heavy water field using tissue equivalent-proportional counter with wall containing boron

    Energy Technology Data Exchange (ETDEWEB)

    Onizuka, Y. [Kyushu Univ., Faculty of Medicine, Fukuoka (Japan); Endo, S.; Ishikawa, M. [Hiroshima Univ., Research Inst. for Radiation Biology and Medicine, Hiroshima (JP)] [and others

    2003-01-01

    A heavy water installation at the Kyoto University Reactor (KUR) is used for the boron neutron capture therapy. The contributions of boron neutron capture reaction to the dose are required for the evaluation of the boron neutron capture therapy in relation to the biological effectiveness. The radiation therapy fields are measured by a technique of micro-dosimetry. Three types of tissue equivalent-proportional counter are used for measurement of the radiation therapy fields; a LET counter with wall containing boron for thermal neutrons, a LET counter with wall containing no boron for epithermal neutrons, and a helical wire proportional counter with carbon wall for gamma rays. Irradiations of the counters are carried out in the neutron capture therapy fields with two modes, a thermal neutron mode and an epithermal neutron mode. An acrylic plate is used for human body phantom. Each energy spectrum in the counters is measured at depth 6.7 mm in the phantom by multi-channel analyzer. The energy spectra in three types of the counters show that most of neutron energy transfers to the effects of {sup 4}He(1.49 MeV) and {sup 7}Li(0.85 MeV) following to thermal neutron capture reactions of {sup 10}B in the wall. (M. Suetake)

  20. 9,10-Diphenylanthracene as a matrix for MALDI-MS electron transfer secondary reactions.

    Science.gov (United States)

    Boutaghou, M Nazim; Cole, Richard B

    2012-08-01

    The most common secondary-ionization mechanism in positive ion matrix-assisted laser desorption/ionization (MALDI) involves a proton transfer reaction to ionize the analyte. Peptides and proteins are molecules that have basic (and acidic) sites that make them susceptible to proton transfer. However, non-polar, aprotic compounds that lack basic sites are more difficult to protonate, and creating charged forms of this type of analyte can pose a problem when conventional MALDI matrices are employed. In this case, forming a radical molecular ion through electron transfer is a viable alternative, and certain matrices may facilitate the process. In this work, we investigate the performance of a newly developed electron-transfer secondary reaction matrix: 9,10-diphenylanthracene (9,10-DPA). The use of 9,10-DPA as matrix for MALDI analysis has been tested using several model compounds. It appears to promote ionization through electron transfer in a highly efficient manner as compared to other potential matrices. Thermodynamic aspects of the observed electron transfers in secondary-ionization reactions were also considered, as was the possibility for kinetically controlled/endothermic, electron-transfer reactions in the MALDI plume.

  1. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.; Redondo, J.; Baudat, P-A. [Institut de Physique Appliquee, Ecole Polytechnique Federale, Lausanne (Switzerland)] [and others

    1998-10-07

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of {sup 10}B in tumour cells after injection of a boron compound (in our case B{sub 12}H{sub 11}SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  2. Isotope geochemistry of boron in mantle rocks, tektites and meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Chaussidon, M. [Centre National de la Recherche Scientifique (CNRS), 54 - Nancy (France). Centre de Recherches Petrographiques et Geochimiques

    1995-12-31

    Recent ion microprobe studies of fresh oceanic basalt glasses and chondrules from primitive meteorites give an overview of the distribution of boron isotopes in the mantle and in extra-terrestrial rocks. After removal of secondary boron isotope variations due to interactions between mantle melts and the oceanic crust, the primitive mantle is found to have a constant {delta}{sup 11}B value of -10 {+-} 2 per mill, similar to that of the bulk continental crust. In contrast, large isotopic variations between -50 and +40 per mill are present at the micron scale in meteoritic chondrules which are among the most primitive objects of the solar system. These isotopic variations imply that a significant part of the boron of the solar system was synthesized in the presolar cloud, likely by spallation reactions between lo-energy cosmic rays and nebular hydrogen. These heterogeneities were partly preserved in chondrules which formed early in the evolution of the solar system but are not observed for the silicate Earth implying an efficient mixing just before or during the accretion of the Earth. (authors). 74 refs., 5 figs., 2 tabs.

  3. Substituent Effects on Regioselectivity of the Diels-Alder Reactions: Reactions of 10-Allyl-1,8-dichloroanthracene with 2-Chloroacrylonitrile, 1-Cyanovinyl Acetate and Phenyl Vinyl Sulfone

    Directory of Open Access Journals (Sweden)

    Mujeeb A. Sultan

    2016-01-01

    Full Text Available Diels-Alder reaction of 10-allyl-1,8-dichloroanthracene (3 with 2-chloroacrylonitrile (4 and 1-cyanovinyl acetate (5 gives exclusively the ortho isomer while its reaction with phenyl vinyl sulfone (10 yields a mixture of two isomeric adducts with priority to ortho isomer. The reactions proceeded under microwave condition in xylene. Configurations of these isomers have been assigned with the help of NMR spectra. The results indicated that the steric effect is dominating toward the isomer regioselectivity in the Diels-Alder reaction of the present compounds.

  4. Boron in sillimanite.

    Science.gov (United States)

    Grew, E S; Hinthorne, J R

    1983-08-05

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite.

  5. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT)

    Science.gov (United States)

    Jung, Joo-Young; Yoon, Do-Kun; Lee, Heui Chang; Lu, Bo; Suh, Tae Suk

    2016-09-01

    We conducted a quantitative study to identify the effectiveness of proton boron fusion therapy (PBFT). Four simulation scenarios were designed to investigate the escalation in total dose with the proton boron reaction using a Monte Carlo n-particle extended (MCNPX 2.6.0) simulation. The peak integrated dose was obtained for three different physical conditions (i.e., boron uptake region (BUR) thickness, BUR location, and boron concentration) with differing proton beam energy (60-90 MeV). We found that the peak integrated dose was increased by up to 96.62% compared to the pristine proton Bragg-peak. For the synergetic effect to take place with 60-70 MeV proton beam, the BUR had to be at least 0.3 cm thick while spanning the Bragg-peak. Similarly to the thickness, the BUR location needed to be within 0.3 cm from the Bragg-peak when the thickness was maintained at 0.9 cm. An effective proton boron reaction required the boron concentration to be equal to or greater than 14.4 mg/g. These results demonstrate the impact of various physical and beam conditions of the PBFT, which are critical environmental factors for the treatment planning. We envision that this study will advance our understanding of the PBFT, which can be an invaluable treatment method for maximizing the potential of proton therapy.

  6. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT

    Directory of Open Access Journals (Sweden)

    Joo-Young Jung

    2016-09-01

    Full Text Available We conducted a quantitative study to identify the effectiveness of proton boron fusion therapy (PBFT. Four simulation scenarios were designed to investigate the escalation in total dose with the proton boron reaction using a Monte Carlo n-particle extended (MCNPX 2.6.0 simulation. The peak integrated dose was obtained for three different physical conditions (i.e., boron uptake region (BUR thickness, BUR location, and boron concentration with differing proton beam energy (60–90 MeV. We found that the peak integrated dose was increased by up to 96.62% compared to the pristine proton Bragg-peak. For the synergetic effect to take place with 60–70 MeV proton beam, the BUR had to be at least 0.3 cm thick while spanning the Bragg-peak. Similarly to the thickness, the BUR location needed to be within 0.3 cm from the Bragg-peak when the thickness was maintained at 0.9 cm. An effective proton boron reaction required the boron concentration to be equal to or greater than 14.4 mg/g. These results demonstrate the impact of various physical and beam conditions of the PBFT, which are critical environmental factors for the treatment planning. We envision that this study will advance our understanding of the PBFT, which can be an invaluable treatment method for maximizing the potential of proton therapy.

  7. Isotopic effects on the phonon modes in boron carbide.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-01

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  8. Search for 4n contributions in the reaction 14Be(CH2,X10He

    Directory of Open Access Journals (Sweden)

    Jones M. D.

    2016-01-01

    Full Text Available A previously published measurement of the ground state resonance of 10He, populated by a reaction of a 59 MeV/u 14Be beam on a deuterated polyethylene target, was further analyzed to search for 4n emission resulting from 2p removal. No evidence for 4n events was found. A lower limit of about 1 MeV was determined for a possible resonance in 12He.

  9. 11B nuclear magnetic resonance in boron-doped diamond

    Directory of Open Access Journals (Sweden)

    Miwa Murakami, Tadashi Shimizu, Masataka Tansho and Yoshihiko Takano

    2008-01-01

    Full Text Available This review summarizes recent results obtained by 11B solid-state nuclear magnetic resonance (NMR on boron-doped diamond, grown by the high-pressure high-temperature (HPHT or chemical vapor deposition techniques. Simple single-pulse experiments as well as advanced two-dimensional NMR experiments were applied to the boron sites in diamond. It is shown that magic-angle spinning at magnetic fields above 10 T is suitable for observation of high-resolution 11B spectra of boron-doped diamond. For boron-doped HPHT diamonds, the existence of the excess boron that does not contribute to electrical conductivity was confirmed and its 11B NMR signal was characterized. The point-defect structures (B+H complexes and -B-B-/-B-C-B- clusters, postulated previously for the excess boron, were discarded and graphite-like structures were assigned instead.

  10. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  11. A new study of $^{10}$B(p,$\\alpha$)$^{7}$Be reaction at low energies

    CERN Document Server

    Caciolli, A; Broggini, C; La Cognata, M; Lamia, L; Menegazzo, R; Mou, L; Puglia, S M R; Rigato, V; Romano, S; Alvarez, C Rossi; Sergi, M L; Spitaleri, C; Tumino, A

    2016-01-01

    The $^{10}$B(p,$\\alpha$)$^{7}$Be reaction is of great interest since it has many applications in different fields of research such as nuclear astrophysics, nuclear physics, and models of new reactors for clean energy generation. This reaction has been studied at the AN2000 accelerator of the INFN National Laboratories of Legnaro (LNL). The total cross section has been measured in a wide energy range (250 $-$ 1182 keV) by using the activation method. The decays of the $^7$Be nuclei produced by the reaction were measured at the low counting facility of LNL by using two fully shielded high-purity germanium detectors. The present dataset shows a large discrepancy with respect to one of the previous data at the same energies and reduces the total uncertainty to the level of 6\\%. An R-matrix calculation has been performed on the present data using the parameters from previous Trojan Horse measurements for the 10 and 500 keV resonances. The present data do not lay on the R-matrix fit in one point suggesting the exis...

  12. Study of the 10B(p, αγ) 7Be and 10B (p,p‧ γ)10B reactions for PIGE purposes

    Science.gov (United States)

    Lagoyannis, A.; Preketes-Sigalas, K.; Axiotis, M.; Foteinou, V.; Harissopulos, S.; Kokkoris, M.; Misaelides, P.; Paneta, V.; Patronis, N.

    2015-01-01

    Differential cross sections were measured at 8 angles and at proton energies from 2 to 5 MeV for the 10B(p, αγ) 7Be and 10B (p,p‧ γ)10B reactions using two thin targets. The γ-rays emitted at Eγ = 429 and 718 keV respectively, were detected by four HPGe detectors placed on a motorized turntable. The overall systematic uncertainty of the measurements was estimated to be ∼8% while the statistical errors did not exceed 5%. The validity of the obtained cross sections was tested by performing a thick target benchmarking experiment. The results of the present work are compared with existing ones from literature and possible explanations for the observed differences are discussed.

  13. Boron neutron capture therapy of brain tumors: an emerging therapeutic modality.

    Science.gov (United States)

    Barth, R F; Soloway, A H; Goodman, J H; Gahbauer, R A; Gupta, N; Blue, T E; Yang, W; Tjarks, W

    1999-03-01

    Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when boron-10, a stable isotope, is irradiated with low-energy thermal neutrons to yield alpha particles and recoiling lithium-7 nuclei. For BNCT to be successful, a large number of 10B atoms must be localized on or preferably within neoplastic cells, and a sufficient number of thermal neutrons must be absorbed by the 10B atoms to sustain a lethal 10B (n, alpha) lithium-7 reaction. There is a growing interest in using BNCT in combination with surgery to treat patients with high-grade gliomas and possibly metastatic brain tumors. The present review covers the biological and radiobiological considerations on which BNCT is based, boron-containing low- and high-molecular weight delivery agents, neutron sources, clinical studies, and future areas of research. Two boron compounds currently are being used clinically, sodium borocaptate and boronophenylalanine, and a number of new delivery agents are under investigation, including boronated porphyrins, nucleosides, amino acids, polyamines, monoclonal and bispecific antibodies, liposomes, and epidermal growth factor. These are discussed, as is optimization of their delivery. Nuclear reactors currently are the only source of neutrons for BNCT, and the fission reaction within the core produces a mixture of lower energy thermal and epithermal neutrons, fast or high-energy neutrons, and gamma-rays. Although thermal neutron beams have been used clinically in Japan to treat patients with brain tumors and cutaneous melanomas, epithermal neutron beams now are being used in the United States and Europe because of their superior tissue-penetrating properties. Currently, there are clinical trials in progress in the United States, Europe, and Japan using a combination of debulking surgery and then BNCT to treat patients with glioblastomas. The American and European studies are Phase I trials using boronophenylalanine and sodium borocaptate, respectively

  14. Spectrographic determination of boron and silicon in uranium tetrafluoride: Study of the chemical reactions in the electrode cavity when ZnO is used as a uranium excitation suppressor; Determinacion espectrografica de Boro y Silicio en Tetrafluoruro de Unraio: Estudio de las reacciones quimicas que tienen lugar en el crater del electrodo al autilizar ZnO como supresor de la excitacion del Uranio

    Energy Technology Data Exchange (ETDEWEB)

    Alduan, F. A.; Capdevila, C.; Rosa, M.

    1973-07-01

    A method has been developed for determining traces of boron and silicon in uranium tetrafluoride. Use is made of zinc oxide to decrease the volatilization of uranium and achieve high sensitivities. The thermochemical reactions which occur in the anode cavity during the arcing process have been investigated. UO{sub 2} and a uranium, zinc and fluorine compound, both less volatile than uranium tetrafluoride, are formed. (Author)

  15. Reactions of a Be-10 beam on proton and deuteron targets

    CERN Document Server

    Schmitt, K T; Ahn, S; Bardayan, D W; Bey, A; Blackmon, J C; Brown, S M; Chae, K Y; Chipps, K A; Cizewski, J A; Hahn, K I; Kolata, J J; Kozub, R L; Liang, J F; Matei, C; Matos, M; Matyas, D; Moazen, B; Nesaraja, C D; Nunes, F M; Malley, P D O; Pain, S D; Peters, W A; Pittman, S T; Roberts, A; Shapira, D; Shriner, J F; Smith, M S; Spassova, I; Stracener, D W; Upadhyay, N J; Villano, A N; Wilson, G L

    2013-01-01

    The extraction of detailed nuclear structure information from transfer reactions requires reliable, well-normalized data as well as optical potentials and a theoretical framework demonstrated to work well in the relevant mass and beam energy ranges. It is rare that the theoretical ingredients can be tested well for exotic nuclei owing to the paucity of data. The halo nucleus Be-11 has been examined through the 10Be(d,p) reaction in inverse kinematics at equivalent deuteron energies of 12,15,18, and 21.4 MeV. Elastic scattering of Be-10 on protons was used to select optical potentials for the analysis of the transfer data. Additionally, data from the elastic and inelastic scattering of Be-10 on deuterons was used to fit optical potentials at the four measured energies. Transfers to the two bound states and the first resonance in Be-11 were analyzed using the Finite Range ADiabatic Wave Approximation (FR-ADWA). Consistent values of the spectroscopic factor of both the ground and first excited states were extrac...

  16. Manufacture of Boron-free Magnesia with High Purity from Residual Brine

    Institute of Scientific and Technical Information of China (English)

    Fa Qiang LI; Bao Ping LING; Pei Hua MA

    2004-01-01

    A novel method for removing boron with ion exchange resin from residual brines to manufacture boron-free magnesia is described. The concentration of boron in the target magnesia manufactured thereby from Qinghai salt lakes is lower than 5μg/g, and the typical D50 size of product is 10.625μm.

  17. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    Science.gov (United States)

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst.

  18. Boron and the kidney.

    Science.gov (United States)

    Pahl, Madeleine V; Culver, B Dwight; Vaziri, Nosratola D

    2005-10-01

    Boron, the fifth element in the periodic table, is ubiquitous in nature. It is present in food and in surface and ocean waters, and is frequently used in industrial, cosmetic, and medical settings. Exposure to boron and related compounds has been recently implicated as a potential cause of chronic kidney disease in Southeast Asia. This observation prompted the present review of the published data on the effects of acute and chronic exposure to boron on renal function and structure in human beings and in experimental animals.

  19. Innovative method for boron extraction from iron ore containing boron

    Science.gov (United States)

    Wang, Guang; Wang, Jing-song; Yu, Xin-yun; Shen, Ying-feng; Zuo, Hai-bin; Xue, Qing-guo

    2016-03-01

    A novel process for boron enrichment and extraction from ludwigite based on iron nugget technology was proposed. The key steps of this novel process, which include boron and iron separation, crystallization of boron-rich slag, and elucidation of the boron extraction behavior of boron-rich slag by acid leaching, were performed at the laboratory. The results indicated that 95.7% of the total boron could be enriched into the slag phase, thereby forming a boron-rich slag during the iron and slag melting separation process. Suanite and kotoite were observed to be the boron-containing crystalline phases, and the boron extraction properties of the boron-rich slag depended on the amounts and grain sizes of these minerals. When the boron-rich slag was slowly cooled to 1100°C, the slag crystallized well and the efficiency of extraction of boron (EEB) of the slag was the highest observed in the present study. The boron extraction property of the slow-cooled boron-rich slag obtained in this study was much better than that of szaibelyite ore under the conditions of 80% of theoretical sulfuric acid amount, leaching time of 30 min, leaching temperature of 40°C, and liquid-to-solid ratio of 8 mL/g.

  20. Iron-Catalyzed Boron Removal from Molten Silicon in Ammonia

    Science.gov (United States)

    Chen, Zhiyuan; Morita, Kazuki

    2016-12-01

    A high-temperature process of refining metallurgical-grade silicon to solar-grade silicon was developed. In this gas purging treatment, boron impurity in silicon reacts with ammonia and the products are removed as volatiles at high temperature. 1 mass pct metallic iron was added to molten silicon as a catalyst, improving the boron removal ratio from 14 to 80 pct at 1723 K (1450 °C). At 1823 K (1550 °C), this reaction could reduce boron concentration from more than 120 ppmw to activation energy of 329 ± 129 kJ mol-1 was calculated from experimental data.

  1. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  2. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  3. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line

    OpenAIRE

    Elham Bavarnegin; Alireza Sadremomtaz; Hossein Khalafi; Yaser Kasesaz

    2016-01-01

    Aim: Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. Materials and Methods: The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Results: Different dose components have been measured in a head phantom which has been designed an...

  4. 海水预处理及脱硼研究%The Study on Boron Removal in RO Seawater Desalination

    Institute of Scientific and Technical Information of China (English)

    周磊; 衣守志; 李爽

    2011-01-01

    In this study boron removal from seawater by alkalization - flocculation adsorption method was investigated with low cost and high efficiency. The factors of pH, temperature, reaction time and settling time were examined and the highest boron removal was 86. 5% when the pH of seawater adjusted to 108 by alkalizer lime milk, temperature 25℃, reaction time 20 minutes and settling time S h. The residual boron was 0.63 mg/L. In addition, the mechanism of alkalization -flocculation and boron incorporated into by - product magnesium hydroxide were investigated.%利用一种低成本、高效的反渗透海水淡化预处理方法——碱化絮凝法,对海水进行预处理及脱硼处理,采用石灰乳作为碱化剂,考察了pH,温度,慢搅时间,静沉时间对脱硼效果的影响.并用正文实验的方法,确定了最佳脱硼率.结果表明,pH= 10.8,温度25℃,慢搅20 min,静置5h,脱硼效果最好,脱硼率为86.5%,余硼含量达到0.63 mg/L.

  5. Synthesis of 2-Phenyl-10-substituted Hymenialdisine Derivatives

    Institute of Scientific and Technical Information of China (English)

    WU Yi; WANG Yu; QIN Yong; SONG Hao

    2011-01-01

    A series of novel 2-phenyl-10-substituted hymenialdisine derivatives was synthesized via the microwave-assisted Suzuki-Miyaura cross-coupling reactions of the 2-phenyl derivative of hymenialdisine and boronic acid,which enabled the successful introduction of electron-donating and electron-withdrawing groups to the 2-phenylhymenialdisine derivatives in good yields.

  6. Palladium complexes with a tridentate PNO ligand. Synthesis of eta1-allyl complexes and cross-coupling reactions promoted by boron compounds.

    Science.gov (United States)

    Crociani, Bruno; Antonaroli, Simonetta; Burattini, Marcello; Paoli, Paola; Rossi, Patrizia

    2010-04-21

    The iminophosphine 2-(2-Ph(2)P)C(6)H(4)N=CHC(6)H(4)OH (P-N-OH) reacts with [Pd(mu-Cl)(eta(3)-C(3)H(5))](2) yielding [PdCl(P-N-O)] and propene. In the presence of NEt(3), the reaction of P-N-OH with [Pd(mu-Cl)(eta(3)-1-R(1),3-R(2)C(3)H(3))](2) (R(1) = R(2) = H, Ph; R(1) = H, R(2) = Ph) affords the eta(1)-allyl derivatives [Pd(eta(1)-1-R(1),3-R(2)C(3)H(3))](P-N-O)] (R(1) = R(2) = H: 1; R(1) = H, R(2) = Ph: 2; R(1) = R(2) = Ph: 3). In solution, the complexes 1 and 3 undergo a slow dynamic process which interconverts the bonding site of the allyl ligand. The X-ray structural analysis of 1 indicates a square-planar coordination geometry around the palladium centre with a P,N,O,-tridentate ligand and a sigma bonded allyl group. The complexes [PdR(P-N-O)] (R = C(6)H(4)Me-4, C[triple bond]CPh) react slowly with p-bromoanisole in the presence of p-tolylboronic acid to give [PdBr(P-N-O)] and the coupling product RC(6)H(4)OMe-4. The latter reactions also proceed at a low rate under catalytic conditions. The coupling of allyl bromide with p-tolylboronic acid is catalyzed by [PdCl(P-N-O)]/K(2)CO(3) to give 4-allyltoluene.

  7. Formation of hydrogen peroxide and water from the reaction of cold hydrogen atoms with solid oxygen at 10K

    CERN Document Server

    Miyauchi, N; Chigai, T; Nagaoka, A; Watanabe, N; Kouchi, A

    2008-01-01

    The reactions of cold H atoms with solid O2 molecules were investigated at 10 K. The formation of H2O2 and H2O has been confirmed by in-situ infrared spectroscopy. We found that the reaction proceeds very efficiently and obtained the effective reaction rates. This is the first clear experimental evidence of the formation of water molecules under conditions mimicking those found in cold interstellar molecular clouds. Based on the experimental results, we discuss the reaction mechanism and astrophysical implications.

  8. First gaseous boronization during pulsed discharge cleaning

    Science.gov (United States)

    Ko, J.; Den Hartog, D. J.; Goetz, J. A.; Weix, P. J.; Limbach, S. T.

    2013-01-01

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C2B10H12) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  9. First gaseous boronization during pulsed discharge cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [Department of Physics, University of Wisconsin, Madison, WI (United States); Den Hartog, D.J.; Goetz, J.A.; Weix, P.J.; Limbach, S.T. [Department of Physics, University of Wisconsin, Madison, WI (United States)

    2013-01-15

    The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C{sub 2}B{sub 10}H{sub 12}) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2-2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.

  10. Update on human health effects of boron.

    Science.gov (United States)

    Nielsen, Forrest H

    2014-10-01

    In vitro, animal, and human experiments have shown that boron is a bioactive element in nutritional amounts that beneficially affects bone growth and central nervous system function, alleviates arthritic symptoms, facilitates hormone action and is associated with a reduced risk for some types of cancer. The diverse effects of boron suggest that it influences the formation and/or activity of substances that are involved in numerous biochemical processes. Several findings suggest that this influence is through the formation of boroesters in biomolecules containing cis-hydroxyl groups. These biomolecules include those that contain ribose (e.g., S-adenosylmethionine, diadenosine phosphates, and nicotinamide adenine dinucleotide). In addition, boron may form boroester complexes with phosphoinositides, glycoproteins, and glycolipids that affect cell membrane integrity and function. Both animal and human data indicate that an intake of less than 1.0mg/day inhibits the health benefits of boron. Dietary surveys indicate such an intake is not rare. Thus, increasing boron intake by consuming a diet rich in fruits, vegetables, nuts and pulses should be recognized as a reasonable dietary recommendation to enhance health and well-being.

  11. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kettenbach, Kathrin; Schieferstein, Hanno; Grunewald, Catrin; Hampel, Gabriele; Schuetz, Christian L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Iffland, Dorothee; Bings, Nicolas H. [Mainz Univ. (Germany). Inst. of Inorganic Chemistry and Analytical Chemistry; Reffert, Laura M. [Hannover Medical School (Germany). Radiopharmaceutical Chemistry; Ross, Tobias L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Hannover Medical School (Germany). Radiopharmaceutical Chemistry

    2015-07-01

    Boron neutron capture therapy (BNCT) employs {sup 10}B-pharmaceuticals administered for the treatment of malignancies, and subsequently irradiated with thermal neutrons. So far, clinical established pharmaceuticals like boron phenylalanine (BPA) or sodium boron mercaptate (BSH) use imperfect (BPA) or passive (BSH) targeting for accumulation at target sites. Due to the need of a selective transportation of boron drugs into cancer cells and sparing healthy tissues, we combined the BNCT approach with the specific and effective folate receptor (FR) targeting concept. The FR is overexpressed on many human carcinomas and provides a selective and specific target for molecular imaging as well as for tumor therapy. We synthesized and characterized a carborane-folate as well as a BSH-folate to study their in vitro characteristics and their potential as new boron-carriers for BNCT. Uptake studies were carried out using human KB cells showing a significant increase of the boron content in cells and demonstrating the successful combination of active FR-targeting and BNCT.

  12. Synthesis of alkenyl boronates from allyl-substituted aromatics using an olefin cross-metathesis protocol.

    Science.gov (United States)

    Hemelaere, Rémy; Carreaux, François; Carboni, Bertrand

    2013-07-01

    An efficient synthesis of 3-aryl-1-propenyl boronates from pinacol vinyl boronic ester and allyl-substituted aromatics by cross metathesis is reported. Although the allylbenzene derivatives are prone to isomerization reaction under metathesis conditions, we found that some ruthenium catalysts are effective for this methodology. This strategy thus provides an interesting alternative approach to alkyne hydroboration, leading to the preparation of unknown compounds. Moreover, the boron substituent can be replaced by various functional groups in good yields.

  13. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems.

    Science.gov (United States)

    Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen

    2016-11-01

    Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level 22.2 in order to avoid boron accumulation in the anolyte effluent.

  14. Synthesis and photoluminescence property of boron carbide nanowires

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B2O3/C powder precursors under an argon flow at 1100~C. The boron carbide nanowires are 5-10 μm in length and 80-100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm.

  15. Asymmetric 1,8/13,2,x-M2C2B10 14-vertex metallacarboranes by direct electrophilic insertion reactions; the VCD and BHD methods in critical analysis of cage C atom positions.

    Science.gov (United States)

    McAnaw, Amelia; Lopez, Maria Elena; Ellis, David; Rosair, Georgina M; Welch, Alan J

    2014-04-07

    The isolation of six isomeric, low-symmetry, dicobaltacarboranes with bicapped hexagonal antiprismatic cage structures, always in low yield, is described from reactions in which 13-vertex cobaltacarborane anions and sources of cobalt-containing cations were present. The vertex-to-centroid distance (VCD) and boron-H distance (BHD) methods are used to locate the correct C atom positions in the cages, thus allowing the compounds to be identified as 1,13-Cp2-1,13,2,10-closo-Co2C2B10H12 (1), 1,8-Cp2-3-OEt-1,8,2,10-closo-Co2C2B10H11 (2), 1,13-Cp2-1,13,2,9-closo-Co2C2B10H12 (3), 1,8-Cp2-1,8,2,4-closo-Co2C2B10H12 (4), 1,13-Cp2-1,13,2,4-closo-Co2C2B10H12 (5) and 1,8-Cp2-1,8,2,5-closo-Co2C2B10H12 (6). It is shown that a common alternative method of cage C atom identification, using refined (as B) U(eq) values, does not work well, at least in these cases. Having identified the correct isomeric forms of the six dicobaltacarboranes, their syntheses are tentatively rationalised in terms of the direct electrophilic insertion of a {CpCo(+)} fragment into [CpCoC2B10](-) anions and it is demonstrated that compounds 1, 4, 5 and 6 can be successfully prepared by deliberately performing such reactions.

  16. Depth resolved investigations of boron implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sztucki, M. E-mail: michael@sztucki.de; Metzger, T.H.; Milita, S.; Berberich, F.; Schell, N.; Rouviere, J.L.; Patel, J

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6x10{sup 15} ions/cm{sup -2} at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {l_brace}1 1 1{r_brace} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  17. Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages.

    Directory of Open Access Journals (Sweden)

    Indusmita Routray

    Full Text Available Chemical mediators of inflammation (CMI are important in host defense against infection. The reduced capacity of host to induce the secretion of these mediators following infection is one of the factors in host susceptibility to infection. Boron, which has been suggested for its role in infection, is reported in this study to increase lymphocyte proliferation and the secretion of CMI by the lipopolysaccharide (LPS-stimulated peritoneal macrophages in BALB/c mice. Boron was administered to mice orally as borax at different doses for 10 consecutive days, followed by the stimulation of animals with ovalbumin and isolation of splenocytes for proliferation assay. The lymphocyte subsets were determined by flow cytometry in spleen cell suspension. The mediators of inflammation, TNF-α, IL-6, IL-1β and nitric oxide (NO, were measured in culture supernatant of LPS-primed macrophages isolated from borax treated mice. TNF and ILs were measured by ELISA. NO was determined by Griess test. The expression of inducible nitric oxide synthase (iNOS in macrophages was studied by confocal microscopy. Results showed a significant increase in T and B cell populations, as indicated by an increase in CD4 and CD19, but not CD8, cells. Boron further stimulated the secretion of TNF-α, IL-6, IL-1β, NO and the expression of iNOS by the LPS-primed macrophages. The effect was dose dependent and most significant at a dose level of 4.6 mg/kg b. wt. Taken together, the study concludes that boron at physiological concentration induces lymphocyte proliferation and increases the synthesis and secretion of pro-inflammatory mediators by the LPS-primed macrophages, more specifically the M1 macrophages, possibly acting through Toll-like receptor. The study implicates boron as a regulator of the immune and inflammatory reactions and macrophage polarization, thus playing an important role in augmenting host defense against infection, with possible role in cancer and other diseases.

  18. Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages.

    Science.gov (United States)

    Routray, Indusmita; Ali, Shakir

    2016-01-01

    Chemical mediators of inflammation (CMI) are important in host defense against infection. The reduced capacity of host to induce the secretion of these mediators following infection is one of the factors in host susceptibility to infection. Boron, which has been suggested for its role in infection, is reported in this study to increase lymphocyte proliferation and the secretion of CMI by the lipopolysaccharide (LPS)-stimulated peritoneal macrophages in BALB/c mice. Boron was administered to mice orally as borax at different doses for 10 consecutive days, followed by the stimulation of animals with ovalbumin and isolation of splenocytes for proliferation assay. The lymphocyte subsets were determined by flow cytometry in spleen cell suspension. The mediators of inflammation, TNF-α, IL-6, IL-1β and nitric oxide (NO), were measured in culture supernatant of LPS-primed macrophages isolated from borax treated mice. TNF and ILs were measured by ELISA. NO was determined by Griess test. The expression of inducible nitric oxide synthase (iNOS) in macrophages was studied by confocal microscopy. Results showed a significant increase in T and B cell populations, as indicated by an increase in CD4 and CD19, but not CD8, cells. Boron further stimulated the secretion of TNF-α, IL-6, IL-1β, NO and the expression of iNOS by the LPS-primed macrophages. The effect was dose dependent and most significant at a dose level of 4.6 mg/kg b. wt. Taken together, the study concludes that boron at physiological concentration induces lymphocyte proliferation and increases the synthesis and secretion of pro-inflammatory mediators by the LPS-primed macrophages, more specifically the M1 macrophages, possibly acting through Toll-like receptor. The study implicates boron as a regulator of the immune and inflammatory reactions and macrophage polarization, thus playing an important role in augmenting host defense against infection, with possible role in cancer and other diseases.

  19. Challenges and Opportunities for the Application of Boron Clusters in Drug Design.

    Science.gov (United States)

    Leśnikowski, Zbigniew J

    2016-09-08

    There are two branches in boron medicinal chemistry: the first focuses on single boron atom compounds, and the second utilizes boron clusters. Boron clusters and their heteroatom counterparts belong to the family of cage compounds. A subset of this extensive class of compounds includes dicarbadodecaboranes, which have the general formula C2B10H12, and their metal biscarboranyl complexes, metallacarboranes, with the formula [M(C2B10H12)2(-2)]. The unique properties of boron clusters have resulted in their utilization in applications such as in pharmacophores, as scaffolds in molecular construction, and as modulators of bioactive compounds. This Perspective presents an overview of the properties of boron clusters that are pertinent for drug discovery, recent applications in the design of various classes of drugs, and the potential use of boron clusters in the construction of new pharmaceuticals.

  20. Boronated liposome development and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M.F. [Univ. of California, Los Angeles, CA (United States)

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  1. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian;

    1993-01-01

    report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique...

  2. Indirect study of 11B(p,α)8Be and 10B(p,α)7Be reactions at astrophysical energies by means of the Trojan Horse Method: recent results

    Science.gov (United States)

    Lamia, L.; Puglia, S. M. R.; Spitaleri, C.; Romano, S.; Del Santo, M. Gimenez; Carlin, N.; Munhoz, M. Gameiro; Cherubini, S.; Kiss, G. G.; Kroha, V.; Kubono, S.; La Cognata, M.; Li, Cheng-Bo; Pizzone, R. G.; Wen, Qun-Gang; Sergi, M. L.; Szanto de Toledo, A.; Wakabayashi, Y.; Yamaguchi, H.; Zhou, Shu-Hua

    2010-03-01

    Nuclear (p,α) reactions destroying the so-called “light-elements” lithium, beryllium and boron have been largely studied in the past mainly because their role in understanding some astrophysical phenomena, i.e. mixing-phenomena occurring in young F-G stars [A.M. Boesgaard et al., Astr. Phys. J, 991, 2005, 621]. Such mechanisms transport the surface material down to the region close to the nuclear destruction zone, where typical temperatures of the order of ˜106 K are reached. The corresponding Gamow energy E=1.22(Z keV [C. Rolfs and W. Rodney, “Cauldrons in the Cosmos”, The Univ. of Chicago press, 1988] is about ˜10 keV if one considers the “boron-case” and replaces in the previous formula Z=1, Z=5 and T=5. Direct measurements of the two 11B(p,α)8Be and 10B(p,α)7Be reactions in correspondence of this energy region are difficult to perform mainly because the combined effects of Coulomb barrier penetrability and electron screening [H.J. Assenbaum, K. Langanke and C. Rolfs, Z. Phys., 327, 1987, 461]. The indirect method of the Trojan Horse (THM) [G. Baur et al., Phys. Lett. B, 178, 1986, 135; G. Calvi et al., Nucl. Phys. A, 621, 1997, 139; C. Spitaleri et al., Phys. Rev. C, 493, 1999, 206] allows one to extract the two-body reaction cross section of interest for astrophysics without the extrapolation-procedures. Due to the THM formalism, the extracted indirect data have to be normalized to the available direct ones at higher energies thus implying that the method is a complementary tool in solving some still open questions for both nuclear and astrophysical issues [S. Cherubini et al., Astr. Phys. J, 457, 1996, 855; C. Spitaleri et al., Phys. Rev. C, 63, 2001, 005801; C. Spitaleri et al., Phys. Rev. C, 63, 2004, 055806; A. Tumino et al., Phys. Rev. Lett., 98, 2007, 252502; M. La Cognata et al., Phys. Rev. Lett., 101, 2007, 152501; M.L. Sergi et al., AIPC, 1016, 2008, 433; H.W. Becker, Z. Phys. A, 327, 1987, 341; T. Rauscher and G. Raimann, Phys. Rev

  3. Boron neutron capture therapy of brain tumors: past history, current status, and future potential.

    Science.gov (United States)

    Barth, R F; Soloway, A H; Brugger, R M

    1996-01-01

    Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when boron-10 is irradiated with low-energy thermal neutrons to yield alpha particles and recoiling lithium-7 nuclei. High-grade astrocytomas, glioblastoma multiforme, and metastatic brain tumors constitute a major group of neoplasms for which there is no effective treatment. There is growing interest in using BNCT in combination with surgery to treat patients with primary, and possibly metastatic brain tumors. For BNCT to be successful, a large number of 10B atoms must be localized on or preferably within neoplastic cells, and a sufficient number of thermal neutrons must reach and be absorbed by the 10B atoms to sustain a lethal 10B(n, alpha)7 Li reaction. Two major questions will be addressed in this review. First, how can a large number of 10B atoms be delivered selectively to cancer cells? Second, how can a high fluence of neutrons be delivered to the tumor? Two boron compounds currently are being used clinically, sodium borocaptate (BSH) and boronophenylalanine (BPA), and a number of new delivery agents are under investigation, including boronated porphyrins, nucleosides, amino acids, polyamines, monoclonal and bispecific antibodies, liposomes, and epidermal growth factor. These will be discussed, and potential problems associated with their use as boron delivery agents will be considered. Nuclear reactors, currently, are the only source of neutrons for BNCT, and the fission process within the core produces a mixture of lower-energy thermal and epithermal neutrons, fast or high (> 10,000 eV) energy neutrons, and gamma rays. Although thermal neutron beams have been used clinically in Japan to treat patients with brain tumors and cutaneous melanomas, epithermal neutron beams should be more useful because of their superior tissue-penetrating properties. Beam sources and characteristics will be discussed in the context of current and future BNCT trials. Finally, the past and present

  4. Reactions with a 10Be beam to study the one-neutron halo nucleus 11Be

    CERN Document Server

    Jones, K L

    2016-01-01

    Halo nuclei are excellent examples of few-body systems consisting of a core and weakly-bound halo nucleons. Where there is only one nucleon in the halo, as in 11Be, the many-body problem can be reduced to a two-body problem. The contribution of the 1s1/2 orbital to the ground state configuration in 11Be, characterized by the spectroscopic factor, S, has been extracted from direct reaction data by many groups over the past five decades with discrepant results. An experiment was performed at the Holifield Radioactive Ion Beam Facility using a 10Be primary beam at four different energies with the goal of resolving the discrepancy through a consistent analysis of elastic, inelastic, and transfer channels. Faddeev-type calculations, released after the publication of the experimental results, show that dynamic core excitation in the transfer process can lead to reduced differential cross sections at higher beam energies. This reduction would lead to the extraction of decreasing values of S with increasing beam ener...

  5. Numerical simulation of boron injection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, Hernan, E-mail: htb@forsmark.vattenfall.s [Forsmarks Kraftgrupp AB, SE-742 03 Osthammar (Sweden); Buchwald, Przemyslaw [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Frid, Wiktor, E-mail: wiktor@reactor.sci.kth.s [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2010-02-15

    The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of

  6. Boron nitrides synthesized directly from the elements at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, M.; Yoo, C.S.; Akella, J.; Cynn, H.

    1996-11-01

    We use angle-resolved synchrotron x-ray diffraction, laser sample heating, and diamond-anvil cells to follow in-situ chemical reactions directly between elemental boron and nitrogen. The structures of the solid reaction products vary with pressure. Below 10 GPa, hexagonal BN is the product; cubic or wurzite BN form at higher pressures. Under nitrogen-rich conditions, another hexagonal allotrope occurs which seems to be a new highly transparent, low density h`-BN. No direct reactions occur at ambient temperature even at pressures as high as 50 GPa, implying that a large activation barrier limits the kinetics of these exothermic processes. Laser heating overcomes the large kinetic activation barrier and initiates spontaneous, self-sustaining exothermic reactions even at moderate pressures.

  7. A Four‐Component Reaction for the Synthesis of Dioxadiazaborocines

    DEFF Research Database (Denmark)

    Flagstad, Thomas; Petersen, Mette Terp; Nielsen, Thomas Eiland

    2015-01-01

    A four‐component reaction for the synthesis of heterocyclic boronates is reported. Readily available hydrazides, α‐hydroxy aldehydes, and two orthogonally reactive boronic acids are combined in a single step to give structurally distinct bicyclic boronates, termed dioxadiazaborocines (DODA boroci...

  8. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F.; Lin, S.Y. [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Peir, J.J. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Liao, J.W. [Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan (China); Lin, Y.C. [Department of Veterinary Medicine, National Chung Hsing University, Taiwan (China); Chou, F.I., E-mail: fichou@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)] [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China)

    2011-12-15

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 {mu}g {sup 10}B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg {sup 10}B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  9. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy.

    Science.gov (United States)

    Gierga, D P; Yanch, J C; Shefer, R E

    2000-01-01

    A potential application of the 10B(n, alpha)7Li nuclear reaction for the treatment of rheumatoid arthritis, termed Boron Neutron Capture Synovectomy (BNCS), is under investigation. In an arthritic joint, the synovial lining becomes inflamed and is a source of great pain and discomfort for the afflicted patient. The goal of BNCS is to ablate the synovium, thereby eliminating the symptoms of the arthritis. A BNCS treatment would consist of an intra-articular injection of boron followed by neutron irradiation of the joint. Monte Carlo radiation transport calculations have been used to develop an accelerator-based epithermal neutron beam line for BNCS treatments. The model includes a moderator/reflector assembly, neutron producing target, target cooling system, and arthritic joint phantom. Single and parallel opposed beam irradiations have been modeled for the human knee, human finger, and rabbit knee joints. Additional reflectors, placed to the side and back of the joint, have been added to the model and have been shown to improve treatment times and skin doses by about a factor of 2. Several neutron-producing charged particle reactions have been examined for BNCS, including the 9Be(p,n) reaction at proton energies of 4 and 3.7 MeV, the 9Be(d,n) reaction at deuteron energies of 1.5 and 2.6 MeV, and the 7Li(p,n) reaction at a proton energy of 2.5 MeV. For an accelerator beam current of 1 mA and synovial boron uptake of 1000 ppm, the time to deliver a therapy dose of 10,000 RBEcGy ranges from 3 to 48 min, depending on the treated joint and the neutron producing charged particle reaction. The whole-body effective dose that a human would incur during a knee treatment has been estimated to be 3.6 rem or 0.75 rem, for 1000 ppm or 19,000 ppm synovial boron uptake, respectively, although the shielding configuration has not yet been optimized. The Monte Carlo design process culminated in the construction, installation, and testing of a dedicated BNCS beam line on the high

  10. Selective uptake of p-boronophenylalanine by osteosarcoma cells for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, C. [Department of Surgery, Experimental Surgery Laboratory, University of Pavia, Piazza Botta, Pavia (Italy)], E-mail: ferraric@unipv.it; Zonta, C.; Cansolino, L.; Clerici, A.M.; Gaspari, A. [Department of Surgery, Experimental Surgery Laboratory, University of Pavia, Piazza Botta, Pavia (Italy); Altieri, S.; Bortolussi, S.; Stella, S. [Department of Nuclear and Theoretical Physics of University, Via Bassi, 6, Pavia (Italy); National Institute of Nuclear Physics (INFN) Section of Pavia, Via Bassi, 6, Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics of University, Via Bassi, 6, Pavia (Italy); Dionigi, P.; Zonta, A. [Department of Surgery, Experimental Surgery Laboratory, University of Pavia, Piazza Botta, Pavia (Italy)

    2009-07-15

    Osteosarcoma is the most common non-hematologic primary cancer type that develops in bone. Current osteosarcoma treatments combine multiagent chemotherapy with extensive surgical resection, which in some cases makes necessary the amputation of the entire limb. Nevertheless its infiltrative growth leads to a high incidence of local and distant recurrences that reduce the percentage of cured patients to less than 60%. These poor data required to set up a new therapeutic approach aimed to restrict the surgical removal meanwhile performing a radical treatment. Boron neutron capture therapy (BNCT), a particular radiotherapy based on the nuclear capture and fission reactions by atoms of {sup 10}B, when irradiated with thermal neutrons, could be a valid alternative or integrative option in case of osteosarcoma management, thanks to its peculiarity in selectively destroying neoplastic cells without damaging normal tissues. Aim of the present work is to investigate the feasibility of employing BNCT to treat the limb osteosarcoma. Boronophenylalanine (BPA) is used to carry {sup 10}B inside the neoplastic cells. As a first step the endocellular BPA uptake is tested in vitro on the UMR-106 osteosarcoma cell line. The results show an adequate accumulation capability. For the in vivo experiments, an animal tumor model is developed in Sprague-Dawley rats by means of an intrafemoral injection of UMR-106 cells at the condyle site. The absolute amounts of boron loading and the tumor to normal tissue {sup 10}B ratio are evaluated 2 h after the i.v. administration of BPA. The boron uptake by the neoplastic tissue is almost twice the normal one. However, higher values of boron concentration in tumor are requested before upholding BNCT as a valid therapeutic option in the treatment of osteosarcoma.

  11. Electro-oxidation and characterization of nickel foam electrode for removing boron.

    Science.gov (United States)

    Kartikaningsih, Danis; Huang, Yao-Hui; Shih, Yu-Jen

    2017-01-01

    The electrocoagulation (EC) using metallic Ni foam as electrodes was studied for the removal of boron from solution. The electrolytic parameters were pH (4-12), current density (0.6-2.5 mA cm(-2)), and initial concentration of boron (10-100 mg L(-1)). Experimental results revealed that removal efficiency was maximized at pH 8-9, and decreased as the pH increased beyond that range. At particular onset potentials (0.5-0.8 V vs. Hg/HgO), the micro-granular nickel oxide that was created on the surface of the nickel metal substrate depended on pH, as determined by cyclic voltammetry. Most of the crystallites of the precipitates comprised a mixed phase of β-Ni(OH)2, a theophrastite phase, and NiOOH, as revealed by XRD and SEM analyses. A current density of 1.25 mA cm(-2) was effective in the EC of boron, and increasing the concentration of boric acid from 10 to 100 mg L(-1) did not greatly impair removal efficiency. A kinetic investigation revealed that the reaction followed a pseudo-second order rate model. The optimal conditions under which 99.2% of boron was removed from treated wastewater with 10 mg L(-1)-B, leaving less than 0.1 mg L(-1)-B in the electrolyte, were pH 8 and 1.25 mA cm(-2) for 120 min.

  12. Synthesis and characterization of boron-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ceragioli, H J; Peterlevitz, A C; Quispe, J C R; Pasquetto, M P; Sampaio, M A; Baranauskas, V [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, 13083-852 Campinas SP Brasil (Brazil); Larena, A [Department of Chemical Industrial Engineering and Environment, Universidad Politecnica de Madrid, E.T.S. Ingenieros Industriales, C/ Jose Gutierrez Abascal, Madrid (Spain)], E-mail: vitor.baranauskas@gmail.com

    2008-03-15

    Boron-doped carbon nanotubes have been prepared by chemical vapour deposition of ethyl alcohol doped with B{sub 2}O{sub 3} using a hot-filament system. Multi-wall carbon nanotubes of diameters in the range of 30-100 nm have been observed by field emission scanning electron microscopy (FESEM). Raman measurements indicated that the degree of C-C sp{sup 2} order decreased with boron doping. Lowest threshold fields achieved were 1.0 V/{mu}m and 2.1 V/{mu}m for undoped and boron-doped samples, respectively.

  13. Study of gamma-ray emission by proton beam interaction with injected Boron atoms for future medical imaging applications

    Science.gov (United States)

    Petringa, G.; Cirrone, G. A. P.; Caliri, C.; Cuttone, G.; Giuffrida, L.; Larosa, G.; Manna, R.; Manti, L.; Marchese, V.; Marchetta, C.; Margarone, D.; Milluzzo, G.; Picciotto, A.; Romano, F.; Romano, F. P.; Russo, A. D.; Russo, G.; Santonocito, D.; Scuderi, V.

    2017-03-01

    In this work an experimental and theoretical study of gamma-prompt emission has been carried out with the main aim being to understand to what extent this approach can be used during a treatment based on proton-boron fusion therapy. An experimental campaign, carried out with a high purity Germanium detector, has been performed to evaluate the gamma emission from two pure 11B and 10B targets. Furthermore, a set of analytical simulations, using the Talys nuclear reaction code has been performed and the calculated spectra compared with the experimental results. These comparisons allowed us to successfully validate Talys which was then used to estimate the gamma emission when a realistic Boron concentration was considered. Both simulations and experimental results suggest that the gamma emission is low at certain proton energies, thus in order to improve the imaging capabilities, while still maintaining the Boron therapeutic role, we propose the addition of natural Copper bound by a dipyrromethene, BodiPy, to boron atoms. Analytical simulations with Talys suggest that the characteristic spectrum of the copper prompt gamma-rays has several peaks in the energetic regions where the background is negligible.

  14. Plasma boron and the effects of boron supplementation in males.

    Science.gov (United States)

    Green, N R; Ferrando, A A

    1994-11-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all.

  15. Bright prospects for boron

    NARCIS (Netherlands)

    Wassink, J.

    2012-01-01

    Professor Lis Nanver at Dimes has laid the foundation for a range of new photodetectors by creating a thin coating of boron on a silicon substrate. The sensors are used in ASML’s latest lithography machines and FEI’s most sensitive electron microscopes.

  16. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    Science.gov (United States)

    Rinaldo, Steven G.

    formation of boron nitride nanotubes (BNNTs). In Chapter 6, we look at various methods of producing BNNTs from boron droplets, and introduce a new method involving injection of boron powder into an induction furnace. In Chapter 7 we consider another useful process, where ammonia is reacted with boron vapor generated in situ, either through the reaction of boron with metal oxides or through the decomposition of metal borides.

  17. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  18. 双硫仑样反应ICD-10编码探讨%Discussion of Disulfiram Like Reaction of ICD-10 Code

    Institute of Scientific and Technical Information of China (English)

    江俊

    2015-01-01

    Objective To summary the key points of coding for disulfiram-like reaction in ICD-10. Methods On the base of introducing pharmacological ef ect of disulfirm and pathogenesis of disulfiram-like reaction,the ways of Coding for Disulfiram-like Reaction in ICD-10 were analyzed. Results The coding are:disulfiram poisoning T50.6,ethanol combined with antibacterial agents or disulfiram T52.8、T65.8.Conclusion It was very important for coding clerks to master the ICD-10 searching methods,learn relevant knowledge about the disease,and careful y read medical records,so as to manage accurately ICD-10 ecoding of disulfiram-like reaction.%目的总结双硫仑样反应ICD-10编码的要点。方法介绍双硫仑的药理作用及双硫仑样反应的发病机制,分析不同原因引起的双硫仑样反应ICD-10编码的方法。结果双硫仑中毒T50.6,抗生素或双硫仑与酒精联用T52.8。结论掌握ICD-10的查找方法,理解双硫仑样反应相关知识,仔细阅读分析病案,是正确编码双硫仑样反应的关键。

  19. Comment on: "Is linear group X-Y-Z in boron carbide the weakest link in the structure?" by S. V. Konovalikhin and V. I. Ponomarev (Russ. J. Phys. Chem. A 89 (10), 1850 (2015))

    Science.gov (United States)

    Werheit, H.

    2016-07-01

    The characterization of the boron carbide investigated in the above-mentioned paper and some of the conclusions made on it by the authors are critically appraised with regard to reliable results obtained earlier by other scientists.

  20. Autoionizing states of atomic boron

    Science.gov (United States)

    Argenti, Luca; Moccia, Roberto

    2016-04-01

    We present a B -spline K -matrix method for three-active-electron atoms in the presence of a polarizable core, with which it is possible to compute multichannel single-ionization scattering states with good accuracy. We illustrate the capabilities of the method by computing the parameters of several autoionizing states of the boron atom, with S2e, 2,o2P and D2e symmetry, up to at least the 2 p2(1S) excitation threshold of the B ii parent ion, as well as selected portions of the photoionization cross section from the ground state. Our results exhibit remarkable gauge consistency, they significantly extend the existing sparse record of data for the boron atom, and they are in good agreement with the few experimental and theoretical data available in the literature. These results open the way to extend to three-active-electron systems the spectral analysis of correlated wave packets in terms of accurate scattering states that has already been demonstrated for two-electron atoms in Argenti and Lindroth [Phys. Rev. Lett. 105, 053002 (2010), 10.1103/PhysRevLett.105.053002].

  1. Characterization of boron doped nanocrystalline diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, 13083-852 Campinas SP Brasil (Brazil)], E-mail: vitor.baranauskas@gmail.com

    2008-03-15

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/{mu}m range.

  2. Cluster correlation effects in 12C+12C and 14N+10B fusion-evaporation reactions

    Directory of Open Access Journals (Sweden)

    Morelli L.

    2015-01-01

    Full Text Available The decay of highly excited states of 24Mg is studied in fusion evaporation events completely detected in charge in the reactions 12C+12C and 14N+10B at 95 and 80 MeV incident energy respectively. The comparison of light charged particles measured spectra with statistical model predictions suggests that the dominant reaction mechanism is compound nucleus (CN formation and decay. However, in both reactions, a discrepancy with statistical expectations is found for α particles detected in coincidence with Carbon, Oxigen and Neon residues. The comparison between the two reactions shows that this discrepancy is only partly explained by an entrance channel effect. Evidence for cluster correlations in excited 24Mg CN is suggested by the comparison between the measured and calculated branching ratios for the channels involving α particles.

  3. Effect of Boronization on Ohmic Plasmas in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H.; Kugel, H.; Maingi, R.; Wampler, W.R.; Blanchard, W.; Bell, M.; Bell, R.; LeBlanc, B.; Gates, D.; Kaye, S.; LaMarche, P.; Menard, J.; Mueller, D.; Na, H.K.; Nishino, N.; Paul, S.; Sabbagh, S.; Soukhanovskii, V.

    2001-03-27

    Boronization of the National Spherical Torus Experiment (NSTX) has enabled access to higher density, higher confinement plasmas. A glow discharge with 4 mTorr helium and 10% deuterated trimethyl boron deposited 1.7 g of boron on the plasma facing surfaces. Ion beam analysis of witness coupons showed a B+C areal density of 10 to the 18 (B+C) cm to the -2 corresponding to a film thickness of 100 nm. Subsequent ohmic discharges showed oxygen emission lines reduced by x15, carbon emission reduced by two and copper reduced to undetectable levels. After boronization, the plasma current flattop time increased by 70% enabling access to higher density, higher confinement plasmas.

  4. Oxidation of Silicon and Boron in Boron Containing Molten Iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new process of directly smelting boron steel from boron-containing pig iron has been established. The starting material boron-containing pig iron was obtained from ludwigite ore, which is very abundant in the eastern area of Liaoning Province of China. The experiment was performed in a medium-frequency induction furnace, and Fe2O3 powder was used as the oxidizing agent. The effects of temperature, addition of Fe2O3, basicity, stirring, and composition of melt on the oxidation of silicon and boron were investigated respectively. The results showed that silicon and boron were oxidized simultaneously and their oxidation ratio exceeded 90% at 1 400 ℃. The favorable oxidation temperature of silicon was about 1 300-1 350 C. High oxygen potential of slag and strong stirring enhanced the oxidation of silicon and boron.

  5. Design of a boron neutron capture enhanced fast neutron therapy assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonglu [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The

  6. Epithermal neutron beam adoption for liver cancer treatment by boron and gadolinium neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Tetsuo [Musashi Inst. of Tech., Kawasaki, Kanagawa (Japan). Atomic Energy Research Lab

    2001-06-01

    Comparative evaluation was made on depth-dose distribution in boron neutron capture therapy (B-NCT) and gadolinium one (Gd-NCT) for the treatments of liver cancers. At present, epithermal neutron beam is expected to be applicable to the treatment of deep and widespread tumors. ICRU computational model of ADAM and EVA was used as a liver phantom loading a tumor at depth of 6 cm in its central region. Epithermal neutron beam of Musashi reactor was used as the primary neutron beam for the depth-dose calculation. Calculation was conducted using the three-dimensional continuous-energy Monte Carlo code MCNP4A. The doses observed in both NCTs were bumped over the tumor region but the dose for Gd-NCT was not so tumor-specific compared with that for BNCT because radiation in Gd-NCT was due to {gamma}-ray. The mean physical dose was 4 Gy/h for boron 30 ppm and 5 Gy/h for Gd 1000 ppm when exposed to an epithermal neutron flux of 5x10{sup 8} n/cm{sup -2}/sec and the dose ratio of tumor-to normal tissue was 2.7 for boron and 2.5 for Gd. The lethal dose of 50 Gy for the liver can be accomplished under conditions where the dose has not reached 25 Gy, the tolerance dose of the normal tissue. This seems very encouraging and indicating that both B-NCT and Gd-NCT are applicable for the treatment for liver cancer. However, if normal tissue contain 1/4 of the tumor concentration of boron or Gd, the BNCT would still possible when considering a large RBE value for {sup 10}B(n, {alpha}) reaction but the Gd-NCT would impossible for deep liver treatment. (M.N.)

  7. Novel Substitution Reactions of 5-(4-Nitrophenyl)-10,15,20-triphenyl porphyrin with Nucleophilic Reagents

    Institute of Scientific and Technical Information of China (English)

    SHAO,Zhi-Jun; CHEN,Zhang-Ping; OUYANG,Yan; ZENG,Dan-Li

    2004-01-01

    @@ Substitution reactions of 5-(4-nitrophenyl)-10,15,20-triphenylporphyrin (1)and its Ni(Ⅱ) complexe 2 with different nucleophilic reagents were studied for preparing asymmetric porphyrin. The reaction products are different with the nucleophilic reagents changing. Diporphyrin (3) was obtained when compound 1 reacted with sodium phenoxide or diphenoxide ion in DMF solution. Whereas the nitro group was reduced and 5-(4-amino-phenyl)-10,15,20-triphenylporphyrinato Nickel(Ⅱ) (4) was achieved when compound 2 reacted with above nuleophilic reagents in the same condition. The reductive product 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (5) was also achieved when 1 reacted with mercaptoethanol or thiophene and lithium hydroxide. While the nitro group was substituted by cyanide anion and 5-(4-nitrilephenyl)-10,15,20-triphenylporphyrin (6) was achieved when 1 reacted with sodium cyanide.

  8. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.

    2013-04-01

    Boron removal in seawater desalination presents a particular challenge. In seawater reverse osmosis (SWRO) systems boron removal at low concentration (<0.5 mg/L) is usually achieved by a second pass using brackish water RO membranes. However, this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous solution was carried out by EC process using aluminum and iron electrodes. Several operating parameters on the removal efficiency such as initial pH, current density, initial boron ion concentration, feed concentration, gap between electrodes, and electrode material, were investigated. In the case of bipolar electrocoagulation (BEC), an optimum removal efficiency of 96% corresponding to a final boron concentration of 0.4 mg/L was achieved at a current density of 6 mA/cm2 and pH = 8 using aluminum electrodes. The concentration of NaCl was 2,500 mg/L and the gap between the electrodes of 0.5 cm. Furthermore, a comparison between monopolar electrocoagulation (MEC) and BEC using both aluminum and iron electrodes was carried out. Results showed that the BEC process has reduced the current density applied to obtain high level of boron removal in a short reaction time compared to MEC process. The high performance of the EC showed that the process could be used to reduce boron concentration to acceptable levels at low-cost and more environmentally friendly. © 2013 Copyright Taylor and Francis Group, LLC.

  9. Structures, stability, mechanical and electronic properties of α-boron and α*-boron

    OpenAIRE

    Chaoyu He; J. X. Zhong

    2013-01-01

    The structures, stability, mechanical and electronic properties of α-boron and a promising metastable boron phase (α*-boron) have been studied by first-principles calculations. α-boron and α*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of “3S-6D-3S” and “2S-6D-4S”, respectively. The total energy calculations show that α*-boron is less stable than α-boron but more favorable than the well-known β-boron and γ-boron at zero pressure. Both α-boron and...

  10. Synthesis of boron nitride from boron containing poly(vinyl alcohol) as ceramic precursor

    Indian Academy of Sciences (India)

    M Das; S Ghatak

    2012-02-01

    A ceramic precursor, prepared by condensation reaction from poly(vinyl alcohol) (PVA) and boric acid (H3BO3) in 1:1, 2:1 and 4:1 molar ratios, was synthesized as low temperature synthesis route for boron nitride ceramic. Samples were pyrolyzed at 850°C in nitrogen atmosphere followed by characterization using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD).

  11. Boron Neutron Capture Therapy (BCNT) for the Treatment of Liver Metastases: Biodistribution Studies of Boron Compounds in an Experimental Model

    Energy Technology Data Exchange (ETDEWEB)

    Marcela A. Garabalino; Andrea Monti Hughes; Ana J. Molinari; Elisa M. Heber; Emiliano C. C. Pozzi; Maria E. Itoiz; Veronica A. Trivillin; Amanda E. Schwint; Jorge E. Cardoso; Lucas L. Colombo; Susana Nievas; David W. Nigg; Romina F. Aromando

    2011-03-01

    Abstract We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of 10B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na210B10H10), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.

  12. BORON-NITROGEN RELATIONSHIP IN WHEAT (Triticum aestivum L. GROWN WITH THE NUTRIENT SOLUTION

    Directory of Open Access Journals (Sweden)

    Mehmet ALPASLAN

    1996-03-01

    Full Text Available The effects of boron applied 0.01, 0.1, 1.0, and 10.0 µg B/ml levels as boric acid (H3 BO3, and nitrogen applied 25, 100, 200, and 400 µg N/ml as ammonium nitrate (NH4 NO3, respectively, on the amount of dry matter yield, and boron, nitrogen and nitrate contents of wheat (Triticum aestivum L. grown in perlite medium with Ruakura nutrient solution under greenhouse conditions were investigated. Dry matter yield and nitrate contents of wheat were decreased and boron content was increased with increasing boron application. Controversially, application of nitrogen increased dry matter yield, nitrogen and nitrate contents of wheat, while decreases in boron contents. Those effects of boron and nitrogen were found to be statistically significant (P

  13. Integral measurement of the $^{12}$C(n,p)$^{12}$B reaction up to 10 GeV

    CERN Document Server

    Žugec, P; Bosnar, D; Ventura, A; Mengoni, A; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Cortés-Giraldo, M.A; Cosentino, L; Diakaki, M; Domingo-Pardo, C; Dressler, R; Duran, I; Eleftheriadis, C; Ferrari, A; Finocchiaro, P; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Heinitz, S; Jenkins, D G; Jericha, E; Käppeler, F; Karadimos, D; Kivel, N; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Meo, S Lo; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P; Mastromarco, M; Mendoza, E; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Musumarra, A; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T

    2016-01-01

    The integral measurement of the $^{12}$C(n,p)$^{12}$B reaction was performed at the neutron time of flight facility n_TOF at CERN. The total number of $^{12}$B nuclei produced per neutron pulse of the n_TOF beam was determined using the activation technique in combination with a time of flight technique. The cross section is integrated over the n_TOF neutron energy spectrum from reaction threshold at 13.6 MeV to 10 GeV. Having been measured up to 1 GeV on basis of the $^{235}$U(n,f) reaction, the neutron energy spectrum above 200 MeV has been reevaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200 MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1 GeV up to 10 GeV. The experimental results related to the $^{12}$C(n,p)$^{12}$B reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which m...

  14. Simultaneous Disulfide and Boronic Acid Ester Exchange in Dynamic Combinatorial Libraries

    DEFF Research Database (Denmark)

    Diemer, Sanna L.; Kristensen, Morten; Rasmussen, Brian

    2015-01-01

    that operate simultaneously or two reversible reactions that operate independently. Both these scenarios have advantages and disadvantages. In this contribution, we show how disulfide exchange and boronic ester transesterification can function simultaneous in dynamic combinatorial libraries under appropriate...

  15. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0mA/cm{sup 2}, initial boron concentration 100mg/L and solution temperature 293K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following;[ECB]=7.6x10{sup 6}x[OH]{sup 0.11}x[CD]{sup 0.62}x[IBC]{sup -0.57}x[DSE]{sup -0.}= {sup 04}x[T]{sup -2.98}x[t] Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  16. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

  17. Synovectomy by neutron capture in boron; Sinovectomia por captura de neutrones en boro

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R. [Unidades Academicas de Estudios Nucleares, Ingenieria Electrica y Matematicas, Universidad Autonoma de Zacatecas, A.P. 336, C.P. 98000 Zacatecas (Mexico)

    2002-07-01

    The rheumatoid arthritis is an illness which affect approximately at 3% of the World population. This illness is characterized by the inflammation of the joints which reduces the quality of life and the productivity of the patients. Since, it is an autoimmune illness, the inflammation is due to the overproduction of synovial liquid by the increase in the quantity of synoviocytes. The rheumatoid arthritis does not have a definitive recovery and the patients have three options of treatment: the use of drugs, the surgery and the radio synovectomy. The synovectomy by neutron capture in Boron is a novel proposal of treatment of the rheumatoid arthritis that consists in using a charged compound with Boron 10 that is preferently incorporated in the synoviocytes and to a less extent in the rest of surrounding tissues of the joint. Then, the joint is exposed to a thermal neutron field that induces the reaction (n, {alpha}) in the {sup 10} B. the products of this reaction place their energy inside synoviocytes producing their reduction and therefore the reduction of the joint inflammation. Since it is a novel procedure, the synovectomy by neutron capture in boron has two problems: the source design and the design of the adequate drug. In this work it has been realized a Monte Carlo study with the purpose to design a moderating medium that with a {sup 239} Pu Be source in its center, produces a thermal neutron field. With the produced neutron spectra, the neutrons spectra and neutron doses were calculated in different sites inside a model of knee joint. In Monte Carlo studies it is necessary to know the elemental composition of all the joint components, for the case of synovia and the synovial liquid this information does not exist in such way that it is supposed that its composition is equal than the water. In this work also it has been calculated the kerma factors by neutrons of synovia and the synovial liquid supposing that their elemental composition are similar to the

  18. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  19. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality.

    Science.gov (United States)

    Sergeeva, Alina P; Popov, Ivan A; Piazza, Zachary A; Li, Wei-Li; Romanescu, Constantin; Wang, Lai-Sheng; Boldyrev, Alexander I

    2014-04-15

    Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center-two-electron (2c-2e) σ bonds on the periphery and delocalized multicenter-two-electron (nc-2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron's electron deficiency and leads to fluxional behavior, which has been observed in B13(+) and B19(-). A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B(-), formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B(-)/C analogy. It is

  20. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.;

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...... melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded...... with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy....

  1. Boron effects on creep rupture strength of W containing advanced ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Mito, N.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    The creep strength in ferritic creep resistant steels is increased by boron addition. However, the strengthening mechanisms have not yet been studied. This study clarifies the strengthening mechanism of 9% chromium steels with 10{proportional_to}100ppm boron and 0.5{proportional_to}2.0mass% tungsten in the laboratory. The strengthening effect of simultaneous addition of boron and tungsten was analyzed by hardenability, room-temperature strength and creep tests at 650 C. Changes in the microstructure as a result of the addition of boron and tungsten were also examined by optical microscope and transmission electron microscope (TEM). In addition, Alpha-ray Track Etching (ATE) method was used to detect the boron distribution and analyze the mechanisms change in the mechanical properties. Boron addition did not affect room-temperature strength, however, simultaneous addition of boron and tungsten increased room-temperature and high-temperature strength. According to ATE analysis, boron exists at the grain boundary. Therefore, synergistic effects of boron and tungsten on the creep strength suggest the tungsten precipitates stabilization by boron at the grain boundary. (orig.)

  2. L-Phenylalanine preloading reduces the (10)B(n, α)(7)Li dose to the normal brain by inhibiting the uptake of boronophenylalanine in boron neutron capture therapy for brain tumours.

    Science.gov (United States)

    Watanabe, Tsubasa; Tanaka, Hiroki; Fukutani, Satoshi; Suzuki, Minoru; Hiraoka, Masahiro; Ono, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. Previously, high doses of one of the boron compounds used for BNCT, L-BPA, were found to reduce the boron-derived irradiation dose to the central nervous system. However, injection with a high dose of L-BPA is not feasible in clinical settings. We aimed to find an alternative method to improve the therapeutic efficacy of this therapy. We examined the effects of oral preloading with various analogues of L-BPA in a xenograft tumour model and found that high-dose L-phenylalanine reduced the accumulation of L-BPA in the normal brain relative to tumour tissue. As a result, the maximum irradiation dose in the normal brain was 19.2% lower in the L-phenylalanine group relative to the control group. This study provides a simple strategy to improve the therapeutic efficacy of conventional boron compounds for BNCT for brain tumours and the possibility to widen the indication of BNCT to various kinds of other tumours.

  3. Novel Photo-induced Coupling Reactions of 9-Fluorenylidenemalononitrile and 1, 1-Diphenyl-2,2-dicyanoe thylene with 10-Methyl-9,10-dihydroacridine. A Study on the Photophysics of the Reaction

    Institute of Scientific and Technical Information of China (English)

    JIANG, Hong; LIU, You-Cheng; WANG, Guan-Wu; WU, Li-Zhu; TUNG, Chen-Ho

    2003-01-01

    9-Fluorenylidenemalononitrile (FDCN) or 1,1-diphenyl-2,2-dicyanoethylene ( DPCN ) reacted with 10-methyl-9,10-dihydroacridine (AcrH2) under irradiation (λ> 320 nm) to give couping products. In order to gain further insight into the mechanism of the photo-induced reaction, the photophysics of the reactions of FDCN or DPCN with AcrH2 have been investigated by using UV-vis spectroscopy, fluorescence spectroscopy,excitation spectroscopy and time-resolved fluorescence spectroscopy, respectively. The results show that FDCN or DPCNinteracts with AcrH2 in the ground states to form a charge transfer complex, which further reacts to give the coupling product upon irradiation.

  4. Glucose selective bis-boronic acid click-fluor.

    Science.gov (United States)

    Zhai, Wenlei; Male, Louise; Fossey, John S

    2017-02-14

    Four novel bis-boronic acid compounds were synthesised via copper catalysed azide-alkyne cycloaddition (CuAAC) reactions. Glucose selectivity was observed for a particular structural motif. Moreover, a new glucose selective fluorescent sensor was designed and synthesised as a result.

  5. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  6. Reaction mechanism for the thermal decomposition of BCl3/CH4/H2 gas mixtures.

    Science.gov (United States)

    Reinisch, Guillaume; Vignoles, Gérard L; Leyssale, Jean-Marc

    2011-10-27

    This paper presents an ab initio study of the B/C/Cl/H gas phase mechanism, featuring 10 addition-elimination reactions involving BH(i)Cl(j) (i + j ≤ 3) species and a first description of the chemical interaction between the carbon-containing and boron-containing subsystems through the three reactions BCl(3) + CH(4) ⇌ BCl(2)CH(3) + HCl, BHCl(2) + CH(4) ⇌ BCl(2)CH(3) + H(2), and BCl(2) + CH(4) ⇌ BHCl(2) + CH(3). A reaction mechanism is then proposed and used to perform some illustrative equilibrium and kinetic calculations in the context of chemical vapor deposition (CVD) of boron carbide. Our results show that the new addition-elimination reaction paths play a crucial role by lowering considerably the activation barrier with respect to previous theoretical evaluations; they also confirm that BCl(2)CH(3) is an important species in the mechanism.

  7. Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality

    Energy Technology Data Exchange (ETDEWEB)

    Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.; Li, Wei-Li; Romanescu, Constantin; Wang, Lai S.; Boldyrev, Alexander I.

    2014-04-15

    Conspectus Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center–two-electron (2c–2e) σ bonds on the periphery and delocalized multicenter–two-electron (nc–2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron’s electron deficiency and leads to fluxional behavior, which has been observed in B13+ and B19–. A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B–, formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B

  8. Conceptual design of an RFQ accelerator-based neutron source for boron neutron-capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wangler, T.P.; Stovall, J.E.; Bhatia, T.S.; Wang, C.K.; Blue, T.E.; Gahbauer, R.A.

    1989-01-01

    We present a conceptual design of a low-energy neutron generator for treatment of brain tumors by boron neutron capture theory (BNCT). The concept is based on a 2.5-MeV proton beam from a radio-frequency quadrupole (RFQ) linac, and the neutrons are produced by the /sup 7/Li(p,n)/sup 7/Be reaction. A liquid lithium target and modulator assembly are designed to provide a high flux of epithermal neutrons. The patient is administered a tumor-specific /sup 10/Be-enriched compound and is irradiated by the neutrons to create a highly localized dose from the reaction /sup 10/B(n,..cap alpha..)/sup 7/Li. An RFQ accelerator-based neutron source for BNCT is compact, which makes it practical to site the facility within a hospital. 11 refs., 5 figs., 1 tab.

  9. Effect of the powder particle size on the wear behavior of boronized AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Guenen, Ali [Mustafa Kemal Univ., Hatay (Turkey). Dept. of Metallurgy and Material Engineering; Kuecuek, Yilmaz; Oege, Mecit; Goek, M. Sabri [Bartin Univ. (Turkey). Dept. of Mechanical Engineering; Er, Yusuf [Firat Univ., Elazig (Turkey); Cay, V. Veli [Dicle Univ., Diyarbakir (Turkey). Civil Aviation Higher School

    2015-06-01

    In this study, the AISI 304 steel specimens were boronized with nanoboron of the size of 10 50 nm and commercial Ekabor 3 powders (<1400 μm) at 950 C to 1000 C for 2 h and 4 h. Boronized steel specimens were characterized via SEM, microhardness and XRD analyses. Abrasive wear behavior of the specimens, boronized at different temperatures and treatment durations, were examined. The fixed ball micro-abrasion tests were carried out using the abrasive slurry, prepared with different SiC powder particle sizes on the boronized specimens at different rotational speeds. The specimens boronized with nanoboron powders exhibited a higher hardness and abrasive wear resistance than the samples boronized with the Ekabor 3 powders.

  10. Effects of supplemental boron on growth performance and meat quality in African ostrich chicks.

    Science.gov (United States)

    Wang, Wei; Xiao, Ke; Zheng, Xinting; Zhu, Daiyun; Yang, Zhi; Tang, Juan; Sun, Pengpeng; Wang, Jing; Peng, Kemei

    2014-11-19

    To investigate the effects of boron on growth performance and meat quality, 10-day-old Africa ostrich chicks were randomly divided into 6 groups with 6 replicates in each group. For 80 days, birds in the treatments were fed the same basal diet but given different concentrations of boron-supplemented water. The highest final BW (33.4 ± 0.30 kg), ADFI (376 ± 1.83 g), and ADG (224 ± 1.01 g) appeared in the group receiving 160 mg/L boron (group 4). 160 mg/L boron also decreased drip loss (2.20 ± 0.59), cooking loss (35.3 ± 1.14), and elevated pH value (6.13 ± 0.28) of meat (P boron improved ostrich growth performance and meat quality; however, high concentrations of boron decreased both performance and meat quality.

  11. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  12. Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru/B(4)C multilayer.

    Science.gov (United States)

    Ksenzov, Dmitriy; Panzner, Tobias; Schlemper, Christoph; Morawe, Christian; Pietsch, Ullrich

    2009-12-10

    Soft-x-ray Bragg reflection from two Ru/B(4)C multilayers with 10 and 63 periods was used for independent determination of both real and imaginary parts of the refractive index n = 1 - delta + ibeta close to the boron K edge (approximately 188 eV). Prior to soft x-ray measurements, the structural parameters of the multilayers were determined by x-ray reflectometry using hard x rays. For the 63-period sample, the optical properties based on the predictions made for elemental boron major deviations were found close to the K edge of boron for the 10-period sample explained by chemical bonding of boron to B(4)C and various boron oxides.

  13. Application of generalized perturbation theory to sensitivity analysis in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanessa S. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Programa de Pos-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Silva, Fernando C.; Silva, Ademir X., E-mail: fernando@con.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Alvarez, Gustavo B. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Dept. de Ciencias Exatas

    2011-07-01

    Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the {sup 10}B (n, {alpha}) {sup 7}Li nuclear reaction, which emits two types of high-energy particles, {alpha} particle and the {sup 7}Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the {sup 10}B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)

  14. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    Science.gov (United States)

    2012-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, the United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized

  15. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer.

    Science.gov (United States)

    Barth, Rolf F; Vicente, M Graca H; Harling, Otto K; Kiger, W S; Riley, Kent J; Binns, Peter J; Wagner, Franz M; Suzuki, Minoru; Aihara, Teruhito; Kato, Itsuro; Kawabata, Shinji

    2012-08-29

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or "BPA", and sodium borocaptate or "BSH" (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials

  16. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    Directory of Open Access Journals (Sweden)

    Barth Rolf F

    2012-08-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH. In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger

  17. Boron Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review

    Science.gov (United States)

    Eisler, R.

    1990-01-01

    Ecological and toxicological aspects of boron (B) in the environment are reviewed, with emphasis on natural resources. Subtopics covered include environmental chemistry, background concentrations, effects, and current recommendations for the protection of living resources. Boron is not now considered essential in mammalian nutrition, although low dietary levels protect against fluorosis and bone demineralization. Excessive consumption (i.e., >1,000 mg B/kg diet, >15 mg B/kg body weight daily, >1.0 mg B/L drinking water, or >210 mg B/kg body weight in a single dose) adversely affects growth, survival, or reproduction in sensitive mammals. Boron and its compounds are potent teratogens when applied directly to the mammalian embryo, but there is no evidence of mutagenicity or carcinogenicity. Boron`s unique affinity for cancerous tissues has been exploited in neutron capture radiation therapy of malignant human brain tumors. Current boron criteria recommended for the protection of sensitive species include aquatic life, <5.0 mg B/L in livestock drinking waters, <30 mg B/kg in waterfowl diets, and <100 mg B/kg in livestock diets.

  18. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  19. Chronic boron exposure and human semen parameters.

    Science.gov (United States)

    Robbins, Wendie A; Xun, Lin; Jia, Juan; Kennedy, Nola; Elashoff, David A; Ping, Liu

    2010-04-01

    Boron found as borates in soil, food, and water has important industrial and medical applications. A panel reviewing NTP reproductive toxicants identified boric acid as high priority for occupational studies to determine safe versus adverse reproductive effects. To address this, we collected boron exposure/dose measures in workplace inhalable dust, dietary food/fluids, blood, semen, and urine from boron workers and two comparison worker groups (n=192) over three months and determined correlations between boron and semen parameters (total sperm count, sperm concentration, motility, morphology, DNA breakage, apoptosis and aneuploidy). Blood boron averaged 499.2 ppb for boron workers, 96.1 and 47.9 ppb for workers from high and low environmental boron areas (pBoron concentrated in seminal fluid. No significant correlations were found between blood or urine boron and adverse semen parameters. Exposures did not reach those causing adverse effects published in animal toxicology work but exceeded those previously published for boron occupational groups.

  20. Boron isotope effect in superconducting MgB2.

    Science.gov (United States)

    Bud'ko, S L; Lapertot, G; Petrovic, C; Cunningham, C E; Anderson, N; Canfield, P C

    2001-02-26

    We report the preparation method of and boron isotope effect for MgB2, a new binary intermetallic superconductor with a remarkably high superconducting transition temperature T(c)(10B) = 40.2 K. Measurements of both temperature dependent magnetization and specific heat reveal a 1.0 K shift in T(c) between Mg11B2 and Mg10B2. Whereas such a high transition temperature might imply exotic coupling mechanisms, the boron isotope effect in MgB2 is consistent with the material being a phonon-mediated BCS superconductor.

  1. Aggregation and deposition behavior of boron nanoparticles in porous media.

    Science.gov (United States)

    Liu, Xuyang; Wazne, Mahmoud; Christodoulatos, Christos; Jasinkiewicz, Kristin L

    2009-02-01

    New kinds of solid fuels and propellants comprised of nanomaterials are making their way into civilian and military applications yet the impact of their release on the environment remains largely unknown. One such material is nano boron, a promising solid fuel and propellant. The fate and transport of nano boron under various aquatic systems was investigated in aggregation and deposition experiments. Column experiments were performed to examine the effects of electrolyte concentration and flow velocity on the transport of boron nanoparticles under saturated conditions, whereas aggregation tests were conducted to assess the effects of electrolytes on the aggregation of the boron nanoparticles. Aggregation tests indicated the presence of different reaction-controlled and diffusion-controlled regimes and yielded critical coagulation concentrations (CCC) of 200 mM, 0.7 mM and 1.5 mM for NaCl, CaCl(2), and MgCl(2), respectively. Aggregation and deposition experimental data corresponded with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) model and the constant attachment efficiency filtration model, respectively. Theoretical calculations indicated that both the primary and secondary energy minima play important roles in the deposition of nano boron in sand columns.

  2. A new study of {sup 10}B(p,α){sup 7}Be reaction at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Caciolli, A.; Depalo, R. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); INFN, Sezione di Padova, Padova (Italy); Broggini, C.; Menegazzo, R. [INFN, Sezione di Padova, Padova (Italy); La Cognata, M.; Puglia, S.M.R.; Sergi, M.L. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Lamia, L. [Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Mou, L.; Rigato, V.; Rossi Alvarez, C. [Laboratori Nazionali di Legnaro, INFN, Legnaro (Italy); Romano, S.; Spitaleri, C. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Tumino, A. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Universita degli Studi di Enna ' ' Kore' ' , Facolta di Ingegneria e Architettura, Enna (Italy)

    2016-05-15

    The {sup 10}B(p,α){sup 7}Be reaction is of great interest since it has many applications in different fields of research such as nuclear astrophysics, nuclear physics, and models of new reactors for clean energy generation. This reaction has been studied at the AN2000 accelerator of the INFN National Laboratories of Legnaro (LNL). The total cross section has been measured in a wide energy range (250-1182 keV) by using the activation method. The decays of the {sup 7}Be nuclei produced by the reaction were measured at the low counting facility of LNL by using two fully shielded high-purity germanium detectors. The present dataset shows a large discrepancy with respect to one of the previous data at the same energies and reduces the total uncertainty to the level of 6%. An R-matrix calculation has been performed on the present data using the parameters from previous Trojan Horse measurements for the 10 and 500 keV resonances. The present data do not lay on the R-matrix fit in one point suggesting the existence of a {sup 11}C level not observed yet. Further nuclear investigations are needed to confirm this hypothesis. (orig.)

  3. Electrochemical Detection of Clenbuterol in Pig Liver at Pyrrole-DNA Modified Boron-doped Diamond Electrode

    Institute of Scientific and Technical Information of China (English)

    WU Jing; LI Xiao-li; WU Xu-mei; HUAN Shuang-yan; SHEN Guo-li; YU Ru-qin

    2005-01-01

    The direct detection of clenbuterol(CL) in pig liver without any extraction separation at a pyrrole-DNA modified boron-doped diamond(BDD) electrode is reported. The pyrrole-DNA modified BDD electrode has a strong electrocatalytic effect on the redox reaction of CL. One oxidization and two reduction peaks of CL appear at 340.2, 299.8 and 166.6 mV(versus SCE), respectively. The pyrrole polymer alone cannot electrocatalyze the above reaction at a BDD electrode; the electrocatalytic effect of a BDD electrode modified with DNA membrane is unsufficient for the analytical detection of CL; the replacement of boron-doped diamond by glass carbon makes the electrocatalytic reaction impossible; the redox process is pH dependent. The influences of various experimental parameters on the pyrrole-DNA modified BDD electrode were investigated. A sensitive cyclic voltammetric response for CL was obtained in a linear range from 3.4×10-6 to 5×10-4 mol/L with a detection limit of 8.5×10-7 mol/L. A mean recovery of 102.7% of CL in the pig liver sample solution and a reproducibility of 3.2% were obtained.

  4. Investigation of the role of 10Li resonances in the halo structure of 11Li through the Li11(p,dLi10 transfer reaction

    Directory of Open Access Journals (Sweden)

    A. Sanetullaev

    2016-04-01

    Full Text Available The first measurement of the one-neutron transfer reaction 11Li(p,d10Li performed using the IRIS facility at TRIUMF with a 5.7A MeV 11Li beam interacting with a solid H2 target is reported. The 10Li residue was populated strongly as a resonance peak with energy Er=0.62±0.04 MeV having a total width Γ=0.33±0.07 MeV. The angular distribution of this resonance is characterized by neutron occupying the 1p1/2 orbital. A DWBA analysis yields a spectroscopic factor of 0.67±0.12 for p1/2 removal strength from the ground state of 11Li to the region of the peak.

  5. Study of the reduction in detection limits of track detectors used for {sup 10}B(n,α){sup 7}Li reaction rate measure through annealing and chemical etching experiments; Estudo da reducao nos limites de deteccao de detectores de tracos utilizados na medida de taxa de reacao {sup 10}B(n, α){sup 7}Li atraves de experimentos de annealing e ataque quimico

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Herminiane L.; Smilgys, Barbara; Guedes, Sandro, E-mail: hluizav@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin; Castro, Vinicius A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear

    2013-08-15

    The Boron Neutron Capture Therapy (BNCT) is an experimental radiotherapy for cancer treatment. It is based on {sup 10}B(n, α){sup 7}Li reaction, which can be measured by track detectors capable of recording events that strike them. With this recording, it is possible to determine the number of alpha particles and recoiling Lithium-7 nucleus, reaction products, and from this information, which amount of radiation dose a patient is exposed to. In this work, PADC detectors were characterized, irradiated at the IEA-R1 IPEN/CNEN reactor to assess the contribution of the{sup 10}B(n, α){sup 7}Li reaction and protons from fast neutron scattering with the elements that compounds the tissue. With the aim of reducing the proton background, the detectors were subjected to heating experiments at 80°C for periods in the range 0-100 hours. This was done in order to restore partially modified structure of the detector, causing a reduction in the size and density of tracks. This effect is known as annealing. For the visualization of tracks at microscope, detectors were made three chemical attacks with sodium hydroxide (NaOH) for 30, 60 and 90 minutes at 70°C. It was observed a reduction in the track density achieving a plateau heating time of 50 hours. For detectors that have not undergone annealing and were etched with another etchant, PEW solution, a reduction of 87% in track density was obtained. (author)

  6. Functional characterization of Citrus macrophylla BOR1 as a boron transporter.

    Science.gov (United States)

    Cañon, Paola; Aquea, Felipe; Rodríguez-Hoces de la Guardia, Amparo; Arce-Johnson, Patricio

    2013-11-01

    Plants have evolved to develop an efficient system of boron uptake and transport using a range of efflux carriers named BOR proteins. In this work we isolated and characterized a boron transporter of citrus (Citrus macrophylla), which was named CmBOR1 for its high homology to AtBOR1. CmBOR1 has 4403 bp and 12 exons. Its coding region has 2145 bp and encodes for a protein of 714 amino acids. CmBOR1 possesses the molecular features of BORs such as an anion exchanger domain and the presence of 10 transmembrane domains. Functional analysis in yeast indicated that CmBOR1 has an efflux boron transporter activity, and transformants have increased tolerance to excess boron. CmBOR1 is expressed in leaves, stem and flowers and shows the greatest accumulation in roots. The transcript accumulation was significantly increased under boron deficiency conditions in shoots. In contrast, the accumulation of the transcript did not change in boron toxicity conditions. Finally, we observed that constitutive expression of CmBOR1 was able to increase tolerance to boron deficiency conditions in Arabidopsis thaliana, suggesting that CmBOR1 is a xylem loading boron transporter. Based on these results, it was determined that CmBOR1 encodes a boric acid/borate transporter involved in tolerance to boron deficiency in plants.

  7. Characterization of Boron Diffusion Phenomena According to the Specific Resistivity of N-Type Si Wafer.

    Science.gov (United States)

    Lee, Woo-Jin; Choi, Chel-Jong; Park, Gye-Choon; Yang, O-Bong

    2016-02-01

    This paper is directed to characterize the boron diffusion process according to the specific resistivity of the Si wafer. N-type Si wafers were used with the specific resistivity of 0.5-3.2 omega-cm, 1.0-6.5 omega-cm and 2.0-8.0 omega-cm. The boron tribromide (BBr3) was used as boron source to create the PN junction on N-type Si wafer. The boron diffusion in N-type Si wafer was characterized by sheet resistance of wafer surface, secondary ion mass spectroscopy measurements (SIMS) and surface life time analysis. The degree of boron diffusion was depended on the variation in specific resistivity and sheet resistance of the bare N-type Si wafer. The boron diffused N-Si wafer exhibited the average junction depth of 750 nm and boron concentration of 1 x 10(19). N-type Si wafer with the different specific resistance considerably affected the boron diffusion length and life time of Si wafer. It was found that the lifetime of boron diffused wafer was proportional to the sheet resistance and resistivity. However, optimization process may necessary to achieve the high efficiency through the high sheet resistance wafer, because the metallization process control is very sensitive.

  8. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.

    Science.gov (United States)

    Lazar, Petr; Zbořil, Radek; Pumera, Martin; Otyepka, Michal

    2014-07-21

    Boron and nitrogen doped graphenes are highly promising materials for electrochemical applications, such as energy storage, generation and sensing. The doped graphenes can be prepared by a broad variety of chemical approaches. The substitution of a carbon atom should induce n-type behavior in the case of nitrogen and p-type behavior in the case of boron-doped graphene; however, the real situation is more complex. The electrochemical experiments show that boron-doped graphene prepared by hydroboration reaction exhibits similar properties as the nitrogen doped graphene; according to theory, the electrochemical behavior of B and N doped graphenes should be opposite. Here we analyze the electronic structure of N/B-doped graphene (at ∼5% coverage) by theoretical calculations. We consider graphene doped by both substitution and addition reactions. The density of states (DOS) plots show that graphene doped by substitution of the carbon atom by N/B behaves as expected, i.e., as an n/p-doped material. N-doped graphene also has a lower value of the workfunction (3.10 eV) with respect to that of the pristine graphene (4.31 eV), whereas the workfunction of B-doped graphene is increased to the value of 5.57 eV. On the other hand, the workfunctions of graphene doped by addition of -NH2 (4.77 eV) and -BH2 (4.54 eV) groups are both slightly increased and therefore the chemical nature of the dopant is less distinguishable. This shows that mode of doping depends significantly on the synthesis method used, as it leads to different types of behaviour, and, in turn, different electronic and electrochemical properties of doped graphene, as observed in electrocatalytic experiments. This study has a tremendous impact on the design of doped graphene systems from the point of view of synthetic chemistry.

  9. Characterization of fragment emission in $^{20}$Ne (7 - 10 MeV/nucleon) + $^{12}$C reactions

    CERN Document Server

    Dey, Aparajita; Bhattacharya, S; Kundu, S; Banerjee, K; Mukhopadhyay, S; Gupta, D; Bhattacharjee, T; Banerjee, S R; Bhattacharya, S; Rana, T K; Basu, S K; Saha, R; Krishan, K; Mukherjee, A; Bandyopadhyay, D; Beck, C

    2007-01-01

    The inclusive energy distributions of the complex fragments (3 $\\leq$ Z $\\leq$ 7) emitted from the bombardment of $^{12}$C by $^{20}$Ne beams with incident energies between 145 and 200 MeV have been measured in the angular range 10$^{o} \\leq \\theta_{lab} \\leq$ 50$^{o}$. Damped fragment yields in all the cases have been found to be the characteristic of emission from fully energy equilibrated composites. The binary fragment yields are compared with the standard statistical model predictions. Enhanced yields of entrance channel fragments (5 $\\leq$ Z $\\leq$ 7) indicate the survival of orbiting-like process in $^{20}$Ne + $^{12}$C system at these energies.

  10. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    Science.gov (United States)

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.

  11. Thermal Studies on Boron-Based Initiator Formulation.

    Directory of Open Access Journals (Sweden)

    A. G. Rajendran

    1996-12-01

    Full Text Available Boron-potassium nitrate pyrotechnic composition can be converted into a hot wire-sensitive initiator formulation by the addition of an extra fuel. viz. lead thiocyanate. The ignition temperature of this composition depends on the percentage of thiocyanate in the mix and follows a binomial fit. The kinetic parameters. viz. activation energy E and pre-exponential factor A of the charge have been calculated from TG and DSC curves using different approaches developed by Coats-Redfern and Kissinger. Ignition delays measured from isothermal TG runs were found to yield equally good values of E and A. A comparison of these values for the tricomponent system' with those of the bicomponent systems as well as of the ingredients suggests that the starting reaction in this formulation is the reaction between lead thiocyanate and potassium nitrate which energises the main reaction between boron and potassium nitrate. leading to ignition.

  12. Irradiation Effects in Fortiweld Steel Containing Different Boron Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M.

    1967-07-15

    Tensile specimens and miniature impact specimens of the low alloyed pressure vessel steel Fortiweld have been irradiated at 265 deg C in R2 to two neutron doses, 6.5 x 10{sup 18} n/cm{sup 2} (> 1 MeV) and 4 x 10{sup 19} n/cm{sup 2} (thermal) and also 9.0 x 10{sup 18} n/cm{sup 2} (> 1 MeV) and 6 x 10{sup 19} n/cm{sup 2} (thermal). Material from three laboratory melts, in which the boron consisted of {sup 10}B, {sup 11}B and natural boron respectively, were investigated. The results both of tensile tests and impact tests with miniature impact specimens show that the {sup 10}B-alloyed material was changed more and the {sup 11}B-alloyed material was changed less than the material containing natural boron. At the higher neutron dose the increase in yield strength (0.2 % offset yield strength) was 11 kg/mm in the {sup 10}B containing material compared to 5 kg/mm in the {sup 11}B-containing material. The decrease in total elongation was 5 and 0 percentage units respectively. The transition temperature was increased 190 deg C at the higher neutron dose in the {sup 10}B-alloyed material, 40 deg C in the {sup 11}B-alloyed material and 80 deg C in the material containing natural boron.

  13. Preparation,characterization and photocatalytic activities of boron-and cerium-codoped TiO2

    Institute of Scientific and Technical Information of China (English)

    WEI Chao-hai; TANG Xin-hu; LIANG Jie-rong; TAN Shu-ying

    2007-01-01

    Boron- and cerium-codoped TiO2 photocatalysts were synthesized using modified sol-gel reaction process and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), particle size distribution (PSD), diffuse reflectance spectra (DRS), and Brunauer-Emmett-Teller (BET). The photocatalytic activities were evaluated by monitoring the degradation of dye Acid Recd B (ARB). The results showed that the prepared photocatalysts were mixed oxides mainly consisting of titania, ceria, and boron oxide. The structure of TiO2 could be transformed from amorphous to anatase and then to rutile by increasing calcination temperature; the transformation being accompanied by the growth of particle size without any obvious change in phase structure of CeO2. The XPS of B1.6Ce1.0-TiO2 prepared at 500℃ showed that a few boron atoms incorporated into titania and ceria lattice, whereas others existed as B2O3. Cerium ions existed in two states, Ce3+ and Ce4+, and the atomic ratio of Ce3+/Ce4+ was 1.86. When boron and cerium were doped, the UV-Vis adsorption band wavelength showed an obvious shift toward the visible range (≤526 nm). As the atomic ratio of Ce/Ti increased to 1.0, the absorbance edge wavelength also increased to 481 nm. The absorbance edge wavelength decreased for higher cerium doping levels (Ce/Ti = 2.0),. The particles size ranged from 122 to 255 nm with a domain at 168 nm (39.4%). The degradation of ARB dye indicated that the photocatalytic activities of boron- and cerium-codoped TiO2 were much higher than those of P25 (a standard TiO2 powder). The activities increased as the boron doping increased, whereas decreased when the Ce/Ti atomic ratio was greater than 0.5. The optimum atomic ratio of B/Ti and Ce/Ti was 1.6 and 0.5, respectively.

  14. Probing the statistical decay and alpha-clustering effects in 12c+12c and 14n+10b reactions

    CERN Document Server

    Morelli, Luca; Agostino, M D; Bruno, M; Gulminelli, F; Cinausero, M; Degerlier, M; Fabris, D; Gramegna, F; Marchi, T; Barlini, S; Bini, M; Casini, G; Gelli, N; Lopez, A; Pasquali, G; Piantelli, S; Valdre', S

    2013-01-01

    An experimental campaign has been undertaken at INFN Laboratori Nazionali di Legnaro, Italy, in order to progress in our understanding of the statistical properties of light nuclei at excitation energies above particle emission threshold, by measuring exclusive data from fusion-evaporation reactions. A first reaction 12C+12C at 7.9 AMeV beam energy has been measured, using the GARFIELD+Ring Counter experimental setup. Fusion-evaporation events have been exclusively selected. The comparison to a dedicated Hauser-Feshbach calculation allows us to give constraints on the nuclear level density at high excitation energy for light systems ranging from C up to Mg. Out-of-equilibrium emission has been evidenced and attributed both to entrance channel effects favoured by the cluster nature of reaction partners and, in more dissipative events, to the persistence of cluster correlations well above the 24Mg threshold for 6 alphas decay. The 24Mg compound nucleus has been studied with a new measurement 14N + 10B at 5.7 AM...

  15. The Effect of Boron on the Properties of Glucomannan: An Experimental and Molecular Dynamics Simulation Study

    Institute of Scientific and Technical Information of China (English)

    PANG Jie; SUN Yu-Jing; LI Bin; TIAN Shi-Ping; CHEN Shao-Jun

    2005-01-01

    The effect of boron on the properties of Konjac Glucomanan (KGM) has been investigated by the method of experiment and molecular dynamic simulation. Upon analysis, the property and structure of KGM are apt to be affected by boron and structural reasons for property change were discussed. In detail, the addition low concentration borax can increase the systematic inherent viscosity, by contrast, high concentration borax has opposite effect on the viscosity. When adding borax, the micropores on KGM film surface decrease or disappear, leading to more compact and uniform on the film surface. The structure of KGM-Boron complex is described as the coor- dination reaction between KGM and boron. The main reaction points are hydroxyl group on C(6) position of sugar as well as those on C(2) and C(3) positions of mannose with two kinds of com- plexes formation: B-K2 and KB-K. And KB-K mainly consists of g-b-m.

  16. Enhanced diffusion of oxygen depending on Fermi level position in heavily boron-doped silicon

    Energy Technology Data Exchange (ETDEWEB)

    Torigoe, Kazuhisa, E-mail: ktorigoe@sumcosi.com; Fujise, Jun; Ono, Toshiaki [Technology Division, Advanced Evaluation and Technology Development Department, SUMCO Corporation, 1-52 Kubara, Yamashiro-cho, Imari, Saga 849-4256 (Japan); Nakamura, Kozo [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan)

    2014-11-21

    The enhanced diffusivity of oxygen in heavily boron doped silicon was obtained by analyzing oxygen out-diffusion profile changes found at the interface between a lightly boron-doped silicon epitaxial layer and a heavily boron-doped silicon substrate by secondary ion mass spectrometry. It was found that the diffusivity is proportional to the square root of boron concentration in the range of 10{sup 18 }cm{sup −3}–10{sup 19 }cm{sup −3} at temperatures from 750 °C to 950 °C. The model based on the diffusion of oxygen dimers in double positive charge state could explain the enhanced diffusion. We have concluded that oxygen diffusion enhanced in heavily boron-doped silicon is attributed to oxygen dimers ionized depending on Fermi level position.

  17. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  18. Multidimensional potential of boron-containing molecules in functional materials

    Indian Academy of Sciences (India)

    Wolfgang Kaim; Narayan S Hosmane

    2010-01-01

    Boron-containing molecular systems have received much attention under theoretical aspects and from the side of synthetic organic chemistry. However, their potential for further applications such as optically interesting effects such as Non-Linear Optics (NLO), medical uses for Boron Neutron Capture Therapy (BNCT), or magnetism has been recognised only fairly recently. Molecular systems containing boron offer particular mechanisms to accommodate unpaired electrons which may result in stable radicals as spin-bearing materials. Among such materials are organoboron compounds in which the prototypical electron deficient (10B, 11B) boron vs. carbon centers can accept and help to delocalise added electrons in a 2-dimensionally conjugated system. Alternatively, oligoboron clusters B$_{n}$X$_{n}^{k}$ and the related carboranes or metallacarboranes are capable of adding or losing single electrons to form paramagnetic clusters with 3-dimensionally delocalised spin, according to combined experimental studies and quantum chemical calculations. The unique nuclear properties of 10B are of therapeutic value if their selective transport via appended carbon nanotubes, boron nanotubes, or magnetic nanoparticles can be effected.

  19. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Ashish Jain; C Ghosh; T R Ravindran; S Anthonysamy; R Divakar; E Mohandas; G S Gupta

    2013-12-01

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

  20. Probing the Statistical Decay and α-clustering effects in 12C + 12C and 14N + 10B reactions

    Science.gov (United States)

    Morelli, L.; Baiocco, G.; D'Agostino, M.; Bruno, M.; Gulminelli, F.; Cinausero, M.; Degerlier, M.; Fabris, D.; Gramegna, F.; Marchi, T.; Barlini, S.; Bini, M.; Casini, G.; Gelli, N.; Lopez, A.; Pasquali, G.; Piantelli, S.; Valdrè, S.

    2014-03-01

    An experimental campaign has been undertaken at Laboratori Nazionali di Legnaro (LNL INFN), Italy, in order to progress in our understanding of the statistical properties of light nuclei at excitation energies above particle emission threshold, by measuring exclusive data from fusion-evaporation reactions. On the experimental side, a first reaction: 12C+12C at 95 MeV beam energy has been measured, using the GARFIELD + Ring Counter (RCo) apparatuses. Fusion-evaporation events have been exclusively selected out of the entire data set. The comparison to a dedicated Hauser-Feshbach calculation allows us to give constraints on the nuclear level density at high excitation energy for light systems ranging from C up to Mg. Out-of-equilibrium aα emission has been evidenced and attributed both to an entrance channel effect (favoured by the cluster nature of reaction partners), and, in more dissipative events, to the persistence of cluster correlations well above the 24Mg threshold for 6 α's decay. In order to study the same 24Mg compound nucleus at similar excitation energy with respect to this first reaction a new measurement, 14N + 10B at 5.7 A.MeV, was performed at LNL laboratories with the same experimental setup. The comparison between the two systems would allow us to further constrain the level density of light nuclei in the mass-excitation energy range of interest. In this perspective, deviations from a statistical behaviour can be used as a tool to get information on nuclear clustering, both in the ground-state for projectile and target and in the hot source formed in the collision.

  1. Probing the Statistical Decay and α-clustering effects in 12C + 12C and 14N + 10B reactions

    Directory of Open Access Journals (Sweden)

    Morelli L.

    2014-03-01

    Full Text Available An experimental campaign has been undertaken at Laboratori Nazionali di Legnaro (LNL INFN, Italy, in order to progress in our understanding of the statistical properties of light nuclei at excitation energies above particle emission threshold, by measuring exclusive data from fusion-evaporation reactions. On the experimental side, a first reaction: 12C+12C at 95 MeV beam energy has been measured, using the GARFIELD + Ring Counter (RCo apparatuses. Fusion-evaporation events have been exclusively selected out of the entire data set. The comparison to a dedicated Hauser-Feshbach calculation allows us to give constraints on the nuclear level density at high excitation energy for light systems ranging from C up to Mg. Out-of-equilibrium aα emission has been evidenced and attributed both to an entrance channel effect (favoured by the cluster nature of reaction partners, and, in more dissipative events, to the persistence of cluster correlations well above the 24Mg threshold for 6 α’s decay. In order to study the same 24Mg compound nucleus at similar excitation energy with respect to this first reaction a new measurement, 14N + 10B at 5.7 A.MeV, was performed at LNL laboratories with the same experimental setup. The comparison between the two systems would allow us to further constrain the level density of light nuclei in the mass-excitation energy range of interest. In this perspective, deviations from a statistical behaviour can be used as a tool to get information on nuclear clustering, both in the ground-state for projectile and target and in the hot source formed in the collision.

  2. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  3. Molecular medicine: Synthesis and in-vivo detection of agents for use in boron neutron capture therapy. Final report, May 1, 1993--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G.W.

    1997-08-01

    During the early stages of this project, the author developed the first whole-body boron MRI technique. They found that, for the first time, information concerning both the location and the quantity of boron present in living tissues could be obtained through the use of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) respectively. However, it was also discovered that boron MRI was not without problems. Both naturally occurring isotopes of boron (boron-10 and boron-11) possess magnetic moments, making them amenable to MR detection. The author found that there are difficulties in obtaining boron MRI images which are a consequence of the inherently poor magnetic resonance characteristics of the boron nucleus. The magnetogyric ratios of both boron-10 and boron-11 are smaller than those of hydrogen, which makes boron much less sensitive to magnetic resonance detection. In addition, both isotopes of boron posses nuclear electric quadrupole moments which serve to shorten their magnetization relaxation times; this causes the MR signal to broaden and decay rapidly, often before the receiver coils can collect the MR information. The rapid rate of signal decay is enhanced in biological systems which leads to further signal loss and a decrease in the signal to noise ratio (SNR).

  4. A promising green method in cyclization reaction.Oxidation of 3-methylcatechol in the presence of 1,10-phenanthroline

    Institute of Scientific and Technical Information of China (English)

    Davood Nematollahi; Bita Dadpou

    2011-01-01

    Electrochemical oxidation of 3-methylcatechol as a model compound has been studied in the presence of 1,10-phenanthroline as a bi-dentate nucleophile in water/acetonitrile (70/30, v/v) solution using cyclic voltammetry and controlled-potential coulometry. The results revealed that anodically generated 3-methylcyclohexa-3,5-diene-l,2-dione participates in inter and intramolecular Michael addition reactions with 1,10-phenanthroline and via an ECEC pathway converts to the corresponding heterocyclic compound. The present work has led to the development of a facile and one-pot method with high atom economy under ambient conditions and in an undivided cell using a carbon electrode.

  5. A facile approach to fabricate boron carbonitride microspheres via precursor pyrolysis

    Science.gov (United States)

    Zeng, Sifan; Feng, Wanlin; Luo, Heng; Tan, Yongqiang; Wang, Yu; Zhang, Haibin; Zhang, Tao; Peng, Shuming

    2017-04-01

    Bulk quantity Boron Carbonitride (BCN) microspheres were successfully synthesized via an organic precursor pyrolysis approach. The organic precursor was synthesized at 90 °C by the polymerization reaction of boron trichloride,aniline and ethylenediamine with a molar ratio of 1:1:1. All particles presented uniform spherical structure with the size of 2 μm. The products have oxidation starting temperature at 624 °C much higher than graphene (404 °C).

  6. Ultra-fast mechanochemical synthesis of boron phosphides, BP and B12P2.

    Science.gov (United States)

    Mukhanov, Vladimir A; Vrel, Dominique; Sokolov, Petr S; Le Godec, Yann; Solozhenko, Vladimir L

    2016-06-21

    Here we propose a new approach to the synthesis of single-phase boron phosphides (BP and B12P2) by mechanochemical reactions between boron phosphate and magnesium/magnesium diboride in the presence of an inert diluent (sodium chloride). The proposed method is characterized by the simplicity of implementation, high efficiency, low cost of the product, and good perspectives for large-scale production.

  7. Study on Processing Conditions of Aluminum Matrix Composites Reinforced with Boron Carbide Particles

    Institute of Scientific and Technical Information of China (English)

    Fu Xueying; Zhang Hong; Xi Huizhi; Yi Xiaosu

    2004-01-01

    Different pre-heating of boron carbide particles for reinforcement and different processing conditions were studied in this work. Being one of the most cost-effective industrial methods, conventional melt stir-casting route was utilized.Result showed that the boron carbide particles distributed well for a suitable pre-heating temperature and processed in air.No reaction product was found at the A1-B4C interfaces at the resolution limit of SEM used in that way.

  8. Synthesis of novel boron chelate complexes and proposed mechanism of new rearrangement.

    Science.gov (United States)

    Zhang, Rui-Zhe; Feng, Xiao; Liu, Ying; Wang, Sheng-Qing; Liu, Jin-Ting; Zhao, Bao-Xiang

    2015-03-15

    We synthesized novel boron chelate complexes by the reaction of pyrazoline derivatives and boron trifluoride diethyl etherate followed by a new rearrangement. The structures of the compounds were characterized by IR, NMR and HRMS, especially, a typical compound 3c was confirmed by X-ray single crystal analysis. We proposed a mechanism of the rearrangement. Moreover, the absorption and fluorescence spectroscopy of these compounds were measured.

  9. Development of Enantiospecific Coupling of Secondary and Tertiary Boronic Esters with Aromatic Compounds

    Science.gov (United States)

    2016-01-01

    The stereospecific cross-coupling of secondary boronic esters with sp2 electrophiles (Suzuki–Miyaura reaction) is a long-standing problem in synthesis, but progress has been achieved in specific cases using palladium catalysis. However, related couplings with tertiary boronic esters are not currently achievable. To address this general problem, we have focused on an alternative method exploiting the reactivity of a boronate complex formed between an aryl lithium and a boronic ester. We reasoned that subsequent addition of an oxidant or an electrophile would remove an electron from the aromatic ring or react in a Friedel–Crafts-type manner, respectively, generating a cationic species, which would trigger 1,2-migration of the boron substituent, creating the new C–C bond. Elimination (preceded by further oxidation in the former case) would result in rearomatization giving the coupled product stereospecifically. Initial work was examined with 2-furyllithium. Although the oxidants tested were unsuccessful, electrophiles, particularly NBS, enabled the coupling reaction to occur in good yield with a broad range of secondary and tertiary boronic esters, bearing different steric demands and functional groups (esters, azides, nitriles, alcohols, and ethers). The reaction also worked well with other electron-rich heteroaromatics and 6-membered ring aromatics provided they had donor groups in the meta position. Conditions were also found under which the B(pin)- moiety could be retained in the product, ortho to the boron substituent. This protocol, which created a new C(sp2)–C(sp3) and an adjacent C–B bond, was again applicable to a range of secondary and tertiary boronic esters. In all cases, the coupling reaction occurred with complete stereospecificity. Computational studies verified the competing processes involved and were in close agreement with the experimental observations. PMID:27384259

  10. Development of Enantiospecific Coupling of Secondary and Tertiary Boronic Esters with Aromatic Compounds.

    Science.gov (United States)

    Odachowski, Marcin; Bonet, Amadeu; Essafi, Stephanie; Conti-Ramsden, Philip; Harvey, Jeremy N; Leonori, Daniele; Aggarwal, Varinder K

    2016-08-03

    The stereospecific cross-coupling of secondary boronic esters with sp(2) electrophiles (Suzuki-Miyaura reaction) is a long-standing problem in synthesis, but progress has been achieved in specific cases using palladium catalysis. However, related couplings with tertiary boronic esters are not currently achievable. To address this general problem, we have focused on an alternative method exploiting the reactivity of a boronate complex formed between an aryl lithium and a boronic ester. We reasoned that subsequent addition of an oxidant or an electrophile would remove an electron from the aromatic ring or react in a Friedel-Crafts-type manner, respectively, generating a cationic species, which would trigger 1,2-migration of the boron substituent, creating the new C-C bond. Elimination (preceded by further oxidation in the former case) would result in rearomatization giving the coupled product stereospecifically. Initial work was examined with 2-furyllithium. Although the oxidants tested were unsuccessful, electrophiles, particularly NBS, enabled the coupling reaction to occur in good yield with a broad range of secondary and tertiary boronic esters, bearing different steric demands and functional groups (esters, azides, nitriles, alcohols, and ethers). The reaction also worked well with other electron-rich heteroaromatics and 6-membered ring aromatics provided they had donor groups in the meta position. Conditions were also found under which the B(pin)- moiety could be retained in the product, ortho to the boron substituent. This protocol, which created a new C(sp(2))-C(sp(3)) and an adjacent C-B bond, was again applicable to a range of secondary and tertiary boronic esters. In all cases, the coupling reaction occurred with complete stereospecificity. Computational studies verified the competing processes involved and were in close agreement with the experimental observations.

  11. Considerations for boron neutron capture therapy studies; Consideracoes sobre o estudo da BNCT (terapia de captura neutronica por boro)

    Energy Technology Data Exchange (ETDEWEB)

    Faria Gaspar, P. de

    1994-12-31

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps.

  12. Preparation and characterization of (10)B boric acid with high purity for nuclear industry.

    Science.gov (United States)

    Zhang, Weijiang; Liu, Tianyu; Xu, Jiao

    2016-01-01

    Boric acid is often added into coolant as neutron capture agent for pressurized water reactor, whose amount is influenced by its abundance and purity. Therefore, the preparation of enriched (10)B boric acid with high purity is beneficial to nuclear industry. (10)B is also used in developing tumor-specific boronated drugs in boron neutron capture therapy. The boronated drug can be administered to patient intravenously, intratumorally, or deposited at tumor site in surgical excision. Thus, enriched (10)B boric acid is of practical significance in the field of medicine. Self-made boron trifluoride-methanol-complex solution was selected as one of the experimental reagents, and the preparation of (10)B acid was realized by one-step reaction for the complexes with water and calcium chloride. The determination of electrical conductivity in reaction process proves that the optimum reaction time was 16-20 h. Furthermore, the effect of reaction time, ratio of calcium chloride to complex as well as the amount of water on the purity and yield of boric acid was investigated. Finally, the optimum reaction time was 20 h, the optimal solid-liquid ratio (molar ratio) was 3:1, and the amount of water was 1 L of deionized water for each mol of the complex. H2O2 was added in the reaction process to remove Fe(2+). After recrystallization, IR spectra of (10)B boric acid was measured and compared with standard to verify the product of boric acid. The feasibility of the preparation method was determined by the detection of XRD of boric acid. To observe the morphology by polarizing microscope, crystal structure was obtained. The purity of the final product is 99.95 %, and the yield is 96.47 %. The ion concentration of boric acid accords with the national standard of high purity, which was determined by ICP.

  13. The effect of the boron source composition ratio on the adsorption performance of hexagonal boron nitride without a template

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Zhang, Tong; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Cui, Xingyu

    2015-08-01

    An inexpensive boric acid (H{sub 3}BO{sub 3}) and borax (Na{sub 2}B{sub 4}O{sub 7}·10H{sub 2}O) mix was used as a source of boron with different composition ratios, and urea was used as a nitrogen source, in flowing ammonia atmosphere, for the preparation of hexagonal boron nitride (h-BN) with different micro-morphologies. Under a certain synthesis process, the effects of the molar ratio of borax and boric acid (or simply the boron source composition ratio for short) on the phase composition of the sample were studied; the work also explored the effect of boron source composition ratio on the micro-morphology, adsorption desorption isotherm and specific surface area of the h-BN powder. The main purpose of this work was to determine the optimum composition ratio of preparing spherical mesoporous h-BN and ensure that the micro-mechanism underpinning the formation of spherical mesoporous h-BN was understood. The results showed that at the optimum boron source composition ratio of 1:1, globular mesoporous spheres with a diameter of approximately 600–800 nm could be obtained with the highest pore volume and specific surface area (230.2 m{sup 2}/g). - Graphical abstract: Display Omitted - Highlights: • Spherical h-BN was synthesized by controlling the boron source composition ratio. • Without extra spherical template, solid Na{sub 2}O was equal to a spherical template. • At boron source composition ratio of 1:1, h-BN had best adsorption performance.

  14. Structures of Iridoid Synthase from Cantharanthus roseus with Bound NAD(+) , NADPH, or NAD(+) /10-Oxogeranial: Reaction Mechanisms.

    Science.gov (United States)

    Hu, Yumei; Liu, Weidong; Malwal, Satish R; Zheng, Yingying; Feng, Xinxin; Ko, Tzu-Ping; Chen, Chun-Chi; Xu, Zhongxia; Liu, Meixia; Han, Xu; Gao, Jian; Oldfield, Eric; Guo, Rey-Ting

    2015-12-14

    Structures of the iridoid synthase nepetalactol synthase in the presence of NAD(+) , NADPH or NAD(+) /10-oxogeranial were solved. The 10-oxogeranial substrate binds in a transoid-O1-C3 conformation and can be reduced by hydride addition to form the byproduct S-10-oxo-citronellal. Tyr178 Oζ is positioned 2.5 Å from the substrate O1 and provides the second proton required for reaction. Nepetalactol product formation requires rotation about C1-C2 to form the cisoid isomer, leading to formation of the cis-enolate, together with rotation about C4-C5, which enables cyclization and lactol production. The structure is similar to that of progesterone-5β-reductase, with almost identical positioning of NADP, Lys146(147), Tyr178(179), and F342(343), but only Tyr178 and Phe342 appear to be essential for activity. The transoid 10-oxogeranial structure also serves as a model for β-face hydride attack in progesterone 5β-reductases and is of general interest in the context of asymmetric synthesis.

  15. Analysis and separation of boron isotopes; Analyse et separation des isotopes du bore

    Energy Technology Data Exchange (ETDEWEB)

    Perie, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-01

    The nuclear applications of boron-10 justify the study of a method of measurement of its isotopic abundance as well as of very small traces of boron in different materials. A systematic study of thermionic emission of BO{sub 2}Na{sub 2}{sup +} has been carried out. In the presence of a slight excess of alkalis, the thermionic emission is considerably reduced. On the other hand, the addition of a mixture of sodium hydroxide-glycerol (or mannitol) to borax permits to obtain an intense and stable beam. These results have permitted to establish an operative method for the analysis of traces of boron by isotopic dilution. In other respects, the needs of boron-10 in nuclear industry Justify the study of procedures of separation of isotopes of boron. A considerable isotopic effect has been exhibited in the chemical exchange reaction between methyl borate and borate salt in solution. In the case of exchange between methyl borate and sodium borate, the elementary separation factor {alpha} is: {alpha}=(({sup 11}B/{sup 10}B)vap.)/(({sup 11}B/{sup 10}B)liq.)=1.03{sub 3}. The high value of this elementary effect has been multiplied in a distillation column in which the problem of regeneration of the reactive has been resolved. An alternative procedure replacing the alkali borate by a borate of volatile base, for example diethylamine, has also been studied ({alpha}=1,02{sub 5} in medium hydro-methanolic with 2,2 per cent water). (author) [French] Les applications nucleaires du bore 10 justifient l'etude d'une methode de mesure de son abondance isotopique dans divers materiaux ainsi que le dosage de tres faibles traces de bore. Une etude systematique de l'emission thermoionique de BO{sub 2} Na{sub 2}{sup +} a ete effectuee. En presence d'un leger exces d'alcalins, l'emission thermoionique est considerablement reduite. Par contre l'addition au borax d'un melange soude-glycerol (ou mannitol) permet d'obtenir un faisceau stable et intense

  16. A Preliminary experimental study of the boron concentration in vapor and the isotopic A preliminary experimental study of the boron concentrationin vapor and the isotopic fractionation of boron betweenseawater and vapor during evaporation of seawater

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A laboratory experiment was undertaken to investigate the behaviour of boron at theseawater-air interface under air flow conditions. Dried air at 25 and 35℃ was passed over or bub-bled through seawater at the same temperature. A combination of ice-chilled condensers and KOHimpregnated cellulose fibre filters was used to collect boron from the reacted air. When air strippedof boron was passed over the seawater, boron was found in the reacted air, and its concentrationwas higher in the higher temperature test. In the tests where air was bubbled through seawater theconcentration of boron in the reacted air was directly proportional to the air flow rate. In this situa-tion the boron in the reacted air was mainly introduced as a spray of microdroplets. Isotopic analy-sis of the collected boron in the non-bubbled tests yields fractionation factors which demonstratethat the lighter isotope, 10B, is enriched in the reacted air. The size of the fractionation changeswith temperature, ruling out a purely kinetic effect.

  17. Surface diffusivity of atomic deuterium on Ni3(Al, Ti)(110) surface with and without boron

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The electron-stimulated desorption was used to measure the surface diffusivity of at omic deuterium on clean and boron-modified Ni3(Al, Ti)(110) surfaces. Boron dosing was performed using a solid-state boronion source. Earlier studies showed that boron dissociates water readily at temperatures as low as 130 Kand that the resulting atomic hydrogen is bound to the surface strongly. The surface diffusi on coefficient of atomic D on 0.05 monolayer boron-modified surface was measured to be about 10 times smaller than that on the clean surface. This slower diffu sion of atomic hydrogen may explain why boron improves the ductility of polycrys talline Ni3Al in moist environments.

  18. Structure and superconductivity of isotope-enriched boron-doped diamond

    Directory of Open Access Journals (Sweden)

    Evgeny A Ekimov, Vladimir A Sidorov, Andrey V Zoteev, Yury B Lebed, Joe D Thompson and Sergey M Stishov

    2008-01-01

    Full Text Available Superconducting boron-doped diamond samples were synthesized with isotopes of 10B, 11B, 13C and 12C. We claim the presence of a carbon isotope effect on the superconducting transition temperature, which supports the 'diamond-carbon'-related nature of superconductivity and the importance of the electron–phonon interaction as the mechanism of superconductivity in diamond. Isotope substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond to the vibrations of carbon atoms. The 500 cm−1 Raman band shifts with either carbon or boron isotope substitution and may be associated with vibrations of paired or clustered boron. The absence of a superconducting transition (down to 1.6 K in diamonds synthesized in the Co–C–B system at 1900 K correlates with the small boron concentration deduced from lattice parameters.

  19. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Sørensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-03-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using transmission electron microscopy, photon correlation spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, gel electrophoresis and chemical assays and reveal profound changes in surface chemistry and structural characteristics. In vitro thermal neutron irradiation of B16 melanoma cells incubated with sub-100 nm nanoparticles (381.5 microg/g (10)B) induces complete cell death. The nanoparticles alone induce no toxicity.

  20. Determination of Boron Trifluoride in Boron Trifluoride Complex by Fluoride Ion Selective Electrode

    Institute of Scientific and Technical Information of China (English)

    郎五可; 张卫江; 唐银; 徐姣; 张雷

    2016-01-01

    A method was proposed to determine boron trifluoride in boron trifluoride complex using fluoride ion selective electrode(ISE). Hydroxide was chosen to mask aluminum for the determination of 0.01—0.1 mol/L of fluoride. The simulation indicated that the permissible aluminum masked at a certain pH value was limited and hardly related to F-concentration and boric acid. It is better to control pH value below 11.5 and the aluminum con-centration within 0.025 mol/L to minimize the interference of hydroxide to the fluoride ISE. The decomposition conditions of boron trifluoride by aluminum chloride were investigated. It is found that the F-detection ratio will approach 1.0 if the Al/F molar ratio is 0.3—0.7 and aluminum concentration is no more than 0.02 mol/L when heated at 80℃ for 10 min. In one word, hydroxide is quite fit to mask aluminum for samples which contain high content of fluoride and aluminum and the BF3 content can be successfully determined by this method.

  1. Synthesis NiAl{sub 1,0}Fe{sub 1,0}O{sub 4} catalyst by the combustion reaction to their use in the shift reaction (WGSR); Sintese do catalisador de NiAl{sub 1,0}Fe{sub 1,0}O{sub 4} por reacao de combustao visando sua utilizacao na reacao de shift (WGSR)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, P.T.A.; Costa, A.C.F.M.; Neiva, L.S.; Gama, L. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais; Argolo, F.; Andrade, H.M.C. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica

    2009-07-01

    This work aims at the synthesis of catalyst NiAl{sub 1,0}Fe{sub 1,0}O{sub 4} by combustion reaction using urea as fuel, to evaluate its performance in the production of hydrogen by the reaction of displacement of water vapor (WGSR). The initial composition of the solution was based on valencia total oxidizing and reducing reagents based on the concepts of the chemistry of propellants, using container as a crucible of glassy silica. The resulting powder was characterized by X-ray diffraction, infrared spectroscopy, nitrogen adsorption isotherms (BET), scanning electronic microscope and catalytic tests. The DRX results reveal the presents majoritary phase NiAl{sub 1,0}Fe{sub 1,0}O{sub 4} spinel, the catalyst presents surface area 28 m{sup 2}/g and isotherms type III. Higher conversion CO/CO{sub 2} of 75% CO conversion observed at 500 deg C and catalytic activity of 43 mmolg{sup -1}.h{sup -1} at 450 deg C. (author)

  2. Optical phonon modes in rhombohedral boron monosulfide under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Cherednichenko, Kirill A. [Synchrotron SOLEIL, 91192 Gif-sur-Yvette (France); IMPMC, UPMC Sorbonne Universités, CNRS UMR 7590, 75005 Paris (France); LSPM–CNRS, Université Paris Nord, 93430 Villetaneuse (France); Sokolov, Petr S.; Solozhenko, Vladimir L., E-mail: vladimir.solozhenko@univ-paris13.fr [LSPM–CNRS, Université Paris Nord, 93430 Villetaneuse (France); Kalinko, Aleksandr [Synchrotron SOLEIL, 91192 Gif-sur-Yvette (France); Institute of Solid State Physics, University of Latvia, LV-1063 Riga (Latvia); Le Godec, Yann; Polian, Alain [IMPMC, UPMC Sorbonne Universités, CNRS UMR 7590, 75005 Paris (France); Itié, Jean-Paul [Synchrotron SOLEIL, 91192 Gif-sur-Yvette (France)

    2015-05-14

    Raman spectra of rhombohedral boron monosulfide (r-BS) were measured under pressures up to 34 GPa at room temperature. No pressure-induced structural phase transition was observed, while strong pressure shift of Raman bands towards higher wavenumbers has been revealed. IR spectroscopy as a complementary technique has been used in order to completely describe the phonon modes of r-BS. All experimentally observed bands have been compared with theoretically calculated ones and modes assignment has been performed. r-BS enriched by {sup 10}B isotope was synthesized, and the effect of boron isotopic substitution on Raman spectra was observed and analyzed.

  3. PGNAA of human arthritic synovium for boron neutron capture synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Binello, E.; Yanch, J.C. [Massashucetts Institute of Technology, Cambridge, MA (United States); Shortkroff, S. [Brigham and Women`s Hospital, Boston, MA (United States)

    1997-12-01

    Boron neutron capture synovectomy (BNCS), is a proposed new therapy modality for the treatment of rheumatoid arthritis, an autoimmune disease afflicting the joints. The synovium, which is the membrane lining the joint, becomes inflamed and represents the target tissue for therapy. When a joint is unresponsive to drug treatment, physical removal of the synovium, termed synovectomy, becomes necessary. Existing options include surgery and radiation synovectomy. BNCS has advantages over these options in that it is noninvasive and does not require the administration of radioactive substances. Previous studies have shown that the uptake of {sup 10}B by human arthritic synovium ex vivo is high, ranging from 194 to 545 ppm with an unenriched boron compound. While tissue samples remain viable up to 1 week, ex vivo conditions do not accurately reflect those in vivo. This paper presents results from experiments assessing the washout of boron from the tissue and examines the implications for in vivo studies.

  4. Multi-layer boron thin-film detectors for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher L [Los Alamos National Laboratory

    2010-01-01

    Intrinsic efficiencies of the multilayer boron detectors have been examined both theoretically and experimentally. It is shown that due to the charge loss in the boron layers, the practical efficiencies of most multi-layer {sup 10}B detectors are limited up to about 42%, much less than 77% of the 2 bar 2-inch diameter {sup 3}He detectors. It is suggested that the same charge loss mechanism will prevent essentially all substrate-based boron detectors from ever reaching the efficiencies of high-pressure {sup 3}He tubes, independent of the substrate geometry and material composition (including silicon). Meanwhile, the experimental data indicate that the multi-layer approach can increase the efficiencies up to the theoretical limit. Good n/{gamma} discrimination has also achieved using the ionization charnber technique.

  5. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  6. Preparation of High Purity Amorphous Boron Powder

    Directory of Open Access Journals (Sweden)

    K.V. Tilekar

    2005-10-01

    Full Text Available Amorphous boron powder of high purity (92-94 % with a particle size of l-2 mm is preferred as a fuel for fuel-rich propellants for integrated rocket ramjets and for igniter formulations. Thispaper describes the studies on process optimisation of two processes, ie, oxidative roasting of boron (roasting boron in air and roasting boron with zinc in an inert medium for preparing high purity boron. Experimental studies reveal that roasting boron with zinc at optimised process conditions yields boron of purity more than 93 per cent, whereas oxidative roasting method yields boron of purity - 92 per cent. Oxidative roasting has comparative edge over the other processes owing to its ease of scale-up and simplicity

  7. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Chater, Richard J. [Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cañamares, Maria Vega [Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid (Spain); Marco, José F. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Castillejo, Marta, E-mail: marta.castllejo@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2015-02-15

    Highlights: • Micrometric rods obtained by ns pulsed laser deposition of boron carbide at 1064 and 266 nm. • At 1064 nm microrods display crystalline polyhedral shape with sharp edges and flat sides. • Microrods consist of a mixture of boron, boron oxide, boron carbide and aliphatic hydrocarbons. - Abstract: Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  8. Synthesis of a boron modified phenolic resin

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2010-08-01

    Full Text Available Phenolic resin has long been used as matrix for composites mainly because of its flame retardant behavior and high char yield after pyrolysis, which results in a self supporting structure. The addition of ceramic powders, such as SiC and B4C, as fillers to the phenolic resin, results in better thermo-oxidative stability, but as drawbacks, it has poor homogeneity, adhesion and processing difficulties during molding of the composites. The addition of single elements, such as boron, silicon and phosphorus in the main backbone of the thermo-set resin is a new strategy to obtain special high performance resins, which results in higher mechanical properties, avoiding the drawbacks of simply adding fillers, which results in enhanced thermo-oxidative stability compared to conventional phenol-formaldehyde resins. Therefore, the product can have several applications, including the use as ablative thermal protection for thermo-structural composites. This work describes the preparation of a boron-modified phenolic resin (BPR using salicyl alcohol and boric acid. The reaction was performed in refluxing toluene for a period of four hours, which produced a very high viscosity amber resin in 90% yield.The final structure of the compound, the boric acid double, substituted at the hydroxyl group of the aromatic ring, was determined with the help of the Infrared Spectroscopy, ¹H-NMR, TGA-DSC and boron elemental analysis. The absorption band of the group B-O at 1349 cm ˉ¹ can be visualized at the FT-IR spectrum. ¹H-NMR spectra showed peaks at 4.97-5.04 ppm and 3.60-3.90 ppm assigned to belong to CH2OH groups from the alcohol. The elemental analysis was also performed for boron determination.The product has also been tested in carbon and silicon fibers composite for the use in thermal structure. The results of the tests showed composites with superior mechanical properties when compared with the conventional phenolic resin.

  9. Boron deprivation decreases liver S-adenosylmethionine and spermidine and increases plasma homocysteine and cysteine in rats.

    Science.gov (United States)

    Nielsen, Forrest Harold

    2009-01-01

    Two experiments were conducted with weanling Sprague-Dawley rats to determine whether changes in S-adenosylmethionine utilization or metabolism contribute to the diverse responses to boron deprivation. In both experiments, four treatment groups of 15 male rats were fed ground corn-casein based diets that contained an average of 0.05 mg (experiment 1) or 0.15 mg (experiment 2) boron/kg. In experiment 2, some ground corn was replaced by sucrose and fructose to increase oxidative stress. The dietary variables were supplemental 0 (boron-deprived) or 3 (boron-adequate) mg boron/kg and different fat sources (can affect the response to boron) of 75 g corn oil/kg or 65 g fish (menhaden) oil/kg plus 10 linoleic acid/kg. When euthanized at age 20 (experiment 1) and 18 (experiment 2) weeks, rats fed the low-boron diet were considered boron-deprived because they had decreased boron concentrations in femur and kidney. Boron deprivation regardless of dietary oil increased plasma cysteine and homocysteine and decreased liver S-adenosylmethionine, S-adenosylhomocysteine, and spermidine. Plasma concentration of 8-iso-prostaglandin F2alpha (indicator of oxidative stress) was not affected by boron, but was decreased by feeding fish oil instead of corn oil. Fish oil instead of corn oil decreased S-adenosylmethionine, increased spermidine, and did not affect S-adenosylhomocysteine concentrations in liver. Additionally, fish oil versus corn oil did not affect plasma homocysteine in experiment 1, and slightly increased it in experiment 2. The findings suggest that boron is bioactive through affecting the formation or utilization of S-adenosylmethionine. Dietary fatty acid composition also affects S-adenosylmethionine formation or utilization, but apparently through a mechanism different from that of boron.

  10. Quantitative analysis of proton boron fusion therapy (PBFT) in various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joo-Young; Yoon, Do-Kun; Suh, Tae Suk [College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of)

    2015-05-15

    From the theoretical point of view, the PBFT has some strong advantages over currently existing radiotherapy methods. First, boron-based tumor targeting is required prior to performing the treatments such as boron-neutron capture therapy (BNCT). Tumor targeting should be performed before the BNCT by injecting the boronate compound. If boron is not taken up by the normal tissue, the normal tissue can be spared the irradiation by alpha particles. When boron uptake occurs in the target region, selective therapy is possible by neutron capture reaction of labeled boron particles in the target region. Likewise, when boron is distributed in the tumor region for the PBFT, the proposed method can represent a more critical discriminative therapy than either the BNCT or conventional particle therapy. In the conventional proton therapy, in order to deliver a dose to a tumor, the proton beam energy has to be adjusted along the tumor region (e.g., shape and depth). The proton therapy aims at delivering the maximal dose to the tumor by using protons only. In this study, the effectiveness of the PBFT with respect to several physical parameters was evaluated quantitatively by using Monte Carlo simulations. We confirmed that the PBFT can be used to perform critical discriminative therapy. Also, the results of our studies can be used for constructing the PFBT dose database that can be utilized in treatment planning systems (TPSs)

  11. The isotopic analysis of boron by charged particle irradiation; Analise isotopica de boro utilizando feixes de particulas carregadas

    Energy Technology Data Exchange (ETDEWEB)

    Vinagre Junior, Ubirajara M.; Costa, Vilmar L. da; Suita, Julio C.; Teixeira, Danilo L.; Bernedo, Alfredo V.B.; Cabral, Tania S. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    1997-12-01

    An analytical isotopic method for boron analysis is discribed, based in the spectrometry of protons at 130{sup 0} C from scattering and/or reactions like {sup 10} B(p,p){sup 10} B and {sup 11} B(p,p){sup 11} B which were simultaneously measured. The basic parameters involved in such measurements, are discussed including cinematic, angular distribution, preparation of targets and its substracs. Particle spectra of targets with natural isotopic concentration and enriched in {sup 10} B are presented. The ratio [{sup 11} B(p{sub o})/{sup 10} B(p{sub o})] at 130{sup 0} C for targets of {sup nat} B in respect of the incident proton beam energy between 14 and 24 MeV are shown. The results of our enriched {sup 10} B are compared with results obtained in mass spectrometry. (author). 14 refs., 6 figs., 1 tab.

  12. Neutron beam monitor based on a boron-coated GEM

    Institute of Scientific and Technical Information of China (English)

    周健荣; 李仪; 孙志嘉; 刘贲; 王艳凤; 杨桂安; 周良; 许虹; 董静; 杨雷

    2011-01-01

    A new thermal neutron beam monitor with a Gas Electron Multiplier (GEM) is developed to meet the needs of the next generation of neutron facilities. A prototype chamber has been constructed with two 100 mm×100 mm GEM foils. Enriched boron-10 is coated on

  13. Biodistribution of Amine-Amide Chlorin e6 Derivative Conjugate with a Boron Nanoparticle for Boron Neutron-Capture Therapy

    OpenAIRE

    А.B. Volovetsky; N.Y. Shilyagina; V.V. Dudenkova; S.О. Pasynkova; М.А. Grin; А.F. Mironov; А.V. Feofanov; I.V. Balalaeva; А.V. Maslennikova

    2016-01-01

    The aim of the investigation was to study the biodistribution of amino-amide chlorin e6 derivative conjugate with cobalt bis-dicarbollide as a potential boron transporter for the tasks of boron neutron-capture therapy. Materials and Methods. The experiments were carried out on Balb/c mice with induced murine colon carcinoma CT-26. Amino-amide chlorin e6 derivative conjugate with cobalt bis-dicarbollide was administered intravenously, the dose being 5 and 10 mg/kg body mass. The sampling for m...

  14. Reaction Sintering of Boron Carbide/silicon Carbide Green Body and Sintered Body Performance Test and Analysis%反应烧结碳化硼/碳化硅坯体和烧结体的性能测试及分析

    Institute of Scientific and Technical Information of China (English)

    尹茜; 张玉军; 于庆华

    2013-01-01

    With polyvinyl pyrrolidone as boron carbide and carbon black dispersant; Four methylammonium hydroxide as silicon carbide dispersion agent,respectively with acrylamide,N,N'-methylene diacrylamide and a crosslinking agent,the gel casting process for preparation of boron carbide/carbide body,after high temperature sintering,preparation of boron carbide/silicon carbide sintered body specimen.The results show that:the green body bending strength with solid content increases,when the solid content is 55vo1% strength reaches 24.3 MPa.To some extent,fracture toughness can be improved increasing with the content of B4C.When the content of B4C is 10wt%,the maximum fracture toughness of composite is 5.07 MPa · m1/2 The hardness of sintered bodies increases with the increasing of B4C content.The hardness is as high as 94.5 HRA when the content of B4C is 20wt%.%以聚乙烯吡咯烷酮作碳化硼和炭黑分散剂;四甲基氢氧化铵作碳化硅分散剂,分别以丙烯酰胺、N,N'-亚甲基双丙烯酰胺为单体和交联剂,采用凝胶注模工艺制备碳化硼/碳化硅坯体,再经过高温烧结,制备碳化硼/碳化硅烧结体试样.通过对凝胶注模成型反应烧结碳化硼/碳化硅坯体及烧结试样的性能研究表明:坯体的弯曲强度随着固含量的增加而增大,当固含量为55vol%时强度达到24.3 MPa.烧结体的断裂韧性随碳化硼含量的增加先提高后降低.最佳碳化硼含量为10wt%,此时断裂韧性可达到最大值5.07 MPa·m1/2.烧结体的硬度随着碳化硼含量的增加而增加,当碳化硼含量达20wt%时,硬度达到94.5HRA.

  15. Effect of hydrostatic pressure, temperature, and solvent on the rate of the Diels-Alder reaction between 9,10-anthracenedimethanol and maleic anhydride

    Science.gov (United States)

    Kiselev, V. D.; Kornilov, D. A.; Anikin, O. V.; Latypova, L. I.; Konovalov, A. I.

    2017-03-01

    The rate of the reaction between 9,10-anthracenedimethanol and maleic anhydride in 1,4-dioxane, acetonitrile, trichloromethane, and toluene is studied at 25, 35, 45°C in the pressure range of 1-1772 bar. The rate constants, enthalpies, entropies and activation volumes are determined. It is shown that the rate of reaction with 9,10-anthracenedimethanol is approximately one order of magnitude higher than with 9-anthracenemethanol.

  16. Ultrahard nanotwinned cubic boron nitride.

    Science.gov (United States)

    Tian, Yongjun; Xu, Bo; Yu, Dongli; Ma, Yanming; Wang, Yanbin; Jiang, Yingbing; Hu, Wentao; Tang, Chengchun; Gao, Yufei; Luo, Kun; Zhao, Zhisheng; Wang, Li-Min; Wen, Bin; He, Julong; Liu, Zhongyuan

    2013-01-17

    Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.

  17. The use of amorphous boron powder enhances mechanical alloying in soft magnetic FeNbB alloy: A magnetic study

    Energy Technology Data Exchange (ETDEWEB)

    Ipus, J. J.; Blazquez, J. S.; Franco, V.; Conde, A. [Dpto. Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla (Spain)

    2013-05-07

    Saturation magnetization and magnetic anisotropy have been studied during mechanical alloying of Fe{sub 75}Nb{sub 10}B{sub 15} alloys prepared using crystalline and commercial amorphous boron. The evolution of saturation magnetization indicates a more efficient dissolution of boron into the matrix using amorphous boron, particularly for short milling times. The magnetization of the crystalline phase increases as boron is incorporated into this phase. Two milling time regimes can be used to describe the evolution of magnetic anisotropy: a first regime governed by microstrains and a second one mainly governed by crystal size and amorphous fraction.

  18. Structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron

    OpenAIRE

    He, Chaoyu; Zhong, Jianxin

    2013-01-01

    The structures, stability, mechanical and electronic properties of a-boron and its twined brother a*-boron have been studied by first-principles calculations. Both a-boron and a*-boron consist of equivalent icosahedra B12 clusters in different connecting configurations of "3S-6D-3S" and "2S-6D-4S", respectively. The total energy calculations show that a*-boron is less stable than a-boron but more favorable than beta-boron and Gamma-boron at zero pressure. Both a-boron and a*-boron are confirm...

  19. Study of the {sup 10}B(p,αγ){sup 7}Be and {sup 10}B(p,p{sup ′}γ){sup 10}B reactions for PIGE purposes

    Energy Technology Data Exchange (ETDEWEB)

    Lagoyannis, A., E-mail: lagoya@inp.demokritos.gr [Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, NCSR “Demokritos”, 153.10 Aghia Paraskevi, Athens (Greece); Preketes-Sigalas, K.; Axiotis, M.; Foteinou, V.; Harissopulos, S. [Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, NCSR “Demokritos”, 153.10 Aghia Paraskevi, Athens (Greece); Kokkoris, M. [National Technical University of Athens, Zografou Campus, 157.80 Athens (Greece); Misaelides, P. [Department of Chemistry, Aristotle University of Thessaloniki, 541.24 Thessaloniki (Greece); Paneta, V. [Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, NCSR “Demokritos”, 153.10 Aghia Paraskevi, Athens (Greece); National Technical University of Athens, Zografou Campus, 157.80 Athens (Greece); Patronis, N. [Department of Physics, University of Ioannina, 45110 Ioannina (Greece)

    2015-01-01

    Differential cross sections were measured at 8 angles and at proton energies from 2 to 5 MeV for the {sup 10}B(p,αγ){sup 7}Be and {sup 10}B(p,p{sup ′}γ){sup 10}B reactions using two thin targets. The γ-rays emitted at E{sub γ}=429 and 718 keV respectively, were detected by four HPGe detectors placed on a motorized turntable. The overall systematic uncertainty of the measurements was estimated to be ∼8% while the statistical errors did not exceed 5%. The validity of the obtained cross sections was tested by performing a thick target benchmarking experiment. The results of the present work are compared with existing ones from literature and possible explanations for the observed differences are discussed.

  20. Synthesis of boron carbide nano particles using polyvinyl alcohol and boric acid

    Directory of Open Access Journals (Sweden)

    Amir Fathi

    2012-03-01

    Full Text Available In this study boron carbide nano particles were synthesized using polyvinyl alcohol and boric acid. First, initial samples with molar ratio of PVA : H3BO3 = 2.7:2.2 were prepared. Next, samples were pyrolyzed at 600, 700 and 800°C followed by heat treatment at 1400, 1500 and 1600°C. FTIR analysis was implemented before and after pyrolysis in order to study the reaction pathway. XRD technique was used to study the composition of produced specimens of boron carbide. Moreover, SEM and PSA analysis were also carried out to study the particle size and morphology of synthesized boron carbide. Finally, according to implemented tests and analyses, carbon-free boron carbide nano particles with an average size of 81 nm and mainly spherical morphology were successfully produced via this method.

  1. Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, V. I., E-mail: VZubkovspb@mail.ru; Kucherova, O. V.; Zubkova, A. V.; Ilyin, V. A.; Afanas' ev, A. V. [St. Petersburg State Electrotechnical University (LETI), Professor Popov Street 5, 197376 St. Petersburg (Russian Federation); Bogdanov, S. A.; Vikharev, A. L. [Institute of Applied Physics of the Russian Academy of Sciences, Ul' yanov Street 46, 603950 Nizhny Novgorod (Russian Federation); Butler, J. E. [St. Petersburg State Electrotechnical University (LETI), Professor Popov Street 5, 197376 St. Petersburg (Russian Federation); Institute of Applied Physics of the Russian Academy of Sciences, Ul' yanov Street 46, 603950 Nizhny Novgorod (Russian Federation); National Museum of Natural History (NMNH), P.O. Box 37012 Smithsonian Inst., Washington, D.C. 20013-7012 (United States)

    2015-10-14

    Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120–150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10{sup −13} down to 2 × 10{sup −17} cm{sup 2} was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (∼2 × 10{sup −20} cm{sup 2}). At T > T{sub room} in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.

  2. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John

    2016-09-22

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ³11 wt% and ³80 g/L that can deliver hydrogen and be recharged at moderate temperatures (£100 °C) and pressures (£100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement. For the first approach, possible pairs of ternary borides and mixed-metal borohydrides based on Mg with various first row transition metals were investigated both experimentally and theoretically. In particular, the Mg/Mn ternary boride and mixed-metal borohydride were found to be a suitable pair and

  3. Prompt gamma-ray emission for future imaging applications in proton-boron fusion therapy

    Science.gov (United States)

    Petringa, G.; Cirrone, G. A. P.; Caliri, C.; Cuttone, G.; Giuffrida, L.; La Rosa, G.; Manna, R.; Manti, L.; Marchese, V.; Marchetta, C.; Margarone, D.; Milluzzo, G.; Picciotto, A.; Romano, F.; Romano, F. P.; Russo, A. D.; Russo, G.; Santonocito, D.; Scuderi, V.

    2017-03-01

    Recently, an approach exploiting the proton therapy biological enhancement by using Boron atoms injected inside a tumor, has been proposed [1-3]. Here, the 11B(p,α)2α nuclear fusion reaction channel, where three alpha particles are produced with an average energy around 4 MeV, is considered [4]. These alphas are able to penetrate the cells nucleus and strongly damage their DNA. In addition, gamma prompts emitted by the proton Boron nuclear reactions can be used for on-line proton beam imaging purposes. In this work an experimental study of the gamma prompt emissions from the proton Boron nuclear reactions has been carried out with the main aim to understand and quantify the most probable emission for future clinical applications.

  4. Precision Morphology in Sulfonic, Phosphonic, Boronic, and Carboxylic Acid Polyolefins

    Science.gov (United States)

    2013-11-15

    Science Part A: Polymer Chemistry , (02 2011): 0. doi: 10.1002/pola.24491 Number of Papers published in peer-reviewed journals: (b) Papers published in...Wagener. Effects of Boron-Containing Lewis Acids on Olefin Metathesis, Organometallics , (05 2013): 0. doi: 10.1021/om400257b Michael D. Schulz, Rachel R...Ford, Kenneth B. Wagener. Insertion metathesis depolymerization, Polymer Chemistry , (05 2013): 0. doi: 10.1039/c3py00531c Pascale Atallah, Kenneth

  5. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  6. Alleviation of Boron Stress through Plant Derived Smoke Extracts in Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    Pirzada Khan

    2014-08-01

    Full Text Available Boron is an essential micronutrient necessary for plant growth at optimum concentration. However, at high concentrations boron affects plant growth and is toxic to cells. Aqueous extract of plant-derived smoke has been used as a growth regulator for the last two decades to improve seed germination and seedling vigor. It has been established that plant-derived smoke possesses some compounds that act like plant growth hormones. The present research was the first comprehensive attempt to investigate the alleviation of boron stress with plant-derived smoke aqueous extract on Sorghum (Sorghum bicolor seed. Smoke extracts of five plants, i.e. Cymbopogon jwarancusa, Eucalyptus camaldulensis, Peganum harmala, Datura alba and Melia azedarach each with six dilutions (Concentrated, 1:100, 1:200, 1:300, 1:400 and 1:500 were used. While boron solutions at concentrations of 5, 10, 15, 20 and 25 ppm were used for stress. Among the dilutions of smoke, 1:500 of E. camaldulensis significantly increased germination percentage, root and shoot length, number of secondary roots and fresh weight of root and shoot while, boron stress reduced growth of Sorghum. It was observed that combined effect of boron solution and E. camaldulensis smoke extract overcome inhibition and significantly improved plant growth. Present research work investigated that the smoke solution has the potential to alleviate boron toxicity by reducing the uptake of boron by maintaining integrity of plant cell wall. The present investigation suggested that plant derived smoke has the potential to alleviate boron stress and can be used to overcome yield losses caused by boron stress to plants.

  7. Stepwise chemical reaction strategy for highly sensitive electrochemiluminescent detection of dopamine.

    Science.gov (United States)

    Zhang, Lei; Cheng, Yan; Lei, Jianping; Liu, Yueting; Hao, Qing; Ju, Huangxian

    2013-08-20

    A stepwise chemical reaction strategy based on the specific recognition of boronic acid to diol, and N-hydroxysuccinimide (NHS) ester to amine group, was designed to construct a "signal on" electrochemiluminescence (ECL) platform for highly sensitive detection of dopamine. A boronic acid-functionalized pyrene probe was synthesized and was self-assembled on the sidewalls of carbon nanotubes via π-π stacking interactions as capture probes on a glassy carbon electrode. Meanwhile, 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) (DSP)-functionalized CdTe quantum dots (QDs) were designed as signal probes and characterized with transmission electron microscopy and spectroscopic techniques. Upon stepwise chemical reaction of dopamine with boronic acid and then DSP-QDs, the QDs were captured on the electrode as ECL emitters for signal readout, leading to an ultralow background signal. By using O2 as an endogenous coreactant, the "signal on" ECL method was employed to quantify the concentration of dopamine from 50 pM to 10 nM with a detection limit of 26 pM. Moreover, the stepwise chemical reaction-based biosensor showed high specificity against cerebral interference and was successfully applied in the detection of dopamine in cerebrospinal fluid samples. The stepwise chemical reaction strategy should be a new concept for the design of highly selective analytical methods for the detection of small biomolecules.

  8. Immediate Adverse Reactions to Gadolinium-Based MR Contrast Media: A Retrospective Analysis on 10,608 Examinations

    Science.gov (United States)

    Fusco, Roberta; dell'Aprovitola, Nicoletta; Catalano, Orlando; Filice, Salvatore; Schiavone, Vincenzo; Izzo, Francesco; Cuomo, Arturo

    2016-01-01

    Background and Purpose. Contrast media (CM) for magnetic resonance imaging (MRI) may determine the development of acute adverse reactions. Objective was to retrospectively assess the frequency and severity of adverse reactions associated with gadolinium-based contrast agents (GBCAs) injection in patients who underwent MRI. Material and Methods. At our center 10608 MRI examinations with CM were performed using five different GBCAs: Gd-BOPTA (MultiHance), Gd-DTPA (Magnevist), Gd-EOBDTPA (Primovist), Gd-DOTA (Dotarem), and Gd-BTDO3A (Gadovist). Results. 32 acute adverse reactions occurred, accounting for 0.3% of all administration. Twelve reactions were associated with Gd-DOTA injection (0.11%), 9 with Gd-BOPTA injection (0.08%), 6 with Gd-BTDO3A (0.056%), 3 with Gd-EOB-DTPA (0.028%), and 2 with Gd-DTPA (0.018%). Twenty-four reactions (75.0%) were mild, four (12.5%) moderate, and four (12.5%) severe. The most severe reactions were seen associated with use of Gd-BOPTA, with 3 severe reactions in 32 total reactions. Conclusion. Acute adverse reactions are generally rare with the overall adverse reaction rate of 0.3%. The most common adverse reactions were not severe, consisting in skin rash and hives. PMID:27652261

  9. Standard electrochemical behavior of high-quality, boron-doped polycrystalline diamond thin-film electrodes

    Science.gov (United States)

    Granger; Witek; Xu; Wang; Hupert; Hanks; Koppang; Butler; Lucazeau; Mermoux; Strojek; Swain

    2000-08-15

    Standard electrochemical data for high-quality, boron-doped diamond thin-film electrodes are presented. Films from two different sources were compared (NRL and USU) and both were highly conductive, hydrogen-terminated, and polycrystalline. The films are acid washed and hydrogen plasma treated prior to use to remove nondiamond carbon impurity phases and to hydrogen terminate the surface. The boron-doping level of the NRL film was estimated to be in the mid 1019 B/cm3 range, and the boron-doping level of the USU films was approximately 5 x 10(20) B/cm(-3) based on boron nuclear reaction analysis. The electrochemical response was evaluated using Fe-(CN)6(3-/4-), Ru(NH3)6(3+/2+), IrCl6(2-/3-), methyl viologen, dopamine, ascorbic acid, Fe(3+/2+), and chlorpromazine. Comparisons are made between the apparent heterogeneous electron-transfer rate constants, k0(app), observed at these high-quality diamond films and the rate constants reported in the literature for freshly activated glassy carbon. Ru(NH3)6(3+/2+), IrCl6(2-/3-), methyl viologen, and chlorpromazine all involve electron transfer that is insensitive to the diamond surface microstructure and chemistry with k0(app) in the 10(-2)-10(-1) cm/s range. The rate constants are mainly influenced by the electronic properites of the films. Fe(CN)6(3-/4-) undergoes electron transfer that is extremely sensitive to the surface chemistry with k0(app) in the range of 10(-2)-10(-1) cm/s at the hydrogen-terminated surface. An oxygen surface termination severely inhibits the rate of electron transfer. Fe(3+/2+) undergoes slow electron transfer at the hydrogen-terminated surface with k0(app) near 10(-5) cm/s. The rate of electron transfer at sp2 carbon electrodes is known to be mediated by surface carbonyl functionalities; however, this inner-sphere, catalytic pathway is absent on diamond due to the hydrogen termination. Dopamine, like other catechol and catecholamines, undergoes sluggish electron transfer with k0(app) between 10

  10. Evaluation of the reduction of boron-10 in the control rods in the BWR of the Laguna Verde Central, through steady state calculations; Evaluacion de la reduccion del Boro-10 en las barras de control en los BWR de la CLV, mediante calculos en estado estacionario

    Energy Technology Data Exchange (ETDEWEB)

    Montes T, J.L.; Perusquia, R.; Hernandez, J.L.; Ramirez S, J.R. [Departamento de Sistemas Nucleares, ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    One of the more important aspects related with the safety and economy in the operation of a nuclear power reactor, it is without a doubt the control of the reactivity. During the normal operation of a reactor of boiling water (BWR-Boiling Water Reactor), the control of the reactivity in the nucleus it is strongly determined by the efficiency of the control rods. In the case of the Laguna Verde Nuclear power station (CNLV) the nucleus of the reactors has 109 control rods grouped in 4 sets. The CNLV at the moment uses the CCC method (Control Cell Core) in the design of the cycle. With this method only the A2 group is used for the control of the reactivity at full power. With the purpose of quantifying the effect of the decrease of the burnable poison (B{sub 4}C) of the control rods and in particular to the effect due to the postulated lost of 10% of Boron 10, it was carried out a series of calculations of the nucleus in stationary state by means of the system of HELIOS/CM-PRESTO codes. In this work the main derived results of these 3D simulations(three dimensions) of the reactors of the CNLV are presented. It was analyzed the one behavior of the infinite neutron multiplication factor (K{sub infinite}), at fuel assemble cell level used in an equilibrium cycle for the CNLV. It was also analyzed the effect in the shutdown margin (ShutDown Margin- SDM) in cold condition CZP (Cold Zero Power). Its are also included those results of the ARI cases (All Rods In) and SRO (Strong Rod Out). From the cases in condition HFP (Hot Full Power) the behavior of the effective multiplication factor (K{sub eff}) is presented. (Author)

  11. Synthesis of Enriched 10B Boric Acid of Nuclear Grade

    Institute of Scientific and Technical Information of China (English)

    张雷; 张卫江; 徐姣; 任新

    2014-01-01

    An economic and effective method of preparing enriched 10B boric acid was established by chemical reac-tion of enriched 10BF3 and CaCO3. A process of boron trifluoride reacting with water was investigated under certain conditions. Calcium carbonate was selected to counteract hydrofluoric acid followed on. Some key operation factors were investigated, such as temperature, reaction time and the ratio of CaCO3 to 10BF3. The results showed that the yield of enriched 10B boric acid could reach 97. 2%and the purity was up to 94. 1%under the following conditions:the tem-perature was 50—60,℃, the reaction time was 28 h and the ratio of CaCO3 to 10BF3 was 4. In addition, after recrystal-lization and titration analysis, the purity of the product could reach over 99. 2%from 94.1%.

  12. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  13. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    Science.gov (United States)

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV.

  14. Characterization of neutron beams for boron neutron capture therapy: in-air radiobiological dosimetry.

    Science.gov (United States)

    Yamamoto, Tetsuya; Matsumura, Akira; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Hori, Naohiko; Torii, Yoshiya; Shibata, Yasushi; Nose, Tadao

    2003-07-01

    The survival curves and the RBE for the dose components generated in boron neutron capture therapy (BNCT) were determined separately in neutron beams at Japan Research Reactor No. 4. The surviving fractions of V79 Chinese hamster cells with or without 10B were obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal (TNB-2) neutron beam; these beams were used or are planned for use in BNCT clinical trials. The cell killing effect of the neutron beam in the presence or absence of 10B was highly dependent on the neutron beam used and depended on the epithermal and fast-neutron content of the beam. The RBEs of the boron capture reaction for ENB, TNB-1 and TNB-2 were 4.07 +/- 0.22, 2.98 +/- 0.16 and 1.42 +/- 0.07, respectively. The RBEs of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50 +/- 0.32, 2.34 +/- 0.30 and 2.17 +/- 0.28 for ENB, TNB-1 and TNB-2, respectively. The RBEs of the neutron and photon components were 1.22 +/- 0.16, 1.23 +/- 0.16, and 1.21 +/- 0.16 for ENB, TNB-1 and TNB-2, respectively. The approach to the experimental determination of RBEs outlined in this paper allows the RBE-weighted dose calculation for each dose component of the neutron beams and contributes to an accurate inter-beam comparison of the neutron beams at the different facilities employed in ongoing and planned BNCT clinical trials.

  15. Boron neutron capture synovectomy (BNCS) as a potential therapy for rheumatoid arthritis: boron biodistribution study in a model of antigen-induced arthritis in rabbits.

    Science.gov (United States)

    Trivillin, Verónica A; Abramson, David B; Bumaguin, Gaston E; Bruno, Leandro J; Garabalino, Marcela A; Monti Hughes, Andrea; Heber, Elisa M; Feldman, Sara; Schwint, Amanda E

    2014-11-01

    Boron neutron capture synovectomy (BNCS) is explored for the treatment of rheumatoid arthritis (RA). The aim of the present study was to perform boron biodistribution studies in a model of antigen-induced arthritis (AIA) in female New Zealand rabbits, with the boron carriers boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) to assess the potential feasibility of BNCS for RA. Rabbits in chronic phase of AIA were used for biodistribution studies employing the following protocols: intra-articular (ia) (a) BPA-f 0.14 M (0.7 mg (10)B), (b) GB-10 (5 mg (10)B), (c) GB-10 (50 mg (10)B) and intravenous (iv), (d) BPA-f 0.14 M (15.5 mg (10)B/kg), (e) GB-10 (50 mg (10)B/kg), and (f) BPA-f (15.5 mg (10)B/kg) + GB-10 (50 mg (10)B/kg). At different post-administration times (13-85 min for ia and 3 h for iv), samples of blood, pathological synovium (target tissue), cartilage, tendon, muscle, and skin were taken for boron measurement by inductively coupled plasma mass spectrometry. The intra-articular administration protocols at boron concentrations (>20 ppm) in the pathological synovium. Dosimetric estimations suggest that BNCS would be able to achieve a therapeutically useful dose in pathological synovium without exceeding the radiotolerance of normal tissues in the treatment volume, employing boron carriers approved for use in humans. Radiobiological in vivo studies will be necessary to determine the actual therapeutic efficacy of BNCS to treat RA in an experimental model.

  16. Synthesis of C-4 Substituted Amido Nicotine Derivatives via Copper(I)- and (II)-Catalyzed Cross-Coupling Reactions.

    Science.gov (United States)

    Zhu, Jiancheng; Enamorado, Monica F; Comins, Daniel L

    2016-11-18

    The syntheses of seven novel amido nicotine derivatives 12-18 from (S)-nicotine are presented. (S)-Nicotine and (S)-6-chloronicotine derivatives were cross-coupled with the corresponding amides 6-10 at the C-4 position of the pyridine ring via copper(I)-mediated reactions. Derivatives 16-18 were also obtained via copper(II)-mediated reactions from (S)-nicotine containing a C-4 boronic acid pinacol ester group. The optimization of reaction conditions for both routes provided a useful method for preparing C-4 amide-containing nicotine analogs.

  17. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  18. Analysis of boron carbides' electronic structure

    Science.gov (United States)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  19. Excitation of the 119Tem, 121Tem, 123Tem, 127Tem, and 129Tem isomers in (γ,n) reactions from 10 to 22 MeV

    Science.gov (United States)

    Mazur, V. M.; Symochko, D. M.; Bigan, Z. M.; Poltorzhytska, T. V.

    2013-04-01

    Isomeric yield ratios for the 119Te, 121Te, 123Te, 127Te, and 129Te nuclei were obtained in (γ,n) reactions with bremsstrahlung endpoint energies ranging from 10 to 22 MeV in steps of 0.5 MeV. Experimental isomeric ratios were used to calculate the cross sections of (γ,n)m reactions, which were further compared with talys-1.4 calculations.

  20. Low-Cost Preparation of Boron Nitride Ceramic Powders

    Institute of Scientific and Technical Information of China (English)

    LI Duan; ZHANG Changrui; LI Bin; CAO Feng; WANG Siqing; LIU Kun; FANG Zhenyu

    2012-01-01

    The amorphous boron nitride ceramic powders were prepared at 750-950 ℃ by the lowcost urea route,and the effects of preparation temperatures,molar ratios of the raw materials and oxidation treatment on the composition,structure and surface morphology of the products were investigated through FTIR,XRD and SEM.The results show that the products ceramize and crystallize gradually with the increase of the temperature.When the molar ratio and reaction temperature are 3:2 and 850 ℃,respectively,the products have high purity,compact structure and nice shape.The oxidation treatment at 450 ℃ will not impair the composition and structure of boron nitfide but effectively remove the impurities.

  1. The isotopic effect and spectroscopic studies of boron orthophosphate (BPO 4)

    Science.gov (United States)

    Adamczyk, A.; Handke, M.

    2000-11-01

    Boron orthophosphate (BPO 4) belongs to the group of SiO 2-derivative structures. Its network is built up of boron and phosphorous tetrahedra, with boron and phosphorous atoms at almost the same positions as the silicon atoms in high-temperature cristobalite structure. In the present work, the interpretation of IR and Raman spectra of BPO 4 was carried out based on the model of PO 4 tetrahedron isolated by boron atoms. The factor group analysis enabled the separation of 12 bands due to the vibrations of PO 4 tetrahedron and three bands due to pseudo-lattice boron-oxygen bond vibrations. Substitution of boron atoms with 10B isotope caused shifts of the bands in the IR spectra, which made it possible to distinguish the bands due to boron-oxygen and phosphorus-oxygen bond vibrations. Based on the factor group analysis and isotopic effect, all bands in the IR and Raman spectra were assigned to the appropriate bond vibrations.

  2. Cytotoxicity of Boron-Doped Nanocrystalline Diamond Films Prepared by Microwave Plasma Chemical Vapor Deposition

    Science.gov (United States)

    Liu, Dan; Gou, Li; Ran, Junguo; Zhu, Hong; Zhang, Xiang

    2015-07-01

    Boron-doped nanocrystalline diamond (NCD) exhibits extraordinary mechanical properties and chemical stability, making it highly suitable for biomedical applications. For implant materials, the impact of boron-doped NCD films on the character of cell growth (i.e., adhesion, proliferation) is very important. Boron-doped NCD films with resistivity of 10-2 Ω·cm were grown on Si substrates by the microwave plasma chemical vapor deposition (MPCVD) process with H2 bubbled B2O3. The crystal structure, diamond character, surface morphology, and surface roughness of the boron-doped NCD films were analyzed using different characterization methods, such as X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The contact potential difference and possible boron distribution within the film were studied with a scanning kelvin force microscope (SKFM). The cytotoxicity of films was studied by in vitro tests, including fluorescence microscopy, SEM and MTT assay. Results indicated that the surface roughness value of NCD films was 56.6 nm and boron was probably accumulated at the boundaries between diamond agglomerates. MG-63 cells adhered well and exhibited a significant growth on the surface of films, suggesting that the boron-doped NCD films were non-toxic to cells. supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (University of Electronic Science and Technology of China) (No. KFJJ201313)

  3. Semiconducting boron carbides with better charge extraction through the addition of pyridine moieties

    Science.gov (United States)

    Echeverria, Elena; Dong, Bin; Peterson, George; Silva, Joseph P.; Wilson, Ethiyal R.; Sky Driver, M.; Jun, Young-Si; Stucky, Galen D.; Knight, Sean; Hofmann, Tino; Han, Zhong-Kang; Shao, Nan; Gao, Yi; Mei, Wai-Ning; Nastasi, Michael; Dowben, Peter A.; Kelber, Jeffry A.

    2016-09-01

    The plasma-enhanced chemical vapor (PECVD) co-deposition of pyridine and 1,2 dicarbadodecaborane, 1,2-B10C2H12 (orthocarborane) results in semiconducting boron carbide composite films with a significantly better charge extraction than plasma-enhanced chemical vapor deposited semiconducting boron carbide synthesized from orthocarborane alone. The PECVD pyridine/orthocarborane based semiconducting boron carbide composites, with pyridine/orthocarborane ratios ~3:1 or 9:1 exhibit indirect band gaps of 1.8 eV or 1.6 eV, respectively. These energies are less than the corresponding exciton energies of 2.0 eV-2.1 eV. The capacitance/voltage and current/voltage measurements indicate the hole carrier lifetimes for PECVD pyridine/orthocarborane based semiconducting boron carbide composites (3:1) films of ~350 µs compared to values of  ⩽35 µs for the PECVD semiconducting boron carbide films fabricated without pyridine. The hole carrier lifetime values are significantly longer than the initial exciton decay times in the region of ~0.05 ns and 0.27 ns for PECVD semiconducting boron carbide films with and without pyridine, respectively, as suggested by the time-resolved photoluminescence. These data indicate enhanced electron-hole separation and charge carrier lifetimes in PECVD pyridine/orthocarborane based semiconducting boron carbide and are consistent with the results of zero bias neutron voltaic measurements indicating significantly enhanced charge collection efficiency.

  4. Microstructural evolution of NiFe2O4-10NiO powder prepared by high temperature solid state reaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; ZHOU Ke-chao; LI Zhi-you; YANG Wen-jie

    2006-01-01

    The NiFe2O4-10NiO powder for inert anode of aluminium electrolysis was prepared by high temperature solid state reaction. The microstructural evolution from the raw materials NiO and Fe2O3 to the NiFe2O4-10NiO powder was studied by SEM. The results show that the domain structure making up of the agglomerate particles of Fe2O3 remains after high temperature solid state reaction, and the diffusion of Ni2+ into Fe2O3 structure is the control step of the reaction process. A microstructure with compact structure and fine grain inside the particle results from the sintering of NiFe2O4-10NiO powder.

  5. Feasibility studies of the growth of 3-5 compounds of boron by MOCVD

    Science.gov (United States)

    Manasevit, H. M.

    1988-01-01

    Boron-arsenic and boron-phosphorus films have been grown on Si sapphire and silicon-on-sapphire (SOS) by pyrolyzing Group 3 alkyls of boron, i.e., trimethylborane (TMB) and triethylborane (TEB), in the presence of AsH3 and PH3, respectively, in an H2 atmosphere. No evidence for reaction between the alkyls and the hydrides on mixing at room temperature was found. However, the films were predominantly amorphous. The film growth rate was found to depend on the concentration of alkyl boron compound and was essentially constant when TEB and AsH3 were pyrolyzed over the temperature range 550 C to 900 C. The films were found to contain mainly carbon impurities (the amount varying with growth temperature), some oxygen, and were highly stressed and bowed on Si substrates, with some crazing evident in thin (2 micron) B-P and thick (5 micron) B-As films. The carbon level was generally higher in films grown using TEB as the boron source. Films grown from PH3 and TMB showed a higher carbon content than those grown from AsH3 and TMB. Based on their B/As and B/P ratios, films with nominal compositions B sub12-16 As2 and B sub1.1-1.3 P were grown using TMB as the boron source.

  6. A suspended boron foil multi-wire proportional counter neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-11

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 µm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the {sup 10}B(n,α){sup 7}Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal–neutron detection efficiency for enriched {sup 10}B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  7. Determination of the boron content in polyethylene samples using the reactor Orphée

    CERN Document Server

    Gunsing, F; Aberle, O

    2017-01-01

    The boron content of two unknown types of polyethylene has been determined relative to a known reference type. Samples of polyethylene, including a known boron-less one, were irradiated with thermal neutrons at the reactor Orphée at Saclay in France. Prompt gamma rays were measured with a CeBr$_3$ detector and the intensity of the 478~keV line from $^{10}${B}(n,$\\alpha_1\\gamma$)$^{7}{Li*} was extracted.

  8. Rate coefficients for hydrogen abstraction reaction of pinonaldehyde C10H16O2 with Cl atoms between 200 and 400 K: A DFT study

    Indian Academy of Sciences (India)

    G SRINIVASULU; B RAJAKUMAR

    2016-06-01

    The kinetics of the reaction between pinonaldehyde C10H16O2 and Cl atom were studied usinghigh level ab initio G3(MP2) and DFT based MPWB1K/6-31+G(d) and MPW1K/6-31+G(d) levels of theoriescoupled with Conventional Transition State Theory in the temperature range between 200 and 400 K. Thenegative temperature dependent rate expression for the title reaction obtained with Wigner’s and Eckart’s symmetricaltunneling corrections are k(T)=(5.1 ± 0.56) × 10−19T2.35exp[(2098 ± 2)/T] cm3 molecule-1 s-1, and k(T)=(0.92 ± 0.18) × 10-19T2.60exp[(2204 ± 4)/T] cm3 molecule-1 s-1, respectively, at G3(MP2)//MPWB1Kmethod. The H abstraction reaction from the –CHO group was found to be the most dominant reaction channelamong all the possible reaction pathways and its corresponding rate coefficient at 300 K is kEckart’s unsymmetrical= 3.86 ×10-10 cm3 molecule-1 s-1. Whereas the channel with immediate lower activation energy is the H-abstraction from –CH- group (Tertiary H-abstraction site, Cg). The rate coefficient for this channel is kCg(Eckart’s unsymmetrical) = 1.83 ×10-15 cm3 molecule-1 s-1 which is smaller than the dominant channel byfive orders of magnitude. The atmospherically relevant parameters such as lifetimes were computed in thisinvestigation of its reaction with Cl atom.

  9. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  10. Efficient Synthesis of Boron-Containing α-Acyloxyamide Analogs via Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Po-Shen Pan

    2013-08-01

    Full Text Available In this report, a Passerini three-component reaction utilizing boron-containing carboxylic acids or aldehydes is discussed. The reaction was carried out in water and facilitated by the use of microwave irradiation. This methodology allowed for the efficient formation of a broad range of boron-containing α-acyloxyamides under mild conditions within a short time. Two series of boron-containing α-acyloxyamides were synthesized and subsequently screened for cytotoxicity using the MTT cell viability assay. Two potential lead compounds were found to have potent activity against the HepG2 cancer cell line, demonstrating the potential of this methodology for use in the development of novel pharmaceuticals.

  11. Jaguar Procedures for Detonation Behavior of Explosives Containing Boron

    Science.gov (United States)

    Stiel, L. I.; Baker, E. L.; Capellos, C.

    2009-12-01

    The Jaguar product library was expanded to include boron and boron containing products by analysis of Available Hugoniot and static volumetric data to obtain constants of the Murnaghan relationships for the components. Experimental melting points were also utilized to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX—boron mixtures calculated with these relationships using Jaguar are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that the boron does not react near the detonation front or that boron mixtures exhibit eigenvalue detonation behavior (as shown by some aluminized explosives), with higher detonation velocities at the initial points. Analyses of calorimetric measurements for RDX—boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the detonation properties of the formulation.

  12. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride–hydroxy apatite in rat femurs

    Energy Technology Data Exchange (ETDEWEB)

    Atila, Alptug, E-mail: alptugatila@yahoo.com [Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Halici, Zekai; Cadirci, Elif [Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240 (Turkey); Karakus, Emre [Department of Pharmacology and Toxicology, School of Veterinary Medicine, Ataturk University, Erzurum 25240 (Turkey); Palabiyik, Saziye Sezin [Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Ay, Nuran [Department of Material Science and Engineering, Faculty of Engineering, Anadolu University, Eskisehir 26555 (Turkey); Bakan, Feray [Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956 (Turkey); Yilmaz, Sahin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul 34755 (Turkey)

    2016-01-01

    ABSTRACT: Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN–HA composites in rat femurs. All rats were (n = 126) divided into five experimental groups (n = 24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100HA (Group2), femoral defect + %2.5hBN + %97.5HA (Group3), femoral defect + %5hBN + %95HA (Group4), femoral defect + %10hBN + %90 HA (Group5), femoral defect + %100hBN (Group6). The femoral defect was created in the distal femur (3 mm drill-bit). Each implant group was divided into four different groups (n = 24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN–HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN–HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers. - Highlights: • Nano-hBN–HA composites are new targets for biomaterial and implant bioengineers. • Serum boron levels were researched after implantation of nano-hBN–HA composites. • Implantation of hBN–HA composite did not result in increased serum boron levels. • The use of boron in composite form with HA did not change the stability of the implant.

  13. Synthesis of Boron Nanowires, Nanotubes, and Nanosheets

    Directory of Open Access Journals (Sweden)

    Rajen B. Patel

    2015-01-01

    Full Text Available The synthesis of boron nanowires, nanotubes, and nanosheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nanomaterials. The materials were made by using various combinations of MgB2, Mg(BH42, MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nanowires, boron nanotubes, and boron nanosheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  14. Prediction of boron carbon nitrogen phase diagram

    Science.gov (United States)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  15. Oxygen radical functionalization of boron nitride nanosheets

    OpenAIRE

    MAY, PETER; Coleman, Jonathan; MCGOVERN, IGNATIUS; GOUNKO, IOURI; Satti, Amro

    2012-01-01

    PUBLISHED The covalent chemical functionalization of exfoliated hexagonal boron-nitride nanosheets (BNNSs) is achieved by the solution phase oxygen radical functionalization of boron atoms in the h-BN lattice. This involves a two-step procedure to initially covalently graft alkoxy groups to boron atoms and the subsequent hydrolytic defunctionalisation of the groups to yield hydroxyl-functionalized BNNSs (OH-BNNSs). Characterization of the functionalized-BNNSs using HR-TEM, Raman, UV-Vis, F...

  16. Anisotropic Hexagonal Boron Nitride Nanomaterials - Synthesis and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han,W.Q.

    2008-08-01

    Boron nitride (BN) is a synthetic binary compound located between III and V group elements in the Periodic Table. However, its properties, in terms of polymorphism and mechanical characteristics, are rather close to those of carbon compared with other III-V compounds, such as gallium nitride. BN crystallizes into a layered or a tetrahedrally linked structure, like those of graphite and diamond, respectively, depending on the conditions of its preparation, especially the pressure applied. Such correspondence between BN and carbon readily can be understood from their isoelectronic structures [1, 2]. On the other hand, in contrast to graphite, layered BN is transparent and is an insulator. This material has attracted great interest because, similar to carbon, it exists in various polymorphic forms exhibiting very different properties; however, these forms do not correspond strictly to those of carbon. Crystallographically, BN is classified into four polymorphic forms: Hexagonal BN (h-BN) (Figure 1(b)); rhombohedral BN (r-BN); cubic BN (c-BN); and wurtzite BN (w-BN). BN does not occur in nature. In 1842, Balmain [3] obtained BN as a reaction product between molten boric oxide and potassium cyanide under atmospheric pressure. Thereafter, many methods for its synthesis were reported. h-BN and r-BN are formed under ambient pressure. c-BN is synthesized from h-BN under high pressure at high temperature while w-BN is prepared from h-BN under high pressure at room temperature [1]. Each BN layer consists of stacks of hexagonal plate-like units of boron and nitrogen atoms linked by SP{sup 2} hybridized orbits and held together mainly by Van der Waals force (Fig 1(b)). The hexagonal polymorph has two-layered repeating units: AA'AA'... that differ from those in graphite: ABAB... (Figure 1(a)). Within the layers of h-BN there is coincidence between the same phases of the hexagons, although the boron atoms and nitrogen atoms are alternatively located along the c

  17. Boron deposition from fused salts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.L.

    1980-08-01

    A partial evaluation of the feasibility of a process to electrodeposit pure coherent coatings of elemental boron from molten fluorides has been performed. The deposit produced was powdery and acicular, unless the fluoride melt was purified to have very low oxygen concentration. When the oxygen activity was reduced in the melt by addition of crystalline elemental boron, dense, amorphous boron deposit was produced. The boron deposits produced had cracks but were otherwise pure and dense and ranged up to 0.35 mm thick. Information derived during this project suggests that similar deposits might be obtained crack-free up to 1.00 mm thick by process modifications and improvements.

  18. Mineral resource of the month: boron

    Science.gov (United States)

    Crangle, Robert D.

    2012-01-01

    The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.

  19. An Exploration of Neutron Detection in Semiconducting Boron Carbide

    Science.gov (United States)

    Hong, Nina

    The 3He supply problem in the U.S. has necessitated the search for alternatives for neutron detection. The neutron detection efficiency is a function of density, atomic composition, neutron absorption cross section, and thickness of the neutron capture material. The isotope 10B is one of only a handful of isotopes with a high neutron absorption cross section---3840 barns for thermal neutrons. So a boron carbide semiconductor represents a viable alternative to 3He. This dissertation provides an evaluation of the performance of semiconducting boron carbide neutron detectors grown by plasma enhance chemical vapor deposition (PECVD) in order to determine the advantages and drawbacks of these devices for neutron detection. Improved handling of the PECVD system has resulted in an extremely stable plasma, enabling deposition of thick films of semiconducting boron carbide. A variety of material and semiconducting characterization tools have been used to investigate the structure and electronic properties of boron carbide thin films, including X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, infrared/Raman spectroscopy, current-voltage measurements and capacitance-voltage measurements. Elemental concentrations in the boron carbide films have been obtained from Rutherford backscattering and elastic recoil detection analysis. Solid state neutron detection devices have been fabricated in the form of heterostructured p-n diodes, p-type boron carbide/n-type Si. Operating conditions, including applied bias voltage, and time constants, have been optimized for maximum detection efficiency and correlated to the semiconducting properties investigated in separate electronic measurements. Accurate measurements of the neutron detection efficiency and the response of the detector to a wide range of neutron wavelengths have been performed at a well calibrated, tightly collimated, "white" cold neutron beam source using time-of-flight neutron detection technique

  20. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  1. Detection of HbA(1c) by boronate affinity immunoassay using bacterial magnetic particles.

    Science.gov (United States)

    Tanaka, T; Matsunaga, T

    2001-12-01

    We have developed a boronate affinity immunoassay system using m-aminophenylboronic acid (mAPB) coupling to bacterial magnetic particles (BMPs). Homobifunctional crosslinker, Bis-(succcimidyl)suberate (BS3), was employed for preparation of mAPB-BMPs conjugates (mAPB-BMPs). Quantities of HbA(1c) on mAPB-BMPs were evaluated based on luminescence from alkaline phosphatase-conjugated anti-Hb antibody (ALP-antibody) binding to HbA(1c) on the BMP surface. The binding of HbA(1c) to mAPB-BMPs occurred gradually and was almost completed within 10 mm. The coupling reaction is enhanced due to static electric interaction between the positive charges on HbA(1c) and negative charges on BMPs. The amount of HbA(1c) binding to mAPB-BMPs increased with increasing sodium chloride concentrations in the range of 0-100 mM. However, the amount of Hb binding to mAPB-BMPs also increased in high concentration of sodium chloride. The Hb binding to mAPB-BMPs was detached from mAPB-BMPs when Hb-mAPB-BMPs were washed with low salt buffer. This indicates that Hb is nonspecifically adsorbed onto the surface of mAPB-BMPs in high concentration of sodium chloride. These results suggest that selective separation of HbA(1c) using mAPB-BMPs can be achieved with these conditions. A dose-response curve was obtained between luminescence intensity and HbA(1c) concentration using a fully automated boronate affinity immunoassay. A linear relationship between luminescence intensity and HbA(1c) concentration was obtained in the range of 10-10(4) ng/ml.

  2. Synthesis of New Pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione (PCU Cyanosilylated Derivatives Using Sulphated Zirconia and Hydrotalcite as Catalysts in Microwave-Assisted Reactions under Solvent Free Conditions

    Directory of Open Access Journals (Sweden)

    Juan Navarrete-Bolaños

    2011-08-01

    Full Text Available A comparison was made of the effectiveness of the functionalization reactions of pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione (PCU using sulphated zirconia in protection-deprotection reactions and Mg/Al hydrotalcite in a cyanosilylation reaction, under classical thermal conditions and imposing microwave radiation; improved yields and reaction times were considered.

  3. Boron-doped MnO{sub 2}/carbon fiber composite electrode for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hong Zhong, E-mail: hzchi@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhu, Hongjie [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Gao, Linhui [Center of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-10-05

    Highlights: • Interstitial ion in MnO{sub 2} lattice. • Porous film composed by interlocking worm-like nanostructure. • Boron-doped birnessite-type MnO{sub 2}/carbon fiber composite electrode. • Enhanced capacitive properties through nonmetal element doping. - Abstract: The boron-doped MnO{sub 2}/carbon fiber composite electrode has been prepared via in situ redox reaction between potassium permanganate and carbon fibers in the presence of boric acid. The addition of boron as dopant results in the increase of growth-rate of MnO{sub 2} crystal and the formation of worm-like nanostructure. Based on the analysis of binding energy, element boron incorporates into the MnO{sub 2} lattice through interstitial mode. The doped electrode with porous framework is beneficial to pseudocapacitive reaction and surface charge storage, leading to higher specific capacitance and superior rate capability. After experienced 1000 cycles, the boron-doped MnO{sub 2} still retain a higher specific capacitance by about 80% of its initial value. The fall in capacitance is blamed to be the combination of the formation of soluble Mn{sup 2+} and the absence of active site on the outer surface.

  4. Rational design of gold nanoparticles functionalized with carboranes for application in Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ciani, Laura; Bortolussi, Silva; Postuma, Ian; Cansolino, Laura; Ferrari, Cinzia; Panza, Luigi; Altieri, Saverio; Ristori, Sandra

    2013-12-31

    In this paper we propose a bottom-up approach to obtain new boron carriers built with ortho-carborane functionalized gold nanoparticles (GNPs) for applications in Boron Neutron Capture Therapy. The interaction between carboranes and the gold surface was assured by one or two SH-groups directly linked to the boron atoms of the B10C2 cage. This allowed obtaining stable, nontoxic systems, though optimal biological performance was hampered by low solubility in aqueous media. To improve cell uptake, the hydrophilic character of carborane functionalized GNPs was enhanced by further coverage with an appropriately tailored diblock copolymer (PEO-b-PCL). This polymer also contained pendant carboranes to provide anchoring to the pre-functionalized GNPs. In vitro tests, carried out on osteosarcoma cells, showed that the final vectors possessed excellent biocompatibility joint to the capacity of concentrating boron atoms in the target, which is encouraging evidenced to pursue applications in vivo.

  5. Reversible neutralization of boron acceptors by hydrogen in Pd-SiO2-Si capacitors

    Science.gov (United States)

    Fare, T. L.; Lundstrom, I.; Zemel, J. N.; Feygenson, A.

    1986-03-01

    A palladium metal-silicon dioxide-silicon (Pd-MOS) capacitor is used to study the reversible injection and extraction of atomic hydrogen from a p-type implanted boron layer on an n-type (1016 phosphorus/cm3) substrate. 0.70±0.03 of the boron acceptors are deactivated by the hydrogen atoms diffusing from the Pd-SiO2 interface, on through the SiO2 and on into the silicon surface region. It is established that the atomic hydrogen can diffuse through a 10-nm-thick thermal SiO2 film. The isothermal uptake and release of atomic hydrogen in the silicon surface are demonstrated. The hydrogen data offer evidence that the boron acceptors and the phosphorus donors form a neutral complex during the processing of the ion implanted boron layer.

  6. Efficient Synthesis of Complex Bridged 1,3-Oxazabicycles via Reactions of N-Alkyl-1,10-phenanthrolinium Halides with Cyclic 1,3-Diketones

    Institute of Scientific and Technical Information of China (English)

    WU Ping; HUI Li; GAO Xing; YAN Chao-guo

    2012-01-01

    Complex bridged 1,3-oxazabicycles and 1,4-disubstituted 1,10-phenanthroline derivatives were efficiently prepared by the reactions of N-methyl or N-benzylphenanthrolinium halides with cyclic 1,3-dicarbonyl compounds in a K2CO3/CH3CN system.

  7. Demonstration of correlations between the 8 and 10 kHz atmospherics and the inflammatory reaction of rats after carrageenan injection

    Science.gov (United States)

    Ruhenstroth-Bauer, Gerhard; Rösing, Olga; Baumer, Hans; Sönning, Walter; Lehmacher, Walter

    1988-09-01

    Between the mean daily density of 28 kHz atmospherics and the onset of epileptic fits there is a highly significant correlation coefficient ( r) of 0.30; there is a negative coefficient of -0.20 between the fits and the mean daily density of 10 kHz atmospherics. The onset of heart infarction is correlated with 28 kHz atmospherics ( r=0.15). Furthermore, we have discovered that sudden deafness is also correlated with certain configurations of atmospherics. In this paper we report the following correlation coefficients between the inflammatory reaction of rats to a carrageenan injection (rci) into a hind paw and the mean daily pulse rate of atmospherics of the same day: r=0.49 for the 8 kHz atmospherics ( P<0.02) and r=0.44 for the 10 kHz atmospherics ( P<0.04). The correlations between rci reaction and other atmospherics (12 and 28 kHz) are smaller and not significant. By the method of multiple linear regression we found a multiple R=0.54 between rci reaction and the 8 and 10 kHz atmospherics (the regression function for the rci reaction is 0.15+0.004×8 kHz+0.002×10 kHz, P<0.05).

  8. 1,3-Dipolar Cycloaddition Reactions of 1-(4-Phenylphenacyl-1,10-phenanthrolinium N-Ylide with Activated Alkynes and Alkenes

    Directory of Open Access Journals (Sweden)

    A. Badoiu

    2005-02-01

    Full Text Available The 3 2 cycloaddition reaction of 1-(4-phenylphenacyl-1,10-phenanthrolinium ylide with activated alkynes gave pyrrolo[1,2- 4a][1,10]phenanthrolines 6a-d. The "one pot" synthesis of 6a,b,d from 4, activatedalkenes, Et3N and tetrakis-pyridine cobalt (II dichromate (TPCD is described. Thehelical chirality of pyrrolophenanthrolines 6b-d was put in evidence by NMRspectroscopy.

  9. Development of a novel neutron detection technique by using a boron layer coating a Charge Coupled Device

    CERN Document Server

    Blostein, Juan Jerónimo; Tartaglione, Aureliano; Haro, Miguel Sofo; Moroni, Guillermo Fernández; Cancelo, Gustavo

    2014-01-01

    This article describes the design features and the first test measurements obtained during the installation of a novel high resolution 2D neutron detection technique. The technique proposed in this work consists of a boron layer (enriched in ${^{10}}$B) placed on a scientific Charge Coupled Device (CCD). After the nuclear reaction ${^{10}}$B(n,$\\alpha$)${^{7}}$Li, the CCD detects the emitted charge particles thus obtaining information on the neutron absorption position. The above mentioned ionizing particles, with energies in the range 0.5-5.5 MeV, produce a plasma effect in the CCD which is recorded as a circular spot. This characteristic circular shape, as well as the relationship observed between the spot diameter and the charge collected, is used for the event recognition, allowing the discrimination of undesirable gamma events. We present the first results recently obtained with this technique, which has the potential to perform neutron tomography investigations with a spatial resolution better than that...

  10. Geochemical study of boron isotopes in the process of loess weathering

    Institute of Scientific and Technical Information of China (English)

    赵志琦; 刘丛强; 肖应凯; 郎赟超

    2003-01-01

    In this paper the boron contents and boron isotopic composition of acid-soluble phases in loess and paleosol samples are determined for the first time. The boron contents of acid-soluble phases in the Luochuan loess section (S0 -S2) vary within the range of (0.8-2.7)×10-6 and theirδ11B values vary from -1.8‰ to +18.6‰, mostly within the range of 0-+10‰. The boron contents andδ11B values of paleosol layers are higher than those of loess layers, especially in the loess layer S1. Varying chemical weathering intensity and loess adsorption capability are the main factors leading to the variations of boron contents and δ11B values of acid-soluble phases in the loess section. The variation of chemical weathering intensity in response to the variation of climatic conditions seems to be the main factor leading to the variations of boron contents andδ11B values of acid-soluble phases in the loess section.

  11. Boron-Based Layered Structures for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.; Wei, S. H.

    2012-01-01

    Based on Density Functional Theory simulations, we have studied the boron-based graphite-like materials, i.e., LiBC and MgB2 for energy storage. First, when half of the Li-ions in the LiBC are removed, the BC layered structure is still preserved. The Li intercalation potential (equilibrium lithium-insertion voltage of 2.3-2.4 V relative to lithium metal) is significantly higher than that in graphite, allowing Li0.5BC to function as a cathode material. The reversible electrochemical reaction, LiBC = Li0.5BC + 0.5Li, enables a specific energy density of 1088 Wh/kg and a volumetric energy density of 2463 Wh/L. Second, 75% of the Mg ions in MgB2 can be removed and reversibly inserted with the layered boron structures being preserved through an in-plane topological transformation between the hexagonal lattice domains and triangular domains. The mechanism of such a charge-driven transformation originates from the versatile valence state of boron in its planar form.

  12. Role of organic matter on boron adsorption-desorption hysteresis of soils

    Science.gov (United States)

    In this study we evaluated the boron (B) adsorption/desorption reaction in six soils and examined the extent to which organic matter content, as well as incubation time affected B release. Six soils varying in initial pH, clay content, and were selected for the study. Adsorption experiments were c...

  13. A Preliminary experimental study of the boron concentration in vapor and the isotopic A preliminary experimental study of the boron concentrationin vapor and the isotopic fractionation of boron betweenseawater and vapor during evaporation of seawater

    Institute of Scientific and Technical Information of China (English)

    XIAO; Yingkai

    2001-01-01

    [1]Gast, J. A., Thompson, T. G., Evaporation of boric acid from seawater, Tellus, 1959, 6: 344-347.[2]Nishimura, M., Tanaka, K., Seawater may not be a source of boron in the atmosphere, J. Geoph. Res., 1972, 77: 5239-5242.[3]Fogg, T. R., Duce, R. A., Fasching, J. L., Sampling and determination of boron in the atmosphere, Anal. Chem., 1983, 55:2179-2184.[4]Fogg, T. R., Duce, R. A., Boron in the troposphere: Distribution and fluxes, J. Geoph. Res., 1985, 90: 3781-3796.[5]Spivack, A. J., Berndt, M. E., Seyfreid, W. E., Boron isotope fractionation during supercritical phase separation, Geochim.Cosmochim. Acta, 1990, 54: 2337-2339.[6]Palmer, M. R., London, D., Morgan, G. B. et al., Experimental determination of fractionation of 11B/10B between tourma-line and aqueous vapor: A temperature and pressure-dependent isotopic system, Chem. Geol., 1992, 101:123-129.[7]Hervig, R. L., London, D., Morgan, G. B. et al., Large boron isotope fractionation between hydrous vapor and silicate meltat igneous temperatures, in the Seventh Annual V. M. Goldschmidt Conf., LPI Contribution No. 921, Houston: Lunar and Planetary Institute, 1997, 93-94.[8]Vengosh, A., Starinsky, A., Kolodny, Y. et al., Boron isotope variations during fractional evaporation of seawater: New constraints on the marine vs. nonmarine debate, Geology, 1992, 20: 799-802.[9]Zhang, X. P., Shi, Y. E, Yao, T. D., The variation characteristics of δo18O in precipitation in Northeastern Qing-Zhang Plateau, Science in China, Series B (in Chinese), 1995, 25(5): 540-547.[10]Yu, J. S., Yu, E J., Liu, D. P., The hydrogen and oxygen of isotopic compositions of meteoric water in the eastern part of China, Geochimica (in Chinese), 1987, (1): 22-26.[11]Xiao, Y. K., Xiao, Y., Swihart, G. H. et al., Separation of boron by ion exchange with boron specific resin, Acta Geosci.Sinica (in Chinese), 1997, 18: 286-289.[12]Kiss, E., Ion-exchange separation and spectrophotometric determination of

  14. Differentiation in boron distribution in adult male and female rats' normal brain: A BNCT approach

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Samereh, E-mail: samere.g@gmail.com [Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, PO Box 19395-1943, Tehran (Iran, Islamic Republic of); Pazirandeh, Ali, E-mail: paziran@yahoo.com [Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, PO Box 19395-1943, Tehran (Iran, Islamic Republic of); Jameie, Seyed Behnamedin, E-mail: behnamjameie@tums.ac.ir [Basic Science Department, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Baghban Khojasteh, Nasrin, E-mail: khojasteh_n@yahoo.com [Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, PO Box 19395-1943, Tehran (Iran, Islamic Republic of)

    2012-06-15

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection. - Highlights: Black-Right-Pointing-Pointer Boron distribution in male and female rats' normal brain was studied in this research. Black-Right-Pointing-Pointer Coronal sections of animal tissue samples were irradiated with thermal neutrons. Black-Right-Pointing-Pointer Alpha and Lithium tracks were counted using alpha autoradiography. Black-Right-Pointing-Pointer Different boron concentration was seen in brain sections of male and female rats. Black-Right-Pointing-Pointer The highest boron concentration was seen in 4 h after boron compound injection.

  15. Reactions with a Metalloid Tin Cluster {Sn10[Si(SiMe3)3]4}(2-): Ligand Elimination versus Coordination Chemistry.

    Science.gov (United States)

    Schrenk, Claudio; Gerke, Birgit; Pöttgen, Rainer; Clayborne, Andre; Schnepf, Andreas

    2015-05-26

    Chemistry that uses metalloid tin clusters as a starting material is of fundamental interest towards understanding the reactivity of such compounds. Since we identified {Sn10[Si(SiMe3)3]4}(2-) 7 as an ideal candidate for such reactions, we present a further step in the understanding of metalloid tin cluster chemistry. In contrast to germanium chemistry, ligand elimination seems to be a major reaction channel, which leads to the more open metalloid cluster {Sn10[Si(SiMe3)3]3}(-) 9, in which the Sn core is only shielded by three Si(SiMe3)3 ligands. Compound 9 is obtained through different routes and is crystallised together with two different countercations. Besides the structural characterisation of this novel metalloid tin cluster, the electronic structure is analysed by (119)Sn Mössbauer spectroscopy. Additionally, possible reaction pathways are discussed. The presented first step into the chemistry of metalloid tin clusters thus indicates that, with respect to metalloid germanium clusters, more reaction channels are accessible, thereby leading to a more complex reaction system.

  16. Integral measurement of the {sup 12}C(n, p){sup 12}B reaction up to 10 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Zugec, P.; Bosnar, D. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Colonna, N.; Barbagallo, M.; Mastromarco, M.; Tagliente, G.; Variale, V. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Ventura, A. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Mengoni, A. [ENEA, Bologna (Italy); Altstadt, S.; Langer, C.; Lederer, C.; Reifarth, R.; Schmidt, S.; Weigand, M. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (Germany); Andrzejewski, J.; Marganiec, J.; Perkowski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L.; Leong, L.S.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Becares, V.; Cano-Ott, D.; Garcia, A.R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S. [Charles University, Prague (Czech Republic); Belloni, F.; Mondalaers, W.; Plompen, A.; Schillebeeckx, P. [European Commission JRC, Institute for Reference Materials and Measurements, Geel (Belgium); Berthoumieux, E.; Fraval, K.; Gunsing, F. [CEA/Saclay - IRFU, Gif-sur-Yvette (France); Billowes, J.; Ware, T.; Wright, T. [University of Manchester, Manchester (United Kingdom); Boccone, V.; Brugger, M.; Calviani, M.; Cerutti, F.; Chiaveri, E.; Chin, M.; Ferrari, A.; Guerrero, C.; Losito, R.; Roman, F.; Rubbia, C.; Tsinganis, A.; Versaci, R.; Vlachoudis, V.; Weiss, C. [CERN, Geneva (Switzerland); Calvino, F.; Cortes, G.; Gomez-Hornillos, M.B.; Riego, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Carrapico, C.; Goncalves, I.F.; Sarmento, R.; Vaz, P. [Universidade de Lisboa, C2TN-Instituto Superior Tecnico, Lisboa (Portugal); Cortes-Giraldo, M.A.; Praena, J.; Quesada, J. [Universidad de Sevilla, Sevilla (Spain); Cosentino, L.; Finocchiaro, P. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Heinitz, S.; Kivel, N.; Schumann, D. [Paul Scherrer Institut, Villigen (Switzerland); Duran, I.; Tarrio, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Eleftheriadis, C.; Manousos, A. [Aristotle University of Thessaloniki, Thessaloniki (Greece); Ganesan, S.; Gurusamy, P.; Saxena, A. [Bhabha Atomic Research Centre (BARC), Mumbai (India); Griesmayer, E.; Jericha, E.; Leeb, H. [Atominstitut der Oesterreichischen Universitaeten, Technische Universitaet Wien, Wien (Austria); Jenkins, D.G.; Vermeulen, M.J. [University of York, York, Heslington (United Kingdom); Kaeppeler, F. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, Karlsruhe (Germany); Lo Meo, S. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); ENEA, Bologna (Italy); Massimi, C.; Mingrone, F.; Vannini, G. [Dipartimento di Fisica, Universita di Bologna (IT); INFN, Bologna (IT); Mastinu, P. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Legnaro (IT); Milazzo, P.M. [Istituto Nazionale di Fisica Nucleare, Trieste (IT); Mirea, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Magurele (RO); Musumarra, A. [Universita di Catania, Dipartimento di Fisica e Astronomia DFA, Catania (IT); INFN-Laboratori Nazionali del Sud, Catania (IT); Paradela, C. [European Commission JRC, Institute for Reference Materials and Measurements, Geel (BE); Universidade de Santiago de Compostela, Santiago de Compostela (ES); Pavlik, A. [Faculty of Physics, University of Vienna, Wien (AT); Rauscher, T. [University of Hertfordshire, Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, Hatfield (GB); University of Basel, Department of Physics, Basel (CH); Wallner, A. [Faculty of Physics, University of Vienna, Wien (AT); Australian National University, Research School of Physics and Engineering, Canberra (AU)

    2016-04-15

    The integral measurement of the {sup 12}C(n, p){sup 12}B reaction was performed at the neutron time-of-flight facility nTOF at CERN. The total number of {sup 12}B nuclei produced per neutron pulse of the nTOF beam was determined using the activation technique in combination with a time-of-flight technique. The cross section is integrated over the nTOF neutron energy spectrum from reaction threshold at 13.6 MeV to 10 GeV. Having been measured up to 1GeV on basis of the {sup 235}U(n, f) reaction, the neutron energy spectrum above 200 MeV has been re-evaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200 MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1 GeV up to 10 GeV. The experimental results related to the {sup 12}C(n, p){sup 12}B reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which mostly underestimate the {sup 12}B production. On the contrary, a good reproduction of the integral cross section derived from measurements is obtained with TALYS-1.6 calculations, with optimized parameters. (orig.)

  17. The kinetics of substitution reaction of oxydiacetate and thiodiacetate copper(II) complexes with 1,10-phenanthroline and 2,2’-bipyridine

    Indian Academy of Sciences (India)

    Joanna Pranczk; Dagmara Jacewicz; Dariusz Wyrzykowski; Aleksandra Tesmar; Lech Chmurzyński

    2015-10-01

    The kinetics of substitution reactions of the CuODA and CuTDA binary complexes (ODA = oxydiacetate, TDA = thiodiacetate) with 1,10-phenanthroline (phen) and 2,2’-bipyridine (bipy) were studied in aqueous and DMSO solutions. These reactions were monitored spectrometrically using the stopped-flow method in the UV range. The studies were carried out at three temperatures - 298.15, 303.15 and 308.15 K. The concentrations of the binary complexes were kept within the range of 0.2–0.5 mmol L−1, whereas the concentration of phen or bipy was constant = 0.05 mmol L−1. The values of the reaction rate constants were calculated based on the A → B reaction model. A linear relationship of the rate of the substitution reaction versus the concentration of the binary complex as well as temperature was observed. The impact of the type of the primary (ODA and TDA) and auxiliary ligands (phen and bipy) as well as the effect of solvent on the rate of substitution reaction have been discussed.

  18. Electrochemical oxidation of N-nitrosodimethylamine with boron-doped diamond film electrodes.

    Science.gov (United States)

    Chaplin, Brian P; Schrader, Glenn; Farrell, James

    2009-11-01

    This research investigated NDMA oxidation by boron-doped diamond (BDD) film electrodes. Oxidation rates were measured as a function of electrode potential, current density, and temperature using rotating disk and flow-through reactors. Final NDMA reaction products were carbon dioxide, ammonium, and nitrate, with dimethylamine and methylamine as intermediate products. Reaction rates were first-order with respect to NDMA concentration and surface area normalized oxidation rates as high as 850 +/- 50 L/m(2)-hr were observed at a current density of 10 mA/cm(2). The flow-through reactor yielded mass transfer limited reaction rates that were first-order in NDMA concentration, with a half-life of 2.1 +/- 0.1 min. Experimental evidence indicates that NDMA oxidation proceeds via a direct electron transfer at potentials >1.8 V/SHE with a measured apparent activation energy of 3.1 +/- 0.5 kJ/mol at a potential of 2.5 V/SHE. Density functional theory calculations indicate that a direct two-electron transfer can produce a stable NDMA((+2)) species that is stabilized by forming an adduct with water. The transfer of two electrons from NDMA to the electrode allows an activation-less attack of hydroxyl radicals on the NDMA((+2)) water adduct. At higher overpotentials the oxidation of NDMA occurs by a combination of direct electron transfer and hydroxyl radicals produced via water electrolysis.

  19. Boron Separation by the Two-step Ion-Exchange for the Isotopic Measurement of Boron

    Institute of Scientific and Technical Information of China (English)

    WANG,Qing-Zhong(王庆忠); XIAO,Ying-Kai(肖应凯); WANG,Yun-Hui(王蕴惠); ZHANG,Chong-Geng(张崇耿); WEI,Hai-Zhen(魏海珍)

    2002-01-01

    An improved procedure for extraction and purification of boron from natural samples is presented. The separation and purification of boron was carried out using a boron-specific resin, Amberlite IRA743, and a mixed ion exchange resin,Dowex 50W × 8 and Ion Exchanger Ⅱ resin. Using the mixed ion exchange resin which adsorbs all cations and anions except boron, the HCl and other cations and anions left in eluant from the Amberlite IRA 743 were removed effectively. In this case, boron loss can be avoided because the boron-bearing solution does not have to be evaporated to reach dryness to dislodge HCl. The boron recovery ranged from 97.6% to 102% in this study. The isotopic fractionation of boron can be negligible within the precision of the isotopic measurement. The results show that boron separation for the isotopic measurement by using both Amberlite IRA 743 resin and the mixed rein is more effective than that using Amberlite IRA 743 resin alone. The boron in samples of brine, seawater, rock, coral and foraminifer were separated by this procedure. Boron isotopic compositions of these samples were measured by thermal ionization mass spectrometry in this study.

  20. 漆酚硼树脂的合成%Synthesis of urushiol-boron resin

    Institute of Scientific and Technical Information of China (English)

    周少丽; 杨亚婷

    2016-01-01

    The urushiol is extracted from raw lacquer and reacts with formaldehyde to produce urushiol formaldehyde whose molecular weight is about2.3×103. Then it is modified by the boric acid to prepare urushiol-boron resin. This paper discusses the mechanism of the reactions, impacts of ratio of urushiol/boric acid and reaction time on the physical properties of the resin which include adhesion, drying time, flexibility, hardness, and impact resistance. The modified urushiol-boron resin is prepared under the conditions when the ratio of urushiol/boric acid is1.0∶0.8, pH value is8-9, reaction temperature increases to120 ℃ and reaction time is3 h, whose properties are in accordance with urushiol-formaldehyde polymer, and whose adhesion, flexibility, and hardness are improved significantly as well.%提取生漆中的主要成份漆酚,并使之与甲醛缩合,制得相对分子质量约为2.3×103的漆酚缩甲醛,再用H3BO3对其改性,制备了漆酚硼树脂。探讨了漆酚缩甲醛和漆酚硼树脂的合成机理,以及漆酚与H3BO3摩尔比和反应时间对漆酚硼树脂的干燥时间、硬度、附着力、柔韧性、耐冲击性等的影响。当漆酚缩甲醛与H3BO3的摩尔比为1.0∶0.8,pH值为8~9,升温至120℃左右保温反应3 h,制备的漆酚硼树脂在保留漆酚缩甲醛基本性能的同时,其柔韧性、硬度、附着力等有大幅提高。

  1. High strain amount in recessed junctions induced by selectively deposited boron-doped SiGe layers

    Energy Technology Data Exchange (ETDEWEB)

    Radamson, H.H. [School of Information and Communication Technology, KTH (Royal Institute of Technology) Isafjordsg. 22-26, Electrum 229, 16640 Kista (Sweden)], E-mail: rad@kth.se; Kolahdouz, M.; Ghandi, R.; Ostling, M. [School of Information and Communication Technology, KTH (Royal Institute of Technology) Isafjordsg. 22-26, Electrum 229, 16640 Kista (Sweden)

    2008-12-05

    This work presents the selective epitaxial growth (SEG) of Si{sub 1-x}Ge{sub x} (x = 0.15-0.315) layers with high amount of boron (1 x 10{sup 20}-1 x 10{sup 21} cm{sup -3}) in recessed or unprocessed (elevated) openings for source/drain applications in CMOS has been studied. The influence of the growth rate and strain on boron incorporation has been studied. A focus has been made on the strain distribution and boron incorporation in SEG of SiGe layers.

  2. Carborane derivative development for boron neutron capture therapy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barnum, Beverly A.; Yan Hao; Moore, Roger; Hawthorne, M. Frederick; Baum, Kurt

    1999-04-01

    Boron Neutron Capture Therapy [BNCT] is a binary method of cancer therapy based on the capture of neutrons by a boron-10 atom [{sup 10}B]. Cytotoxic {sup 7}Li nuclei and {alpha}-particles are emitted, with a range in tissue of 9 and 5 {micro}m, respectively, about one cell diameter. The major obstacle to clinically viable BNCT is the selective localization of 5-30 ppm {sup 10}B in tumor cells required for effective therapy. A promising approach to BNCT is based on hydrophilic boron-rich oligomeric phosphate diesters, or ''trailers'' that have been shown to concentrate selectively in tumor tissue. Examples of these compounds were prepared previously at high cost using an automated DNA synthesizer. Direct synthesis methods are needed for the production of gram-scale quantities for further biological evaluation. The work accomplished as a result of the collaboration between Fluorochem, Inc. and UCLA demonstrates that short oligomers containing at least five carborane units with four phosphodiester linkages can be prepared in substantial quantities. This work was accomplished by the application of standard phosphoramidite coupling chemistry.

  3. Study of helium embrittlement in boron doped EUROFER97 steels

    Science.gov (United States)

    Gaganidze, E.; Petersen, C.; Aktaa, J.

    2009-04-01

    To simulate helium effects in Reduced Activation Ferritic/Martensitic steels, experimental heats ADS2, ADS3 and ADS4 with the basic composition of EUROFER97 (9%Cr-WVTa) were doped with different contents of natural boron and separated 10B-isotope (0.008-0.112 wt.%) and irradiated in High Flux Reactor (HFR) Petten up to 16.3 dpa at 250-450 °C and in Bor-60 fast reactor in Dimitrovgrad up to 31.8 dpa at 332-338 °C. The embrittlement and hardening are investigated by instrumented Charpy-V tests with subsize specimens. Complete burn-up of 10B isotope under neutron irradiation in HFR Petten led to generation of 84, 432 and 5580 appm He and partial boron-to-helium transformation in Bor-60 led to generation of 9, 46, 880 appm He in ADS2, ADS3 and ADS4 heats, respectively. At low irradiation temperatures Tirr ⩽ 340 °C the boron doped steels show progressive embrittlement with increasing helium amount. Irradiation induced DBTT shift of EUROFER97 based heat doped with 1120 wppm separated 10B isotope could not be quantified due to large embrittlement found in the investigated temperature range. At Tirr ⩽ 340 °C helium induced extra embrittlement is attributed to material hardening induced by helium bubbles and described in terms of phenomenological model.

  4. Study of the 20,22Ne+20,22Ne and 10,12,13,14,15C+12C Fusion Reactions with MUSIC

    Directory of Open Access Journals (Sweden)

    Avila M. L.

    2016-01-01

    Full Text Available A highly efficient MUlti-Sampling Ionization Chamber (MUSIC detector has been developed for measurements of fusion reactions. A study of fusion cross sections in the 10,12,13,14,15C+12C and 20,22Ne+20,22Ne systems has been performed at ATLAS. Experimental results and comparison with theoretical predictions are presented. Furthermore, results of direct measurements of the 17O(α, n20Ne, 23Ne(α, p26Mg and 23Ne(α, n26Al reactions will be discussed.

  5. Applicability of the {sup 9}Be(d,n){sup 10}B reaction to AB-BNCT skin and deep tumor treatment

    Energy Technology Data Exchange (ETDEWEB)

    Capoulat, M.E., E-mail: capoulat@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, CNEA. Av. Gral. Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, M. de Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Avenida Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Minsky, D.M.; Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA. Av. Gral. Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, M. de Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Avenida Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina)

    2011-12-15

    In the range of low bombarding energies (less than about 1.5 MeV) the {sup 9}Be(d,n){sup 10}B reaction produces neutron spectra that can be moderated depending on the choice of the target thickness and the deuteron bombarding energy. In this work, a Monte Carlo simulation study to determine the capability of this reaction to deliver enough dose to efficiently control both skin and deep seated tumors has been performed by means of MCNP calculations using eight optimized {sup 9}Be targets.

  6. Study of the 20,22Ne+20,22Ne and 10,12,13,14,15C+12C Fusion Reactions with MUSIC

    Science.gov (United States)

    Avila, M. L.; Rehm, K. E.; Almaraz-Calderon, S.; Carnelli, P. F. F.; DiGiovine, B.; Esbensen, H.; Hoffman, C. R.; Jiang, C. L.; Kay, B. P.; Lai, J.; Nusair, O.; Pardo, R. C.; Santiago-Gonzalez, D.; Talwar, R.; Ugalde, C.

    2016-05-01

    A highly efficient MUlti-Sampling Ionization Chamber (MUSIC) detector has been developed for measurements of fusion reactions. A study of fusion cross sections in the 10,12,13,14,15C+12C and 20,22Ne+20,22Ne systems has been performed at ATLAS. Experimental results and comparison with theoretical predictions are presented. Furthermore, results of direct measurements of the 17O(α, n)20Ne, 23Ne(α, p)26Mg and 23Ne(α, n)26Al reactions will be discussed.

  7. Fluid flow and water-rock interaction across the active Nankai Trough subduction zone forearc revealed by boron isotope geochemistry

    Science.gov (United States)

    Hüpers, Andre; Kasemann, Simone A.; Kopf, Achim J.; Meixner, Anette; Toki, Tomohiro; Shinjo, Ryuichi; Wheat, C. Geoffrey; You, Chen-Feng

    2016-11-01

    Compositional changes, dehydration reactions and fluid flow in subducted sediments influence seismogenesis and arc magmatism in subduction zones. To identify fluid flow and water-rock interaction processes in the western Nankai Trough subduction zone (SW Japan) we analyzed boron concentration and boron isotope composition (δ11B) of pore fluids sampled across the subduction zone forearc from depths of up to ∼922 m below seafloor during four Integrated Ocean Drilling Program (IODP) Expeditions. The major structural regimes that were sampled by coring include: (1) sedimentary inputs, (2) the frontal thrust zone, (3) the megasplay fault zone, and (4) the forearc basin. From mass balance consideration we find that consumption of boron (B) by ash alteration and desorption of B from the solid phase, mediated by organic matter degradation, produces a net decrease in B concentrations with depth down to ∼120 μM and variable δ11B values in the range of ∼+20‰ and +49‰. Interstitial water in sediments on the incoming oceanic plate are influenced by more efficient mobilization of exchangeable B from the solid phase due to higher temperatures and alteration of the oceanic crust that acts as a sink for 10B. At the tip of the megasplay fault zone, elevated B concentration and B isotopic composition suggest that underthrust coarse-grained slope sediments provide a pathway for fluids out of the upper (balance considerations suggest a shallower fluid source depth compared to pore fluids sampled previously near the décollement zone along the central portion of the Nankai margin.

  8. Possible toxicity of boron on sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Bravo C., M.

    Analyses of necrotic and green leaf tissues from sugar cane grown in the Tambo Valley (Arequipa, Peru) have shown that the boron concentration in necrotic tissue (average 657.7 ppm) is several times higher than that in the green tissue (average 55.7 ppm). This suggests that the necrosis may be due to boron toxicity.

  9. Computational Evidence for the Smallest Boron Nanotube

    Institute of Scientific and Technical Information of China (English)

    Xian Jie LIN; Dong Ju ZHANG; Cheng Bu LIU

    2006-01-01

    The structure of boron nanotubes (BNTs) was found not to be limited to hexagonal pyramidal structures. Based on density functional theory calculations we provided evidence for the smallest boron nanotube, a geometrical analog of the corresponding carbon nanotube. As shown by our calculations, the smallest BNT possesses highly structural, dynamical, and thermal stability, which should be interest for attempts at its synthesis.

  10. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  11. Boron rates for triticale and wheat crops

    Directory of Open Access Journals (Sweden)

    Corrêa Juliano Corulli

    2005-01-01

    Full Text Available No reports are registered on responses to boron fertilization nutrient deficiency and toxicity in triticale crops. The aim of this study was to evaluate triticale response to different rates of boron in comparison to wheat in an hapludox with initial boron level at 0.08 mg dm-3 4 4 factorial design trial completely randomized blocks design (n = 4. Boron rates were 0; 0.62; 1.24 and 1.86 mg dm-3; triticale cultivars were IAC 3, BR 4 and BR 53 and IAPAR 38 wheat crop was used for comparison. The wheat (IAPAR 38 crop presented the highest boron absorption level of all. Among triticale cultivars, the most responsive was IAC 53, presenting similar characteristics to wheat, followed by BR 4; these two crops are considered tolerant to higher boron rates in soil. Regarding to BR 53, no absorption effect was observed, and the cultivars was sensitive to boron toxicity. Absorption responses differed for each genotype. That makes it possible to choose and use the best-adapted plants to soils with different boron rates.

  12. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  13. Boron concentration profiling by high angle annular dark field-scanning transmission electron microscopy in homoepitaxial δ-doped diamond layers

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, D.; Alegre, M. P.; Piñero, J. C. [Dpto Ciencia de los Materiales, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real (Cádiz) (Spain); Fiori, A.; Bustarret, E. [Institut Néel, CNRS-Université Joseph Fourier, 25 av. des Martyrs, 38042 Grenoble (France); Jomard, F. [Groupe d' Etude de la Matière Condensée (GEMaC), UMR 8635 du CNRS, UVSQ, 45 av. des Etats-Unis, 78035 Versailles Cedex (France)

    2013-07-22

    To develop further diamond related devices, the concentration and spatial location of dopants should be controlled down to the nanometer scale. Scanning transmission electron microscopy using the high angle annular dark field mode is shown to be sensitive to boron doping in diamond epilayers. An analytical procedure is described, whereby local boron concentrations above 10{sup 20} cm{sup −3} were quantitatively derived down to nanometer resolution from the signal dependence on thickness and boron content. Experimental boron local doping profiles measured on diamond p{sup −}/p{sup ++}/p{sup −} multilayers are compared to macroscopic profiles obtained by secondary ion mass spectrometry, avoiding reported artefacts.

  14. Radiation-enhanced self- and boron diffusion in germanium

    DEFF Research Database (Denmark)

    Schneider, S.; Bracht, H.; Klug, J.N.

    2013-01-01

    We report experiments on proton radiation-enhanced self- and boron (B) diffusion in germanium (Ge) for temperatures between 515 ∘ C and 720 ∘ C. Modeling of the experimental diffusion profiles measured by means of secondary ion mass spectrometry is achieved on the basis of the Frenkel pair reaction...... to an enhanced self- and B diffusion in Ge. Analysis of the experimental profiles yields data for the diffusion of self-interstitials (I ) and the thermal equilibrium concentration of BI pairs in Ge. The temperature dependence of these quantities provides the migration enthalpy of I and formation enthalpy of BI...

  15. Synthesis and characterizaton of some new coordination compounds of boron with mixed azines

    Directory of Open Access Journals (Sweden)

    MANISH GODARA

    2007-04-01

    Full Text Available Some new boron complexes have been synthesized by the reaction of triisopropohxyborane with the mixed azines, prepared by the condensation of salicylaldehyde and hydrazine with aldehydes/ketones in a 1:1:1 mole ratio to give a new series of (OPri2B(NO type of complexes. Their structures were confirmed on the basis of elemental analyses, ultraviolet, infrared, 1H-NMR and 11B-NMR spectral studies. The ligands and their boron complexes were also screened for their antifungal activity. Several of these complexes were found to be quite active in this respect.

  16. The Coefficients of Thermal Expansion of Boron Arsenide (B12As2) Between 25 C and 850 C

    Energy Technology Data Exchange (ETDEWEB)

    Whiteley, Clinton E. [Kansas State University; Kirkham, Melanie J [ORNL; Edgar, J H [Kansas State University

    2013-01-01

    The semiconductor boron arsenide has a high 10B density, a wide bandgap, and a high melting temperature, all of which make it an interesting candidate for high-temperature electronic devices and radiation detectors. The present investigation was undertaken to determine the coefficients of thermal expansion for boron arsenide. B12As2 powder was synthesized from boron and arsenic heated in a sealed quartz ampoule at 1100 C for 72 hrs with excess boron. Using high temperature X-ray diffraction (HTXRD) between 25 C and 850 C, the average lattice coefficients of thermal expansion were measured perpendicular and parallel to the <111> axis in the rhombohedral setting (equivalent to the a and c axes in the hexagonal setting): 4.9x10-6 K-1 and 5.3x10-6 K-1, respectively. The average unit cell volumetric coefficient of thermal expansion was determined to be 1.5x10-5 K-1.

  17. Boronated mesophase pitch coke for lithium insertion

    Science.gov (United States)

    Frackowiak, E.; Machnikowski, J.; Kaczmarska, H.; Béguin, F.

    Boronated carbons from mesophase pitch have been used as materials for lithium storage in Li/carbon cells. Doping by boron has been realized by co-pyrolysis of coal tar pitch with the pyridine-borane complex. Amount of boron in mesocarbon microbeads (MCMB) varied from 1.4 to 1.8 wt.% affecting the texture of carbon. Optical microscopy and X-ray diffractograms have shown tendency to more disordered structure for boron-doped carbon. The values of specific reversible capacity ( x) varied from 0.7 to 1.1 depending significantly on the final temperature of pyrolysis (700-1150°C). The optimal charge/discharge performance was observed for boronated carbon heated at 1000°C.

  18. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  19. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H.J.; Nesper, R. [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  20. Heavy residues following 5--10 MeV/nucleon /sup 12/C- and /sup 14/N- induced reactions on Sm and Pr targets

    Energy Technology Data Exchange (ETDEWEB)

    Kossakowski, R.; Jastrzbski, J.; Rymuza, P.; Skulski, W.; Gizon, A.; Andre, S.; Genevey, J.; Gizon, J.; Barci, V.

    1985-11-01

    The individual evaporation residue cross sections have been measured for /sup 12/C- and /sup 14/N-induced reactions on /sup 141/Pr and /sup 144,147,150,152,15/ 4Sm targets at incident energies of 5 to 10 MeV/nucleon. Gamma-ray detection techniques were used. The competition between neutron, charged particle, and gamma-ray emission was studied as a function of the excitation energy, angular momentum, and the distance of the compound nucleus from the stability line. The general behavior of the mass and charge distributions of the reaction residues is in agreement with complete fusion-evaporation calculations, but some aspects of the data point to a small contribution of other reaction mechanisms.

  1. Biodistribution of sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) in an oral cancer model.

    Science.gov (United States)

    Garabalino, Marcela A; Heber, Elisa M; Monti Hughes, Andrea; González, Sara J; Molinari, Ana J; Pozzi, Emiliano C C; Nievas, Susana; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Bauer, William; Trivillin, Verónica A; Schwint, Amanda E

    2013-08-01

    Boron neutron capture therapy (BNCT) is based on selective accumulation of ¹⁰B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg ¹⁰B/kg) was administered to tumor-bearing hamsters. Groups of 3-5 animals were killed humanely at nine time-points, 3-12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24-35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7-11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.

  2. Transition-Metal Planar Boron Clusters: a New Class of Aromatic Compounds with High Coordination

    Science.gov (United States)

    Wang, Lai-Sheng

    2012-06-01

    Photoelectron spectroscopy in combination with computational studies over the past decade has shown that boron clusters possess planar or quasi-planar structures, in contrast to that of bulk boron, which is dominated by three-dimensional cage-like building blocks. All planar or quasi-planar boron clusters are observed to consist of a monocyclic circumference with one or more interior atoms. The propensity for planarity has been found to be due to both σ and π electron delocalization throughout the molecular plane, giving rise to concepts of σ and π double aromaticity. We have found further that the central boron atoms can be substituted by transition metal atoms to form a new class of aromatic compounds, which consist of a central metal atom and a monocyclic boron ring (M B_n). Eight-, nine-, and ten-membered rings of boron have been observed, giving rise to octa-, ennea-, and deca-coordinated aromatic transition metal compounds [1-3]. References: [1] ``Aromatic Metal-Centered Monocyclic Boron Rings: Co B_9^- and Ru B_9^-" (Constantin Romanescu, Timur R. Galeev, Wei-Li Li, A. I. Boldyrev, and L. S. Wang), Angew. Chem. Int. Ed. {50}, 9334-9337 (2011). [2] ``Transition-Metal-Centered Nine-Membered Boron Rings: M B_9 and M B_9^- (M = Rh, Ir)" (Wei-Li Li, Constantin Romanescu, Timur R. Galeev, Zachary Piazza, A. I. Boldyrev, and L. S. Wang), J. Am. Chem. Soc. {134}, 165-168 (2012). [3] ``Observation of the Highest Coordination Number in Planar Species: Decacoordinated Ta B10^- and Nb B_9^- Anions" (Timur R. Galeev, Constantin Romanescu, Wei-Li Li, L. S. Wang, and A. I. Boldyrev), Angew. Chem. Int. Ed. {51}, 2101-2105 (2012).

  3. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Alver, Ü., E-mail: ualver@ktu.edu.tr [Karadeniz Technical University, Dept. of Metallurgical and Materials Engineering, 61080 Trabzon (Turkey); Tanrıverdi, A. [Kahramanmaras Sutcu Imam University, Department of Physics, 46100 Kahramanmaraş (Turkey)

    2016-08-15

    Highlights: • Boron doped ZnO particles are fabricated and embedded into reduced graphene oxide (RGO) by hydrothermal method. • RGO/ZnO:B composites are used as electrodes for supercapacitors. • Presence of boron in RGO/ZnO composites caused increasing the stability and specific capacitance of electrodes. - Abstract: In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  4. Chemoenzymatic asymmetric total syntheses of antitumor agents (3R,9R,10R)- and (3S,9R,10R)-Panaxytriol and (R)- and (S)-Falcarinol from Panax ginseng using an enantioconvergent enzyme-triggered cascade reaction.

    Science.gov (United States)

    Mayer, Sandra F; Steinreiber, Andreas; Orru, Romano V A; Faber, Kurt

    2002-12-27

    Total asymmetric synthesis of two components of Panax ginseng showing antitumor activity, i.e., (3R,9R,10R)- and (3S,9R,10R)-Panaxytriol and of both enantiomers of Falcarinol was accomplished. Due to the fact that the synthetic strategy was based on enantioconvergent biotransformations, the occurrence of any undesired stereoisomer was entirely avoided. The absolute configuration of naturally occurring Panaxytriol was confirmed to be (3R,9R,10R) on the basis of optical rotation values. It was shown that enzyme-triggered cascade reactions represent a valuable tool for the synthesis of natural products.

  5. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  6. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  7. Development of chemiluminescence method for determination of 10-hydroxycamptothecin based on luminol-[Ag(HIO₆)₂]⁵⁻ reaction in alkaline solution.

    Science.gov (United States)

    Sun, Hanwen; Chen, Peiyun; Shi, Shasha; Li, Liqing

    2011-01-01

    A novel chemiluminescence (CL) method was developed for the determination of 10-hydroxycamptothecin(HCPT) based on the CL reaction between [Ag(HIO₆)₂]⁵⁻ and luminol in alkaline solution. CL emission of Ag(III) complex-luminol in alkaline medium was very different from that in acidic medium. A possible mechanism of enhanced CL emission was suggested. The enhanced effect of HCPT on CL emission of the [Ag(HIO₆)₂]⁵⁻-luminol system was found. The enhanced degree of CL emission was proportional to HCPT concentration. The effect of the reaction conditions on CL emission was examined. Under optimal conditions, the limit of detection was 6.5 × 10⁻⁹ g mL⁻¹. The proposed method was applied for the determination of HCPT in real samples with the recoveries of 93.2-109% with the RSD of 1.7-3.3%.

  8. Nuclear clusters as a probe for expansion flow in heavy ion reactions at 10-15A GeV

    CERN Document Server

    Mattiello, R; Stöcker, H; Greiner, W

    1996-01-01

    A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d,t and He are predicted for central Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD transport approach. Transverse expansion leads to a strong shoulder-arm shape and different inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear ``bounce-off'' event shape is seen: the averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields --particularly at low p_t at midrapidities-- and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters and other hadrons.

  9. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride-hydroxy apatite in rat femurs.

    Science.gov (United States)

    Atila, Alptug; Halici, Zekai; Cadirci, Elif; Karakus, Emre; Palabiyik, Saziye Sezin; Ay, Nuran; Bakan, Feray; Yilmaz, Sahin

    2016-01-01

    Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN-HA composites in rat femurs. All rats were (n=126) divided into five experimental groups (n=24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100 HA (Group2), femoral defect + %2.5 hBN + %97.5 HA (Group3), femoral defect + %5 hBN + %95 HA (Group4), femoral defect + %10 hBN + %90 HA (Group5), femoral defect + %100 hBN (Group6). The femoral defect was created in the distal femur (3mm drill-bit). Each implant group was divided into four different groups (n=24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN-HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN-HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers.

  10. Method of synthesizing cubic system boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Yuzu, S.; Sumiya, H.; Degawa, J.

    1987-10-13

    A method is described for synthetically growing cubic system boron nitride crystals by using boron nitride sources, solvents for dissolving the boron nitride sources, and seed crystals under conditions of ultra-high pressure and high temperature for maintaining the cubic system boron nitride stable. The method comprises the following steps: preparing a synthesizing vessel having at least two chambers, arrayed in order in the synthesizing vessel so as to be heated according to a temperature gradient; placing the solvents having different eutectic temperatures in each chamber with respect to the boron nitride sources according to the temperature gradient; placing the boron nitride source in contact with a portion of each of the solvents heated at a relatively higher temperature and placing at least a seed crystal in a portion of each of the solvents heated at a relatively lower temperature; and growing at least one cubic system boron nitride crystal in each of the solvents in the chambers by heating the synthesizing vessel for establishing the temperature gradient while maintaining conditions of ultra-high pressure and high temperature.

  11. Fabrication and characterization of solid-state thermal neutron detectors based on hexagonal boron nitride epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Doan, T.C.; Majety, S.; Grenadier, S.; Li, J.; Lin, J.Y.; Jiang, H.X., E-mail: hx.jiang@ttu.edu

    2014-06-01

    Solid-state thermal neutron detectors with improved detection efficiencies are highly sought after for many applications. Hexagonal boron nitride (hBN) epilayers have been synthesized by metal organic chemical vapor deposition on sapphire substrates. Important material parameters including the mobility-lifetime (μτ) product and the thermal neutron absorption length (λ) have been measured. For hBN epilayers with a room temperature resistivity of 5.3×10{sup 10} Ω cm, the measured μτ product of electrons is 4.46×10{sup −8} cm{sup 2}/V and of holes is 7.07×10{sup −9} cm{sup 2}/V. The measured λ values are 277 μm and 77 μm for natural and {sup 10}B enriched hBN epilayers, respectively. Metal–semiconductor–metal detectors incorporating 0.3 µm thick hBN epilayers were fabricated. The reaction product pulse-height spectra were measured under thermal neutron irradiation produced by a {sup 252}Cf source moderated by high density polyethylene block. The measured pulse-height spectra revealed distinguishable peaks corresponding to the product energies of {sup 10}B and neutron reaction with the 0.84 MeV {sup 7}Li peak being the most prominent. The detectors exhibited negligible responses to gamma rays produced by {sup 137}Cs decay. Our results indicate that hBN epilayers are highly promising for realizing highly sensitive solid-state thermal neutron detectors with expected advantages resulting from semiconductor technologies, including compact size, light weight, ability to integrate with other functional devices, and low cost.

  12. The 9Be(d,n) 10B-reaction as intense neutron source with continuous energy spectrum

    Science.gov (United States)

    Baumann, F. M.; Domogala, G.; Freiesleben, H.; Paul, H. J.; Puhlvers, S.; Sohlbach, H.

    1986-06-01

    Neutron energy spectra produced by deuterons of 3 to 8 MeV in a thick 9Be-target were measured at various scattering angles. Significant angle dependences were observed. Angular distributions of the most energetic neutrons produced in thin 9Be targets can be described quantitatively in DWBA, which is an indication for a direct reaction mechanism. As a consequence all but 0°-neutrons are polarized to a certain extent. Also presented is the neutron energy spectrum of 7Li(d,n) 8Be at 0° produced in a thick 7Li-target. The potential of these intense 0°-neutron beams with continuous energy distributions is demonstrated by a measurement of the neutron absorption cross section of natural carbon.

  13. From Boron Cluster to Two-Dimensional Boron Sheet on Cu(111) Surface: Growth Mechanism and Hole Formation

    OpenAIRE

    Hongsheng Liu; Junfeng Gao; Jijun Zhao

    2013-01-01

    As attractive analogue of graphene, boron monolayers have been theoretically predicted. However, due to electron deficiency of boron atom, synthesizing boron monolayer is very challenging in experiments. Using first-principles calculations, we explore stability and growth mechanism of various boron sheets on Cu(111) substrate. The monotonic decrease of formation energy of boron cluster BN with increasing cluster size and low diffusion barrier for a single B atom on Cu(111) surface ensure cont...

  14. First application of the n - 9Be optical potential to the study of the 10Be continuum via the (18O,17O ) neutron-transfer reaction

    Science.gov (United States)

    Carbone, D.; Bondı, M.; Bonaccorso, A.; Agodi, C.; Cappuzzello, F.; Cavallaro, M.; Charity, R. J.; Cunsolo, A.; De Napoli, M.; Foti, A.

    2014-12-01

    The 9Be(18O,17O ) 10Be reaction has been studied at an incident energy of 84 MeV, and the ejectiles have been detected at forward angles. The 10Be excitation energy spectrum has been obtained up to about 18 MeV, and several known bound and resonant states of 10Be have been identified. Calculations that describe the interaction of the neutron removed from the 18O projectile with the 9Be target by means of an optical potential with a semiclassical approximation for the relative motion account for a significant part of the 10Be continuum. Two parametrizations of the optical-model potential for the system n - 9Be have been used and compared.

  15. Developments in boron magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  16. Preparation of Boron Suboxide Nanoparticles and Their Processing

    Directory of Open Access Journals (Sweden)

    Jānis GRABIS

    2012-03-01

    Full Text Available Crystalline boron suboxide B6O particles with size in the range of 1.5 µm – 2 µm and crystallite size in the range of 32 nm – 40 nm were prepared by calcination at 1400 °C for one or two hours of precursors obtained by mixing X-ray amorphous boron with water solution of B2O3 followed by evaporation and drying. Decrease of molar ratio B/B2O3 from 16 to 14 in the precursor mixture reduced nonstoichiometry of prepared B6O although simultaneously it increased admixture of B2O3. Particulate composites of B6O with TiN or Ni nanoparticles were prepared by mechanical mixing. The spark plasma sintering process intensified the densification of prepared boron suboxide nanoparticles at 1900 °C and allowed manufacturing of fully dense bodies (98 % during five minutes. Additives of TiN or Ni nanoparticles reduced sintering temperature to 1700 °C and their promoted formation of Ti or Ni borides.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1345

  17. Boron neutron capture therapy: Moving toward targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    Hamid Reza Mirzaei

    2016-01-01

    Full Text Available Boron neutron capture therapy (BNCT occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer.

  18. Concentrations of boron, molybdenum, and selenium in chinook salmon

    Science.gov (United States)

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  19. Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor

    CERN Document Server

    Hora, H; Eliezer, S; Lalousis, N Nissim P; Giuffrida, L; Margarone, D; Picciotto, A; Miley, G H; Moustaizis, S; Martinez-Val, J -M; Barty, C P J; Kirchhoff, G J

    2016-01-01

    After the very long consideration of the ideal energy source by fusion of the protons of light hydrogen with the boron isotope 11 (boron fusion HB11) the very first two independent measurements of very high reaction gains by lasers basically opens a fundamental breakthrough. The non-thermal plasma block ignition with extremely high power laser pulses above petawatt of picosecond duration in combination with up to ten kilotesla magnetic fields for trapping has to be combined to use the measured high gains as proof of an avalanche reaction for an environmentally clean, low cost and lasting energy source as potential option against global warming. The unique HB11 avalanche reaction is are now based on elastic collisions of helium nuclei (alpha particles) limited only to a reactor for controlled fusion energy during a very short time within a very small volume.

  20. Bonding in boron: building high-pressure phases from boron sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kunstmann, Jens [Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology (Germany); Boeri, Lilia [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kortus, Jens [Institute for Theoretical Physics, TU Bergakademie Freiberg (Germany)

    2010-07-01

    We present the results of a study of the high pressure phase diagram of elemental boron, using full-potential density functional calculations. We show that at high pressures (P > 100 GPa) boron crystallizes in quasi-layered bulk phases, characterized by in-plane multicenter bonds and out-of-plane unidimensional sigma bonds. These structures are all metallic, in contrast to the low-pressure icosahedral ones, which are semiconducting. We show that the structure and bonding of layered bulk phases can be easily described in terms of single puckered boron sheets. Our results bridge the gap between boron nanostructures and bulk phases.

  1. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  2. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  3. Dynamic infrared imaging for biological and medical applications in Boron neutron capture therapy

    Science.gov (United States)

    Santa Cruz, Gustavo A.; González, Sara J.; Dagrosa, Alejandra; Schwint, Amanda E.; Carpano, Marina; Trivillin, Verónica A.; Boggio, Esteban F.; Bertotti, José; Marín, Julio; Monti Hughes, Andrea; Molinari, Ana J.; Albero, Miguel

    2011-05-01

    Boron Neutron Capture Therapy (BNCT) is a treatment modality, currently focused on the treatment of cancer, which involves a tumor selective 10B compound and a specially tuned neutron beam to produce a lethal nuclear reaction. BNCT kills target cells with microscopic selectivity while sparing normal tissues from potentially lethal doses of radiation. In the context of the Argentine clinical and research BNCT projects at the National Atomic Energy Commission and in a strong collaboration with INVAP SE, we successfully implemented Dynamic Infrared Imaging (DIRI) in the clinical setting for the observation of cutaneous melanoma patients and included DIRI as a non invasive methodology in several research protocols involving small animals. We were able to characterize melanoma lesions in terms of temperature and temperature rate-of-recovery after applying a mild cold thermal stress, distinguishing melanoma from other skin pigmented lesions. We observed a spatial and temporal correlation between skin acute reactions after irradiation, the temperature pattern and the dose distribution. We studied temperature distribution as a function of tumor growth in mouse xenografts, observing a significant correlation between tumor temperature and drug uptake; we investigated temperature evolution in the limbs of Wistar rats for a protocol of induced rheumatoid arthritis (RA), DIRI being especially sensitive to RA induction even before the development of clinical signs and studied surface characteristics of tumors, precancerous and normal tissues in a model of oral cancer in the hamster cheek pouch.

  4. Development of a new neutron monitor using a boron-loaded organic liquid scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Rasolonjatovo, A.H.D.; Shiomi, T.; Kim, E.; Nakamura, T. E-mail: nakamura@cyric.tohoku.ac.jp; Nunomiya, T.; Endo, A.; Yamaguchi, Y.; Yoshizawa, M

    2002-10-21

    A new type of neutron dose monitor was developed by using a 12.7 cm diameterx12.7 cm long boron-loaded organic liquid scintillation detector BC523A. This detector aims to have a response in the wide energy range of thermal energy to 100 MeV by using the H and C reactions to the fast neutrons of organic liquid and the {sup 10}B(n, {alpha}) reaction to thermalized neutrons in the liquid. The response functions of this detector were determined by the Monte Carlo simulation in the energy region from thermal energy to 100 MeV. Using these response functions, the spectrum-weighted dose function, G-function, to get the neutron dose from the light output spectrum of the detector was also determined by the unfolding technique. The calculated G-function was applied to determine the neutron dose in real neutron fields having energies ranging from thermal energy to several tens of MeV, where the light output spectra were measured with the BC523A detector. The thus-obtained ambient doses and effective doses show rather good agreement with the fluence-to-dose conversion factor given by ICRP 74. This detector will be useful as a wide-energy range neutron monitor.

  5. Respiratory irritation associated with inhalation of boron trifluoride and fluorosulfonic acid

    NARCIS (Netherlands)

    Rusch, G.M.; Bowden, A.M.; Muijser, H.; Arts, J.

    2008-01-01

    The objectives of this study were to examine the respiratory irritancy of boron trifluoride (BF3) and fluorosulfonic acid (FSA) following acute inhalation exposure. Testing was conducted using groups of 10 male and 10 female rats (BF3) or groups of 6 male rats (FSA). Rats were exposed for a single 4

  6. High accuracy measurement of the $^{235}$U(n,f) reaction cross-section in the 10-30 keV neutron energy range

    CERN Multimedia

    The analysis of the neutron flux of n_TOF (in EAR1) revealed an anomaly in the 10-30 keV neutron energy range. While the flux extracted on the basis of the $^{6}$Li(n,t)$^{4}$He and $^{10}$B(n,$\\alpha$)$^{7}$Li reactions mostly agreed with each other and with the results of FLUKA simulations of the neutron beam, the one based on the $^{235}$U(n,f) reaction was found to be systematically lower, independently of the detection system used. A possible explanation is that the $^{235}$U(n,f) crosssection in that energy region, where in principle should be known with an uncertainty of 1%, may be systematically overestimated. Such a finding, which has a negligible influence on thermal reactors, would be important for future fast critical or subcritical reactors. Furthermore, its interest is more general, since the $^{235}$U(n,f) reaction is often used at that energy to determine the neutron flux, or as reference in measurements of fission cross section of other actinides. We propose to perform a high-accuracy, high-r...

  7. Electroanalysis of tetracycline using nickel-implanted boron-doped diamond thin film electrode applied to flow injection system.

    Science.gov (United States)

    Treetepvijit, Surudee; Chuanuwatanakul, Suchada; Einaga, Yasuaki; Sato, Rika; Chailapakult, Orawon

    2005-05-01

    The electrochemical analysis of tetracycline was investigated using nickel-implanted boron-doped diamond thin film electrode by cyclic voltammetry and amperometry with a flow injection system. Cyclic voltammetry was used to study the electrochemical oxidation of tetracycline. Comparison experiments were carried out using as-deposited boron-doped diamond thin film electrode (BDD). Nickel-implanted boron-doped diamond thin film electrode (Ni-DIA) provided well-resolved oxidation irreversible cyclic voltammograms. The current signals were higher than those obtained using the as-deposited BDD electrode. Results using nickel-implanted boron-doped diamond thin film electrode in flow injection system coupled with amperometric detection are presented. The optimum potential for tetracycline was 1.55 V versus Ag/AgCl. The linear range of 1.0 to 100 microM and the detection limit of 10 nM were obtained. In addition, the application for drug formulation was also investigated.

  8. Boron containing magnetic nanoparticles for neutron capture therapy--an innovative approach for specifically targeting tumors.

    Science.gov (United States)

    Tietze, Rainer; Unterweger, Harald; Dürr, Stephan; Lyer, Stefan; Canella, Lea; Kudejova, Petra; Wagner, Franz M; Petry, Winfried; Taccardi, Nicola; Alexiou, Christoph

    2015-12-01

    The selective delivery of (10)B into the tumor tissue remains to be further improved for successful and reliable Boron Neutron Capture Therapy applications. Magnetic Drug Targeting using intraarterially administered superparamagnetic nanoparticles and external magnetic fields already exhibited convincing results in terms of highly efficient and selective drug deposition. Using the same technique for the targeted (10)B delivery is a promising new approach. Here, systematic irradiation experiments of phantom cubes containing different concentrations of boron and nanoparticles as well as varying three-dimensional arrangements have been performed.

  9. Layer speciation and electronic structure investigation of freestanding hexagonal boron nitride nanosheets

    Science.gov (United States)

    WangEqual Contribution To This Work., Jian; Wang, Zhiqiang; Cho, Hyunjin; Kim, Myung Jong; Sham, T. K.; Sun, Xuhui

    2015-01-01

    shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04445b

  10. Non-boronized compared with boronized operation of ASDEX Upgrade with full-tungsten plasma facing components

    Science.gov (United States)

    Kallenbach, A.; Dux, R.; Mayer, M.; Neu, R.; Pütterich, T.; Bobkov, V.; Fuchs, J. C.; Eich, T.; Giannone, L.; Gruber, O.; Herrmann, A.; Horton, L. D.; Maggi, C. F.; Meister, H.; Müller, H. W.; Rohde, V.; Sips, A.; Stäbler, A.; Stober, J.; ASDEX Upgrade Team

    2009-04-01

    After completion of the tungsten coating of all plasma facing components, ASDEX Upgrade has been operated without boronization for 1 1/2 experimental campaigns. This has allowed the study of fuel retention under conditions of relatively low D co-deposition with low-Z impurities as well as the operational space of a full-tungsten device for the unfavourable condition of a relatively high intrinsic impurity level. Restrictions in operation were caused by the central accumulation of tungsten in combination with density peaking, resulting in H-L backtransitions induced by too low separatrix power flux. Most important control parameters have been found to be the central heating power, as delivered predominantly by ECRH, and the ELM frequency, most easily controlled by gas puffing. Generally, ELMs exhibit a positive impact, with the effect of impurity flushing out of the pedestal region overbalancing the ELM-induced W source. The restrictions of plasma operation in the unboronized W machine occurred predominantly under low or medium power conditions. Under medium-high power conditions, stable operation with virtually no difference between boronized and unboronized discharges was achieved. Due to the reduced intrinsic radiation with boronization and the limited power handling capability of VPS coated divertor tiles (≈10 MW m-2), boronized operation at high heating powers was possible only with radiative cooling. To enable this, a previously developed feedback system using (thermo-)electric current measurements as approximate sensor for the divertor power flux was introduced into the standard AUG operation. To avoid the problems with reduced ELM frequency due to core plasma radiation, nitrogen was selected as radiating species since its radiative characteristic peaks at lower electron temperatures in comparison with Ne and Ar, favouring SOL and divertor radiative losses. Nitrogen seeding resulted not only in the desired divertor power load reduction but also in improved

  11. A Taguchi optimisation for production of Al–B master alloys using boron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Savaş, Ömer, E-mail: osavas@yildiz.edu.tr [Yildiz Technical University, Faculty of Naval Architecture and Maritime, Istanbul (Turkey); Kayikci, Ramazan [Sakarya University, Faculty of Technology, Dept. of Met. and Mat. Eng., 54187 Sakarya (Turkey)

    2013-12-15

    Highlights: •Al–B alloys have been produced by liquid state reaction with adding B{sub 2}O{sub 3} into Al. •Taguchi method has been employed to examine the effects of four process parameters. •Results showed that maximum 2.14 wt.% B has been dissolved in Al. •The cooling rate is the most effective factor on the size of AlB{sub 2} boride. -- Abstract: Al–B master alloys have been produced by liquid state reaction between aluminium and boron oxide in liquid aluminium. Taguchi design method has been employed to examine the effects of four process parameters of holding temperature, holding time, cooling rate and matrix type on the extent of boron dissolved and size distribution of the resulting AlB{sub 2} intermetallic flake structure. In the experiments, melting, casting, solidification, metallography, optical microscope, scanning electron microscope (SEM) and wet chemical analysis techniques have been used. Results showed that maximum 2.14 wt.% boron has been dissolved in the aluminium through direct addition of boron oxide (B{sub 2}O{sub 3}). It is concluded that the cooling rate is the most effective factor on the size of AlB{sub 2} particles.

  12. Methyldichloroborane evidenced as an intermediate in the chemical vapour deposition synthesis of boron carbide.

    Science.gov (United States)

    Reinisch, G; Patel, S; Chollon, G; Leyssale, J-M; Alotta, D; Bertrand, N; Vignoles, G L

    2011-09-01

    The most recent ceramic-matrix composites (CMC) considered for long-life applications as thermostructural parts in aerospace propulsion contain, among others, boron-rich phases like boron carbide. This compound is prepared by thermal Chemical Vapour Infiltration (CVI), starting from precursors like boron halides and hydrocarbons. We present a study aiming at a precise knowledge of the gas-phase composition in a hot-zone LPCVD reactor fed with BCl3, CH4 and H2, which combines experimental and theoretical approaches. This work has brought strong evidences of the presence of Methydichloroborane (MDB, BCl2CH3) in the process. It is demonstrated that this intermediate, the presence of which had never been formally proved before, appears for processing temperatures slightly lower than the deposition temperature of boron carbide. The study features quantum chemical computations, which provide several pieces of information like thermochemical and kinetic data, as well as vibration and rotation frequencies, reaction kinetics computations, and experimental gas-phase characterization of several species by FTIR, for several processing parameter sets. The main results are presented, and the place of MDB in the reaction scheme is discussed.

  13. A new high-speed droplet-real-time polymerase chain reaction method can detect bovine respiratory syncytial virus in less than 10 min.

    Science.gov (United States)

    Uehara, Masayuki; Matsuda, Kazuyuki; Sugano, Mitsutoshi; Honda, Takayuki

    2014-03-01

    The polymerase chain reaction (PCR) has been widely used for diagnosis of infectious diseases of domestic animals. Rapid detection of respiratory pathogens of cattle is useful for making therapeutic decisions. Therefore, we developed a new genetic-based method called droplet-real-time PCR, which can detect bovine respiratory syncytial virus (BRSV) within 10 min. Our droplet-real-time PCR markedly reduced the reaction time of reverse transcription-PCR while maintaining the same sensitivity as conventional real-time PCR, and it can be used as a rapid assay for detection of BRSV. Furthermore, our method is potentially applicable for rapid diagnosis of almost all infectious diseases, including highly pathogenic avian influenza virus.

  14. Boron-Based (Nano-Materials: Fundamentals and Applications

    Directory of Open Access Journals (Sweden)

    Umit B. Demirci

    2016-09-01

    Full Text Available The boron (Z = 5 element is unique. Boron-based (nano-materials are equally unique. Accordingly, the present special issue is dedicated to crystalline boron-based (nano-materials and gathers a series of nine review and research articles dealing with different boron-based compounds. Boranes, borohydrides, polyhedral boranes and carboranes, boronate anions/ligands, boron nitride (hexagonal structure, and elemental boron are considered. Importantly, large sections are dedicated to fundamentals, with a special focus on crystal structures. The application potentials are widely discussed on the basis of the materials’ physical and chemical properties. It stands out that crystalline boron-based (nano-materials have many technological opportunities in fields such as energy storage, gas sorption (depollution, medicine, and optical and electronic devices. The present special issue is further evidence of the wealth of boron science, especially in terms of crystalline (nano-materials.

  15. Catalytic Asymmetric Synthesis of Phosphine Boronates

    NARCIS (Netherlands)

    Hornillos, Valentin; Vila, Carlos; Otten, Edwin; Feringa, Ben L.

    2015-01-01

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of ,-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good y

  16. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  17. Spectromicroscopy in Boron Neutron Capture Therapy Research

    Science.gov (United States)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  18. Observation of the Exclusive Reaction e+e- -> phi eta at sqrt{s}=10.58 GeV

    CERN Document Server

    Aubert, B; Boutigny, D; Karyotakis, Yu; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes-Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Tackmann, K; Wenzel, W A; Del Amo-Sánchez, P; Barrett, M; Harrison, T J; Hart, A J; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Asgeirsson, D J; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Martin, E C; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Zhang, L; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Williams, D C; Wilson, M G; Winstrom, L O; Albert, J; Chen, E; Cheng, C H; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F R; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Salvatore, F; Wren, A C; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Potter, C T; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; Leruste, P; Malcles, J; Ocariz, J; Gladney, L; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Ricciardi, S; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yéche, C; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martínez-Vidal, F; Oyanguren, A; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H; al, et

    2006-01-01

    We report the observation of $\\e^+e^-\\to \\phi\\eta$ near $\\sqrt{s}$ = 10.58 GeV with 6.5 $\\sigma$ significance in the $K^+K^-\\gamma\\gamma$ final state in a data sample of 224 $fb^{-1}$ collected by the BaBar experiment at the PEP-II $e^+e^-$ storage rings. We measure the restricted radiation-corrected cross section to be $\\sigma(\\e^+e^- \\to \\phi \\eta) =

  19. Boron-Filled Hybrid Carbon Nanotubes

    Science.gov (United States)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  20. One-nucleon transfer reactions induced by secondary beam of {sup 11}Be: study of the nuclear structure of the exotic nuclei {sup 11}Be and {sup 10}Li; Reactions de transfert d'un nucleon induites par un faisceau secondaire de {sup 11}Be: etude de la structure des noyaux exotiques {sup 11}Be et {sup 10}Li

    Energy Technology Data Exchange (ETDEWEB)

    Pita, S

    2000-09-01

    The structure of the neutron rich light nuclei {sup 11}Be and {sup 10}Li has been investigated by means of one nucleon transfer reactions. The experiments have been carried out at GANIL in inverse kinematics using {sup 11}Be secondary beams. The {sup 11}Be(p,d){sup 10}Be reaction bas been studied at 35.3 MeV/u. The {sup 10}Be ejectiles were analyzed by the spectrometer SPEG, and coincident deuterons were detected in the position sensitive silicon detector CHARISSA. Transfer cross sections to 0{sup +}{sub 1} and 2{sup +}{sub 1}, states in {sup 10}Be were measured up to {theta}{sub CM} = 16 deg. and compared to DWBA and CRC predictions. The effects of neutron-cure couplings on reaction form factors have been studied by solving coupled equations in the framework of a vibrational model. It is shown that the rate of core excitation {sup 10}Be{sub 2+} in the {sup 11}Be{sub gs} wave function is overestimated by a standard analysis with form factors given by the usual Separation Energy prescription. The former model predicts a rate of core excitation of 16% and leads to theoretical cross sections which are in good agreement with the experimental data. The aim of the {sup 11}Be(d,{sup 3}He){sup 10}Li experiment, realized at 37 MeV/u, was to measure the distribution of the 2s neutron strength in the unbound nucleus {sup 10}Li. The energy spectrum was deduced from the {sup 3}He energy and angle measured by the silicon strip detector array MUST. An asymmetric peak is clearly observed near the threshold, with a maximum at -S{sub n} = 130 keV. This constitutes a direct proof of the inversion of 2s and 1p{sub 1/2} shells in {sup 10}Li, which was until now a controversial question in spite of many experimental efforts. On the other band the analysis of the {sup 11}Be(d,t){sup 10}Be reaction studied in the same experiment confirms the results obtained in the {sup 11}Be(p,d){sup 10}Be reaction concerning the {sup 11}Be{sub gs} structure. This work shows the interest and feasibility

  1. Boron-doped graphene quantum dots for selective glucose sensing based on the "abnormal" aggregation-induced photoluminescence enhancement.

    Science.gov (United States)

    Zhang, Li; Zhang, Zhi-Yi; Liang, Ru-Ping; Li, Ya-Hua; Qiu, Jian-Ding

    2014-05-06

    A hydrothermal approach for the cutting of boron-doped graphene (BG) into boron-doped graphene quantum dots (BGQDs) has been proposed. Various characterizations reveal that the boron atoms have been successfully doped into graphene structures with the atomic percentage of 3.45%. The generation of boronic acid groups on the BGQDs surfaces facilitates their application as a new photoluminescence (PL) probe for label free glucose sensing. It is postulated that the reaction of the two cis-diol units in glucose with the two boronic acid groups on the BGQDs surfaces creates structurally rigid BGQDs-glucose aggregates, restricting the intramolecular rotations and thus resulting in a great boost in the PL intensity. The present unusual "aggregation-induced PL increasing" sensing process excludes any saccharide with only one cis-diol unit, as manifested by the high specificity of BGQDs for glucose over its close isomeric cousins fructose, galactose, and mannose. It is believed that the doping of boron can introduce the GQDs to a new kind of surface state and offer great scientific insights to the PL enhancement mechanism with treatment of glucose.

  2. Influence of Na2 CO3 as Additive on Direct Reduction of Boron-bearing Magnetite Concentrate

    Institute of Scientific and Technical Information of China (English)

    Yong-li LI; Jing-kui QU; Guang-ye WEI; Tao QI

    2016-01-01

    Boron-bearing magnetite concentrate is typically characterized by low grade of iron and boron (wTFe=51%-54%,wB2 O3=6%-8%),as well as the close intergrowth of ascharite phase and magnetite phase.A promising technology was proposed to separate iron and boron by coupling the direct reduction of iron oxides and Na activation of boron minerals together.The influence of Na2 CO3 as additive on the direct reduction of boron-bearing magnetite was studied by chemical analysis,kinetic analysis,XRD analysis and SEM analysis.The results showed that the ad-dition of Na2 CO3 not only activated boron minerals,but also reduced the activation energy of the reaction and pro-moted the reduction of iron oxides.Besides,the addition of Na2 CO3 changed the composition and melting point of non-ferrous phase,and then promoted the growth and aggregation of iron grains,which was conducive to the subse-quent magnetic separation.Thus,the coupling of the two processes is advantageous.

  3. Critical boron-doping levels for generation of dislocations in synthetic diamond

    Energy Technology Data Exchange (ETDEWEB)

    Alegre, M. P., E-mail: maripaz.alegre@uca.es; Araújo, D.; Pinero, J. C.; Lloret, F.; Villar, M. P. [Departamento de Ciencias de los Materiales e Ingeniería Metalúrgica y Química, Universidad de Cádiz, 11510 Puerto Real, Cádiz (Spain); Fiori, A.; Achatz, P.; Chicot, G.; Bustarret, E. [Université Grenoble Alpes, Institut NEEL, 25 av. des Martyrs, 38042 Grenoble (France); Jomard, F. [GEMaC, CNRS and Université de Versailles St Quentin, 45 Avenue des États-Unis, 78035 Versailles (France)

    2014-10-27

    Defects induced by boron doping in diamond layers were studied by transmission electron microscopy. The existence of a critical boron doping level above which defects are generated is reported. This level is found to be dependent on the CH{sub 4}/H{sub 2} molar ratios and on growth directions. The critical boron concentration lied in the 6.5–17.0 × 10{sup 20}at/cm{sup 3} range in the 〈111〉 direction and at 3.2 × 10{sup 21 }at/cm{sup 3} for the 〈001〉 one. Strain related effects induced by the doping are shown not to be responsible. From the location of dislocations and their Burger vectors, a model is proposed, together with their generation mechanism.

  4. Growth and electrical characterisation of {delta}-doped boron layers on (111) diamond surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Edgington, Robert; Jackman, Richard B. [London Centre for Nanotechnology, and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London, WC1H 0AH (United Kingdom); Sato, Syunsuke; Ishiyama, Yuichiro; Kawarada, Hiroshi [Department of Electronic and Photonic Systems, Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Morris, Richard [Advanced SIMS Projects, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-02-01

    A plasma enhanced chemical vapor deposition protocol for the growth of {delta}-doping of boron in diamond is presented, using the (111) diamond plane as a substrate for diamond growth. AC Hall effect measurements have been performed on oxygen terminated {delta}-layers and desirable sheet carrier densities ({approx}10{sup 13} cm{sup -2}) for field-effect transistor application are reported with mobilities in excess of what would expected for equivalent but thicker heavily boron-doped diamond films. Temperature-dependent impedance spectroscopy and secondary ion mass spectroscopy measurements show that the grown layers have metallic-like electrical properties with high cut-off frequencies and low thermal impedance activation energies with estimated boron concentrations of approximately 10{sup 20} cm{sup -3}.

  5. Alternative Process for Manufacturing of Thin Layers of Boron for Neutron Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Auge, Gregoire; Partyka, Stanislas [Onet Technologies (France); Guerard, Bruno; Buffet, Jean-Claude [Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Due to the worldwide shortage of helium 3, Boron-lined proportional counters are developed intensively by several groups. Up to now, thin boron containing layers for neutron detectors are essentially produced by sputtering of boron carbide (B{sub 4}C). This technology provides high quality films but it is slow and expensive. Our paper describes a novel and inexpensive technology for producing boron layers. This technology is based on chemical synthesis of boron 10 nanoparticles, and on electrophoretic deposition of these particles on metallic plates, or on metallic pieces with more complex shapes. The chemical synthesis consists in: - Heating boron 10 with lithium up to 700 deg. C under inert atmosphere: an intermetallic compound, LiB, is produced; - Hydrolysing this intermetallic compound: LiB + H{sub 2}O → B + Li{sup +} + OH{sup -} + 1/2H{sub 2}, where B is under the form of nanoparticles; - Purifying the suspension of boron nanoparticles in water, from lithium hydroxide, by successive membrane filtrations; - Evaporating the purified suspension, in order to get a powder of nanoparticles. The obtained nanoparticles have size around 300 nm, with a high porosity, of about 50%. This particle size is equivalent to about 150 nm massive particles. The nanoparticles are then put into suspension in a specific solvent, in order to perform deposition on metallic surfaces, by electrophoretic method. The solvent is chosen so that it is not electrolysed even under voltages of several tens of volts. An acid is dissolved into the solvent, so that the nanoparticles are positively charged. Deposition is performed on the cathode within about 10 min. The cathode could be an aluminium plate, or a nickel coated aluminium plate. Homogeneous deposition may also be performed on complex shapes, like grids in a Multigrid detector. A large volume of pieces, can be coated with a Boron-10 film in a few hours. The thickness of the layer can be adjusted according to the required neutron

  6. Polymerization kinetics of boron carbide/epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Abenojar, J., E-mail: abenojar@ing.uc3m.es [Materials Performance Group, Materials Science and Engineering Department, IAAB, Universidad Carlos III de Madrid, Av. Universidad, 30, 28911 Leganés (Spain); Encinas, N. [Materials Performance Group, Materials Science and Engineering Department, IAAB, Universidad Carlos III de Madrid, Av. Universidad, 30, 28911 Leganés (Spain); Real, J.C. del [Department of Mechanical Engineering, Universidad Pontificia Comillas, C/ Alberto Aguilera 23, 28015 Madrid (Spain); Martínez, M.A. [Materials Performance Group, Materials Science and Engineering Department, IAAB, Universidad Carlos III de Madrid, Av. Universidad, 30, 28911 Leganés (Spain)

    2014-01-10

    Graphical abstract: - Highlights: • Conversion degree and rate reaction of the curing reaction increase with temperature. • At low temperature, the particles exhibit catalytic effect, similar to the OH groups. • At high temperature, B{sub 4}C micro-particles increase the n-order rate reaction. • The diffusion constant diminishes with temperature for all the studied materials. • The autocatalytic reaction is favored by the effect of 6% nanoparticles. - Abstract: This study employs Differential Scanning Calorimetry (DSC) technique and focuses on the curing kinetics and the activation energy of the commercial epoxy resin (which cures at room temperature for 12 h) filled with boron carbide particles (B{sub 4}C) in different amount (6 and 12 wt%) and particle size (60 nm, 7 and 23 μm). An isothermal dwell at different temperatures (25, 35 and 50 °C) was used for 180 min. Thereafter, the temperature is increased by 5 °C min{sup −1} up to 200 °C to complete the curing process. Conversion degree is calculated by combining both methods. The kinetic constant and the reaction order are calculated using Kamal's equation with diffusion control. Consequently, the activation energy is computed assuming Arrhenius’ equation.The results show a significant influence of the temperature on the reaction mechanism. Furthermore, polymerization kinetics is affected by B{sub 4}C additions depending on the amount and size of the added particles.

  7. Synthesis of one-dimensional boron-related nanostructures by chemical vapor deposition

    Science.gov (United States)

    Guo, Li

    in the submicron range were used to synthesize aligned BNNTs. Fine BN nanostructures with a diameter around 10-20 nm and length up to 10 microns were grown and dispersed in the Ni dots. Nanosized Ni dots were suggested for the growth of the vertically aligned BNNTs. Boron nanowires (BNWs) were also grown by the decomposition of diborane using a thermal CVD process at a temperature of 900°C, a pressure of 20 torr, diborane flow rate (5 vol.% in hydrogen) of 5 sccm, and nitrogen flow rate of 55 sccm. These BNWs had diameters in a range of 20-200 nanometers and lengths up to several tens of micrometers. Repeatable Raman spectra indicated icosahedra B12 to be the basic building units forming the B nanowires. Amorphous BNWs with rough surface were obtained without any catalysts on different substrates, such as Si wafer or ZrB2 powders. A vapor-solid (VS) growth was proposed for the amorphous BNWs, in which the solid phase precipitated directly from the vapor phase reactions. The amorphous BNWs were modified for size and composition using a plasma CVD process containing argon, ammonia and hydrogen. The diameters of these BNWs were reduced from 200 nm to several tens of nanometers, and a small amount of N was incorporated into BNWs after the plasma treatment. On the other hand, the metal catalyst proved to be effective for the growth of crystalline BNWs. Tetragonal BNWs with smooth surface were grown on thin Ni film (1 nm) coated Si substrates. Ni attachment was observed at the tip of the BNW for the first time, which indicated that the vapor-liquid-solid (VLS) growth mechanism can be used for synthesis of the BNW. The diameters of these BNWs were strongly dependent on the size of the metal particles encapsulated in the BNWs. In summary, two boron-related nanostructures were synthesized by chemical vapor deposition (CVD) in this work. A new method was successfully developed to decrease the substrate temperature more than 400°C to fabricate boron nitride nanotubes in a

  8. Evaluation of n + /sup 242/Pu reactions from 10 keV to 20 MeV. [Total cross sections, neutron emission energy dependence

    Energy Technology Data Exchange (ETDEWEB)

    Madland, D.G.; Young, P.G.

    1978-10-01

    An evaluation of the n + /sup 242/Pu cross sections is presented for the neutron energy range of 10 keV to 20 MeV. The total fission and radiative capture cross sections are based upon experimental measurements on /sup 242/Pu. The remaining cross sections, together with the elastic and inelastic angular distributions to low-lying states, were calculated using various reaction models. An expression is presented for the energy dependence of the average number of neutrons produced per fission. The results were placed in ENDF/B-V format and combined with a recent evaluation of data below 10 keV by the Hanford Engineering Development Laboratory, so that a complete data set covering the energy range of 10/sup -5/ eV to 20 MeV is available. 41 references. (JFP)

  9. Combustion Behavior of Free Boron Slurry Droplets,

    Science.gov (United States)

    2014-09-26

    weak disruptive behavior while pure JP-1t burn quiescently, except for a flash extinction which occurs at the termination of combustion. The...I AD-R158 628 COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS(U) i/i I PRINCETON UNIV NJ DEPT OF MECHANICAL AND AEROSPACE ENINEERIN., F TAKAHASHI...COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS TAM by F. Takahashi, F.L. Dryer, and F.A. Williams Department of M~echanical and keyosase Engineering

  10. Thermodynamic Enthalpy and Internal Energy in the Reaction System C10H8(s) +12O2(g)→10CO2(g)+4H2O(l)%燃烧反应C10H8(s) +12O2(g)→10CO2(g)+4H2O(l)的热力学焓和内能

    Institute of Scientific and Technical Information of China (English)

    高翔; 李鑫华; 汤思聪

    2003-01-01

    Thermodynamic enthalpy, ΔH and internal energy, ΔU in the reaction system C10H8 + 12O2→10CO2+4H2O are determined using an experimental method in our laboratory. Under the experimental conditions, the results calculated show that the reaction combustion enthalpy ΔH is -5093.3?kJ*mol-1 and internal energy ΔU is -5012 kJ*mol-1 on the basis of basic thermodynamic laws. The results are in good agreement with those calculated by theoretical methods. To understand the role of microstructure changes of the reactants and products in determining thermodynamic properties in the reaction system, contributions to entropy, ΔS, enthalpy, ΔH, and heat capacity, Cp(T), from melting and internal configuration change of reactants or products in the reaction are introduced and discussed.%用实验的方法测定了燃烧反应C10H8(s) +12O2(g)10CO2(g)+4H2O(l)的热力学焓ΔH和内能ΔU.根据热力学基本定律用实验数据计算结果表明该燃烧反应焓ΔH=-5093.3kJ.mol-1和反应内能ΔU=-5012kJ*mol-1,与理论计算结果相近似.为了了解反应物和产物的微观结构在该反应热力学性能中所起作用,介绍和讨论了在反应过程中反应物和产物的熔化和内部结构变化对反应熵S,焓H和热容Cp(T)的影响.

  11. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  12. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  13. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  14. A Large Scale Formal Synthesis of CoQ{sub 10}: Highly Stereoselective Friedel-Crafts Allylation Reaction of Tetramethoxytoluene with (E)-4-Chloro-2-methyl-1-phenylsulfonyl-2-butene in the Presence of Montmorillonite K-10

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Who; Lee, Hee Bong; Kim, Bong Chan; Sadaiah, Kadivendi; Lee, Kyuwoong; Shin, Hyunik [LG Life Sciences, Ltd., Daejeon (Korea, Republic of)

    2013-04-15

    We disclosed that MK-10 is a highly effective catalyst for the Friedel-Crafts reaction of 6 and 7 in terms of yield and of stereoselectivity. Although there are numerous applications of clays in Friedel-Crafts reaction, there is very limited example which demonstrated its effect on the stereoselectivity. In that context, our result is significant and further expansion in this direction is highly envisioned. Ubiquinone, as its name represents, exists ubiquitously in human body, particularly in the heart. It mediates the electron transfer process in mitochondria and also exerts strong antioxidant effect in its reduced form. In clinical trial, it showed beneficial effect on heart-related diseases such as myocardial infarction, angina, and other related symptoms to cause decreased mortality compared to the placebo group.

  15. Microstructures and mechanical properties of bulk nanocrystalline Fe{sub 3}Al materials with 5, 10 and 15 wt.% Cr prepared by aluminothermic reaction

    Energy Technology Data Exchange (ETDEWEB)

    La Peiqing, E-mail: pqla@lut.cn [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); Wang Hongding; Bai Yaping; Yang Yang; Wei Yupeng; Lu Xuefeng; Zhao Yang; Cheng Chunjie [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China)

    2011-08-15

    Highlights: {yields} We prepare bulk nanocrystalline material by aluminothermic reaction. {yields} Microstructures keep bcc disordered structure of Fe{sub 3}Al. {yields} Materials have good plastic deformation and texture changes after compression. - Abstract: Bulk nanocrystalline Fe{sub 3}Al based materials with 5, 10 and 15 wt.% Cr were prepared by aluminothermic reaction, in which melts were superheated about 1500 K before solidification. Microstructures of the materials were investigated by optical microscope, electron probe microscope, X-ray diffraction and transmission electron microscope. It was shown that microstructure of the materials consist of nanocrystalline matrix phase, which was composed of Fe, Al and Cr elements, and a small amount of contamination. The nanocrystalline phase was disordered bcc structure, and which did not change with Cr content. Average grain sizes of the nanocrystalline phase of the materials with 5, 10 and 15 wt.% Cr were 33, 21 and 37 nm, respectively. Compressive properties and hardness of the materials were tested. It indicated that the materials had a considerable plastic deformation and were not fractured in compression. Yield strength of the materials were about three times higher but hardness were a little lower than those of Fe{sub 3}Al material with coarsen grain. The hardness and yield strength of the materials varied slightly with Cr content and that of the material with 10 wt.% Cr was slightly lower. Average grain sizes of the materials decreased and texture changes appeared after the compression.

  16. Bioelectrochemical degradation of urea at platinized boron doped diamond electrodes for bioregenerative applications

    Science.gov (United States)

    Nicolau, Eduardo; Gonzalez, Ileana; Nicolau, Eduardo; Cabrera, Carlos R.

    The recovery of potable water from space mission wastewater is critical for the life support and environmental health of crew members in long-term missions. NASA estimates reveal that at manned space missions 0.06 kg/person·day of urine is produced, with urea and various salts as its main components. Current spacecraft water reclamation strategies include the utilization of not only multifiltration systems (MF) and reverse osmosis (RO), but also biological components to deal with crew urine streams. In this research we explore the utilization of urease (EC 3.5.1.5) to convert urea directly to nitrogen by the in-situ utilization of the reaction products, to increase the amount of clean water in future space expeditions. First of all, platinum was electrodeposited on boron doped diamond electrodes by cycling the potential between -0.2 V and 1.0 V in metal/0.5 M H2SO4 solution. SEM images of the electrodes showed a distribution of platinum nanoparticles ranging between 50 nm and 300 nm. The biochemical reaction of urease in nature produces ammonia and carbon dioxide from urea. Based on this, Cyclic Voltammetry experiments of an ammonium acetate solution at pH 10 were performed showing an anodic peak at -0.3 V vs. Ag/AgCl due to the ammonia oxidation. Then, a urease solution (Jack Bean) was poured into the electrochemical cell and subsequent additions of urea were performed with the potential held at -0.3 V in order to promote ammonia oxidation. Chronoamperometry data shows that with more than five urea additions the enzyme still responding by producing ammonia, which is being subsequently oxidized at the electrode surface and producing molecular nitrogen. This research has tremendous applications for future long-term space missions since the reaction byproducts could be used for a biomass subsystem (in-situ resource recovery), while generating electricity from the same process.

  17. The effect of boron deficiency on gene expression and boron compartmentalization in sugarbeet

    Science.gov (United States)

    NIP5, BOR1, NIP6, and WRKY6 genes were investigated for their role in boron deficiency in sugar beet, each with a proposed role in boron use in model plant species. All genes showed evidence of polymorphism in fragment size and gene expression in the target genomic DNA and cDNA libraries, with no co...

  18. Junctions between a boron nitride nanotube and a boron nitride sheet.

    Science.gov (United States)

    Baowan, Duangkamon; Cox, Barry J; Hill, James M

    2008-02-20

    For future nanoelectromechanical signalling devices, it is vital to understand how to connect various nanostructures. Since boron nitride nanostructures are believed to be good electronic materials, in this paper we elucidate the classification of defect geometries for combining boron nitride structures. Specifically, we determine possible joining structures between a boron nitride nanotube and a flat sheet of hexagonal boron nitride. Firstly, we determine the appropriate defect configurations on which the tube can be connected, given that the energetically favourable rings for boron nitride structures are rings with an even number of sides. A new formula E = 6+2J relating the number of edges E and the number of joining positions J is established for each defect, and the number of possible distinct defects is related to the so-called necklace and bracelet problems of combinatorial theory. Two least squares approaches, which involve variation in bond length and variation in bond angle, are employed to determine the perpendicular connection of both zigzag and armchair boron nitride nanotubes with a boron nitride sheet. Here, three boron nitride tubes, which are (3, 3), (6, 0) and (9, 0) tubes, are joined with the sheet, and Euler's theorem is used to verify geometrically that the connected structures are sound, and their relationship with the bonded potential energy function approach is discussed. For zigzag tubes (n,0), it is proved that such connections investigated here are possible only for n divisible by 3.

  19. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Science.gov (United States)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  20. Modeling of the hot flow behavior of advanced ultra-high strength steels (A-UHSS) microalloyed with boron

    Energy Technology Data Exchange (ETDEWEB)

    Mejía, I., E-mail: imejia@umich.mx [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U”, Ciudad Universitaria, 58066 Morelia, Michoacán (Mexico); Altamirano, G.; Bedolla-Jacuinde, A. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U”, Ciudad Universitaria, 58066 Morelia, Michoacán (Mexico); Cabrera, J.M. [Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB – Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Av. de las Bases de Manresa, 1, 08240 Manresa (Spain)

    2014-07-29

    In this research work, modeling of the hot flow behavior was carried out in a low carbon advanced ultra-high strength steels (A-UHSS) microalloyed with different amounts of boron (14, 33, 82, 126 and 214 ppm). For this purpose, experimental stress–strain data of uniaxial hot-compression tests over a wide range of temperatures (1223, 1273, 1323 and 1373 K (950, 1000, 1050 and 1100 °C)) and strain rates (10{sup −3}, 10{sup −2} and 10{sup −1} s{sup −1}) were used. The stress–strain relationships as a function of temperature and strain rate were successfully described on the basis of the approach proposed by Estrin, Mecking, and Bergström, together with the classical Avrami equation and the conventional hyperbolic sine function. The analysis of the modeling parameters of the hot flow curves shows that boron additions to A-UHSS play a major role in softening mechanisms rather than on hardening. The peak stress (σ{sub p}) and steady-state stress (σ{sub ss}) values show a decreasing trend with increasing boron content, which indicates that boron additions promote a solid solution softening effect additional to that produced by DRX. The time for 50% recrystallization (t{sub 50%}) tends to increase with boron additions, revealing that boron additions cause a delay of the DRX kinetics during hot deformation. Similarly, the presence of boron in the steel decreases the apparent activation energy for recrystallization (Q{sub t}), indicating that boron additions accelerate the onset of DRX. The constitutive equations developed in this way provided an excellent description of the experimental hot flow curves.

  1. 10-Undecynoic acid, an inhibitor of cytochrome P450 4A1, inhibits ethanolamine-specific phospholipid base exchange reaction in rat liver microsomes.

    Science.gov (United States)

    Lenart, J; Pikuła, S

    1999-01-01

    1,12-Dodecanedioic acid, the end-product of omega-hydroxylation of lauric acid, stimulates in a concentration dependent manner, phosphatidylethanolamine synthesis via ethanolamine-specific phospholipid base exchange reaction in rat liver endoplasmic reticulum. On the other hand, administration to rats of 10-undecynoic acid, a specific inhibitor of omega-hydroxylation reaction catalyzed by cytochrome P450 4A1, inhibits the ethanolamine-specific phospholipid base exchange activity by 30%. This is accompanied by a small but significant decrease in phosphatidylethanolamine content in the endoplasmic reticulum and inhibition of cytochrome P450 4A1. On the basis of these results it can be proposed that a functional relationship between cytochrome P450 4A1 and phosphatidylethanolamine synthesis exists in rat liver. Cytochrome P450 4A1 modulates the cellular level of lauric acid, an inhibitor of phospholipid synthesis. In turn, ethanolamine-specific phospholipid base exchange reaction provides molecular species of phospholipids, containing mainly long-chain polyunsaturated fatty acid moieties, required for the optimal activity of cytochrome P450 4A1.

  2. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  3. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  4. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution.

    Science.gov (United States)

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  5. Removal of boron from aqueous solution by clays and modified clays.

    Science.gov (United States)

    Karahan, Senem; Yurdakoç, Mürüvvet; Seki, Yoldaş; Yurdakoç, Kadir

    2006-01-01

    In order to increase the adsorption capacities of bentonite, sepiolite, and illite for the removal of boron form aqueous solution, the clay samples were modified by nonylammonium chloride. Specific surface areas of the samples were determined as a result of N2 adsorption-desorption at 77 K using the BET method. X-ray powder diffraction analysis of the clays and modified clays was used to determine the effects of modifying agents on the layer structure of the clays. The surface characterization of clays and modified clay samples was conducted using the FTIR technique before and after the boron adsorption. For the optimization of the adsorption of boron on clays and modified clays, the effect of pH and ionic strength was examined. The results indicate that adsorption of boron can be achieved by regulating pH values in the range of 8-10 and high ionic strength. In order to find the adsorption characteristics, Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms were applied to the adsorption data. The data were well described by Freundlich and Dubinin-Radushkevich adsorption isotherms while the fit of Langmuir equation to adsorption data was poor. It was reached that modification of bentonite and illite with nonylammonium chloride increased the adsorption capacity for boron sorption from aqueous solution.

  6. Monte Carlo assessment of boron neutron capture therapy for the treatment of breast cancer

    Directory of Open Access Journals (Sweden)

    Mundy Daniel W.

    2005-01-01

    Full Text Available For a large number of women who are diagnosed with breast cancer every year the avail able treatment options are effective, though physically and mentally taxing. This work is a starting point of a study of the efficacy of boron neutron capture therapy as an alternative treatment for HER-2+ breast tumors. Using HER-2-specific monoclonal anti bodies coupled with a boron-rich oligomeric phosphate diester, it may be possible to deliver sufficient amounts of 10B to a tumor of the breast to al low for selective cell destruction via irradiation by thermal neutrons. A comprehensive computational model (MCNP for thermal neutron irradiation of the breast is described, as well as the results of calculations made using this model, in order to determine the optimum boron concentration within the tumor for an effective boron neutron capture therapy treatment, as compared with traditional X-ray radiotherapy. The results indicate that a boron concentration of 50-60 mg per gram of tumor tissue is optimal when considering treatment times, dose distributions and skin sparing. How ever these results are based upon best-guess assumptions that must be experimentally verified.

  7. Study of the reaction npπ → npπ{sup +}π{sup -} at 1.0 and 1.5 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Jerusalimov, A.P.; Belyaev, A.V.; Ladygin, V.P.; Kurilkin, A.K.; Troyan, A.Yu.; Troyan, Yu.A. [Joint Institute for Nuclear Researches, Dubna (Russian Federation)

    2015-07-15

    The np → npπ {sup +} π {sup -} reaction has been studied at the incident neutron energies of 1.0 GeV and 1.5 GeV in 4π-geometry using the neutron beam produced by the breakup of the relativistic deuterons at the JINR Synchrophasotron. The np → npπ {sup +} π {sup -} data obtained at 1.5 GeV demonstrate the dominance of the ΔΔ excitation process with a significant contribution of the higher-lying baryonic resonances, while the data at 1.0 GeV show a non-resonant behavior. The angular and mass distributions are compared with the predictions of different models suggested for the double pion production in the NN collisions. The calculations performed within the model based on the reggeized π-exchange taking one baryon exchange into account are in good agreement with the experimental data obtained at both energies. (orig.)

  8. Description of the 11Li(p,d)10Li transfer reaction using structure overlaps from a full three-body model

    Science.gov (United States)

    Casal, J.; Gómez-Ramos, M.; Moro, A. M.

    2017-04-01

    Recent data on the differential angular distribution for the transfer reaction 11Li(p , d)10Li at E / A = 5.7 MeV in inverse kinematics are analyzed within the DWBA reaction framework, using the overlap functions calculated within a three-body model of 11Li. The weight of the different 10Li configurations in the system's ground state is obtained from the structure calculations unambiguously. The effect of the 9Li spin in the calculated observables is also investigated. We find that, although all the considered models succeed in reproducing the shape of the data, the magnitude is very sensitive to the content of p1/2 wave in the 11Li ground-state wave function. Among the considered models, the best agreement with the data is obtained when the 11Li ground state contains a ∼31% of p1/2 wave in the n-9Li subsystem. Although this model takes into account explicitly the splitting of the 1+ and 2+ resonances due to the coupling of the p1/2 wave to the 3 /2- spin of the core, a similar degree of agreement can be achieved with a model in which the 9Li spin is ignored, provided that it contains a similar p-wave content.

  9. Differential Cross Sections for the H + D2 → HD(v' = 3, j' = 4-10) + D Reaction above the Conical Intersection.

    Science.gov (United States)

    Gao, Hong; Sneha, Mahima; Bouakline, Foudhil; Althorpe, Stuart C; Zare, Richard N

    2015-12-17

    We report rovibrationally selected differential cross sections (DCSs) of the benchmark reaction H + D2 → HD(v' = 3, j' = 4-10) + D at a collision energy of 3.26 eV, which exceeds the conical intersection of the H3 potential energy surface at 2.74 eV. We use the PHOTOLOC technique in which a fluorine excimer laser at 157.64 nm photodissociates hydrogen bromide (HBr) molecules to generate fast H atoms and the HD product is detected in a state-specific manner by resonance-enhanced multiphoton ionization. Fully converged quantum wave packet calculations were performed for this reaction at this high collision energy without inclusion of the geometric phase (GP) effect, which takes into account coupling to the first excited state of the H3 potential energy surface. Multimodal structures can be observed in most of the DCSs up to j' = 10, which is predicted by theory and also well-reproduced by experiment. The theoretically calculated DCSs are in good overall agreement with the experimental measurements, which indicates that the GP effect is not large enough that its existence can be verified experimentally at this collision energy.

  10. Differential cross section measurement of the {sup 12}C(e,e{sup '}pp){sup 10}Be{sub g.s.} reaction

    Energy Technology Data Exchange (ETDEWEB)

    Makek, M.; Bosnar, D.; Friscic, I. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Achenbach, P.; Ayerbe Gayoso, C.; Bernauer, J.C.; Boehm, R.; Denig, A.; Distler, M.O.; Merkel, H.; Mueller, U.; Nungesser, L.; Pochodzalla, J.; Sanches Majos, S.; Schlimme, B.S.; Schwamb, M.; Walcher, T. [Johannes Gutenberg-Universitaet, Institut fuer Kernphysik, Mainz (Germany); Barbieri, C. [University of Surrey, Department of Physics, Guildford (United Kingdom); Giusti, C. [Universita degli Studi di Pavia, Dipartimento di Fisica, Pavia (Italy); INFN, Sezione di Pavia (Italy); Collaboration: A1 Collaboration

    2016-09-15

    The differential cross section was measured for the {sup 12}C(e,e{sup '}pp){sup 10}Be{sub g.s.} reaction at energy and momentum transfers of 163 MeV and 198 MeV/c, respectively. The measurement was performed at the Mainz Microtron by using two high-resolution magnetic spectrometers of the A1 Collaboration and a newly developed silicon detector telescope. The overall resolution of the detector system was sufficient to distinguish the ground state from the first excited state in {sup 10}Be. We chose a super-parallel geometry that minimizes the effect of two-body currents and emphasizes the effect of nucleon-nucleon correlations. The obtained differential cross section is compared to the theoretical results of the Pavia reaction code in which different processes leading to two-nucleon knockout are accounted for microscopically. The comparison shows a strong sensitivity to nuclear-structure input and the measured cross section is seen to be dominated by the interplay between long- and short-range nucleon-nucleon correlations. Microscopic calculations based on the ab initio self-consistent Green's function method give a reasonable description of the experimental cross section. (orig.)

  11. Description of the $^{11}$Li$(p,d){^{10}}$Li transfer reaction using structure overlaps from a full three-body model

    CERN Document Server

    Casal, J; Moro, A M

    2016-01-01

    Recent data on the differential angular distribution for the transfer reaction $^{11}$Li(p,d)$^{10}$Li at $E/A=5.7$~MeV in inverse kinematics are analysed within the DWBA reaction framework, using the overlap functions calculated within a three-body model of $^{11}$Li. The weight of the different $^{10}$Li configurations in the system's ground state is obtained from the structure calculations unambiguously. The effect of the $^{9}$Li spin in the calculated observables is also investigated. We find that, although all the considered models succeed in reproducing the shape of the data, the magnitude is very sensitive to the content of $p_{1/2}$ wave in the $^{11}$Li ground-state wave function. Among the considered models, the best agreement with the data is obtained when the $^{11}$Li ground state contains a $\\sim$31\\% of $p_{1/2}$ wave in the $n$-$^9$Li subsystem. Although this model takes into account explicitly the splitting of the $1^+$ and $2^+$ resonances due to the coupling of the $p_{1/2}$ wave to the $3...

  12. Application of iron-rich natural clays in Camlica, Turkey for boron sorption from water and its determination by fluorimetric-azomethine-H method

    Energy Technology Data Exchange (ETDEWEB)

    Seyhan, Serap [Dokuz Eylul University, Faculty of Arts Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Seki, Yoldas [Dokuz Eylul University, Faculty of Arts Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Yurdakoc, Mueruevvet [Dokuz Eylul University, Faculty of Arts Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey)]. E-mail: m.yurdakoc@deu.edu.tr; Merdivan, Melek [Dokuz Eylul University, Faculty of Arts Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey)

    2007-07-19

    In this study, iron-rich natural Camlica Bentonites, CB1 and CB2, were used for the sorption of boron in water samples. Boron was determined by newly progressed fluorimetric azomethine-H method. The optimum conditions found using factorial designs are pH 10, 45 deg. C, 0.250 g of clay and 20 mL of sample volume. It was found that 180 min is enough time for the equilibrium state to be reached in boron adsorption. At these conditions, boron sorption percentage was 80% for CB1 and 30% for CB2. The adsorption isotherms are well described by linear Freundlich model. Various geothermal waters in our country were also studied for boron sorption.

  13. Synthesis and oxidation behavior of boron-substituted carbon powders by hot filament chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Boron-substituted carbon powder, BxC1-x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared BxC1-x samples can be controlled by varying the relative proportions of methane and diborane. X-ray diffraction, transmission electron microscopy, and electron energy loss spectrum confirm the successful synthesis of an amorphous BC5 compound, which consists of 10―20 nm particles with disk-like morphology. Thermogravimetry measurement shows that BC5 compound starts to oxidize ap-proximately at 620℃ and has a higher oxidation resistance than carbon.

  14. Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. The comparison data is presented in this report.

  15. Reliable method for the synthesis of aryl β-D-glucopyranosides, using boron trifluoride-diethyl ether as catalyst

    NARCIS (Netherlands)

    Smits, Elly; Engberts, Jan B.F.N.; Kellogg, Richard M.; Doren, Henk A. van

    1996-01-01

    Stereospecific formation of aryl 2,3,4,6-tetra-O-acetyl-b-D-glucopyranosides was achieved by reaction of penta-O-acetyl-b-D-glucose 1 with substituted phenols in the presence of boron trifluoride. Yields of the purified products varied from 52-85%. Benzyl alcohol could also be glucosylated using sim

  16. Reliable method for the synthesis of aryl beta-D-glucopyranosides, using boron trifluoride-diethyl ether as catalyst

    NARCIS (Netherlands)

    Smits, E; Engberts, JBFN; Kellogg, RM; vanDoren, HA

    1996-01-01

    Stereospecific formation of aryl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside was achieved by reaction of penta-O-aceeyl-beta-D-glucose 1 with substituted phenols in the presence of boron trifluoride. Yields of the purified products varied from 52-85%. Benzyl alcohol could also be glucosylated usin

  17. A New Saccharides and Nnucleosides Sensor Based on Tetrathiafulvalene-anthracene Dyad with Two Boronic Acid Groups

    Directory of Open Access Journals (Sweden)

    Daoben Zhu

    2006-08-01

    Full Text Available A new saccharides sensor based on the TTF-anthracene dyad with two boronicacid (2 groups was designed and synthesized. This new saccharides sensor showsselectivity towards D-glucose while its analogue with one boronic acid group (1 wasreported to bind D-Fructose selectively. Moreover, reaction of compound 2 with uridineinduced even larger fluorescence enhancement under the same condition.

  18. Cathodic reductive coupling of methyl cinnamate on boron-doped diamond electrodes and synthesis of new neolignan-type products.

    Science.gov (United States)

    Kojima, Taiki; Obata, Rika; Saito, Tsuyoshi; Einaga, Yasuaki; Nishiyama, Shigeru

    2015-01-01

    The electroreduction reaction of methyl cinnamate on a boron-doped diamond (BDD) electrode was investigated. The hydrodimer, dimethyl 3,4-diphenylhexanedioate (racemate/meso = 74:26), was obtained in 85% yield as the major product, along with small amounts of cyclic methyl 5-oxo-2,3-diphenylcyclopentane-1-carboxylate. Two new neolignan-type products were synthesized from the hydrodimer.

  19. Boron remobilization at low boron supply in olive (Olea europaea) in relation to leaf and phloem mannitol concentrations.

    Science.gov (United States)

    Liakopoulos, Georgios; Stavrianakou, Sotiria; Filippou, Manolis; Fasseas, Costas; Tsadilas, Christos; Drossopoulos, Ioannis; Karabourniotis, George

    2005-02-01

    For plant species in which a considerable portion of the photoassimilates are translocated in the phloem as sugar alcohols, boron is freely translocated from mature organs to growing tissues. However, the effects of decreased plant boron status on boron remobilization are poorly understood. We conducted a growth chamber experiment (CE) and a field experiment (FE) to study the effects of low boron supply on boron remobilization in olive (Olea europaea L.), a species that transports considerable amounts of mannitol in the phloem. For the CE, several physiological parameters were compared between control (B+) and boron-deficient olive plants (B-) during the expansion of new leaves. Boron remobilization was assessed by measuring boron content of selected leaves at the beginning and at the end of the CE. As expected, boron was remobilized from mature leaves to young leaves of B+ plants; however, considerable boron remobilization was also observed in B- plants, suggesting a mechanism whereby olive can sustain a minimum boron supply for growth of new tissues despite an insufficient external boron supply. Boron deficiency caused inhibition of new growth but had no effect on photosynthetic capacity per unit leaf surface area of young and mature leaves, thereby altering the carbon utilization pattern and resulting in carbon allocation to structures within the source leaves and accumulation of soluble carbohydrates. Specifically, in mature B- leaves in the CE and in B- leaves in the FE, mannitol concentration on a leaf water content basis increased by 48 and 27% respectively, compared with controls. Carbon export ability (assessed by both phloem anatomy and phloem exudate composition of FE leaves) was enhanced at low boron supply. We conclude that, at low boron supply, increased mannitol concentrations maintain boron remobilization from source leaves to boron-demanding sink leaves.

  20. Novel semiconducting boron carbide/pyridine polymers for neutron detection at zero bias

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Elena; Enders, A.; Dowben, P.A. [University of Nebraska-Lincoln, Department of Physics and Astronomy, Lincoln, NE (United States); James, Robinson; Chiluwal, Umesh; Gapfizi, Richard; Tae, Jae-Do; Driver, M. Sky; Kelber, Jeffry A. [University of North Texas, Department of Chemistry, Denton, TX (United States); Pasquale, Frank L. [University of North Texas, Department of Chemistry, Denton, TX (United States); Lam Research Corporation, PECVD Business Unit, Tualatin, OR (United States); Colon Santana, Juan A. [Center for Energy Sciences Research, Lincoln, NE (United States)

    2014-09-19

    Thin films containing aromatic pyridine moieties bonded to boron, in the partially dehydrogenated boron-rich icosahedra (B{sub 10}C{sub 2}H{sub X}), prove to be an effective material for neutron detection applications when deposited on n-doped (100) silicon substrates. The characteristic I-V curves for the heterojunction diodes exhibit strong rectification and largely unperturbed normalized reverse bias leakage currents with increasing pyridine content. The neutron capture generated pulses from these heterojunction diodes were obtained at zero bias voltage although without the signatures of complete electron-hole collection. These results suggest that modifications to boron carbide may result in better neutron voltaic materials. (orig.)

  1. Superconductivity in boron carbide? Clarification by low-temperature MIR/FIR spectra.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U

    2011-11-01

    The electronic structure and phonon density of B(13)B(2) boron carbide calculated by Calandra et al (2004 Phys. Rev. B 69 224505) defines this compound as metallic, and the authors predict superconductivity with T(C)s up to 36.7 K. Their results are affected by the same deficiencies as former band structure calculations on boron carbides based on hypothetical crystal structures deviating significantly from the real ones. We present optical mid IR/far IR (MIR/FIR) spectra of boron carbide with compositions between B(4.3)C and B(10.37)C, evidencing semiconducting behaviour at least down to 30 K. There is no indication of superconductivity. The spectra yield new information on numerous localized gap states close to the valence band edge.

  2. Enhanced boron adsorption onto synthesized MgO nanosheets by ultrasonic method.

    Science.gov (United States)

    Li, Ping; Liu, Chuang; Zhang, Li; Zheng, Shili; Zhang, Yi

    2017-01-01

    MgO nanosheets with high adsorption performance were fabricated by an ultrasonic method. It was revealed that, nest-like MgO was formed from the magnesium salt solution precipitation and further calcination. Then the nest-like MgO was exfoliated by ultrasonic waves to obtain MgO nanosheets with approximately a lateral of 200-600nm and a thickness of 10nm. Adjusting the ultrasonic time and power, the specific surface areas of MgO nanosheets could be tuned in a range of 79-168m(2)/g. The synthesized MgO nanosheets were used as adsorbents to remove boron from aqueous solution, and the maximum boron adsorption capacity of these MgO nanosheets reached 87mgg(-1). The high uptake capability of the MgO nanosheets makes it potentially adsorbent for the removal of boron from wastewaters.

  3. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Soloway, A.H.; Barth, R.F.

    1990-01-01

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  4. Preparation of titanium diboride powders from titanium alkoxide and boron carbide powder

    Indian Academy of Sciences (India)

    Hamed Sinaei Pour Fard; Hamidreza Baharvandi

    2011-07-01

    Titanium diboride powders were prepared through a sol–gel and boron carbide reduction route by using TTIP and B4C as titanium and boron sources. The influence of TTIP concentration, reaction temperature and molar ratio of precursors on the synthesis of titanium diboride was investigated. Three different concentrations of TTIP solution, 0.033/0.05/0.1, were prepared and the molar ratio of B4C to TTIP varied from 1.3 to 2.5. The results indicated that as the TTIP concentration had an important role in gel formation, the reaction temperature and B4C to TTIP molar ratio showed obvious effects on the formation of TiB2. Pure TiB2 was prepared using molar composition of Ti : B4C = 1 : 2.3 and the optimum synthesis temperature was 1200°C.

  5. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  6. Aqueous Boron Removal by Using Electrospun Poly(vinyl alcohol) (PVA) Mats: A Combined Study of IR/Raman Spectroscopy and Computational Chemistry.

    Science.gov (United States)

    Lee, Kwan Sik; Eom, Ki Heon; Lim, Jun-Heok; Ryu, Hyunwook; Kim, Suhan; Lee, Dong-Kyu; Won, Yong Sun

    2017-03-23

    We report the use of a novel and efficient method to remove aqueous boron by using electrospun, water-resistant poly(vinyl alcohol) (PVA) mats stabilized in methanol. The removal of the primary aqueous boron species as (B(OH)3), was accomplished by chemical adsorption in reactions with -OH (hydroxyl) groups on the PVA mat surface. The chemical adsorption of B(OH)3 was qualitatively confirmed by the analysis of IR and Raman spectra. The bands, corresponding to the molecular vibration modes of chemically bonded boron in PVA, were identified by using the frequency calculation from the computational chemistry for the first time. The adsorption capacities of PVA mats for aqueous boron were then quantitated at a low boron concentration (range: 0.0010 to 0.0025 g of aqueous boron per g of PVA mats) by the Carmine method. The PVA mats were prepared by a well-established electrospinning technique, which make these substrates promising potential candidates for use as boron-selective sorbent media in applications such as reverse osmosis desalination processes.

  7. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  8. Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Yanagie, Hironobu, E-mail: yanagie@n.t.u-tokyo.ac.jp [Dept of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)] [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Kumada, Hiroaki [Proton Medical Research Center, University of Tsukuba, Ibaraki (Japan); Nakamura, Takemi [Japan Atomic Energy Research Institute, Ibaraki (Japan); Higashi, Syushi [Dept of Surgery, Ebihara Memorial Hospital, Miyazaki (Japan)] [Kyushu Industrial Sources Foundation, Miyazaki (Japan); Ikushima, Ichiro [Dept of Radiology, Miyakonojyo Metropolitan Hospital, Miyazaki (Japan); Morishita, Yasuyuki [Dept of Human and Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo (Japan); Shinohara, Atsuko [Dept of Humanities, Graduate School of Seisen University, Tokyo (Japan); Fijihara, Mitsuteru [SPG Techno Ltd. Co., Miyazaki (Japan); Suzuki, Minoru; Sakurai, Yoshinori [Research Reactor Institute, Kyoto University, Osaka (Japan); Sugiyama, Hirotaka [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Kajiyama, Tetsuya [Kyushu Industrial Sources Foundation, Miyazaki (Japan); Nishimura, Ryohei [Dept of Veternary Surgery, University of Tokyo Veternary Hospital, Tokyo (Japan); Ono, Koji [Research Reactor Institute, Kyoto University, Osaka (Japan); Nakajima, Jun; Ono, Minoru [Dept of Cardiothracic Surgery, University of Tokyo Hospital, Tokyo (Japan); Eriguchi, Masazumi [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan)] [Department of Surgery, Shin-Yamanote Hospital, Saitama (Japan); Takahashi, Hiroyuki [Dept of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)] [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan)

    2011-12-15

    Introduction: Hepatocellular carcinoma (HCC) is one of the most difficult to cure with surgery, chemotherapy, or other combinational therapies. In the treatment of HCC, only 30% patients can be operated due to complication of liver cirrhosis or multiple intrahepatic tumours. Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between {sup 10}B atoms and thermal neutrons, so it is necessary to accumulate a sufficient quantity of {sup 10}B atoms in tumour cells for effective tumour cell destruction by BNCT. Water-in-oil-in-water (WOW) emulsion has been used as the carrier of anti-cancer agents on intra-arterial injections in clinical. In this study, we prepared {sup 10}BSH entrapped WOW emulsion by double emulsifying technique using iodized poppy-seed oil (IPSO), {sup 10}BSH and surfactant, for selective intra-arterial infusion to HCC, and performed simulations of the irradiation in order to calculate the dose delivered to the patients. Materials and methods: WOW emulsion was administrated with intra-arterial injections via proper hepatic artery on VX-2 rabbit hepatic tumour models. We simulated the irradiation of epithermal neutron and calculated the dose delivered to the tissues with JAEA computational dosimetry system (JCDS) at JRR4 reactor of Japan Atomic Research Institute, using the CT scans of a HCC patient. Results and discussions: The {sup 10}B concentrations in VX-2 tumour obtained by delivery with WOW emulsion were superior to those by conventional IPSO mix emulsion. According to the rabbit model, the boron concentrations (ppm) in tumour, normal liver tissue, and blood are 61.7, 4.3, and 0.1, respectively. The results of the simulations show that normal liver biologically weighted dose is restricted to 4.9 Gy-Eq (CBE; liver tumour: 2.5, normal liver: 0.94); the maximum, minimum, and mean tumour weighted dose are 43.1, 7.3, and 21.8 Gy-Eq, respectively, in 40 min irradiation. In this study, we show that {sup 10}B

  9. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation

    Energy Technology Data Exchange (ETDEWEB)

    Roosta, Sara [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Hashemianzadeh, Seyed Majid, E-mail: hashemianzadeh@iust.ac.ir [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Ketabi, Sepideh, E-mail: sepidehketabi@yahoo.com [Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were − 4.128 kcal mol{sup −1} and − 2457.124 kcal mol{sup −1} respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was − 281.937 kcal mol{sup −1} which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (− 374.082 and − 245.766 kcal mol{sup −1}) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. - Highlights: • Solubility of cisplatin@ boron-nitride nanotube is larger than cisplatin@ carbon nanotube. • Boron- nitride nanotube complexes have larger electrostatic contribution in solvation free energy. • Complexation free energies confirm encapsulation of drug into the nanotubes in aqueous solution. • Boron- nitride nanotubes are appropriate drug delivery systems compared with carbon nanotubes.

  10. Boron and chlorine isotopic signatures of seawater in the Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Xiao, Y.K.; Hai, L.

    Isotopic ratios of boron and chlorine were measured in the upper 2000 m water column of the Central Indian Ridge from two tectonically active areas, one at 5°S and other at 10°S which coincided with the spreading regime of the Central Indian Ridge...

  11. Boron-Loaded Silicone Rubber Scintillators

    CERN Document Server

    Bell, Z W; Maya, L; Sloop, F V J

    2003-01-01

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon respons...

  12. Axial residual stresses in boron fibers

    Science.gov (United States)

    Behrendt, D. R.

    1978-01-01

    A method of measuring axial residual stresses in boron fibers is presented. With this method, the axial residual stress distribution as a function of radius is determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diam fibers are similar, being compressive at the surface and changing monotonically to a region of tensile stress within the boron. At approximately 25% of the original radius, the stress reaches a maximum tensile stress of about 860 MN sq m and then decreases to a compressive stress near the tungsten boride core. Data are presented for 203-micron diam B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102-micron diam B/W and boron on carbon (B/C) show that the residual stresses are similar in the outer regions of the fibers, but that large differences near and in the core are observed. Fracture of boron fibers is discussed.

  13. Mechanism of reaction synthesis of Li-B alloys

    Institute of Scientific and Technical Information of China (English)

    LIU; Zhijian; (刘志坚); QU; Xuanhui; (曲选辉); LI; Zhiyou; (李志友); HUANG; Baiyun; (黄伯云)

    2003-01-01

    A model for reaction synthesis of Li-B alloys has been presented. Results show that the first exothermal reaction can be divided into three stages. The first stage is an instantaneous reaction on the boundary between boron particles and lithium melting, in which the caloric released is inversely proportional to the particle size of the boron powder. The second stage is a reaction between the unreacted boron and the lithium that diffuses through the product LiB3 on the surface of the boron particle. This process can be described by Johnston model. The third stage is dissolution of the product LiB3 to Li liquid, which takes place at temperature up to 420℃. At the same time, the second exothermal reaction begins, which consists of nucleation and growth of the last Li-B compound. It can be divided into two substages, i.e. the nucleation pregnant stage and the exploded reaction stage. When the concentration of the particle nucleated is high enough, an exploding reaction takes place. The lower the temperature, the longer the time needed for the exploding reaction. By the model presented, the experimental phenomena in the synthesis are explained.

  14. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2010-01-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  15. Light elements burning reaction rates at stellar temperatures as deduced by the Trojan Horse measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lamia, L. [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy); Spitaleri, C. [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania, Italy and INFN-Laboratori Nazionali del Sud, Catania (Italy); La Cognata, M.; Palmerini, S.; Sergi, M. L. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Puglia, S. M. R. [INFN-Laboratori Nazionali del Sud, Catania, Italy and Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy)

    2015-02-24

    Experimental nuclear astrophysics aims at determining the reaction rates for astrophysically relevant reactions at their Gamow energies. For charged-particle induced reactions, the access to these energies is usually hindered, in direct measurements, by the presence of the Coulomb barrier between the interacting particles or by electron screening effects, which make hard the determination of the bare-nucleus S(E)-factor of interest for astrophysical codes. The use of the Trojan Horse Method (THM) appears as one of the most suitable tools for investigating nuclear processes of interest for astrophysics. Here, in view of the recent TH measurements, the main destruction channels for deuterium ({sup 2}H), for the two lithium {sup 6,7}Li isotopes, for the {sup 9}Be and the one for the two boron {sup 10,11}B isotopes will be discussed.

  16. Addition of RDX/HMX on the Ignition Behaviour of Boron-Potassium Nitrate Pyrotechnic Charge

    Directory of Open Access Journals (Sweden)

    K.R. Rani Krishnan

    2006-07-01

    Full Text Available Boron-potassium nitrate (B-KNO3 (25/75 is a well-known pyrotechnic composition whichfinds application as energy-release system for small-calibre rockets and pyrogen igniters forlarger motors. The decomposition of the oxidiser in this composition is endothermic which canbe activated by the addition of high explosives, which decompose exothermically. This paperdescribes the influence of two nitramine explosives, RDX and HMX, on the ignition characteristicsof B-KNO3 composition using thermogravimetry, differential scanning calorimetry, heat andpressure output measurements. Different compositions were prepared by varying the amount ofRDX/HMX from 10 per cent to 50 per cent. Thermal studies on the B-KNO3/high explosivemixtures reveal that these undergo two-stage decomposition. The first stage corresponds to thedecomposition of high explosive and the second stage corresponds to that of the reaction betweenB and KNO3. Kinetic parameters were calculated for both the stages of TG curves using Coats-Redfern and Mac Callum-Tanner methods. Ignition temperature of B-KNO3 decreases on theaddition of RDX/HMX while the onset of RDX or HMX decomposition is not significantly affectedby B-KNO3. The pressure output of B-KNO3 increases on adding RDX/HMX. The heat outputof B-KNO3 is not much affected by the addition of RDX or HMX, even though the heat ofexplosion of RDX and HMX are low. This is due to the reaction between the combustion productsof RDX/HMX and reaction products of B-KNO3 to form more exothermic products like B2O3,releasing extra heat. The flame temperature of the charge increases while the average molecularweight of the products of combustion decreases as the RDX/HMX content increases. Thus, thecharge, on addition of RDX or HMX, produces higher pressure output, maintaining the heatoutput at comparable levels.

  17. Dietary boron: possible roles in human and animal physiology

    Science.gov (United States)

    Boron is a bioactive element of low molecular weight. Since discovery of the first boron biomolecule, boromycin, in 1967, several other similar biomolecules are now well-characterized. Most recently described was a bacterial cell-to-cell communication signal that requires boron, autoinducer-II. Boro...

  18. Study and optimization of boronization in Alcator C-Mod using the Surface Science Station (S{sup 3})

    Energy Technology Data Exchange (ETDEWEB)

    Ochoukov, Roman, E-mail: ochoukov@psfc.mit.edu [Plasma Science and Fusion Center MIT, NW17, 175 Albany Street, Cambridge, MA 02139 (United States); Whyte, Dennis; Lipschultz, Bruce; LaBombard, Brian [Plasma Science and Fusion Center MIT, NW17, 175 Albany Street, Cambridge, MA 02139 (United States); Gierse, Niels [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, Juelich (Germany); Physikalisches Institut, Universitaet zu Koeln, D-50937 Cologne (Germany); Harrison, Soren [Fusion Research Technologies, 519 Somerville Avenue 243, Somerville, MA 02143 (United States)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Boron deposition profiles measured on Alcator C-Mod during boronization. Black-Right-Pointing-Pointer Boron deposition profile is consistent with ionic deposition. Black-Right-Pointing-Pointer Monte Carlo simulation of boron deposition agrees with experiment assuming warm ({approx}1-10 eV) boron{sup +1} ions. - Abstract: A Surface Science Station (S{sup 3}) on the Alcator C-Mod tokamak is used to study and optimize the location and rate of boron film deposition in situ during electron cyclotron (EC) discharge plasmas using 2.45 GHz radio-frequency (RF) heating and a mixture of helium and diborane (B{sub 2}D{sub 6}) gasses. The radial profile of boron deposition is measured with a pair of quartz microbalances (QMB) on S{sup 3}, the faces of which can be rotated 360 Degree-Sign including orientations parallel and perpendicular to the toroidal magnetic field B{sub T} {approx}0.1 T. The plasma electron density is measured with a Langmuir probe, also on S{sup 3} in the vicinity of the QMBs, and typical values are {approx}1 Multiplication-Sign 10{sup 16} m{sup -3}. A maximum boron deposition rate of 0.82 {mu}g/cm{sup 2}/min is obtained, which corresponds to 3.5 nm/min if the film density is that of solid boron. These deposition rates are sufficient for boron film applications between tokamak discharges. However the deposition does not peak at the EC resonance as previously assumed. Rather, deposition peaks near the upper hybrid (UH) resonance, {approx}5 cm outboard of the EC resonance. This has implications for RF absorption, with the RF waves being no longer damped on the electrons at the EC resonance. The previously inferred radial locations of critical erosion zones in Alcator C-Mod also need to be re-evaluated. The boron deposition profile versus major radius follows the ion flux/density profile, implying that the boron deposition is primarily ionic. The application of a vertical magnetic field (B{sub V} {approx}0.01 T) was

  19. 硼对鸡10项生理生化指标的影响%Effects of boron added to water on ten physiological and biochemical indexes of broiling

    Institute of Scientific and Technical Information of China (English)

    商常发; 顾有方; 莫俊生; 陈会良

    2007-01-01

    300羽1日龄固始鸡随机分为4组,探讨在饮水中补充硼对鸡10项生理生化指标的影响,为研究硼的生物学作用提供科学依据.结果表明,补硼鸡体温、心跳和呼吸次数无明显变化;全血硼含量增加;红、白细胞数、血红蛋白含量和血清钙、磷、镁随着补硼量的增加而降低.

  20. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.