WorldWideScience

Sample records for borohydrides

  1. Modified borohydrides for reversible hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Au, Ming

    2005-08-29

    In attempt to develop lithium borohydrides as the reversible hydrogen storage materials with the high capacity, the feasibility to reduce dehydrogenation temperature of the lithium borohydride and moderate rehydrogenation condition has been explored. The commercial available lithium borohydride has been modified by ball milling with metal oxides and metal chlorides as the additives. The modified lithium borohydrides release 9 wt% hydrogen starting from 473K. The dehydrided modified lithium borohydrides absorb 7-9 wt% hydrogen at 873K and 7 MPa. The additive modification reduces dehydriding temperature from 673K to 473K and moderates rehydrogenation conditions to 923K and 15 MPa. XRD and SEM analysis discovered the formation of the intermediate compound TiB{sub 2} that may plays the key role in change the reaction path resulting the lower dehydriding temperature and reversibility. The reversible hydrogen storage capacity of the oxide modified lithium borohydrides decreases gradually during hydriding-dehydriding cycling due to the lost of the boron during dehydrogenation. But, it can be prevented by selecting the suitable additive, forming intermediate boron compounds and changing the reaction path. The additives reduce dehydriding temperature and improve the reversibility, it also reduces the hydrogen storage capacity. The best compromise can be reached by optimization of the additive loading and introducing new process other than ball milling.

  2. Diborane release and structure distortion in borohydrides.

    Science.gov (United States)

    Callini, Elsa; Borgschulte, Andreas; Ramirez-Cuesta, Anibal Javier; Züttel, Andreas

    2013-01-21

    Hydrogen desorption from borohydrides is often accompanied by the release of diborane. The amount of diborane released as a byproduct during the decomposition of borohydrides scales inversely with the borohydride stability, which in turn depends on the electronegativity of the corresponding cation. We present a model based on the difference between the symmetric and asymmetric assembly of B(2)H(6) units at the surface. The origin of this reaction is the degree of distortion of the BH(4)(-) anions in the bulk, hitherto depending on the degree of ionization of the cation. A practical measure of the distortion is the range in which the stretching vibration modes appear, which is the difference in the energy of the stretching vibrations of hydrogen atoms with maximum different bonding lengths (Badger's rule). We propose from this relation that the diborane released from the surface of the relatively unstable LiZn(2)(BH(4))(5) is formed from a recombination of BH(2)(δ+) and BH(4)(δ-) units. Ultra high vacuum mass spectroscopy measurements support the presented model and clarify the decomposition of stable borohydrides, such as LiBH(4). The sublimation of borohydrides in UHV competes with their decomposition.

  3. Transition metal based borohydrides for hydrogen storage

    Science.gov (United States)

    Jayanthi, Chakram; Liu, Jianjun; Wei, Suhuai; Zhao, Yufeng

    2010-03-01

    Using ab-initio studies based on the density-functional theory, we have calculated binding energies per hydrogen molecule for decomposition reactions of transition metal borohydrides MHxB12H12 to MB12 structures, where M corresponds to Sc, Ti, or V. Depending on the valence of the transition metal, x can be 1, 2, or 3. Crystal structures considered for MB12 included both hypothetical and those found in the international crystallographic structural database. On the other hand, the crystal structure considered for MHxB12H12 belongs to C2/c (space group 15) structure as reported in a previous study [V. Ozolins et al. JACS, 131, 230 (2009)]. Among the structures investigated, Titanium-based metal borohydride structure has the lowest binding energy per hydrogen molecule relative to the cubic TiB12 structure (˜0.37 eV/H2). Our finding should be contrasted with the binding energy/H2 for simple metal based borohydrides (e.g., CaB12H12 ), which has a value of ˜ 1.5 eV/H2, suggesting that transition metals play a significant role in lowering the H2 binding energy in borohydrides.

  4. Chitosan-supported Borohydride Reducing Agent

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new chitosan-supported borohydride reducing reagent (CBER) was prepared by treatment of KBH4 with the resin of chitosan derivative, which was first synthesized fiom the reaction of cross-linked chitosan microsphere with glycidyl trimethylammonium chloride. CBER could reduce aromatic carbonyl compound to corresponding alcohol.

  5. Experimental investigation on lithium borohydride hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Goudon, J.P. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); SNPE Materiaux Energetiques, Centre de Recherches du Bouchet, Laboratoire BCFB, 9 rue Lavoisier, 91710 Vert-le-Petit (France); Bernard, F. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Renouard, J.; Yvart, P. [SNPE Materiaux Energetiques, Centre de Recherches du Bouchet, Laboratoire BCFB, 9 rue Lavoisier, 91710 Vert-le-Petit (France)

    2010-10-15

    Lithium borohydride, one of the highest energy density chemical energy carriers, is considered as an attractive potential hydrogen storage material due to its high gravimetric hydrogen density (19.6%). Belonging to borohydride compounds, it presents a real issue to overcome aims fixed by the U.S. Department of Energy in the field of energy, and so crystallizes currently attention and effort to use this material for large scale civil and military applications. However, due to its important hygroscopicity, lithium borohydride is a hazardous material which requires specific handling conditions for industrial aspects. In order to understand much more the reaction mechanism involved between LiBH{sub 4} and the water vapor which leads to the native material dehydrogenation, several experimental techniques such as X-ray Photoelectrons Spectroscopy (XPS), Raman spectroscopy, X-Ray Diffraction (XRD) or thermal analysis (TGA/DTA) were investigated. Indeed, depending on water stoichiometric coefficient, several reactions are suggested in literature but the lithium borohydride hydrolysis way reaction scheme is still uncertain. Investigations exhibited interesting results and, highlighted the formation of lithium metaborate dihydrate LiBO{sub 2},2H{sub 2}O as hydrolysis product via such a solid-gas reaction. (author)

  6. Ballmilling of metal borohydrides for hydrogen storage

    DEFF Research Database (Denmark)

    Sommer, Sanna

    2014-01-01

    is to hydrogenate simple compounds such as metalborides and hydrides with the intention of forming a new and more hydrogen rich borohydride. In contrast to mainstream research, the method of synthesis has been based on reactants that are expected to be found in the metal borohydride’s dehydrogenated state....... Specifically, the research undertaken targets CaB6 whose boron is in a octahedral network, or AlB2 whose boron is layered. These compounds were then reactive ball milled with alkali and alkaline earth metal under hydrogen pressure, with the intention of forming metal borohydrides. For CaB6, no clear sign...... Transform Infra-red Spectroscopy, Magic Angle Spinning Nuclear Magnetic Resonance, Thermal Gravimetry, Differential Scanning Calorimetry, Mass Spectroscopy and lastly In Situ Powder X-ray diffraction measurements at l711 MAXLab....

  7. BIMETALLIC LITHIUM BOROHYDRIDES TOWARD REVERSIBLE HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Au, M.

    2010-10-21

    Borohydrides such as LiBH{sub 4} have been studied as candidates for hydrogen storage because of their high hydrogen contents (18.4 wt% for LiBH{sub 4}). Limited success has been made in reducing the dehydrogenation temperature by adding reactants such as metals, metal oxides and metal halides. However, full rehydrogenation has not been realized because of multi-step decomposition processes and the stable intermediate species produced. It is suggested that adding second cation in LiBH{sub 4} may reduce the binding energy of B-H. The second cation may also provide the pathway for full rehydrogenation. In this work, several bimetallic borohydrides were synthesized using wet chemistry, high pressure reactive ball milling and sintering processes. The investigation found that the thermodynamic stability was reduced, but the full rehydrogenation is still a challenge. Although our experiments show the partial reversibility of the bimetallic borohydrides, it was not sustainable during dehydriding-rehydriding cycles because of the accumulation of hydrogen inert species.

  8. Bleaching of Wool with Sodium Borohydride

    Directory of Open Access Journals (Sweden)

    Duygu Yilmazer, MSc.

    2009-09-01

    Full Text Available An untreated wool fabric was bleached both with sodium borohydride (SBH in the presence of sodium bisulphite (SBS solution and with a commercial H2O2 bleaching method. The concentration effects of SBH and SBS, bleaching time, pH and temperature on SBH bleaching process were investigated. Whiteness, yellowness and alkali solubility results were assessed for both bleaching methods. The results showed that whiteness degrees obtained with SBH bleaching was comparable with that of H2O2 bleaching method; whereas the alkali solubility values of the SBH bleaching was superior to the H2O2 bleaching.

  9. Quaternary ammonium borohydride adsorption in mesoporous silicate MCM-48

    Energy Technology Data Exchange (ETDEWEB)

    Wolverton, Michael J [Los Alamos National Laboratory; Daemen, Luke L [Los Alamos National Laboratory; Hartl, Monika A [Los Alamos National Laboratory

    2010-01-01

    Inorganic borohydrides have a high gravimetric hydrogen density but release H2 only under energetically unfavorable conditions. Surface chemistry may help in lowering thermodynamic barriers, but inclusion of inorganic borohydrides in porous silica materials has proved hitherto difficult or impossible. We show that borohydrides with a large organic cation are readily adsorbed inside mesoporous silicates, particularly after surface treatment. Thermal analysis reveals that the decomposition thermodynamics of tetraalkylammonium borohydrides are substantially affected by inclusion in MCM-48. Inelastic neutron scattering (INS) data show that the compounds adsorb on the silica surface. Evidence of pore loading is supplemented by DSC/TGA, XRD, FTIR, and BET isotherm measurements. Mass spectrometry shows significant hydrogen release at lower temperature from adsorbed borohydrides in comparison with the bulk borohydrides. INS data measured for partially decomposed samples indicates that the decomposition of the cation and anion is likely simultaneous. Additionally, these data confirm the formation of Si-H bonds on the silica surface upon decomposition of adsorbed tetramethylammonium borohydride.

  10. Textbook Errors, 136: The Reducing Action of Sodium Borohydride.

    Science.gov (United States)

    Todd, David

    1979-01-01

    This column generally relates errors which have been discovered in textbooks. The error discussed in this issue is the prevalence of erroneous ideas in organic chemistry textbooks, related to the chemistry of sodium borohydride. (Author/SA)

  11. Oscillatory instabilities in the electrooxidation of borohydride on platinum

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Eduardo G.; Varela, Hamilton, E-mail: varela@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica

    2014-03-15

    The borohydride ion has been pointed as a promising alternative fuel. Most of the investigation on its electrochemistry is devoted to the electrocatalytic aspects of its electrooxidation on platinum and gold surfaces. Besides the known kinetic limitations and intricate mechanism, our Group has recently found the occurrence of two regions of bi-stability and autocatalysis in the electrode potential during the open circuit interaction of borohydride and oxidized platinum surfaces. Following this previous contribution, the occurrence of more complicated phenomena is here presented: namely the presence of electrochemical oscillations during the electrooxidation of borohydride on platinum in alkaline media. Current oscillations were found to be associated to two distinct instability windows and characterized in the resistance-potential parameter plane. The dynamic features of such oscillations suggest the existence of distinct mechanisms according to the potential region. Previously published results obtained under non-oscillatory regime were used to give some hints on the surface chemistry behind the observed dynamics. (author)

  12. A comprehensive review of direct borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jia; Choudhury, Nurul A.; Sahai, Yogeshwar [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States)

    2010-01-15

    A direct borohydride fuel cell (DBFC) is a device that converts chemical energy stored in borohydride ion (BH{sub 4}{sup -}) and an oxidant directly into electricity by redox processes. Usually, a DBFC employs an alkaline solution of sodium borohydride (NaBH{sub 4}) as fuel and oxygen or hydrogen peroxide as oxidant. DBFC has some attractive features such as high open circuit potential, ease of electro-oxidation of BH{sub 4}{sup -} on non-precious metals such as nickel, low operational temperature and high power density. The DBFC is a promising power system for portable applications. This article discusses prominent features of DBFC, reviews recent developments in DBFC research, and points out future directions in DBFC research. (author)

  13. Metal borohydrides and derivatives - synthesis, structure and properties

    DEFF Research Database (Denmark)

    Paskevicius, Mark; Jepsen, Lars Haahr; Schouwink, Pascal

    2017-01-01

    review new synthetic strategies along with structural, physical and chemical properties for metal borohydrides, revealing a number of new trends correlating composition, structure, bonding and thermal properties. These new trends provide general knowledge and may contribute to the design and discovery...

  14. Magnesium borohydride: from hydrogen storage to magnesium battery.

    Science.gov (United States)

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-09-24

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH(4))(2) electrolyte was utilized in a rechargeable magnesium battery.

  15. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    DEFF Research Database (Denmark)

    Singh, Vishvanath P.; Badiger, Nagappa M.; Gerward, Leif

    2016-01-01

    Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fittin...... combination of low-and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors....

  16. Metal Borohydrides synthesized from metal borides and metal hydrides

    DEFF Research Database (Denmark)

    Sommer, Sanna

    2014-01-01

    and Ca(BH4)2, respectively [3,4]. An attempt to synthesize alkali and alkaline earth metal borohydrides from various borides by ball milling under high hydrogen pressure is presented here. MgB2, AlB2 and CaB6 have been milled with MHx (M = Li, Na, Mg, Ca) at p(H2) = 110 bar for 24 hours. All samples were...

  17. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    OpenAIRE

    Singh Vishvanath P.; Badiger Nagappa M.; Gerward Leif

    2016-01-01

    Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neu...

  18. Ammine Calcium and Strontium Borohydrides: Syntheses, Structures, and Properties.

    Science.gov (United States)

    Jepsen, Lars H; Lee, Young-Su; Černý, Radovan; Sarusie, Ram S; Cho, Young Whan; Besenbacher, Flemming; Jensen, Torben R

    2015-10-26

    A new series of solvent- and halide-free ammine strontium metal borohydrides Sr(NH3 )n (BH4 )2 (n=1, 2, and 4) and further investigations of Ca(NH3 )n (BH4 )2 (n=1, 2, 4, and 6) are presented. Crystal structures have been determined by powder XRD and optimized by DFT calculations to evaluate the strength of the dihydrogen bonds. Sr(NH3 )(BH4 )2 (Pbcn) and Sr(NH3 )2 (BH4 )2 (Pnc2) are layered structures, whereas M(NH3 )4 (BH4 )2 (M=Ca and Sr; P21 /c) are molecular structures connected by dihydrogen bonds. Both series of compounds release NH3 gas upon thermal treatment if the partial pressure of ammonia is low. Therefore, the strength of the dihydrogen bonds, the structure of the compounds, and the NH3 /BH4 (-) ratio for M(NH3 )n (BH4 )m have little influence on the composition of the released gasses. The composition of the released gas depends mainly on the thermal stability of the ammine metal borohydride and the corresponding metal borohydride.

  19. Metal borohydride formation from aluminium boride and metal hydrides.

    Science.gov (United States)

    Møller, Kasper T; Fogh, Alexander S; Paskevicius, Mark; Skibsted, Jørgen; Jensen, Torben R

    2016-10-05

    Metal borides are often decomposition products from metal borohydrides and thus play a role in the reverse reaction where hydrogen is absorbed. In this work, aluminium boride, AlB2, has been investigated as a boron source for the formation of borohydrides under hydrogen pressures of p(H2) = 100 or 600 bar at elevated temperatures (350 or 400 °C). The systems AlB2-MHx (M = Li, Na, Mg, Ca) have been investigated, producing LiBH4, NaBH4 and Ca(BH4)2, whereas the formation of Mg(BH4)2 was not observed at T = 400 °C and p(H2) = 600 bar. The formation of the metal borohydrides is confirmed by powder X-ray diffraction and infrared spectroscopy and the fraction of boron in AlB2 and M(BH4)x is determined quantitatively by (11)B MAS NMR. Hydrogenation for 12 h at T = 350-400 °C and p(H2) = 600 bar leads to the formation of substantial amounts of LiBH4 (38.6 mol%), NaBH4 (83.0 mol%) and Ca(BH4)2 (43.6 mol%).

  20. Borohydride electro-oxidation by Ag-doped lanthanum chromites

    Indian Academy of Sciences (India)

    S Suresh Balaji; A Usha; V V Giridhar

    2014-05-01

    The electrocatalytic activity of Ag-doped lanthanum chromites electrode materials viz., LaCr0.4Ag0.6O3 and LaCr0.7Ag0.3O3 prepared by decomposing the precursor complex is studied. Pure LaCrO3 is synthesized by combustion route using oxalic acid as a fuel. The decomposition behaviour of the assynthesized powder obtained in the latter method is characterized by TGA-DTA and XRD. Both the precursor complex and the as-synthesized powder are calcined at 900°C for 7 and 10 h, respectively. XRD of the final product after calcinations indicated the formation of perovskite phase with minor amounts of impurity phases of component oxides in the Ag-doped lanthanum chromites and pure perovskite phase in the undoped one. The surface morphology of the perovskites is studied by SEM. The electrocatalytic activity of the perovskite powders for borohydride oxidation is studied by using cyclic voltammetry (CV) at a catalyst loading of 0.7 mgcm−2 for both Ag-doped and undoped LaCrO3 coated on glassy carbon substrate. Calibration plots are obtained by plotting the anodic peak current versus concentration of borohydride in the range of 20-100 mM. The sensitivities of the three perovskites towards borohydride oxidation indicated that LaCr0.4Ag0.6O3 is the best among all the perovskites studied giving a value of 1.395 A/mM.

  1. Simple unprecedented conversion of phosphine oxides and sulfides to phosphine boranes using sodium borohydride.

    Science.gov (United States)

    Rajendran, Kamalraj V; Gilheany, Declan G

    2012-01-21

    A variety of phosphine oxides and sulfides can be efficiently converted directly to the corresponding phosphine boranes using oxalyl chloride followed by sodium borohydride. Optically active P-stereogenic phosphine oxides can be converted stereospecifically to phosphine boranes with inversion of configuration by treatment with Meerwein's salt followed by sodium borohydride.

  2. Study on catalyst for the sodium borohydride hydrolysis

    Institute of Scientific and Technical Information of China (English)

    WANG; Shu-ming; JIANG; Li-jun; LIU; Xiao-peng; WANG; Shu-mao

    2005-01-01

    The effects of preparation methods, supports and active parts on both the activation and stability of catalyst for the sodium borohydride hydrolysis were studied, and the results showed that the activation and stability of the catalysts prepared by impregnation method is better than that prepared by chemical plating. Compared to exchange resin and activated alumina, the diatomite with high BET surface area and porosity is more suitable for as the catalyst's support. Co is much better than Ni when used as catalytic active part.

  3. Chitosan chemical hydrogel electrode binder for direct borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Nurul A.; Sahai, Yogeshwar; Buchheit, Rudolph G. [Department of Materials Science and Engineering, Ohio State University, Columbus, OH (United States)

    2011-01-15

    A novel and cost-effective electrode binder consisting of chitosan chemical hydrogel (CCH) is reported for direct borohydride fuel cells (DBFCs). The DBFCs have been assembled with Misch-metal-based AB{sub 5} alloy as anode, carbon-supported palladium (Pd/C) as cathode and polyvinyl alcohol (PVA) hydrogel membrane electrolyte (PHME) as well as Nafion {sup registered} -117 membrane electrolyte (NME) as separators. Operating in passive mode without using peristaltic pump and under ambient conditions of temperature as well as pressure, the DBFC exhibited a maximum peak power density of about 81 mW cm{sup -2}. (author)

  4. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters

    Indian Academy of Sciences (India)

    Aamer Saeed; Zaman Ashraf

    2006-09-01

    A number of important aromatic carboxylic acids precursors, or intermediates in the syntheses of natural products, are converted into methyl esters and reduced to the corresponding primary alcohols using a sodium borohydride-THF-methanol system. The alcohols are obtained in 70-92% yields in 2-5 hours, in a pure state. This two-step procedure not only provides a better alternative to aluminum hydride reduction of acids but also allows the selective reduction of esters in presence of acids, amides, nitriles or nitro functions which are not affected under these conditions.

  5. Direct borohydride fuel cell using Ni-based composite anodes

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2010-08-01

    In this study, nickel-based composite anode catalysts consisting of Ni with either Pd on carbon or Pt on carbon (the ratio of Ni:Pd or Ni:Pt being 25:1) were prepared for use in direct borohydride fuel cells (DBFCs). Cathode catalysts used were 1 mg cm{sup -2} Pt/C or Pd electrodeposited on activated carbon cloth. The oxidants were oxygen, oxygen in air, or acidified hydrogen peroxide. Alkaline solution of sodium borohydride was used as fuel in the cell. High power performance has been achieved by DBFC using non-precious metal, Ni-based composite anodes with relatively low anodic loading (e.g., 270 mW cm{sup -2} for NaBH{sub 4}/O{sub 2} fuel cell at 60 C, 665 mW cm{sup -2} for NaBH{sub 4}/H{sub 2}O{sub 2} fuel cell at 60 C). Effects of temperature, oxidant, and anode catalyst loading on the DBFC performance were investigated. The cell was operated for about 100 h and its performance stability was recorded. (author)

  6. Life time test in direct borohydride fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Jamard, Romain [Commissariat a l' Energie Atomique (CEA), LITEN-DTNM-LCH, 17 av. des martyrs, 38054 Grenoble Cedex 9 (France); Centre National de la Recherche Scientifique (CNRS), Laboratoire de Catalyse en Chimie Organique LACCO UMR6503, 40 av. du Recteur Pineau, 86022 Poitiers (France); Salomon, Jeremie; Martinent-Beaumont, Audrey [Commissariat a l' Energie Atomique (CEA), LITEN-DTNM-LCH, 17 av. des martyrs, 38054 Grenoble Cedex 9 (France); Coutanceau, Christophe [Centre National de la Recherche Scientifique (CNRS), Laboratoire de Catalyse en Chimie Organique LACCO UMR6503, 40 av. du Recteur Pineau, 86022 Poitiers (France)

    2009-09-05

    The electric performances of direct borohydride fuel cells (DBFCs) are evaluated in terms of power density and life time with respect to the NaBH{sub 4} concentration. A DBFC constituted of an anionic membrane, a 0.6 mg{sub Pt} cm{sup -2} anode and a commercial non-platinum based cathode led to performances as high as 200 mW cm{sup -2} at room temperature and with natural convection of air. Electrochemical life time test at 0.55 mA cm{sup -2} with a 5 M NaBH{sub 4}/1 M NaOH solution shows a voltage diminution of 1 mV h{sup -1} and a drastic drop of performances after 250 h. The life time is twice longer with 2 M NaBH{sub 4}/1 M NaOH solution (450 h) and the voltage decrease is 0.5 mV h{sup -1}. Analyses of the components after life time tests indicate that voltage loss is mainly due to the degradation of the cathode performance. Crystallisation of carbonate and borate is observed at the cathode side, although the anionic membrane displays low permeability to borohydride. (author)

  7. In situ infrared (FTIR) study of the borohydride oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Concha, B. Molina; Chatenet, M. [Laboratoire d' Electrochimie et de Physico-chimie, des Materiaux et des Interfaces (LEPMI), UMR 5631 CNRS/Grenoble-INP/UJF, 1130 Rue de la Piscine, BP75, 38402 Saint Martin d' Heres Cedex (France); Coutanceau, C.; Hahn, F. [Laboratoire de Catalyse en Chimie Organique (LACCO), UMR 6503 CNRS, Universite de Poitiers, 40 Av. du, Recteur Pineau, 86000 Poitiers (France)

    2009-01-15

    The direct borohydride fuel cell (DBFC) is an interesting alternative for the electrochemical power generation at lower temperatures due to its high anode theoretical specific capacity (5 A h g{sup -1}). However, the borohydride oxidation reaction (BOR) is a very complex eight-electron reaction, influenced by the nature of the electrode material (catalytic or not with respect to BH{sub 4}{sup -} hydrolysis), the [BH{sub 4}{sup -}][OH{sup -}] ratio and the temperature. In order to understand the BOR mechanism, we performed in situ infrared reflectance spectroscopy measurements (SPAIRS technique) in 1 M NaOH/1 M NaBH{sub 4} with the aim to study intermediate reactions occurring on a gold electrode (a poor BH{sub 4}{sup -} hydrolysis catalyst). We monitored several bands in B-H (1184 cm{sup -1}) and B-O bond regions (1326 and 1415 cm{sup -1}), appearing sequentially with increasing electrode polarisation. Thanks to these experimental findings, we propose possible initial elementary steps for the BOR. (author)

  8. Synthesis of Borohydride and Catalytic Dehydrogenation by Hydrogel Based Catalyst

    Science.gov (United States)

    Boynuegri, Tugba Akkas; Karabulut, Ahmet F.; Guru, Metin

    2016-08-01

    This paper deals with the synthesis of calcium borohydride (Ca(BH4)2) as hydrogen storage material. Calcium chloride salt (CaCl2), magnesium hydride (MgH2), and boron oxide (B2O3) were used as reactants in the mechanochemical synthesis of Ca(BH4)2. The mechanochemical reaction was carried out by means of Spex type ball milling without applying high pressure and temperature. Parametric studies have been established at different reaction times and for different amounts of reactants at a constant ball to powder ratio (BPR) 4:1. The best combination was determined by Fourier Transform Infrared (FT-IR) analysis. According to the FT-IR analysis, reaction time, the first reaction parameter, was found as 1600 min. After the reaction time was fixed at 1600 min, the difference of the B-H peak areas was dependent on the amount of reactant MgH2 that was investigated. The amount of the reactant (MgH2), the second reaction parameter, was measured to be 2.85 times more than the stoichiometric amount of MgH2. According to our previous studies, BPR was selected as 4:1 for all experiments. Samples were prepared in a glove box under argon atmosphere but the time that elapsed for FT-IR analysis highly affected B-H bonds. B-H peak areas clearly decreased with time because of negative effect of ambient atmosphere. A catalyst was prepared by absorbing cobalt fluoride (CoF2) in poly (acrylamide-co-acrylic acid) hydrogel matrices type and its catalytic dehydrogenation performance that has been characterized by the catalytic reaction of sodium borohydride's known hydrogen capacity in an alkaline medium. The metal amount of hydrogel catalyst was determined as 135.82 mg Co by Atomic Absorption Spectroscopy (AAS). The specific dehydrogenation capacity of the Co active compound in the catalyst thanks to catalytic dehydrogenation of commercial sodium borohydride was measured as 1.66 mL H2/mg Co.

  9. Complex metal borohydrides: multifunctional materials for energy storage and conversion.

    Science.gov (United States)

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-07

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world's energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.

  10. Complex metal borohydrides: multifunctional materials for energy storage and conversion

    Science.gov (United States)

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-01

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world’s energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.

  11. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    Directory of Open Access Journals (Sweden)

    Singh Vishvanath P.

    2016-01-01

    Full Text Available Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable combination of low- and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors.

  12. Recent Progress in Metal Borohydrides for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Craig M. Jensen

    2011-01-01

    Full Text Available The prerequisite for widespread use of hydrogen as an energy carrier is the development of new materials that can safely store it at high gravimetric and volumetric densities. Metal borohydrides M(BH4n (n is the valence of metal M, in particular, have high hydrogen density, and are therefore regarded as one such potential hydrogen storage material. For fuel cell vehicles, the goal for on-board storage systems is to achieve reversible store at high density but moderate temperature and hydrogen pressure. To this end, a large amount of effort has been devoted to improvements in their thermodynamic and kinetic aspects. This review provides an overview of recent research activity on various M(BH4n, with a focus on the fundamental dehydrogenation and rehydrogenation properties and on providing guidance for material design in terms of tailoring thermodynamics and promoting kinetics for hydrogen storage.

  13. Reduction of Aldehydes and Ketones with Potassium Borohydride as Reductant

    Institute of Scientific and Technical Information of China (English)

    罗慧谋; 李毅群

    2005-01-01

    A series of aldehydes and ketones were reduced by potassium borohydride in an ionic liquid/water ([bmim]PF6/H2O) biphasic system to afford corresponding alcohol with high purity in excellent yields. The ionic liquid/water biphasic system could promote the chemoselectivity and the substituents such as nitro group and chlorine remained intact. Aromatic ketones were not as active as aromatic aldhydes and cyclic ketones owing to their higher steric hindrance. The ionic liquid could be recycled and reused. This protocol has notable advantages of no need of phase transfer catalyst and organic solvents, mild conditions, simple operation, short reaction time, ease work-up, high yields and recycling of the ionic liquid.

  14. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    Science.gov (United States)

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced.

  15. Simple unprecedented conversion of phosphine oxides and sulfides to phosphine boranes using sodium borohydride

    OpenAIRE

    2012-01-01

    A variety of phosphine oxides and sulfides can be efficiently converted directly to the corresponding phosphine boranes using oxalyl chloride followed by sodium borohydride. Optically active P-stereogenic phosphine oxides can be converted stereospecifically to phosphine boranes with inversion of configuration by treatment with Meerwein's salt followed by sodium borohydride.

  16. Three-dimensional nanostructured Ni-Cu foams for borohydride oxidation

    Science.gov (United States)

    Santos, D. M. F.; Eugénio, S.; Cardoso, D. S. P.; Šljukić, B.; Montemor, M. F.

    2015-12-01

    Three-dimensional (3D) nanostructured nickel-copper (Ni-Cu) foams have been prepared by electrodeposition using a dynamic hydrogen template. These 3D materials were tested as electrodes for the borohydride oxidation reaction (BOR) in alkaline media for possible application as anodes of direct borohydride fuel cells. Their activity in BOR was studied using cyclic voltammetry, chronoamperometry, and chronopotentiometry and main reaction parameters and electrodes' stability were evaluated.

  17. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides.

    Science.gov (United States)

    Černý, Radovan; Schouwink, Pascal

    2015-12-01

    The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.

  18. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively.

  19. Aluminum chloride for accelerating hydrogen generation from sodium borohydride

    Science.gov (United States)

    Demirci, U. B.; Akdim, O.; Miele, P.

    The present research paper reports preliminary results about the utilization of anhydrous aluminum chloride (AlCl 3) for accelerating hydrogen generation through hydrolysis of aqueous solution of sodium borohydride (NaBH 4) at 80 °C. To the best of our knowledge, AlCl 3 has never been considered for that reaction although many transition metal salts had already been assessed. AlCl 3 reactivity was compared to those of AlCl 3·6H 2O, AlF 3, CoCl 2, RuCl 3 and NiCl 2. With AlCl 3 and a NaBH 4 solution having a gravimetric hydrogen storage capacity (GHSC) of 2.9 wt.%, almost 100% hydrogen was generated in few seconds, i.e., with a hydrogen generation rate (HGR) of 354 L min -1 g -1(Al). This HGR is one of the highest rates ever reported. Higher HGRs were obtained by mixing AlCl 3 with CoCl2, RuCl 3 or NiCl 2. For example, the system RuCl 3:AlCl 3 (50:50 mass proportion) showed a HGR > 1000 L min -1 g -1(Ru:Al). The hydrolysis by-products (once dried) were identified (by XRD, IR and elemental analysis) as being Al(OH) 3, NaCl and Na 2B(OH) 4Cl and it was observed that even in situ formed Al(OH) 3 has catalytic abilities with HGRs of 5 L min -1 g -1(Al). All of these preliminary results are discussed, which concludes that AlCl 3 has a potential as accelerator for single-use NaBH 4-based storage system.

  20. Removal of molecular adsorbates on gold nanoparticles using sodium borohydride in water.

    Science.gov (United States)

    Ansar, Siyam M; Ameer, Fathima S; Hu, Wenfang; Zou, Shengli; Pittman, Charles U; Zhang, Dongmao

    2013-03-13

    The mechanism of sodium borohydride removal of organothiols from gold nanoparticles (AuNPs) was studied using an experimental investigation and computational modeling. Organothiols and other AuNP surface adsorbates such as thiophene, adenine, rhodamine, small anions (Br(-) and I(-)), and a polymer (PVP, poly(N-vinylpyrrolidone)) can all be rapidly and completely removed from the AuNP surfaces. A computational study showed that hydride derived from sodium borohydride has a higher binding affinity to AuNPs than organothiols. Thus, it can displace organothiols and all the other adsorbates tested from AuNPs. Sodium borohydride may be used as a hazard-free, general-purpose detergent that should find utility in a variety of AuNP applications including catalysis, biosensing, surface enhanced Raman spectroscopy, and AuNP recycle and reuse.

  1. A Microwave-Assisted Reduction of Cyclohexanone Using Solid-State-Supported Sodium Borohydride

    Science.gov (United States)

    White, Lori L.; Kittredge, Kevin W.

    2005-01-01

    The reduction of carbonyl groups by sodium borohydride though is a well-known reaction in most organic lab texts, a difficulty for an instructor adopting this reaction in a student lab is that it is too long. Using a microwave assisted organic synthesis solves this difficulty and one such reaction, which is the microwave-assisted reduction of…

  2. Exploiting hydrophobic borohydride-rich ionic liquids as faster-igniting rocket fuels.

    Science.gov (United States)

    Liu, Tianlin; Qi, Xiujuan; Huang, Shi; Jiang, Linhai; Li, Jianling; Tang, Chenglong; Zhang, Qinghua

    2016-02-01

    A family of hydrophobic borohydride-rich ionic liquids was developed, which exhibited the shortest ignition delay times of 1.7 milliseconds and the lowest viscosity (10 mPa s) of hypergolic ionic fluids, demonstrating their great potential as faster-igniting rocket fuels to replace toxic hydrazine derivatives in liquid bipropellant formulations.

  3. Self-Printing on Graphitic Nanosheets with Metal Borohydride Nanodots for Hydrogen Storage

    Science.gov (United States)

    Li, Yongtao; Ding, Xiaoli; Zhang, Qingan

    2016-08-01

    Although the synthesis of borohydride nanostructures is sufficiently established for advancement of hydrogen storage, obtaining ultrasmall (sub-10 nm) metal borohydride nanocrystals with excellent dispersibility is extremely challenging because of their high surface energy, exceedingly strong reducibility/hydrophilicity and complicated composition. Here, we demonstrate a mechanical-force-driven self-printing process that enables monodispersed (~6 nm) NaBH4 nanodots to uniformly anchor onto freshly-exfoliated graphitic nanosheets (GNs). Both mechanical-forces and borohydride interaction with GNs stimulate NaBH4 clusters intercalation/absorption into the graphite interlayers acting as a ‘pen’ for writing, which is accomplished by exfoliating GNs with the ‘printed’ borohydrides. These nano-NaBH4@GNs exhibit favorable thermodynamics (decrease in ∆H of ~45%), rapid kinetics (a greater than six-fold increase) and stable de-/re-hydrogenation that retains a high capacity (up to ~5 wt% for NaBH4) compared with those of micro-NaBH4. Our results are helpful in the scalable fabrication of zero-dimensional complex hydrides on two-dimensional supports with enhanced hydrogen storage for potential applications.

  4. The Concept about the Regeneration of Spent Borohydrides and Used Catalysts from Green Electricity

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Liu

    2015-06-01

    Full Text Available Currently, the Brown-Schlesinger process is still regarded as the most common and mature method for the commercial production of sodium borohydride (NaBH4. However, the metallic sodium, currently produced from the electrolysis of molten NaCl that is mass-produced by evaporation of seawater or brine, is probably the most costly raw material. Recently, several reports have demonstrated the feasibility of utilizing green electricity such as offshore wind power to produce metallic sodium through electrolysis of seawater. Based on this concept, we have made improvements and modified our previously proposed life cycle of sodium borohydride (NaBH4 and ammonia borane (NH3BH3, in order to further reduce costs in the conventional Brown-Schlesinger process. In summary, the revision in the concept combining the regeneration of the spent borohydrides and the used catalysts with the green electricity is reflected in (1 that metallic sodium could be produced from NaCl of high purity obtained from the conversion of the byproduct in the synthesis of NH3BH3 to devoid the complicated purification procedures if produced from seawater; and (2 that the recycling and the regeneration processes of the spent NaBH4 and NH3BH3 as well as the used catalysts could be simultaneously carried out and combined with the proposed life cycle of borohydrides.

  5. A Guided-Inquiry Approach to the Sodium Borohydride Reduction and Grignard Reaction of Carbonyl Compounds

    Science.gov (United States)

    Rosenberg, Robert E.

    2007-01-01

    The guided-inquiry approach is applied to the reactions of sodium borohydride and phenyl magnesium bromide with benzaldehyde, benzophenone, benzoic anhydride, and ethyl benzoate. Each team of four students receives four unknowns. Students identify the unknowns and their reaction products by using the physical state of the unknown, an…

  6. Direct borohydride fuel cell: Main issues met by the membrane-electrodes-assembly and potential solutions

    Science.gov (United States)

    Demirci, Umit B.

    The direct borohydride fuel cell (DBFC) is a fuel cell for which there is consensus about its promising commercial future as a portable power system. However, its development faces three main issues: the borohydride hydrolysis (issue 1) and crossover (issue 2), and the cost (issue 3). These issues are encountered by the membrane-electrodes-assembly. By a discussion around these three issues, the present paper reviews the experimental aspects. The discussion stresses on the opportunities of improvements and reviews the potential solutions that are proposed in the open literature. For each issue, the best solution seems to be a combination of improvements. The issue 1 may be solved thanks to a gold-based anode catalyst and an optimized fuel. The solution to the issue 2 may be a more efficient membrane combined with an optimized fuel and an inactive-towards-borohydride cathode catalyst like MnO 2. Regarding the issue 3, cheaper materials and better fuel use efficiency are the keys. The DBFC is still in a development phase with a small number of years of R&D invested and it appears that there are real improvement opportunities on the path of the DBFC marketing.

  7. Tailoring the properties of ammine metal borohydrides for solid-state hydrogen storage.

    Science.gov (United States)

    Jepsen, Lars H; Ley, Morten B; Filinchuk, Yaroslav; Besenbacher, Flemming; Jensen, Torben R

    2015-04-24

    A series of halide-free ammine manganese borohydrides, Mn(BH4 )2 ⋅nNH3 , n=1, 2, 3, and 6, a new bimetallic compound Li2 Mn(BH4 )4 ⋅6NH3 , and the first ammine metal borohydride solid solution Mg1-x Mnx (BH4 )2 ⋅6NH3 are presented. Four new crystal structures have been determined by synchrotron radiation powder X-ray diffraction and the thermal decomposition is systematically investigated for all the new compounds. The solid-gas reaction between Mn(BH4 )2 and NH3 provides Mn(BH4 )2 ⋅6NH3 . The number of NH3 per Mn has been varied by mechanochemical treatment of Mn(BH4 )2 ⋅6NH3 -Mn(BH4 )2 mixtures giving rise to increased hydrogen purity for n/m≤1 for M(BH4 )m ⋅nNH3 . The structures of Mg(BH4 )2 ⋅3NH3 and Li2 Mg(BH4 )4 ⋅6NH3 have been revisited and new structural models are presented. Finally, we demonstrate that ammonia destabilizes metal borohydrides with low electronegativity of the metal (χp ∼1.6) are generally stabilized.

  8. Evaluation of anode (electro)catalytic materials for the direct borohydride fuel cell: Methods and benchmarks

    Science.gov (United States)

    Olu, Pierre-Yves; Job, Nathalie; Chatenet, Marian

    2016-09-01

    In this paper, different methods are discussed for the evaluation of the potential of a given catalyst, in view of an application as a direct borohydride fuel cell DBFC anode material. Characterizations results in DBFC configuration are notably analyzed at the light of important experimental variables which influence the performances of the DBFC. However, in many practical DBFC-oriented studies, these various experimental variables prevent one to isolate the influence of the anode catalyst on the cell performances. Thus, the electrochemical three-electrode cell is a widely-employed and useful tool to isolate the DBFC anode catalyst and to investigate its electrocatalytic activity towards the borohydride oxidation reaction (BOR) in the absence of other limitations. This article reviews selected results for different types of catalysts in electrochemical cell containing a sodium borohydride alkaline electrolyte. In particular, propositions of common experimental conditions and benchmarks are given for practical evaluation of the electrocatalytic activity towards the BOR in three-electrode cell configuration. The major issue of gaseous hydrogen generation and escape upon DBFC operation is also addressed through a comprehensive review of various results depending on the anode composition. At last, preliminary concerns are raised about the stability of potential anode catalysts upon DBFC operation.

  9. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    Energy Technology Data Exchange (ETDEWEB)

    Sadikin, Yolanda [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Stare, Katarina [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerjeva 5, SI-1000 Ljubljana (Slovenia); Schouwink, Pascal [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Brix Ley, Morten; Jensen, Torben R. [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C (Denmark); Meden, Anton [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerjeva 5, SI-1000 Ljubljana (Slovenia); Černý, Radovan, E-mail: radovan.cerny@unige.ch [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland)

    2015-05-15

    The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y{sup 3+} is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH{sub 4} both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A{sub 3}Y(BH{sub 4}){sub 6} or c-A{sub 2}LiY(BH{sub 4}){sub 6} (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH{sub 4}){sub 4} crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y{sup 3+} is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH{sub 4}){sub 4} structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH{sub 4} (A=K, Rb, Cs) contains nine compounds in total. • Y{sup 3+} forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH{sub 4}){sub 4} crystallize with

  10. The borohydride oxidation reaction on La-Ni-based hydrogen-storage alloys.

    Science.gov (United States)

    Paschoalino, Waldemir J; Thompson, Stephen J; Russell, Andrea E; Ticianelli, Edson A

    2014-07-21

    This work provides insights into the processes involved in the borohydride oxidation reaction (BOR) in alkaline media on metal hydride alloys formed by LaNi(4.7)Sn(0.2)Cu(0.1) and LaNi(4.78)Al(0.22) with and without deposited Pt, Pd, and Au. The results confirm the occurrence of hydrolysis of the borohydride ions when the materials are exposed to BH(4)(-) and a continuous hydriding of the alloys during BH(4)(-) oxidation measurements at low current densities. The activity for the direct BOR is low in both bare metal hydride alloys, but the rate of the BH(4)(-) hydrolysis and the hydrogen-storage capacity are higher, while the rate of H diffusion is slower for bare LaNi(4.78) Al(0.22). The addition of Pt and Pd to both alloys results in an increase of the BH(4)(-) hydrolysis, but the H(2) formed is rapidly oxidized at the Pt-modified catalysts. In the case of Au modification, a small increase in the BH(4)(-) hydrolysis is observed as compared to the bare alloys. The presence of Au and Pd also leads to a reduction of the rates of alloy hydriding/de-hydriding.

  11. Hydrothermal Synthesis of Co-Ru Alloy Particle Catalysts for Hydrogen Generation from Sodium Borohydride

    Directory of Open Access Journals (Sweden)

    Marija Kurtinaitienė

    2013-01-01

    Full Text Available We report the synthesis of μm and sub-μm-sized Co, Ru, and Co-Ru alloy species by hydrothermal approach in the aqueous alkaline solutions (pH ≥ 13 containing CoCl2 and/or RuCl3, sodium citrate, and hydrazine hydrate and a study of their catalytic properties for hydrogen generation by hydrolysis of sodium borohydride solution. This way provides a simple platform for fabrication of the ball-shaped Co-Ru alloy catalysts containing up to 12 wt% Ru. Note that bimetallic Co-Ru alloy bowls containing even 7 at.% Ru have demonstrated catalytic properties that are comparable with the ones of pure Ru particles fabricated by the same method. This result is of great importance in view of the preparation of cost-efficient catalysts for hydrogen generation from borohydrides. The morphology and composition of fabricated catalyst particles have been characterized using scanning electron microscopy, energy dispersive X-ray diffraction, and inductively coupled plasma optical emission spectrometry.

  12. Synthesis and characterization of Pa(IV), Np(IV), and Pu(IV) borohydrides

    Energy Technology Data Exchange (ETDEWEB)

    Banks, R.H.; Edelstein, N.M.

    1979-12-01

    The actinide borohydrides of Pa, Np, and Pu have been prepared and some of their physical and optical properties measured. X-ray powder diffraction photographs of Pa(BH/sub 4/)/sub 4/ have shown that it is isostructural to Th(BH/sub 4/)/sub 4/ and U(BH/sub 4/)/sub 4/. Np(BH/sub 4/)/sub 4/ and Pu(BH/sub 4/)/sub 4/ are much more volatile than the borohydrides of Th, Pa, and U and are liquids at room temperature. Results from low-temperature single-crystal x-ray diffraction investigation of Np(BH/sub 4/)/sub 4/ show that its structure is very similar to Zr(BH/sub 4/)/sub 4/. With the data from low-temperature infrared and Raman spectra, a normal coordinate analysis on Np(BH/sub 4/)/sub 4/ and Np(BD/sub 4/)/sub 4/ has been completed. EPR experiments on Np(BH/sub 4/)/sub 4//Zr(BH/sub 4/)/sub 4/ and Np(BD/sub 4/)/sub 4//Zr(BD/sub 4/)/sub 4/ have characterized the ground electronic state. 5 figures.

  13. Poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells

    Indian Academy of Sciences (India)

    N A Choudhury; S K Prashant; S Pitchumani; P Sridhar; A K Shukla

    2009-09-01

    A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol) hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB5 Misch metal alloy as anode and a goldplated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous acidified solution of hydrogen peroxide as oxidant. Room temperature performances of the PHME-based DBFC in respect of peak power outputs; ex-situ cross-over of oxidant, fuel, anolyte and catholyte across the membrane electrolytes; utilization efficiencies of fuel and oxidant, as also cell performance durability are compared with a similar DBFC employing a Nafion®-117 membrane electrolyte (NME). Peak power densities of ∼30 and ∼40 mW cm-2 are observed for the DBFCs with PHME and NME, respectively. The crossover of NaBH4 across both the membranes has been found to be very low. The utilization efficiencies of NaBH4 and H2O2 are found to be ∼24 and ∼59%, respectively for the PHME-based DBFC; ∼18 and ∼62%, respectively for the NME-based DBFC. The PHME and NME-based DBFCs exhibit operational cell potentials of ∼ 1.2 and ∼ 1.4 V, respectively at a load current density of 10 mA cm-2 for ∼100 h.

  14. Spectroscopic study of surface enhanced Raman scattering of caffeine on borohydride-reduced silver colloids

    Science.gov (United States)

    Chen, Xiaomin; Gu, Huaimin; Shen, Gaoshan; Dong, Xiao; Kang, Jian

    2010-06-01

    The surface enhanced Raman scattering (SERS) of caffeine on borohydride-reduced silver colloids system under different aqueous solution environment has been studied in this paper. The relative intensity of SERS of caffeine significantly varies with different concentrations of sodium chloride and silver particles. However, at too high or too low concentration of sodium chloride and silver particle, the enhancement of SERS spectra is not evident. The SERS spectra of caffeine suggest that the contribution of the charge transfer mechanism to SERS may be dominant. The chloride ions can significantly enhance the efficiency of SERS, while the enhancement is selective, as the efficiency in charge transfer enhancement is higher than in electromagnetic enhancement. Therefore, it can be concluded that the active site of chloride ion locates on the bond between the caffeine and the silver surface. In addition, the SERS spectra of caffeine on borohydride-reduced and citrate-reduced silver colloids are different, which may be due to different states caffeine adsorbed on silver surface under different silver colloids.

  15. A new family of metal borohydride guanidinate complexes: Synthesis, structures and hydrogen-storage properties

    Science.gov (United States)

    Wu, Hui; Zhou, Xiuquan; Rodriguez, Efrain E.; Zhou, Wei; Udovic, Terrence J.; Yildirim, Taner; Rush, John J.

    2016-10-01

    We report on a new class of complex hydrides: borohydride guanidinate complexes (MBH4·nCN3H5, M=Li, Mg, and Ca). They can be prepared via facile solid-state synthesis routes. Their crystal structures were successfully determined using a combination of X-ray diffraction, first-principles calculations and neutron vibrational spectroscopy. Among these compounds, Mg(BH4)2·6CN3H5 is composed of large complex Mg[CN3H5]62+ cations and surrounding BH4- ions, while Ca(BH4)2·2CN3H5 possesses layers of corner-sharing Ca[BH4]4(CN3H5)2 octahedra. Our dehydrogenation results show that ≈10 wt% hydrogen can be released from MBH4·nCN3H5 (M=Li, Mg, and Ca) at moderate temperatures with minimal ammonia and diborane contamination thanks to the synergistic effect of C-N bonds from guanidine and hydridic H from borohydrides leading to a weakening of the N-H bonds, thus impeding ammonia gas liberation. Further tuning the dehydrogenation with different cation species indicates that Mg(BH4)2·nCN3H5 can exhibit the optimum properties with nearly thermally neutral dehydrogenation and very high purity hydrogen release.

  16. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  17. Al3Li4(BH4)13: a complex double-cation borohydride with a new structure.

    Science.gov (United States)

    Lindemann, Inge; Domènech Ferrer, Roger; Dunsch, Lothar; Filinchuk, Yaroslav; Cerný, Radovan; Hagemann, Hans; D'Anna, Vincenza; Lawson Daku, Latévi Max; Schultz, Ludwig; Gutfleisch, Oliver

    2010-08-02

    The new double-cation Al-Li-borohydride is an attractive candidate material for hydrogen storage due to a very low hydrogen desorption temperature (approximately 70 degrees C) combined with a high hydrogen density (17.2 wt%). It was synthesised by high-energy ball milling of AlCl(3) and LiBH(4). The structure of the compound was determined from image-plate synchrotron powder diffraction supported by DFT calculations. The material shows a unique 3D framework structure within the borohydrides (space group=P-43n, a=11.3640(3) A). The unexpected composition Al(3)Li(4)(BH(4))(13) can be rationalized on the basis of a complex cation [(BH(4))Li(4)](3+) and a complex anion [Al(BH(4))(4)](-). The refinements from synchrotron powder diffraction of different samples revealed the presence of limited amounts of chloride ions replacing the borohydride on one site. In situ Raman spectroscopy, differential scanning calorimetry (DSC), thermogravimetry (TG) and thermal desorption measurements were used to study the decomposition pathway of the compound. Al-Li-borohydride decomposes at approximately 70 degrees C, forming LiBH(4). The high mass loss of about 20 % during the decomposition indicates the release of not only hydrogen but also diborane.

  18. Reductive amination of aldehydes and ketones using sodium borohydride in the presence of silica chloride under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Heshmatollah; Alinezhad; Mahmood; Tajbakhsh; Neda; Hamidi

    2010-01-01

    A simple and convenient procedure for the preparation of amines from aldehydes and ketones with sodium borohydride activated by silica chloride as a catalyst under solvent-free conditions is described.A variety of aliphatic and aromatic aldehydes,ketones and amines when mixed with NaBH_4/silica chloride at room temperature,afforded excellent yield of the corresponding amines.

  19. Solid-state Asymmetric Reduction of (S)-1, l'-Bi-2-naphtholAcetylferrocene Molecular Compound with Sodium Borohydride

    Institute of Scientific and Technical Information of China (English)

    MENG, Ji-Ben; DU, Hai-Feng; DING, Kui-Ling

    2001-01-01

    A novel molecular crystal formed between enanteopure 1,l'bi-2-naphthoi and acetylferrocene has been prepared andcharacterized in this communication. The examination on itsreducton with soditma borohydride showed that the asymnetric inducton was observed in the solid state but not in the solution phase. The asymmetric induction in the solid-state reaction may be attributed to the chiral microenviromnent ofmolecular crystal.

  20. 硼氢化钾分析方法改进%Improvement on analytical method for potassium borohydride

    Institute of Scientific and Technical Information of China (English)

    杨裴; 范国强; 白莹; 郭永欣; 厉文豪

    2012-01-01

    There are disadvantages for the use of the orignial chemical industry standard (HG/T 3584?999 Potassium Borohydride ) to determine the content of potassium borohydride, such as: 1 )The addition of potassium iodide reagent (5 g) is too much resulting in wasting;2 )The sampling weight of potassium borohydride ig 0.2 g,accurately up to 0.000 2 g,but the determined content of potassium borohydride will be decreased when the sampling weight is larger.In allusion to above problems,the original potassium borohydride determination method(HG/T 3584?999 Potassium Borohydride)was improved: 1 )The potassium iodide addition ig reduced to 2.5 g from 5 g so as to save the reagent consumption;2)According to the potassium borohydride's deoxidization characteristics, the sampling weight is limited within a specific range.Experiment results were satisfied.%采用原化工行业标准(HG/T 3584-1999《硼氢化钾》)测定硼氢化钾主含量时存在以下弊端:1)碘化钾试剂加入量过多(5 g),浪费试剂;2)硼氢化钾称样量为0.2 g,精确到0.0002g,但当称样量较大时,测定的硼氢化钾含量会降低.针对以上问题,对原硼氢化钾测定方法(HG/T 3584- 1999《硼氢化钾》)进行了改进:1)将碘化钾加入量由5 g减少到2.5 g,节省了碘化钾试剂用量;2)根据硼氢化钾的还原特性,将硼氢化钾的称样量限制在特定范围.实验结果令人满意.

  1. Preparation and application of sodium borohydride composites for portable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Department of Environmental Engineering and Biotechnology, Myongji University, Yongin, Kyonggi-Do 449728 (Korea); Kim, H. [Department of Environmental Engineering and Biotechnology, Myongji University, Yongin, Kyonggi-Do 449728 (Korea)

    2010-02-15

    Novel composites consisting of cobalt-boron (CoB) catalyst and sodium borohydride (NaBH{sub 4}) implantation in polymers (polyethylene glycol (PEG) or sodium alginate) were prepared for portable hydrogen production. The CoB catalyst was synthesized by the reduction of cobalt salt in NaBH{sub 4} solution followed by heat treatment in nitrogen atmosphere. The catalyst was embedded in PEG gel or alginate beads and NaBH{sub 4} was directly added in PEG-dimethylformamide (DMF) gel and adsorbed in alginate beads. It is noted that the composites prepared are stable in dry air and can be easily used for hydrogen production. A rate of hydrogen production of 750 ml min{sup -1} g{sup -1} was reached when simply putting the composites into pure water. The humidified pure hydrogen can be used conveniently for fuel cells. (author)

  2. A cobalt polypyrrole composite catalyzed cathode for the direct borohydride fuel cell

    Science.gov (United States)

    Qin, H. Y.; Liu, Z. X.; Yin, W. X.; Zhu, J. K.; Li, Z. P.

    A cobalt polypyrrole carbon (Co-PPY-C) composite has been attempted for use as a cathode catalyst in a direct borohydride fuel cell (DBFC). A Co-PPY-C composite has been fabricated in laboratory and characterized by the field emission scanning electron microscopy, transmission electron microscopy, as well as X-ray photoemission spectroscopy. Fabricated Co-PPY-C catalyst demonstrates good short-term durability and activity which are comparable to those obtained from the Pt/C catalyst. A maximum power density of 65 mW cm -2 has been achieved at ambient conditions. This research concludes that metallo-organic coordination compounds would be potential candidates for use as cathode catalysts in the DBFC.

  3. Magnesium Ethylenediamine Borohydride as Solid-State Electrolyte for Magnesium Batteries

    Science.gov (United States)

    Roedern, Elsa; Kühnel, Ruben-Simon; Remhof, Arndt; Battaglia, Corsin

    2017-01-01

    Solid-state magnesium ion conductors with exceptionally high ionic conductivity at low temperatures, 5 × 10−8 Scm−1 at 30 °C and 6 × 10−5 Scm−1 at 70 °C, are prepared by mechanochemical reaction of magnesium borohydride and ethylenediamine. The coordination complexes are crystalline, support cycling in a potential window of 1.2 V, and allow magnesium plating/stripping. While the electrochemical stability, limited by the ethylenediamine ligand, must be improved to reach competitive energy densities, our results demonstrate that partially chelated Mg2+ complexes represent a promising platform for the development of an all-solid-state magnesium battery. PMID:28387305

  4. Synthesis, Structure, and Reactivity of Co(II) and Ni(II) PCP Pincer Borohydride Complexes

    Science.gov (United States)

    2015-01-01

    The 15e square-planar complexes [Co(PCPMe-iPr)Cl] (2a) and [Co(PCP-tBu)Cl] (2b), respectively, react readily with NaBH4 to afford complexes [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Co(PCP-tBu)(η2-BH4)] (4b) in high yields, as confirmed by IR spectroscopy, X-ray crystallography, and elemental analysis. The borohydride ligand is symmetrically bound to the cobalt center in η2-fashion. These compounds are paramagnetic with effective magnetic moments of 2.0(1) and 2.1(1) μB consistent with a d7 low-spin system corresponding to one unpaired electron. None of these complexes reacted with CO2 to give formate complexes. For structural and reactivity comparisons, we prepared the analogous Ni(II) borohydride complex [Ni(PCPMe-iPr)(η2-BH4)] (5) via two different synthetic routes. One utilizes [Ni(PCPMe-iPr)Cl] (3) and NaBH4, the second one makes use of the hydride complex [Ni(PCPMe-iPr)H] (6) and BH3·THF. In both cases, 5 is obtained in high yields. In contrast to 4a and 4b, the borohydride ligand is asymmetrically bound to the nickel center but still in an η2-mode. [Ni(PCPMe-iPr)(η2-BH4)] (5) loses readily BH3 at elevated temperatures in the presence of NEt3 to form 6. Complexes 5 and 6 are both diamagnetic and were characterized by a combination of 1H, 13C{1H}, and 31P{1H} NMR, IR spectroscopy, and elemental analysis. Additionally, the structure of these compounds was established by X-ray crystallography. Complexes 5 and 6 react with CO2 to give the formate complex [Ni(PCPMe-iPr)(OC(C=O)H] (7). The extrusion of BH3 from [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Ni(PCPMe-iPr)(η2-BH4)] (5) with the aid of NH3 to yield the respective hydride complexes [Co(PCPMe-iPr)H] and [Ni(PCPMe-iPr)H] (6) and BH3NH3 was investigated by DFT calculations showing that formation of the Ni hydride is thermodynamically favorable, whereas the formation of the Co(II) hydride, in agreement with the experiment, is unfavorable. The electronic structures and the bonding of the borohydride ligand in [Co

  5. Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A.M.F.R.; Falcao, D.S. [Departamento de Eng. Quimica, Centro de Estudos de Fenomenos de Transporte, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Silva, R.A.; Rangel, C.M. [Instituto Nacional de Engenharia e Tecnologia e Inovacao, Paco do Lumiar 22, 1649-038 (Portugal)

    2006-08-15

    The catalytic hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution was studied using a non-noble; nickel-based powered catalyst exhibiting strong activity even after long time storage. This easy-to-prepare catalyst showed an enhanced activity after being recovered from previous use. The effects of temperature, NaBH{sub 4} concentration, NaOH concentration and pressure on the hydrogen generation rate were investigated. Particular importance has the effect of pressure, since the maximum reached pressure of hydrogen is always substantially lower than predictions (considering 100% conversion) due to solubility effects. The solubility of hydrogen is greatly enhanced by the rising pressure during reaction, leading to storage of hydrogen in the liquid phase. This effect can induce new ways of using this type of catalyst and reactor for the construction of hydrogen generators and even containers for portable and in situ applications. (author)

  6. Probing molecular dynamics of metal borohydrides on the surface of mesoporous scaffolds by multinuclear high resolution solid state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Son-Jong, E-mail: Sonjong@cheme.caltech.edu [Division of Chemistry and Chemical Eng., California Institute of Technology, Pasadena, CA 91125 (United States); Lee, Hyun-Sook [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); To, Magnus [Division of Chemistry and Chemical Eng., California Institute of Technology, Pasadena, CA 91125 (United States); Lee, Young-Su; Cho, Young Whan [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, Hyungkeun; Kim, Chul [Department of Chemistry, Hannam University, Daejeon 305-811 (Korea, Republic of)

    2015-10-05

    Graphical abstract: In situ variable temperature multinuclear solid state NMR allows to probe surface wetting, diffusivity, and confinement of metal borohydrides into nanopores. - Abstract: Understanding of surface interactions between borohydride molecules and the surfaces of porous supports have gained growing attention for successful development of nano-confinement engineering. By use of in situ variable temperature (VT) magic angle spinning (MAS) NMR, molecular mobility changes of LiBH{sub 4} crystalline solid has been investigated in the presence of silica based and carbonaceous surfaces. Spin–spin J-coupling of {sup 1}H–{sup 11}B in LiBH{sub 4} was monitored in series of VT NMR spectra to probe translational mobility of LiBH{sub 4} that appeared to be greatly enhanced upon surface contact. Such enhanced diffusivity was found to be effective in the formation of solid solution and co-confinement with other metal borohydrides. Co-confinement of LiBH{sub 4}–Ca(BH{sub 4}){sub 2} mixture was demonstrated at temperature as low as 100 °C, much lower than the reported bulk eutectic melting temperature. The discovery adds a novel property of LiBH{sub 4} that has been proven to be highly versatile in many energy related applications.

  7. Performance study of direct borohydride fuel cells employing polyvinyl alcohol hydrogel membrane and nickel-based anode

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Choudhury, N.A.; Sahai, Y.; Buchheit, R.G. [Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)

    2011-10-15

    A direct borohydride fuel cell (DBFC) employing a polyvinyl alcohol (PVA) hydrogel membrane and a nickel-based composite anode is reported. Carbon-supported platinum and sputtered gold have been employed as cathode catalysts. Oxygen, air and acidified hydrogen peroxide have been used as oxidants in the DBFC. Performance of the PVA hydrogel membrane-based DBFC was tested at different temperatures and compared with similar DBFCs employing Nafion registered membrane electrolytes under identical conditions. The borohydride-oxygen fuel cell employing PVA hydrogel membrane yielded a maximum peak power density of 242 mW cm{sup -2} at 60 C. The peak power densities of the PVA hydrogel membrane-based DBFCs were comparable or a little higher than those using Nafion registered 212 membranes at 60 C. The fuel efficiency of borohydride-oxygen fuel cell based on PVA hydrogel membrane and Ni-based composite anode was found to be between 32 and 41%. The cell was operated for more than 100 h and its performance stability was recorded. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. First-principles study of a double-cation alkali metal borohydride LiK(BH{sub 4}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiaobing; Yu Weiyang; Tang Biyu [Key Laboratory of Low Dimensional Materials and Application Technology of the Ministry of Education, Department of Physics, Xiangtan University, Hunan Province, 411105 (China)], E-mail: tangbiyu@gxu.edu.cn

    2008-11-05

    Metal borohydrides have been attracting great interest as potential candidates for use as advanced hydrogen storage materials because of their high gravimetric hydrogen densities. In the present study, first-principles calculations have been performed for the newly reported dual-cation alkali metal borohydride LiK(BH{sub 4}){sub 2}, using density functional theory (DFT) within the generalized gradient approximation and the projected augmented wave method. LiK(BH{sub 4}){sub 2} is found to have an orthorhombic structure in the space group Pnma (No 62) with nearly ideal tetrahedral shape. It is an insulating material having a DFT-calculated wide band gap of 6.08 eV. Analysis of the electronic structure shows an ionic interaction between metal cations and (BH{sub 4}){sup -} and the covalent B-H interaction within the (BH{sub 4}){sup -} tetrahedron. The enthalpy of the formation reaction from primary elements is calculated and found to be -449.8 kJ mol{sup -1}. The decomposition temperature (T{sub dec}) of LiK(BH{sub 4}){sub 2} lies between those of LiBH{sub 4} and KBH{sub 4}, which suggests that the hydrogen decomposition temperature of metal borohydrides can be precisely adjusted by the appropriate combination of cations.

  9. Nuclear magnetic resonance studies of atomic motion in borohydride-based materials: Fast anion reorientations and cation diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Skripov, A.V., E-mail: skripov@imp.uran.ru; Soloninin, A.V.; Babanova, O.A.; Skoryunov, R.V.

    2015-10-05

    Highlights: • Solid solutions LiBH{sub 4}–LiI: extremely fast BH{sub 4} reorientations down to low T. • LiLa(BH{sub 4}){sub 3}Cl: Li-ion diffusive jumps and BH{sub 4} reorientations at the same frequency scale. • Dramatic acceleration of B{sub 12}H{sub 12} reorientations in the disordered phase of Na{sub 2}B{sub 12}H{sub 12}. • Fast Na-ion diffusion in the disordered phase of Na{sub 2}B{sub 12}H{sub 12}. - Abstract: Two basic types of thermally activated atomic jump motion are known to exist in solid borohydrides and the related systems: the reorientations of complex anions ([BH{sub 4}]{sup −}, [B{sub 12}H{sub 12}]{sup 2−}) and the translational diffusion of metal cations or complex anions. This paper reviews recent progress in nuclear magnetic resonance (NMR) studies of these jump processes in complex hydrides, such as solid solutions of halide anions in borohydrides, bimetallic borohydrides and borohydride–chlorides, borohydride–amides, and B{sub 12}H{sub 12}-based compounds. The emphasis is put on the systems showing fast-ion conductivity. For these systems, we discuss a possible relation between the reorientational motion of complex anions and the translational motion of metal cations.

  10. Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yan; Dai, Hong-Bin; Ma, Lai-Peng; Wang, Ping; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2010-04-15

    The catalyst with high activity and durability plays a crucial role in the hydrogen generation systems for the portable fuel cell generators. In the present study, a ruthenium supported on graphite catalyst (Ru/G) for hydrogen generation from sodium borohydride (NaBH{sub 4}) solution is prepared by a modified impregnation method. This is done by surface pretreatment with NH{sub 2} functionalization via silanization, followed by adsorption of Ru (III) ion onto the surface, and then reduced by a reducing agent. The obtained catalyst is characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Very uniform Ru nanoparticles with sizes of about 10 nm are chemically bonded on the graphite surface. The hydrolysis kinetics measurements show that the concentrations of NaBH{sub 4} and NaOH all exert considerable influence on the catalytic activity of Ru/G catalyst towards the hydrolysis reaction of NaBH{sub 4}. A hydrogen generation rate of 32.3 L min{sup -1} g{sup -1} (Ru) in a 10 wt.% NaBH{sub 4} + 5 wt.% NaOH solution has been achieved, which is comparable to other noble catalysts that have been reported. (author)

  11. Effects of hydrazine addition on gas evolution and performance of the direct borohydride fuel cell

    Science.gov (United States)

    Qin, H. Y.; Liu, Z. X.; Yin, W. X.; Zhu, J. K.; Li, Z. P.

    A fuel cell configuration using alkaline NaBH 4-N 2H 4 solutions as the fuel is suggested. Gas evolution behaviors and cell performances of alkaline NaBH 4-N 2H 4 solutions on different catalysts have been studied. It is found that gas evolution behaviors are influenced by the applied anodic catalysts and the concentration of NaBH 4 and N 2H 4. NaBH 4 is mainly electro-oxidized on Pd but N 2H 4 is mainly electro-oxidized on Ni and surface-treated Zr-Ni alloy when using NaBH 4-N 2H 4 solutions as the fuel and a composite of Pd, Ni and surface-treated Zr-Ni alloy as the anodic catalyst. The cyclic voltammetry results show that electrochemical oxidation potential of NaBH 4 is higher than that of N 2H 4. Adding hydrazine into alkaline sodium borohydride solutions can suppress gas evolution and improve the cell performance of the DBFC. The performances of fuel cells using NaBH 4-N 2H 4 solutions are comparable to that of fuel cell using N 2H 4 solution.

  12. Hydrogen generation from methanolysis of sodium borohydride over Co/Al2O3 catalyst

    Institute of Scientific and Technical Information of China (English)

    Dongyan Xu; Lin Zhao; Ping Dai; Shengfu Ji

    2012-01-01

    Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH4) for hydrogen generation.At solution temperature of 0℃,the methanolysis reaction can be effectively accelerated using Co/Al2O3 catalyst and provide a desirable hydrogen generation rate,which makes it suitable for apphcations under the circumstance of low environmental temperature.The byproduct of methanolysis reaction is analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).The characterization results indicate that methanol can be easily recovered after methanolysis reaction by hydrolysis of the methanolysis byproduct,NaB(OCH3)4.The catalytic activity of Co/Al2O3 towards NaBH4 methanolysis can be further improved by appropriate calcination treatment.The catalytic methanolysis kinetics and catalyst reusability are also studied over the Co/Al2O3 catalyst calcined at the optimized temperature.

  13. Electroless Nickel-Based Catalyst for Diffusion Limited Hydrogen Generation through Hydrolysis of Borohydride

    Directory of Open Access Journals (Sweden)

    Shannon P. Anderson

    2013-07-01

    Full Text Available Catalysts based on electroless nickel and bi-metallic nickel-molybdenum nanoparticles were synthesized for the hydrolysis of sodium borohydride for hydrogen generation. The catalysts were synthesized by polymer-stabilized Pd nanoparticle-catalyzation and activation of Al2O3 substrate and electroless Ni or Ni-Mo plating of the substrate for selected time lengths. Catalytic activity of the synthesized catalysts was tested for the hydrolyzation of alkaline-stabilized NaBH4 solution for hydrogen generation. The effects of electroless plating time lengths, temperature and NaBH4 concentration on hydrogen generation rates were analyzed and discussed. Compositional analysis and surface morphology were carried out for nano-metallized Al2O3 using Scanning Electron Micrographs (SEM and Energy Dispersive X-Ray Microanalysis (EDAX. The as-plated polymer-stabilized electroless nickel catalyst plated for 10 min and unstirred in the hydrolysis reaction exhibited appreciable catalytic activity for hydrolysis of NaBH4. For a zero-order reaction assumption, activation energy of hydrogen generation using the catalyst was estimated at 104.6 kJ/mol. Suggestions are provided for further work needed prior to using the catalyst for portable hydrogen generation from aqueous alkaline-stabilized NaBH4 solution for fuel cells.

  14. Fundamental study of reduction graphene oxide by sodium borohydride for gas sensor application

    Science.gov (United States)

    Muda, M. R.; Ramli, Muhammad M.; Isa, Siti S. Mat; Jamlos, M. F.; Murad, S. A. Z.; Norhanisah, Z.; Isa, M. Mohamad; Kasjoo, S. R.; Ahmad, N.; Nor, N. I. M.; Khalid, N.

    2017-03-01

    The efficient reduction of graphene oxide (rGO) was performed using Sodium Borohydride (NaBH4). These reduction approaches remove the majority of the oxygen-containing functional groups at the basal plane and surface of graphene oxide sheets. Structural and physiochemical properties of the GO were investigated with help of Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), and Ultraviolet-Visible-Near infrared (UV-Vis-NIR). The effects of the chemical reduction on a GO surface were analyzed using a Semiconductor Parameter Analyzer (SPA) in order to obtain the electrical resistance measurement. It was found that the resistance of reduced graphene oxide was greatly reduced when compared to the condition of before reduction process. Then, the formation of uniform thin film of rGO sheets was produced using vacuum filtration method in order to fabricate a gas sensor. In this project, plastic was used as a substrate. The sensor was then being exposed to NO2 gas at room temperature in order to demonstrate the sensing ability of rGO.

  15. Magnetic and electrical properties of oxygen stabilized nickel nanofibers prepared by the borohydride reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, V. [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur West Bengal 721 302 India (India)], E-mail: veeturi@phy.iitkgp.ernet.in; Barik, S.K.; Bodo, Bhaskarjyoti [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur West Bengal 721 302 India (India); Karmakar, Debjani; Chandrasekhar Rao, T.V. [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Bombay 400085 India (India)

    2008-03-15

    Fine nickel fibers have been synthesized by chemical reduction of nickel ions in aqueous medium with sodium borohydride. The thermal stability and relevant properties of these fibers, as-prepared as well as air-annealed, have been investigated by structural, magnetic and electrical measurements. As-prepared samples appear to have a novel crystal structure due to the presence of interstitial oxygen. Upon annealing in air, the fcc-Ni phase emerges out initially and develops into a nanocomposite subsequently by retaining its fiber-like structure in nano phase. The as-prepared sample is observed to be weakly magnetic at room temperature, but attains surprisingly high magnetization values at low temperatures. This is attributed to the modified spin structure, presumably due to the presence of interstitial oxygen in the lattice. Development of a weakly ferromagnetic and electrically conducting phase upon annealing in air is attributed to the formation of the fcc-Ni phase. The structural phase transformations corroborate well with magnetic and electrical measurements.

  16. Structure determination of ultra dense magnesium borohydride: A first-principles study

    Science.gov (United States)

    Fan, Jing; Duan, Defang; Jin, Xilian; Bao, Kuo; Liu, Bingbing; Cui, Tian

    2013-06-01

    Magnesium borohydride (Mg(BH4)2) is one of the potential hydrogen storage materials. Recently, two experiments [Y. Filinchuk, B. Richter, T. R. Jensen, V. Dmitriev, D. Chernyshov, and H. Hagemann, Angew. Chem., Int. Ed. 50, 11162 (2011);, 10.1002/anie.201100675 L. George, V. Drozd, and S. K. Saxena, J. Phys. Chem. C 113, 486 (2009), 10.1021/jp807842t] found that α-Mg(BH4)2 can irreversibly be transformed to an ultra dense δ-Mg(BH4)2 under high pressure. Its volumetric hydrogen content at ambient pressure (147 g/cm3) exceeds twice of DOE's (U.S. Department of Energy) target (70 g/cm3) and that of α-Mg(BH4)2 (117 g/cm3) by 20%. In this study, the experimentally proposed P42nm structure of δ-phase has been found to be dynamically unstable. A new Fddd structure has been reported as a good candidate of δ-phase instead. Its enthalpy from 0 to 12 GPa is much lower than P42nm structure and the simulated X-ray diffraction spectrum is in satisfied agreement with previous experiments. In addition, the previously proposed P-3m1 structure, which is denser than Fddd, is found to be a candidate of ɛ-phase due to the agreement of Raman shifts.

  17. Alkali free hydrolysis of sodium borohydride for hydrogen generation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.J.F.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Gales, L. [Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto and Instituto de Ciencias Biomedicas Abel Salazar, Largo Prof. Abel Salazar 2, 4099-003 Porto (Portugal); Fernandes, V.R.; Rangel, C.M. [Laboratorio Nacional de Energia e Geologia - LNEG, Fuel Cells and Hydrogen Unit Estrada do Paco do Lumiar 22, 1649-038 Lisboa (Portugal)

    2010-09-15

    The present study is related with the production of hydrogen gas (H{sub 2}), at elevated pressures and with high gravimetric storage density, to supply a PEM fuel cell on-demand. To achieve this goal, solid sodium borohydride (NaBH{sub 4}) was mixed with a proper amount of a powder reused nickel-ruthenium based catalyst (Ni-Ru based/NaBH{sub 4}: 0.2 and 0.4 g/g; {approx}150 times reused) inside the bottom of a batch reactor. Then, a stoichiometric amount of pure liquid water (H{sub 2}O/NaBH{sub 4}: 2-8 mol/mol) was added and the catalyzed NaBH{sub 4} hydrolysis evolved, in the absence of an alkali inhibitor. In this way, this research work is designated alkali free hydrolysis of NaBH{sub 4} for H{sub 2} generation. This type of hydrolysis is excellent from an environmental point of view because it does not involve strongly caustic solutions. Experiments were performed in three batch reactors with internal volumes 646, 369 and 229 cm{sup 3}, and having different bottom geometries (flat and conical shapes). The H{sub 2} generated was a function of the added water and completion was achieved with H{sub 2}O/NaBH{sub 4} = 8 mol/mol. The results show that hydrogen yields and rates increase remarkably increasing both system temperature and pressure. Reactor bottom shape influences deeply H{sub 2} generation: the conical bottom shape greatly enhances the rate and practically eliminates the reaction induction time. Our system of compressed hydrogen generation up to 1.26 MPa shows 6.3 wt% and 70 kg m{sup -3}, respectively, for gravimetric and volumetric hydrogen storage capacities (materials-only basis) and therefore is a viable hydrogen storage candidate for portable applications. (author)

  18. Ammine-Stabilized Transition-Metal Borohydrides of Iron, Cobalt, and Chromium: Synthesis and Characterization.

    Science.gov (United States)

    Roedern, Elsa; Jensen, Torben R

    2015-11-02

    Iron and cobalt borohydrides stabilized by ammonia (NH3), [Fe(NH3)6](BH4)2 and [Co(NH3)6](BH4)2, were synthesized along with a solid solution, [Co(NH3)6](BH4)(2-x)Cl(x) (x ∼ 1), and a bimetallic compound, [Fe(NH3)6](Li2(BH4)4). The compounds were prepared by new low-temperature, solvent-based synthesis methods, using dimethyl sulfide or liquid NH3, which allow for the removal of inert metal halides. The crystal structures were determined from synchrotron radiation powder X-ray diffraction (SR-PXD) data. [M(NH3)6](BH4)2 (M = Fe, Co) and [Co(NH3)6](BH4)(2-x)Cl(x) crystallize in the cubic crystal system, where the transition metals are octahedrally coordinated by NH3. Polymeric chains of lithium coordinated by four bridging BH4(-) anions are found in [Fe(NH3)6](Li2(BH4)4). The new compounds have high hydrogen densities of ∼14 wt % H2 and ∼140 g H2/L and release a mixture of hydrogen and NH3 gas at low temperatures, T < 80 °C. The decomposition mechanisms of the prepared compounds along with the composites [Fe(NH3)6](BH4)2·nNH3BH3 (n = 2, 4, 6) were studied by thermal analysis and in situ SR-PXD.

  19. Optimized hydrogen generation in a semicontinuous sodium borohydride hydrolysis reactor for a 60 W-scale fuel cell stack

    Science.gov (United States)

    Arzac, G. M.; Fernández, A.; Justo, A.; Sarmiento, B.; Jiménez, M. A.; Jiménez, M. M.

    Catalyzed hydrolysis of sodium borohydride (SBH) is a promising method for the hydrogen supply of fuel cells. In this study a system for controlled production of hydrogen from aqueous sodium borohydride (SBH) solutions has been designed and built. This simple and low cost system operates under controlled addition of stabilized SBH solutions (fuel solutions) to a supported CoB catalyst. The system works at constant temperature delivering hydrogen at 1 L min -1 constant rate to match a 60-W polymer electrolyte membrane fuel cell (PEMFC). For optimization of the system, several experimental conditions were changed and their effect was investigated. A simple model based only on thermodynamic considerations was proposed to optimize system parameters at constant temperature and hydrogen evolution rate. It was found that, for a given SBH concentration, the use of the adequate fuel addition rate can maximize the total conversion and therefore the gravimetric storage capacity. The hydrogen storage capacity was as high as 3.5 wt% for 19 wt% SBH solution at 90% fuel conversion and an operation temperature of 60 °C. It has been demonstrated that these optimized values can also be achieved for a wide range of hydrogen generation rates. Studies on the durability of the catalyst showed that a regeneration step is needed to restore the catalytic activity before reusing.

  20. Improving SERS Detection of Bacillus thuringiensis Using Silver Nanoparticles Reduced with Hydroxylamine and with Citrate Capped Borohydride

    Directory of Open Access Journals (Sweden)

    Hilsamar Félix-Rivera

    2011-01-01

    Full Text Available The development of techniques that could be useful in fields other than biological warfare agents countermeasures such as medical diagnostics, industrial microbiology, and environmental applications have become a very important subject of research. Raman spectroscopy can be used in near field or at long distances from the sample to obtain fingerprinting information of chemical composition of microorganisms. In this research, biochemical components of the cell wall and endospores of Bacillus thuringiensis (Bt were identified by surface-enhanced Raman scattering (SERS spectroscopy using silver (Ag nanoparticles (NPs reduced by hydroxylamine and borohydride capped with sodium citrate. Activation of “hot spots”, aggregation and surface charge modification of the NPs, was studied and optimized to obtain signal enhancements from Bt by SERS. Slight aggregation of the NPs as well as surface charge modification to a more acidic ambient was induced using small-size borohydride-reduced NPs in the form of metallic suspensions aimed at increasing the Ag NP-Bt interactions. Hydroxylamine-reduced NPs required slight aggregation and no pH modifications in order to obtain high spectral quality results in bringing out SERS signatures of Bt.

  1. AB5-type Hydrogen Storage Alloy Modified with Ti/Zr Used as Anodic Materials in Borohydride Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Lianbang WANG; Chunan MA; Xinbiao MAO; Yuanming SUN; Seijiro SUDA

    2005-01-01

    Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.

  2. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, David; Neiner, Doinita [U.S. Borax Inc., Rio Tinto, Greenwood Village, CO (United States); Bowden, Mark [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA (United States); Whittemore, Sean; Holladay, Jamie [Pacific Northwest National Laboratory, Richland, WA (United States); Huang, Zhenguo [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2500 (Australia); Autrey, Tom [Pacific Northwest National Laboratory, Richland, WA (United States)

    2015-10-05

    Highlights: • Adjusting ratio of Q = Na/B will maximize H{sub 2} storage capacity of liquid carrier. • Mixtures of hydrolysis products are desirable to maximize solubility. • 6.5 wt.% hydrogen and remains liquid from beginning to end. - Abstract: In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH){sub 3}) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mol ratio of NaOH to B(OH){sub 3}, M/B = 1, the ratio of the hydrolysis product formed from NaBH{sub 4} hydrolysis, the sole borate species formed and observed by {sup 11}B NMR is sodium metaborate, NaB(OH){sub 4}. When the ratio is 1:3 NaOH to B(OH){sub 3}, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the {sup 11}B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB{sub 3}H{sub 8}, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt.% NaB{sub 3}H{sub 8} solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 M ratio of NaOH and B(OH){sub 3} and releases >8 eq of H{sub 2}. By optimizing the M/B ratio a complex mixture of soluble products, including B{sub 3}O{sub 3}(OH){sub 5}{sup 2−}, B{sub 4}O{sub 5}(OH){sub 4}{sup 2−}, B{sub 3}O{sub 3}(OH){sub 4}{sup −}, B{sub 5}O{sub 6}(OH){sub 4}{sup −} and B(OH){sub 3}, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB{sub 3}H{sub 8} can provide a 40% increase in H{sub 2} storage density compared to the hydrolysis

  3. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    Science.gov (United States)

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-05-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications.

  4. Organic derivatives of Mg(BH4)2 as precursors towards MgB2 and novel inorganic mixed-cation borohydrides.

    Science.gov (United States)

    Wegner, W; Jaroń, T; Dobrowolski, M A; Dobrzycki, Ł; Cyrański, M K; Grochala, W

    2016-09-28

    A series of organic derivatives of magnesium borohydride, including Mg(BH4)2·1.5DME (DME = 1,2-dimethoxyethane) and Mg(BH4)2·3THF (THF = tetrahydrofuran) solvates and three mixed-cation borohydrides, [Cat]2[Mg(BH4)4], [Cat] = [Me4N], [nBu4N], [Ph4P], have been characterized. The phosphonium derivative has been tested as a precursor for synthesis of inorganic mixed-metal borohydrides of magnesium, Mx[Mg(BH4)2+x], M = Li-Cs, via a metathetic method. The synthetic procedure has yielded two new derivatives of heavier alkali metals M3Mg(BH4)5 (M = Rb, Cs) mixed with amorphous Mg(BH4)2. Thermal decomposition has been studied for both the organic and inorganic magnesium borohydride derivatives. Amorphous MgB2 has been detected among the products of the thermal decomposition of the solvates studied, together with organic and inorganic impurities.

  5. Water co-adsorption and electric field effects on borohydride structures on Os(1 1 1) by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Escaño, Mary Clare Sison, E-mail: mcescano@u-fukui.ac.jp [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan); Arevalo, Ryan Lacdao [Department of Precision Science and Technology and Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Gyenge, Elod [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3 (Canada); Kasai, Hideaki [Department of Precision Science and Technology and Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-12-15

    Highlights: ► Difference in Pt, Os electronic structures lead to different borohydride structures. ► Promotion of B–H bond breaking on Os due to water effects. ► Control of borohydride structure on Os catalyst using electric field. -- Abstract: Periodic density functional theory calculations are performed to investigate the nature of the BH{sub 4ad} and its interaction with H{sub 2}O{sub ad} in the presence of homogenous electric field. We observed a significant charge polarity of BH{sub 4ad} on Os(1 1 1) and such property could explain the electrostatic interaction with water monomer (H{sub ad}) with its HOH plane parallel to the surface. This interaction changes the BH{sub ad} molecular structure to BH{sub 3ad} + H{sub ad}. In the presence of homogenous electric field, the water co-adsorption effect is reduced due to the stabilization of H{sub 2}O{sub ad} on the surface and the deviation of the O–H bond from the plane, decreasing the electrostatic interaction between BH{sub 4ad} and H{sub 2}O{sub ad}. These fundamental findings imply accessible control of borohydride structures on an electrode surface, which could be relevant for direct borohydride fuel cell (DBFC) and reversible hydrogen storage/release applications.

  6. Electronic structure of nickel(II) and zinc(II) borohydrides from spectroscopic measurements and computational modeling.

    Science.gov (United States)

    Desrochers, Patrick J; Sutton, Christopher A; Abrams, Micah L; Ye, Shengfa; Neese, Frank; Telser, Joshua; Ozarowski, Andrew; Krzystek, J

    2012-03-05

    The previously reported Ni(II) complex, Tp*Ni(κ(3)-BH(4)) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate anion), which has an S = 1 spin ground state, was studied by high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy as a solid powder at low temperature, by UV-vis-NIR spectroscopy in the solid state and in solution at room temperature, and by paramagnetic (11)B NMR. HFEPR provided its spin Hamiltonian parameters: D = 1.91(1) cm(-1), E = 0.285(8) cm(-1), g = [2.170(4), 2.161(3), 2.133(3)]. Similar, but not identical parameters were obtained for its borodeuteride analogue. The previously unreported complex, Tp*Zn(κ(2)-BH(4)), was prepared, and IR and NMR spectroscopy allowed its comparison with analogous closed shell borohydride complexes. Ligand-field theory was used to model the electronic transitions in the Ni(II) complex successfully, although it was less successful at reproducing the zero-field splitting (zfs) parameters. Advanced computational methods, both density functional theory (DFT) and ab initio wave function based approaches, were applied to these Tp*MBH(4) complexes to better understand the interaction between these metals and borohydride ion. DFT successfully reproduced bonding geometries and vibrational behavior of the complexes, although it was less successful for the spin Hamiltonian parameters of the open shell Ni(II) complex. These were instead best described using ab initio methods. The origin of the zfs in Tp*Ni(κ(3)-BH(4)) is described and shows that the relatively small magnitude of D results from several spin-orbit coupling (SOC) interactions of large magnitude, but with opposite sign. Spin-spin coupling (SSC) is also shown to be significant, a point that is not always appreciated in transition metal complexes. Overall, a picture of bonding and electronic structure in open and closed shell late transition metal borohydrides is provided, which has implications for the use of these complexes in catalysis and

  7. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, David [U.S. Borax Inc., Rio Tinto, CO (United States); Neiner, Doinita [U.S. Borax Inc., Rio Tinto, CO (United States); Bowden, Mark [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Whittemore, Sean [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenguo [Univ. of Wollongong, NSW (Australia); Autrey, Tom [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH)3) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mole ratio of NaOH to B(OH)3, M/B = 1, the ratio of the hydrolysis product formed from NaBH4 hydrolysis, the sole borate species formed and observed by 11B NMR is sodium metaborate, NaB(OH)4. When the ratio is 1:3 NaOH to B(OH)3, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the 11B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB3H8, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt% NaB3H8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 molar ratio of NaOH and B(OH)3 and releases >8 eq of H2. By optimizing the M/B ratio a complex mixture of soluble products, including B3O3(OH)52-, B4O5(OH)42-, B3O3(OH)4-, B5O6(OH)4- and B(OH)3, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB3H8 can provide a 40% increase in H2 storage density compared to the hydrolysis of NaBH4 given the decreased solubility of sodium metaborate. The authors would like to thank Jim Sisco and Paul Osenar of

  8. Microscale Interface Synthesis of Ni-B Amorphous Nanoparticles from NiSO4 by Sodium Borohydride Reduction in Microreactor

    Science.gov (United States)

    Xu, Lei; Peng, Jinhui; Meng, Binfang; Li, Wei; Liu, Bingguo; Luo, Huilong

    2016-09-01

    Amorphous nanoparticles have attracted a large amount of interest due to their superior catalytic activity and unique selectivity. The Ni-B amorphous nanoparticles were synthesized from aqueous reduction of NiSO4 by sodium borohydride in microscale interface at room temperature. The size, morphology, elemental compositions, and the chemical composition on the surface of Ni-B amorphous nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). All the results showed that the synthesized particles are Ni-B amorphous nanoparticles with uniform in size distribution and having good dispersion. The mean particle diameter of Ni-B amorphous nanoparticles was around 9 nm. The present work provides an alternative synthesis route for the Ni-B amorphous nanoparticles.

  9. New insights on the mechanism of palladium-catalyzed hydrolysis of sodium borohydride from 11B NMR measurements.

    Science.gov (United States)

    Guella, G; Zanchetta, C; Patton, B; Miotello, A

    2006-08-31

    To gain insight on the mechanistic aspects of the palladium-catalyzed hydrolysis of NaBH(4) in alkaline media, the kinetics of the reaction has been investigated by (11)B NMR (nuclear magnetic resonance) measurements taken at different times during the reaction course. Working with BH(4)(-) concentration in the range 0.05-0.1 M and with a [substrate]/[catalyst] molar ratio of 0.03-0.11, hydrolysis has been found to follow a first-order kinetic dependence from concentration of both the substrate and the catalyst (Pd/C 10 wt %). We followed the reaction of NaBH(4) and its perdeuterated analogue NaBD(4) in H(2)O, in D(2)O and H(2)O/D(2)O mixtures. When the process was carried out in D(2)O, deuterium incorporation in BH(4)(-) afforded BH(4)(-)(n)D(n)(-) (n = 1, 2, 3, 4) species, and a competition between hydrolysis and hydrogen/deuterium exchange processes was observed. By fitting the kinetics NMR data by nonlinear least-squares regression techniques, the rate constants of the elementary steps involved in the palladium-catalyzed borohydride hydrolysis have been evaluated. Such a regression analysis was performed on a reaction scheme wherein the starting reactant BH(4)(-) is allowed both to reversibly exchange hydrogen with deuterium atoms of D(2)O and to irreversibly hydrolyze into borohydroxy species B(OD)(4)(-). In contrast to acid-catalyzed hydrolysis of sodium borohydride, our results indicate that in the palladium-catalyzed process the rate constants of the exchange processes are higher than those of the corresponding hydrolysis reactions.

  10. Efficient and simple protocol employing borohydride systems to design a selective osthol-zirconium (OST-Zr library from potential natural products

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Viswanathan

    2016-04-01

    Full Text Available “Drug likeness” of a molecule is the prime criterion for a molecule to exhibit the desired pharmaceutical activity. A pharmacophore, which describes molecular features that are necessary for molecular recognition of a ligand by a biological macromolecule, is well altered by the Structure Activity Relationship (SAR guidelines through Hydrophobic Lipophilic Balance (HLB demonstrated by the system. The tailoring is best accomplished by organic functional group interconversion on a potent natural product via a variety of synthetic methodologies available to date. Metal borohydrides (MBH4 in particular are promising compounds as they can potentially serve varying HLB systems. The reagent acts on the substrate to cause reduction, hydroboration, or a combination of both outcomes for the purpose of rearrangement and fragmentation. Indeed, Zr(BH44 is expected to be more active and selective as a reducing agent compared to NaBH4. This study aims at evaluating zirconium borohydride (Zr(BH44 in tetrahydrofuran (THF as a reducing system to realize a more selective, meaningful and combinatorial osthol (OST library from potential natural products and attempt to alternate preparation of the same in THF from known metal borohydrides, limiting reduction of the metal center versus metathesis. 

  11. Quaternized polymeric microgels as metal free catalyst for H2 production from the methanolysis of sodium borohydride

    Science.gov (United States)

    Sahiner, Nurettin; Sengel, Sultan Butun

    2016-12-01

    Polymeric microgels derived from tris(2-amino ethyl)amine (TAEA) and glycerol diglycidyl ether as p(TAEA-co-GDE) via microemulsion polymerization techniques are protonated by 0.5 M HCl treatment as p(TAEA-co-GDE)-HCl). These microgels are then exposed to anion exchange reactions with differ ionic liquid forming salts, such as potassium thiocyanate (PTC), sodium dicyanamide (SDCA), ammonium hexafluorophosphate (AHFP), and sodium tetrafluoroborate (STFB) in aqueous medium for the preparation of p(TAEA-co-GDE) based ionic liquid colloidal microgels. These anions exchanged p(TAEA-co-GDE) ionic liquid colloids (ILCs) are directly used as catalyst for hydrogen (H2) generation from the methanol solution of sodium borohydride (NaBH4). Various parameters affecting the H2 production rate such as the catalyst types, NaBH4 amount, and the temperature are investigated. It is found that the methanolysis of NaBH4 catalyzed by p(TAEA-co-GDE)-HCl obeys the first order reaction kinetic. The activation energy, enthalpy and entropy of the protonated p(TAEA-co-GDE) microgels are calculated and found as the 30.37 kJ mol-1, 27.96 kJ mol-1, and -148.08 J mol-1 K-1, respectively. Furthermore, the hydrogen generation rate of 3018 mL min-1 g-1 catalyzed by p(TAEA-co-GDE)-HCl catalyst is attained.

  12. Silver nanoparticles-containing dual-function hydrogels based on a guar gum-sodium borohydride system

    Science.gov (United States)

    Dai, Lei; Nadeau, Ben; An, Xingye; Cheng, Dong; Long, Zhu; Ni, Yonghao

    2016-01-01

    Dual-function hydrogels, possessing both stimuli-responsive and self-healing properties, have recently attracted attention of both chemists and materials scientists. Here we report a new paradigm using natural polymer (guar gum, GG) and sodium borohydride (NaBH4), for the preparation of silver nanoparticles (AgNPs)-containing smart hydrogels in a simple, fast and economical way. NaBH4 performs as a reducing agent for AgNPs synthesis using silver nitrate (AgNO3) as the precursor. Meanwhile, sodium metaborate (NaBO2) (from NaBH4) behaves as a cross-linking agent between GG molecular chains. The AgNPs/GG hydrogels with excellent viscoelastic properties can be obtained within 3 min at room temperature without the addition of other cross-linkers. The resultant AgNPs/GG hydrogels are flowable and injectable, and they possess excellent pH/thermal responsive properties. Additionally, they exhibit rapid self-healing capacity. This work introduces a facile and scale-up way to prepare a class of hydrogels that can have great potential to biomedical and other industrial applications. PMID:27819289

  13. Development of high-performance cathode catalyst of polypyrrole modified carbon supported CoOOH for direct borohydride fuel cell

    Science.gov (United States)

    He, Yan; Zhu, Cai; Chen, Kaijian; Wang, Juan; Qin, Haiying; Liu, Jiabin; Yan, Shuai; Yang, Ke; Li, Aiguo

    2017-01-01

    Polypyrrole modified carbon supported CoOOH electrocatalyst (CoOOH-PPy-C) is prepared by impregnation-chemical method, and the catalytic properties for the oxygen reduction reaction (ORR) in alkaline media are investigated. The X-ray diffraction and transmission electron microscopy results confirm the presence of the expected CoOOH. The electrochemical tests show that the CoOOH-PPy-C catalyst exhibits good electrocatalytic activity towards ORR. The direct borohydride fuel cell using CoOOH-PPy-C as the cathode catalyst demonstrates a good stability performance. There is only 4% decrease of the cell voltage after 80-h operation. The ORR occurs an average 4-electron transfer pathway on the CoOOH-PPy-C catalyst. The good catalytic activity towards ORR benefits from the Cosbnd N bond, which is identified by X-ray photoelectron spectroscopy test. X-ray absorption fine structure experiments further show that two nearest O atoms are substituted by two N atoms bonding to Co ion at a distance of 1.64 Å. The CoOOH-PPy-C exhibits better electrochemical properties than the Co(OH)2 counterpart even though the valence state of Co ion is +3 in CoOOH-PPy-C. Those results indicate that the bonding of Co ion with N atoms should be a key issue regardless the valence of Co ion.

  14. Low-cost method for sodium borohydride regeneration and the energy efficiency of its hydrolysis and regeneration process

    Science.gov (United States)

    Ouyang, L. Z.; Zhong, H.; Li, Z. M.; Cao, Z. J.; Wang, H.; Liu, J. W.; Zhu, X. K.; Zhu, M.

    2014-12-01

    Hydrolysis of sodium borohydride (NaBH4) is one of the most attractive methods for energy generation of mobile systems used as hydrogen source because of the high gravimetric density and controllable hydrogen generation of NaBH4. However, regeneration of NaBH4 is a key issue that remains to be solved, and the energy efficiency of NaBH4 is unknown. In the present study, the energy efficiency of NaBH4 hydrolysis and the entire process of sodium metaborate (NaBO2) regeneration via reaction with magnesium hydride (MgH2) is determined through thermodynamics calculations. The maximum energy efficiency is 49.91%, indicating that NaBH4 generation by reaction between MgH2 and NaBO2 during ball milling is feasible. An inexpensive high-energy ball milling method is employed to regenerate NaBH4 by reaction of NaBO2 with magnesium-lanthanum hydrides (H-Mg3La). Products after ball milling are characterized through Fourier transform infrared spectroscopy and X-ray diffraction measurements. In the reaction of NaBO2 with H-Mg3La, MgH2 reacts with NaBO2 and then lanthanum hydride (LaH3) reacts with NaBO2 to produce NaBH4.

  15. Combined X-ray and Raman Studies on the Effect of Cobalt Additives on the Decomposition of Magnesium Borohydride

    Directory of Open Access Journals (Sweden)

    Olena Zavorotynska

    2015-08-01

    Full Text Available Magnesium borohydride (Mg(BH42 is one of the most promising hydrogen storage materials. Its kinetics of hydrogen desorption, reversibility, and complex reaction pathways during decomposition and rehydrogenation, however, present a challenge, which has been often addressed by using transition metal compounds as additives. In this work the decomposition of Mg(BH42 ball-milled with CoCl2 and CoF2 additives, was studied by means of a combination of several in-situ techniques. Synchrotron X-ray diffraction and Raman spectroscopy were used to follow the phase transitions and decomposition of Mg(BH42. By comparison with pure milled Mg(BH42, the temperature for the γ → ε phase transition in the samples with CoF2 or CoCl2 additives was reduced by 10–45 °C. In-situ Raman measurements showed the formation of a decomposition phase with vibrations at 2513, 2411 and 766 cm−1 in the sample with CoF2. Simultaneous X-ray absorption measurements at the Co K-edge revealed that the additives chemically transformed to other species. CoF2 slowly reacted upon heating till ~290 °C, whereas CoCl2 transformed drastically at ~180 °C.

  16. Modeling the performance of an ideal NaBH4-H2O2 direct borohydride fuel cell

    Science.gov (United States)

    Stroman, Richard O.; Jackson, Gregory S.

    2014-02-01

    A 2D direct borohydride fuel cell (DBFC) model has been developed to explore the prospective performance of this technology, for a cell with fast selective electrocatalysts and a selective membrane. In the modeled DBFC, a Nafion membrane in the Na+ form separates flow channels with aqueous fuel (0.1-0.5 M NaBH4/4 M NaOH) and oxidizer (4 M H2O2/4 M H2SO4). Electrochemical reactions occur on catalyst-coated channel walls. The electrocatalysts are selective for complete BH4- oxidation and H2O2 reduction, the reactions have fast forward rate constants, and only Na+ and H2O cross the membrane. The model captures interfacial charge transfer reactions and complex transport in the flow channels and membrane. Results show that current density and voltage efficiency vary by >50% from inlet to outlet due to concentration boundary layer development. The BH4- concentration boundary layer limits peak power density, despite migration and fuel utilizations below 10%. Power density increases with BH4- inlet concentration and fuel flow rate, but at the expense of lower fuel utilization. Water crosses the membrane up to 14 times its production rate at the anode. Low fuel utilization and water imbalance suggest the importance of system designs with reactant recirculation and water recovery.

  17. Cold-starting portable microenergy system. Autonomous fuel cell system using sodium borohydride as an energy source; Kaltstartfaehiges portables Mikroenergiesystem. Autarkes BZ-System mit Natriumborhydrid als Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Groos, Ulf; Koch, Wolfgang [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany)

    2012-10-15

    A project consortium led by Fraunhofer-Institut fuer Solare Energiesysteme ISE developed an autonomous micro energy system (AMES) with an output of 100 W{sub el} as a charging station for applications in emergency medicine. The system is designed for a wide temperature range of -15 to +50 degC during startup, operation, and shutoff. The cold starting fuel cell system is in accordance with current standards and is suited for serial production. It can be operated with common hydrogen stores, e.g. gas flasks or metal hydrides, or else with a specially developed hydrogen generator based on sodium borohydride. (orig.)

  18. RING-OPENING POLYMERIZAION OF 2,2-DIMETHYLTRIMETHYLENE CARBONATE INITIATED BY IN SITU GENERATED, TETRAHYDROSALEN STABLIZED YTTRIUM BOROHYDRIDE COMPLEX AND RANDOM COPOLYMERIZATION WITH ε-CAPROLACTONE

    Institute of Scientific and Technical Information of China (English)

    Jing Huang; Jian-fang Yu; Han-jian Yu; Wei-lin Sun; Zhi-quan Shen

    2011-01-01

    The poly(2,2-dimethyltrimethylene carbonate) (PDTC) with one hydroxyl and one formate tenninal fimctions was synthesized by in situ generated, tetrahydrosalen stabilized yttrium borohydride complex. The influences of monomer/initiator molar ratio, temperature and reaction time on polymerization of DTC were investigated. Under the condition: [DTC]/[I] = 500, 55℃, toluene: 0.5 mL, DTC: 0.6 g, PDTC with Mn = 15600 and PDI = 2.15 was obtained.Through 1H-NMR and 13C-NMR analyses, the structure of PDTC was characterized and a coordination-insertion mechanism was proposed. In addition, the random copolymerization of DTC and caprolactone (CL) initiated by rare-earth borohydride compound was studied. The microstructure of PDTC-co-PCL includes four diads: DTC-CL, CL-CL, DTC-DTC and CLDTC, which were determined by the specific signals in 1H-NMR spectra. Based on the typical signals of the formate (δ=8.08) and hydroxyl (δ = 3.34) end groups of PDTC-co-PCL, a mechanism involving DTC monomer inserts before CL during the initiation process was presumed. Furthermore, the thermal properties of amorphous copolymer were characterized by differential scanning calorimetry (DSC). The results support the random structure of PDTC-co-PCL.

  19. First One-step Enantioselective Reduction of á-Haloacetophenones into Styrene Oxides using Sodium Borohydride in Water

    Institute of Scientific and Technical Information of China (English)

    LI Jing-wei; XU Li-wen; XIA Chun-gu

    2004-01-01

    The synthesis of enantiomerically enriched epoxides especially styrene oxides is an interesting challenge1,2 since they are often valuable building blocks for various fine chemical products and pharmaceuticals such as (a)2-, (a)3-, and á1-adrenergic receptor agonists3, 4. In recent years,there has been a flood of papers describing the synthetical methods of the chiral non-racemic epoxides5,6. Here we firstly developed a green, simple and potential epoxidation system by enantioselective reduction of a-haloacetophenones using NaBH4 in water.The procedure of the unexpected epoxidation was firstly found accidentally in the study of L-proline-catalyzed asymmetric reduction of aldehydes, ketones in water. In that time, we observed not only reductive product a-bromophenethyl alcohol but also a small quantity of styrene oxide after three hour reduction of a-bromoacephenone in water. It is impossible to produce the epoxide in the reduction when THF acts as solvent. Then we optimized the reaction conditions and extended reaction time to 5 hr until we obtained the epoxide as a major product.Encouraged by the front results, we tried a-CD as a chiral inducement and catalyst. Cyclodextrins (CDs), a cyclic oligosaccharide composed of several D-glucose units with an a-1, 4 linkage (6, 7, 8for á-, (a)-, (a)-CD, respectively), have been recognized as versatile enzyme mimics since every one molecule of them possesses a hydrophilic outside, which can dissolve in water, and a hydrophobic cavity, which provides an apolar matrix, described as "micro heterogeneous enwronment"7. All the experiments were carried out in water under room temperature. The procedure is a green, simple and potential, although the optically active styrene oxides are obtained in only moderate ees. and yields.When á-bromoacephenone and Sodium Borohydride (1.2 equiv, to ketone) reacts in water using 150mol% (a)-CD as catalyst, a 41% chemical yield and 45% optical yield of the corresponding epoxide were obtained

  20. Synthesis, structure and gas-phase reactivity of the mixed silver hydride borohydride nanocluster [Ag3(μ3-H)(μ3-BH4)L(Ph)3]BF4 (L(Ph) = bis(diphenylphosphino)methane).

    Science.gov (United States)

    Zavras, Athanasios; Ariafard, Alireza; Khairallah, George N; White, Jonathan M; Mulder, Roger J; Canty, Allan J; O'Hair, Richard A J

    2015-11-21

    Borohydrides react with silver salts to give products that span multiple scales ranging from discrete mononuclear compounds through to silver nanoparticles and colloids. The cluster cations [Ag3(H)(BH4)L3](+) are observed upon electrospray ionization mass spectrometry of solutions containing sodium borohydride, silver(I) tetrafluoroborate and bis(dimethylphosphino)methane (L(Me)) or bis(diphenylphosphino)methane (L(Ph)). By adding NaBH4 to an acetonitrile solution of AgBF4 and L(Ph), cooled to ca. -10 °C, we have been able to isolate the first mixed silver hydride borohydride nanocluster, [Ag3(μ3-H)(μ3-BH4)L(Ph)3]BF4, and structurally characterise it via X-ray crystallography. Combined gas-phase experiments (L(Me) and L(Ph)) and DFT calculations (L(Me)) reveal how loss of a ligand from the cationic complexes [Ag3(H)(BH4)L3](+) provides a change in geometry that facilitates subsequent loss of BH3 to produce the dihydride clusters, [Ag3(H)2Ln](+) (n = 1 and 2). Together with the results of previous studies (Girod et al., Chem. - Eur. J., 2014, 20, 16626), this provides a direct link between mixed silver hydride/borohydride nanoclusters, silver hydride nanoclusters, and silver nanoclusters.

  1. The mechanism of unexpected reduction of dimethyl pyridine-2,3-dicarboxylate to 1,2,3,4-tetrahydrofuro[3,4-b]-pyridin-5(7H)-one with sodium borohydride

    Institute of Scientific and Technical Information of China (English)

    Yan Bo Tang; Qing Jian Zhang; De Quan Yu

    2012-01-01

    An unexpected reduction of dimethyl pyridine-2,3-dicarboxylate to 1,2,3,4-tetrahydrofuro[3,4-b]pyridin-5(7H)-one with sodium borohydride in ethanol and tetrahydrofuran,respectively,is described,a hypothetic mechanism for the unusual reductive product is proposed.

  2. Technological route of hydrogen generation from sodium borohydride%一种硼氢化钠水解制氢的技术路线

    Institute of Scientific and Technical Information of China (English)

    方朝君; 闫常峰; 郭常青

    2011-01-01

    硼氢化钠催化水解制氢是一项实用、环保、可行的制氢技术.直接应用固态的硼氢化钠或与催化剂的混合物制氢比使用其溶液制氢更便捷、安全.本文设计了小型制氢反应器,使用NaBH4和乙酸钴粉末的混合物作初始反应物.研究了初始反应温度、供水速率和NaBH4与乙酸钴的混合比对产氢特性的影响.实验结果表明,反应区外围使用冷却水时,可将反应温度波动控制在6~8℃,这有利于降低氢气流速的峰值和保持相对稳定的氢气流.当催化剂的混合量大于4%时,氢气的转化率可达95%以上.%Hydrogen production by hydrolysis of sodium borohydride by means of metal catalyst is a practical, environment-friendly and feasible approach. Especially, using the solid state sodium borohydride or its mixture directly is simpler and safer than using its solution. The present work was focused on the design of a small scale generator suitable for H2 generation from the mixture powders of sodium borohydride and cobalt acetate as catalyst precursor at a reasonable temperature and at high generation efficiency. The initial temperature, flow rate of water, mixture ratio and product composition were investigated experimentally. It was found that the process temperature measured directly by a thermocouple fluctuated in a small range of 6~8 ℃, which could decrease the peak value of H2 generation rate and obtain a steady hydrogen flow. A high H2 generation efficiency > 95% was achieved under the mixture ratio with the catalyst being more than 4%. The catalyst cobalt acetate was formed in-situ and evenly distributed.

  3. Electrochemical Characteristics of LaNi4.5Al0.5 Alloy Used as Anodic Catalyst in a Direct Borohydride Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Lianbang Wang; Guobin Wu; Zhenzhen Yang; Yunfang Gao; Xinbiao Mao; Chun'an Ma

    2011-01-01

    Fuel cells using borohydride as the fuel have received much attention because of high energy density and theoretical working potential. In this work, LaNi4.5Al0.5 hydrogen storage alloy used as the anodic material has been investigated. It was found that the increasing; operation temperature was helpful to the open-circuit potential, the discharge potential and the power density, but showed a negative effect on the utilization of the fuel due to the accelerated hydrogen evolution. The high KOH concentration was favorable for high-rate discharge capability. The adsorption and transformation of hydrogen on LaNi4.5Al0.5 alloy electrode has been observed, but its contribution to the discharge capability during a high-rate discharge was small.

  4. Research and development of foreign submarine sodium borohydride hydrolysis hydrogen generation%国外潜艇硼氢化钠水解制氢的研究与进展

    Institute of Scientific and Technical Information of China (English)

    李宏伟; 李大鹏; 张晓东

    2012-01-01

    叙述了国外潜艇AIP装置硼氢化钠水解制氢的研究与进展,介绍了硼氢化钠溶液水解制氢方法、水解反应催化剂,描述了潜艇硼氢化钠水解制氢系统、管式和一体式硼氢化钠水解制氢反应器的组成与工作,分析了制氢器反应区内的两相流动现象、反应区体积和换热-冷凝器传热面积要求,以及制氢器内液滴的分离、固体颗粒的沉淀和悬浮物的过滤、制氢器的动态特性等问题.%Research and development of foreign submarine AIP sodium borohydride hydrolysis hydrogen generation is stated in this paper. Method and catalyzer of sodium borohydride hydrolysis hydrogen generation are introduced. Submarine system of sodium borohydride hydrolysis hydrogen generation, constitution and working of tubular and integrative reactors of sodium borohydride hydrolysis hydrogen generation are described. Two-phase flow phenomena, requirements of reactor volume and heat-transfer surface of heat-exchanger-condenser, separation of liquid dribbles, precipitin of solid grains and filtration of suspending particles in the hydrogen generator, as well as dynamic characteristic of hydrogen generator are analyzed.

  5. Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Vitry, Veronique, E-mail: veronique.vitry@umons.ac.be [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Sens, Adeline [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Kanta, Abdoul-Fatah [Service de Sciences des Materiaux, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Delaunois, Fabienne [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Initiation mechanism of electroless Ni-B on St-37 steel has been identified. Black-Right-Pointing-Pointer Different phases of the plating process were observed and identified. Black-Right-Pointing-Pointer Influence of chemical heterogeneity on coating morphology was revealed. Black-Right-Pointing-Pointer Batch replenishment of the plating bath induces new germination phase. - Abstract: Quality and homogeneity of electroless nickel-boron coatings are very important for applications in corrosion and electronics and are completely dependent on the formation of the deposit. The growth and formation process of electroless nickel-boron was investigated by immersing mild steel (St-37) samples in an un-replenished bath for various periods of time (from 5 s to 1 h). The coatings obtained at the different stages of the process were then characterized: thickness was measured by SEM, morphology was observed, weight gain was recorded and top composition of the coatings was obtained from XPS. Three main phases were identified during the coating formation and links between plating time, instantaneous deposition rate, chemistry of last formed deposit and morphology were established. The mechanism for initial deposition on steel substrate for borohydride-reduced electroless nickel bath was also observed. Those results were confronted with chemistry evolution in the unreplenished plating bath during the process. This allowed getting insight about phenomena occurring in the plating bath and their influence on coating formation.

  6. Sodium Borohydride Reduction of Aqueous Silver-Iron-Nickel Solutions: a Chemical Route to Synthesis of Low Thermal Expansion-High Conductivity Ag-Invar Alloys

    Science.gov (United States)

    Sterling, E. A.; Stolk, J.; Hafford, L.; Gross, M.

    2009-07-01

    Thermal management is a critical concern in the design and performance of electronics systems. If heat extraction and thermal expansion are not properly addressed, the thermal mismatch among dissimilar materials may give rise to high thermal stresses or interfacial shear strains, and ultimately to premature system failure. In this article, we present a chemical synthesis process that yields Ag-Invar (64Fe-36Ni) alloys with a range of attractive properties for thermal management applications. Sodium borohydride reduction of an aqueous Ag-Fe-Ni metal salt solution produces nanocrystalline powders, and conventional powder processing converts this powder to fine-grained alloys. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy, thermomechanical analysis, and electrical conductivity measurements; thermal conductivity is estimated using the Wiedemann-Franz law. Sintering of Ag-Fe-Ni powders leads to the formation of two-phase silver-Invar alloys with low coefficients of thermal expansion (CTEs) and relatively high electrical conductivities. A sample of 50Ag-50Invar exhibits a CTE of 8.76 μm/(m· °C) and an estimated thermal conductivity of 236 W/(m·K). The Ag-Invar alloys offer thermodynamic stability and tailorable properties, and they may help address the need for improved packaging materials.

  7. Preparation and Growth of N-Doped Hollow Carbon Nanospheres and Their Application as Catalyst Support in Direct Borohydride Fuel Cell.

    Science.gov (United States)

    Chen, Yuanzhen; Dong, Shujuan; Li, Sai; Liu, Yongning; Yan, Wei

    2015-05-01

    N-doped hollow carbon nanospheres (HCNSs) were prepared by electric arc discharge method in N2 atmosphere. X-ray Photoelectron Spectroscopy (XPS) analysis shows that their nitrogen content reaches up to 4.9 atom%. Both the low thermal conductivity of N2 and the doping of nitrogen atom make carbon unit bend to form hollow nanosphere structure. High-resolution transmission electron microscopy (HRTEM) and X-ray diffusion (XRD) analysis prove the presence of detected defects and a poor crystallinity on the HCNSs shell. Moreover, annealing treatment of HCNSs was carried out at 1100 degrees C/10 h and 1400 degrees C/2 h to research their fracture extension. It is found that HCNSs could grow into closed-tubes even with a shell at high annealing temperature. HCNSs were applied in direct borohydride fuel cell (DBFC) to evaluate their catalytic performance. The electrochemical results show that pure HCNSs doesn't have any catalysis effect, but they can greatly promote the catalytic performance of CoO, and the largest polarization current density of which achieves 1.845 A x cm(-2) at -0.7 V (vs. Hg/HgO electrode).

  8. Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach

    Science.gov (United States)

    Fu, Yongsheng; Huang, Ting; Zhang, Lili; Zhu, Junwu; Wang, Xin

    2015-08-01

    A straightforward approach is developed for fabrication of a visible-light-driven Ag/g-C3N4 catalyst. Morphological observation shows that the g-C3N4 sheets are decorated with highly dispersed Ag nanoparticles having an average size of 5.6 nm. The photocatalytic activity measurements demonstrate that the photocatalytic degradation rates of methyl orange (MO), methylene blue (MB), and neutral dark yellow GL (NDY-GL) over Ag/g-C3N4-4 can reach up to 98.2, 99.3 and 99.6% in the presence of borohydride ions (BH4-) only with 8, 45, and 16 min visible light irradiation, respectively. The significant enhancement in photoactivity of the catalyst is mainly attributed to the high dispersity and smaller size of Ag nanoparticles, the strong surface plasmon resonance (SPR) effect of metallic Ag nanoparticles, the efficient separation of photogenerated charge carriers, the additional superoxide radicals (O&z.rad;-2) generated from the reduction of dissolved oxygen in the presence of BH4- and the synergistic effect of Ag nanoparticles and g-C3N4.A straightforward approach is developed for fabrication of a visible-light-driven Ag/g-C3N4 catalyst. Morphological observation shows that the g-C3N4 sheets are decorated with highly dispersed Ag nanoparticles having an average size of 5.6 nm. The photocatalytic activity measurements demonstrate that the photocatalytic degradation rates of methyl orange (MO), methylene blue (MB), and neutral dark yellow GL (NDY-GL) over Ag/g-C3N4-4 can reach up to 98.2, 99.3 and 99.6% in the presence of borohydride ions (BH4-) only with 8, 45, and 16 min visible light irradiation, respectively. The significant enhancement in photoactivity of the catalyst is mainly attributed to the high dispersity and smaller size of Ag nanoparticles, the strong surface plasmon resonance (SPR) effect of metallic Ag nanoparticles, the efficient separation of photogenerated charge carriers, the additional superoxide radicals (O&z.rad;-2) generated from the reduction of

  9. Highly Efficient Inversion of the C-3 Configuration in 1,2-O-Isopropylidenefuranose Derivatives by an Adapted Swern Oxidation/Sodium Borohydride Reduction Protocol in One Pot

    OpenAIRE

    Silvano Cruz-Gregorio; Luis Hernández; Mónica Vargas; Leticia Quintero; Fernando Sartillo-Piscil

    2005-01-01

    One pot Swern oxidation-sodium borohydride reduction of 1,2-O-isopropylidenefuranose derivatives having the D-gluco or Dxylo configurations led to the corresponding stereoisomers resulting from the stereoselective inversion of C-3. This method is a simple adaptation to the traditional procedure that consists in quenching the Swern oxidation at -60 ºC with a mixture of H2O/EtOH (1:4), in which NaBH4 is dissolved. Thus, the inversion of the configuration at C-3 of 1,2-O-isopropylidenefuranose d...

  10. Hydrogen storage properties of rare earth (RE) borohydrides (RE = La, Er) in composite mixtures with LiBH{sub 4} and LiH

    Energy Technology Data Exchange (ETDEWEB)

    Frommen, Christoph; Heere, Michael [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway); Riktor, Marit D. [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway); SINTEF Materials and Chemistry, Forskningsveien 1, NO-0314 Oslo (Norway); Sørby, Magnus H. [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway); Hauback, Bjørn C., E-mail: bjorn.hauback@ife.no [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway)

    2015-10-05

    Highlights: • 6LiBH{sub 4}–RECl{sub 3}–3LiH composites (RE = La, Er) studied for the first time. • Drastically reduced decomposition temperature (300 {sup o}C) compared to LiBH{sub 4} (>400 °C). • Partial reversibility for 6LiBH{sub 4}–LaCl{sub 3}–3LiH: (19% at 340 °C, 10 MPa). • Excellent reversibility for 6LiBH{sub 4}–ErCl{sub 3}–3LiH: (80% at 340 °C, 10 MPa). • Reversibility comparable to that obtained for pure LiBH{sub 4} (76% at 600 °C and 15.5 MPa). - Abstract: Mixtures of 6LiBH{sub 4}–RECl{sub 3}–3LiH (RE = La, Er) have been produced by mechanochemical milling and their structure, thermal decomposition and reversibility have been studied. Hydrogen desorption starts around 300 °C in both composites. Heating to 400 °C yields LaB{sub 6}, ErB{sub 4} and REH{sub 2+δ} as major decomposition products. LiBH{sub 4} is destabilized by REH{sub 2+δ} formed through decomposition of the parent borohydrides LiLa(BH{sub 4}){sub 3}Cl and Er(BH{sub 4}){sub 3}, respectively, and its hydrogen release temperature is reduced by 100 °C as compared to pure ball-milled LiBH{sub 4}. The lanthanum-containing composite releases 4.2 wt.% H between 300 and 350 °C and shows a limited reversibility of ∼20% (340 °C, 10 MPa) probably due to hydrogen uptake by some amorphous boron-containing phases. For 6LiBH{sub 4}–ErCl{sub 3}–3LiH about 3 wt.% H is evolved up to 400 °C. Desorption against 0.5 MPa backpressure results in an increased reversibility (∼80%) as compared to vacuum (∼66%). Rehydrogenation (340 °C, 10 MPa) shows the formation of ErH{sub 3} and LiBH{sub 4} at drastically reduced conditions compared to pure LiBH{sub 4} (>400 °C, >10 MPa)

  11. Analysis on technological conditions and optimization approach of Schlesinger process for sodium borohydride production%Schlesinger法合成硼氢化钠工艺条件及优化途径

    Institute of Scientific and Technical Information of China (English)

    侯殿保; 李海民; 党亚

    2014-01-01

    目前工业化合成硼氢化钠的工艺有Schlesinger法和Bayer法,而Schlesinger法是工业化合成硼氢化钠应用最广的工艺,其关键步骤为氢化钠和硼酸三甲酯的合成。本文一方面从氢化钠的合成、硼酸三甲酯的合成及硼氢化钠的合成3个方面详细论述了Schlesinger法合成工艺进展情况;并指出目前方法存在的问题,如采用油液分散金属钠法合成的氢化钠活性差,制约了氢化钠的应用,硼酸三甲酯工业合成过程中过多使用浓硫酸造成环境严重污染。另一方面对 Schlesinger 法工艺改进提出了几点设想,如企业全流程合成硼氢化钠可节约外购成本和仓储成本;硼酸三甲酯的合成取代浓硫酸的应用,提纯采用盐析的方法均可以减轻环境污染;硼氢化钠水解过程中采用稀液碱溶液代替淡水,可避免硼氢化钠水解,提高产品收率。%Currently,Schlesinger process and Bayer process are both industrial synthesis process of sodium borohydride. The Brown-Schlesinger process is the major process in use today for making sodium borohydride. The key steps of the process are the production of sodium hydride and trimethyl borate. The synthesis process of sodium hydride,trimethyl borate and sodium borohydride are reviewed. The existing problems are commented,such as sodium hydride prepared in mineral oil is poor in activity,serious environmental pollution caused by excessive use of concentrated sulfuric acid in industrial production of trimethyl borate. Some directions for further study are given. Integration of the process steps from start to finish will impact the bottom line cost. Synthesis of trimethyl borate instead of using sulfuric acid and purification by the salting out method can both reduce environmental pollution. In the process of sodium borohydride hydrolysis use of liquid dilute alkali solution instead of fresh water can avoid sodium borohydride hydrolysis and improve

  12. Trends in Syntheses, Structures, and Properties for Three Series of Ammine Rare-Earth Metal Borohydrides, M(BH4)3·nNH3 (M = Y, Gd, and Dy).

    Science.gov (United States)

    Jepsen, Lars H; Ley, Morten B; Černý, Radovan; Lee, Young-Su; Cho, Young Whan; Ravnsbæk, Dorthe; Besenbacher, Flemming; Skibsted, Jørgen; Jensen, Torben R

    2015-08-03

    Fourteen solvent- and halide-free ammine rare-earth metal borohydrides M(BH4)3·nNH3, M = Y, Gd, Dy, n = 7, 6, 5, 4, 2, and 1, have been synthesized by a new approach, and their structures as well as chemical and physical properties are characterized. Extensive series of coordination complexes with systematic variation in the number of ligands are presented, as prepared by combined mechanochemistry, solvent-based methods, solid-gas reactions, and thermal treatment. This new synthesis approach may have a significant impact within inorganic coordination chemistry. Halide-free metal borohydrides have been synthesized by solvent-based metathesis reactions of LiBH4 and MCl3 (3:1), followed by reactions of M(BH4)3 with an excess of NH3 gas, yielding M(BH4)3·7NH3 (M = Y, Gd, and Dy). Crystal structure models for M(BH4)3·nNH3 are derived from a combination of powder X-ray diffraction (PXD), (11)B magic-angle spinning NMR, and density functional theory (DFT) calculations. The structures vary from two-dimensional layers (n = 1), one-dimensional chains (n = 2), molecular compounds (n = 4 and 5), to contain complex ions (n = 6 and 7). NH3 coordinates to the metal in all compounds, while BH4(-) has a flexible coordination, i.e., either as a terminal or bridging ligand or as a counterion. M(BH4)3·7NH3 releases ammonia stepwise by thermal treatment producing M(BH4)3·nNH3 (6, 5, and 4), whereas hydrogen is released for n ≤ 4. Detailed analysis of the dihydrogen bonds reveals new insight about the hydrogen elimination mechanism, which contradicts current hypotheses. Overall, the present work provides new general knowledge toward rational materials design and preparation along with limitations of PXD and DFT for analysis of structures with a significant degree of dynamics in the structures.

  13. Recent development of anode electrocatalysts for direct sodium borohydride fuel cell%硼氢化钠燃料电池负极催化剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    岳增芳; 余丹梅; 陈昌国

    2011-01-01

    Whether the oxidation of NaBH4 occurs with 8 e- is the key to direct sodium borohydride fuel cell(DBFC),from which the highest capacity can be obtained. However, the electrons number generated by BH4-oxidized is different due to the different anode electrocatalysts, and the composition and structure of the electrccatalysts are very important upon this reaction, Based on the principle of DBFC, the recent progress of anode electrccatalysts both domestically and abroad were reviewed in detail, The development and application of DBFC catalysts in the future was presented.%直接硼氢化钠燃料电池(DBFC)的核心在于NaBH4的氧化是否能发生8e一的氧化反应.从而达到最高的电子利用率.但负极电催化荆不同.BH4-电氧化释放出的电子数也不同,因此负极催化剂的组成和结构对该氧化反应有十分重要的影响.在介绍DBFC工作原理的基础上,着重概述了近几年来国内外在D日FC负极催化剂方面所取得的研究进展,展望了DBFC催化剂的发展趋势.

  14. 硼氢化钾还原冷原子荧光测定大米中的汞%Determination of mercury in rice by potassium borohydride reduction cold vapor atomic fluorescence

    Institute of Scientific and Technical Information of China (English)

    毛荐; 刘忠胜

    2011-01-01

    本方法采用硝酸-过氧化氢微波消解,硼氢化钾还原冷原子荧光测定大米中的汞,消解液无需赶酸,直接测汞,方法简便快捷,实验检出限浓度为0.024μg/L,线性范围0~40 ng/ml,经国家一级标准物质验证,方法准确可靠。%This method uses nitric acid-hydrogen peroxide microwave digestion,potassium borohydride reduction of rice in cold vapor atomic fluorescence of mercury,acid digestion solution without the need to catch,direct measurement of mercury,the method is quick and easy experimental detection limit concentration of 0.024 μg / L,the linear range of 0 ~ 40 ng / ml,The method is accurate and reliable verified by the national standard.

  15. 硼氢化钠制氢技术在质子交换膜燃料电池中的研究进展%Recent advances in the study of sodium borohydride hydrolysis for pure hydrogen supply to PEM fuel cell

    Institute of Scientific and Technical Information of China (English)

    王玉晓

    2009-01-01

    硼氢化钠储氢量高达10.6%,安全、无爆炸危险,携带和运输方便;供氢系统设备简单,启动速度快,产氢速度可调,因此是一个非常良好的氢载体,是为质子交换膜燃料电池供氢的理想储氢介质.硼氢化钠供氢系统也已逐步应用于质子交换膜燃料电池电源中.介绍了这种制氢方式的几项关键技术:硼氢化钠水解制氢催化剂、硼氢化钠制氢反应器、氢气净化系统等在质子交换膜燃料电池中的研究进展,并指出了今后的研究发展方向.%Sodium borohydride contains hydrogen as high as 10.6%, and it is safe, no fire and explosion danger, and portable. This hydrogen supply system has the features of simple structure, fast starting, and adjustable hydrogen production speed. Therefore, sodium borohydride is a very promising hydrogen carrier and a perfect medium for pure hydrogen supply to proton exchange membrane fuel cell (PEMFC). In fact, the hydrolysis of sodium borohydride for hydrogen supply to PEMFC is in the way to real application. This review summarizes the recent advances in this hydrogen generation system including catalysts, reactors and purification methods, and the direction for sequent research is also discussed.

  16. Novel Coordination Chemistry of Aluminum Borohydride

    Science.gov (United States)

    2014-08-01

    four different crystal shapes were identified under a microscope.  Super thin plates are not a preferred crystal shape for X-ray analysis. Anion ...coordination of various ligands. Previously we investigated an IL based upon the [Al(BH4)4]- anion . This material showed a much improved air and...moisture stability compared to ABH. Here we present research on the coordination of the cyanoborohydride anion (NCBH3-) with ABH. The coordination

  17. First-principles determination of the structure of magnesium borohydride.

    Science.gov (United States)

    Zhou, Xiang-Feng; Oganov, Artem R; Qian, Guang-Rui; Zhu, Qiang

    2012-12-14

    The energy landscape of Mg(BH(4))(2) under pressure is explored by ab initio evolutionary calculations. Two new tetragonal structures, with space groups P4 and I4(1)/acd, are predicted to be lower in enthalpy by 15.4 and 21.2 kJ/mol, respectively, than the earlier proposed P4(2)nm phase. We have simulated x-ray diffraction spectra, lattice dynamics, and equations of state of these phases. The density, volume contraction, bulk modulus, and simulated x-ray diffraction patterns of I4(1)/acd and P4 structures are in excellent agreement with the experimental results.

  18. Confinement Effects for Lithium Borohydride: Comparing Silica and Carbon Scaffolds

    Science.gov (United States)

    2017-01-01

    LiBH4 is a promising material for hydrogen storage and as a solid-state electrolyte for Li ion batteries. Confining LiBH4 in porous scaffolds improves its hydrogen desorption kinetics, reversibility, and Li+ conductivity, but little is known about the influence of the chemical nature of the scaffold. Here, quasielastic neutron scattering and calorimetric measurements were used to study support effects for LiBH4 confined in nanoporous silica and carbon scaffolds. Pore radii were varied from 8 Å to 20 nm, with increasing confinement effects observed with decreasing pore size. For similar pore sizes, the confinement effects were more pronounced for silica than for carbon scaffolds. The shift in the solid–solid phase transition temperature is much larger in silica than in carbon scaffolds with similar pore sizes. A LiBH4 layer near the pore walls shows profoundly different phase behavior than crystalline LiBH4. This layer thickness was 1.94 ± 0.13 nm for the silica and 1.41 ± 0.16 nm for the carbon scaffolds. Quasi-elastic neutron scattering confirmed that the fraction of LiBH4 with high hydrogen mobility is larger for the silica than for the carbon nanoscaffold. These results clearly show that in addition to the pore size the chemical nature of the scaffold also plays a significant role in determining the hydrogen mobility and interfacial layer thickness in nanoconfined metal hydrides. PMID:28286596

  19. First-principles calculations of mass transport in magnesium borohydride

    Science.gov (United States)

    Yu, Chao; Ozolins, Vidvuds

    2013-03-01

    Mg(BH4)2 is a hydrogen storage material which can decompose to release hydrogen in the following reaction: Mg(BH4)2(solid) -->1/6 MgB12H12(solid) + 5/6MgH2(solid) +13/6 H2(gas) --> MgH2(solid) + 2B(solid) + 4H2(gas). However, experiments show that hydrogen release only occurs at temperatures above 300 °C, which severely limits applications in mobile storage. Using density-functional theory calculations, we systematically study bulk diffusion of defects in the reactant Mg(BH4)2 and products MgB12H12 and MgH2 during the first step of the solid-state dehydrogenation reaction. The defect concentrations and concentration gradients are calculated for a variety of defects, including charged vacancies and interstitials. We find that neutral [BH3] vacancies have the highest bulk concentration and concentration gradient in Mg(BH4)2. The diffusion mechanism of [BH3] vacancy in Mg(BH4)2 is studied using the nudged elastic band method. Our results shows that the calculated diffusion barrier for [BH3] vacancies is ~ . 2 eV, suggesting that slow mass transport limits the kinetics of hydrogen desorption.

  20. Stereoselective sodium borohydride reductions of cyclopentanones: influence of ceric chloride on the stereochemistry of reaction

    Directory of Open Access Journals (Sweden)

    Constantino Mauricio Gomes

    1998-01-01

    Full Text Available In this paper we describe the reduction by NaBH4 of some cyclopentanones containing an oxygenated function at the side chain position beta to the carbonyl group, both in the presence and in the absence of CeCl3. Some suggestions for the rationalization of the results are discussed, considering the stereochemical course of the reactions.

  1. In situ infrared (FTIR) study of the mechanism of the borohydride oxidation reaction.

    Science.gov (United States)

    Concha, B Molina; Chatenet, M; Maillard, F; Ticianelli, E A; Lima, F H B; de Lima, R B

    2010-10-07

    Early reports stated that Au was a catalyst of choice for the BOR because it would yield a near complete faradaic efficiency. However, it has recently been suggested that gold could yield to some extent the heterogeneous hydrolysis of BH, therefore lowering the electron count per BH, especially at low potential. Actually, the blur will exist regarding the BOR mechanism on Au as long as no physical proof regarding the reaction intermediates is not put forward. In that frame, in situ physical techniques like FTIR exhibit some interest to study the BOR. Consequently, in situ infrared reflectance spectroscopy measurements (SPAIRS technique) have been performed in 1 M NaOH/1 M NaBH(4) on a gold electrode with the aim to detect the intermediate species. We monitored several bands in B-H (nu ∼ 1180, 1080 and 972 cm(-1)) and B-O bond regions (nu = 1325 and ∼1425 cm(-1)), which appear sequentially as a function of the electrode polarization. These absorption bands are assigned to BH(3), BH(2) and BO species. At the light of the experimental results, possible initial elementary steps of the BOR on gold electrode have been proposed and discussed according to the relevant literature data.

  2. Characterisation of silver nanoparticles produced by three different methods based on Borohydride reducing agent

    Directory of Open Access Journals (Sweden)

    Hani Ramli Roslinda

    2016-01-01

    Full Text Available This work reports the preparation and characterisation of silver nanoparticles (AgNPs through chemical reduction method with three different procedures denote as modified Mulfinger’s Method, Mulfinger’s Method and Malina’s Method. The yellow colloidal solution were characterised and analysed using Field Emission Scanning Electron Microscopy (FESEM, Energy Dispersive X-ray Spectroscopy (EDS, X-Ray Diffraction (XRD. FESEM and EDS analyses confirmed that the formation of AgNPs in Malina’s Method with highest yield of silver (Ag, 67.39 % weight as compared to Mulfinger’s and modified Mulfinger’s Method. The peaks in XRD pattern for Malina’s Method are in good agreement with face-centered-cubic form of metallic silver while modified Mulfinger’s Method and Mulfinger’s Method XRD pattern suggest the halite/sodium chlorate and silver chlorate peaks respectively. Malina’s Method is found to be a suitable method to study AgNPs.

  3. Characterisation of silver nanoparticles produced by three different methods based on Borohydride reducing agent

    OpenAIRE

    Hani Ramli Roslinda; Soon Chin Fhong; Mohd Rus Anika Zafiah

    2016-01-01

    This work reports the preparation and characterisation of silver nanoparticles (AgNPs) through chemical reduction method with three different procedures denote as modified Mulfinger’s Method, Mulfinger’s Method and Malina’s Method. The yellow colloidal solution were characterised and analysed using Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), X-Ray Diffraction (XRD). FESEM and EDS analyses confirmed that the formation of AgNPs in Malina’s Me...

  4. Recent Advances in the Use of Sodium Borohydride as a Solid State Hydrogen Store

    Directory of Open Access Journals (Sweden)

    Jianfeng Mao

    2015-01-01

    Full Text Available The development of new practical hydrogen storage materials with high volumetric and gravimetric hydrogen densities is necessary to implement fuel cell technology for both mobile and stationary applications. NaBH4, owing to its low cost and high hydrogen density (10.6 wt%, has received extensive attention as a promising hydrogen storage medium. However, its practical use is hampered by its high thermodynamic stability and slow hydrogen exchange kinetics. Recent developments have been made in promoting H2 release and tuning the thermodynamics of the thermal decomposition of solid NaBH4. These conceptual advances offer a positive outlook for using NaBH4-based materials as viable hydrogen storage carriers for mobile applications. This review summarizes contemporary progress in this field with a focus on the fundamental dehydrogenation and rehydrogenation pathways and properties and on material design strategies towards improved kinetics and thermodynamics such as catalytic doping, nano-engineering, additive destabilization and chemical modification.

  5. Hydrogen rotational and translational diffusion in calcium borohydride from quasielastic neutron scattering and DFT

    DEFF Research Database (Denmark)

    Blanchard, Didier; Riktor, M.D.; Maronsson, Jon Bergmann;

    2010-01-01

    with different time scales in combination with density functional theory (DFT) calculations. Two thermally activated reorientational motions were observed, around the 2-fold (C2) and 3-fold (C3) axes of the BH4− units, at temperature from 95 to 280K. The experimental energy barriers (EaC2 = 0.14 eV and EaC3 = 0...

  6. Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties

    Directory of Open Access Journals (Sweden)

    R. Miyazaki

    2014-05-01

    Full Text Available The high energy density and excellent cycle performance of lithium ion batteries makes them superior to all other secondary batteries and explains why they are widely used in portable devices. However, because organic liquid electrolytes have a higher operating voltage than aqueous solution, they are used in lithium ion batteries. This comes with the risk of fire due to their flammability. Solid electrolytes are being investigated to find an alternative to organic liquid. However, the nature of the solid-solid point contact at the interface between the electrolyte and electrode or between the electrolyte grains is such that high power density has proven difficult to attain. We develop a new method for the fabrication of a solid electrolyte using LiBH4, known for its super Li+ ion conduction without any grain boundary contribution. The modifications to the conduction pathway achieved by stabilizing the high pressure form of this material provided a new structure with some LiBH4, more suitable to the high rate condition. We synthesized the H.P. form of LiBH4 under ambient pressure by doping LiBH4 with the KI lattice by sintering. The formation of a KI - LiBH4 solid solution was confirmed both macroscopically and microscopically. The obtained sample was shown to be a pure Li+ conductor despite its small Li+ content. This conduction mechanism, where the light doping cation played a major role in ion conduction, was termed the “Parasitic Conduction Mechanism.” This mechanism made it possible to synthesize a new ion conductor and is expected to have enormous potential in the search for new battery materials.

  7. Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium Borohydride-Water Reaction

    Science.gov (United States)

    2015-07-01

    is a plot of total hydrogen gas as a function of reaction time. This experiment was conducted in the pressure tank at an applied pressure of 13 psig...function of reaction time. This experiment was conducted in the pressure tank at an applied pressure of 50 psig using a H2O:NaBH4 ratio of 4.6:1 and 3.0... pressure tank (McMaster-Carr, part number. 6778K21). The pressure tank has a 185-psig maximum pressure rating at 37.8 ºC and a maximum operating

  8. Electroless Plated Co-Ni-P-B/Ni Foam Catalyst for Hydrogen Generation from Sodium Borohydride.

    Science.gov (United States)

    Park, Daeil; Kim, Taegyu

    2016-02-01

    Co-Ni-P-B catalyst supported on Ni foam was prepared using electroless plating for hydrogen generation from an alkaline NaBH4 solution. Co-B, Co-P-B, and Co-Ni-B were prepared for comparison. Surface morphology of catalyst/Ni foams were observed using SEM analysis. The Co- Ni-P-B/Ni foam catalyst showed the superior performance on hydrogen generation rate due to the uniform formation of catalyst particles on the surface of Ni foam. Characteristics of hydrogen generation rate on the Co-N-P-B/Ni foam catalyst were investigated at the variety of NaBH4 and NaOH concentrations. The hydrogen generation rate increased with decreasing NaBH4 concentration, while increasing NaOH concentration. Durability test was performed, resulting in the stable hydrogen generation for 6 hours.

  9. Dehydrogenation in lithium borohydride/conventional metal hydride composite based on a mutual catalysis

    DEFF Research Database (Denmark)

    Yu, X.B.; Shi, Qing; Vegge, Tejs;

    2009-01-01

    The dehydrogenation of LiBH4 ball-milled with hydrogenated 40Ti–15Mn–15Cr–30V alloy was investigated. It was found that there is a mutual catalysis between the two hydrides, lowering the temperature of hydrogen release from both hydrides. In the case of 1h milled LiBH4/40Ti–15Mn–15Cr–30V...... with a mass ratio of 1:4, the peak temperatures of 40Ti–15Mn–15Cr–30V and LiBH4 were decreased to 195 and 390°C, respectively, which are 77 and 50°C lower than the respective hydride on its own....

  10. Iodide substitution in lithium borohydride, LiBH{sub 4}-LiI

    Energy Technology Data Exchange (ETDEWEB)

    Rude, Line H., E-mail: line@inano.au.dk [Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Groppo, Elena, E-mail: elena.groppo@unito.it [Dipartimento di Chimica I.F.M. and NIS, Universita di Torino, Torino (Italy); Arnbjerg, Lene M., E-mail: lenem@chem.au.dk [Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Ravnsbaek, Dorthe B., E-mail: inadr@inano.au.dk [Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Malmkjaer, Regitze A., E-mail: regitze.aagaard.malmkjaer@post.au.dk [Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Filinchuk, Yaroslav, E-mail: Yaroslav.Filinchuk@uclouvain.be [Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Swiss-Norwegian Beam Lines at ESRF, BP-220, 38043 Grenoble (France); Institute of Condensed Matter and Nanosciences, Universite Catholique de Louvain, Place L. Pasteur 1, B-1348 Louvain-la-Neuve (Belgium); Baricco, Marcello, E-mail: marcello.baricco@unito.it [Dipartimento di Chimica I.F.M. and NIS, Universita di Torino, Torino (Italy); Besenbacher, Flemming, E-mail: fbe@inano.au.dk [Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Jensen, Torben R., E-mail: trj@chem.au.dk [Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark)

    2011-08-18

    Graphical abstract: Highlights: > Anion substitution in LiBH{sub 4}. > Structure and properties of two LiBH{sub 4}-LiI solid solutions. > Stability upon heating and over time. > Hydrogen storage properties of LiBH{sub 4}-LiI. - Abstract: The new concept, anion substitution, is explored for possible improvement of hydrogen storage properties in the system LiBH{sub 4}-LiI. The structural chemistry and the substitution mechanism are analyzed using Rietveld refinement of in situ synchrotron radiation powder X-ray diffraction (SR-PXD) data, attenuated total reflectance infrared spectroscopy (ATR-IR), differential scanning calorimetry (DSC) and Sieverts measurements. Anion substitution is observed as formation of two solid solutions of Li(BH{sub 4}){sub 1-x}I{sub x}, which merge into one upon heating. The solid solutions have hexagonal structures (space group P6{sub 3}mc) similar to the structures of h-LiBH{sub 4} and {beta}-LiI. The solid solutions have iodide contents in the range {approx}0-62 mol% and are stable from below room temperature to the melting point at 330 deg. C. Thus the stability of the solid solutions is higher as compared to that of the orthorhombic and hexagonal polymorphs of LiBH{sub 4} and {alpha}- and {beta}-LiI. Furthermore, the rehydrogenation properties of the iodide substituted solid solution Li(BH{sub 4}){sub 1-x}I{sub x}, measured by the Sieverts method, are improved as compared to those of LiBH{sub 4}. After four cycles of hydrogen release and uptake the Li(BH{sub 4}){sub 1-x}I{sub x} solid solution maintains 68% of the calculated hydrogen storage capacity in contrast to LiBH{sub 4}, which maintains only 25% of the storage capacity after two cycles under identical conditions.

  11. Agile Thermal Management STT-RX, Modified Magnesium Hydride and Calcium Borohydride for High-Capacity Thermal Energy Storage (PREPRINT)

    Science.gov (United States)

    2011-12-01

    power generation industry uses hydrogen extensively (often produced by on-site electrolysis ) to provide high-rate cooling of turbine generator windings...Investigation of Thermally Conducting Phase-Change Materials Based on Polyethylene/Wax Blends Filled with Copper Particles.” Journal of Applied Polymer

  12. 复分解法制备硼氢化钾%Preparation of potassium borohydride by double decomposition

    Institute of Scientific and Technical Information of China (English)

    卞祥; 王日杰; 杨晓霞

    2015-01-01

    为了减少Schlesinger法生产固体硼氢化钠的母液循环所带来的水解损失和设备负荷,以目前工业硼氢化钠生产中典型结晶母液(25% NaBH4、5% NaOH、70% H2O)和氢氧化钾为原料,采用复分解法直接制备固体硼氢化钾.利用X-射线粉末衍射、光学显微分析和碘量滴定法研究了氢氧化钾用量、反应温度、结晶温度、溶剂蒸发量等因素对产品组成和收率的影响.结果表明,氢氧化钾/硼氢化钠摩尔比为1.10,反应温度低于60℃,结晶温度低于10℃时,硼氢化钾粗产品粒度分布均匀,纯度可以达到86%,收率>80%.

  13. Characterization of Hydrogen-Storage Properties and Physical Properties of Zinc Borohydride and Transition Metals-Added Magnesium Hydride

    Directory of Open Access Journals (Sweden)

    Young Jun KWAK

    2017-02-01

    Full Text Available In this work, 90 wt.% MgH2 + 5 wt.% Ni + 1.7 wt.% Zn(BH42 + 1.7 wt.% Ti + 1.7 wt.% Fe samples (named 90MgH2 + 5Ni + 1.7Zn(BH42 + 1.7Ti + 1.7Fe were prepared by milling in a planetary ball mill in a hydrogen atmosphere. The fraction of additives was small (10 wt.% in order to increase hydriding and dehydriding rates without decreasing the hydrogen storage capacity much. The hydrogen absorption and release properties of the prepared samples were investigated. 90MgH2 + 5Ni + 1.7Zn(BH42 + 1.7Ti + 1.7Fe had an effective hydrogen storage capacity of 5 wt.%. The activation of 90MgH2 + 5Ni + 1.7Zn(BH42 + 1.7Ti + 1.7Fe was completed after 2 hydriding-dehydriding cycles. At n = 3, the sample absorbed 4.14 wt.% H for 5 min and 5.00 wt.% H for 60 min at 593 K under 12 bar H2. The sample dehydrided at the 3rd hydriding-dehydriding cycle contained Mg and small amounts of β-MgH2, MgO, Mg2Ni, TiH1.924, and Fe. The BET specific surface areas of the sample after milling in a hydrogen atmosphere and after 3 hydriding-dehydriding cycles were 57.9 and 53.2 m2/g, respectively.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14878

  14. Quasielastic neutron scattering study of tetrahydroborate anion dynamical perturbations in sodium borohydride due to partial halide anion substitution

    Energy Technology Data Exchange (ETDEWEB)

    Verdal, Nina [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Udovic, Terrence J. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Rush, John J. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Skripov, Alexander V. [Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation)

    2015-10-05

    Highlights: • NaBH{sub 4}–NaX (X = Cl, I) solutions were made by ball-milling/annealing pure compounds. • BH{sub 4}{sup −} reorientational motions were studied by quasielastic neutron scattering. • Mobility increased from X = Cl to NaBH{sub 4} to X = I, consistent with expanding lattices. • Near 400 K, BH{sub 4}{sup −} favored cubic tumbling for X = Cl and tetrahedral tumbling for X = I. • Activation energies were in the range of 11–12 kJ mol{sup −1} for both compounds. - Abstract: Equimolar NaBH{sub 4}–NaX (X = Cl and I) solid solutions were synthesized to study, via quasielastic neutron scattering, the effect of partial halide anion substitution on the reorientational dynamics of tetrahydroborate (BH{sub 4}{sup −}) anions in NaBH{sub 4}. The BH{sub 4}{sup −} reorientational mobility increased in the order of NaBH{sub 4}–NaCl, NaBH{sub 4}, and NaBH{sub 4}–NaI, which corresponded with expanding face-centered-cubic lattices accommodating the respective increasing sizes of the Cl{sup −}, BH{sub 4}{sup −}, and I{sup −} anions. The BH{sub 4}{sup −} anions in NaBH{sub 4}–NaCl were found (at least above 400 K) to undergo ‘cubic’ tumbling motions with the four H atoms per anion visiting all eight corners of a cube, similar to what was previously observed for NaBH{sub 4}. In contrast, the BH{sub 4}{sup −} anions in NaBH{sub 4}–NaI were found to undergo something more akin to ‘tetrahedral’ tumbling motions, where the H atoms visit all four corners of a tetrahedron. Despite a noticeable softening of the BH{sub 4}{sup −} torsional energies with increasing lattice constant amongst NaBH{sub 4} and the two solid solutions, all three compounds exhibited similar activation energies for reorientation of about 11–12 kJ mol{sup −1}.

  15. Cobalt,a reactive metal in releasing hydrogen from sodium borohydride by hydrolysis:A short review and a research perspective

    Institute of Scientific and Technical Information of China (English)

    DEMIRCI; Umit; B; AKDIM; Ouardia; HANNAUER; Julien; CHAMOUN; Rita; MIELE; Philippe

    2010-01-01

    Cobalt is commonly admitted as being a promising catalyst in accelerating NaBH4 hydrolysis,being as reactive as noble metals and much more cost-effective.This is the topic of the present paper.Herein,we survey(i) the NaBH4-devoted literature while especially focusing on the Co catalysts and(ii) our work on the same topic.Finally,we report(iii) reactivity results of newly developed Co-based catalysts.From both surveys,it mainly stands out that Co has been investigated as catalysts in various forms:namely,as chlorides,reduced nanoparticles(metal Co,Co boride,Co-B alloy),supported over supports and shaped.In doing so the reactivity can be easily varied achieving H2 generation rates from few to >1000 L(H2)/min·g(metal).Nevertheless,our work can be distinguished from the NaBH4 literature.Indeed,we are working on strategies that focus on making alternative Co-based catalysts.One of these strategies is illustrated here as we report new reactivity data of Co-based bimetallic supported catalysts.For example,we show that 20 wt% Co90Y10/γAl2O3-20 wt% Co95Hf5/γAl2O3 > 20 wt% Co99Zr1/γAl2O3 > 20 wt% Co/γAl2O3,the best catalysts showing HGRs of about 245 mL(H2)/min or 123 L(H2) /min·g(metals).

  16. Development status of synthetic methods for sodium borohydride%硼氢化钠合成与制备方法的发展现状

    Institute of Scientific and Technical Information of China (English)

    余丹梅; 赵家雄; 王丽; 陈昌国

    2008-01-01

    综述了硼氢化钠合成方法发展现状,主要方法包括Schlesinger法、Bayer法、直接还原法、机械-化学还原结合法、微波法、辐射法等,重点介绍了电化学还原偏硼酸钠制备硼氢化钠的原理和进展.

  17. Zinc Borohydride-Ionic Liquid: Stable and Efficient System for Reductive Reaction of Aldehydes with Primary Amines to Corresponding Secondary Amines

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ 1 Introduction Ionic liquids(ILs) are attracting much attention in various fields of chemical synthesis, electrochemical applications, liquid-liquid extractions, as well as biotransformations. Among those fields, the application of ILs as the potential green solvent for a wide variety of synthetic processes is an area of intense researches.High yield, high selectivity, and good catalytic charac-teristics have usually been achieved. After the isolation of products, ILs can usually be recovered and recycled many times by simple treating procedures,such as, filtration, extraction, and dryness. Because of their superiorities mentioned earlier, together with their unique physicochemical characters of negligible vapor pressure, thermal stability, and favorable solubility of various chemicals, ILs have received extensive attention by organic researchers recently[1].

  18. Theoretical and experimental study on Mg(BH{sub 4}){sub 2}–Zn(BH{sub 4}){sub 2} mixed borohydrides

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, E. [Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7-9, I-10125 Torino (Italy); Kalantzopoulos, G.N. [Institute for Energy Technology, Department of Physics, P.O. Box 40, NO-2027 Kjeller (Norway); Vitillo, J.G.; Pinatel, E.; Civalleri, B. [Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7-9, I-10125 Torino (Italy); Deledda, S. [Institute for Energy Technology, Department of Physics, P.O. Box 40, NO-2027 Kjeller (Norway); Bordiga, S. [Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7-9, I-10125 Torino (Italy); Hauback, B.C. [Institute for Energy Technology, Department of Physics, P.O. Box 40, NO-2027 Kjeller (Norway); Baricco, M., E-mail: marcello.baricco@unito.it [Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7-9, I-10125 Torino (Italy)

    2013-12-15

    Highlights: •An ideal mixing behavior was predicted for Mg{sub (1−x)}Zn{sub x}(BH{sub 4}){sub 2} solid solutions. •A value of 30kJmol{sub H2}{sup -1} for the enthalpy of decomposition has been calculated for x = 0.2. •Samples have been synthesized ball milling Mg(BH{sub 4}){sub 2} and ZnCl{sub 2} in a molar ratio 1:0.7. •B{sub 2}H{sub 6} is released preventing the reversibility of hydrogen sorption. •Thermodynamic calculations supported experimental data. -- Abstract: After a screening of possible systems prone to give an enthalpy of decomposition close to 30kJmol{sub H2}{sup -1}, i.e. suitable for a dehydrogenation process close to room temperature and pressure, the Zn dissolution into Mg(BH{sub 4}){sub 2} has been investigated. The total energy of pure compounds and solid solutions has been computed by DFT calculations using the CRYSTAL09 code. To generate the Mg{sub (1−x)}Zn{sub x}(BH{sub 4}){sub 2} solid solution, α-phase of Mg(BH{sub 4}){sub 2} (space group P6{sub 1}22) has been considered, with a replacement of Mg{sup 2+} with Zn{sup 2+} ions, without lowering the symmetry of the crystalline structure. On the basis of DFT results, the enthalpy of decomposition has been estimated, considering MgH{sub 2}, Zn, α-B and H{sub 2} as products, and a value of 30kJmol{sub H2}{sup -1} has been calculated for x = 0.2. In order to verify the results of calculations, mixtures of Mg(BH{sub 4}){sub 2} and ZnCl{sub 2} with 1.0:0.7 ratio have been ball milled, both at room temperature and in cryo-conditions. Samples have been analyzed with a combination of experimental techniques (XRD, DSC, IR–ATR, TGA, TPD, PCI). The phase mixture obtained after the synthesis strongly depends on the milling conditions. For prolonged times, the formation of Zn and MgCl{sub 2} has been observed, suggesting the delivering of B-containing species during the milling. After heating, a hydrogen release, coupled with diborane delivering, has been observed for temperatures close to 100 °C, suggesting a significant decrease of the decomposition temperature with respect to pure Mg(BH{sub 4}){sub 2}. Theoretical and experimental results have been discussed on the basis of the possible reaction paths, as estimated from available thermodynamic databases.

  19. Halide Free M(BH4)2 (M = Sr, Ba, and Eu) Synthesis, Structure, and Decomposition.

    Science.gov (United States)

    Sharma, Manish; Didelot, Emilie; Spyratou, Alexandra; Lawson Daku, Latévi Max; Černý, Radovan; Hagemann, Hans

    2016-07-18

    Borohydrides have attained high interest in the past few years due to their high volumetric and gravimetric hydrogen content. Synthesis of di/trimetallic borohydride is a way to alter the thermodynamics of hydrogen release from borohydrides. Previously reported preparations of M(BH4)2 involved chloride containing species such as SrCl2. The presence of residual chloride (or other halide) ions in borohydrides may change their thermodynamic behavior and their decomposition pathway. Pure monometallic borohydrides are needed to study decomposition products without interference from halide impurities. They can also be used as precursors for synthesizing di/trimetallic borohydrides. In this paper we present a way to synthesize halide free alkaline earth metal (Sr, Ba) and europium borohydrides starting with the respective hydrides as precursors. Two novel high temperature polymorphs of Sr and Eu borohydrides and four polymorphs of Ba borohydride have been characterized by synchrotron X-ray powder diffraction, thermal analysis, and Raman and infrared spectroscopy and supported by periodic DFT calculations. The decomposition routes of these borohydrides have also been investigated. In the case of the decomposition of strontium and europium borohydrides, the metal borohydride hydride (M(BH4)H3, M = Sr, Eu) is observed and characterized. Periodic DFT calculations performed on room temperature Ba(BH4)2 revealed the presence of bidentate and tridentate borohydrides.

  20. Characterization and Development of Advanced Materials: Role & Understanding of Interfacial Phenomena (Congressional)

    Science.gov (United States)

    2007-12-01

    Activities/Progress (a) Hydride-borohydride, borohydride-imides and other mixed materials as probable hydrogen storage material: LiBH4- MgH2 has...JAm Chem Soc. 2008 7. Role of catalysis in the regeneration of MgH2 -LiBH 4 mixed hydride-borohydride systems, Santanu Chaudhuri, Jason Graetz

  1. Process for synthesis of ammonia borane for bulk hydrogen storage

    Science.gov (United States)

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  2. Regenerative Fuel Cells for Space Power and Energy Conversion (NaBH4/H2O2 Fuel Cell Development)

    Science.gov (United States)

    Valdez, Thomas I.; Miley, George H.; Luo, Nie; Burton, Rodney; Mather, Joseph; Hawkins, Glenn; Byrd, Ethan; Gu, Lifeng; Shrestha, Prajakti Joshi

    2006-01-01

    A viewgraph presentation describing hydrogen peroxide and sodium borohydride development is shown. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Fuel Cell Comparisons; 4) MEA Optimization; 5) 500-Watt Stack Testing; 6) System Modeling: Fuel Cell Power Source for Lunar Rovers; and 7) Conclusions

  3. 污泥基载体负载Co基催化剂催化NaBH4水解制氢反应性能研究%Hydrogen Generation from Catalytic Hydrolysis of Alkaline Sodium Borohydride Solution Using Sludge-Ssupported Co-B Catalyst

    Institute of Scientific and Technical Information of China (English)

    张璇; 付国家; 田红景; 郭庆杰

    2013-01-01

    污水处理厂的污泥经NaOH溶液浸泡去除灰分开孔后用作载体,通过多步浸渍-还原法负载Co制得Co基催化剂。采用XRD、SEM和N2吸附测试对该催化剂进行表征分析,结果表明:Co成功负载到了污泥基载体上,催化剂表面孔结构发达,具有较大比表面积和分布较均一的孔径。今系统性考察了催化剂用量、反应温度和循环次数对污泥基催化剂催化性能的影响;实验证明该催化剂稳定性及活性均较高,在循环使用9次后,催化产氢产率仅由179.2 mL×min-1×g-1催化剂下降至106.7 mL×min-1×g-1催化剂。催化剂催化产氢反应的活化能为55.12 kJ×mol-1。污泥来源广泛,以其为载体制备产氢催化剂可应用于便携式氢燃料电池领域,具有很好的环境、社会和经济效益。%The sewage sludge from the Wastewater Treatment Plant of Qingdao was soaked by high concentration NaOH solution to reduce its ash content. Cobalt nitrate was impregnated with the treated sludge by multiple impregnation-reduction procedures to generate a sludge-supported Co catalyst. The prepared catalysts were characterized by X ray diffraction (XRD), scanning electron microscopy (SEM), and N2 adsorption measurements. The results indicate that the Co is successfully loaded on the sludge-based support. A systematic study was conducted to evaluate the effects of the amount of catalysts, the reaction temperature, the concentration of NaOH and the concentration of NaBH4 on stability and catalytic performance of the prepared catalysts. The results confirm that the sludge-supported Co catalyst exhibits good stability and catalytic activity. After being used for 9 times, the hydrogen generation ratio of the catalyst decreases from 179.2 mL×min-1×g-1 to 106.7 mL×min-1×g-1. The activation energy of the hydrogen generation reaction of the catalyst is 55.12 kJ×mol-1. Sludge is abundant in nature, and using sludge as Co support provides a way to turn the waste into resource.

  4. Effect of certain structural features of coal on Its tendency towards reduction

    Energy Technology Data Exchange (ETDEWEB)

    Grigor' yeva, Ye. A.; Bakirova, Ye.V.; Dzhalyabova, L.V.; Larina, N.K.; Lesnikova, Ye.B.; Zharova, M.N.,

    1981-01-01

    A study is made of the effect of easily destroyed ether groupings and organic-mineral bonds in coal structure on the tendency towards reduction with the help of hydrolytic destruction of coals and subsequent selective reduction by sodium borohydride.

  5. Ambient Ionic Liquids Used in the Reduction ofAldehydes and Ketones

    Institute of Scientific and Technical Information of China (English)

    Dan Qian XU; Shu Ping LUO; Bao You LIU; Zhen Yuan XU; Yin Chu SHEN

    2004-01-01

    The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.

  6. Solid-state rechargeable magnesium battery

    Science.gov (United States)

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  7. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application

    Energy Technology Data Exchange (ETDEWEB)

    Mikac, L.; Ivanda, M., E-mail: ivanda@irb.hr [Ruđer Bošković Institute, Laboratory for Molecular Physics (Croatia); Gotić, M. [Ruđer Bošković Institute, Laboratory for Synthesis of New Materials (Croatia); Mihelj, T. [Ruđer Bošković Institute, Laboratory for Synthesis and Processes of Self-assembling of Organic Molecules (Croatia); Horvat, L. [Ruđer Bošković Institute, Laboratory for Electron Microscopy (Croatia)

    2014-12-15

    Silver colloids were produced by chemical reduction of silver salt (silver nitrate, AgNO{sub 3}) solution. As reducing agents, trisodium citrate, sodium borohydride, ascorbic acid, polyvinylpyrrolidone, and glucose were used. The colloids were characterized by UV–Vis, DLS, zeta potential measurements, and SEM. The colloids were stabilized with negative groups or large molecules attached to their surface. The surface-enhanced Raman scattering (SERS) effect of stabilized nanoparticles was measured by using pyridine and rhodamine 6G molecules as analytes and NaNO{sub 3}, KCl, and KBr at different concentrations as aggregating agents. The best Raman signal enhancement was achieved using silver nanoparticles of 40 nm size reduced and stabilized with citrate. The SERS signal of analyte molecules was further enhanced with the addition of sodium borohydride as an alternative aggregating agent. The borohydride had the strongest impact on the SERS effect of the colloid consistent of large (0.5 µm) silver nanoparticles stabilized with aminodextran. The mixture colloid-borohydride-pyridine was stable for hours. The mechanism of borohydride in the colloids is discussed.

  8. Influence of negative charge on the optical properties of a silver sol

    Directory of Open Access Journals (Sweden)

    JOVAN M. NEDELJKOVIC

    2000-03-01

    Full Text Available The effects of negative charge on the optical properties of a silver sol prepared using sodium borohydride as a reductant were studied. The oscillations in the position of the maximum and the intensity of the surface plasmon absorption band were obesrved. The observed effects were explained as a consequence of the fluctuation of the density of free electrons due to the alternate charging and discharging of the silver particles. The charging process involves electron injection from borohydride ions and intermediate species formed during the course of the metal-catalyzed hydrolysis of borohydride ions (BH3OH-, BH2(OH2 and BH(OH3- into the silver particles, while discharge of the silver sol, by reduction of water to hydrogen, limits the attainable negative charge on the particles.

  9. [Ca(BH4)2] n clusters as hydrogen storage material: A DFT study

    Science.gov (United States)

    Han, Cuiling; Dong, Yanyun; Wang, Bingqiang; Zhang, Caiyun

    2016-10-01

    Calcium borohydride is widely studied as a hydrogen storage material. However, investigations on calcium borohydride from a cluster perspective are seldom found. The geometric structures and binding energies of [Ca(BH4)2] n ( n = 1-4) clusters are determined using density function theory (DFT). For the most stable structures, vibration frequency, natural bond orbital (NBO) are calculated and discussed. The charge transfer from (BH4) to Ca was observed. Meanwhile, we also study the LUMO-HOMO gap ( E g) and the B-H bond dissociation energies (BDEs). [Ca(BH4)2]3 owns higher E g, revealing that trimer is more stable than the other forms. Structures don't change during optimization after hydrogen radical removal, showing that calcium borohydride could possibly be used as a reversible hydrogen storage material. [Ca(BH4)2]4 has the smallest dissociation energy suggesting it releases hydrogen more easily than others.

  10. Amorphous TM1−xBx alloy particles prepared by chemical reduction (invited)

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1991-01-01

    Amorphous transition-metal boron (TM-B) alloy particles can be prepared by chemical reduction of TM ions by borohydride in aqueous solutions. ln the last few years systematic studies of the parameters which control the composition, and, in turn, many of the properties of the alloy particles, have...... been performed and are reviewed in the present paper. The most important preparation parameters which influence the composition are the concentration of the borohydride solution and the pH of the TM salt solution. By controlling these parameters it is possible to prepare amorphous alloy samples...

  11. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Oscar [Millennium Cell Inc., Eatontown, NJ (United States)

    2017-02-22

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  12. Investigation of nanostructured platinum-nickel supported on the titanium surface as electrocatalysts for alkaline fuel cells

    Science.gov (United States)

    Tamašauskaitė-Tamašiūnaitė, L.; Balčiūnaitė, A.; Vaiciukevičienė, A.; Selskis, A.; Pakštas, V.

    2012-06-01

    This study involves the formation of nanostructured platinum-nickel supported on the titanium surface catalysts using the galvanic displacement technique and investigation of their electrocatalytic activity toward the oxidation of borohydride, methanol and ethanol in an alkaline media by cyclic voltammetry and chronoamperometry. Scanning electron microscopy, Energy Dispersive X-ray Spectroscopy and X-ray diffraction were used to characterize the surface structure, composition and morphology. The nanoPt(Ni)/Ti and nanoPt/Ti catalysts exhibited a higher catalytic efficiency to the oxidation of borohydride, ethanol and methanol as compared with that of pure Pt.

  13. Studies on the Stereoselective Synthesis of cis-3-Methylfentanyl

    Science.gov (United States)

    1989-01-01

    The potent synthetic opiate fentanyl can be prepared by reduction of an intermediate Schiff base or by decyanation of a suitable alpha aminonitrile...isomer. Using sodium borohydride, Super-Hydride, Red-Al, and L-Selectride, the reduction of the appropriate Schiff base and the reductive decyanation of

  14. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin B2: Catalytic Polymerisation of Aniline and Pyrrole

    Science.gov (United States)

    For the first time, we report green chemistry approach using vitamin B2 in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride (NaBH4) or hydroxylamine hydro...

  15. Primary structure determination of five sialylated oligosaccharides derived from bronchial- mucus glycoproteins of patients suffering from cystic fibrosis. The occurrence of the NeuAcα(2→3)Galα(1→4)[Fucα(1→3)]GlcNAcα(1→.) structural element revealed by 500-MHz 1H NMR spectroscopy

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Lamblin, G.; Boersma, A.; Klein, A.; Roussel, P.; Halbeek, H. van

    1984-01-01

    The structure of sialylated carbohydrate units of bronchial mucins obtained from cystic fibrosis patients was investigated by 500-MHz 1H NMR spectroscopy in conjunction with sugar analysis. After subjecting the mucins to alkaline borohydride degradation, sialylated oligosaccharide-alditols were isol

  16. Synthesis of tritiated sex pheromones of the processionary moth Thaumetopoea pityocampa and the Egyptian armyworm Spodoptera littoralis

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Angel; Feixas, Joan [CID (CDIC), Biological Organic Chemistry Dept., Barcelona (Spain)

    1996-10-01

    Synthesis of tritiated sex phenomones of the processionary moth Thaumetopoea pityocampa and the Egyptian armyworm Spodoptera littoralis has been accomplished by a simple route involving tritiated sodium borohydride reduction of the corresponding aldehyde followed by acetylation of the resulting radiolabelled alcohol. The process occurs with high chemical and radiochemical yields and the compounds have been used in pheromone catabolism studies. (author).

  17. Structure of three acidic O-linked carbohydrate chains of porcine zona pellucida glycoproteins

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Hokke, C.H.; Damm, J.B.L.; Kamerling, J.P.

    1993-01-01

    Structural analysis by ID and 2D 1H NMR spectroscopy of three acidic O-linked oligosaccharide alditols, released from porcine zona pellucida glycoproteins by alkaline borohydride treatment, afforded the following structures: Gal beta l-4(6SO4-)GlcNAc beta l-3Gal beta l-4GlcNAc beta 1-3Gal beta 1-3Ga

  18. Toward Total Synthesis of Yohimbine and Reserpine Alkaloids; Part 1.An Improved Synthesis of cis-5, 8-Dihydroxy-1, 4, 5, 8, 9,10-hexahydronaphthalene-1, 8-lactone via Selective Reduction of the Conjugated Ketone with Zn (BH4)2

    Institute of Scientific and Technical Information of China (English)

    Yong Ye LI; Mei XU; Fen Er CHEN

    2004-01-01

    An improved and high-yielding synthesis of cis-5, 8-dihydroxy-1, 4, 5, 8, 9, 10- hexa-hydronaphthalene-1,8-lactone 7, an intermediate for (-)-reserpine 1 is presented. The conjugated ketone 5 was regioselectively reduced to afford lactone 7 with zinc borohydride formed in situ from KBH4 and ZnCl2 in THF.

  19. Easy access to 6-membered iminoalditols - important glycosidase inhibitors

    DEFF Research Database (Denmark)

    Lundt, Inge

    of 6-membered iminoalditols were observed. The use of triethylamine in methanol thus gave methylesters of 6-membered iminouronic acids. Reduction of the ester group with sodium borohydride gave the target compounds. The mechanisms of the reactions will be discussed as well as specific results obtained...

  20. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Directory of Open Access Journals (Sweden)

    Son-Jong Hwang

    2011-12-01

    Full Text Available Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of 11B MAS NMR in studies of metal borohydrides (BH4 is mainly focused, revisiting the issue of dodecaborane formation and observation of 11B{1H} Nuclear Overhauser Effect.

  1. Isolation and structural characterization of the smaller-size oligosaccharides from desialylated human κ-casein. Establishment of a novel type of core for a mucin-type carbohydrate chain

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Halbeek, H. van; Fiat, A.-M.; Jollès, P.

    1985-01-01

    Alkaline borohydride reductive cleavage (beta-elimination) of desialylated human kappa-caseinoglycopeptide resulted in the release of a series of oligosaccharides. The smaller-size compounds among them were purified to virtual homogeneity by gel filtration followed by high-performance liquid chromat

  2. Structure determination of oligosaccharides isolated from Cad erythrocyte membranes by permethylation analysis and 500-MHz 1H-NMR spectroscopy

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Herkt, F.; Paz Parente, J.; Leroy, Y.; Fournet, B.; Blanchard, D.; Cartron, J.-P.; Halbeek, H. van

    1985-01-01

    Alkaline borohydride reductive cleavage (beta-elimination) of glycophorin A isolated from one individual of the rare blood group Cad, resulted in the release of six acidic oligosaccharide-alditols which were separated by high-performance liquid chromatography (HPLC) on an alkyl amine silicagel colum

  3. Organosulphur compounds in coals as determined by reaction with Raney nickel and microscale pyrolysis techniques. Quarterly report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Philp, R.P.; Stalker, L.

    1995-09-01

    This report briefly descibes a method for cleaving organosulfur compounds from coal, kerogens and asphaltenes. The technique utilized nickel chloride and sodium borohydride. Experiments were performed on Illinois No. 6 coal. The method was also used in a deuterium labelling technique for investigating sulfur bonds.

  4. NMR Studies of Structure-Reactivity Relationships in Carbonyl Reduction: A Collaborative Advanced Laboratory Experiment

    Science.gov (United States)

    Marincean, Simona; Smith, Sheila R.; Fritz, Michael; Lee, Byung Joo; Rizk, Zeinab

    2012-01-01

    An upper-division laboratory project has been developed as a collaborative investigation of a reaction routinely taught in organic chemistry courses: the reduction of carbonyl compounds by borohydride reagents. Determination of several trends regarding structure-activity relationship was possible because each student contributed his or her results…

  5. Reversibility of Al/Ti Modified LiBH4

    DEFF Research Database (Denmark)

    Blanchard, Didier; Shi, Qing; Boothroyd, Chris;

    2009-01-01

    Lithium borohydride has a high reversible hydrogen storage capacity. For its practical use as an on-board hydrogen storage medium in mobile applications, the temperature and pressure conditions along with the kinetics of the hydrogenation/dehydrogenation cycles have to be improved. Lithium borohy...

  6. The reduction ring-opening reaction of imidazoline

    Institute of Scientific and Technical Information of China (English)

    史真; 李诤; 白银娟

    2000-01-01

    A new reduction ring-opening reaction of 2-imidazoline with sodium borohydride is reported, and the effect of reaction condition on the yield, reaction mechanism and the use of the new reaction in synthesis of ethylenediamine derivatives are discussed. A new method for the preparation of unsymmetrical substituted ethylenediamine via the reduction ring-opening reaction of imidazoline is provided.

  7. Complex hydrides for hydrogen storage - New perspectives

    DEFF Research Database (Denmark)

    Ley, Morten B.; Jepsen, Lars H.; Lee, Young-Su;

    2014-01-01

    , as discussed in this review, but a range of new lightweight hydrogen-containing materials has been discovered with fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be discussed, with a focus on metal borohydrides, which reveal significant structural...

  8. Role of Ti doping and Al and B vacancies in the dehydrogenation of Al(BH₄)₃

    Indian Academy of Sciences (India)

    INDRANI CHOUDHURI; ARUP MAHATA; KUBER SINGH RAWAT; BISWARUP PATHAK

    2016-10-01

    Metal borohydrides such as Al(BH₄)₃ is thermodynamically very stable but has weak dehydrogenation property. In contrast, Ti(BH₄)₃ has less stability (25◦C) but excellent dehydrogenation property. Hence, we have studied Ti-doped aluminium borohydride systems in order to improve the dehydrogenation property. Our density functional studies (DOS and pDOS) show that Ti interacts more strongly with the BH₄ unit and such strong interaction weakens the B-H bond and improves the dehydrogenation property. Ti-doped Al(BH₄)₃ system improves the overall stability due to the formation of a stronger Ti-B bond. Our study on defects in Al(BH₄)₃ suggests that B-defect system has the best dehydrogenation property compared to the pure and Ti-doped Al(BH₄)₃ systems.

  9. Atomic absorption spectroscopy for mercury, automated by sequential injection and miniaturized in lab-on-valve system.

    Science.gov (United States)

    Erxleben, Holger; Ruzicka, Jaromir

    2005-08-15

    Sodium borohydride-based hydride generation was automated by using programmable flow within the lab-on-valve module. Mercury vapor, generated in the reaction mixture, was extracted in a gas/liquid separator. The gas-expansion separator was miniaturized and compared with the performance of a novel gas separator that exploits the combination of Venturi effect and reduced pressure. Cold vapor atomic spectroscopy was used as a model system, with detection of mercury by absorption at 254 nm and limit of detection of 9 microg of Hg/L, using 300 microL of sample and 100 microL of borohydride. This work introduces, for the first time, sequential injection technique for hydride generation, highlights advantages of using programmable flow, and outlines means for miniaturization of assays based on spectroscopy of volatile species.

  10. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  11. The Effects of Short Wave UV Irradiation (254-366nm on Color Values of Recycled and Bleached ONP/OMP Pulps

    Directory of Open Access Journals (Sweden)

    Emrah Peşman

    2011-04-01

    Full Text Available ABSTRACT As it is known, mechanical pulp papers include significant amount of lignin and carbohydrates as well as cellulose. Thus, when these lignin reach papers irradiated with short wave UV light they could not protect their color. In this study, bleaching of ONP/OMG recycled pulps with hydrogen peroxide, sodium percarbonate, sodium dithyonite, sodium borohydride and formamidin sulfunic acid were performed. Then the test papers of these pulps were irradiated with 254-366nm UV light and changes in the ISO Brightness, CIE L*a*b*, yellowness (YI and whiteness (WI values were observed. At the result of study, all bleaching agents were determined as insufficient in the respect of color stability. But if they compared with each other, the two stages sodium percarbonate-sodium borohydride bleaching sequence was gave the best results against to color reversion. Keywords: Old news/old magazine papers (ONP/OMG, Bleaching, Color Stability, UV Irradiation

  12. Thermal Decomposition of Anhydrous Alkali Metal Dodecaborates M2B12H12 (M = Li, Na, K

    Directory of Open Access Journals (Sweden)

    Liqing He

    2015-11-01

    Full Text Available Metal dodecaborates M2/nB12H12 are regarded as the dehydrogenation intermediates of metal borohydrides M(BH4n that are expected to be high density hydrogen storage materials. In this work, thermal decomposition processes of anhydrous alkali metal dodecaborates M2B12H12 (M = Li, Na, K synthesized by sintering of MBH4 (M = Li, Na, K and B10H14 have been systematically investigated in order to understand its role in the dehydrogenation of M(BH4n. Thermal decomposition of M2B12H12 indicates multistep pathways accompanying the formation of H-deficient monomers M2B12H12−x containing the icosahedral B12 skeletons and is followed by the formation of (M2B12Hzn polymers. The decomposition behaviors are different with the in situ formed M2B12H12 during the dehydrogenation of metal borohydrides.

  13. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    Science.gov (United States)

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage.

  14. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  15. One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network.

    Science.gov (United States)

    Wei, Gang; Zhou, Hualan; Liu, Zhiguo; Song, Yonghai; Wang, Li; Sun, Lanlan; Li, Zhuang

    2005-05-12

    Here, we describe a one-step synthesis of silver nanoparticles, nanorods, and nanowires on DNA network surface in the absence of surfactant. Silver ions were first adsorbed onto the DNA network and then reduced in sodium borohydride solution. Silver nanoparticles, nanorods, and nanowires were formed by controlling the size of pores of the DNA network. The diameter of the silver nanoparticles and the aspect ratio of the silver nanorods and nanowires can be controlled by adjusting the DNA concentration and reduction time.

  16. Procedures for the synthesis of ethylenediamine bisborane and ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, Padi Veeraraghavan; Gagare, Pravin D.; Mistry, Hitesh; Biswas, Bidyut

    2017-01-03

    A method for synthesizing ammonia borane includes (a) preparing a reaction mixture in one or more solvents, the reaction mixture containing sodium borohydride, at least one ammonium salt, and ammonia; and (b) incubating the reaction mixture at temperatures between about 0.degree. C. to about room temperature in an ambient air environment under conditions sufficient to form ammonia borane. Methods for synthesizing ethylenediamine bisborane, and methods for dehydrogenation of ethylenediamine bisborane are also described.

  17. One Pot Reduction of Imines Generated in-situ from Aldehydes and Amines by the NaBH4-InCl3 System

    Institute of Scientific and Technical Information of China (English)

    RAVI Varala; RAMU Enugala; VIJAY KUMAR Ponnamaneni; SRINIVAS RAO Adapa

    2006-01-01

    A combination of sodium borohydride and a catalytic amount of indium(Ⅲ) chloride in acetonitrile reduces imines formed in-situ from aldehydes and amines to the corresponding functionalised secondary and tertiary amines in moderate to good yields. Noteworthy is that highly chemoselective reactions were achieved in the presence of other functional groups such as halogens, carbon-carbon double bonds and hydroxyl groups.

  18. $sup 3$H-metyrapol as a tool for studies of interactions of deoxycorticosterone with adrenal cortex mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Satre, M.; Lunardi, J.; Vignais, P.V.

    1972-05-01

    From international conference on mechanism in bioenergetica; Bari, Italy (1 May 1972). /sup 3/H-metyrapol was prepared by reduction of metyrapone with tritiated sodium borohydride. Metyrapol behaves like metyrapone as an inhibitor of the 11 BETA -hydroxylation of deoxycorticosterone in adrenal cortex mitochondria and competes with metyrapone in binding tests. These results, and the ease of preparation of highly labeled /sup 3/H-metyrapol, recommend /sup 3/ Hmetyrapol as a probe of deoxycorticosterone interactions with adrenal cortex mitochondria. (auth)

  19. Nucleophilic Additions of 2-Furyllithium to Carbonyl Derivatives of L-Serine. Formal Synthesis of (2R,3R-β-Hydroxy Aspartic Acid

    Directory of Open Access Journals (Sweden)

    T. Tejero

    1998-01-01

    Full Text Available The nucleophilic addition of 2-furyllithium to esters derived from L-serine is described. The obtained furyl ketone 5 is stereoselectively reduced (ds≥95% with sodium borohydride to afford the corresponding syn aminoalcohol 12 in enantiomerically pure form. Compound 12 was further converted into valuable α-hydroxy-β-amino acids by means of the furan-to-acid equivalence.

  20. Structural Characterization and Mechanical Properties of As-plated and Heat Treated Electroless Ni-B-P Alloy Coatings

    Directory of Open Access Journals (Sweden)

    P. G. Venkatakrishnan

    2014-05-01

    Full Text Available The Ni-B-P alloy coatings were made autocatalytically (electroless using an alkaline plating bath with nickel chloride hexahydrate (NiCl2.6H2O as the source of nickel ions, sodium borohydride (NaBH4 and sodium hypophosphite (NaH2PO2 as reducing agents and source of boron and phosphorous ions, respectively. The effects of bath concentrations on the plating rate, composition of coating, surface morphology, structural features and microhardness have been studied by varying NaBH4 concentration in the plating bath from 0.2 to 0.8 g/l while keeping NaH2PO2 concentration constant (12 g/l. The plating rate and boron content of the electroless Ni-B-P ternary alloy coatings increased with increasing NaBH4 concentration in the plating bath. The scanning electron microscopic images revealed that the morphology of the coating changed from corn cob structure to coarse cauliflower structure with increasing borohydride concentration in the plating bath. Broadening of X-ray diffraction peak is observed, as the borohydride concentration is increased in the plating bath, which is attributed to the large reduction in the crystallite size of the Ni-B-P alloy coatings. The microhardness values of the coating increased with increasing borohydride concentration in the plating bath. The as-plated Ni-B-P alloy coating containing higher boron content (3.2 wt% shows higher hardness of 700 HV compared to other Ni-B-P alloy coatings. The XRD patterns of heat treated Ni-B-P alloy coatings (500 °C show Ni3B intermetallic peaks along with Ni peaks. The presence of Ni3B intermetallic compound significantly increases the microhardness values of the heat treated Ni-B-P alloy coatings.

  1. Fast and efficient method for reduction of carbonyl compounds with NaBH{sub 4} /wet SiO{sub 2} under solvent free condition

    Energy Technology Data Exchange (ETDEWEB)

    Zeynizadeh, Behzad; Bahyar, Tarifeh [Urmia University, Urmia (Iran, Islamic Republic of). Faculty of Sciences. Dept. of Chemistry]. E-mail: b.zeynizadeh@mail.urmia.ac.ir

    2005-11-15

    Reduction of structurally different carbonyl compounds such as aldehydes, ketones, {alpha},{beta}-unsaturated enals and enones, {alpha}-diketones and acyloins were accomplished efficiently by sodium borohydride in the presence of wet SiO{sub 2} (30% m/m) under solvent free condition. The reactions were performed at room tempere or 75-80 deg C with high to excellent yields of the corresponding products. The chemoselective reduction of aldehydes over ketones was achieved successfully with this reducing system. (author)

  2. Technetium-99m labeling of tityustoxin and venom from the scorpion Tityus serrulatus

    Energy Technology Data Exchange (ETDEWEB)

    Nunan, E.A.; Cardoso, V.N.; Moraes-Santos, T. E-mail: tmoraes@dedalus.lcc.ufmg.br

    2002-12-01

    The tityustoxin, the most toxic fraction from scorpion Tityus serrulatus venom, has been used as a tool in several neurochemical and neuropharmacological studies. Biological activities of labeled and unlabeled tityustoxin and venom were compared. The samples were labeled in the presence of stannous chloride and sodium borohydride with a yield of 60-70% for the venom and 75-85% for tityustoxin and then chromatographed in Sephadex G-10. Biological activities of tityustoxin and venom were preserved after labeling.

  3. Contract W911NF-07-1-0139 (Massachusetts Institute of Technology)

    Science.gov (United States)

    2013-07-09

    in DMF Silver nanoparticles were prepared by the reduction of AgNO3 in N,N-dimethylformamide (DMF). In a typical experiment, silver nitrate (2 g...NPs) with 10-100 nm Ag(0) or Co(0) cores were obtained by reduction of Ag+ or Co2+ by borohydride in N,N-dimethylformamide or aqueous solutions...nitrophenyl) phosphate) by NPs in their aqueous media. The NPs acted as recoverable semi-heterogeneous catalysts . The paraoxon hydrolysis was accelerated

  4. Influence of the Synthesis Method for Pt Catalysts Supported on Highly Mesoporous Carbon Xerogel and Vulcan Carbon Black on the Electro-Oxidation of Methanol

    OpenAIRE

    2015-01-01

    Platinum catalysts supported on carbon xerogel and carbon black (Vulcan) were synthesized with the aim of investigating the influence of the characteristics of the support on the electrochemical performance of the catalysts. Three synthesis methods were compared: an impregnation method with two different reducing agents, sodium borohydride and formic acid, and a microemulsion method, in order to study the effect of the synthesis method on the physico-chemical properties of the catalysts. X-ra...

  5. Preparation of 2-deoxyaldoses from aldose phenylhydrazones

    DEFF Research Database (Denmark)

    Jørgensen, Christel Thea; Pedersen, Christian

    1997-01-01

    Acetylation of D-mannose phenylhydrazone gives acetylated D-arabino-1-phenyl-azo-1-(E)-hexene. Subsequent reduction with sodium borohydride produces 2-deoxy-D-arabino-hexose phenylhydrazone which, on hydrolysis, gives 2-deoxy-D-arabino-hexose. By a similar procedure 2-deoxy-D-lyxo-hexose, 2,6-did......,6-dideoxy-L-arabino-hexose, and 2-deoxy-D-erythropentose can be prepared from D-galactose, L-rhamnose, and D-arabinose, respectively....

  6. Efficient synthesis of 1,3,5-oxygenated synthons from dimethyl 3-oxoglutarate: first use of borane-dimethyl sulfide complex as a regioselective reducing agent of 3-oxygenated glutarate derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Riatto, Valeria B.; Carneiro, Maria N.M.; Victor, Mauricio M., E-mail: mmvictor@ufba.b [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica. Dept. de Quimica Organica; Carvalho, Venilia B. [Centro Universitario FIB, Salvador, BA (Brazil). Inst. de Ciencias da Saude

    2011-07-01

    The selective reduction of dimethyl 3-oxoglutarate was accomplished in different levels. A high yielding sodium borohydride reduction of the keto group is fully described leading to dimethyl 3-hydroxyglutarate. When borane-dimethyl sulfide (BMS) complex was used, a diol or a triol compound can be obtained by selective or total reduction of 3-hydroxy- or 3-oxoglutarate, respectively, allowing an efficient and practical route to 1,3,5-oxygenated compounds. (author)

  7. Synthesis of Ca(BH4)2 from Synthetic Colemanite Used in Hydrogen Storage by Mechanochemical Reaction

    Science.gov (United States)

    Karabulut, Ahmet F.; Guru, Metin; Boynueğri, Tuğba A.; Aydin, Mustafa Yasir

    2016-08-01

    In this study, synthesis of Ca(BH4)2 has been carried out with a solid phase reaction in which synthetic colemanite has been used as a raw material. Three dimensional high energy spex collider was selected for this mechanochemical reaction. Calcium borohydride is one of the most valuable metal borohydrides. In order to produce calcium borohydride economically, anhydrous colemanite mineral has been used as reactant. Calcium borohydride has been directly manufactured from anhydrous colemanite in spex-type ball milling without the need for any intermediate product. Thus, the advantages of this method over wet chemical procedure (such as having no intermediate product, no azeotropic limitations and no need of regaining product from solution after production by using evaporation, crystallization and drying processes) have made it possible to achieve the desired economical gains. Parametric experiments were conducted to determine the best conditions for the highest yield of solid phase reaction in the spex-type ball milling. Best results have been determined by using areas of related peaks in spectra of Fourier transform infrared spectroscopy (FT-IR). In order to use peaks area for determining Ca(BH4)2 concentration, a calibration graph of FT-IR absorbance peak areas has been created by using samples with known different concentrations of commercial Ca(BH4)2. Optimum amounts of calcium hydride and synthesis reaction time were found to be 2.1 times the stoichiometric ratio and 2500 min, respectively. As a result of these optimizations, the maximum yield of the solid phase reaction carried out by the spex-type ball milling has been determined as 93%.

  8. Increasing Hydrogen Density with the Cation-Anion Pair BH4−-NH4+ in Perovskite-Type NH4Ca(BH43

    Directory of Open Access Journals (Sweden)

    Pascal Schouwink

    2015-08-01

    Full Text Available A novel metal borohydride ammonia-borane complex Ca(BH42·NH3BH3 is characterized as the decomposition product of the recently reported perovskite-type metal borohydride NH4Ca(BH43, suggesting that ammonium-based metal borohydrides release hydrogen gas via ammonia-borane-complexes. For the first time the concept of proton-hydride interactions to promote hydrogen release is applied to a cation-anion pair in a complex metal hydride. NH4Ca(BH43 is prepared mechanochemically from Ca(BH42 and NH4Cl as well as NH4BH4 following two different protocols, where the synthesis procedures are modified in the latter to solvent-based ball-milling using diethyl ether to maximize the phase yield in chlorine-free samples. During decomposition of NH4Ca(BH43 pure H2 is released, prior to the decomposition of the complex to its constituents. As opposed to a previously reported adduct between Ca(BH42 and NH3BH3, the present complex is described as NH3BH3-stuffed α-Ca(BH42.

  9. Silver-colloid-nucleated cytochrome c superstructures encapsulated in silica nanoarchitectures.

    Science.gov (United States)

    Wallace, Jean Marie; Dening, Brett M; Eden, Kristin B; Stroud, Rhonda M; Long, Jeffrey W; Rolison, Debra R

    2004-10-12

    We recently discovered that self-organized superstructures of the heme protein cytochrome c (cyt. c) are nucleated in buffer by gold nanoparticles. The protein molecules within the superstructure survive both silica sol-gel encapsulation and drying from supercritical carbon dioxide to form air-filled biocomposite aerogels that exhibit gas-phase binding activity for nitric oxide. In this investigation, we report that viable proteins are present in biocomposite aerogels when the nucleating metal nanoparticle is silver rather than gold. Silver colloids were synthesized via reduction of an aqueous solution of Ag+ using either citrate or borohydride reductants. As determined by transmission electron microscopy and UV-visible absorption spectroscopy, the silver nanoparticles vary in size and shape depending on the synthetic route, which affects the fraction of cyt. c that survives the processing necessary to form a biocomposite aerogel. Silver colloids synthesized via the citrate preparation are polydisperse, with sizes ranging from 1 to 100 nm, and lead to low cyt. c viability in the dried bioaerogels (approximately 15%). Protein superstructures nucleated at approximately 10-nm Ag colloids prepared via the borohydride route, including citrate stabilization of the borohydride-reduced metal, retain significant protein viability within the bioaerogels (approximately 45%).

  10. Synthesis of noble metal nanoparticles

    Science.gov (United States)

    Bahadory, Mozhgan

    Improved methods were developed for the synthesis of noble metal nanoparticles. Laboratory experiments were designed for introducing of nanotechnology into the undergraduate curriculum. An optimal set of conditions for the synthesis of clear yellow colloidal silver was investigated. Silver nanoparticles were obtained by borohydride reduction of silver nitrate, a method which produces particles with average size of 12+/-2 nm, determined by Transmission Electron Microscopy (TEM). The plasmon absorbance is at 397 nm and the peak width at half maximum (PWHM) is 70-75 nm. The relationship between aggregation and optical properties was determined along with a method to protect the particles using polyvinylpyrrolidone (PVP). A laboratory experiment was designed in which students synthesize yellow colloidal silver, estimate particle size using visible spectroscopy, and study aggregation effects. The synthesis of the less stable copper nanoparticles is more difficult because copper nanopaticles are easily oxidized. Four methods were used for the synthesis of copper nanoparticles, including chemical reduction with sodium borohydride, sodium borohydride with potassium iodide, isopropyl alcohol with cetyltrimethylammonium bormide (CTAB) and reducing sugars. The latter method was also the basis for an undergraduate laboratory experiment. For each reaction, the dependence of stability of the copper nanoparticles on reagent concentrations, additives, relative amounts of reactants, and temperature is explored. Atomic force microscopy (AFM), TEM and UV-Visible Spectroscopy were used to characterize the copper nanoparticles. A laboratory experiment to produce copper nanoparticles from household chemicals was developed.

  11. Studies on the non-enzymatic glucosylation of human proteins

    Energy Technology Data Exchange (ETDEWEB)

    Brighton, M.W.

    1987-01-01

    Aspects of the thiobarbituric acid (TBA) method for quantitating non-enzymatic glucosylation (NEG) in proteins were assessed. Levels of NEG determined by this procedure were compared with values obtained by borohydride reduction and (/sup 14/C) labeling methods. Human albumin was non-enzymatically glucosylated in vitro and extent of glucosylation measured by the TBA, borohydride reduction and (/sup 14/C) labeling procedures. Comparison of in vivo and in vitro NEG was made by the TBA and borohydride reduction techniques. Kinetics of NEG of albumin and whole plasma proteins were assessed and compared. Non-enzymatic glucosylation of each of the major plasma protein fractions was demonstrated both in vivo and in vitro. Relative extends of glucosylation were established. A possible source of error when measuring total plasma NEG in patients with disturbed albumin/globulin ratios is described. Reversibility of the glucose-protein interaction was demonstrated in vitro. Evidence supporting the resistance of albumin to proteolysis, when non-enzymatically glucosylated, is presented.

  12. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John

    2016-09-22

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ³11 wt% and ³80 g/L that can deliver hydrogen and be recharged at moderate temperatures (£100 °C) and pressures (£100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement. For the first approach, possible pairs of ternary borides and mixed-metal borohydrides based on Mg with various first row transition metals were investigated both experimentally and theoretically. In particular, the Mg/Mn ternary boride and mixed-metal borohydride were found to be a suitable pair and

  13. 基于聚丙烯腈碳毡电极的偏硼酸钠电解行为研究%Study on Electrolytic Behavior of Sodium Metaborate Based on Polyacrylonitrile Felt Electrode

    Institute of Scientific and Technical Information of China (English)

    戴玺; 郭瓦力; 张弢; 李磊; 王晓冰; 朱虹; 邓信忠

    2013-01-01

    The feasibility of using polyacrylonitrile carbon felt electrode for sodium borohydride preparation from sodium metaborate electrolysis was studied by means of cyclic voltammetry. Effects of the felt electrode on electrolysis reaction were investigated under constant current or pulsed conditions,in which the actual production of sodium borohydride was taken as an experiment indicator. Considering the physical properties of carbon felt electrode,the effects of electrolysis reaction according to the age of polyacrylonitrile felt electrode and the sodium borohydride concentration difference between the electrolytes both in electrode pore and in electrolytic cell were also discussed. The results show that the unique physical structure of carbon felt electrode can be used to solve the problem of BO2-exclusion on cathode well, which plays an important role in promoting BO2-cathode restore to generate sodium borohydride. Because of the electrode repulsion and carbon fiber felt adsorption force acting on the BO2-reduction on the cathode,there is a maximum value of sodium borohydride production to some extent of current intensity.Compared with the electrolyte in electrolytic cell, the content of sodium borohydride in the pores of the carbon felt can be 22.7 times as much as the content in the electrolyzer.%  通过循环伏安法研究了聚丙烯腈碳毡电极用于电解法硼氢化钠制备的可行性,以硼氢化钠实际生成量为指标,研究了在恒流,脉冲条件下碳毡电极对电解反应生成量的影响,针对碳毡电极本身的物理特性考察了碳毡的新旧程度对电解反应的影响,考察了电极孔隙电解液和电解槽中电解液中硼氢化钠生成量的差别。研究结果表明:碳毡电极独特的物理结构改善了阴极对BO2-排斥,对BO2-在阴极上发生还原生成硼氢化钠有很好的促进作用;电极排斥力与碳毡吸附力共同作用于阴极上的BO2-还原,因此一定电流强度

  14. Core--strategy leading to high reversible hydrogen storage capacity for NaBH4.

    Science.gov (United States)

    Christian, Meganne L; Aguey-Zinsou, Kondo-François

    2012-09-25

    Owing to its high storage capacity (10.8 mass %), sodium borohydride (NaBH(4)) is a promising hydrogen storage material. However, the temperature for hydrogen release is high (>500 °C), and reversibility of the release is unachievable under reasonable conditions. Herein, we demonstrate the potential of a novel strategy leading to high and stable hydrogen absorption/desorption cycling for NaBH(4) under mild pressure conditions (4 MPa). By an antisolvent precipitation method, the size of NaBH(4) particles was restricted to a few nanometers (hydrogen at 400 °C. Further encapsulation of these nanoparticles upon reaction of nickel chloride at their surface allowed the synthesis of a core--shell nanostructure, NaBH(4)@Ni, and this provided a route for (a) the effective nanoconfinement of the melted NaBH(4) core and its dehydrogenation products, and (b) reversibility and fast kinetics owing to short diffusion lengths, the unstable nature of nickel borohydride, and possible modification of reaction paths. Hence at 350 °C, a reversible and steady hydrogen capacity of 5 mass % was achieved for NaBH(4)@Ni; 80% of the hydrogen could be desorbed or absorbed in less than 60 min, and full capacity was reached within 5 h. To the best of our knowledge, this is the first time that such performances have been achieved with NaBH(4). This demonstrates the potential of the strategy in leading to major advancements in the design of effective hydrogen storage materials from pristine borohydrides.

  15. New Synthesis of Pt-Ru Nanoparticles on Surface Modified Carbon Vulcane XC-72 as an Effective Catalyst for Direct Methanol Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Ahmad; Nozad; Golikand; Sajjad; Sadaghat; Sharehjini; Mohammad; Yari

    2007-01-01

    1 Results Pt-Ru nanoparticles are synthesised on the surface oxidized carbon Vulcane XC-72 as catalyst support by chemically anchoring Pt and Ru onto the surface of modified carbon vulcane XC-72 (by refluxing in 70% HNO3 at 120 ℃ for 12 h to introduce surface functional groups) .The nanoparticles of Pt and Ru are synthesized by reduction of H2PtCl6 and K4Ru(CN)6 with sodium borohydride in a 5.5 buffer solution of sodium citrate,the complexation of citrate with metal ions is beneficial to the formati...

  16. Chemically Synthesised Pt Particles on Surface Oxidized Carbon Nanotubes as an Effective Catalyst for Direct Methanol Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Mohammad; yari; Sajjad; Sadaghat; Sharehjini

    2007-01-01

    1 Results The synthesis, physical characterization and electrochemical analysis of Pt particles prepared using the surface oxidized carbon nanotubes prepared by chemically anchoring Pt onto the surface of the CNTs with 2.0 mol/L HNO3 by refluxing for 10 h to introduce surface functional groups.The particles of Pt are synthesized by reduction with sodium borohydride of H2PtCl6. The electro-oxidation of liquid methanol of this catalyst as a thin layer on glassy carbon electrode is investigated at room te...

  17. Platinium Nanoparticles Deposited on Oxygen-Containing Functional Groups at Carbon Vulcane XC-72 as a Cathode Catalyst for Direct Methanol Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Sajjad; Sadaghat; Sharehjini; Ahmad; Nozad; Golikand; Mohammad; Yari

    2007-01-01

    1 Results Surface oxidized carbon vulcane XC-72 as catalyst support, prepared by chemically anchoring Pt onto the surface modified carbon vulcane XC-72. The nanoparticles of Pt are synthesized by reduction of H2PtCl6 with sodium borohydride in a 5.5 buffer solution of sodium citrate, the complexation of citrate with metal ions is beneficial to the formation of nanoparticles. For comparison, an electrode is prepared by E-Tek Pt/C 20 Wt% with a typical Pt loading of 50 μg·cm-2, that shows higher specifi...

  18. Facile synthesis and regeneration of Mg(BH4)2 by high energy reactive ball milling of MgB2.

    Science.gov (United States)

    Gupta, Shalabh; Hlova, Ihor Z; Kobayashi, Takeshi; Denys, Roman V; Chen, Fu; Zavaliy, Ihor Y; Pruski, Marek; Pecharsky, Vitalij K

    2013-01-28

    We report direct hydrogenation of MgB(2) in a planetary ball mill. Magnesium borohydride, Mg(BH(4))(2), and various polyhedral borane anion salts have been synthesized at pressures between 50 and 350 bar H(2) without the need for subsequent isothermal hydrogenation at elevated temperature and pressure. The obtained products release ∼4 wt% H(2) below 390 °C, and a major portion of Mg(BH(4))(2) transforms back to MgB(2) at around 300 °C, demonstrating the possibility of reversible hydrogen storage in an Mg(BH(4))(2)-MgB(2) system.

  19. MAGNETIC POLYMER MICROSPHERE STABILIZED GOLD NANOCOLLOIDS AS A FACILELY RECOVERABLE CATALYST

    Institute of Scientific and Technical Information of China (English)

    Han Zhang; Xin-lin Yang

    2011-01-01

    Magnetically responsive hierarchical magnetite/silica/poly(ethyleneglycol dimethacrylate-co-4-vinylpyridine) (Fe3O4/SiO2/P(EGDMA-co-VPy)) tri-layer microspheres were used as stabilizers for gold metallic nanocolloids as a facilely recoverable catalyst with the reduction of 4-nitrophenol to 4-aminophenol as a model reaction. The magnetic microsphere stabilized gold metallic nanocolloids were prepared by in situ reduction of gold chloride trihydrate with borohydride as reductant via the stabilization effect of the pyridyl groups to gold nanoparticles on the surface of the outer shell-layer of the inorganic/polymer fri-layer microspheres.

  20. Nanoconfined LiBH4 as a Fast Lithium Ion Conductor

    DEFF Research Database (Denmark)

    Blanchard, Didier; Nale, Angeloclaudio; Sveinbjörnsson, Dadi Þorsteinn;

    2015-01-01

    Designing new functional materials is crucial for the development of efficient energy storage and conversion devices such as all solid-state batteries. LiBH 4 is a promising solid electrolyte for Li-ion batteries. It displays high lithium mobility, although only above 110 °C at which a transition...... is associated with a fraction of the confined borohydride that shows no phase transition, and most likely located close to the interface with the SiO2 pore walls. These results point to a new strategy to design low-temperature ion conducting solids for application in all solid-state lithium ion batteries, which...

  1. A stabilised tris(hydroxymethyl)aminomethane adduct in reduced collagen.

    Science.gov (United States)

    Cannon, D J; Davison, P F

    1976-01-01

    The reduction of collagen with sodium [3H] borohydride in the presence of Tris buffer results in the stabilization of a Schiff base adduct which is formed between allysine residues and tris(hydroxymethyl)aminomethane. The reduced, radioactive derivative of this adduct has been identified in hydrolyzates or reduced collagen. It elutes before hydroxylysine on an amino acid analyzer column close to the position of dihydroxylysinonorleucine. Similar artifacts may occur when aldehydes present in or added to proteins react with Tris or other amines prior to reduction.

  2. Morphology Analysis of Nickel-boron/ diamond Electroless Deposition

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; ZHU Xuanmin; ZHOU Jian; OUYANG Shixi

    2008-01-01

    The influences of mass concentration of nickel chloride hexahydrate, sodium borohydride,ethylenediamine, pH value, bath temperature on deposition rate were studied with orthogonal experiments by a series of pre-treatments on micro-diamond particle, and the optimized parameters were obtained. Both the morphology and the composition of original diamond and the diamond with Ni-B coating were analyzed by SEM and XRD respectively. The SEM image shows that the spherical Ni-B particle is coated upon diamond.XRD pattern shows that the coating compositions are Ni and Ni2B.

  3. Determination of Trace Germanium in Marine Sediments by Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS)

    Institute of Scientific and Technical Information of China (English)

    LI Jing; ZHAO Shilan; ZHANG Zhaohui; ZENG Xianjie

    2004-01-01

    A method for the analysis of trace germanium in marine sediments by HG-AFS has been investigated. The experimental conditions such as the acidity of reduction reaction, the amount of sodium boro-hydride, the carrier gas flow rate, etc., were tested and optimized by using a kind of orthogonal design. The detection limit of the presented method is 0.95 μg L-1 for germanium. The calibration curve shows a satisfactory line in the concentration range 0-320 μg L-1 Ge with a variation coefficient of ±2.1%.

  4. Investigation of Hopanoid Biomarkers in Lake Sediments by GC-MS and RP-HPLC-APCI-MS

    Directory of Open Access Journals (Sweden)

    Gamze Kavran Belin

    2009-01-01

    Full Text Available Hopanoids are mainly derived from bacteriohopanpolyols that occur especially in bacteria, show the importance of bacterial lipid contributions in geological materials. In this work, GC-MS and RP-HPLC-APCI-MS analyses of hopanoid biomarkers in oxic and anoxic sediment samples from Lake Cadagno (Swiss Alps and Lake Voua de la Motte (Haute Savoie, France are presented and discussed. Samples were ultrasonically extracted, fractionated by flush chromatography on silica gel and derivatised before the analyses. Periodic acid/ sodium borohydride cleavage was used to identify highly functionalised hopanoids

  5. On the chemistry of Ingenol. Pt. 5. Preparation of tritium-labeled 3-O-tetradecanoylingenol ([2O-[sup 3]H]-3-TI)

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, H.; Sorg, B.; Hecker, E. (Inst. of Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg (Germany))

    1992-07-01

    Tritium-labeling of the ingenol monoester 3-O-tetradecanoylingenol (3-TI), the prototype tumor promoter of the ingenane type diterpene esters, is described. The preparation starts with oxidation of 3-TI by manganese dioxide to yield 3-TI-20-aldehyde which is reduced by [[sup 3]H]-sodium borohydride in the presence of equimolar amounts of cerium trichloride hexahydrate to give [20-[sup 3]H]-3-TI. The labeled promoter is obtained in 42% overall yield with a specific radioactivity of 15.8 Ci/mmol. (orig.).

  6. Deoxyiminoalditols from Aldonolactones - V. Preparation of the Four Stereoisomers of 1,5-Dideoxy-1,5-iminopentitols. Evaluation of these Iminopentitols and Three 1,5-Dideoxy-1,5-iminoheptitols as Glycosidase Inhibitors

    DEFF Research Database (Denmark)

    Godskesen, Michael Anders; Lundt, Inge; Madsen, Robert

    1996-01-01

    The four stereoisomeric 1,5-dideoxy-1,5-iminopentitols with D-arabino - (D-lyxo-) (3), ribo- (9), L-lyxo- (L-arabino-) (13) and xylo-(18) configurations were synthesized. The corresponding aldonolactones (1, 7 and 11) or aldonic acid ester (150) having a leaving group at C-5 gave by reaction...... with aqueous ammonia, the 5-amino-5-deoxy-1,5-lactams, 2, 8, 12 and 17, respectively. Reduction of the lactam function using sodium borohydride/acetic or trifluoroacetic acid, or borane dimethyl sulfide complex yielded the iminopentitols. The compounds 3, 9, 13 and 18, together with the three 1,5-dideoxy-1...

  7. Destruction of TCE Using Oxidative and Reductive Pathways as Potential In-Situ Treatments for the Contaminated Paducah Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, S; Li, Y; Xu, J; Tee, Y; Lynch, Andrew

    2007-05-01

    When considering reductive technologies for ground water remediation, it is important to understand the underlying principles that govern kinetics of zero-valent metal dechlorination. Studies involving the use of nanoscale metals (characteristic length <100nm) for chloro-organic degradation have increased reaction rates by 1-2 orders of magnitude with minimal intermediate formation. Typically, these metals are synthesized using modifications of the aqueous phase reduction of metal ions using sodium borohydride presented by Glavee and coworkers. The use of a bimetallic system increases the reactivity of the particle surface by incorporating a second metal that can typically act as a hydrogenation promotor.

  8. Complex hydrides for hydrogen storage – new perspectives

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2014-04-01

    Full Text Available Since the 1970s, hydrogen has been considered as a possible energy carrier for the storage of renewable energy. The main focus has been on addressing the ultimate challenge: developing an environmentally friendly successor for gasoline. This very ambitious goal has not yet been fully reached, as discussed in this review, but a range of new lightweight hydrogen-containing materials has been discovered with fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be discussed, with a focus on metal borohydrides, which reveal significant structural flexibility and may have a range of new interesting properties combined with very high hydrogen densities.

  9. Excimer laser photofragmentation of metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Y. [National Institute of Laser Enhanced Science, Cairo University, Cairo (Egypt); Mahmoud, M.A. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig (Egypt)], E-mail: mahmoudchem@yahoo.com

    2007-10-15

    Copper nanoparticles (Cu NPs) were prepared by different chemical methods possessing different sizes. While, silver nanoparticles (Ag NPs) were prepared by borohydride reduction method. The influences the changes in sizes of Ag NPs and Cu NPs were demonstrated by the absorption spectra. When Ag NPs and Cu NPs irradiated with 193 and 308 nm excimer laser, respectively; the maximum absorption decreased as the number of pulses increased up to 10 thousands pulse; due to the size reduction. The TEM photography gives good criteria about the size reduction process. Moreover, the mechanism of photofragmentation was described.

  10. Labelling of benzocaine with tritium

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Sohail (Washington Univ., Seattle, WA (United States))

    1994-10-01

    A convenient method is described to label a local anesthetic, benzocaine, with tritium. The bromoester of para-aminobenzoic acid (PABA) was prepared from para-nitrotoluene and was reduced with tritium. The generation of isotopic hydrogen and labelling of benzocaine was achieved in one-step. A mixture of sodium borohydride (NaB[sup 3]H[sub 4]) with cobalt (II) chloride was used to generate tritium gas. 5% Pd/C was used as a catalyst. This constitutes the first report of tritium labelled benzocaine. (author).

  11. Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy

    Science.gov (United States)

    Wang, Y. W.; Kim, J. S.; Kim, G. H.; Kim, Kwang S.

    2006-04-01

    Quantum size effects in volume plasmon excitation of bismuth nanoparticles with diameters ranging from 5to500nm have been studied by electron energy loss spectroscopy. The Bi nanoparticles were prepared by reducing Bi3+ with sodium borohydride in the presence of poly(vinylpyrroldone). The volume plasmon energy and its peak width increase with decreasing nanoparticle diameter, due to the quantum size effect. For the particles with diameter less than 40nm, the increase of the volume plasmon energy is proportional to the inverse square of the nanoparticle diameter, confirming the semimetal to semiconductor transition in Bi nanoparticles.

  12. STABILIZATION OF UNUSUAL SUBSTRATE COORDINATION MODES IN DINUCLEAR MACROCYCLIC COMPLEXES

    Directory of Open Access Journals (Sweden)

    Vasile Lozan

    2010-06-01

    Full Text Available The steric protection offered by the macrobinucleating hexaazaditiophenolate ligand (L allows for the preparation of the first stable dinuclear nickel(II borohydride bridged complex, which reacts rapidly with elemental sulphur producing a tetranuclear nickel(II complex [{(LNi2}2(μ-S6]2+ bearing a helical μ4-hexa- sulfide ligand. The [(LCoII 2]2+ fragment have been able to trap a monomethyl orthomolybdate in the binding pocket. Unusual coordination modes of substrate in dinuclear macrocyclic compounds was demonstrated.

  13. Caffeic acid: potential applications in nanotechnology as a green reducing agent for sustainable synthesis of gold nanoparticles.

    Science.gov (United States)

    Seo, Yu Seon; Cha, Song-Hyun; Yoon, Hye-Ran; Kang, Young-Hwa; Park, Youmie

    2015-04-01

    The sustainable synthesis of gold nanoparticles from gold ions was conducted with caffeic acid as a green reducing agent. The formation of gold nanoparticles was confirmed by spectroscopic and microscopic methods. Spherical nanoparticles with an average diameter of 29.99 ± 7.43 nm were observed in high- resolution transmission electron microscopy and atomic force microscopy images. The newly prepared gold nanoparticles exhibited catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. This system enables the preparation of green catalysts using plant natural products as reducing agents, which fulfills the growing need for sustainability initiatives.

  14. Large Scale Solution Assembly of Quantum Dot - Gold Nanorod Architectures with Plasmon Enhanced Fluorescence (Postprint)

    Science.gov (United States)

    2013-09-01

    ml, 0.1 M), AgNO, (0.08 ml, 0.1 M), and CTAB {100 ml, 0.1 M) followed by addition of the ascorbic acid solut ion (0.55 ml, 0.1 M) as a mild...removing such a tiny unreacted QD using a common purification process is not straightforward.60 An addi- t ional benefit of our method (Figure 1) is that...and l -ascorb·c acid were purchased from rokyo Chemical tndustry. Chloroaurlc acid (HAuCt,) (99.999%) and sodium borohydride (NaBH.1) (>95%), 11 amino

  15. Determination of Methyltins by a Hydridization Solvent Extraction Method

    OpenAIRE

    HAMASAKI,TETSUO/SATO,TAKAHIKO/NAGASE,HISAMITSU/KITO,HIDEAKI

    1994-01-01

    Analytical methods for the determination of methyltins in aqueous solutions were investigated. Methyltins ((CH_3)_nSn^) were derived to hydrides ((CH_3)_nSnH_) using sodium borohydride and extracted with benzene. Various factors related to hydridization and extraction were studied, and the optimum analytical conditions were established. Each methyltin in 50 ml of aqueous solution could be detected in the range of 0.5-250 μg as Sn using a gas chromatography-flame photometric detector (tin sele...

  16. Direct synthesis of 1,4-diols from alkenes by iron-catalyzed aerobic hydration and C-H hydroxylation.

    Science.gov (United States)

    Hashimoto, Takuma; Hirose, Daisuke; Taniguchi, Tsuyoshi

    2014-03-03

    Various 1,4-diols are easily accessible from alkenes through iron-catalyzed aerobic hydration. The reaction system consists of a user-friendly iron phthalocyanine complex, sodium borohydride, and molecular oxygen. Furthermore, the effect of additional ligands on the iron complex was examined for a model reaction. The second hydroxy group is installed by direct C(sp(3))-H oxygenation, which is based on a [1,5] hydrogen shift process of a transient alkoxy radical that is formed by formal hydration of the olefin.

  17. Synthesis and Characterization of Nanostructured Fe-Ni Alloy Whisker

    Institute of Scientific and Technical Information of China (English)

    DONG Guo-jun; WANG Gui-xiang; ZHANG Mi-lin; LI Ru-Min; WANG Jun

    2002-01-01

    The nanocrystalline γ-(Fe,Ni) alloy whiskers have been prepared by chemical reduction of Fe2+ and Ni2+ ions with potassium borohydride under the function of a dispersant agent PE followed by heat treatment at 600℃ under the protection of nitrogen.Conditions, such as quantity of NaOH, concentration of salts, and species of surfactants, of preparation of Fe-Ni alloy have been discussed. X-ray diffraction(XRD), transmission electron microscopy(TEM) and vibrating sample magnetometer(VSM) characterized the synthesized Fe-Ni alloy. Character, capability and use of the materials have been summarized.

  18. Structural analysis of O-glycosidic type of sialyloligosaccharide-alditols derived from urinary glycopeptides of a sialidosis patient

    OpenAIRE

    1988-01-01

    Sialidosis urine was fractionated by gel filtration on Bio-Gel P-6. All pooled fractions containing carbohydrates showed the presence of small amounts of GalNAc in non-reducing position, besides free N-acetyllactosamine type of oligosaccharides as major constituents. The fractions were subjected to reductive alkaline borohydride degradation, after which the major part of GalNAc was recovered as N-acetyl-d-galactosaminitol (GalNAc-ol). The GalNAc-ol-containing material was separated from the N...

  19. A Study of Groundwater Matrix Effects for the Destruction of Trichloroethylene Using Fe/Pd Nanoaggregates

    OpenAIRE

    2009-01-01

    Iron nanoaggregates have been prepared using the sodium borohydride reduction method and post-coated with Pd using aqueous phase electro-deposition. The Fe/Pd nanoaggregates were used to examine dechlorination of trichloroethylene (TCE) with regard to matrix effects using materials representative of a potential zero-valent metal remediation site surrounding the Paducah gaseous diffusion plant in Paducah, KY. A surface-area-normalized first-order rate constant of 1.4 × 10–1 L m–2 h–1 was obtai...

  20. Green coconut ( Cocos nucifera Linn) shell extract mediated size controlled green synthesis of polyshaped gold nanoparticles and its application in catalysis

    Science.gov (United States)

    Paul, Koushik; Bag, Braja Gopal; Samanta, Kousik

    2014-08-01

    The shell extract of green coconut ( Cocos nucifera Linn) has been utilized for the synthesis of gold nanoparticles at room temperature under very mild condition without any extra stabilizing or capping agents. The size of the synthesized gold nanoparticles could be controlled by varying the concentration of the shell extract. The stabilized gold nanoparticles were analyzed by surface plasmon resonance spectroscopy, HRTEM, Energy dispersive X-ray spectroscopy and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles was studied for the sodium borohydride reduction of 4-nitrophenol and the kinetics of the reduction reaction were studied spectrophotometrically.

  1. Obtaining and characterization of ZnSe nanoparticles from aqueous colloidal dispersions

    OpenAIRE

    Hernández, R.; Rosendo, E.; García, G.; M. Pacio; T. Díaz; H. Juárez; Galeazzi, R; R. Romano-Trujillo; G. Nieto

    2014-01-01

    Structural, morphological and compositional characterizations of zinc selenide (ZnSe) nanoparticles (NPs) are presented. ZnSe NPs have been obtained by colloidal synthe sis in aqueous solution using zinc nitrate (Zn(NO 3 ) 2 ) and elemental selenium (Se) as precursors, sodium borohydride (NaBH 4 ) as reducing agent, a solution of sodium hydroxide (NaOH) and pentasodium trip olyphosphate (Na 5 P 3 O 10 ) named Extran was used as surfactant. The pH was varied from 8 to 11 and the Zn:Se molar co...

  2. Solid hydrides as hydrogen storage reservoirs; Hidruros solidos como acumuladores de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Sanchez, C.; Friedrichs, O.; Ares, J. R.; Leardini, F.; Bodega, J.; Fernandez, J. F.

    2010-07-01

    Metal hydrides as hydrogen storage materials are briefly reviewed in this paper. Fundamental properties of metal-hydrogen (gas) system such as Pressure-Composition-Temperature (P-C-T) characteristics are discussed on the light of the metal-hydride thermodynamics. Attention is specially paid to light metal hydrides which might have application in the car and transport sector. The pros and cons of MgH{sub 2} as a light material are outlined. Researches in course oriented to improve the behaviour of MgH{sub 2} are presented. Finally, other very promising alternative materials such as Al compounds (alanates) or borohydrides as light hydrogen accumulators are also considered. (Author)

  3. An Efficient Chemoselective Reduction of Furan Series Unsaturated Dinitriles

    Directory of Open Access Journals (Sweden)

    Janette Bobalova

    2013-02-01

    Full Text Available An efficient reduction of double bonds conjugated with nitrile groups and acid or base sensitive furan rings with 2-phenylbenzimidazoline generated in situ has been successfully accomplished with high yields and excellent selectivity. The employed reducing agent was prepared in one step from ordinary chemicals. The other advantages of the presented method include mild and convenient reaction conditions, a benign and cost effective reagent, simple work-up and separation of the products. As this process does neither affect cyano and nitro groups nor furan rings, it is a valuable alternative when metal-catalyzed hydrogenations or borohydride reductions have failed.

  4. 低分子量壳聚糖及其衍生物与金属离子配合物研究%Coordination Compounds of Metal Ions with Low-molecular Weight Chitosan and Their Derivative

    Institute of Scientific and Technical Information of China (English)

    丁德润

    2005-01-01

    Chitosan(CTS) of molecular weight 3 × 106 was degraded by oxidation with H2O2. The molecular weight of degraded chitosan (CTS′) was between 5 500-6 000. Through the reaction of degraded chitosan with glyoxylic acid and sodium borohydride, the modified derivative of N-Carboxymethyl degraded chitosan (NCTS′) was obtained. The metal ions of Fe(Ⅱ), Ni(Ⅱ), Cu(Ⅱ) and Cr(Ⅲ) were coordinated at different conditions by degraded chitosan(CTS′→ M(Ⅱ)) and its derivative (NCTS′→ M(Ⅱ))). These coordination compounds were characterized with UV and IR spectroscopy.

  5. Study of Lewis Acid Promoting KBH_4 Reduce Carboxylic Acid Ester%Lewis酸促进KBH_4还原某些羧酸酯的研究

    Institute of Scientific and Technical Information of China (English)

    汪一波; 金召磊; 唐守万; 孙佰申; 潘富友; 高建荣

    2011-01-01

    Potassium borohydride reduction of some carboxylic esters into the corresponding alcohols by the Lewis acid was introduced.The structures were confirmed by 1HNMR,MS and IR,consistent with its structure and the target,and the yield of 37.5~68.5.%在Lewis酸的作用下,研究硼氢化钾将某些羧酸酯还原成相应的醇。其产物经1HNMR、MS和IR表征,其结构与目标物一致,收率在37.5~68.5之间。

  6. Preparation of well-defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the Langmuir-Hinshelwood approach.

    Science.gov (United States)

    Antonels, Nathan Charles; Meijboom, Reinout

    2013-11-05

    This study discusses the preparation of various sized dendrimer encapsulated ruthenium nanoparticles (RuDEN) with the use of the generation 4 (G4), generation 5 (G5), and generation 6 (G6) hydroxyl-terminated poly(amidoamine) (PAMAM-OH) dendrimers as templating agents. The size of the nanoparticles ranges from 1.1 to 2.2 nm. These catalysts were fully characterized using UV/vis spectrophotometry, infrared (IR) spectroscopy, and transmission electron microscopy (TEM). The RuDEN catalysts were evaluated in the reduction of 4-nitrophenol (4NP) in the presence of sodium borohydride (BH4(-)) for various concentrations of either. The kinetic data obtained were modeled to the Langmuir-Hinshelwood equation. The model allows the relation of the apparent rate constant to the total surface area S of the nanoparticle, the kinetic constant k which is related to the rate-determining step, and the adsorption constants K(4NP) and K(BH4) for 4NP and borohydride, respectively. These parameters were calculated for each of the RuDENs, proving the Langmuir-Hinshelwood model to be suitable for the kinetic evaluation of RuDENs in the catalytic reduction of 4NP.

  7. FUNDAMENTAL ENVIRONMENTAL REACTIVITY TESTING AND ANALYSIS OF THE HYDROGEN STORAGE MATERIAL 2LIBH4 MGH2

    Energy Technology Data Exchange (ETDEWEB)

    James, C.; Anton, D.; Cortes-Concepcion, J.; Brinkman, K.; Gray, J.

    2012-01-10

    While the storage of hydrogen for portable and stationary applications is regarded as critical in bringing PEM fuel cells to commercial acceptance, little is known of the environmental exposure risks posed in utilizing condensed phase chemical storage options as in complex hydrides. It is thus important to understand the effect of environmental exposure of metal hydrides in the case of accident scenarios. Simulated tests were performed following the United Nations standards to test for flammability and water reactivity in air for a destabilized lithium borohydride and magnesium hydride system in a 2 to 1 molar ratio respectively. It was determined that the mixture acted similarly to the parent, lithium borohydride, but at slower rate of reaction seen in magnesium hydride. To quantify environmental exposure kinetics, isothermal calorimetry was utilized to measure the enthalpy of reaction as a function of exposure time to dry and humid air, and liquid water. The reaction with liquid water was found to increase the heat flow significantly during exposure compared to exposure in dry or humid air environments. Calorimetric results showed the maximum normalized heat flow the fully charged material was 6 mW/mg under liquid phase hydrolysis; and 14 mW/mg for the fully discharged material also occurring under liquid phase hydrolysis conditions.

  8. Enhanced photoproduction of hydrogen peroxide by humic substances in the presence of phenol electron donors.

    Science.gov (United States)

    Zhang, Yi; Simon, Kelli A; Andrew, Andrea A; Del Vecchio, Rossana; Blough, Neil V

    2014-11-01

    Addition of a series of phenol electron donors to solutions of humic substances (HS) enhanced substantially the initial rates of hydrogen peroxide (H2O2) photoproduction (RH2O2), with enhancement factors (EF) ranging from a low of ∼3 for 2,4,6-trimethylphenol (TMP) to a high of ∼15 for 3,4-dimethoxyphenol (DMOP). The substantial inhibition of the enhanced RH2O2 following borohydride reduction of the HS, as well as the dependence of RH2O2 on phenol and dioxygen concentrations are consistent with a mechanism in which the phenols react with the triplet excited states of (aromatic) ketones within the HS to form initially a phenoxy and ketyl radical. The ketyl radical then reacts rapidly with dioxygen to regenerate the ketone and form superoxide (O2-), which subsequently dismutates to H2O2. However, as was previously noted for the photosensitized loss of TMP, the incomplete inhibition of the enhanced RH2O2 following borohydride reduction suggests that there may remain another pool of oxidizing triplets. The results demonstrate that H2O2 can be generated through an additional pathway in the presence of sufficiently high concentrations of appropriate electron donors through reaction with the excited triplet states of aromatic ketones and possibly of other species such as quinones. However, in some cases, the much lower ratio of H2O2 produced to phenol consumed suggests that secondary reactions could alter this ratio significantly.

  9. Neomycin fixation followed by ethanol pretreatment leads to reduced buckling and inhibition of calcification in bioprosthetic valves.

    Science.gov (United States)

    Raghavan, Devanathan; Shah, Sagar R; Vyavahare, Naren R

    2010-01-01

    Glutaraldehyde crosslinked bioprosthetic heart valves (BHVs) have two modalities of failure: degeneration (cuspal tear due to matrix failure) and calcification. They can occur independently as well as one can lead to the other causing co-existence. Calcific failure has been extensively studied before and several anti-calcification treatments have been developed; however, little research is directed to understand mechanisms of valvular degeneration. One of the shortcomings of glutaraldehyde fixation is its inability to stabilize all extracellular matrix components in the tissue. Previous studies from our lab have demonstrated that neomycin could be used as a fixative to stabilize glycosaminoglycans (GAGs) present in the valve to improve matrix properties. But neomycin fixation did not prevent cuspal calcification. In the present study, we wanted to enhance the anti-calcification potential of neomycin fixed valves by pre-treating with ethanol or removing the free aldehydes by sodium borohydride treatment. Ethanol treatment has been previously used and found to have excellent anti-calcification properties for valve cusps. Results demonstrated in this study suggest that neomycin followed by ethanol treatment effectively preserves GAGs both in vitro as well as in vivo after subdermal implantation in rats. In vivo calcification was inhibited in neomycin fixed cusps pretreated with ethanol compared to glutaraldehyde (GLUT) control. Sodium borohydride treatment by itself did not inhibit calcification nor stabilized GAGs against enzymatic degradation. Neomycin fixation followed by ethanol treatment of BHVs could prevent both modalities of failure, thereby increasing the effective durability and lifetime of these bioprostheses several fold.

  10. Chemiluminescent detect of E. coli O157:H7 using immunological method based on magnetic nanoparticles.

    Science.gov (United States)

    Li, Zhiyang; He, Lei; He, Nongyue; Shi, Zhiyang; Wang, Hua; Li, Song; Liu, Hongna; Li, Xiaolong; Dai, Yabin; Wang, Zhifei

    2010-02-01

    The system of chemiluminescent magnetic enzyme-linked immunoassay was developed. E. coli O157:H7 was sandwiched between rabbits anti-E. coli O157:H7 polyclonal antibody-coated magnetic nanoparticles (immunomagnetic nanoparticles or IMNPs) and mouse anti-E. coli O157:H7 monoclonal antibody. Commercial alkaline phosphatase conjugated horse anti-mouse immunoglobulin (ALP-Ab) was used to bind with the monoclonal antibody, finally the chemiluminescent signals were detected by adding 3-(2'-spiroadamantane)-4-methoxy-4-(3"-phosphoryloxy)phenyl-1,2-dioxetane (AMPPD) which was the substrate reagent of ALP. Different solvents of AMPPD were compared to get an optimal chemiluminescent signal. The effects of sodium borohydride and glycine on blocking the aldehyde groups of IMNPs were compared either, and the specificity and sensitivity of this system for detecting E. coli O157:H7 were researched. The results indicated that Tris buffer was the best solvent of AMPPD, sodium borohydride was better than glycine in blocking IMNPs, and this method was of good specificity when using E. coli Top 10F' and Vibrio cholera as negative controls. The detection limit was 10(3) cells mL(-1) when the antigen solution was 1 mL, and the procedure duration was about 3 h.

  11. Topo-optical reactions for the identification of O-acyl sugars in amyloid deposits.

    Science.gov (United States)

    Richter, Susann; Makovitzky, Josef

    2009-01-01

    The aldehyde bisulfite toluidine blue (ABT) reaction with former saponification (KOH-ABT) and periodic acid-borohydride reduction-saponification (PB-KOH-ABT) were applied to sections of human amyloid deposits in the respiratory tract. The saponification-induced increase in ABT-reactivity was confined to the presence of O-acyl sugars associated with the amyloid fibrils. The anisotropic and metachromatic effect in the ABT and KOH-ABT reaction was reduced in the corresponding PB-KOH-ABT reaction, a difference attributed to the removal of staining due to neutral carbohydrate residues. Since the periodic acid-borohydride reduction abolishes all pre-existing ABT-reactivity of neutral sugar vicinal diols, the isolated KOH-effect could be shown using the PB-KOH-ABT reaction. By application of this sequence, the problem identifying small quantities of O-acyl sugars was solved. It is suggested that the KOH-effect depends upon the removal of O-acyl substituents located on the polyhydroxy side chain (C7, C8, C9) of sialic acid residues. An advantage of such topo-optical reactions over biochemical techniques is the exact localization of O-acyl sugars in tissue sites. By means of the KOH-ABT and PB-KOH-ABT reactions we have demonstrated, for the first time, that O-acyl sugars occur within amyloid deposits.

  12. Low-cost polyvinyl alcohol hydrogel membrane electrolyte for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Y. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    2010-07-01

    This paper presented a newly developed polyvinyl alcohol (PVA) chemical hydrogel membrane electrolyte (PCHME) for use in proton exchange membrane (PEM) fuel cells. The method of PCHME preparation was described along with its properties. The membrane is much less expensive than the commonly used Nafion membrane. A direct borohydride fuel cell (DBFC) using a polyvinyl alcohol (PVA) chemical hydrogel membrane electrolyte and a nickel-based composite anode was assembled in order to test the performance of the new membrane. The cathode catalysts were carbon-supported platinum and sputtered gold. Oxygen, air, and acidified hydrogen peroxide were used as oxidants in the DBFC. Performance characteristics of the PCHME-based DBFC were obtained at different temperatures and compared with similar DBFCs using Nafion membrane electrolytes under the same operating conditions. The peak power density of the PCHME-based DBFC was somewhat higher than that of the Nafion membrane electrolyte based DBFC at 60 degrees C. The borohydride-oxygen fuel cell with PCHME yielded a maximum peak power density of 242 mW cm{sup -2} at 60 degrees C. It was concluded that the membrane presents an inexpensive alternative to widely used polymer membrane electrolytes.

  13. OPTICAL PROPERTY ANALYSIS OF THERMALLY AND PHOTOLYTICALLY AGED EUCALYPTUS CAMALDULENSIS CHEMITHERMOMECHANICAL PULP (CTMP

    Directory of Open Access Journals (Sweden)

    Yao Chen,

    2012-02-01

    Full Text Available To investigate the optical properties of chemithermomechanical pulp (CTMP from Eucalyptus camaldulensis, one group of samples of CTMP was aged by heating, and another group was first subjected to bleaching with different bleaching agents, and then aging by exposure to sunlight. Chromophores were analyzed using diffuse reflectance UV-Vis spectra (DRUV, and the brightness and color parameters (L*, a*, b* were analyzed using colorimetry. Results showed that the color reactions of the pulp, upon heating, were enhanced in the presence of moisture. There was a linear relationship between the pulp initial moisture content (MC and the intensity of UV-Vis absorption. The contribution of different chromophores to pulp color was analyzed with the help of bleaching agents: hydrogen peroxide, sodium dithionite, and sodium borohydride. Sodium borohydride and hydrogen peroxide treatments resulted in a decrease in the absorption band at 280 nm along with the shoulder near 320 nm, which could be attributed to conjugated C=O and C=C systems. Similarly, sodium dithionite treatment also led to a decrease in absorption of the carbonyls and double bonds conjugated with aromatic double bonds. The chromaticity parameters of bleached pulp increased after exposure to sunlight. A correspondingly higher concentration of quinoid structures was found.

  14. Prediction of thermodynamically reversible hydrogen storage reactions utilizing Ca-M(M = Li, Na, K)-B-H systems: a first-principles study.

    Science.gov (United States)

    Guo, Yajuan; Ren, Ying; Wu, Haishun; Jia, Jianfeng

    2013-12-01

    Calcium borohydride is a potential candidate for onboard hydrogen storage because it has a high gravimetric capacity (11.5 wt.%) and a high volumetric hydrogen content (∼130 kg m(-3)). Unfortunately, calcium borohydride suffers from the drawback of having very strongly bound hydrogen. In this study, Ca(BH₄)₂ was predicted to form a destabilized system when it was mixed with LiBH₄, NaBH₄, or KBH₄. The release of hydrogen from Ca(BH₄)₂ was predicted to proceed via two competing reaction pathways (leading to CaB₆ and CaH₂ or CaB₁₂H₁₂ and CaH₂) that were found to have almost equal free energies. Using a set of recently developed theoretical methods derived from first principles, we predicted five new hydrogen storage reactions that are among the most attractive of those presently known. These combine high gravimetric densities (>6.0 wt.% H₂) with have low enthalpies [approximately 35 kJ/(mol(-1) H₂)] and are thermodynamically reversible at low pressure within the target window for onboard storage that is actively being considered for hydrogen storage applications. Thus, the first-principles theoretical design of new materials for energy storage in future research appears to be possible.

  15. Scalable synthesis of Cu-based ultrathin nanowire networks and their electrocatalytic properties

    Science.gov (United States)

    Hong, Wei; Wang, Jin; Wang, Erkang

    2016-02-01

    In this research, we developed an easy way to generate CuM (M = Pd, Pt and PdPt) ultrathin nanowire networks by simply injecting the metallic precursors into an aqueous solution which contained sodium borohydride under vigorous stirring. The reaction can be finished quickly without needing any other reagents, thus leaving the products with a clean surface. The prepared materials show an ultrathin diameter of less than 5 nanometers. The reaction can be easily amplified, resulting in scalable products. These properties combined with the superior catalytic performance of the prepared CuM nanowire networks underpin their potential use in glycerol electrooxidation reaction.In this research, we developed an easy way to generate CuM (M = Pd, Pt and PdPt) ultrathin nanowire networks by simply injecting the metallic precursors into an aqueous solution which contained sodium borohydride under vigorous stirring. The reaction can be finished quickly without needing any other reagents, thus leaving the products with a clean surface. The prepared materials show an ultrathin diameter of less than 5 nanometers. The reaction can be easily amplified, resulting in scalable products. These properties combined with the superior catalytic performance of the prepared CuM nanowire networks underpin their potential use in glycerol electrooxidation reaction. Electronic supplementary information (ESI) available: Experimental details, additional TEM, XPS and electrochemical characterizations. See DOI: 10.1039/c5nr07516e

  16. Technical roadmap and prospect of hydrogen generation by NaBH4%硼氢化钠制氢的技术路线与发展前景

    Institute of Scientific and Technical Information of China (English)

    方朝君; 闫常峰; 郭常青

    2011-01-01

    硼氢化钠(NaBH,)催化水解制氢技术安全可靠.能够即时制氢和即时供氢.可方便地为燃料电池等便携式装置提供氢能,故成为氢源研究的热点课题.考察了硼氢化钠制氢的发展历史,着重分析了三种硼氢化钠水解制氢技术路线和不同制氢催化剂的优势和需要解决的问题,并展望其应用前景.%The method using catalytic hydrolysis of sodium borohydride (NaBH4), which provides a safe and practical means of producing hydrogen, makes it an attractive source to supply hydrogen for fuel cells and other portable applications, The history and recent development of different technique routings of hydrogen generation from sodium borohydride hydrolysis were reviewed comprehensively. The advantages and problems of technical roadnaps and heterogeneous catalysts were analyzed in detail and their prospects of practical application were discussed.

  17. The Preferable F2dd Phase for Ca(BH4)2 Crystal Under Hydrostatic Pressures

    Science.gov (United States)

    Le, Tuan; Do, Phu Manh

    2017-02-01

    Calcium borohydride (Ca(BH4)2) belongs to a series of widely spread, cheap metal borohydrides that are promising for the mobile hydrogen economy, but with some properties still in open discussions. In particular, for the experimental Ca(BH4)2 α-phase both space groups F2dd and Fddd have been proposed. This work presents the analysis of enthalpy and bonding length changes in Ca(BH4)2 over the hydrostatic pressure range of 0-40 GPa, which shows a preference for the F2dd phase of Ca(BH4)2 over the Fddd one. The validity of the calculations, based on density functional theory implemented by the ABINIT package with the GGA method, is supported by the accordance of the results with experimental data for the α'-, β-, and δ-phases of Ca(BH4)2. The phonon spectra show the stability of the Ca(BH4)2 phases, where B- and H-ions provide the dominant part of the optical phonon bands, whereas the Ca-, B-, H-ions contribute to the acoustic bands.

  18. The binomial distribution of hydrogen and deuterium in arsanes, diarsanes, and triarsanes generated from As(III)/[BH(n)D(4-n)]- and the effect of trace amounts of Rh(III) ions.

    Science.gov (United States)

    Pagliano, Enea; D'Ulivo, Alessandro; Mester, Zoltán; Sturgeon, Ralph E; Meija, Juris

    2012-12-01

    Recent studies of the formation of arsane in the borohydride/arsenate reaction demonstrate the occurrence of condensation cascades whereby small quantities of di- and triarsanes are formed. In this study, the isotopic composition of these di- and triarsanes was examined using deuterium labelled borohydrides. A statistical model was employed to construct the mass spectra of all diarsane and triarsane isotopologues (As(2)H(n)D(4-n) and As(3)H(n)D(5-n)) from the mass spectra of isotopically pure compounds (As(2)H(4), As(2)D(4), As(3)H(5), and As(3)D(5)). Subsequent deconvolution of the experimental mixed spectra shows that incorporation of hydrogen closely follows the binomial distribution, in accord with arsane formation. The H/D distribution in arsane, diarsane, and triarsane isotopologues is binomial in the absence of any interference. However, this is significantly altered by the presence of some transition metals; presented here, for the first time, are the effects of Rh(III). The presence of Rh(III) in the As(III)/[BD(4)](-) system entails the incorporation of hydrogen into the arsanes arising from the solvent, altering the expected binomial H/D distribution.

  19. Ab initio and DFT Studies of Be(BH42

    Directory of Open Access Journals (Sweden)

    J. S. Al-Otaibi

    2016-03-01

    Full Text Available In this study, the Ab inito and DFT calculations of optimized geometries, energy and vibrational spectra for the Beryllium borohydride Be(BH42 at different levels are achieved by Hartre – Fock (HF, perturbation theory (MP2 and density functional theory (B3LYP methods. They utilize the 6-31G(d, 6-311G(d,p, 6-311+G(d,p and 6-311++G(d,p basis sets. The theoretical results showed that Beryllium borohydride with the D2d structure which contains two identical groups of double bridging hydrogen has the lowest energy at all levels. Consequently, this compound is considered as the most stable one and the results of IR and Raman Spectra at all levels support that. We found that both structures Cs, C3v have the structure of D2d kind at all levels. The values of bond lengths for these two structures are identical for the bond lengths to the structure D2d kind which confirms this theory.

  20. Study on Hydrogen Storage Materials

    Science.gov (United States)

    Sugiyama, Jun

    2016-09-01

    Complex hydrides have been heavily investigated as a hydrogen storage material, particularly for future vehicular applications. The present major problem of such complex hydrides is their relatively high hydrogen desorption temperature (Td). In order to find a predominant parameter for determining Td, we have investigated internal nuclear magnetic fields in several complex hydrides, such as, lithium and sodium alanates, borohydrides, and magnesium hydrides, with a muon spin rotation and relaxation (μ+SR) technique. At low temperatures, the μ+SR spectrum obtained in a zero external field (ZF) exhibits a clear oscillation due to the formation of a three spin 1/2 system, HμH, besides Mg(BH4)2 and Sc(BH4)2. Such oscillatory signal becomes weaker and weaker with increasing temperature, and finally disappears above around room temperature. However, the volume fraction of the HμH signal to the whole asymmetry at 5 K is found to be a good indicator for Td in borohydrides. At high temperatures, on the contrary, the ZF-spectrum for MgH2 shows a Kubo-Toyabe like relaxation due to a random nuclear magnetic field of 1H. Such nuclear magnetic field becomes dynamic well below Td in the milled MgH2, indicating a significant role on H-diffusion in solids for determining Td.

  1. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  2. Explorations of Novel Energy Conversion and Storage Systems

    Science.gov (United States)

    Duffin, Andrew Mark

    . As a result, liquid microjets yield conversion efficiencies exceeding 10%, much larger than channel-dependent measurements (˜3%). It is the large potentials obtainable with electrokinetic currents (tens of kilovolts) that drive up the electrical conversion efficiency. Unfortunately, low currents with high voltages are inconvenient for application. Section 3 of Chapter 2 describes efforts to utilize the high voltage of electrokinetic currents by coupling light into the process. More specifically, the streaming potential is used to modify the space charge layer in a semiconductor and, consequently, the light harvesting characteristics of that semiconductor. To this end, microchannel jets fabricated out of glass and silicon were built to allow light to impinge on the current generating surface. Although plagued with inconsistent results, streaming currents were found to increase upon illumination and some channels even gave measurable responses to ambient room lights. Chapter 3 of this dissertation addresses the details of hydration of boron-oxides and sodium borohydride as studied by near edge x-ray absorption fine structure spectroscopy (NEXAFS) and associated theory. Boron-oxides and molecular hydrogen are products of borohydride hydrolysis which has been intensely studied for hydrogen storage purposes. In spite of their hydroxide moieties, boron-oxides turn out to not be strongly hydrated by water. The experimental spectra, as well as attending calculations, show no evidence for electronic coupling that would indicate strong hydrogen bonding between the boron-oxides and water. On the other hand, the NEXAFS spectrum of sodium borohydride is significantly altered by water. The experiment and calculations show strong evidence for short dihydrogen bonds between water hydrogens and borohydride hydrogens. Molecular dynamics simulations indicate that borohydride is hydrated at the tetrahedral corners and edge.

  3. The removal of uranium onto carbon-supported nanoscale zero-valent iron particles

    Energy Technology Data Exchange (ETDEWEB)

    Crane, Richard A., E-mail: richardandrewcrane@gmail.com; Scott, Thomas [University of Bristol, School of Physics, Interface Analysis Centre (United Kingdom)

    2014-12-15

    In the current work carbon-supported nanoscale zero-valent iron particles (CS nZVI), synthesised by the vacuum heat treatment of ferric citrate trihydrate absorbed onto carbon black, have been tested for the removal of uranium (U) from natural and synthetic waters. Two types of CS nZVI were tested, one vacuum annealed at 600 °C for 4 h and the other vacuum annealed at 700 °C for 4 h, with their U removal behaviour compared to nZVI synthesised via the reduction of ferrous iron using sodium borohydride. The batch systems were analysed over a 28-day reaction period during which the liquid and nanoparticulate solids were periodically analysed to determine chemical evolution of the solutions and particulates. Results demonstrate a well-defined difference between the two types of CS nZVI, with greater U removal exhibited by the nanomaterial synthesised at 700 °C. The mechanism has been attributed to the CS nZVI synthesised at 700 °C exhibiting (i) a greater proportion of surface oxide Fe{sup 2+} to Fe{sup 3+} (0.34 compared to 0.28); (ii) a greater conversion of ferric citrate trihydrate [2Fe(C{sub 6}H{sub 5}O{sub 7})·H{sub 2}O] to Fe{sup 0}; and (iii) a larger surface area (108.67 compared to 88.61 m{sup 2} g{sup −1}). Lower maximum U uptake was recorded for both types of CS nZVI in comparison with the borohydride-reduced nZVI. A lower decrease in solution Eh and DO was also recorded, indicating that less chemical reduction of U was achieved by the CS nZVI. Despite this, lower U desorption in the latter stages of the experiment (>7 days) was recorded for the CS nZVI synthesised at 700 °C, indicating that carbon black in the CS nZVI is likely to have contributed towards U sorption and retention. Overall, it can be stated that the borohydride-reduced nZVI were significantly more effective than CS nZVI for U removal over relatively short timescales (e.g. <48 h), however, they were more susceptible to U desorption over extended time periods.

  4. Carbon Nanotubes Supported Pt-Ru-Ni as Methanol Electro-Oxidation Catalyst for Direct Methanol Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Fei Ye; Shengzhou Chen; Xinfa Dong; Weiming Lin

    2007-01-01

    Carbon nanotubes (CNTs) supported Pt-Ru and Pt-Ru-Ni catalysts were prepared by chemical reduction of metal precursors with sodium borohydride at room temperature. The crystallographic properties and composition of the catalysts were characterized by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis, and the catalytic activity and stability for methanol electro-oxidation were measured by electrochemical impedance spectroscopy (EIS), linear sweep voltammetries (LSV), and chronoamperometry (CA). The results show that the catalysts exhibit face-centered cubic (fcc) structure.The particle size of Pt-Ru-Ni/CNTs catalyst is about 4.8 nm. The catalytic activity and stability of the Pt-Ru-Ni/CNTs catalyst are higher than those of Pt-Ru/CNTs catalyst.

  5. Green synthesis and catalytic application of curcumin stabilized silver nanoparticles

    Indian Academy of Sciences (India)

    A D VERMA; N JAIN; S K SINGHA; M A QURAISHI; I SINHA

    2016-12-01

    An ultrasonication based green synthesis approach was used to prepare curcumin-stabilized silver nanoparticles (c-AgNPs). Nanoparticles thus obtained were characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Two different size distributions of c-AgNPs were obtained by changing the ratio of curcumin to silver salt precursor. These c-AgNPs were used as catalysts in the catalytic reduction of p-nitrophenol to p-aminophenol. The c-AgNPs with narrower size distribution exhibited better catalytic activity as well as lower activation energy. Variation of apparent rate constant with the reactant concentration agreed with the Langmuir- Hinshelwood (LH) model. Consequently, the surface rate constant related to the rate-determining step and the respective adsorption constants of p-nitrophenol and of borohydride were determined as per this model.

  6. PREPARATION OF POLYMER MICROSPHERES WITH PYRIDYL GROUP AND THEIR STABILIZED GOLD METALLIC COLLOIDS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Narrow disperse poly(ethyleneglycol dimethacrylate-co-4-vinylpyridine) (poly(EGDMA-co-4-VPy)) microspheres were prepared by distillation-precipitation copolymerization of ethyleneglycol dimethacrylate (EGDMA) and 4-vinylpyridine (4-VPy) with 2,2'-azobisisobutyronitrile (AIBN) as initiator in neat acetonitrile. The polymer microspheres containing pyridyl group were then utilized as stabilizer for gold metallic colloids with the diameter around 7 nm, which were prepared by the in situ reduction of gold chloride trihydrate with sodium borohydride through the coordination of the pyridyl group on the gel layer and surface of the microsphere with the gold metallic nano-particles. The catalytic properties of the pyridyl-functionalized microsphere-stabilized gold metallic colloids and the behavior of the stabilized-catalyst for the recycling were investigated with reduction of 4-nitrophenol to 4-aminophenol as a model reaction.

  7. Preparation of substituted quaternized arylfuran chitosan derivatives and their antimicrobial activity.

    Science.gov (United States)

    Chethan, P D; Vishalakshi, B; Sathish, L; Ananda, K; Poojary, Boja

    2013-08-01

    Heterocyclic modification of chitosan has been achieved through the formation of a Schiff base intermediate by the reaction of chitosan with substituted arylfurfural. The Schiff bases were further reacted with 10% sodium borohydride followed by reaction with methyl iodide to get the quaternized products. The formation of the Schiff bases and quaternized derivatives has been confirmed by elemental analysis, FTIR, (1)H NMR and UV-vis spectroscopy. The compounds are also characterized by thermo-gravimetric analysis. The parent compound and quaternized derivatives were compared for their antibacterial and antifungal activity. The results indicated that quaternized derivatives possess better inhibitory property than chitosan. Further this study confirms that heterocyclic aromatic substituent containing 'Cl' and 'NO2' are effective in enhancing the antimicrobial activity of Chitosan.

  8. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles

    Science.gov (United States)

    Teow, Yiwei; Valiyaveettil, Suresh

    2010-12-01

    Interaction of nanoparticles with human cells is an interesting topic for understanding toxicity and developing potential drug candidates. Water soluble platinum nanoparticles were synthesized viareduction of hexachloroplatinic acid using sodium borohydride in the presence of capping agents. The bioactivity of folic acid and poly(vinyl pyrrolidone) capped platinum nanoparticles (Pt-nps) has been investigated using commercially available cell lines. In the cell viability experiments, PVP-capped nanoparticles were found to be less toxic (>80% viability), whereas, folic acid-capped platinum nanoparticles showed a reduced viability down to 24% after 72 h of exposure at a concentration of 100 μg ml-1 for MCF7 breast cancer cells. Such toxicity, combined with the possibility to incorporate functional organic molecules as capping agents, can be used for developing new drug candidates.

  9. Establishing and Understanding Adsorption-Energy Scaling Relations with Negative Slopes.

    Science.gov (United States)

    Su, Hai-Yan; Sun, Keju; Wang, Wei-Qi; Zeng, Zhenhua; Calle-Vallejo, Federico; Li, Wei-Xue

    2016-12-15

    Adsorption-energy scaling relations are widely used for the design of catalytic materials. To date, only linear scaling relations are known in which the slopes are positive. Considering the adsorption energies of F, O, N, C, and B on transition metals, we show here that scaling relations with negative slopes also exist between certain adsorbates. The origin of such unconventional scaling relations is analyzed in terms of common descriptors such as d-band center, work function, number of outer electrons, electronic charge on the adsorbates, integrated crystal orbital overlap populations, and crystal orbital Hamilton populations. Conventional scaling relations are formed between adsorbates such as F, O, N, and C, which create ionic-like bonds with surfaces. Conversely, anomalous scaling relations are established between those and covalently bound adsorbates such as B. This widens the theory of adsorption-energy scaling relations and opens new avenues in physical chemistry and catalysis, for instance, in direct borohydride fuel cells.

  10. Boron-Based (Nano-Materials: Fundamentals and Applications

    Directory of Open Access Journals (Sweden)

    Umit B. Demirci

    2016-09-01

    Full Text Available The boron (Z = 5 element is unique. Boron-based (nano-materials are equally unique. Accordingly, the present special issue is dedicated to crystalline boron-based (nano-materials and gathers a series of nine review and research articles dealing with different boron-based compounds. Boranes, borohydrides, polyhedral boranes and carboranes, boronate anions/ligands, boron nitride (hexagonal structure, and elemental boron are considered. Importantly, large sections are dedicated to fundamentals, with a special focus on crystal structures. The application potentials are widely discussed on the basis of the materials’ physical and chemical properties. It stands out that crystalline boron-based (nano-materials have many technological opportunities in fields such as energy storage, gas sorption (depollution, medicine, and optical and electronic devices. The present special issue is further evidence of the wealth of boron science, especially in terms of crystalline (nano-materials.

  11. Synthesis, antibacterial, antiurease, and antioxidant activities of some new 1,2,4-triazole schiff base and amine derivatives.

    Science.gov (United States)

    Sokmen, Bahar Bilgin; Gumrukcuoglu, Nurhan; Ugras, Serpil; Sahin, Huseyin; Sagkal, Yasemin; Ugras, Halil Ibrahim

    2015-01-01

    The acylhydrazone compound named ethyl N'-furan-2-carbonylbenzohydrazonate was synthesized by the condensation of ethyl benzimidate hydrochloride with furan-2-carbohydrazide. The treatment of the acylhydrazone with hydrazine hydrate afforded 4-amino-3-furan-2-yl-5-phenyl-1,2,4-triazole. The usage of this compound with various aromatic aldehydes resulted in the formation of 4-arylidenamino-3-furan-2-yl-5-phenyl-1,2,4-triazoles. Sodium borohydride reduction of 4-arylidenamino derivatives afforded 4-alkylamino-3-furan-2-yl-5-phenyl-1,2,4-triazoles. The obtained products were identified by FT-IR, (1)H-NMR, (13)C-NMR. A series of compounds were evaluated for their antibacterial, antiurease, and antioxidant activities. The results showed that the synthesized new compounds had effective antiurease and antioxidant activities.

  12. Facilely Tuning Porous NiCo2 O4 Nanosheets with Metal Valence-State Alteration and Abundant Oxygen Vacancies as Robust Electrocatalysts Towards Water Splitting.

    Science.gov (United States)

    Zhu, Chengzhou; Fu, Shaofang; Du, Dan; Lin, Yuehe

    2016-03-14

    Great efforts in developing clean electrochemical water splitting technology leads to the rational design and synthesis of highly efficient oxygen evolution reaction (OER) catalysts with low overpotential and fast reaction kinetics. Herein, we focus on the role that morphology and composition play in the OER performance to rationally design freestanding 3D porous NiCo2O4 nanosheets with metal valence states alteration and abundant oxygen vacancies as robust electrocatalysts towards water splitting. Besides metal valence-state alteration, surface modification regarding the evolution of oxygen vacancies is facilely realized upon the sodium borohydride treatment, which is beneficial for the enhanced OER performance. Taking advantage of the porous nanostructures and abundant surface activity sites with high reactivity, the resultant nanostructures exhibit excellent OER activity and stability in alkaline electrolytes that outperform that of pristine NiCo2O4 and commercial RuO2, thus holding great potential for the water splitting.

  13. Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue

    Science.gov (United States)

    Naraginti, Saraschandra; Stephen, Finian Bernard; Radhakrishnan, Adhithya; Sivakumar, A.

    2015-01-01

    Catalytic activity of Zr and Ag co-doped TiO2 nanoparticles on the reduction of 4-nitrophenol, degradation of methylene blue and methyl orange was studied using sodium borohydride as reducing agent. The nanoparticles were characterized using X-ray diffraction, energy dispersive X-ray, high resolution transmission electron microscopy, selected area electron diffraction and UV-Vis spectroscopy. The rate of the reduction/degradation was found to increase with increasing amount of the photocatalyst which could be attributed to higher dispersity and small size of the nanoparticles. The catalytic activity of Zr and Ag co-doped TiO2 nanoparticles showed no significant difference even after recycling the catalyst four times indicating a promising potential for industrial application of the prepared photocatalyst.

  14. Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue.

    Science.gov (United States)

    Naraginti, Saraschandra; Stephen, Finian Bernard; Radhakrishnan, Adhithya; Sivakumar, A

    2015-01-25

    Catalytic activity of Zr and Ag co-doped TiO2 nanoparticles on the reduction of 4-nitrophenol, degradation of methylene blue and methyl orange was studied using sodium borohydride as reducing agent. The nanoparticles were characterized using X-ray diffraction, energy dispersive X-ray, high resolution transmission electron microscopy, selected area electron diffraction and UV-Vis spectroscopy. The rate of the reduction/degradation was found to increase with increasing amount of the photocatalyst which could be attributed to higher dispersity and small size of the nanoparticles. The catalytic activity of Zr and Ag co-doped TiO2 nanoparticles showed no significant difference even after recycling the catalyst four times indicating a promising potential for industrial application of the prepared photocatalyst.

  15. Is electronegativity a useful descriptor for the pseudo-alkali metal NH4?

    Science.gov (United States)

    Whiteside, Alexander; Xantheas, Sotiris S; Gutowski, Maciej

    2011-11-18

    Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined one such property--the electronegativity--for the "pseudo-alkali metal" ammonium (NH(4)), and evaluated its reliability as a descriptor versus the electronegativities of the alkali metals. The computed properties of ammonium's binary complexes with astatine and of selected borohydrides confirm the similarity of NH(4) to the alkali metal atoms, although the electronegativity of NH(4) is relatively large in comparison to its cationic radius. We have paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation and reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the molecular nature of NH(4).

  16. One-step growth of gold nanorods using a β-diketone reducing agent

    Science.gov (United States)

    Tollan, Christopher M.; Echeberria, Jon; Marcilla, Rebeca; Pomposo, José A.; Mecerreyes, David

    2009-07-01

    The synthesis and characterisation of gold nanorods have been carried out by reduction of the gold salt HAuCl4. This has been done using a single reducing agent, acetylacetone, rather than the two reducing agents, sodium borohydride and ascorbic acid, normally required by standard wet chemistry methods of gold nanorod formation. Using this novel method, the nanorods were synthesised at several different pH values which were found to greatly affect both the rate at which the nanorods form and their physical dimensions. The concentrations of acetylacetone and silver nitrate used relative to the gold salt were found to alter the aspect ratio of the nanorods formed. Rods with an average length of 42 nm and an aspect ratio of 4.6 can be easily and reproducibly formed at pH 10 using this method. Nanorods formed under optimum conditions were investigated using TEM.

  17. One-step growth of gold nanorods using a {beta}-diketone reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Tollan, Christopher M., E-mail: ctollan@cidetec.e [CIDETEC-Centre for Electrochemical Technologies, Parque Tecnologico de San Sebastian, New Materials Department (Spain); Echeberria, Jon [CEIT, Centro de Investigaciones Tecnicas de Guipuzcoa (Spain); Marcilla, Rebeca; Pomposo, Jose A.; Mecerreyes, David, E-mail: dmecerreyes@cidetec.e [CIDETEC-Centre for Electrochemical Technologies, Parque Tecnologico de San Sebastian, New Materials Department (Spain)

    2009-07-15

    The synthesis and characterisation of gold nanorods have been carried out by reduction of the gold salt HAuCl{sub 4}. This has been done using a single reducing agent, acetylacetone, rather than the two reducing agents, sodium borohydride and ascorbic acid, normally required by standard wet chemistry methods of gold nanorod formation. Using this novel method, the nanorods were synthesised at several different pH values which were found to greatly affect both the rate at which the nanorods form and their physical dimensions. The concentrations of acetylacetone and silver nitrate used relative to the gold salt were found to alter the aspect ratio of the nanorods formed. Rods with an average length of 42 nm and an aspect ratio of 4.6 can be easily and reproducibly formed at pH 10 using this method. Nanorods formed under optimum conditions were investigated using TEM.

  18. Surface galactolipids of wheat protoplasts as receptors for soybean agglutinin and their possible relevance to host-parasite interaction.

    Science.gov (United States)

    Kogel, K H; Ehrlich-Rogozinski, S; Reisener, H J; Sharon, N

    1984-12-01

    Soybean agglutinin, a lectin specific for N-acetyl-d-galactosamine and d-galactose, was previously shown to agglutinate wheat leaf protoplasts (Larkin 1978 Plant Physiol 61: 626-629). We investigated the receptors for soybean agglutinin on the plasma membrane of these protoplasts. After treatment of the protoplasts with galactose oxidase, they were no longer agglutinated by the lectin, whereas upon reduction of the galactose oxidase-treated protoplasts with sodium borohydride the susceptibility to agglutination was restored. Analysis of the glycolipids of protoplasts surface labeled by the galactose oxidase-borotritide method, revealed that the radioactivity was mainly present in monogalactosyldiglyceride and digalactosyldiglyceride. The same galactolipids were identified as the only receptors for soybean agglutinin by direct binding of the (125)I-labeled lectin to a thin layer chromatogram of the glycolipids of wheat leaf protoplasts.

  19. Synthesis and characterization of silver and gold nanoparticles in ionic liquid

    Science.gov (United States)

    Singh, Prashant; Kumari, Kamlesh; Katyal, Anju; Kalra, Rashmi; Chandra, Ramesh

    2009-07-01

    In this paper, we report the reduction of silver and gold salts by methanolic solution of sodium borohydride in tetrazolium based ionic liquid as a solvent at 30 °C leads to pure phase of silver and gold nanoparticles. Silver and gold nanoparticles so-prepared were well characterized by powder X-ray diffraction measurements (XRD), transmission electron microscopy (TEM) and QELS. XRD analysis revealed all relevant Bragg's reflection for crystal structure of silver and gold metal. XRD spectra also revealed no oxidation of silver nanoparticles to silver oxide. TEM showed nearly uniform distribution of the particles in methanol and it was confirmed by QELS. Silver and gold nanoparticles in ionic liquid can be easily synthesized and are quite stable too.

  20. Experimental Study of Interfacial Friction in NaBH{sub 4} Solution in Microchannel Dehydrogenation Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seok Hyun; Hwang, Sueng Sik; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of)

    2014-02-15

    Sodium borohydride (NaBH{sub 4}) is considered as a secure metal hydride for hydrogen storage and supply. In this study, the interfacial friction of two-phase flow in the dehydrogenation of aqueous NaBH{sub 4} solution in a microchannel with a hydraulic diameter of 461 μm is investigated for designing a dehydrogenation chemical reactor flow passage. Because hydrogen gas is generated by the hydrolysis of NaBH{sub 4} in the presence of a ruthenium catalyst, two different flow phases (aqueous NaBH{sub 4} solution and hydrogen gas) exist in the channel. For experimental studies, a microchannel was fabricated on a silicon wafer substrate, and 100-nm ruthenium catalyst was deposited on three sides of the channel surface. A bubbly flow pattern was observed. The experimental results indicate that the two-phase multiplier increases linearly with the void fraction, which depends on the initial concentration, reaction rate, and flow residence time.

  1. Microfluidic synthesis of monodisperse Cu nanoparticles in aqueous solution.

    Science.gov (United States)

    Ke, Te; Zeng, Xiao-Fei; Wang, Jie-Xin; Le, Yuan; Chu, Guang-Wen; Chen, Jian-Feng; Shao, Lei

    2011-06-01

    The continuous production of Cu nanoparticles with a particle size of 2-5 nm was conducted by sodium borohydride reduction of copper sulfate in aqueous solution in a tube-in-tube microchannel reactor (TMR), which consists of an inner tube and an outer tube with the reaction performed in the annular microchannel between these two tubes. The as-prepared Cu nanoparticles were compared with those obtained by a conventional batch synthesis process by using transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis spectroscopy. Due to the highly intensified micromixing effects in the TMR, Cu nanoparticles prepared by this route exhibits a smaller particle size, narrower size distribution and better stability in air. The TMR shows an excellent ability of preparing high-quality Cu nanoparticles in mild conditions. In addition, with the unique microchannel structure, the throughput capability of the TMR for the production of Cu nanoparticles is up to several liters per minute.

  2. Analysis of the decomposition gases from α and β-Cd(BH4)2 synthesized by temperature controlled mechanical milling

    DEFF Research Database (Denmark)

    Blanchard, Didier; Zatti, Matteo; Vegge, Tejs

    2013-01-01

    We present a comprehensive study on the controlled phase synthesis and thermal decomposition of Cd(BH2)4, a material for solid state hydrogen storage obtained via the metathesis reaction of LiBH4 with CdCl2. By adjusting the stochiometry of the reactants and controlling the mechanical milling vial...... temperature, we have isolated the tetragonal (P42mn) low temperature phase and the cubic (View the MathML source) high temperature phase of the cadmium borohydride. Cd(BH2)4 has a low thermodynamic stability and decomposes with fast kinetic at 348 K, when heated at 1 K min−1 against a backpressure of 1 bar H2...

  3. Dielectric relaxation and hopping conduction in reduced graphite oxide

    Science.gov (United States)

    Wei, Guidan; Yu, Ji; Gu, Min; Tang, Tong B.

    2016-06-01

    Graphite oxide reduced by sodium borohydride was characterised and its electrical conduction investigated with impedance spectroscopy. Thermal dependence of electrical modulus (instead of permittivity, its inverse) was calculated from complex impedance spectra, an approach that prevents any peak in dielectric loss (imaginary component) from being swarmed by large dc conductivity. Two loss peaks appeared at each tested frequency, in a sample of either degree of reduction. The set of weaker peak should arise from the relaxation of some polar bonds, as proposed earlier by us. The stronger loss peaks may correspond to the hopping of conduction electrons; variable range hopping is also consistent with the observed thermal dependence of conductivity. However, nearer ambient temperature there is a change in mechanism, to band transport, with an activation energy of fairly similar values as derived from both loss peaks and conductivity.

  4. EFFECT OF PRETREATMENT ON PT-CO/C CATHODE CATALYSTS FOR THE OXYGEN-REDUCTION REACTION

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E.; Colon-Mercado, H.

    2010-01-19

    Carbon supported Pt and Pt-Co electrocatalysts for the oxygen reduction reaction in low temperature fuel cells were prepared by the reduction of the metal salts with sodium borohydride and sodium formate. The effect of surface treatment with nitric acid on the carbon surface and Co on the surface of carbon prior to the deposition of Pt was studied. The catalysts where Pt was deposited on treated carbon the ORR reaction preceded more through the two electron pathway and favored peroxide production, while the fresh carbon catalysts proceeded more through the four electron pathway to complete the oxygen reduction reaction. NaCOOH reduced Pt/C catalysts showed higher activity that NaBH{sub 4} reduced Pt/C catalysts. It was determined that the Co addition has a higher impact on catalyst activity and active surface area when used with NaBH{sub 4} as reducing agent as compared to NaCOOH.

  5. Studies on the effects of zerovalent iron nanoparticles on bacteria from the mangrove ecosystem.

    Science.gov (United States)

    Kharangate-Lad, Amrita; Pereira, Flancy; Fernandes, Julio; Bhosle, Saroj

    2016-01-01

    Zerovalent iron (ZVI) nanoparticles are gaining popularity in bioremediation of contaminated ground water and antimicrobial studies. In this study, ZVI nanoparticles were synthesized by borohydride method. The effect of these nanoparticles to alter the cell surface hydrophobicity of mangrove bacteria was studied by bacterial adhesion to hydrocarbon assay. The effect of these nanoparticles on the growth and extracellular polymeric substances (EPS) of a novel bacterial strain Halobacillus trueperi MXM-16 from mangroves was evaluated by growing the culture in the presence of ZVI nanoparticles and SEM. The change in the emulsifying ability of the cell-free supernatant of Halobacillus trueperi MXM-16 when grown in media amended with ZVI nanoparticles was also investigated by spectrophotometric analysis.

  6. Self-assembled gold nanoparticles on functionalized gold(111) studied by scanning tunneling microscopy

    Institute of Scientific and Technical Information of China (English)

    PENG, Zhang-Quan; WANG, Er-Kang

    2000-01-01

    Nanogold colloidal solutions are prepared by the reduction of HAuClO4 with sodium citrate and sodium borohydride. 4- Aminothiophenol (ATP) self-assembled monolayers (SAMs) are formed on gold(111) surface, on which gold nanoparticles are immobilized and a sub-monolayer of the particles appears. This sub-monolayer of gold nanoparticles is characterized with scanning tunneling microscopy (STM), and a dual energy barrier tunneling model is proposed to explain the imgeability of the gold nanoparticles by STM. This model can also be used to construct multiple energy barrier structure on solid/ liquid interface and to evaluate the electron transport ability of some organic monolayers with the aid of electrochemical method.

  7. Two-dimensional self-organi-zation of 1-nonanethiol-capped gold nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A two-dimensional (2D) ordered hexagonal close-packed structure, formed by 1-nonanethiol-capped gold nanoparticles, is reported. The structure was constructed only by dipping the gold nanoparticle colloidal solution on flat substrate. The gold nanoparticles were synthesized as follows: First, AuCl4-1 was transferred from aqueous solution to toluene by the phase-transfer reagent of tetraoctylammo-nium bromide. Then it was reduced with aqueous sodium borohydride in the presence of a given amount of 1-nonanethiol molecules which was used to control the nuclea-tion and growth of the gold nanoparticles for the desired size. The experimental techniques, such as UV-Vis, FT-IR, and X-ray photoelectron spectroscopy (XPS), were employed to characterize the obtained product. Transmission electron microscopy (TEM) measurement demonstrated the size of the gold nanoparticle and the formation of two-dimensional ordered hexagonal close-packed gold nanoparticle structure.

  8. Shape-tailoring and catalytic function of anisotropic gold nanostructures

    Directory of Open Access Journals (Sweden)

    Premkumar Thathan

    2011-01-01

    Full Text Available Abstract We report a facile, one-pot, shape-selective synthesis of gold nanoparticles in high yield by the reaction of an aqueous potassium tetrachloroaurate(III solution with a commercially available detergent. We prove that a commercial detergent can act as a reducing as well as stabilizing agent for the synthesis of differently shaped gold nanoparticles in an aqueous solution at an ambient condition. It is noteworthy that the gold nanoparticles with different shapes can be prepared by simply changing the reaction conditions. It is considered that a slow reduction of the gold ions along with shape-directed effects of the components of the detergent plays a vital function in the formation of the gold nanostructures. Further, the as-prepared gold nanoparticles showed the catalytic activity for the reduction reaction of 4-nitrophenol in the presence of sodium borohydride at room temperature.

  9. Preparation of nickel nanoparticles in emulsion

    Institute of Scientific and Technical Information of China (English)

    ZHANG You-xian; FU Wen-jie; AN Xue-qin

    2008-01-01

    The nickel nanoparticles with different sizes and spherical shape were prepared by the reduction of nickel sulfate with sodium borohydride in the water-in-oil emulsions of water/SDBS(sodium dodecylbenzene sulfonate)/n-pentanol/n-heptane. The effects of aging time, molar ratio of water to SDBS(R) and the concentration of nickel sulfate on the size of particles were studied. The samples were characterized by transmission electron microscopy(TEM) and inductively coupled plasma spectrometry(ICP). The results show that the average particle size changes from 20 to 40 nm by adjusting aging time (15-30 min) and R (9-11.5). The concentration of nickel sulfate of 1.0 mol/L is the favorite condition.

  10. Stabilized rhodium(0) nanoparticles: a reusable hydrogenation catalyst for arene derivatives in a biphasic water-liquid system.

    Science.gov (United States)

    Schulz, J; Roucoux, A; Patin, H

    2000-02-18

    A colloidal system based on an aqueous suspension of rhodium(o) nanoparticles proved to be an efficient catalyst for the hydrogenation of arene derivatives under biphasic conditions. The rhodium nanoparticles (2-2.5 nm) were synthesized by the reduction of RhCl3 x 3H2O with sodium borohydride and were stabilized by highly water-soluble N-alkyl-N-(2-hydroxyethyl)ammonium salts (HEA-Cn). These surfactant molecules were characterized by measurements of the surface tension and the aqueous dispersions with rhodium were observed by transmission electron cryomicroscopy. The catalytic system is efficient under ultramild conditions, namely room temperature and 1 atm H2 pressure. The aqueous phase which contains the protected rhodium(0) colloids can be reused without significant loss of activity. The microheterogeneous behavior of this catalytic system was confirmed on a mercury poisoning experiment.

  11. Stereoretentive formylation of (S)-proline

    DEFF Research Database (Denmark)

    Temizsoy, Mehmet; Sethi, Waqas; Reinholdt, Anders;

    2015-01-01

    In a Vilsmeier-Haack-type formylation reaction the α-(dihydroxymethyl)-(S)-prolinato complex (+)578-p-[Co(tren){(RC,SN)-Pro[CH(OH)2]O}]Cl2·2H2O (22) was produced stereoselectively (85% ee) from the (S)-prolinato complex, (+)578-p-[Co(tren){(SC,SN)-ProO}]2(H3O)2(HOEt2)(O3SCF3)7 (18). Similar......, constitutes a novel application of the concept of Self-Regeneration of Stereocentres (SRS). The α-(hydroxymethyl)-(S)-prolinato complex, (+)578-p-[Co(tren){(RC,SN)-Pro(CH2OH)O}]Cl2·2H2O (23) resulted from borohydride reduction of 22. The molecular structures of (+)578-p-[Co(tren){(RC,SN)-Pro[CH(OH)2]O}]Cl2·2H...

  12. A Sensitive Surface-enhanced Raman Scattering Method for Determination of Melamine with Aptamer-modified Nanosilver Probe

    Institute of Scientific and Technical Information of China (English)

    温桂清; 周莲平; 李廷盛; 梁爱惠; 蒋治良

    2012-01-01

    The small nanosilver was prepared by the sodium borohydride procedure. The aptamer was used to modify nanosilver to obtain a nanosilver-aptamer (AgssDNA) SERS probe for the determination of melamine. In pH 6.6 phosphate buffer solution and in the presence of NaCI, the AgssDNA probe specifically combined with melamine to release nanosilver particles that were aggregated to nanosilver clusters, which exhibited SERS effect at 240 cm-1. When melamine concentration increased, the nanosilver clusters increased, and the SERS intensity at 240 cm-1 in- creased. The increased SERS intensity AI240cm, is linear to melamine concentration in the range of 6.3--403.6 μg.L 1, with a detection limit of 1.2 μg L 1. This assay was applied to determination of melamine in milk, with sat- isfactory results. Keywords melamine, apatmer-modified nanosilver, aggregation, surface-enhanced Raman scattering

  13. Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles

    Science.gov (United States)

    Zinchenko, Anatoly; Che, Yuxin; Taniguchi, Shota; Lopatina, Larisa I.; G. Sergeyev, Vladimir; Murata, Shizuaki

    2016-07-01

    Nanoparticles (NPs) of Au, Ag, Pt, Pd, Cu and Ni of 2-3 nm average-size and narrow-size distributions were synthesized in DNA cross-linked hydrogels by reducing corresponding metal precursors by sodium borohydride. DNA hydrogel plays a role of a universal reactor in which the reduction of metal precursor results in the formation of 2-3 nm ultrafine metal NPs regardless of metal used. Hydrogels metallized with various metals showed catalytic activity in the reduction of nitroaromatic compounds, and the catalytic activity of metallized hydrogels changed as follows: Pd > Ag ≈ Au ≈ Cu > Ni > Pt. DNA hydrogel-based "soft catalysts" elaborated in this study are promising for green organic synthesis in aqueous media as well as for biomedical in vivo applications.

  14. A twist on facial selectivity of hydride reductions of cyclic ketones: twist-boat conformers in cyclohexanone, piperidone, and tropinone reactions.

    Science.gov (United States)

    Neufeldt, Sharon R; Jiménez-Osés, Gonzalo; Comins, Daniel L; Houk, K N

    2014-12-05

    The role of twist-boat conformers of cyclohexanones in hydride reductions was explored. The hydride reductions of a cis-2,6-disubstituted N-acylpiperidone, an N-acyltropinone, and tert-butylcyclohexanone by lithium aluminum hydride and by a bulky borohydride reagent were investigated computationally and compared to experiment. Our results indicate that in certain cases, factors such as substrate conformation, nucleophile bulkiness, and remote steric features can affect stereoselectivity in ways that are difficult to predict by the general Felkin-Anh model. In particular, we have calculated that a twist-boat conformation is relevant to the reactivity and facial selectivity of hydride reduction of cis-2,6-disubstituted N-acylpiperidones with a small hydride reagent (LiAlH4) but not with a bulky hydride (lithium triisopropylborohydride).

  15. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  16. TiO{sub 2}/WO{sub 3}/Au/MWCNT composite materials for photocatalytic hydrogen production: Advantages and draw-backs

    Energy Technology Data Exchange (ETDEWEB)

    Pap, Zsolt [Research Group of Environmental Chemistry, University of Szeged, Tisza Lajos krt. 103, H-6720 Szeged (Hungary); Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, RO-400028 Cluj-Napoca (Romania); Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu 1, RO-400084 Cluj-Napoca (Romania); Karacsonyi, Eva; Mogyorosi, Karoly; Dombi, Andras [Research Group of Environmental Chemistry, University of Szeged, Tisza Lajos krt. 103, H-6720 Szeged (Hungary); Baia, Lucian [Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu 1, RO-400084 Cluj-Napoca (Romania); Pop, Lucian Cristian [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, RO-400028 Cluj-Napoca (Romania); Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu 1, RO-400084 Cluj-Napoca (Romania); Danciu, Virginia [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, RO-400028 Cluj-Napoca (Romania); Hernadi, Klara [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich ter 1, H-6720 Szeged (Hungary)

    2012-12-15

    TiO{sub 2}/WO{sub 3}/Au/MWCNT composite materials were obtained using different commercial titanias (Aldrich Anatase, Aldrich Rutile, and Evonik Aeroxide P25) and Aldrich WO{sub 3}. The gold nanoparticles were deposited on the semiconductor oxides' surface by chemical reduction using sodium borohydride, and the MWCNT's were combined with the composite (in different concentrations 0.1-10 wt%) by applying an ultrasonication method. The obtained nanocomposites were successfully characterized by means of X-ray diffraction, transmission electron microscopy, etc. The aim of the present work was to find the optimal composition (i.e. carbon nanotube content) of the composite for photocatalytic hydrogen production using oxalic acid as a sacrificial agent. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    Science.gov (United States)

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates.

  18. A NEW POLYMER-BOUND 1,2-DIOL AS A PROTECTING AGENT FOR SYMMETRICAL DIALDEHYDE

    Institute of Scientific and Technical Information of China (English)

    REN Qisheng; HUANG Wenqiang; ZHAO Fengzhi; Ho Binglin

    1989-01-01

    A novel polymer- bound 1,2 - diol, 3 - polystyrylsulfonyl- 1,2 - propanediol (6) had ben prepared by the reaction of sodium polystyrylsulfinate with allyl bromide, followed by oxidation and. hydrolysis or directly with 3 - chloro - 1,2 - propanediol in the presence of a phase transfer catalyst ,n - tetrabutylammonium iodide. The capacity of resin 6 for terephthaldehyde reached 1.43 mmol/g. The aldehydic groups attached to polymer 6 reacted with hydroxylamine hydrochloride or reduced by sodium borohydride giving p-formylbenzaldoxime (yield:89%)and p-formyl -benzalcohol (yield:73 A % ), respectively. The high yields of these polymer-supported reactions showed that the polymer 6 possessed the effective isolation of its reactive sites.

  19. Thermally Activated Palm Kernel Based Carbon as a Support for Edible Oil Hydrogenation Catalyst

    Directory of Open Access Journals (Sweden)

    Abdulmajid Alshaibani

    2013-01-01

    Full Text Available Activated carbon has distinctive properties as a support for hydrogenation catalysts. Thermally activated carbon has been prepared from palm kernel shell at 1073 K and placed under nitrogen flow for 2 h. It was impregnated by palladium using toluene solution of Pd (acac2. The Pd/C was reduced using a water solution of potassium borohydride (KBH4. The Pd-B/C was characterized by the Brunauer-Emmett-Teller surface area analysis (BET, scanning electron microscopy (SEM, transmission electron microscopy (TEM and inductively-coupled plasma mass spectrometry (ICP-MS. Pd-B/C was applied for sunflower oil hydrogenation at a temperature of 373 K, hydrogen pressure of 413.5 kPa and agitation of 1400 rpm for 1 h. Pd-B/C noticeably exhibited a higher overall catalyst activity in comparison to some recently published palladium catalysts.

  20. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of antimony by automated-hydride atomic absorption spectrophotometry

    Science.gov (United States)

    Brown, G.E.; McLain, B.J.

    1994-01-01

    The analysis of natural-water samples for antimony by automated-hydride atomic absorption spectrophotometry is described. Samples are prepared for analysis by addition of potassium and hydrochloric acid followed by an autoclave digestion. After the digestion, potassium iodide and sodium borohydride are added automatically. Antimony hydride (stibine) gas is generated, then swept into a heated quartz cell for determination of antimony by atomic absorption spectrophotometry. Precision and accuracy data are presented. Results obtained on standard reference water samples agree with means established by interlaboratory studies. Spike recoveries for actual samples range from 90 to 114 percent. Replicate analyses of water samples of varying matrices give relative standard deviations from 3 to 10 percent.

  1. Aqueous-Phase Catalytic Chemical Reduction of p-Nitrophenol Employing Soluble Gold Nanoparticles with Different Shapes

    Directory of Open Access Journals (Sweden)

    Francyelle Moura de Oliveira

    2016-12-01

    Full Text Available Gold nanoparticles with different shapes were prepared and used as catalysts in the reduction of p-nitrophenol (PNP in the aqueous phase and in the presence of sodium borohydride (NaBH4. Parameters such as the reaction temperature, substrate/NaBH4 molar ratio, and substrate/gold molar ratio were tested and evaluated. In this paper, we compare the catalytic reactivities of gold nanorods (AuNRs and gold nanospheres (AuNSs, both synthesized by the seed-mediated method in the presence of cetyltrimethyl ammonium bromide (CTAB. Physical-chemical parameters such as the apparent rate constant (kapp and activation energy (Ea of the reactions were obtained for both systems. We observed that the catalytic system based on AuNRs is the most active. These colloidal dispersions were investigated and fully characterized by ultraviolet-visible absorption spectroscopy (UV–Vis and transmission electron microscopy (TEM.

  2. Fabrication And Properties Of Silver Based Multiwall Carbon Nanotube Composite Prepared By Spark Plasma Sintering Method

    Directory of Open Access Journals (Sweden)

    Lis M.

    2015-06-01

    Full Text Available The paper presents results of investigations of the obtained nanocomposite materials based on silver with addition of multiwall carbon nanotubes. The powder of carbon nanotubes content from 0.1 to 3 wt. % was produced by application of powder metallurgy methods, through mixing and high-energetic milling, and also chemical methods. Modification of carbon nanotubes included electroless deposition of silver particles on the carbon nanotube active surfaces and chemical reduction with strong reducing agent – sodium borohydride (NaBH4. The obtained powder mixtures were consolidated by SPS – Spark Plasma Sintering method. The formed composites were subjected to tests of relative density, electrical conductivity and electro-erosion properties. Detailed examinations of the structure with application of X-ray microanalysis, with consideration of carbon nanotubes distribution, were also carried out. The effect of manufacturing methods on properties of the obtained composites was observed.

  3. Controlled Synthesis and Magnetic Properties of Uniform Hierarchical Polyhedral α-Fe2O3 Particles

    Science.gov (United States)

    Long, Nguyen Viet; Yang, Yong; Thi, Cao Minh; Phuc, Le Hong; Nogami, Masayuki

    2017-02-01

    The controlled synthesis of uniform hierarchical polyhedral iron (Fe) micro-/nanoscale oxide particles with the α-Fe2O3 structure is presented. The hierarchical polyhedral iron oxide particles were synthesized by modified polyol methods with sodium borohydride as a powerful and efficient reducing agent. A critical heat treatment process used during the synthesis allowed for the interesting formation of α-Fe2O3 hematite with a micro-/nanoscale structure. The structure and weak ferromagnetism of the α-Fe2O3 particles were investigated by x-ray diffraction with whole pattern fitting and Rietveld refinement, scanning electron microscopy, and by vibrating sample magnetometry. The as-prepared α-Fe2O3 particles and the three dimensional models presented have promising practical applications for energy storage and conversion in batteries, capacitors, and fuel cells, and related spintronic devices and technologies.

  4. New selenium-75 labeled radiopharmaceuticals: selenonium analogues of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Sadek, S.A.; Basmadjian, G.P.; Hsu, P.M.; Rieger, J.A.

    1983-07-01

    Selenium-75 labeled selenonium analogues of dopamine, (2-(3,4-dimethoxyphenyl)ethyl)dimethylselenonium iodide and its dihydroxy analogue, were prepared by reducing (/sup 75/Se)selenious acid with sodium borohydride at pH 6.0 and reacting the NaSeH produced with 1-(3,4-dimethoxyphenyl)-2-(p-toluenesulfonyloxy)ethane. Tissue distribution studies in rats given the /sup 75/Se-labeled selenonium agents intravenously demonstrated high initial heart uptake. Prolonged adrenal retention and high adrenal to blood ratio of compound 4 were observed. The high uptake and adrenal to blood ratio suggest the potential use of compound 4 as a radiopharmaceutical for the adrenal gland.

  5. Experimental Investigation of Aerodynamic Effects of External Combustion in Airstream Below Two-Dimensional Supersonic Wing at Mach 2.5 and 3.0

    Science.gov (United States)

    Dorsch, Robert G.; Serafini, John S.; Fletcher, Edward A.; Pinkel, I. Irving

    1959-01-01

    Pressure distributions associated with stable combustion of aluminum borohydride in the airstream adjacent to the lower surface of a 13-inch chord, two-dimensional, blunt-base wing were determined experimentally. The measurements were made with the wing at 20 angle of attack in a 1- by 1-foot tunnel at Mach numbers of 2.47 and 2.96. Static-pressure increases along the lower surface and base caused by the combustion are presented along with the resultant lift increases. The lift-drag ratio of the wing was nearly doubled by the addition of heat. The experimental values of lift during heat addition agree with those predicted by analytical calculations.

  6. Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent.

    Science.gov (United States)

    Ahmed, Khan Behlol Ayaz; Kalla, Divya; Uppuluri, Kiran Babu; Anbazhagan, Veerappan

    2014-11-04

    With a vision of finding greener materials to synthesize nanoparticles, we report the production and isolation of levan, a polysaccharide with repeating units of fructose, from Acetobacter xylinum NCIM2526. The isolated levan were characterized using potassium ferricyanide reducing power assay, Fourier transform infra-red (FTIR) spectroscopy and (1)H nuclear magnetic resonance spectroscopy ((1)H NMR). To exploit levan in nanotechnology, we present a simple and greener method to synthesize silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using biopolymer, levan as both reducing and stabilizing agents. The morphology and stability of the AgNPs and AuNPs were examined by transmission electron microscopy (TEM) and UV-vis absorption (UV-vis) spectroscopy. The possible capping mechanism of the nanoparticles was postulated using FTIR studies. As synthesized biogenic nanoparticles showed excellent catalytic activity as evidenced from sodium borohydride mediated reduction of 4-nitro phenol and methylene blue.

  7. Development of 3-methoxy-4-benzyloxybenzyl alcohol (MBBA) resin as polymer-supported synthesis support: Preparation and benzyl ether cleavage by DDQ oxidation

    Indian Academy of Sciences (India)

    Qiang Huang; Bao-Zhong Zheng; Quan Long

    2010-03-01

    3-Methoxy-4-benzyloxybenzyl alcohol (MBBA) resin was synthesized by a two-step sequence under microwave irradiation involving the reaction of commercially available Merrifield resin with vanillin, followed by reduction with sodium borohydride. MBBA resin was treated with bromides in the presence of sodium hydride to afford the corresponding resin-bound benzyl ethers. Cleavage of the resin-bound benzyl ethers from the MBBA resin was carried out using 2,3-dichloro-5,6-dicyanobenzoqunone (DDQ) to give the corresponding alcohols in good yields. Moreover, the recovery, regeneration, and reuse of this polymer support could be achieved easily. MBBA resin can be developed as a kind of solid-phase synthesis bead of alcohols.

  8. One-pot Reductive Amination of Carbonyl Compounds with NaBH₄-B(OSO₃H)₃/SiO₂ in Acetonitrile and in Solvent-free Condition

    Indian Academy of Sciences (India)

    HOSEIN HAMADI; SAMIRA JAVADI

    2017-01-01

    An efficient one-pot procedure for the direct reductive amination of aldehyde and ketones was achieved in the presence of sodium borohydride by using B(OSO₃H)₃/SiO₂(SBSA) as the reusable solid catalyst in acetonitrile and solvent-free conditions. Both aromatic and aliphatic aldehyde reacted well to give the corresponding amines in excellent yields. All the products are known and well-characterized. The catalyst is recoverable and could be easily recycled by filtration and reused several times without any significant loss of its activity. SBSA acts as a dual Brønsted/Lewis acid that is an air-stable and cost-effective solid acid.

  9. Simulation studies of the membrane exchange assembly of an all-liquid, proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, Ethan D. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Everitt Laboratory, MC-702, 1406 W. Green St., Urbana, IL 61801-2918 (United States); Miley, George H. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 100C NEL, 103 S. Goodwin Ave., Urbana, IL 61801 (United States)

    2008-01-21

    A model has been designed and constructed for the all-liquid, sodium borohydride/hydrogen peroxide fuel cell under development at the University of Illinois at Urbana-Champaign. The electrochemical behavior, momentum balance, and mass balance effects within the fuel cell are modeled using the Butler-Volmer equations, Darcy's law, and Fick's law, respectively, within a finite element modeling platform. The simulations performed with the model indicate that an optimal physical design of the fuel cell's flow channel land area or current collector exists when considering the pressure differential between channels, and the diffusion layer permeability and conductivity. If properties of the diffusion layer are known, the model is an effective method of improving the fuel cell design in order to achieve higher power density. (author)

  10. Functional Application of Noble Metal Nanoparticles In Situ Synthesized on Ramie Fibers

    Science.gov (United States)

    Tang, Bin; Yao, Ya; Li, Jingliang; Qin, Si; Zhu, Haijin; Kaur, Jasjeet; Chen, Wu; Sun, Lu; Wang, Xungai

    2015-09-01

    Different functions were imparted to ramie fibers through treatment with noble metal nanoparticles including silver and gold nanoparticles. The in situ synthesis of silver and gold nanoparticles was achieved by heating in the presence of ramie fibers in the corresponding solutions of precursors. The unique optical property of synthesized noble metal nanoparticles, i.e., localized surface plasmon resonance, endowed ramie fibers with bright colors. Color strength (K/S) of fibers increased with heating temperature. Silver nanoparticles were obtained in alkaline solution, while acidic condition was conducive to gold nanoparticles. The optical properties of treated ramie fibers were investigated using UV-vis absorption spectroscopy. Scanning electron microscopy (SEM) was employed to observe the morphologies of silver and gold nanoparticles in situ synthesized on fibers. The ramie fibers treated with noble metal nanoparticles showed remarkable catalytic activity for reduction of 4-nitrophenol (4-NP) by sodium borohydride. Moreover, the silver nanoparticle treatment showed significant antibacterial property on ramie fibers.

  11. Silver nanoparticles prepared by chemical reduction-protection method, and their application in electrically conductive silver nanopaste

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianguo, E-mail: ljg712@yahoo.com.c [Wuhan National Laboratory for Optoelectronics, College of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Xiangyou; Zeng Xiaoyan [Wuhan National Laboratory for Optoelectronics, College of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2010-04-02

    Ag nanoparticles were prepared in a water-phase system with a mixture of silver-ammonia complex, sodium borohydride, and lauric acid according to molar feed ratio of approximately 6:3:1. The mechanism of preparation and separation by chemical reduction-protection method was explored. The as-synthesized Ag nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis spectroscopy, respectively. It was found that the size of high purity Ag particles was ranging from 30 to 50 nm with slight agglomeration. In addition, the as-synthesized wet Ag nanoparticles were dispersed stably in organic vehicle to formulate electrically conductive nanopaste. Upon direct-written and sintered, the array pattern of the nanopaste with the resolution of about 30 {mu}m was achieved with the electrical resistivity in the order of magnitude of 10{sup -5} {Omega} cm.

  12. A novel Ag catalyzation process using swelling impregnation method for electroless Ni deposition on Kevlar® fiber

    Science.gov (United States)

    Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong

    2015-12-01

    A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.

  13. A facile synthesis of metal nanoparticle - graphene composites for better absorption of solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bindu; Mulla, Rafiq; Rabinal, M. K., E-mail: mkrabinal@yahoo.com [Department of Physics, Karnatak University, Dharwad, Karnataka-580 003 (India)

    2015-06-24

    Herein, a facile chemical approach has been adopted to prepare silver nanoparticles (AgNPs)- graphene (G) composite to study photothermal effect. Sodium borohydride (SBH), a strong reducing agent has been selected for this work. Effect of SBH concentrations on optical behavior of AgNPs-G composite was also investigated. Resultant materials were characterized by various techniques including X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), optical absorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM micrographs confirm wrapping of AgNPs into graphene whereas XRD analysis reveals their particle size variation between 47 nm to 69 nm. Optical studies throw a light on their strong absorption behavior towards solar radiation.

  14. Synthesis and characterization of stable aqueous dispersions of graphene

    Indian Academy of Sciences (India)

    Ujjal Kumar Sur; Abhijit Saha; Aparna Datta; Balaprasad Ankamwar; Farah Surti; Sannak Dutta Roy; Debasish Roy

    2016-02-01

    A stable aqueous dispersion (5 mg ml$^{−1}$) of graphene was synthesized by a simple protocol based on three-step reduction of graphene oxide (GO) dispersion synthesized using the modified version of Hummers and Offeman method. Reduction of GO was carried out using sodium borohydride, hydrazine hydrate and dimethyl hydrazine as reducing agents. The chemically synthesized graphene was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–visible absorption spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopy, thermogravimetric analysis (TGA), optical microscopy. The stability of aqueous dispersions of graphene was confirmed through zeta potential measurements and the negative zeta potentials of 55–60 mV were obtained indicating the high stability of aqueous graphene dispersions.

  15. Theoretical Studies on Dehydrogenation Reactions in Mg2(BH4)2(NH2)2 Compounds

    Institute of Scientific and Technical Information of China (English)

    Zheng Chen; Zhe-ning Chen; An-an Wu; Guo-tao Wu; Zhi-tao Xiong; Ping Chen; Xin Xu

    2012-01-01

    Borohydrides have been recently hightlighted as prospective new materials due to their high gravimetric capacities for hydrogen storage.It is,therefore,important to understand the underlying dehydrogenation mechanisms for further development of these materials.We present a systematic theoretical investigation on the dehydrogenation mechanisms of the Mg2(BH4)2(NH2)2 compounds.We found that dehydrogenation takes place most likely via the intermolecular process,which is favorable both kinetically and thermodynamically in comparison with that of the intramolecular process.The dehydrogenation of Mg2(BH4)2(NH2)2 initially takes place via the direct combination of the hydridic H in BH4-and the protic H in NH2-,followed by the formation of Mg-H and subsequent ionic recombination of Mg-Hδ-… Hδ+-N.

  16. Synthesis of 1-dodecanethiol-capped Ag nanoparticles and their high catalytic activity

    Science.gov (United States)

    Zhang, Danhui; Yang, Youbo

    2017-01-01

    Silver nanoparticles, which were produced by the borohydride reduction of silver nitrate, were stabilized by means of 1-dodecanethiol providing sulfur atom in two-phase system involving water and organic solvent (such as toluene, chloroform and hexane). Different organic solvent played a major role in the particle size of silver nanoparticles. These silver nanoparticles synthesized in the three different organic solvent were characterized by X-ray Diffraction, transmission electron microscopy and ultraviolet-visible absorption spectroscopy. The results indicate that the particles size of silver nanoparticles formed in three organic solvents was different. Furthermore, 1-dodecanethiol-capped silver nanoparticles were found to serve as effective catalysts to activate the reduction of 4-nitrophenol (4NP) in the presence of NaBH4, where the size of silver nanoparticles played the determining role in catalytic activity.

  17. Influence of the Synthesis Method for Pt Catalysts Supported on Highly Mesoporous Carbon Xerogel and Vulcan Carbon Black on the Electro-Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Cinthia Alegre

    2015-03-01

    Full Text Available Platinum catalysts supported on carbon xerogel and carbon black (Vulcan were synthesized with the aim of investigating the influence of the characteristics of the support on the electrochemical performance of the catalysts. Three synthesis methods were compared: an impregnation method with two different reducing agents, sodium borohydride and formic acid, and a microemulsion method, in order to study the effect of the synthesis method on the physico-chemical properties of the catalysts. X-ray diffraction and transmission electron microscopy were applied. Cyclic voltammetry and chronoamperometry were used for studying carbon monoxide and methanol oxidation. Catalysts supported on carbon xerogel presented higher catalytic activities towards CO and CH3OH oxidation than catalysts supported on Vulcan. The higher mesoporosity of carbon xerogel was responsible for the favored diffusion of reagents towards catalytic centers.

  18. Structure determination of the neutral exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1.

    Science.gov (United States)

    Van Calsteren, Marie-Rose; Gagnon, Fleur; Nishimura, Junko; Makino, Seiya

    2015-09-01

    The neutral exopolysaccharide (NPS) of Lactobacillus delbrueckii subsp. bulgaricus strain OLL1073R-1 was purified and characterized. The molecular mass was 5.0×10(6) g/mol. Sugar and absolute configuration analyses gave the following composition: d-Glc, 1; d-Gal, 1.5. The NPS was also submitted to periodate oxidation followed by borohydride reduction and Smith degradation. Sugar and methylation analyses, (1)H and (13)C nuclear magnetic resonance, and mass spectrometry of the NPS or of its specifically modified products allowed determining the repeating unit sequence: {2)Glc(α1-3)Glc(β1-3)[Gal(β1-4)]Gal(β1-4)Gal(α1-}n. The structure is compared to that of exopolysaccharides produced by other Lactobacillus bulgaricus strains.

  19. Synthesis and Characterization of Bifunctional α-Fe2O3-Ag Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alvaro Ruíz-Baltazar

    2015-01-01

    Full Text Available The synthesis of α-Fe2O3-Ag bimetallic nanoparticles using a novel and simplified route is presented in this work. These hybrid nanoparticles were produced using a modification of the chemical reduction method by sodium borohydride (NaBH4. Fe(III chloride hexahydrate (FeCl3·6H2O and silver nitrate (AgNO3 as precursors were employed. Particles with semispherical morphology and dumbbell configuration were observed. High-resolution transmission electron microscopy (HRTEM technique reveals the structure of the dumbbell-like α-Fe2O3-Ag nanoparticles. Some theoretical models further confirm the formation of the α-Fe2O3-Ag structures. Analysis by cyclic voltammetry reveals an interesting catalytic behavior which is associated with the combination of the individual properties of the Ag and α-Fe2O3 nanoparticles.

  20. Technetium-99m radiolabeling of a recombinant dermonecrotic protein (recLiD1) from the Loxosceles venom for biodistribution study

    Energy Technology Data Exchange (ETDEWEB)

    Valadares, D.; Felicori, L.; Olortegui, C.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia; Simal, C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Medicina; Gouvea dos Santos, R. [Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN-MG, Belo Horizonte, MG (Brazil). Lab. de Radiobiologia]. E-mail: santosr@cdtn.br

    2007-07-01

    In the present study the recombinant form (recLiD1) of a dermonecrotic protein present in the Brazilian brown spider Loxosceles intermedia venom was labeled with technetium-99m using stannous chloride and sodium borohydride as reducing agents. 99mTc-recLiD 1 kept its biological activity evoking dermonecrotic activity in rabbits. In vivo biodistribution in mice with the radiolabeled recLiD 1 showed high kidney uptake followed by stomach and liver uptakes. Also, we can see that 20% of toxin remaining in the skin after 120 min and once absorbed, 99mTc-recLiD 1 is rapidly cleared from the blood with long-lasting. We also observed one displacement of 99mTc-recLiD 1 by one monoclonal antibody raised against L. intermedia venom that indicates specific interaction with kidney tissue. (author)

  1. Reductive amination of aldehydes and ketones mediated by sodium malonyloxyborohydride%丙二酰氧基硼氢化钠介入的醛、酮还原胺化反应

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    叙述了在原位生成的丙二酰氧基硼氢化钠存在下的醛、酮还原胺化反应。讨论了还原胺化的反应条件和立体位阻效应,发现丙二酰氧基硼氢化钠是一个高选择性还原剂,在给定条件下不发生自身还原反应。%The reductive amination of aldehydes and ketones with amines in the presence of sodium malonyloxyborohydride 1 prepared in situ from malonic acid and sodium borohydride in anhydrous THF is described. The reaction conditions and the steric hindrance effect for the reducrive amination are also discussed. It was found that self-reduction of 1 did not occur onder the experimental conditions.

  2. Preparation of silver nanoparticles at low temperature

    Science.gov (United States)

    Mishra, Mini; Chauhan, Pratima

    2016-04-01

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  3. Water- and organo-dispersible gold nanoparticles supported by using ammonium salts of hyperbranched polystyrene: preparation and catalysis.

    Science.gov (United States)

    Gao, Lei; Nishikata, Takashi; Kojima, Keisuke; Chikama, Katsumi; Nagashima, Hideo

    2013-12-01

    Gold nanoparticles (1 nm in size) stabilized by ammonium salts of hyperbranched polystyrene are prepared. Selection of the R groups provides access to both water- and organo-dispersible gold nanoparticles. The resulting gold nanoparticles are subjected to studies on catalysis in solution, which include reduction of 4-nitrophenol with sodium borohydride, aerobic oxidation of alcohols, and homocoupling of phenylboronic acid. In the reduction of 4-nitrophenol, the catalytic activity is clearly dependent on the size of the gold nanoparticles. For the aerobic oxidation of alcohols, two types of biphasic oxidation are achieved: one is the catalyst dispersing in the aqueous phase, whereas the other is in the organic phase. The catalysts are reusable more than four times without loss of the catalytic activity. Selective synthesis of biphenyl is achieved by the homocoupling of phenylboronic acid catalyzed by organo-dispersible gold nanoparticles.

  4. Palladium-based electrocatalysts for PEM applications

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev S; Lyutikova E; Fateev V [Hydrogen Energy and Plasma Technology Institute of Russian Research Center ' Kurchatov Institute' 1, Kurchatov sq., 123182 Moscow (Russian Federation); Martemianov S [Laboratoire d Etudes Thermiques, UMR CNRS no 6608, ESIP, Universite de Poitiers 40, avenue du Recteur Pineau, 86022 Poitiers Cedex (France); Lebouin C; Millet P [Institut de Chimie Moleculaire et des Materiaux d' Orsay, UMR CNRS no 8182, Universite Paris-sud XI 15, rue Georges Clemenceau, 91405 Orsay Cedex (France); Lebouin C [Laboratoire d Electrochimie et de Physicochimie des Materiaux et des Interfaces, CNRS-INPG-UJF 1130 rue de la Piscine, 38402 Saint Martin d Heres, (France)

    2006-07-01

    The goal of present study is development and investigation of nano-structured Pd-based electrocatalysts for hydrogen oxidation and proton reduction in proton exchange membrane (PEM) fuel cells and electrolyzers. Electro-active metallic structures were obtained by chemical reduction of precursor salts (including on Vulcan XC-72 carbon carrier) using ethylene glycol with addition of formaldehyde or using borohydride. Alternatively, Pd nano-clusters have been obtained from chemical reduction of precursor salts in per-fluorinated polymer Nafion membrane. Using the synthesized Pd-based catalyst membrane-electrode assemblies (MEAs) have been prepared and successfully tested in single fuel and electrolysis cells. Comparison of MEAs performances based on Pt, PtPd- and Pd-based electrocatalysts were provided. The present study demonstrates the principal possibility of partial or total replacement of the Pt by the Pd on the hydrogen electrode of PEM systems. (authors)

  5. Synthesis of copper nanocolloids using a continuous flow based microreactor

    Science.gov (United States)

    Xu, Lei; Peng, Jinhui; Srinivasakannan, C.; Chen, Guo; Shen, Amy Q.

    2015-11-01

    The copper (Cu) nanocolloids were prepared by sodium borohydride (NaBH4) reduction of metal salt solutions in a T-shaped microreactor at room temperature. The influence of NaBH4 molar concentrations on copper particle's diameter, morphology, size distribution, and elemental compositions has been investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The ultraviolet-visible spectroscopy (UV-vis) was used to verify the chemical compounds of nanocolloids and estimate the average size of copper nanocolloids. The synthesized copper nanocolloids were uniform in size and non-oxidized. A decrease in the mean diameter of copper nanocolloids was observed with increasing NaBH4 molar concentrations. The maximum mean diameter (4.25 nm) occurred at the CuSO4/NaBH4 molar concentration ratio of 1:2.

  6. Green synthesis of silver nanoparticles, decorated on graphene oxide nanosheets and their catalytic activity

    Science.gov (United States)

    Sreekanth, T. V. M.; Jung, Min-Ji; Eom, In-Yong

    2016-01-01

    In this study, we develop an inexpensive and green route for the synthesis of silver nanoparticles (AgNPs) using Picrasma quassioides bark aqueous extract as reducing and capping agent and also eco-friendly decorate graphene oxide (GO) nanosheets with AgNPs (GO-AgNPs). Green synthesized AgNPs and GO-AgNPs composites were characterized by UV-Visible spectroscopy, SEM-EDX, and TEM-SAED techniques. The resulting GO-AgNPs contained about 41.35% of Ag and the AgNPs size ranges 17.5-66.5 nm, and GO-AgNPs size ranges 10-49.5 nm. Moreover, the GO-AgNPs exhibited excellent catalytic activity towards the methylene blue (MB) in the presence of sodium borohydride (NaBH4) at room temperature. This catalytic reaction completed within 15 min.

  7. Abroma augusta Linn bark extract-mediated green synthesis of gold nanoparticles and its application in catalytic reduction

    Science.gov (United States)

    Das, Subhajit; Bag, Braja Gopal; Basu, Ranadhir

    2014-11-01

    The bark extract of Abroma augusta Linn is rich in medicinally important phytochemicals including antioxidants and polyphenols. First one step green synthesis of gold nanoparticles (AuNPs) has been described utilizing the bark extract of Abroma augusta L. and chloroauric acid under very mild reaction conditions. The phytochemicals present in the bark extract acted both as a reducing as well as a stabilizing agent, and no additional stabilizing and capping agents were needed. Detailed characterizations of the stabilized AuNPs were carried out by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles has been demonstrated for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol, and the kinetics of the reduction reaction have been studied spectrophotometrically.

  8. Increasing surface enhanced Raman spectroscopy effect of RNA and DNA components by changing the pH of silver colloidal suspensions.

    Science.gov (United States)

    Primera-Pedrozo, Oliva M; Rodríguez, Gabriela Del Mar; Castellanos, Jorge; Felix-Rivera, Hilsamar; Resto, Oscar; Hernández-Rivera, Samuel P

    2012-02-15

    This work focused on establishing the parameters for enhancing the Raman signals of DNA and RNA constituents: nitrogenous bases, nucleosides and nucleotides, using metallic nanoparticles as surface enhanced Raman scattering substrates. Silver nanospheres were synthesized using sodium borohydride as a reducing agent and sodium citrate as a capping agent. The prepared nanoparticles had a surface plasmon band at ∼384nm and an average size of 12±3nm. The nanoparticles' surface charge was manipulated by changing the pH of the Ag colloidal suspensions in the range of 1-13. Low concentrations as 0.7μM were detected under the experimental conditions. The optimum pH values were: 7 for adenine, 9 for AMP, 5 for adenosine, 7 for dAMP and 11 for deoxyadenosine.

  9. Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Se Guen; Oh, Eun Jung; Chung, Ho Yun; Han, Sang Ik; Kim, Eun Jung; Seo, Song Yi; Ghim, Han Do; Yeum, Jeong Hyun; Choi, Jin Hyun

    2011-11-01

    Excellent colloidal stability and antimicrobial activity are important parameters for silver nanoparticles (AgNPs) in a range of biomedical applications. In this study, polyethyleneimine (PEI)-capped silver nanoparticles (PEI-AgNPs) were synthesized in the presence of sodium borohydride (NaBH(4)) and PEI at room temperature. The PEI-AgNPs had a positive zeta potential of approximately +49 mV, and formed a stable nanocolloid against agglomeration due to electrostatic repulsion. The particle size and hydrodynamic cluster size showed significant correlations with the amount of PEI and NaBH(4). PEI-AgNPs and even PEI showed excellent antimicrobial activity against Staphylococus aureus and Klebsiella pneumoniae. The cytotoxic effects of PEI and PEI-AgNPs were confirmed by an evaluation of the cell viability. The results suggest that the amount of PEI should be minimized to the level that maintains the stability of PEI-AgNPs in a colloidal dispersion.

  10. Facile synthesis of SiO{sub 2} nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Scano, A., E-mail: alescano80@tiscali.it; Pilloni, M., E-mail: alescano80@tiscali.it; Cabras, V., E-mail: alescano80@tiscali.it; Ennas, G. [Università di Cagliari, Dipartimento di Scienze Chimiche e Geologiche and Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato- 09042 Monserrato (Canada) (Italy); Vazquez-Vazquez, C. [Departamento de Química Física, Facultad de Química, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia (Spain)

    2014-10-21

    Silica nanoparticles (SiO{sub 2} NPs) for biomedical applications have been prepared by using a facile modified Stöber-synthesis. Potassium borohydride (KBH{sub 4}) has been introduced in the synthesis procedure in order to control NP size. Several samples have been prepared varying tetraethylorthosilicate (TEOS) concentration, and using different process conditions (temperature, reaction time and atmosphere). In order to study the influence of the process conditions on the NP size, morphology and properties, several characterization techniques were used. Size and morphology of the as-prepared SiO{sub 2} NPs have been studied by using Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS) techniques. Structural characterization was carried out by X-ray powder diffraction. To investigate the SiO{sub 2} NP fluorescence emission properties the fluorescence spectroscopy was also used.

  11. New avenues to efficient chemical synthesis of exchange coupled hard/soft nanocomposite magnet.

    Science.gov (United States)

    Lee, Don Keun; Cha, Hyun Gil; Kim, Young Hwan; Kim, Chang Woo; Ji, Eun Sun; Kang, Young Soo

    2009-07-01

    Nd-Fe-B ultrafine amorphous alloy particles were prepared by reaction of metal ions with borohydride in aqueous solution. Monodispersed Fe nanoparticles were synthesized under an argon atmosphere via thermal decomposition of Fe(2+)-oleate2. Exchange coupled Nd2Fe14B/Fe nanocomposite magnets have been prepared by self-assembly using surfactant. The crystal structure of the synthesized nanoparticles was identified by using X-ray powder diffraction (XRD). The size and shape of nanoparticles were obtained by transmission electron microscope (TEM). Thermogravimetry using a microbalance with magnetic field gradient positioned below the sample was used for the measurement of a thermomagnetic analysis (TMA) curve showing the downward magnetic force versus temperature.

  12. Synthesis of Bifunctional Fe3O4@SiO2-Ag Magnetic-Plasmonic Nanoparticles by an Ultrasound Assisted Chemical Method

    Science.gov (United States)

    Chu, Dung Tien; Sai, Doanh Cong; Luu, Quynh Manh; Tran, Hong Thi; Quach, Truong Duy; Kim, Dong Hyun; Nguyen, Nam Hoang

    2017-03-01

    Bifunctional magnetic-plasmonic nanoparticles (NPs)—Fe3O4@SiO2-Ag were successfully synthesized by an ultrasound assisted chemical method. Silver ions were absorbed and then reduced by sodium borohydride on the surface of 3-aminopropyltriethoxysilane (APTES) functionalized silica-coated magnetic NPs, then they were reduced under the influence of a 200 W ultrasonic wave for 60 min. When the amount of precursor silver ions increased, the relative intensity of diffraction peaks of silver crystals in all samples increased with the atomic ratio of silver/iron increasing from 0.208 to 0.455 and saturation magnetization (M s) decreasing from 44.68 emu/g to 34.74 emu/g. The NPs have superparamagnetic properties and strong surface plasmon absorption at 420 nm, which make these particles promising for biomedical applications.

  13. A New Method of Preparing Alkanethiol-Protected Gold Nanoparticals

    Institute of Scientific and Technical Information of China (English)

    HU Xiao-ya; XU Qin; GUO Rong

    2003-01-01

    In a new two-phase system ( tetrahydrofuran/ saturated NaCl aqueous solution ) monolayer protected clusters ( MPCs ) were prepared. The AuCl-4 anion in saturated electrolyte aqueous solution was transferred into the organic phase of tetrahydrofuran by tetra-n-butylammoniun bromide ( ( C4 H9 )4 NBr )and was reduced quickly by sodium borohydride in the presence of alkanethiol. The functionalized MPCs were characterized by solubility , transmission electron microscopy (TEM), Fourier transform infrared spectroscopy ( FTIR ), energy-dispersive X-ray (EDX) analysis and UV-vis spectroscopy. Electrochemical measurements of MPCs in CH2 Cl2 exhibited 7 pairs of reversible voltammetric waves within the potential range of - 1.0 to 1.0 V ( vs Ag/ AgCl ), which was ascribed to the quantized capacitance charging of nanoparticle double layers. All the results show that the new preparing method is feasible.

  14. In-situ reduced silver nanoparticles on populus fiber and the catalytic application

    Science.gov (United States)

    Li, Miaomiao; Gong, Yumei; Wang, Wenheng; Xu, Guangpeng; Liu, Yuanfa; Guo, Jing

    2017-02-01

    One kind of composites involved in silver nanoparticles (AgNPs) loading in-situ on natural populus fiber (PF) matrix was prepared by polyamidoxime (PAO) functionalized the cellulose fiber. In which PAO worked as trapping and stabilizing agents chelating silver ions and made it reduced in-situ to obtain AgNPs by borohydride at room temperature. The synthesized composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Moreover, the composites showed significant catalytic activity 1.87 s-1 g-1 and repeated usability more than 7 cycles in reducing 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) detected by UV-vis spectrophotometer in aqueous solution due to the surface-enhanced immobility and large amount of AgNPs. The natural cellulose fiber provides a green platform to react and support other noble metals for wide catalytic reactions.

  15. Spectroscopic Studies of the Interaction of Silver Nanoparticles with Methylene Blue

    Institute of Scientific and Technical Information of China (English)

    Chuan DONG; Jun ZHANG; Dai-zi ZHOU

    2010-01-01

    The interaction between silver nanoparticles and Methylene Blue(MB)is studied by UV-Vis spectroscopy and fluorescence spectrometry.The UN-Vis absorption of the silver nanoparticles dramatically with the addition of MB.However,no obvious changes of absorption spectra of MB are observed when silver colloids ate added into the MB solution.In the presence of surfactant SDS,the catalysis of the silver nanoparticles in the reducton of MB by sodium borohydride is exhibited by UV-Vis and fluorescence spectroscopy of MB displaying faster response compared with the absence of the silver nanoparticles.The results show that the activity of surfactant SDS modified silver nanoparticles is great and a strong physical adsorption to MB exists.

  16. Hydrogen storage in complex metal hydrides

    Directory of Open Access Journals (Sweden)

    BORISLAV BOGDANOVIĆ

    2009-02-01

    Full Text Available Complex metal hydrides such as sodium aluminohydride (NaAlH4 and sodium borohydride (NaBH4 are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides. The most important point for a wide application of these materials is the reversibility under moderate technical conditions. At present, only NaAlH4 has favourable thermodynamic properties and can be employed as a thermally reversible means of hydrogen storage. By contrast, NaBH4 is a typical non- -reversible complex metal hydride; it reacts with water to produce hydrogen.

  17. Carbon supported trimetallic nickel-palladium-gold hollow nanoparticles with superior catalytic activity for methanol electrooxidation

    Science.gov (United States)

    Shang, Changshuai; Hong, Wei; Wang, Jin; Wang, Erkang

    2015-07-01

    In this paper, Ni nanoparticles (NPs) are prepared in an aqueous solution by using sodium borohydride as reducing agent. With Ni NPs as the sacrificial template, hollow NiPdAu NPs are successfully prepared via partly galvanic displacement reaction between suitable metal precursors and Ni NPs. The as-synthesized hollow NiPdAu NPs can well dispersed on the carbon substrate. Transmission electron microscopy, X-ray diffraction and inductively coupled plasma mass spectrometry are taken to analyze the morphology, structure and composition of the as-synthesized catalysts. The prepared catalysts show superior catalytic activity and stability for methanol electrooxidation in alkaline media compared with commercial Pd/C and Pt/C. Catalysts prepared in this work show great potential to be anode catalysts in direct methanol fuel cells.

  18. Silver-enhanced block copolymer membranes with biocidal activity

    KAUST Repository

    Madhavan, Poornima

    2014-11-12

    Silver nanoparticles were deposited on the surface and pore walls of block copolymer membranes with highly ordered pore structure. Pyridine blocks constitute the pore surfaces, complexing silver ions and promoting a homogeneous distribution. Nanoparticles were then formed by reduction with sodium borohydride. The morphology varied with the preparation conditions (pH and silver ion concentration), as confirmed by field emission scanning and transmission electron microscopy. Silver has a strong biocide activity, which for membranes can bring the advantage of minimizing the growth of bacteria and formation of biofilm. The membranes with nanoparticles prepared under different pH values and ion concentrations were incubated with Pseudomonas aeruginosa and compared with the control. The strongest biocidal activity was achieved with membranes containing membranes prepared under pH 9. Under these conditions, the best distribution with small particle size was observed by microscopy.

  19. Chemical synthesis of superconducting MgB{sub 2} nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Narottam P., E-mail: Narottam.P.Bansal@nasa.gov [Materials and Structures Division, NASA Glenn Research Center, Cleveland, OH 44135 (United States); Goldsby, Jon C.; Rogers, Richard B. [Materials and Structures Division, NASA Glenn Research Center, Cleveland, OH 44135 (United States); Susner, Michael A.; Sumption, Michael D. [Center for Superconducting and Magnetic Materials, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2015-02-15

    Highlights: • MgB{sub 2} nanopowder has been synthesized by chemical method. • Powder characterized by XRD and SEM. • Superconducting behavior confirmed by susceptibility and magnetization measurements. • Nanopowder will facilitate the fabrication of small diameter MgB{sub 2} filaments. - Abstract: Superconducting MgB{sub 2} nanopowder has been synthesized through chemical reaction between lithium borohydride and magnesium hydride at relatively low temperatures. From quantitative Rietveld analysis, the average crystallite size of MgB{sub 2} powder was evaluated to be 33 nm. The superconducting transition temperature of the MgB{sub 2} nanopowder was found to be 38.8-38.9 K from magnetization and DC susceptibility measurements. Powder morphology has been evaluated by scanning electron microscopy.

  20. Complex and liquid hydrides for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Callini, Elsa; Atakli, Zuleyha Özlem Kocabas; Hauback, Bjørn C.; Orimo, Shin-ichi; Jensen, Craig; Dornheim, Martin; Grant, David; Cho, Young Whan; Chen, Ping; Hjörvarsson, Bjørgvin; de Jongh, Petra; Weidenthaler, Claudia; Baricco, Marcello; Paskevicius, Mark; Jensen, Torben R.; Bowden, Mark E.; Autrey, Thomas S.; Züttel, Andreas

    2016-03-10

    The research on complex hydrides for hydrogen storage was imitated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized and the knowledge on the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant part of the research groups active in the field of complex hydrides are collaborators in the IEA task 32. This paper reports about the important issues in the field of the complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides and their thermodynamic properties, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and excellent summary of the recent achievements.

  1. Theoretical and Experimental Study of LiBH4-LiCl Solid Solution

    Directory of Open Access Journals (Sweden)

    Torben R. Jensen

    2012-03-01

    Full Text Available Anion substitution is at present one of the pathways to destabilize metal borohydrides for solid state hydrogen storage. In this work, a solid solution of LiBH4 and LiCl is studied by density functional theory (DFT calculations, thermodynamic modeling, X-ray diffraction, and infrared spectroscopy. It is shown that Cl substitution has minor effects on thermodynamic stability of either the orthorhombic or the hexagonal phase of LiBH4. The transformation into the orthorhombic phase in LiBH4 shortly after annealing with LiCl is for the first time followed by infrared measurements. Our findings are in a good agreement with an experimental study of the LiBH4-LiCl solid solution structure and dynamics. This demonstrates the validity of the adopted combined theoretical (DFT calculations and experimental (vibrational spectroscopy approach, to investigate the solid solution formation of complex hydrides.

  2. Synthesize Triangular Silver Nanoparticle by Photo-induced Reaction%光诱导合成三角板银纳米粒子的研究

    Institute of Scientific and Technical Information of China (English)

    杜虹; 赵淑贤; 董磊

    2011-01-01

    采用钠灯作为光诱导反应的光源,利用柠檬酸钠为稳定剂和结构导向剂,以硼氢化钠为还原剂,在水相中光诱导合成三角板银纳米粒子.考察了柠檬酸钠、硼氢化钠比例对粒子形貌的影响,确定最佳比例为[AgNO3]:[Na3C6H5O7]:[NaBH4]=1:25:0.4(物质的量比).采用透射电镜(TEM)、紫外可见吸收光谱(UV-Vis)、X-射线粉末衍射仪(XRD)对实验样品的形貌、光学性质及晶体结构进行表征.%Triangular silver naoplates were synthesized by irradiating the growth solution, which contained silver cations and citrate anions. The sodium lamp was chosen as the light source. The citrate anions in the system acted as stabilizers,and sodium borohydride acted as reducing agents. The spectral evolution of the growth process was monitored by the UV-vis spectrometer,and the corresponding shape,size and crystallo-graphic structure of nanoparticles in details were investigated by transmission electron microscope(TEM) and X-ray diffraction (XRD). We also estimated the influences of the molar ration between citrate anions and sodium borohydride on the final products.

  3. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  4. Determination of total arsenic content in water by atomic absorption spectroscopy (AAS) using vapour generation assembly (VGA).

    Science.gov (United States)

    Behari, Jai Raj; Prakash, Rajiv

    2006-03-01

    Analysis of arsenic in water is important in view of contamination of ground water with arsenic in some parts of the world including West Bengal in India and neighboring country Bangladesh. WHO has fixed the threshold for arsenic in drinking water to 10ppb (microg/l) level, hence the methodology for determination of arsenic is required to be sensitive at ppb level. Atomic absorption spectrophotometry with vapour generation assembly (AAS-VGA) is well known technique for the trace analysis of arsenic. However, total arsenic analysis [As(III)+As(V)] is very crucial and it requires reduction of As(V) to As(III) for correct analysis. As(III) is reduced to AsH3 vapours and finally to free As atoms, which are responsible for absorption signal in AAS. To accomplish this the vapour generation assembly attached to AAS has acid channel filled with 10 M HCl and the reduction channel with sodium borohydride. Further sample can be reduced either before aspiration for analysis, using potassium iodide (KI) or the sample can be introduced in the instrument directly and KI can be added in the reduction channel along with the sodium borohydride. The present work shows that samples prepared in 3 M HCl can be reduced with KI for 30 min before introduction in the instrument. Alternatively samples can be prepared in 6 M HCl and directly aspirated in AAS using KI in VGA reduction channel. The latter methodology is more useful when the sample size is large and time cycle is difficult to maintain. It is observed that the acid concentration of the sample in both the situations plays an important role. Further reduction in acid concentration and analysis time is achieved for the arsenic analysis by using modified method. Analysis in both the methods is sensitive at ppb level.

  5. Preparation and characterization of electrocatalysts based on palladium for electro-oxidation of alcohols in alkaline medium; Preparacao e caracterizacao de eletrocatalisadores a base de paladio para oxidacao eletroquimica de alcoois em meio alcalino

    Energy Technology Data Exchange (ETDEWEB)

    Brandalise, Michele

    2012-07-01

    In this study Pd/C, Au/C, PdAu/C, PdAuPt/C, PdAuBi/C and PdAuIr/C electrocatalysts were prepared by the sodium borohydride reduction method for the electrochemical oxidation of methanol, ethanol and ethylene glycol. This methodology consists in mix an alkaline solution of sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. The electrocatalysts were characterized by energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry. The electrochemical oxidation of the alcohols was studied by chronoamperometry using a thin porous coating technique. The mechanism of ethanol electro-oxidation was studied by Fourier Transformed Infrared (FTIR) in situ. The most effective electrocatalysts were tested in alkaline single cells directly fed with methanol, ethanol or ethylene glycol. Preliminary studies showed that the most suitable atomic composition for preparing the ternary catalysts is 50:45:05. Electrochemical data in alkaline medium show that the electrocatalysts PdAuPt/C (50:45:05) showed the better activity for methanol electro oxidation, while PdAuIr/C was the most active for ethanol oxidation and PdAuBi/C (50:45:05) was the most effective for ethylene glycol oxidation in alkaline medium. These results show that the addition of gold in the composition of electrocatalysts increases their catalytic activities. The spectroelectrochemical FTIR in situ data permitted to conclude that C-C bond is not broken and the acetate is formed. (author)

  6. Partial characterization of low density lipoprotein preparations isolated from fresh and frozen plasma after radiolabeling by seven different methods

    Energy Technology Data Exchange (ETDEWEB)

    Atsma, D.E.; Kempen, H.J.; Nieuwenhuizen, W.; van ' t Hooft, F.M.; Pauwels, E.K. (Gaubius Institute TNO, Leiden (Netherlands))

    1991-01-01

    Four {sup 99m}Tc and three {sup 123}I labeling methods were evaluated for their suitability to label low density lipoproteins (LDL) for the purpose of scintigraphic biodistribution studies. For {sup 99m}Tc these methods were: direct incorporation in LDL of {sup 99m}TcO4- using sodium dithionite (dithionite method); a method using first N,N-dimethylformamide to prepare a {sup 99m}Tc-complex reacting with LDL in a subsequent step (DMF method); a technique in which {sup 99m}TcO4- is first coupled to a diamide dithiolate derivative of pentanoic acid by reduction with dithionite, followed by coupling of this ligand to LDL (N2S2 method); and a method using sodium borohydride and stannous chloride as reducing agents (borohydride method). The iodination techniques were based on oxidation of I(-)----I+, using iodine monochloride (ICl method), 1,3,4,6-tetrachloro-3,6-diphenylglycoluril (Iodogen method), and N-bromosuccinimide (NBS method) as oxidants. We studied labeling yields, modification of LDL caused by the labeling procedures using agarose-gel electrophoresis, and radiochemical stability of the labeled LDL complex upon incubation in plasma at 37 degrees C for 15 h. We used Sepharose CL6B chromatography to separate LDL from other plasma proteins. We also examined whether LDL isolated from frozen plasma (Pool-LDL) gave results similar to LDL obtained from freshly prepared plasma (Fresh-LDL). Pool-LDL radiolabeled by the dithionite, DMF, NBS, and Iodogen methods lost its label upon incubation with plasma. This also happened with Fresh-LDL when the DMF, NBS and Iodogen methods were used. Upon agarose-gel electrophoresis, no modification of LDL was observed with all methods when the radionuclide/LDL ratio was kept low.

  7. Study of the presence of PCDDs/PCDFs on zero-valent iron nanoparticles.

    Science.gov (United States)

    Calderon, Blanca; Lundin, Lisa; Aracil, Ignacio; Fullana, Andres

    2017-02-01

    Studies show that nanoscale zero-valent iron (nZVI) particles enhance the formation of chlorinated compounds such as polychlorinated dioxins and furans (PCDD/Fs) during thermal processes. However, it is unclear whether nZVI acts as a catalyst for the formation of these compounds or contains impurities, such as PCDD/Fs, within its structure. We analyzed the presence of PCDD/Fs in nZVI particles synthesized through various production methods to elucidate this uncertainty. None of the 2,3,7,8-substituted congeners were found in the commercially-produced nZVI, but they were present in the laboratory-synthesized nZVI produced through the borohydride method, particularly in particles synthesized from iron (III) chloride rather than from iron sulfate. Total PCDD/F WHO-TEQ concentrations of up to 35 pg/g were observed in nZVI particles, with hepta- and octa-chlorinated congeners being the most abundant. The reagents used in the borohydride method were also analyzed, and our findings suggest that FeCl3 effectively contains PCDD/Fs at concentrations that could explain the concentrations observed in the nZVI product. Both FeCl3 and nZVI showed a similar PCDD/F patterns with slight differences. These results suggest that PCDD/Fs might transfer from FeCl3 to nZVI during the production method, and thus, care should be taken when employing certain nZVI for environmental remediation.

  8. Electroless deposition of nickel-boron coatings using low frequency ultrasonic agitation: Effect of ultrasonic frequency on the coatings.

    Science.gov (United States)

    Bonin, L; Bains, N; Vitry, V; Cobley, A J

    2017-01-30

    The effect of ultrasound on the properties of Nickel-Boron (NiB) coatings was investigated. NiB coatings were fabricated by electroless deposition using either ultrasonic or mechanical agitation. The deposition of Ni occurred in an aqueous bath containing a reducible metal salt (nickel chloride), reducing agent (sodium borohydride), complexing agent (ethylenediamine) and stabilizer (lead tungstate). Due to the instability of the borohydride in acidic, neutral and slightly alkaline media, pH was controlled at pH 12±1 in order to avoid destabilizing the bath. Deposition was performed in three different configurations: one with a classical mechanical agitation at 300rpm and the other two employing ultrasound at a frequency of either 20 or 35kHz. The microstructures of the electroless coatings were characterized by a combination of optical Microscopy and Scanning Electron Microscope (SEM). The chemistry of the coatings was determined by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) after dissolution in aqua regia. The mechanical properties of the coatings were established by a combination of roughness measurements, Vickers microhardness and pin-on-disk tribology tests. Lastly, the corrosion properties were analysed by potentiodynamic polarization. The results showed that low frequency ultrasonic agitation could be used to produce coatings from an alkaline NiB bath and that the thickness of coatings obtained could be increased by over 50% compared to those produced using mechanical agitation. Although ultrasonic agitation produced a smoother coating and some alteration of the deposit morphology was observed, the mechanical and corrosion properties were very similar to those found when using mechanical agitation.

  9. Thermodynamic modelling of Mg(BH{sub 4}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pinatel, E.R.; Albanese, E.; Civalleri, B.; Baricco, M.

    2015-10-05

    Highlights: • DFT calculations providing missing thermodynamic data for Mg(BH{sub 4}){sub 2}were performed. • A Calphad assessment of Mg(BH{sub 4}){sub 2} was performed, considering all the available data. • Stable and metastable phase diagrams have been calculated for Mg(BH{sub 4}){sub 2}. • Several dehydrogenation paths of Mg(BH{sub 4}){sub 2} have been analysed and discussed. - Abstract: Application of the Calphad method to the description of thermodynamic properties in complex borohydride-based systems may allow a faster development of hydrogen storage materials. It is, however, limited by the low number of available thermodynamic description for borohydrides in thermodynamic databases. In the present work, a Calphad assessment of Mg(BH{sub 4}){sub 2} has been performed, considering available thermodynamic data. DFT calculations have been performed in order to provide missing thermodynamic data and to calculate the relative stability of the α, β and γ polymorphs. Experimental results have been compared detecting inconsistencies between them. The database obtained has been used to estimate driving forces for several dehydrogenation reactions. The dehydrogenation reaction leading to the formation of MgB{sub 2} and gaseous hydrogen is the most favoured thermodynamically, even if at low temperatures the formation of MgB{sub 12}H{sub 12} is competitive. On the contrary, positive driving forces have been calculated for the decomposition into B{sub 2}H{sub 6} and Mg(B{sub 3}H{sub 8}){sub 2}.

  10. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  11. Final Report: DE- FC36-05GO15063, Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [Univ. of Hawaii, Honolulu, HI (United States); McGrady, Sean [Univ. of New Brunswick, Fredericton NB (Canada); Severa, Godwin [Univ. of Hawaii, Honolulu, HI (United States); Eliseo, Jennifer [Univ. of Hawaii, Honolulu, HI (United States); Chong, Marina [Univ. of Hawaii, Honolulu, HI (United States)

    2013-05-31

    The project was component of the US DOE, Metal Hydride Center of Excellence (MHCoE). The Sandia National Laboratory led center was established to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE/FreedomCAR 2010 and 2015 system targets for hydrogen storage materials. Our approach entailed a wide variety of activities ranging from synthesis, characterization, and evaluation of new candidate hydrogen storage materials; screening of catalysts for high capacity materials requiring kinetics enhancement; development of low temperature methods for nano-confinement of hydrides and determining its effects on the kinetics and thermodynamics of hydrides; and development of novel processes for the direct re-hydrogenation of materials. These efforts have resulted in several advancements the development of hydrogen storage materials. We have greatly extended the fundamental knowledge about the highly promising hydrogen storage carrier, alane (AlH3), by carrying out the first crystal structure determinations and the first determination of the heats of dehydrogenation of β–AlH3 and γ-AlD3. A low-temperature homogenous organometallic approach to incorporation of Al and Mg based hydrides into carbon aerogels has been developed that that allows high loadings without degradation of the nano-porous scaffold. Nano-confinement was found to significantly improve the dehydrogenation kinetics but not effect the enthalpy of dehydrogenation. We conceived, characterized, and synthesized a novel class of potential hydrogen storage materials, bimetallic borohydrides. These novel compounds were found to have many favorable properties including release of significant amounts of hydrogen at moderate temperatures (75-190 º C). However, in situ IR studies in tandem with thermal gravimetric analysis have shown that about 0.5 equivalents of diborane are released during the

  12. Synthesis of whisky lactone%威士忌内酯的合成研究

    Institute of Scientific and Technical Information of China (English)

    郭春生; 祖萌萌; 祁林; 王政; 张峻松

    2012-01-01

    With benzoyl peroxide and boric acid as catalyst,3 -methyl - 4 - oxooctanoic acid was synthesized by free radical addition reaction of valeraldehyde and crotonic acid as starting materials. Then it was reduced by sodium borohydride, and whisky lactone with cis and trans isomeric structure was obtained by intramolecular dehydration under the action of dilute sulfuric acid. The cis - trans isomers were separated by column chromatography,with eluent composed of V(petroleum ether): V(ethyl acetate) =5:1. Structure of the two targeted products were confirmed by IR,1HNMR and MS. Effect of factors on the yield such as kind of solvent, solvent amount, reaction time, dosage of sodium borohydride and dilute sulfuric acid were investigated. Optimum conditions for the reaction were found as follows:ethanol as solvent,m(ethanol): m(3 - methyl -4 -oxooctanoic acid) =3:1,reaction time 2 h at room temperature,m(sodium borohydride): m(3 -methyl -4 -oxooctanoic acid) = l:4;m(12% sulfuric acid): m(3 -methyl -4 - oxooctanoic acid) = 10: 1. Overall yield of the complete synthesis process achieves 61. 9%.%以过氧化苯甲酰和硼酸为催化剂,以戊醛和巴豆酸为起始原料经自由基加成反应合成了3-甲基-4-氧代辛酸,以硼氢化钠为还原剂和稀硫酸为脱水剂进行分子内脱水合成了顺反异构的威士忌内酯.以V(石油醚):V(乙酸乙酯)=5∶1的混合溶剂为洗脱剂,用柱层析法实现了威士忌内酯顺反异构体的分离.通过IR,1HNMR及MS确认了2种目标产物的结构.考察了溶剂、溶剂用量、反应时间、硼氢化钠用量和稀硫酸用量对目标产物收率的影响.最终的优化实验条件为:无水乙醇为溶剂,m(无水乙醇)∶m(3 -甲基-4-氧代辛酸)=3∶1,室温下反应2h,m(硼氢化钠)∶m(3-甲基-4-氧代辛酸)=1∶4,m(12%硫酸)∶m(3 -甲基-4-氧代辛酸)=10∶1,全合成的总收率为61.9%.

  13. Final Report: DE- FC36-05GO15063, Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [University of Hawaii; McGrady, Sean [University of New Brunswick; Severa, Godwin [University of Hawaii; Eliseo, Jennifer [University of Hawaii; Chong, Marina [University of Hawaii

    2015-02-08

    The project was component of the US DOE, Metal Hydride Center of Excellence (MHCoE). The Sandia National Laboratory led center was established to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE/FreedomCAR 2010 and 2015 system targets for hydrogen storage materials. Our approach entailed a wide variety of activities ranging from synthesis, characterization, and evaluation of new candidate hydrogen storage materials; screening of catalysts for high capacity materials requiring kinetics enhancement; development of low temperature methods for nano-confinement of hydrides and determining its effects on the kinetics and thermodynamics of hydrides; and development of novel processes for the direct re-hydrogenation of materials. These efforts have resulted in several advancements the development of hydrogen storage materials. We have greatly extended the fundamental knowledge about the highly promising hydrogen storage carrier, alane (AlH₃), by carrying out the first crystal structure determinations and the first determination of the heats of dehydrogenation of β–AlH₃ and γ-AlD₃. A low-temperature homogenous organometallic approach to incorporation of Al and Mg based hydrides into carbon aerogels has been developed that that allows high loadings without degradation of the nano-porous scaffold. Nano-confinement was found to significantly improve the dehydrogenation kinetics but not effect the enthalpy of dehydrogenation. We conceived, characterized, and synthesized a novel class of potential hydrogen storage materials, bimetallic borohydrides. These novel compounds were found to have many favorable properties including release of significant amounts of hydrogen at moderate temperatures (75-190ºC). However, in situ IR studies in tandem with thermal gravimetric analysis have shown that about 0.5 equivalents of diborane are released during the dehydrogenation making re

  14. 响应面分析优化菊粉的十二烯基琥珀酸酐改性工艺研究%Study on dodecenly succinic anhydride-modified inulin

    Institute of Scientific and Technical Information of China (English)

    李丹丹; 曹威; 周杰; 李静鹏

    2013-01-01

    为了研究菊糖的十二烯基琥珀酸酐改性工艺条件,以菊糖、硼氢化钠及十二烯基琥珀酸酐用量、反应时间、反应pH以及反应温度为影响因素,以十二烯基琥珀酸酐的取代度为考察指标,运用Plackett-Burman设计筛选出3个对菊糖的十二烯基琥珀酸酐取代度影响显著因素,即十二烯基琥珀酸酐用量、反应pH和反应时间.用响应面分析实验优化十二烯基琥珀酸菊糖酯改性工艺.十二烯基琥珀酸菊糖酯改性最优工艺:菊糖4g,硼氢化钠0.015g,十二烯基琥珀酸酐0.94g,反应时间为6.8h,反应pH8.5,反应温度35℃,菊糖的十二烯基琥珀酸酐取代度为0.0140±3.33E-05.%In order to study optimum conditions for dodecenly succinic anhydride-modified inulin,effects of the amount of inulin,the dosage of sodium borohydride and dodecenly succinic anhydride (DDSA),pH,time and temperature used on the degree of substitution of dodecenly succinic anhydride-modified inulin were investigated.Plackett-Burman was adopted to screen out the important factors,which were the dosage of dodecenly succinic anhydride,pH and time used.The optimum reaction conditions were obtained by response surface analysis..inulin 4g,sodium borohydride 0.015g,dodecenly succinic anhydride 0.94g,time 6.8h,pH8.5,temperature 35℃,and the degree of substitution of dodecenly succinic anhydride-modified inulin is 0.0140± 3.33E-05.

  15. Chemical Hydrogen Storage Using Polyhedral Borane Anions and Aluminum-Ammonia-Borane Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick; Jalisatgi, Satish S.; Safronov, Alexander V.; Lee, Han Beak; Wu, Jianguo

    2010-10-01

    Phase 1. Hydrolysis of borohydride compounds offer the potential for significant hydrogen storage capacity, but most work to date has focused on one particular anion, BH4-, which requires high pH for stability. Other borohydride compounds, in particular polyhedral borane anions offer comparable hydrogen storage capacity without requiring high pH media and their long term thermal and hydrolytic stability coupled with non-toxic nature make them a very attractive alternative to NaBH4. The University of Missouri project provided the overall program focal point for the investigation of catalytic hydrolysis of polyhedral borane anions for hydrogen release. Due to their inherent stability, a transition metal catalyst was necessary for the hydrolysis of polyhedral borane anions. Transition metal ions such as cobalt, nickel, palladium and rhodium were investigated for their catalytic activity in the hydrolysis of nido-KB11H14, closo-K2B10H10, and closo-K2B12H12. The rate of hydrolysis follows first-order kinetics with respect to the concentration of the polyhedral borane anion and surface area of the rhodium catalyst. The rate of hydrolysis depends upon a) choice of polyhedral borane anion, c) concentration of polyhedral borane anion, d) surface area of the rhodium catalyst and e) temperature of the reaction. In all cases the yield of hydrogen was 100% which corresponds to ~7 wt% of hydrogen (based on material wt%). Phase 2. The phase 2 of program at the University of Missouri was focused upon developing aluminum ammonia-boranes (Al-AB) as chemical hydrogen storage materials, specifically their synthesis and studies of their dehydrogenation. The ammonia borane molecule (AB) is a demonstrated source of chemically stored hydrogen (19.6 wt%) which meets DOE performance parameters except for its regeneration from spent AB and elemental hydrogen. The presence of an aluminum center bonded to multiple AB residues might combine the efficiency of AB dehydrogenation with an aluminum

  16. Bischler-Napieralski反应合成那可丁及其衍生物的立体化学%Stereochemistry of Narcotine and Phthalideisoquinoline Synthesized via Bischler-Napieralski Reaction

    Institute of Scientific and Technical Information of China (English)

    那路新; 赵冬梅; 宋帅; 孙亮; 程卯生

    2011-01-01

    To investigate the stereoselectivity of noscapine and its derivatives obtained via Bischler-Napieralski reaction, five pairs of phthalideisoquinoline enantiomers 3, 4a, 4b, 5a, 5b were synthesized with 1-isobenzofurancarboxamide, 1,3-dihydro-4,5-dimethoxy-N-[2-(7-methoxy- 1,3-benzodioxol-5-yl)ethyl]-3-oxo- (1) and 1-isobenzofurancarboxarnide,N-[2-(1,3-benzodioxol-5-yl)ethyl]-l,3-dihydro-4,5-dimethoxy-3-oxo- (2), via two process including Bischler-Napieralski reaction and reduction of sodium borohydride.(±)-α-Narcotine and (±)-β-hydrastine were prepared through N-methylation reaction from 3 and 5a.The phthalideisoquinoline synthesized via this methods has stereoselectivity.We got pairs of erythro isomers predominantly, and found small amounts of threo configuration products.The steric hindrance on 8-substituent group of intermediate products 3,4-tetrahydroisoquinoline (M) caused the stereoselectivity in the process of reduction with sodium borohydride.%对通过 Bischler-Napieralski 反应制备的那可丁及其衍生物的立体选择性进行了研究.以 N-β-(3-甲氧基-4,5-亚甲二氧基苯基)乙基-6',7'-二甲氧基苯并呋喃酮-3-酰胺(1)和N-β(3,4-亚甲二氧基苯基)乙基-6,7'-二甲氧基苯并呋喃酮-3-酰胺(2)为原料,经 Bischler-Napieralski 反应和硼氢化钠还原制得五对苯酞类四氢异喹啉类化合物对映体3,4a,4b,5a,5b,其中3和5a经氮甲基化反应得到外消旋的那可丁(a-narcotine)和白毛莨碱(β-hydrastine).该法制得的苯酞类四氢异喹啉类化合物具有一定的立体选择性,产物构型以赤式对映体为主,中间产物二氢异喹啉环8位取代基的空间位阻将导致硼氧化钠还原时产生立体选择性.

  17. PEG液相体系制备纳米铜颗粒的研究%Research of copper nanoparticles preparation with PEG as dispersing agent in aqueous system

    Institute of Scientific and Technical Information of China (English)

    李玖娟; 何为; 王守绪; 周国云; 谭泽

    2015-01-01

    The preparation method of nanometer copper powder was studied with polyethylene glycol (PEG600) included in reaction system, in which using sodium borohydride solution as reductant, copper sulfate as copper source , and adding ammonia as complexing agent. The resulted nano-copper was performed by scanning electron microscopy (SEM) to observe the morphologies and X-ray diffraction (XRD) to characterize the composition and evaluate the oxidation of the copper. With orthogonal experiment, the significant factors in the preparation process were explored. At the same time, the optimized parameters for dispersion and anti-oxygen of nano-copper are as follows: cupric sulfate and sodium borohydride concentration (mol/L) ratio of 1:2, reaction temperature of 65℃, reaction time of 30 min, PEG600 volume of 35 mL (concentration of 538.5 mL/L). In addition, PEGs with different polymerization degrees were investigated.%以聚乙二醇(PEG600)为液相反应体系,硼氢化钠溶液为还原剂,硫酸铜为铜源,并添加氨水作为络合剂还原制备了纳米铜。使用扫描电镜(SEM)、元素能谱仪(EDS)、X射线衍射(XRD)等对纳米铜进行了特性分析,并利用正交实验探讨了影响纳米铜制备因素的主次顺序,同时得到了纳米铜分散性和抗氧化性能的最优化条件:硫酸铜与硼氢化钠的浓度(mol/L)比为1:2,反应温度为65℃,反应时间为30 min,PEG600用量为35 mL(浓度538.5 mL/L)。另外,还研究了不同分子量的聚乙二醇对纳米铜性质的影响。

  18. Synthetic wastewaters treatment by electrocoagulation to remove silver nanoparticles produced by different routes.

    Science.gov (United States)

    Matias, M S; Melegari, S P; Vicentini, D S; Matias, W G; Ricordel, C; Hauchard, D

    2015-08-15

    Nanoscience is a field that has stood out in recent years. The accurate long-term health and environmental risks associated with these emerging materials are unknown. Therefore, this work investigated how to eliminate silver nanoparticles (AgNPs) from synthetic effluents by electrocoagulation (EC) due to the widespread use of this type of nanoparticle (NP) in industry and its potential inhibition power over microorganisms responsible for biological treatment in effluent treatment plants. Synthesized AgNPs were studied via four different routes by chemical reduction in aqueous solutions to simulate the chemical variations of a hypothetical industrial effluent, and efficiency conditions of the EC treatment were determined. All routes used silver nitrate as the source of silver ions, and two synthesis routes were studied with sodium citrate as a stabilizer. In route I, sodium citrate functioned simultaneously as the reducing agent and stabilizing agent, whereas route II used sodium borohydride as a reducing agent. Route III used D-glucose as the reducing agent and sodium pyrophosphate as the stabilizer; route IV used sodium pyrophosphate as the stabilizing agent and sodium borohydride as the reducing agent. The efficiency of the EC process of the different synthesized solutions was studied. For route I, after 85 min of treatment, a significant decrease in the plasmon resonance peak of the sample was observed, which reflects the efficiency in the mass reduction of AgNPs in the solution by 98.6%. In route II, after 12 min of EC, the absorbance results reached the detection limit of the measurement instrument, which indicates a minimum reduction of 99.9% of AgNPs in the solution. During the 4 min of treatment in route III, the absorbance intensities again reached the detection limit, which indicates a minimum reduction of 99.8%. In route IV, after 10 min of treatment, a minimum AgNP reduction of 99.9% was observed. Based on these results, it was possible to verify that

  19. GC-MS法测定水体中甲基汞和乙基汞%Determination of Methyl Mercury and Ethyl Mercury in Water Sample by GC-MS Method

    Institute of Scientific and Technical Information of China (English)

    刘平年; 王珍

    2013-01-01

    用巯基棉富集,四乙基硼化钠衍生,气相色谱-质谱联用法测定水体中的甲基汞和乙基汞,线性范围为10~150 ng/L,线性范围内的重复性相对标准偏差(n=10)甲基汞为4.63%,乙基汞为5.52%,方法回收率甲基汞为99.00%~103.01%,乙基汞为85.49%~97.59%。通过四乙基硼化钠衍生把甲基汞和乙基汞化转化成全烷基化合物,降低了甲基汞和乙基汞的活性,减少甲基汞和乙基汞在色谱柱上的吸附和峰拖尾的现象。方法适合实验室大批量样品的测定。%It was set up for determination of methyl mercury and ethyl mercury in water by gas chromatography-mass spectrometer with preconcentration by sulfhydryl cotton and derivation by tetraethyl sodium borohydride. The test range was 10-150 ng/L, the repeatability in linearity(n=10)was 4.63%for methyl mercury and 5.52%for ethyl mercury. The spike recovery was 99.00%-103.01%for methyl mercury and 85.49%-97.59%for ethyl mercury. The methyl mercury and ethyl mercury were transferred to full alkyl compounds by tetraethyl sodium borohydride in the method, which could reduce the absorption of methyl mercury and ethyl mercury and peak tailing in chromatograph column. The method was fit for determining samples in large number.

  20. Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, Mario; Baranton, Steve [Laboratoire de Catalyse en Chimie Organique, Equipe Electrocatalyse, UMR 6503 CNRS, 40 avenue du recteur Pineau, F-86022 Poitiers Cedex (France); Coutanceau, Christophe, E-mail: christophe.coutanceau@univ-poitiers.f [Laboratoire de Catalyse en Chimie Organique, Equipe Electrocatalyse, UMR 6503 CNRS, 40 avenue du recteur Pineau, F-86022 Poitiers Cedex (France)

    2010-12-15

    In the past few years, borohydrides have gathered a lot of attention as an energy carrier for fuel cell application. Numerous investigations on both hydrogen generation and direct oxidation of NaBH{sub 4} have been published. Nonetheless, in our knowledge, only a few catalysts are capable to completely perform the direct oxidation of NaBH{sub 4} at low potentials without hydrogen evolution. In this work, carbon supported Pd{sub 1-x}Bi{sub x}/C and Pt{sub 1-x}Bi{sub x}/C nanocatalysts were synthesized by a 'water in oil' microemulsion method. The influence of surface modifications of Pt and Pd by Bi on the electrooxidation of sodium borohydride in alkaline media was evaluated. Physical and electrochemical methods were applied to characterize the structure and surface of the synthesized catalysts. It was verified that bismuth is present at the surface of the bimetallic catalysts and that hydrogen adsorption/desorption reactions are strongly limited on Pt and Pd surfaces with high bismuth coverage. Although the onset potential for NaBH{sub 4} oxidation on Pd{sub x}Bi{sub 1-x}/C catalysts is ca. 0.2 V higher than that for Pd/C, the presence of bismuth on palladium surface influences the reaction mechanism, limiting hydrogen evolution and oxidation in the case of Pd{sub 0.8}Bi{sub 0.2} catalyst. On Pt{sub 0.9}Bi{sub 0.1} catalyst the onset potential remains unchanged comparing to Pt/C and negligible hydrogen evolution was observed in the whole potential range where the catalyst is active. The number of exchanged electrons was calculated using the Koutecky-Levich equation and it was found that for Pt{sub 0.9}Bi{sub 0.1} catalyst, ca. 8 electrons are exchanged per BH{sub 4}{sup -} ion at low potentials. The presented results are remarkable evidencing that NaBH{sub 4} can be directly oxidized at low potentials with high energy efficiency.

  1. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  2. U.S. Department of Energy Hydrogen Storage Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  3. Solvent effects on Pt-Ru/C catalyst for methanol electro-oxidation

    Institute of Scientific and Technical Information of China (English)

    Jinwei Chen; Chunping Jiang; Hui Lu; Lan Feng; Xin Yang; Liangqiong Li; Ruilin Wang

    2009-01-01

    Alloying degree,particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying degree of the object substance,which lead to a great positive impact on its properties. In this work,three types of solvents and their mixtures were used in preparation of the Pt-Ru/C catalysts by chemical reduction of metal precursors with sodium borohydride at room temperature. The structure of the catalysts was characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The catalytic activity and stability for methanol electro-oxidation were studied by Cyclic Voltammetry (CV) and Chronoamperometry (CA). Pt-Ru/C catalyst prepared in H_2O or binary solvents of H_2O and isopropanol had large particle size and low alloying degree leading to low catalytic activity and less stability in methanol electro-oxidation. When tetrahydrofuran was added to the above solvent systems,Pt-Ru/C catalyst prepared had smaller particle size and higher alloying degree which resulted in better catalytic activity,lower onset and peak potentials,compared with the above catalysts. Moreover,the catalyst prepared in ternary solvents of isopropanol,water and tetrahydrofuran had the smallest particle size,and the high alloying degree and the dispersion kept unchanged. Therefore,this kind of catalyst showed the highest catalytic activity and good stability for methanol electro-oxidation.

  4. Size-Controlled Pd Nanoparticle Catalysts Prepared by Galvanic Displacement into a Porous Si-Iron Oxide Nanoparticle Host.

    Science.gov (United States)

    Kim, Taeho; Fu, Xin; Warther, David; Sailor, Michael J

    2017-02-21

    Porous silicon nanoparticles containing both Pd and iron oxide nanoparticles are prepared and studied as magnetically recoverable catalysts for organic reductions. The Pd nanoparticles are generated in situ by electroless deposition of Pd(NH3)4(2+), where the porous Si skeleton acts as both a template and as a reducing agent and the released ammonia ligands raise the local pH to exert control over the size of the Pd nanoparticles. The nanocomposites are characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, nitrogen adsorption, X-ray diffraction, superconducting quantum interference device magnetization, and dynamic light scattering. The nanocomposite consists of a porous Si nanoparticle (150 nm mean diameter) containing ∼20 nm pores, uniformly decorated with a high loading of surfactant-free Pd nanoparticles (12 nm mean diameter) and superparamagnetic γ-Fe2O3 nanoparticles (∼7 nm mean diameter). The reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride is catalyzed by the nanocomposite, which is stable through the course of the reaction. Catalytic reduction of the organic dyes methylene blue and rhodamine B is also demonstrated. The conversion efficiency and catalytic activity are found to be superior to a commercial Pd/C catalyst compared under comparable reaction conditions. The composite catalyst can be recovered from the reaction mixture by applying an external magnetic field due to the existence of the superparamagnetic iron oxide nanoparticles in the construct. The recovered particles retain their catalytic activity.

  5. Poly(N-isopropylacrylamide-co-methacrylic acid microgel stabilized copper nanoparticles for catalytic reduction of nitrobenzene

    Directory of Open Access Journals (Sweden)

    Farooqi Zahoor H.

    2015-09-01

    Full Text Available Poly(N-isopropylacrylamide-co-methacrylic acid microgels [p(NIPAM-co-MAAc] were synthesized by precipitation polymerization of N-isopropylacrylamide and methacrylic acid in aqueous medium. These microgels were characterized by dynamic light scattering and Fourier transform infrared spectroscopy. These microgels were used as micro-reactors for in situ synthesis of copper nanoparticles using sodium borohydride (NaBH4 as reducing agent. The hybrid microgels were used as catalysts for the reduction of nitrobenzene in aqueous media. The reaction was performed with different concentrations of cat­alyst and reducing agent. A linear relationship was found between apparent rate constant (kapp and amount of catalyst. When the amount of catalyst was increased from 0.13 to 0.76 mg/mL then kapp was increased from 0.03 to 0.14 min-1. Activation parameters were also determined by performing reaction at two different temperatures. The catalytic process has been discussed in terms of energy of activation, enthalpy of activation and entropy of activation. The synthesized particles were found to be stable even after 14 weeks and showed catalytic activity for the reduction of nitrobenzene.

  6. Synthesis of novel bisindolylmethane Schiff bases and their antibacterial activity.

    Science.gov (United States)

    Imran, Syahrul; Taha, Muhammad; Ismail, Nor Hadiani; Khan, Khalid Mohammed; Naz, Farzana; Hussain, Memona; Tauseef, Saima

    2014-08-06

    In an effort to develop new antibacterial drugs, some novel bisindolylmethane derivatives containing Schiff base moieties were prepared and screened for their antibacterial activity. The synthesis of the bisindolylmethane Schiff base derivatives 3-26 was carried out in three steps. First, the nitro group of 3,3'-((4-nitrophenyl)-methylene)bis(1H-indole) (1) was reduced to give the amino substituted bisindolylmethane 2 without affecting the unsaturation of the bisindolylmethane moiety using nickel boride in situ generated. Reduction of compound 1 using various catalysts showed that combination of sodium borohydride and nickel acetate provides the highest yield for compound 2. Bisindolylmethane Schiff base derivatives were synthesized by coupling various benzaldehydes with amino substituted bisindolylmethane 2. All synthesized compounds were characterized by various spectroscopic methods. The bisindolylmethane Schiff base derivatives were evaluated against selected Gram-positive and Gram-negative bacterial strains. Derivatives having halogen and nitro substituent display weak to moderate antibacterial activity against Salmonella typhi, S. paratyphi A and S. paratyphi B.

  7. Polyelectrolyte induced formation of silver nanoparticles in copolymer hydrogel and their application as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    He, Yongqiang [Department of Applied Chemistry, Yuncheng University, Yuncheng 044000 (China); Huang, Guanbo, E-mail: gbhuang2007@hotmail.com [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Pan, Zeng; Liu, Yue [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Gong, Qiaojuan; Yao, Chenzhong [Department of Applied Chemistry, Yuncheng University, Yuncheng 044000 (China); Gao, Jianping, E-mail: jianpingg@eyou.com [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China)

    2015-10-15

    Highlights: • A simple route for the in situ preparation of Ag nanoparticles has been developed. • The Ag loaded hydrogel showed catalytic activity for reduction of 4-nitrophenol. • The catalyst can be recovered by simple separation and showed good recyclability. - Abstract: A simple route for the in situ preparation of catalytically active Ag nanoparticles (NPs) in hydrogel networks has been developed. The electronegativity of the amide and carboxyl groups on the poly(acrylamide-co-acryl acid) chains caused strong binding of the Ag{sup +} ions which made the ions distribute uniformly inside the hydrogels. When the Ag{sup +} loaded hydrogels were immersed in NaBH{sub 4} solution, the Ag{sup +} ions on the polymer networks were reduced to Ag NPs. The resultant hydrogel showed good catalytic activity for the reduction of a common organic pollutant, 4-nitrophenol, with sodium borohydride. A kinetic study of the catalytic reaction was carried out and a possible reason for the decline of the catalytic performance with reuse is proposed.

  8. Formation and antifouling properties of amphiphilic coatings on polypropylene fibers.

    Science.gov (United States)

    Goli, Kiran K; Rojas, Orlando J; Genzer, Jan

    2012-11-12

    We describe the formation of amphiphilic polymeric assemblies via a three-step functionalization process applied to polypropylene (PP) nonwovens and to reference hydrophobic self-assembled n-octadecyltrichlorosilane (ODTS) monolayer surfaces. In the first step, denatured proteins (lysozyme or fibrinogen) are adsorbed onto the hydrophobic PP or the ODTS surfaces, followed by cross-linking with glutaraldehyde in the presence of sodium borohydride (NaBH(4)). The hydroxyl and amine functional groups of the proteins permit the attachment of initiator molecules, from which poly (2-hydroxyethyl methacrylate) (PHEMA) polymer grafts are grown directly through "grafting from" atom transfer radical polymerization. The terminal hydroxyls of HEMA's pendent groups are modified with fluorinating moieties of different chain lengths, resulting in amphiphilic brushes. A palette of analytical tools, including ellipsometry, contact angle goniometry, Fourier transform infrared spectroscopy in the attenuated total reflection mode, and X-ray photoelectron spectroscopy is employed to determine the changes in physicochemical properties of the functionalized surfaces after each modification step. Antifouling properties of the resultant amphiphilic coatings on PP are analyzed by following the adsorption of fluorescein isothiocyanate-labeled bovine serum albumin as a model fouling protein. Our results suggest that amphiphilic coatings suppress significantly adsorption of proteins as compared with PP fibers or PP surfaces coated with PHEMA brushes. The type of fluorinated chain grafted to PHEMA allows modulation of the surface composition of the topmost layer of the amphiphilic coating and its antifouling capability.

  9. Copper Alginate-Cotton Cellulose (CACC Fibers with Excellent Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Navin Chand, Ph.D.

    2009-09-01

    Full Text Available The present work describes synthesis of copper alginate-cotton cellulose (CACC composite fibers and detailed investigation of antimicrobial action against the model bacteria E.coli. The CACC fibers were prepared by immersing cotton fibers in aqueous solution of sodium alginate, followed by ionic crosslinking of alginate chains within the cotton cellulose fibers with Cu(II ions to yield CACC composite fibers. The resulting CACC fibers were investigated for their biocidal action against E.coli, by using zone inhibition and colonies counting method. Finally, CACC fibers were reduced with sodium borohydride to yield copper nanoparticles- loaded composite fibers and investigated for biocidal action. It was found that CACC fibers possessed both, the fair mechanical strength and antibacterial action. The extent of biocidal action was found to depend upon the amount of Cu(II loaded and concentration of alginate into cotton- cellulose fibers. The fibers showed higher Cu(II release in physiological fluid as compared to distilled water. Copper alginate-cotton cellulose (CACC fibers show fair mechanical strength and release copper ions in the presence of physiological fluid and protein solution. These fibers have great potential to be used as dressing materials.

  10. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil.

    Science.gov (United States)

    El-Temsah, Yehia S; Sevcu, Alena; Bobcikova, Katerina; Cernik, Miroslav; Joner, Erik J

    2016-02-01

    Nano-scale zero-valent iron (nZVI) has been conceived for cost-efficient degradation of chlorinated pollutants in soil as an alternative to e.g permeable reactive barriers or excavation. Little is however known about its efficiency in degradation of the ubiquitous environmental pollutant DDT and its secondary effects on organisms. Here, two types of nZVI (type B made using precipitation with borohydride, and type T produced by gas phase reduction of iron oxides under H2) were compared for efficiency in degradation of DDT in water and in a historically (>45 years) contaminated soil (24 mg kg(-1) DDT). Further, the ecotoxicity of soil and water was tested on plants (barley and flax), earthworms (Eisenia fetida), ostracods (Heterocypris incongruens), and bacteria (Escherichia coli). Both types of nZVI effectively degraded DDT in water, but showed lower degradation of aged DDT in soil. Both types of nZVI had negative impact on the tested organisms, with nZVI-T giving least adverse effects. Negative effects were mostly due to oxidation of nZVI, resulting in O2 consumption and excess Fe(II) in water and soil.

  11. Boron nitride nanoplates supported zero-valent iron nanocomposites for enhanced decolorization of methyl orange with the assistance of ultrasonic irradiation.

    Science.gov (United States)

    Zha, Yiming; Wang, Tianlin

    2016-01-01

    In this work, boron nitride nanoplates (BNNPs) supported nanoscale zero-valent iron (nZVI) was prepared through facile liquid-phase chemical reduction of ferric ion by borohydride under ambient conditions in the presence of BNNPs. The nZVI@BNNPs hybrids were characterized by scanning electron microscopy, X-ray diffraction and magnetic properties measurement. The hybrid material was evaluated for decolorization of a common azo dye, methyl orange (MO), with the assistance of ultrasonic irradiation. Results exhibited that a complete decolorization of 100 mg/L MO was achieved within 6 min using nZVI@BNNPs as the active material. Compared with bare nZVI and BNNPs, nZVI@BNNPs provided a faster reaction process for MO decolorization. The kinetic rate constants of MO decolorization reached 0.8175 min(-1) under ultrasound-assisted condition due to the synergistic effect of ultrasonic irradiation. Fluorescence spectrum experiment confirmed that hydroxyl radicals could be generated in the system combined nZVI with ultrasonic irradiation, and as a result, hydroxyl radicals would contribute to the decolorization process of MO.

  12. Study of Methylene Blue Degradation by Gold Nanoparticles Synthesized within Natural Zeolites

    Directory of Open Access Journals (Sweden)

    Ericka Rodríguez León

    2016-01-01

    Full Text Available We carried out the in situ synthesis of gold nanoparticles inside a natural clinoptilolite-type zeolite matrix, using ascorbic acid as reducing agent. The microstructure of both zeolite and zeolite-gold nanocomposite was characterized by X-ray diffraction (XRD, Scanning Electron Microscopy (SEM, Scanning Transmission Electron Microscopy (STEM, and Energy-Dispersive X-ray Spectroscopy (EDS techniques. Size distribution as assessed by STEM indicated that 60% of gold nanoparticles measured less than 2.5 nm. Determination of the surface area by the BET method revealed a specific value of 27.35 m2/g. The catalytic activity of zeolite-gold regarding methylene blue degradation under different light-exposing conditions was evaluated by UV-Vis spectroscopy. The results indicated that 50% degradation was achieved in only 11 min in presence of sunlight. This reaction was faster in comparison with those obtained using a white LED light. A notable aspect of this study is that catalysis was carried out without the addition of any strong reducing agents, such as sodium borohydride (NaBH4.

  13. Formation of Schiff base adduct between acetaldehyde and rat liver microsomal phosphatidylethanolamine.

    Science.gov (United States)

    Kenney, W C

    1984-01-01

    Recent studies have established the formation of acetaldehyde adducts of proteins even at low concentrations of acetaldehyde expected to occur in vivo under conditions of ethanol metabolism. Although formation of acetaldehyde adducts with phospholipids has been obtained at high pH values and at high concentrations of acetaldehyde, the occurrence of such adducts under more physiological conditions had yet to be demonstrated. Rat liver microsomes were incubated with 0.2 mM [14C]acetaldehyde at pH 7.4 and 37 degrees C. After treatment with sodium borohydride to reduce any Schiff bases formed, the phospholipids were isolated. The major radioactive component within the phospholipid fraction had chromatographic properties identical to N-ethylphosphatidylethanolamine. In addition, the nitrogenous base derived therefrom by acid hydrolysis was identical to N-ethylethanolamine. These results indicate that a Schiff base adduct between acetaldehyde and microsomal phosphatidylethanolamine had been formed during incubation of low concentrations of acetaldehyde with rat liver microsomes.

  14. Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal.

    Science.gov (United States)

    Nadkarni, D V; Sayre, L M

    1995-03-01

    The lipid peroxidation product trans-4-hydroxy-2-nonenal (HNE) has been implicated in the covalent modification of low-density lipoproteins (LDL) thought to contribute to the over-accumulation of LDL in the arterial wall in the initial stages of atherosclerosis. Proposals for the exact structures of "early" protein side-chain modifications until now have been based on indirect evidence. In this paper, the structures of first-formed His- and Lys-based adducts were elucidated by correlating NMR spectral properties with those obtained on models with reduced chiral center content, in some cases following hydride reduction. In this manner, we could confirm unambiguously the structure of a HNE-His imidazole(N tau) Michael adduct, stabilized as a cyclic hemiacetal and isolated from a neutral aqueous 1:1 stoichiometry reaction mixture. In the case of Lys/amine reactivity, where an excess of amine is needed to avert HNE aldol condensation, the predominance of a 1:1 Michael adduct in homogeneous aqueous solution and a 1:2 Michael-Schiff base adduct under two-phase aqueous-organic conditions could be verified by isolation of the respective borohydride-reduced forms. The 1:2 adduct, shown to exist as the cyclic hemiaminal, could represent a stable lysine-based cross-link in certain protein microenvironments.

  15. Synthesis, characterization and fabrication of copper nanoparticles in N-isopropylacrylamide based co-polymer microgels for degradation of p-nitrophenol

    Directory of Open Access Journals (Sweden)

    Farooqi Zahoor H.

    2015-03-01

    Full Text Available Poly(N-isopropylacrylamide-co-acrylic acid [P(NIPAM-co-AAc] microgels were synthesized by precipitation polymerization. Copper nanoparticles were successfully fabricated inside the microgels by in-situ reduction of copper ions in an aqueous medium. The microgels were characterized by Fourier Transform Infrared Spectroscopy (FT-IR and Dynamic Light Scattering (DLS. Hydrodynamic radius of P(NIPAM-co-AAc microgel particles increased with an increase in pH in aqueous medium at 25 °C. Copper-poly(N-isopropylacrylamide-co-acrylic acid [Cu-P(NIPAM-co-AAc] hybrid microgels were used as a catalyst for the reduction of 4-nitrophenol (4-NP. Effect of temperature, concentration of sodium borohydride (NaBH4 and catalyst dosage on the value of apparent rate constant (kapp for catalytic reduction of 4-NP in the presence of Cu-P(NIPAM-co-AAc hybrid microgels were investigated by UV-Vis spectrophotometry. It was found that the value of kapp for catalytic reduction of 4-NP in the presence of Cu-P(NIPAM-co-AAc hybrid microgel catalyst increased with an increase in catalyst dosage, temperature and concentration of NaBH4 in aqueous medium. The results were discussed in terms of diffusion of reactants towards catalyst surface and swelling-deswelling of hybrid microgels.

  16. INFLUENCE OF MOLECULAR WEIGHT AND PERIODATE-MODIFICATION OF β-D-GLUCANS FROM PORIA COCOS SCLEROTIUM ON ANTITUMOR ACTIVITIES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    In this work, influence of molecular weight and periodate modification of β-D-glucans isolated from Poria cocos sclerotium on the antitumor activities against Sarcoma 180 and Ehrlich ascites carcinoma (EAC) tumor was studied. The results show that two glucans PC3 (linear β-(1 → 3)-D-glucan) and PC4 [β-(1 → 3)-D-glucan with a few of branches and glucuronic acid] are devoid of antitumor activity. However, when the glucans were modified by periodate oxidation, borohydride reduction and mild hydrolysis or partially hydrolysis, the derivatives have obvious antitumor activities. The decrease in molecular weight of glucans after periodate modification hardly affects their antitumor actions, but on the other hand, the decrease of molecular weight without periodate modification could lead to an enhancement of the antitumor activities. Moreover, the glucans and these derivatives have much higher enhancement ratios of body weight of mice than that of 5-Fluorouracil (5-Fu), suggesting that they are less toxic than 5-Fu.

  17. 镍硼及镍钼硼合金镀层的组织和性能研究%Microstructure and Property of Electroless Ni-B and Ni-Mo-B Coatings

    Institute of Scientific and Technical Information of China (English)

    饶群力; 王浩伟; 周尧和

    2001-01-01

    通过化学镀方法制备高硬度Ni-B及Ni-Mo-B合金镀层。经XRD分析确认Ni-B合金镀态镀层组织以非晶态为主,并混有含硼过饱和镍的固溶体。热处理后,Ni-B和Ni-Mo-B两合金镀层的硬度分别高达Hv1200和1400以上。Ni-Mo-B镀层组织及性能随Na2MoO4·2H2O浓度而变化;当浓度为0.604 g/L时,具有最高的硬度。%High hardness Ni-B and Ni-Mo-B coatings are prepared by EN with potassium borohydride reducing agent. As-plating microstructure of Ni-B coating is confirmed to be mixture of amorphous and supersaturated solid solution with XRD analysis. Micro-hardness of Ni-B and Ni-Mo-B coating is more than Hv1200 and 1400 respectively after heat treatment. Property and microstructure of Ni-Mo-B alloy deposit vary with Na2 MoO4 · 2H2O in bath, and optimal one is 0.604g/L.

  18. INFLUENCE OF SURFACE MORPHOLOGY ON THE MICROHARDNESS OF ELECTROLEESS NI-B DEPOSIT REVEALED BY AFM OBSERVATION

    Institute of Scientific and Technical Information of China (English)

    饶群力; 王浩伟; 周尧和

    2002-01-01

    A crystalline and non-crystalline two-phase Ni-B coating was prepared by electroless deposition with potassium borohydride as reducing agent. When the deposit was heated from 10 C to 500 C, it took place three kinds of phase transformation and formed corresponding nickel borides. An Atomic Force Microscopy (AFM) was used to directly view the surface morphologies of the samples in various treated states. The AFM images indicate that nano-dimensional protrusions grow on the surface of the deposit grain during some heat treatment processes,and they are distinguished greatly from the small bulges existing in the as-plated deposit. Further studies show that the microhardness related to the surface topography of thecoating to some extent. Especially when a two-step heat treatment process was performed, the nano-dimensional protrusions on the grain surface grew upt to 40~100nm in diameter and 10~20 nm in height, and the deposit microhardness reached up to HV1500~ 1600 in the meantime.

  19. Fe-Ni-B合金的化学镀和磁性能%Electroless plating and magnetic properties of Fe-Ni-B alloy

    Institute of Scientific and Technical Information of China (English)

    王森林

    2006-01-01

    Electroless Fe-Ni-B deposit was plated from the solution using potassium borohydride (KBH4) as a reducing agent, and sodium citrate and potassium sodium tartrate as complexing agents. The effects of plating conditions on the plating rate, the deposit composition, and the magnetic properties of the deposit were studied. Satisfactory stability of the plating solution and relative high iron content of the coating was achieved with this solution. The results show that the magnetic performances of the coating increase with the increase of the iron content of the deposit.%以硼氢化钾为还原剂,柠檬酸钠和酒石酸钾钠为络合剂的镀液中化学镀制备Fe-Ni-B合金.研究了沉积条件对沉积速率、镀层组成和磁性能的影响.结果表明,镀层的磁性能随着镀层中铁含量的增加而升高,并获得了具有良好稳定性的镀液体系和相对含铁量高的镀层.

  20. Improving hardness of electroless Ni-B coatings using optimized deposition conditions and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Oraon, B. [Department of Mechanical Engineering, Jadavpur University, Kolkata 700 032 (India)], E-mail: b_oraon_65@yahoo.co.in; Majumdar, G. [Department of Mechanical Engineering, Jadavpur University, Kolkata 700 032 (India); Ghosh, B. [Advanced Materials and Solar Photovoltaic Division, School of Energy Studies, Jadavpur University, Kolkata 700 032 (India)

    2008-07-01

    The alkaline borohydride-reduced bath has been used to deposit electroless nickel-boron (Ni-B) coatings on a pure (99.99%) copper substrate. The hardness of the Ni-B coatings has been improved using optimized deposition conditions and thereafter by annealing. The electroless Ni-B deposition per unit area has been considered as the response variable and response surface method (RSM) has been used to optimize the process parameters and the deposition per unit area. The electroless Ni-B coatings have again been formed at the optimized deposition conditions and the as-deposited coating hardness has been evaluated using an empirical model and regression analysis. It has been observed that there is a significant improvement in as-deposited coating hardness. The Ni-B coated specimens formed at optimized deposition conditions have also been annealed at different temperatures ranging from 100 deg. C to 500 deg. C. The hardness of the annealed specimens has been estimated for different annealing temperatures and has been observed that the coating hardness increases with annealing temperature and then further increase in annealing temperature reduces the coating hardness. The coating hardness becomes the highest for annealing temperature of about 300 deg. C. Both the as-deposited and annealed coating hardness have been observed to be significantly higher than that reported by many researchers for electroless Ni-B coatings.

  1. Synthesis of gold nanorods with a longitudinal surface plasmon resonance peak of around 1250 nm

    Science.gov (United States)

    Nguyen, Thi Nhat Hang; Le Trinh Nguyen, Thi; Thanh Tuyen Luong, Thi; Thang Nguyen, Canh Minh; Nguyen, Thi Phuong Phong

    2016-03-01

    We prepared gold nanorods and joined them to chemicals such as tetrachloauric (III) acid trihydrate, silver nitrate, hydroquinone, hexadecyltrimethylammonium bromide, sodium hydroxide and sodium borohydride using the seed-mediated method. The combination of hydroquinone, with or without salicylic acid, influences the size of the gold nanorods, and this is demonstrated by the results of TEM images, UV-vis spectra and the value of the longitudinal surface plasmon resonance peak with respect to the UV-vis spectra. By changing the Ag+ ion and hydroquinone concentration and the combination of hydroquinone and salicylic acid, the size of the gold nanorods can be controlled and this is manifested by longitudinal surface plasmon resonance peaks forming between 875 and 1278 nm. In particular, sample E2 achieved a longitudinal surface plasmon peak at 1273 nm and an aspect ratio of more than 10 by modifying the hydroquinone to 2.5 mM and salicylic acid to 0.5 mM concentration in the growth solution.

  2. Seed-mediated growth and manipulation of Au nanorods via size-controlled synthesis of Au seeds

    Energy Technology Data Exchange (ETDEWEB)

    Liu Juncheng; Duggan, Jennifer N.; Morgan, Joshua; Roberts, Christopher B., E-mail: croberts@eng.auburn.edu [Auburn University, Department of Chemical Engineering (United States)

    2012-12-15

    Seed-mediated growth of gold (Au) nanorods with highly controllable length, width, and aspect ratio was accomplished via carefully size-controlled synthesis of the original Au seeds. A slow dynamic growth of Au nanoparticle seeds was observed after reduction of the Au salt (i.e., hydrogen tetrachloroaurate (III) hydrate) by sodium borohydride (NaBH{sub 4}) in the presence of cetyltrimethyl ammonium bromide (CTAB). As such, the size of the Au nanoparticle seeds can therefore be manipulated through control over the duration of the reaction period (i.e., aging times of 2, 8, 48, 72, and 144 h were used in this study). These differently sized Au nanoparticles were subsequently used as seeds for the growth of Au nanorods, where the additions of Au salt, CTAB, AgNO{sub 3}, and ascorbic acid were employed. Smaller Au nanoparticle seeds obtained via short growth/aging time resulted in Au nanorods with higher aspect ratio and thus longer longitudinal surface plasmon wavelength (LSPW). The larger Au nanoparticle seeds obtained via longer growth/aging time resulted in Au nanorods with lower aspect ratio and shorter LSPW.

  3. Gold and graphific carbon nitride hybrid plasmonic nanocomposites for photocatalytic reduction of 4-nitrophenol and 4-nitrobenzenethiol

    Science.gov (United States)

    Yan, Jiao; Xiao, Yuli; Liang, Xiu; Yang, Nan; Zhao, Dongyu; Yin, Penggang

    2016-09-01

    Gold nanoparticles (GNPs) were deposited on the surface of graphitic carbon nitride (g-C3N4) via an in situ reduction method using either sodium borohydride or trisodium citrate as the reducing agent. The corresponding hybrid Au/C3N4 nanocatalysts, viz., Au@CN-B or Au@CN-C, exhibited high light-driven catalytic activities toward reduction of 4-nitrophenol (4-NP) under either visible-light or ultra violet (UV) irradiation. The photocatalytic efficiency of Au@CN-B was only slightly higher than that of Au@CN-C, most likely owing to the average grain size difference between the both. However, as for plasmon-driven catalytic reactions monitored by surface-enhanced Raman scattering (SERS) technique, an immediate and almost-complete reduction of 4-nitrobenzenethiol (4-NBT) to p,p‧-dimercaptoazobenzene (DMAB) occurred when Au@CN-B was utilized as both the nanocatalyst and SERS substrate, whereas distinct characteristic peaks of 4-NBT still existed for the case of Au@CN-C.

  4. Preparation of spherical and cubic Fe{sub 55}Co{sub 45} microstructures for studying the role of particle morphology in magnetorheological suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Arief, Injamamul; Mukhopadhyay, P.K., E-mail: pkm@bose.res.in

    2014-06-01

    Cubic and spherical Fe{sub 55}Co{sub 45} alloyed microstructures were synthesized by borohydride reduction from aqueous solutions of metallic precursors, using stabilizers and polymer. Monosodium citrate, sodium acetate and PEG 6000 were utilized as electrostatic stabilizers and polymeric surface modifier. Suitable reaction conditions were maintained for synthesis of predominantly larger particles (0.7 µm to 1.2 µm), that facilitates use in magnetorheological fluids. Surface morphological studies by scanning electron microscopy revealed well shaped cubic and spherical geometry for the citrate and polymer-stabilized Fe{sub 55}Co{sub 45} alloys, while the alloy compositions remained nearly the same for both. X-ray diffractions of the as-prepared and annealed samples under various temperatures showed high degree of crystallinity with increasing temperatures. Studies of D.C. magnetization of the systems reveal that the particles have a core–shell structure, with inner magnetic core having a diameter around 30 nm with a log-normal distribution. Magnetorheological studies were performed with 8 vol% suspensions of as-synthesized particles dispersed in silicone oil (viscosity 30 mPa s at 25 °C) under different magnetic fields. Detailed studies of the magnetorheological properties were studied on these systems for practical use.

  5. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Song, Cunfeng [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Chang, Ying; Cheng, Ling; Xu, Yiting [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Chen, Xiaoling, E-mail: tinachen0628@163.com [Department of Endodontics, Xiamen Stomatology Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361003 (China); Zhang, Long; Zhong, Lina [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Dai, Lizong, E-mail: lzdai@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China)

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. - Highlights: • A new type of antibacterial agent (PSA/Ag-NPs nanocomposites) was synthesized. • The antibacterial activity against S. aureus and E. coli was studied. • Inhibition zone, MIC, MBC, and bactericidal kinetics were evaluated. • PSA/Ag-NPs nanocomposites showed excellent antibacterial activity.

  6. 盐酸西那卡塞合成新方法%New method for the synthesis of cinacalcet hydrochloride

    Institute of Scientific and Technical Information of China (English)

    刘伟; 刘兆鹏

    2016-01-01

    Objective A new method was developed for the synthesis of cinacalcet hydrochloride. Methods Cinacal-cet hydrochloride was prepared from 3 -(3 - trifluoromethylphenyl)- 1 - propanol via three steps,including DMSO/ P2 O5 mediated oxidation,iron triflate catalyzed reductive amination of aldehydes using sodium borohydride,and finally hydrochlo-ride formation. Results and Conclusion This method used environmentally benign reagents to prepare cinacalcet hydro-chloride in only three steps with an overall good yield of 57. 8% .%目的:探讨合成盐酸西那卡塞的新方法。方法以3-(3-三氟甲基苯基)丙醇为原料,经二甲基亚砜/五氧化二磷氧化成醛、三氟甲磺酸铁催化的还原氨化、成盐三步反应,合成了盐酸西那卡塞。结果及结论该方法采用对环境友好的反应试剂,反应步骤少,操作简单,总收率高(57.8%)。

  7. Hydrophilic silver nanoparticles with tunable optical properties: application for the detection of heavy metals in water

    Directory of Open Access Journals (Sweden)

    Paolo Prosposito

    2016-11-01

    Full Text Available Due their excellent chemo-physical properties and ability to exhibit surface plasmon resonance, silver nanoparticles (AgNPs have become a material of choice in various applications, such as nanosensors, electronic devices, nanobiotechnology and nanomedicine. In particular, from the environmental monitoring perspective, sensors based on silver nanoparticles are in great demand because of their antibacterial and inexpensive synthetic method. In the present study, we synthesized AgNPs in water phase using silver nitrate as precursor molecules, hydrophilic thiol (3-mercapto-1-propanesulfonic acid sodium salt, 3MPS and sodium borohydride as capping and reducing agents, respectively. The AgNPs were characterized using techniques such as surface plasmon resonance (SPR spectroscopy, dynamic light scattering (DLS, zeta potential (ζ-potential measurements and scanning tunneling microscopy (STM. Further, to demonstrate the environmental application of our AgNPs, we also applied them for heavy metal sensing by detecting visible color modification due to SPR spectral changes. We found that these negatively charged AgNPs show good response to nickel (II and presented good sensibility properties for the detection of low amount of ions in water in the working range of 1.0–0.1 ppm.

  8. Cobalt phosphide nanowall arrays supported on carbon cloth: an efficient monolithic non-noble-metal hydrogen evolution catalyst

    Science.gov (United States)

    Yang, Libin; Wang, Kunyang; Du, Gu; Zhu, Wenxin; Cui, Liang; Zhang, Chengxiao; Sun, Xuping; Asiri, Abdullah M.

    2016-11-01

    Hydrogen has been considered as an ideal energy carrier for replacing fossil fuels to mitigate global energy crises. Hydrolysis of sodium borohydride (NaBH4) is simple and effective for hydrogen production but needs active and durable catalysts to accelerate the kinetics. In this paper, we demonstrate that cobalt phosphide nanowall arrays supported on carbon cloth (CoP NAs/CC) efficiently catalyze the hydrolytic dehydrogenation of NaBH4 with an activation energy of 42.1 kJ mol-1 in alkaline media. These monolithic CoP NAs/CC show a maximum hydrogen generation rate of 5960 {{ml}} {{{\\min }}}-1 {{{{g}}}-1}({{CoP})} and are robust with superior durability and reusability. They are also excellent in activity and durability for electrochemical hydrogen evolution in 1.0 M KOH, with the need of an overpotential of only 80 mV to drive 10 mA cm-2. They offer us a promising low-cost hydrogen-generating catalyst for applications.

  9. [Synthesis of novel beta-aminoalcohols containing nabumetone moiety with potential antidiabetic activity].

    Science.gov (United States)

    Zhang, Kun; Yan, Ju-fang; Tang, Xue-mei; Liu, Hong-ping; Fan, Li; Zhou, Guang-ming; Yang, Da-cheng

    2011-04-01

    Twenty five new beta-aminoalcohols containing nabumetone moiety were prepared via the reduction of potassium borohydride with a convenient and efficient procedure, starting from beta-aminoketones that have been synthesized by our group. Their chemical structures were determined by IR, MS, 1H NMR, 13C NMR, HR-MS and antidiabetic activities were screened in vitro. Preliminary results revealed that the antidiabetic activity of most beta-aminoalcohols were better than that of the corresponding beta-aminoketones. Although most compounds showed weak antidiabetic activity, the alpha-glucosidase inhibitory activity of compounds 5hd(1) and 5id(2) reached 74.37% and 90.15%, respectively, which were superior to the positive control. The relative peroxisome proliferator-activated receptor response element (PPRE) activity of five compounds were more than 60%, among them compound 5ca possessed the highest activity (112.59%). As lead molecules of antidiabetic agents, compounds 5hd(1), 5id(2) and 5ca deserve further study.

  10. FACILE GREEN SYNTHESIS OF GOLD NANOPARTICLES WITH GREAT CATALYTIC ACTIVITY USING ULVA FASCIATA

    Directory of Open Access Journals (Sweden)

    V. Sugantha Kumari

    2014-03-01

    Full Text Available We report a facile, green, and high yielding approache for the synthesis and stabilization of monodisperse gold nanoparticles (AuNPs using green seaweed Ulva fasciata extract. Characterization of the obtained AuNPs was performed using UV-visible, Fourier transform infrared (FTIR, X-ray diffraction (XRD and transmission electron microscopy (TEM. UV-visible absorption spectroscopy was used to determine the yield of the gold nanoparticles. The UV-visible absorption spectrum showed a characteristic optical peak of AuNPs at 541 nm. The X-ray diffraction pattern suggested the formation and crystallinity of AuNPs. Spherical AuNPs synthesized with an average particle size of 10 ± 3 nm were confirmed by TEM. FTIR analysis supported the role of phytochemicals of Ulva fasciata extract for bioreduction and stabilization of AuNPs. Moreover, the synthesized AuNPs exhibit remarkable catalytic efficiency by using the reduction of 4-nitroaniline by potassium borohydride in aqueous solution using UV-visible absorption spectroscopy. Catalytic reduction followed pseudo-first-order kinetics with respect to 4-Nitrophenol.

  11. Assembly fabrication of linkers on glass surface and their effect on DNA synthesis and hybridization

    Institute of Scientific and Technical Information of China (English)

    ShenJiayao; XiaoPengfeng; HouPeng; JiMeiju; SunXiao; HeNongyue

    2003-01-01

    Linkers were assembled on a glass surface based on the hydrolysis and condensation of 3-glycidoxy-propyltrimethoxysilane (GPS). After the assembly of GPS, four approaches were tried to open the ending epoxide group of GPS or to further elongate the linkers. The effect of these approaches on DNA in situ synthesis and hybridization was investigated. For the spacing of the synthesis initiation sites, the wettability of the support and the length of the linking group that attaches the initiation site to the surface have direct influences on the yield of coupling reactions and the subsequent hybridization events. X-ray photoelectron spectroscopy (XPS) and mean contact angles of deionized water of the above slides were measured to assess the linker's characteristics in each procedure. It was proved that the glass slides were successfully modified and became excellent supports for the oligonucleotides synthesis. In addition, it proved best for the in situ oligonueleotides synthesis that a glass slide was in turn treated with ethylenediamine, glutaradehyde, ethanolamine and sodium borohydride solution at ambient temperature after silanized with GPS.

  12. Purification and characterization of 2-keto-3-deoxy-6-phosphogluconate aldolase from Azotobacter vinelandii: evidence that the enzyme is bifunctional towards 2-keto-4-hydroxy glutarate cleavage.

    Science.gov (United States)

    Taha, T S; Deits, T L

    1994-04-15

    2-keto-3-deoxy-6-phosphogluconate aldolase (E.C. 4.1.2.14) has been purified in two chromatographic steps to 99% purity in 73% overall yield from Azotobacter vinelandii. The pure enzyme is a 70 kD trimeric Class I aldolase, inhibitable by bromopyruvate or pyruvate plus sodium borohydride, with a specific activity of 625 mumol per min per mg protein and a Km of 38 microM for 2-keto-3-deoxy-6-phosphogluconate. The enzyme also has 2-keto-4-hydroxy glutarate aldolase (E.C. 4.1.3.16) activity, with a specific activity of 4.8 mumol per min per mg protein and a Km of 39 microM. 2-keto-4-hydroxy glutarate inhibits the 2-keto-3-deoxy-6-phosphogluconate aldolase activity of the enzyme with an apparent Ki of 0.17 mM. Slow steps following formation of the Schiff base intermediate between KHG and the enzyme are responsible for both the slower turnover of this substrate and for its inhibitory effect.

  13. A comprehensive study on the effect of Ru addition to Pt electrodes for direct ethanol fuel cell

    Indian Academy of Sciences (India)

    J Datta; S Singh; S Das; N R Bandyopadhyay

    2009-12-01

    The electro-oxidation of ethanol was studied over nanosized Pt and different compositions of PtRu catalysts synthesized by the borohydride reduction method. Physicochemical characterizations of the catalyst material were made by X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with EDX analysis and transmission electron microscopy (TEM). XRD patterns showed that Ru induces a contraction of the Pt lattice. EDX provided the composition of binary catalysts while TEM images indicated uniform distribution of discrete nanoparticle of the catalysts with narrow range. The electro-catalytic activities of the materials towards ethanol oxidation were investigated through electrochemical techniques, viz. cyclic voltammetry (CV), potentiodynamic polarization, chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) at room temperature. The onset potential of ethanol electro-oxidation is lowered on bimetallic PtRu catalysts compared to that on Pt alone. Of the investigated catalyst compositions the one with the highest electrocatalytic activity was found to be Pt82Ru18. This enhancement towards ethanol oxidation is explained on the basis of a structural effect and modified bi-functional mechanism.

  14. Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst

    Science.gov (United States)

    Jin, Zhao; Liu, Chang; Qi, Kun; Cui, Xiaoqiang

    2017-01-01

    Non-noble metal nanoparticles are becoming more and more important in catalysis recently. Cu/CuO nanoclusters on highly ordered TiO2 nanotube arrays are successfully developed by a surfactant-free photoreduction method. This non-noble metal Cu/CuO-TiO2 catalyst exhibits excellent catalytic activity and stability for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with the presence of sodium borohydride (NaBH4). The rate constant of this low-cost Cu/CuO based catalyst is even higher than that of the noble metal nanoparticles decorated on the same TiO2 substrate. The conversion efficiency remains almost unchanged after 7 cycles of recycling. The recycle process of this Cu/CuO-TiO2 catalyst supported by Ti foil is very simple and convenient compared with that of the common powder catalysts. This catalyst also exhibited great catalytic activity to other organic dyes, such as methylene blue (MB), rhodamine B (RhB) and methyl orange (MO). This highly efficient, low-cost and easily reusable Cu/CuO-TiO2 catalyst is expected to be of great potential in catalysis in the future.

  15. Characterization of As (V), As (III) by selective reduction/adsorption on palladium nanoparticles in environmental water samples.

    Science.gov (United States)

    Sounderajan, Suvarna; Kumar, G Kiran; Kumar, Sanjukta A; Udas, A C; Venkateswaran, G

    2009-05-15

    Hydrazine (HZ) and sodium borohydride (BH) are commonly used reagents for the production of palladium nanoparticles (PdNP) in aqueous solution and also for the reduction of arsenic from higher oxidation state to lower oxidation state. A methodology based on the quantitative adsorption of reduced arsenic species on PdNP generated in situ by BH and HZ is described to characterize As (V) and As (III) in environmental water samples. It was observed that PdNP obtained by BH gave quantitative recovery of As (V) and (III) and the PdNP obtained by HZ could account for As (III). The reduced palladium particles are collected and dissolved in minimum amount of nitric acid. The quantification of arsenic was carried out using GFAAS. Optimization of the experimental conditions and instrumental parameters were investigated in detail. The proposed procedure was validated by applying it for the determination of the content of total As in Certified Reference Material BND 301-02 (NPL, India). The detection limit of arsenic in environmental water samples was 0.029 microg L(-1) with an enrichment factor of 50. The relative standard deviation (R.S.D.) for 10 replicate measurements of 5 microg mL(-1) was 4.2%. The proposed method was successfully applied for the determination of sub ppm to ppm levels of arsenic (V), (III) in environmental water samples.

  16. Characterization of natural zeolite clinoptilolite for sorption of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Xingu-Contreras, E., E-mail: nyleve-18@hotmail.com; García-Rosales, G., E-mail: gegaromx@yahoo.com.mx [Instituto Tecnológico de Toluca (Mexico); García-Sosa, I., E-mail: irma.garcia@inin.gob.mx; Cabral-Prieto, A., E-mail: agustin.cabral@inin.gob.mx; Solache-Ríos, M., E-mail: marcos.solache@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Química (Mexico)

    2015-06-15

    The nanoparticles technology has received considerable attention for its potential applications in groundwater treatment for the removal of various pollutants as Cadmium. In this work, iron boride nanoparticles were synthesized in pure form and in presence of homo-ionized zeolite clinoptilolite, as support material. These materials were used for removing Cd (II) from aqueous solutions containing 10, 50, 100, 150, 200, 250, 300 and 400 mg/L. The characterization of these materials was made by using X-ray Diffraction, Scanning Electron Microscopy and Mössbauer Spectroscopy. Pure iron boride particles show a broad X-ray diffraction peak centered at 45{sup ∘} (2θ), inferring the presence of nanocrystals of Fe{sub 2}B as identified from Mössbauer Spectroscopy. The size of these Fe{sub 2}B particles was within the range of 50 and 120 nm. The maximum sorption capacities for Cd (II) of iron boride particles and supported iron boride particles in homo-ionized zeolitic material were nearly 100 %. For homo-ionized zeolite and homo-ionized zeolite plus sodium borohydride was ≥ 95 %.

  17. Preparation of Chitosan/Polystyrene Sulfonate Multilayered Composite Metal Nanoparticles and Its Application.

    Science.gov (United States)

    Xiong, Fangxin; Chen, Chunxiao; Liu, Shantang

    2016-06-01

    Metal-Chitosan (CTS) composite was first synthesized through the metal composition of chitosan (CTS) and metal ions. The formed composite was alternately deposited on the base with sodium polystyrene sulfonate (PSS) through a layer-by-layer self-assembling technique, followed by an in situ reduction by sodium borohydride to produce a polyelectrolyte nanocomposite thin film containing metal nanoparticles. Assembly, surface morphology and electrochemical properties of the composite membrane were analyzed by UV-visible absorption spectroscopy (UV-vis), atomic force microscopy (AFM) and cyclic voltammetry (CV). The UV-Vis results indicated that the absorbance of the multilayer film at the characteristic absorption peak increased as the membrane bilayers increased, in a good linear relationship, which demonstrated that the multilayer film was uniformly assembled on the base. AFM images showed that the surface of the multilayer thin-film composite had some degree of roughness and metal nanoparticles of 10-20 nm in size were generated on the membrane. The CV results indicated that the metal nanocomposite film had excellent electrocatalytic activity to glucose and had a potential for applications in electrochemical sensors.

  18. In situ fabricated platinum—poly(vinyl alcohol) nanocomposite thin film: a highly reusable ‘dip catalyst’ for hydrogenation

    Science.gov (United States)

    Divya Madhuri, U.; Kesava Rao, V.; Hariprasad, E.; Radhakrishnan, T. P.

    2016-04-01

    A simple protocol for the in situ generation of platinum nanoparticles in a poly(vinyl alcohol) (PVA) thin film is developed. Chloroplatinic acid as well as potassium platinum(II) chloride are used as precursors and the film is fabricated by spin coating followed by mild thermal annealing. The chemical process occurring inside the film, wherein the polymer itself acts as the reducing agent, is explored through different spectroscopy and microscopy techniques. The Pt-PVA film, <100 nm thick and containing ˜1 nm size Pt nanoparticles, is shown to be a highly efficient catalyst for the reduction of methylene blue using sodium borohydride. The ease of retrieval and reuse of the thin film is highlighted by the term ‘dip catalyst’. The reaction yield, kinetics and rate are reproducible through several reuses of the same catalyst film. Turnover number (TON = number of mols of product/number of mols of catalyst) and turnover frequency (TOF = TON/reaction time) are significantly higher than those reported earlier for this reaction using metal nanocatalysts. Utility of Pt-PVA film as an efficient catalyst for other hydrogenation reactions is demonstrated.

  19. Ag recovery from copper anode slime by acid leaching at atmospheric pressure to synthesize silver nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Atefeh Khaleghi; Sattar Ghader; Dariush Afzali

    2014-01-01

    In this paper, recovery of silver from anode slime of Sarcheshmeh copper complex in Iran and subsequent synthesis of silver nanoparticles from leaching solution is investigated. Sarcheshmeh anode slime is mainly consisted of Cu, Ag, Pb and Se. Amount of Ag in the considered anode slime was 5.4%(by weight). The goal was to recover as much as possible Ag from anode slime at atmospheric pressure to synthesize Ag nanoparticles. Therefore, acid leaching was used for this purpose. The anode slime was leached with sulfuric and nitric acid from room to 90 ?C at different acid concentrations and the run which yielded the most recovery of Ag was selected for Ag nanoparticles synthesis. At this condition, Cu, Pb and Se are lea-ched as well as Ag. To separate Ag from leach solution HCl was added and silver was precipitated as AgCl which were then dissolved by ammonia solution. The Ag nanoparticles are synthesized from this solution by chemical reduction method by aid of sodium borohydride in the presence of PVP and PEG as stabiliz-ers. The synthesized Ag nanoparticles showed a peak of 394 nm in UV-vis spectrum and TEM images showed a rather uniform Ag nanoparticles of 12 nm.

  20. Fabrication of silica-coated gold nanorods and investigation of their property of photothermal conversion.

    Science.gov (United States)

    Inose, Tomoya; Oikawa, Takahiro; Shibuya, Kyosuke; Tokunaga, Masayuki; Hatoyama, Keiichiro; Nakashima, Kouichi; Kamei, Takashi; Gonda, Kohsuke; Kobayashi, Yoshio

    2017-03-04

    This study described the preparation of silica-coated Au nanorods (AuNR/SiO2) in a colloidal solution, assessed their property of photothermal conversion, and investigated their ability to kill cancer cells using photothermal conversion. Au-seed nanoparticles were produced by reducing hydrogen tetrachloroaurate (HAuCl4) with sodium borohydride (NaBH4) in aqueous n-hexadecyltrimethylammonium bromide (CTAB) solution. AuNRs were then fabricated by reducing HAuCl4 and silver nitrate (AgNO3) with l-ascorbic acid in the aqueous CTAB solution in the presence of Au-seed nanoparticles. The as-prepared AuNRs were washed by a process composed mainly of centrifugation to remove the CTAB. The washed AuNRs were coated with silica by mixing the AuNR colloidal solution, an aqueous solution of (3-aminopropyl)trimethoxysilane, and tetraethylorthosilicate/ethanol solution with a water/ethanol solution. We found that the addition of AuNR/SiO2 in water, in mice, and in a culture medium with cancer cells, followed by irradiation with a laser, cause an increase in temperature, demonstrating that AuNR/SiO2 have the ability of photothermal conversion. In addition, the cancer cells in the culture medium were found to be killed due to the increase in temperature caused by the photothermal conversion.

  1. Preparation and Characterization of Chitosan-Humic Acid-Zerovalent Iron Nanocomposite for Nitrate Reduction in Water

    Directory of Open Access Journals (Sweden)

    Caroline Avosuahi Akinremi

    2016-01-01

    Full Text Available A new zerovalent iron chitosan-humic acid nanocomposite was prepared and tested for nitrate ion reduction in water. Humic acid was used for intramolecular cross-linking of the chitosan linear chains to increase the active sites on the chitosan biopolymer and then further used as a stabilizer to synthesize zerovalent iron nanoparticles by the reduction of iron (II chloride with sodium borohydride. Characterization of the products was carried out using infrared spectroscopy, scanning electron microscope, energy dispersive X-ray, and X-ray diffractometer. Batch experiments were conducted for the reduction of nitrate in water using different concentrations of the products in different concentrations of nitrate ion and at different contact time. The adsorption equilibrium data for the nitrate solution gave a favorable adsorption according to the Langmuir equation. Varying the nanocomposite-to-nitrate ion ratio generally led to faster nitrate reduction, with the pseudofirst-order rate constant for the adsorption increasing with increase in nanocomposite-to-nitrate ion ratio. Nitrate removal efficiency of zerovalent iron chitosan-humic acid nanocomposite was further confirmed using real water samples obtained from drainage waste and river with an initial nitrate concentration of 18.00±0.01 and 12.00±0.12 ppm, respectively. The reduction of nitrate in water using the nanocomposite was concluded to be highly effective.

  2. Air-stable nZVI formation mediated by glutamic acid: solid-state storable material exhibiting 2D chain morphology and high reactivity in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Siskova, Karolina, E-mail: karolina.siskova@upol.cz; Tucek, Jiri; Machala, Libor [Palacky University, Regional Centre of Advanced Technologies and Materials, Faculty of Science (Czech Republic); Otyepkova, Eva [Palacky University, Department of Physical Chemistry, Faculty of Science (Czech Republic); Filip, Jan; Safarova, Klara; Pechousek, Jiri; Zboril, Radek, E-mail: zboril@prfnw.upol.cz [Palacky University, Regional Centre of Advanced Technologies and Materials, Faculty of Science (Czech Republic)

    2012-03-15

    We report a new chemical approach toward air-stable nanoscale zero-valent iron (nZVI). The uniformly sized (approx. 80 nm) particles, formed by the reduction of Fe(II) salt by borohydride in the presence of glutamic acid, are coated by a thin inner shell of amorphous ferric oxide/hydroxide and a secondary shell consisting of glutamic acid. The as-prepared nanoparticles stabilized by the inorganic-organic double shell create 2D chain morphologies. They are storable for several months under ambient atmosphere without the loss of Fe(0) relative content. They show one order of magnitude higher rate constant for trichlorethene decomposition compared with the pristine particles possessing only the inorganic shell as a protective layer. This is the first example of the inorganic-organic (consisting of low-molecular weight species) double-shell stabilized nanoscale zero-valent iron material being safely transportable in solid-state, storable on long-term basis under ambient conditions, environmentally acceptable for in situ applications, and extraordinarily reactive if contacted with reducible pollutants, all in one.

  3. A Comparative Study of the Adsorption of Methylene Blue onto Synthesized Nanoscale Zero-Valent Iron-Bamboo and Manganese-Bamboo Composites

    Directory of Open Access Journals (Sweden)

    Solomon E. Shaibu

    2014-06-01

    Full Text Available In this study, bamboo impregnated with nanoscale zero-valent iron (nZVI and nanoscale manganese (nMn were prepared by the aqueous phase borohydride reduction method and characterized using scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR and PIXE analysis. The synthesized nMn-bamboo and nZVI-bamboo composites were subsequently applied to the sorption of methylene blue (MB dye from aqueous solution. The adsorption of MB dye was investigated under various experimental conditions such as pH, contact time, initial concentration of MB dye and adsorbent dosage. The results showed that the synthesized nZVI-bamboo composite was more effective than nMn-bamboo composite in terms of higher MB dye adsorption capacity of 322.5 mg/g compared to 263.5 mg/g of nMn-bamboo composite. At a concentration of 140 mg/L MB dye, 0.02 g of nZVI-bamboo and nMn-bamboo composites resulted in 79.6% and 78.3% removal, respectively, at 165 rpm, contact time of 120 min and at a solution pH of 7.6. The equilibrium data was best represented by Freundlich isotherm model and the pseudo-second order kinetic model better explained the kinetic data for both nZVI-bamboo and nMn-bamboo composites.

  4. Highly stable noble metal nanoparticles dispersible in biocompatible solvents: synthesis of cationic phosphonium gold nanoparticles in water and DMSO.

    Science.gov (United States)

    Ju-Nam, Yon; Abdussalam-Mohammed, Wanisa; Ojeda, Jesus J

    2016-01-01

    In this work, we report the synthesis of novel cationic phosphonium gold nanoparticles dispersible in water and dimethyl sulfoxide (DMSO) for their potential use in biomedical applications. All the cationic-functionalising ligands currently reported in the literature are ammonium-based species. Here, the synthesis and characterisation of an alternative system, based on phosphonioalkylthiosulfate zwitterions and phosphonioalkylthioacetate were carried out. We have also demonstrated that our phosphonioalkylthiosulfate zwitterions readily disproportionate into phosphonioalkylthiolates in situ during the synthesis of gold nanoparticles produced by the borohydride reduction of gold(III) salts. The synthesis of the cationic gold nanoparticles using these phosphonium ligands was carried out in water and DMSO. UV-visible spectroscopic and TEM studies have shown that the phosphonioalkylthiolates bind to the surface of gold nanoparticles which are typically around 10 nm in diameter. The resulting cationic-functionalised gold nanoparticles are dispersible in aqueous media and in DMSO, which is the only organic solvent approved by the U.S. Food and Drug Administration (FDA) for drug carrier tests. This indicates their potential future use in biological applications. This work shows the synthesis of a new family of phosphonium-based ligands, which behave as cationic masked thiolate ligands in the functionalisation of gold nanoparticles. These highly stable colloidal cationic phosphonium gold nanoparticles dispersed in water and DMSO can offer a great opportunity for the design of novel biorecognition and drug delivery systems.

  5. Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol.

    Science.gov (United States)

    Naraginti, Saraschandra; Sivakumar, A

    2014-07-15

    The present study reports a simple and robust method for synthesis of silver and gold nanoparticles using Coleus forskohlii root extract as reducing and stabilizing agent. Stable silver nanoparticles (AgNPs) and gold nanopoarticles (AuNPs) were formed on treatment of an aqueous silver nitrate (AgNO3) and chloroauric acid (HAuCl4) solutions with the root extract. The nanoparticles obtained were characterized by UV-Visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). UV-Vis and TEM analysis indicate that with higher quantities of root extract, the interaction is enhanced leading to size reduction of spherical metal nanoparticles. XRD confirms face-centered cubic phase and the diffraction peaks can be attributed to (111), (200), (222) and (311) planes for these nanoparticles. These synthesized Ag and Au nanoparticles were found to exhibit excellent bactericidal activity against clinically isolated selected pathogens such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The synthesized AgNPs were also found to function as an efficient green catalyst in the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride, which was apparent from the periodical color change from bright yellow to colorless, after the addition of AgNPs.

  6. Impact of reaction parameters on the chemical profile of 3,4-methylenedioxymethamphetamine synthesized via reductive amination: target analysis based on GC-qMS compared to non-targeted analysis based on GC×GC-TOF-MS.

    Science.gov (United States)

    Schäffer, M; Dieckmann, S; Pütz, M; Kohles, T; Pyell, U; Zimmermann, R

    2013-12-10

    The most common clandestine manufacturing procedure for the ecstasy derivative 3,4-methylenedioxymethamphetamine (MDMA), is the reductive amination of piperonylmethylketone (PMK) via platinum(IV) oxide/hydrogen. Deviations of the reaction conditions during the synthesis may result in different chemical profiles of the products. The chemical analysis of these profiles is an important objective for forensic drug intelligence. In this work we studied the impact of a systematic variation of the hydrogenation time, the reaction temperature and the precursor batch on the resulting organic chemical profiles of the MDMA bases and MDMA hydrochlorides. Target analysis was based on a gas chromatography mass spectrometry (GC-MS) method which was harmonized during the European project CHAMP.(2) In addition, samples were analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) and subjected to non-targeted data analysis for a comprehensive analysis of the complete profiles. The reaction temperature, followed by the used precursor batch, revealed the highest impact on the chemical profile. The effect on individual impurity compounds is discussed in detail. With respect to the interpretation of the data, the profiles were compared to the profiles of MDMA samples obtained by reductive amination using sodium borohydride ("cold method") and aluminium/mercury amalgam as alternative reducing agents. Non-targeted analysis revealed that the discrimination according to the synthetic route and the batch of precursor used for the synthesis strongly depends on the selected target compounds.

  7. Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach

    Science.gov (United States)

    Balakrishnan, A.; Mueller, C.; Reinecke, H.

    2013-12-01

    A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively.

  8. Preparation of Silver Nanostructures from Bicontinuous Microemulsions

    Directory of Open Access Journals (Sweden)

    M. A. Pedroza-Toscano

    2012-01-01

    Full Text Available Precipitation of silver nanoparticles at 70°C was carried out by dosing a 1.3 M sodium borohydride aqueous solution over bicontinuous microemulsions formed with a mixture of sodium bis(2-ethylhexyl sulfosuccinate (AOT and sodium dodecylsulfate (SDS as surfactants, a 0.5 M silver nitrate aqueous solution, and toluene. Weight ratios of 2.5/1 and 3/1 AOT/SDS were used in the precipitation reactions. Silver nanoparticles were characterized by transmission electronic microscopy, X-ray diffraction, and atomic absorption spectroscopy. A mixture of isolated spheroidal nanoparticles (≈15 wt.% with an average diameter around 10 nm and wormlike structures (≈85 wt.% with an average length close to 480 nm and an average diameter ca. 40 nm was obtained, regardless of the AOT/SDS ratio. Higher yields were obtained compared with those reported when reverse microemulsions were employed. Formation of wormlike structures was ascribed to one-dimensional aggregation of crystal and particles within the channels of bicontinuous microemulsions, which performed as templates.

  9. Influence of Sn on the magnetic ordering of Ni-Sn alloy synthesized using chemical reduction method

    Science.gov (United States)

    Dhanapal, K.; Narayanan, V.; Stephen, A.

    2016-05-01

    The Ni-Sn alloy was synthesized using borohydride assisted chemical reduction method. The composition of the synthesized alloy was determined using atomic absorption spectroscopy which revealed that the observed composition of Sn is high when compared to the initial composition. The ultrafine particles are clearly observed from field emission scanning electron microscope for all the sample. The X-ray diffraction measurement confirmed that the as-synthesized samples are of amorphous like nature while the samples annealed at 773 K showed crystalline nature. The Fourier transform infrared spectroscopy confirmed metallic bond stretching in the alloy samples. The crystallization and phase transition temperature was observed from differential scanning calorimetry. The shift in the crystallization temperature of Ni with increasing percentage of Sn was observed. The vibrating sample magnetometer was employed to understand the magnetic behavior of the Ni-Sn alloy. As-synthesized alloy samples showed paramagnetic nature while the annealed ones exhibit the soft ferromagnetic, antiferromagnetic and paramagnetic nature. The saturation magnetization value and magnetic ordering in the Ni-Sn alloys depend on the percentage of Sn present in the alloy.

  10. Fast and facile preparation of CTAB based gels and their applications in Au and Ag nanoparticles synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ravi Kant, E-mail: rkupadhyay85@gmail.com [Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India); Soin, Navneet, E-mail: n.soin@bolton.ac.uk [Knowledge Centre for Materials Chemistry (KCMC), Institute for Materials Research and Innovation (IMRI), University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Saha, Susmita, E-mail: ssaha@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Barman, Anjan, E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Sinha Roy, Susanta, E-mail: susanta.roy@snu.edu.in [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India)

    2015-04-15

    We have demonstrated that the gel-like mesophase of Cetyltrimethylammonium bromide (CTAB) can be synthesized by judicial adjustment of water to surfactant molar ratio (W{sub 0}), without using any additional salts, gelating agents or co-surfactants. Gel formation was found to be highly dependent on the water to surfactant molar ratio (W{sub 0}), with the lowest value of W{sub 0} (41.5) resulting in rapid gel formation. Environmental scanning electron microscope (ESEM) analysis revealed that the gel was comprised of interconnected cylindrical structures. The presence of hydrogen bonding in the gel-like mesophase was confirmed by Fourier Transform Infrared spectroscopy (FTIR) analysis. Rheology measurements revealed that all the gel samples were highly viscoelastic in nature. Furthermore, Au and Ag containing CTAB gels were explored as precursors for the preparation of spherical Gold (Au) and Silver (Ag) nanoparticles using Sodium borohydride (NaBH{sub 4}) as reducing agent. The effects of NaBH{sub 4} concentration on the particle size and morphology of the Au and Ag nanoparticles have also been studied. - Highlights: • A facile synthesis of CTAB based gel-like mesophase is reported. • CTAB gels were obtained by adjusting water to surfactant molar ratio (W{sub 0}). • FTIR analysis revealed that hydrogen bonding plays a key role in gel formation. • Au, Ag nanoparticles were synthesized by using CTAB gel and NaBH{sub 4}.

  11. Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Huan; JIN Zhao-hui; HAN Lu; QIN Cheng-hua

    2006-01-01

    Nano ZVI particles supported on micro-scale exfoliated graphite were prepared by using KBH4 as reducing agent in the H2O/ethanol system. The supported ZVI materials generally have higher activity and greater flexibility for environmental remediation applications. The exfoliated graphite as the support was treated beforehand to hydrophilic material. Nano iron particles are deposited onto the rough graphite surface while those were formed by borohydride reduction. The possible nitrate reduction pathways were proposed. The TEM image shows that iron particles are highly dispersed on the surface of graphite and several of iron particles are imbedded in the pit of support surface. In this synthesis,iron particles have a nearly spherical shape with a grain size of 50-100 nm. The surface areas of materials with different iron loadings of 3.5%,7.0%,10.0%,15.0% and 20.0%(mass fraction) are 2.89,9.55,8.45,23.8 and 6.18 m2·g-1 by BET surface analyzer. The chemical reduction of nitrate by supported nano ZVI in aqueous solution were tested in series batch experiments. Experiment results suggest that NO3- can be more rapidly reduced to NH4+ at neutral pH and anaerobic conditions by supported nano ZVI than unsupported nano ZVI or ZVI scraps. The 15% nano Fe/graphite shows the best reduction efficiency contrasted with other Fe loading particles.

  12. Simultaneous determination of arsenic and mercury in polyaluminum chloride by atomic fluorescence spectrometry method%原子荧光光谱法同时测定聚氯化铝中的砷和汞

    Institute of Scientific and Technical Information of China (English)

    秦晓鹏; 吴锴; 陶福棠; 李凯

    2013-01-01

    Application of hydride generation-atomic fluorescence spectrometry method in the simultaneous determination of arsenic and mercury in polyaluminium chloride used for drinking water was studied.This method is of high sensitivity and good accuracy.Under optimal conditions,the potassium borohydride concentration,detection limit,precision,and recovery rate were investigated.Results showed:the detection limits of arsenic and mercury were 0.007 9 μg/L and 0.002 6 g/L, respectively: the recovery rates of arsenic and mercury were 93.75%~103.83% and 105.00%~108.75%, respectively.%研究了应用氢化物发生-原子荧光光谱法同时测定生活饮用水用聚氯化铝中的砷和汞,方法灵敏度高、准确度好在最佳条件下,对硼氢化钾浓度、检出限、精密度、加标回收率等进行了研究.结果表明:方法的检出限砷为0.007 9 μg/L、汞为0.002 6 μg/L,砷、汞的加标回收率分别为93.75%~103.83%和105.00%~ 108.75%.

  13. Synthesis of 1-phenyl-3-pyrroline in water

    Directory of Open Access Journals (Sweden)

    Thiago Muniz de Souza

    2012-06-01

    Full Text Available Pyrrolines are bioactive compounds and can be used as starting materials or as intermediates in the synthesis of natural products [1,2]. N-phenyl-pyrrolines have been prepared by reaction of N-propargylanilines catalyzed by Cu(I [3] or the ring-closing metathesis of allylamines [4]. We present a simple, efficient and low cost new methodology to prepare 1-phenyl-3-pyrolines through nucleophilic displacement reaction SN2. Three parameters were studied, namely, solvent (acetonitrile, dioxane, DMSO, THF and water, bases (DBU, CsCO3, K2CO3, NaHCO3 and reaction time. The reaction conditions were tested with 1,4-dibromobutene and aniline. The best results were obtained with two experimental conditions: (i in organic medium (acetonitrile and sodium borohydride (with or without base and (ii in water (scheme 1 the reaction presented a conversion of 96% (GC, without the need for purification because the product precipitates. In both conditions only trace amounts of N-phenylpyrrole wereobserved. The aqueous condition is more interesting due to the use of green solvent, good yield and easy purification. To ascertain the scope of this new methodology we aretesting it with other aromatic amines and aliphatic amines in order to obtain pyrroline derivates.

  14. Silver nanoparticles: Influence of the temperature synthesis on the particles’ morphology

    Science.gov (United States)

    Piñero, S.; Camero, S.; Blanco, S.

    2017-01-01

    Silver nanoparticles have a wide range of applications in the medical field, textile and food industries. These and other applications can be found due to the relation between its size and morphology. In this study the influence of bath temperature on the morphology and size of silver nanoparticles are evaluated, which are obtained by chemical reduction of AgNO3 using three reducing agents: sodium borohydride, ascorbic acid and sodium citrate. The evaluation carried out by the traditional UV-vis Spectrophotometric analysis and with High Resolution Transmission Electron Microscopy. The UV-vis spectrum of the silver colloids obtained by chemical reduction using three different reducing agents shows the effect of the temperature change on the growing and aggregative process. The final effect on the morphology, size and aggregation of the particles was confirmed by TEM. The result suggests a change in the growing mechanism, conducted by aggregation of atoms at 5 and 20°C degrees and aggregation of clusters at higher temperatures. Moreover in this work the main synthesis methods of nanomaterials are described.

  15. Antibacterial continuous nanofibrous hybrid yarn through in situ synthesis of silver nanoparticles: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Barani, Hossein, E-mail: barani@birjand.ac.ir

    2014-10-01

    Nanofibrous hybrid yarns of polyvinyl alcohol (PVA) and poly-L-lactide acid (PLLA) with the antibacterial activity were prepared that contains 0, 5, 10, 20, and 30 wt.% of silver nanoparticles according to the PVA polymer content. This was performed by electrospinning using distilled water and 2, 2, 2-trifluoroethanol as a solvent for PVA and PLLA respectively, and sodium borohydride was used as a reducing agent. The scanning electron microscope observation confirmed the formation of AgNPs into the PVA nanofiber structure, and they were uniform, bead free, cylindrical and smooth. The diameter of hybrid yarns and their nanofiber component was decreased as the silver nitrate concentration in electrospinning solutions was increased. The differential scanning calorimetry results indicated that the silver nanoparticles can form interactions with polymer chains and decrease the melting enthalpy. The mechanical analysis showed a lower stress and strain at break of the AgNP-loaded nanofibrous hybrid yarns than the unloaded hybrid yarn. However, there wasn't a statistically significant difference between the strain at break of electrospun nanofibrous hybrid yarns. Moreover, the bactericidal efficiency of all loaded samples was over 99.99%. - Highlights: • Nanofibrous hybrid yarns of PVA/PLLA with antibacterial activity were prepared. • The diameter of nanofibers was decreased as the AgNP concentration was increased. • AgNPs make interactions with amorphous phase of polymer and increase the Tg. • All loaded samples presented a good bactericidal and bacteriostatic efficiency.

  16. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods

    Science.gov (United States)

    Choudhury, Rupasree; Majumder, Manna; Roy, Dijendra Nath; Basumallick, Srijita; Misra, Tarun Kumar

    2016-06-01

    Silver nanoparticles (Ag NPs) are now widely used as antibacterial and antifungal materials in different consumer products. We report here the preparation of Ag NPs by neem leaves extract ( Azadirachta) reduction and trisodium citrate-sodium borohydride reduction methods, and study of their phytotoxicity. The nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and atomic force microscopy (AFM) techniques. Both neem-coated and citrate-coated Ag NPs exhibit surface plasmon around 400 nm, and their average sizes measured by AFM are about 100 and 20 nm, respectively. Antibacterial and antifungal activities of these nanomaterials have been studied by simple pea seed germination and disk diffusion methods. It has been observed from the growth of root and shoot, citrate-coated Ag NPs significantly affect seedling growth, but neem-coated Ag NPs exhibit somehow mild toxicity toward germination process due to the nutrient supplements from neem. On the other hand, antifungal activity of neem-coated Ag NPs has been found much higher than that of citrate-coated Ag NPs due to the combined effects of antifungal activity of neem and Ag NPs. Present research primarily indicates a possible application of neem-coated Ag NPs as a potential fungicide.

  17. Antimicrobial chitosan-PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles

    Science.gov (United States)

    Agnihotri, Shekhar; Mukherji, Soumyo; Mukherji, Suparna

    2012-09-01

    Hydrogels are water-insoluble crosslinked hydrophilic networks capable of retaining a large amount of water. The present work aimed to develop a novel chitosan-PVA-based hydrogel which could behave both as a nanoreactor and an immobilizing matrix for silver nanoparticles (AgNPs) with promising antibacterial applications. The hydrogel containing AgNPs were prepared by repeated freeze-thaw treatment using varying amounts of the crosslinker, followed by in situ reduction with sodium borohydride as a reducing agent. Characterization studies established that the hydrogel provides a controlled and uniform distribution of nanoparticles within the polymeric network without addition of any further stabilizer. The average particle size was found to be 13 nm with size distribution from 8 to 21 nm as per HR-TEM studies. Swelling studies confirmed that higher amount of crosslinker and silver incorporation inside the gel matrices significantly enhanced the porosity and chain entanglement of the polymeric species of the hydrogel, respectively. The AgNP-hydrogel exhibited good antibacterial activity and was found to cause significant reduction in microbial growth ( Escherichia coli) in 12 h while such activity was not observed for the hydrogel without AgNPs.

  18. Supercritical nitrogen processing for the purification of reactive porous materials.

    Science.gov (United States)

    Stadie, Nicholas P; Callini, Elsa; Mauron, Philippe; Borgschulte, Andreas; Züttel, Andreas

    2015-05-15

    Supercritical fluid extraction and drying methods are well established in numerous applications for the synthesis and processing of porous materials. Herein, nitrogen is presented as a novel supercritical drying fluid for specialized applications such as in the processing of reactive porous materials, where carbon dioxide and other fluids are not appropriate due to their higher chemical reactivity. Nitrogen exhibits similar physical properties in the near-critical region of its phase diagram as compared to carbon dioxide: a widely tunable density up to ~1 g ml(-1), modest critical pressure (3.4 MPa), and small molecular diameter of ~3.6 Å. The key to achieving a high solvation power of nitrogen is to apply a processing temperature in the range of 80-150 K, where the density of nitrogen is an order of magnitude higher than at similar pressures near ambient temperature. The detailed solvation properties of nitrogen, and especially its selectivity, across a wide range of common target species of extraction still require further investigation. Herein we describe a protocol for the supercritical nitrogen processing of porous magnesium borohydride.

  19. Production of Platinum Atom Nanoclusters at One End of Helical Plant Viruses

    Directory of Open Access Journals (Sweden)

    Yuri Drygin

    2013-01-01

    Full Text Available Platinum atom clusters (Pt nanoparticles, Pt-NPs were produced selectively at one end of helical plant viruses, tobacco mosaic virus (TMV and potato virus X (PVX, when platinum coordinate compounds were reduced chemically by borohydrides. Size of the platinum NPs depends on conditions of the electroless deposition of platinum atoms on the virus. Results suggest that the Pt-NPs are bound concurrently to the terminal protein subunits and the 5′ end of encapsidated TMV RNA. Thus, a special structure of tobacco mosaic virus and potato X virus particles with nanoparticles of platinum, which looks like a push-pin with platinum head and virus needle, was obtained. Similar results were obtained with ultrasonically fragmented TMV particles. By contrast, the Pt-NPs fully filled the central axial hole of in vitro assembled RNA-free TMV-like particles. We believe that the results presented here will be valuable in the fundamental understanding of interaction of viral platforms with ionic metals and in a mechanism of nanoparticles formation.

  20. Micro space power system using MEMS fuel cell for nano-satellites

    Science.gov (United States)

    Lee, Jongkwang; Kim, Taegyu

    2014-08-01

    A micro space power system using micro fuel cell was developed for nano-satellites. The power system was fabricated using microelectromechanical system (MEMS) fabrication technologies. Polymer electrolyte membrane (PEM) fuel cell was selected in consideration of space environment. Sodium borohydride (NaBH4) was selected as a hydrogen source while hydrogen peroxide (H2O2) was selected as an oxygen source. The power system consists of a micro fuel cell, micro-reactor, micro-pump, and fuel cartridges. The micro fuel cell was fabricated on a light-weight and corrosion-resistant glass plates. The micro-reactor was used to generate hydrogen from NaBH4 alkaline solution via a catalytic hydrolysis reaction. All components such as micro-pump, fuel cartridges, and auxiliary battery were integrated for a complete power system. The storability of NaBH4 solution was evaluated at -25 °C and the performance of the micro power system was measured at various operating conditions. The power output of micro power system reasonably followed up the given electric load conditions.

  1. Natural polymers supported copper nanoparticles for pollutants degradation

    Science.gov (United States)

    Haider, Sajjad; Kamal, Tahseen; Khan, Sher Bahadar; Omer, Muhammad; Haider, Adnan; Khan, Farman Ullah; Asiri, Abdullah M.

    2016-11-01

    In this report, chitosan (CS) was adhered on cellulose microfiber mat (CMM) to prepare CS-CMM. This was used as host for copper (Cu) nanoparticles preparation. After adsorption of Cu2+ ions from an aqueous solution of CuSO4, the metal ions entrapped in CS coating layer was treated with sodium borohydride (NaBH4) to prepare Cu nanoparticles loaded CS-CMM (Cu/CS-CMM). Fourier transform infrared spectroscopy, and X-ray diffraction confirmed the formation of Cu/CS-CMM hybrid. Scanning electron microscopy analysis was performed to reveal the morphology of the prepared catalyst. The prepared Cu/CS-CMM was employed as a catalyst for the degradation of nitro-aromatic compounds of 2-nitrophenol (2NP) and 4-nitrophenol (4NP) as well as an organic cresyl blue (CB) dye. Remarkably, the turnover frequency in the case of 2NP and 4NP using Cu/CS-CMM reaches 103.3 and 88.6 h-1, outperforming previously reported Cu nanoparticles immobilized in hydrogel-based catalytic systems. The rate constants for 2NP, 4NP and CB were 1.2 × 10-3 s-1, 2.1 × 10-3 s-1 and, 1.3 × 10-3 s-1, respectively. Besides, we discussed the separation of the catalyst from the reaction mixture and its re-usability.

  2. Fabrication of Au nanoparticles supported on CoFe2O4 nanotubes by polyaniline assisted self-assembly strategy and their magnetically recoverable catalytic properties

    Science.gov (United States)

    Zhang, Zhen; Jiang, Yanzhou; Chi, Maoqiang; Yang, Zezhou; Nie, Guangdi; Lu, Xiaofeng; Wang, Ce

    2016-02-01

    This article reports the fabrication of magnetically responsive Au nanoparticles supported on CoFe2O4 nanotubes through polyaniline (PANI) assisted self-assembly strategy which can be used as an efficient magnetically recoverable nanocatalyst. The central magnetic CoFe2O4 nanotubes possess a strong magnetic response under an externally magnetic field, enabling an easy and efficient separation from the reaction system for reuse. The thorn-like PANI layer on the surface of CoFe2O4 nanotubes provides large surface area for supporting Au nanocatalysts due to the electrostatic interactions. The as-prepared CoFe2O4/PANI/Au nanotube assemblies exhibit a high catalytic activity for the hydrogenation of 4-nitrophenol by sodium borohydride (NaBH4) at room temperature, with an apparent kinetic rate constant (Kapp) of about 7.8 × 10-3 s-1. Furthermore, the composite nanocatalyst shows a good recoverable property during the catalytic process. This work affords a reliable way in developing multifunctional nanocomposite for catalysis and other potential applications in many fields.

  3. Fabrication of Bi-Fe3O4@RGO hybrids and their catalytic performance for the reduction of 4-nitrophenol

    Science.gov (United States)

    Wang, Xuefang; Xia, Fengling; Li, Xichuan; Xu, Xiaoyang; Wang, Huan; Yang, Nian; Gao, Jianping

    2015-11-01

    Nanocatalysts are frequently connected to magnetic nanoparticles. These composites are easy to be retrieved from the reaction system under a magnetic field because of their magnetic properties. Magnetic separation is particularly promising in industry since it can solve many issues present in filtration, centrifugation, or gravitation separation. Herein, a facile method to prepare bismuth and Fe3O4 nanoparticles loaded on reduced graphene oxide magnetic hybrids (Bi-Fe3O4@RGO) using soluble starch as a dispersant is demonstrated. The magnetic Fe3O4 nanoparticles were synthesized by the co-precipitation of Fe2+ and Fe3+ ions, and Bi nanoparticles were fabricated by the redox reactions between sodium borohydride and ammonium bismuth citrate in the presence of soluble starch. Transmission electron microscopy images demonstrate that the average diameter of the Fe3O4 nanoparticles is about 5 nm and the diameters of Bi nanoparticles range from 10 to 20 nm. The magnetic Bi-Fe3O4@RGO hybrids exhibit high catalytic activity in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 with a first-order rate constant (K) of 0.00808 s-1 and is magnetically recyclable for at least five cycles. This strategy provides an efficient and recyclable catalyst for the use in environmental protection applications.

  4. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    Science.gov (United States)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M.

    2016-11-01

    Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH4) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and reactions over a 1 cm2 catalytic surface with aqueous NaBH4 solutions generated rate constants (K) = equal to 4.9 × 10-3 min-1, 4.6 × 10-3 min-1, and 3.3 × 10-3 min-1 for ACoF, NCoF, and copper substrate respectively.

  5. [Resonance scattering detection of trace Hg2+ using aptamer modified AuSe nanoalloy].

    Science.gov (United States)

    Jiang, Zhi-liang; Zhang, Yi; Qin, Hui-min; Zhou, Lian-ping; Liang, Ai-hui; Wang, Peng-fei; Ouyang, Hui-xiang

    2011-05-01

    Under the condition of sodium citrate as stabilizer, the gold-selenium (AuSe) nano-alloy was prepared by sodium borohydride reduction procedure, and was modified by single-strand aptamer to obtain an aptamer nano-alloy probe (apta-AuSe) for Hg(II). In pH 6.8 Na2HPO4-NaH2PO4 buffer solution and in the presence of NaCl of 33 mmol L(-1), the Apta-AuSe probe is not aggregation. The apta-AuSe interacts with Hg2+ to form stable double-strand T-Hg(II)-T mismatches and to release AuSe nano-alloy particles from the probe. The released AuSe nano-alloy particles (20:1) aggregated to form bigger clusters that resulted in the resonance scattering (RS) intensity (I590 nm) increasing at 590 nm. The increased intensity delta I590 nm was proportional to the Hg2+ concentration from 1.3 to 1466 nmol L(-1), with a detection limit of 0.74 nmol L(-1). The regress equation was delta I590 nm = 0.603c + 2.0. Thus, a new resonance scattering (RS) spectroscopy of apta-AuSe was applied to the analysis of trace mercury ion. This simple, rapid, selective and sensitive aptamer AuSe nano-alloy RS assay was applied to the determination of Hg2+ in wastewater, with satisfactory results.

  6. Recovery of high purity precious metals from printed circuit boards.

    Science.gov (United States)

    Park, Young Jun; Fray, Derek J

    2009-05-30

    Waste printed circuit boards (WPCB) have an inherent value because of the precious metal content. For an effective recycling of WPCB, it is essential to recover the precious metals. This paper reports a promising method to recover the precious metals. Aqua regia was used as a leachant and the ratio between metals and leachant was fixed at 1/20 (g/ml). Silver is relatively stable so the amount of about 98 wt.% of the input was recovered without an additional treatment. Palladium formed a red precipitate during dissolution, which were consisted of Pd(NH(4))(2)Cl(6). The amount precipitated was 93 wt.% of the input palladium. A liquid-liquid extraction with toluene was used to extract gold selectively. Also, dodecanethiol and sodium borohydride solution were added to make gold nanoparticles. Gold of about 97 wt.% of the input was recovered as nanoparticles which was identified with a high-resolution transmission electron microscopy through selected area electron diffraction and nearest-neighbor lattice spacing.

  7. Dispersed-nanoparticle loading synthesis for monodisperse Au-titania composite particles and their crystallization for highly active UV and visible photocatalysts.

    Science.gov (United States)

    Sakamoto, Takeshi; Nagao, Daisuke; Noba, Masahiro; Ishii, Haruyuki; Konno, Mikio

    2014-06-24

    Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.

  8. Synthesis of 2-aminocyclopent-1-ene-1-carbodithioic acid (ACA Capped Silver nanoparticles, Characterisation and Fluorescence application

    Directory of Open Access Journals (Sweden)

    M. Padma

    2015-02-01

    Full Text Available The present work deals with the formation, morphology and photophysical activity of the 2-aminocyclopent-1- ene-1-carbodithioic acid (ACA Capped Silver nanoparticles via chemical reduction method. The method utilizes a simple chemical reaction of silver idodide and sodium borohydride. The advantages of this method are ease of preparation, convenience in use and especially, that the obtained silver nano particles are uniform in their shapes and sizes. This is important for fluorescence & bio-evolution measurements. Furthermore, UVvisible (UV-vis spectroscopy is employed to monitor the formation process of the nano particles and to determine the optimum conditions for the preparation of stable and highly fluorescence-active silver colloids. Specifically, we observed changes in the shapes of the silver nano particles during the formation. This may be helpful in understanding the growth of the nano particles and creates a new dimension in controlling the shapes of the nano particles.SEM, TEM and XRD studies are carried out. The suitability of ACA capped Ag-NPs as Biomarkers is also Tested by Fluorescence study.

  9. Chemical reduction synthesis and ac field effect of iron based core-shell magnetic nanoparticles

    Science.gov (United States)

    Balakrishnan, Srinivasan; Bonder, Michael J.; Hadjipanayis, George C.

    2009-12-01

    High magnetization nanoparticles coated with a biocompatible polymer have attracted considerable interest in recent times as potential materials for biomedical applications associated with targeted drug delivery, detection and the treatment of cancer. This paper considers the use of sodium borohydride reduction of metal salts to form Fe based nanoparticles coated with carboxyl terminated polyethylene glycol (cPEG). By mixing the reactants in a Y-junction, the synthesis produces uniform nanoparticles in the size range 10-20 nm with a core-shell structure. The particles are subsequently coated with a 1-3 nm thick layer of cPEG. These nanoparticles are soft ferromagnets with Hc = 400 Oe. Exciting these nanoparticles with a 4 Oe, 500 kHz alternating magnetic field leads to particle heating with a maximal increase in the saturation temperature as the particle size is decreased. For the largest particles considered here, the temperature reaches 35 °C with a 10 mg sample mass whilst for the smallest nanoparticles considered the temperature exceeds 40 °C.

  10. Studies on Preparation of Dysprosium - 165 Metallic Macroaggregates for the Treatment of Rheumatoid Arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Kim, Jae Rok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    1994-07-15

    Irradiation of 20 mg of natural Dy(NO{sub 3})3 in a neutron flux of 2 X10{sup 13} n/cm{sup 2} sec for 4 hours gave 5.76 Ci of {sup 165}Dy (specific activity, 610 mCi/mg Dy) with high radionuclidic purity (>99.9%). {sup 165}Dy-MA was prepared in a quantitative yield by reacting the aqueous solution of {sup 165}Dy(NO{sub 3})3 with sodium borohydride solution in 0.2N NaOH. Coulter particle analyzer exhibited mean particle size of 2.6 mum (range 1 approx 6 mum). Even though the {sup 165}Dy-MA suspension in saline was stored at 37 .deg. C for 24 hours of autoclaved at 121 .deg. C for 30 minutes, there was no significant change in particle size and leakage problem indicating the prepared {sup 165}Dy-MA is sufficiently stable. In-vivo retention studies were carried out by administering {sup 165}Dy-MA into the knee joint space of normal rabbits. Gamma camera analysis showed high retention in joint space of normal rabbits. Gamma camera analysis showed high retention in joining space even at 24 hours after administration (>99.9%) The ease with which the{sup 165}Dy-MA can be made in the narrow size range and their high in vitro and vivo stability make them attractive agents for radiation synovectomy.

  11. Microwave combustion and sintering without isostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber.

  12. Selective heterogeneous catalytic hydrogenation of ketone (C═O) to alcohol (OH) by magnetite nanoparticles following Langmuir-Hinshelwood kinetic approach.

    Science.gov (United States)

    Shah, Muhammad Tariq; Balouch, Aamna; Rajar, Kausar; Sirajuddin; Brohi, Imdad Ali; Umar, Akrajas Ali

    2015-04-01

    Magnetite nanoparticles were successfully synthesized and effectively employed as heterogeneous catalyst for hydrogenation of ketone moiety to alcohol moiety by NaBH4 under the microwave radiation process. The improvement was achieved in percent recovery of isopropyl alcohol by varying and optimizing reaction time, power of microwave radiations and amount of catalyst. The catalytic study revealed that acetone would be converted into isopropyl alcohol (IPA) with 99.5% yield in short period of reaction time, using 10 μg of magnetite NPs (Fe3O4). It was observed that the catalytic hydrogenation reaction, followed second-order of reaction and the Langmuir-Hinshelwood kinetic mechanism, which elucidated that both reactants get adsorb onto the surface of silica coated magnetite nanocatalyst to react. Consequently, the rate-determining step was the surface reaction of acetone and sodium borohydride. The current study revealed an environment friendly conversion of acetone to IPA on the basis of its fast, efficient, and highly economical method of utilization of microwave irradiation process and easy catalyst recovery.

  13. Polymer-incarcerated gold-palladium nanoclusters with boron on carbon: a mild and efficient catalyst for the sequential aerobic oxidation-Michael addition of 1,3-dicarbonyl compounds to allylic alcohols.

    Science.gov (United States)

    Yoo, Woo-Jin; Miyamura, Hiroyuki; Kobayashi, Shuū

    2011-03-09

    We have developed a polymer-incarcerated bimetallic Au-Pd nanocluster and boron as a catalyst for the sequential oxidation-addition reaction of 1,3-dicarbonyl compounds with allylic alcohols. The desired tandem reaction products were obtained in good to excellent yields under mild conditions with broad substrate scope. In the course of our studies, we discovered that the excess reducing agent, sodium borohydride, reacts with the polymer backbone to generate an immobilized tetravalent boron catalyst for the Michael reaction. In addition, we found bimetallic Au-Pd nanoclusters to be particularly effective for the aerobic oxidation of allylic alcohols under base- and water-free conditions. The ability to conduct the reaction under relatively neutral and anhydrous conditions proved to be key in maintaining good catalyst activity during recovery and reuse of the catalyst. Structural characterization (STEM, EDS, SEM, and N(2) absorption/desorption isotherm) of the newly prepared PI/CB-Au/Pd/B was performed and compared to PI/CB-Au/Pd. We found that while boron was important for the Michael addition reaction, it was found to alter the structural profile of the polymer-carbon black composite material to negatively affect the allylic oxidation reaction.

  14. Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction method.

    Science.gov (United States)

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Zin Wan; Ibrahim, Nor Azowa; Darroudi, Majid

    2010-10-05

    In this study, silver nanoparticles (Ag-NPs) were synthesized using the wet chemical reduction method on the external surface layer of talc mineral as a solid support. Silver nitrate and sodium borohydride were used as the silver precursor and reducing agent in talc. The talc was suspended in aqueous AgNO(3) solution. After the absorption of Ag(+) on the surface, the ions were reduced with NaBH(4). The interlamellar space limits were without many changes (d(s) = 9.34-9.19 A(º)); therefore, Ag-NPs formed on the exterior surface of talc, with d(ave) = 7.60-13.11 nm in diameter. The properties of Ag/talc nanocomposites (Ag/talc-NCs) and the diameters of the Ag-NPs prepared in this way depended on the primary AgNO(3) concentration. The prepared Ag-NPs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared. These Ag/talc-NCs may have potential applications in the chemical and biological industries.

  15. Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction method

    Directory of Open Access Journals (Sweden)

    Kamyar Shameli

    2010-09-01

    Full Text Available Kamyar Shameli1, Mansor Bin Ahmad1, Wan Zin Wan Yunus1, Nor Azowa Ibrahim1, Majid Darroudi21Department of Chemistry, Faculty of Science, 2Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Selangor, MalaysiaAbstract: In this study, silver nanoparticles (Ag-NPs were synthesized using the wet chemical reduction method on the external surface layer of talc mineral as a solid support. Silver nitrate and sodium borohydride were used as the silver precursor and reducing agent in talc. The talc was suspended in aqueous AgNO3 solution. After the absorption of Ag+ on the surface, the ions were reduced with NaBH4. The interlamellar space limits were without many changes (ds = 9.34–9.19 Aº; therefore, Ag-NPs formed on the exterior surface of talc, with dave = 7.60–13.11 nm in diameter. The properties of Ag/talc nanocomposites (Ag/talc-NCs and the diameters of the Ag-NPs prepared in this way depended on the primary AgNO3 concentration. The prepared Ag-NPs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared. These Ag/talc-NCs may have potential applications in the chemical and biological industries.Keywords: nanocomposites, silver nanoparticles, talc, powder X-ray diffraction, scanning electron microscopy

  16. Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra.

    Science.gov (United States)

    Wang, Y W; Hong, Byung Hee; Kim, Kwang S

    2005-04-21

    We introduced a simple chemical method to synthesize semimetal bismuth nanoparticles in N,N-dimethylformamide (DMF) by reducing Bi(3+) with sodium borohydride (NaBH(4)) in the presence of poly(vinylpyrroldone) (PVP) at room temperature. The size and dispersibility of Bi nanoparticles can be easily controlled by changing the synthetic conditions such as the molar ratio of PVP to BiCl(3) and the concentration of BiCl(3). The UV-visible absorption spectra of Bi nanoparticles of different diameters are systematically studied. The surface plasmon peaks broaden with the increasing molar ratio of PVP to BiCl(3) as the size of bismuth nanoparticles decreases. Infrared (IR) spectra of the complexes with different molar ratios of PVP/BiCl(3) show a strong interaction between the carboxyl oxygen (C=O) of PVP and Bi(3+) ion and a weak interaction between the carboxyl oxygen (C=O) of PVP and the Bi atom in nanoparticles. This indicates that PVP serves as an effective capping ligand, which prevents the nanoparticles from aggregation.

  17. Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeng, Fanny; Denneulin, Aurore [Université Grenoble Alpes, LGP2 (France); Neuman, Charles [Poly-Ink (France); Bras, Julien, E-mail: julien.bras@grenoble-inp.fr [Université Grenoble Alpes, LGP2 (France)

    2015-06-15

    Synthesis of silver nanoparticles using cellulose nanocrystals (CNC) has been found to be a great method for producing metallic particles in a sustainable way. In this work, we propose to evaluate the influence of the charge density of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-oxidized CNC on the morphology and the stability of synthetized silver nanoparticles. Silver nanoparticles were obtained by sol–gel reaction using borohydride reduction, and charge density of TEMPO-oxidized CNC was tuned by an amine grafting. The grafting was performed at room temperature and neutral pH. Crystallinity and morphology were kept intact during the peptidic reaction on CNC allowing knowing the exact impact of the charge density. Charge density has been found to have a strong impact on shape, organization, and suspension stability of resulting silver particles. Results show an easy way to tune the charge density of CNC and propose a sustainable way to control the morphology and stability of silver nanoparticles in aqueous suspension.

  18. Facile route for preparation of silver nanoparticle-coated precipitated silica

    Science.gov (United States)

    Quang, Dang Viet; Sarawade, Pradip B.; Hilonga, Askwar; Park, Sung Dae; Kim, Jong-Kil; Kim, Hee Taik

    2011-02-01

    In this research, a facile route was used to prepare silver nanoparticle-coated precipitated silica using sodium silicate, a cheap precursor. Precipitated silica (PS) was synthesized by dropping 8% H2SO4 into a mixed solution of sodium silicate 24% (Na2O·3.4SiO2) and NaCl 4%; under constant stirring. The precipitated silica was then modified by simultaneous addition of 3-aminopropyltriethoxysilane (3-APTES) and 8% H2SO4. The resulting material was aged at 80 °C for 1 h to produce amino-functionalized precipitated silica (AFPS). Silver nanoparticle-coated precipitated silica (Ag-NPS) was synthesized by adding silver nitrate (AgNO3). The synthesis procedure also involved mixing for 2 h and dropping 0.05 M sodium borohydride (NaBH4). The final products, namely, PS, AFPS, and Ag-NPS were characterized using BET analyzer, FE-SEM, TEM and XRD. Silver nanoparticles with an average size ranging from 18 to 25 nm were found mostly coated on the exterior layer of the precipitated silica. The synthesis method reported in this work is facile and might be used for large-scale industrial production of inexpensive Ag-NPS.

  19. Atomic layer deposited cobalt oxide: An efficient catalyst for NaBH{sub 4} hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Dip K.; Manna, Joydev; Dhara, Arpan; Sharma, Pratibha; Sarkar, Shaibal K., E-mail: shaibal.sarkar@iitb.ac.in [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-01-15

    Thin films of cobalt oxide are deposited by atomic layer deposition using dicobalt octacarbonyl [Co{sub 2}(CO){sub 8}] and ozone (O{sub 3}) at 50 °C on microscope glass substrates and polished Si(111) wafers. Self-saturated growth mechanism is verified by x-ray reflectivity measurements. As-deposited films consist of both the crystalline phases; CoO and Co{sub 3}O{sub 4} that gets converted to pure cubic-Co{sub 3}O{sub 4} phase upon annealing at 500 °C under ambient condition. Elemental composition and uniformity of the films is examined by x-ray photoelectron spectroscopy and secondary ion-mass spectroscopy. Both as-deposited and the annealed films have been successfully tested as a catalyst for hydrogen evolution from sodium borohydride hydrolysis. The activation energy of the hydrolysis reaction in the presence of the as-grown catalyst is found to be ca. 38 kJ mol{sup −1}. Further implementation of multiwalled carbon nanotube, as a scaffold layer, improves the hydrogen generation rate by providing higher surface area of the deposited catalyst.

  20. Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity.

    Science.gov (United States)

    Yan, Wei; Chen, Chang; Wang, Ling; Zhang, Dan; Li, Ai-Jun; Yao, Zheng; Shi, Li-Yi

    2016-04-20

    The emphasis of science and technology shifts toward environmentally friendly and sustainable resources and processes. Herein, we report a facile, one-pot and green synthesis of biomaterial-supported gold nanoparticles (AuNPs) with superior catalytic activity. Cellulose nanocrystal (CNC)-supported AuNPs were prepared by heating the aqueous mixture of HAuCl4, CNCs and polyethylene glycol, avoiding toxic chemicals, extreme condition and complicated procedure. The resultant CNC-supported AuNPs exhibited catalytic activities for the reduction of 4-nitrophenol by sodium borohydride. The maximum apparent rate constant reached 1.47×10(-2)s(-1), and the turnover frequency reached 641h(-1). The superior catalytic performance can be ascribed to the large amount of highly dispersed AuNPs with few nanometers in size which are loaded on CNCs. About 90% of the AuNPs are smaller than 10nm, and nearly 60% of the AuNPs are smaller than 5nm. The synthesis is eco-friendly, facile and low-cost, thus has great potential for industrial and medical applications.

  1. Shape tailored green synthesis and catalytic properties of gold nanocrystals.

    Science.gov (United States)

    Rajan, Anish; MeenaKumari, M; Philip, Daizy

    2014-01-24

    The use of environmentally benign procedures is highly desirable for the synthesis of nanoparticles. Here we report a simple, versatile, economic, ecofriendly and reproducible green method for the size-tunable synthesis of stable and crystalline gold nanoparticles of varied shape using aqueous extract of Garcinia Combogia fruit. The predominant anisotropic nature in the morphology of synthesized particles at lower quantities of extract gradually shifted to spherical particles with larger quantity of extract and increase of temperature. The onset of reduction, the time-evolution of the Surface Plasmon Resonance (SPR) and the catalytic activity are studied using UV-Visible spectroscopy. The Selected Area Diffraction (SAED) pattern, the lattice fringes in the High Resolution Transmission Electron Microscopic (HRTEM) image and the X-ray Diffraction (XRD) pattern clearly show the pure crystalline nature of the synthesized gold nanoparticles. The role of carboxyl group present in Garcinia Combogia fruit extract in the reduction of chloroaurate ions is established using Fourier Transform Infrared (FTIR) spectra. The size dependent catalytic activity of the green synthesized gold nanoparticles on the reduction of 4-Nitrophenol to 4-Aminophenol using sodium borohydride is studied and reported for the first time. The first order kinetics is fitted and rate constants are calculated. Catalytically active green synthesized gold nanoparticles with controllable size and shape presents an advanced step in future biomedical and chemical applications.

  2. Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity.

    Science.gov (United States)

    Sen, Ipsita K; Maity, Kousik; Islam, Syed S

    2013-01-16

    Gold nanoparticles were synthesized by reducing chloroauric acid with a glucan, isolated from an edible mushroom Pleurotus florida, cultivar Assam Florida. Here, glucan acts as reducing as well as stabilizing agent. The synthesized gold nanoparticles were characterized by UV-visible spectroscopy, HR-TEM, XRD, SEM, and FT-IR analysis. The results indicated that the size distribution of gold nanoparticles (Au NPs) changed with the change in concentration of chloroauric acid (HAuCl(4)). The resulting Au NPs-glucan bioconjugates function as an efficient heterogeneous catalyst in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP), in the presence of sodium borohydride. The reduction of 4-nitrophenol with Au NPs-glucan bioconjugates followed pseudo-first-order kinetics. The effect of particle size and gold loading on reduction rate of 4-NP was studied with Au NPs-glucan bioconjugates prepared with different concentrations of HAuCl(4). The synthesis of catalytically active Au NPs using a pure mushroom polysaccharide of known structure is reported for the first time.

  3. Catalytic Reductive Degradation of Methyl Orange Using Air Resilient Copper Nanostructures

    Directory of Open Access Journals (Sweden)

    Razium Ali Soomro

    2015-01-01

    Full Text Available The study describes the application of oxidation resistant copper nanostructures as an efficient heterogeneous catalyst for the treatment of organic dye containing waste waters. Copper nanostructures were synthesized in an aqueous environment using modified surfactant assisted chemical reduction route. The synthesized nanostructures have been characterized by UV-Vis, Fourier transform infrared spectroscopy FTIR spectroscopy, Atomic force microscopy (AFM, Scanning Electron Microscopy (SEM, and X-ray diffractometry (XRD. These surfactant capped Cu nanostructures have been used as a heterogeneous catalyst for the comparative reductive degradation of methyl orange (MO in the presence of sodium borohydride (NaBH4 used as a potential reductant. Copper nanoparticles (Cu NPs were found to be more efficient compared to copper nanorods (Cu NRds with the degradation reaction obeying pseudofirst order reaction kinetics. Shape dependent catalytic efficiency was further evaluated from activation energy (EA of reductive degradation reaction. The more efficient Cu NPs were further employed for reductive degradation of real waste water samples containing dyes collected from the drain of different local textile industries situated in Hyderabad region, Pakistan.

  4. Gold nanostructures using tobacco mosaic viruses for optical metamaterials

    Science.gov (United States)

    Kobayashi, Mime; Yamashita, Ichiro; Uraoka, Yukiharu; Shiba, Kiyotaka; Tomita, Satoshi

    2011-05-01

    We have succeeded in aligning gold nanoparticles (Au NPs) in three-dimensions using tobacco mosaic virus (TMV) in order to realize new optical properties. TMV is a tube-shaped plant virus about 300 nm in length with an outer- and inner-diameter of 18 nm and 4 nm. We genetically fused material-binding peptides that can promote metal crystallization, namely a gold-binding peptide (GBP) and a titanium-binding peptide (TBP), to the outer-surface of TMV. By reducing potassium chloroaurate with sodium borohydride in the presence of the engineered viruses in 5% acetic acid solution, Au NPs were deposited on the outer-surface of the viruses. Using TBP-fused TMV, NPs of 5 nm were obtained, with a standard deviation smaller than those deposited on wild-type TMV. The diameter of the NPs on GBP-fused TMV was 10 nm. These results indicate that genetically-modified TMVs are promising templates for the construction of optical metamaterials.

  5. Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol

    Science.gov (United States)

    Edison, T. Jebakumar Immanuel; Sethuraman, M. G.

    2013-03-01

    A robust synthesis of silver nanoparticles (AgNPs) using the peel extract of Punica granatum is reported in this article. The formation of AgNPs was confirmed by the appearance of brownish yellow color and the Surface Plasmon Resonance (SPR) peak at 432 nm. The biogenic AgNPs were found to have the size approximately 30 nm with distorted spherical shape. The high negative zeta potential values of AgNPs revealed their high stability which could be attributed to the capping of AgNPs by the phytoconstituents of the Punica granatum peel. The biogenic AgNPs were also found to function as an effective green catalyst in the reduction of anthropogenic pollutant viz., 4-nitrophenol (4-NP) by solid sodium borohydride, which was evident from the instantaneous color change of bright yellow (400 nm) to colorless (294 nm) solution, after the addition of AgNPs. The catalytic action of biogenic AgNPs in the reduction of 4-NP could be explained on the basis of Langmuir-Hinshelwood model.

  6. Preparation of Ag/SiO2 nanocomposite and assessment of its antifungal effect on soybean plant (a Vietnamese species DT-26)

    Science.gov (United States)

    Chau Nguyen, Hoai; Thuy Nguyen, Thi; Hien Dao, Trong; Buu Ngo, Quoc; Pham, Hoang Long; Nguyen, Thi Bich Ngoc

    2016-12-01

    Soybean crop losses due to fungal diseases are considerable and directly depend on the severity of the disease. The objective of this study was to assess antifungal activity of silver/silica (Ag/SiO2) nanocomposite against crop pathogenic fungi (Fusarium oxysporium and Rhizoctonia solani) in soybean farming. Firstly, silica particles with a size ranging from 20 to 30 nm were modified with 3-aminopropyl triethoxysilane (APTES) for 2 h. Then these amino acid - functionalized silica particles were exposed to silver ion solution followed by reduction of silver ions with sodium borohydride to form Ag/SiO2 nanocomposite. The formation of the linkage between APTES and silica particles was confirmed by Fourier transform infrared (FTIR) spectroscopy. The surface plasmon absorption maximum at 400 nm confirmed the nano essence of the silver particles on silica particles. For the seed coating, bentonite from Lam Dong deposit, Vietnam, was used as an encapsulation substance, while carboxymethyl cellulose (CMC) was used as a binding agent. The assessment of fungicidal activity of the Ag/SiO2 nanocomposite produced showed that this product is effective in inhibition of the pathogenic fungi in soybean plant.

  7. Micromotor-based energy generation.

    Science.gov (United States)

    Singh, Virendra V; Soto, Fernando; Kaufmann, Kevin; Wang, Joseph

    2015-06-01

    A micromotor-based strategy for energy generation, utilizing the conversion of liquid-phase hydrogen to usable hydrogen gas (H2), is described. The new motion-based H2-generation concept relies on the movement of Pt-black/Ti Janus microparticle motors in a solution of sodium borohydride (NaBH4) fuel. This is the first report of using NaBH4 for powering micromotors. The autonomous motion of these catalytic micromotors, as well as their bubble generation, leads to enhanced mixing and transport of NaBH4 towards the Pt-black catalytic surface (compared to static microparticles or films), and hence to a substantially faster rate of H2 production. The practical utility of these micromotors is illustrated by powering a hydrogen-oxygen fuel cell car by an on-board motion-based hydrogen and oxygen generation. The new micromotor approach paves the way for the development of efficient on-site energy generation for powering external devices or meeting growing demands on the energy grid.

  8. Synthesis of the d,I-HM-PAO and formulation of nucleo-equipment for the obtention of {sup 99m} Tc-(d,I)-HM-PAO; Sintesis del d,I-HM-PAO y formulacion de nucleo-equipos para la obtencion de {sup 99m} Tc-(d,I)-HM-PAO

    Energy Technology Data Exchange (ETDEWEB)

    Lezama C, J.; Ferro F, G.; Alcazar A, P

    1991-09-15

    Most brain imaging radiopharmaceuticals are conventional hydrophilic compounds that are excluded from entering the normal brain by an intact blood-brain barrier (BBB). Under pathologic conditions, the barrier is disrupted and radiotracer concentrates in the leisure for positive identification. {sup 99m} Tc- hexa methyl propylene amine oxime ({sup 99} {sup m} Tc-HM-PAO) is a newer-type lipophilic agent that enter the normal brain through an intact BBB. Studies with this agent offer the promise of measuring cerebral perfusion in the normal and diseased brain. In this paper we present the synthesis and Tc-99m labelling of d,I-HM-PAO. The synthesis of the ligand was carried out by condensation of two molecular equivalents of butanedione monoxime with one molecular equivalent of 1,3 propanediamine provided a bis imine intermediate, which was reduced with sodium borohydride to get the meso and d,I diastereoisomers of HM-PAO. Separation of these was achieved by fractional crystallization. {sup 99m} Tc-(d,I)HM-PAO was obtained by stannous ion reduction of Mo-99/Tc-99m generator eluate in the presence of the ligand. Complex radiochemical purity was determined by instant thin layer chromatography and paper chromatography. Finally, we obtained {sup 99m} Tc-(d,I)HM-PAO with a high radiochemical yield, in excess of 90%. However, for subsequent clinical studies the preparation has to be done a few minutes before application because our product has a low stability. (Author)

  9. Tin Content Determination in Canned Fruits and Vegetables by Hydride Generation Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    Sanda Rončević

    2012-01-01

    Full Text Available Tin content in samples of canned fruits and vegetables was determined by hydride generation inductively coupled plasma atomic emission spectrometry (HG-ICP-OES, and it was compared with results obtained by standard method of flame atomic absorption spectrometry (AAS. Selected tin emission lines intensity was measured in prepared samples after addition of tartaric acid and followed by hydride generation with sodium borohydride solution. The most favorable line at 189.991 nm showed the best detection limit (1.9 μg L−1 and limit of quantification (6.4 μg kg−1. Good linearity and sensitivity were established from time resolved analysis and calibration tests. Analytical accuracy of 98–102% was obtained by recovery study of spiked samples. Method of standard addition was applied for tin determination in samples from fully protected tinplate. Tin presence at low-concentration range was successfully determined. It was shown that tenth times less concentrations of Sn were present in protected cans than in nonprotected or partially protected tinplate.

  10. Facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates.

    Science.gov (United States)

    Chen, Qiwen; Zhang, Luyan; Chen, Gang

    2012-01-03

    A novel graphene-copper nanoparticle composite was prepared by the in situ chemical reduction of a mixture containing graphene oxide and copper(II) ions using potassium borohydride as a reductant. It was mixed with paraffin oil and packed into one end of a fused capillary to fabricate microdisc electrodes for sensing carbohydrates. The morphology and structure of the graphene-copper nanoparticle composite were investigated by scanning electron microscopy, X-ray diffraction, and Fourier transform-infrared spectroscopy. The results indicated that copper nanoparticles with an average diameter of 20.8 nm were successfully deposited on graphene nanosheets to form a well interconnected hybrid network. The analytical performance of these unique graphene-copper nanoparticle composite paste electrodes was demonstrated by sensing five carbohydrates in combination with cyclic voltammetry and capillary electrophoresis (CE). The advantages of the composite detectors include higher sensitivity, satisfactory stability, surface renewability, bulk modification, and low expense of fabrication. They should find applications in microchip CE, flowing-injection analysis, and other microfluidic analysis systems.

  11. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.

    Science.gov (United States)

    Joshi, Mahesh Kumar; Pant, Hem Raj; Tiwari, Arjun Prasad; Maharjan, Bikendra; Liao, Nina; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-01-20

    In this study, cellulose based scaffolds were produced by electrospinning of cellulose acetate (CA) solution followed by its saponification with NaOH/ethanol system for 24h. The resulting nonwoven cellulose mat was treated with sodium borohydride (SB) solution. In situ hydrolysis of SB solution into the pores of the membrane produced hydrogen gas resulting a three-dimensional (3D) cellulose sponge. SEM images demonstrated an open porous and loosely packed fibrous mesh compared to the tightly packed single-layered structure of the conventional electrospun membrane. 3D cellulose sponge showed admirable ability to nucleate bioactive calcium phosphate (Ca-P) crystals in simulated body fluid (SBF) solution. SEM-EDX and X-ray diffraction studies revealed that the minerals deposited on the nanofibers have the nonstoichiometric composition similar to that of hydroxyapatite, the mineralized component of the bone. 3D cellulose sponge exhibited the better cell infiltration, spreading and proliferation compared to 2D cellulose mat. Therefore, a facile fabrication of 3D cellulose sponge with improved mineralization represents an innovative strategy for the bone tissue engineering applications.

  12. Conjunctive effect of CMC-zero-valent iron nanoparticles and FYM in the remediation of chromium-contaminated soils

    Science.gov (United States)

    Madhavi, Vemula; Prasad, Tollamadugu Naga Venkata Krishna Vara; Reddy, Balam Ravindra; Reddy, Ambavaram Vijay Bhaskar; Gajulapalle, Madhavi

    2014-04-01

    Chromium is an important industrial metal used in various products and processes but at the same time causing lethal environmental hazards. Remediation of Cr-contaminated soils poses both technological and economic challenges, as conventional methods are often too expensive and difficult to operate. Zero-valent iron particles at nanoscale are proposed to be one of the important reductants of Cr(VI), transforming the same into nontoxic Cr(III). In the present investigation, soils contaminated with Cr(VI) are allowed to react with the various loadings of zero-valent iron nanoparticles (Fe0) for a reaction period of 24 h. Fe0 nanoparticles were synthesized by the reduction of ferrous sulfate in the presence of sodium borohydride and stabilized with carboxy methyl cellulose and were characterized by scanning electron microscopy, energy dispersion spectroscopy, X-ray diffraction, UV-vis spectrophotometer, Fourier transform-infra red spectrophotometer, Raman spectroscopy, dynamic light scattering technique and zeta potential. Further, this work demonstrates the potential utilization of farm yard manure (FYM) and Fe0 nanoparticles in combination and individually for the effective remediation of Cr(VI)-contaminated soils. An increase in the reduction of Cr(VI) from 60 to 80 % was recorded with the increase in the loading of Fe0 nanoparticles from 0.1 to 0.3 mg/100 g individually and in combination with FYM ranging from 50 to 100 mg/100 g soil.

  13. Reactive immunization suppresses advanced glycation and mitigates diabetic nephropathy.

    Science.gov (United States)

    Shcheglova, Tatiana; Makker, Sudesh; Tramontano, Alfonso

    2009-05-01

    Agents that inhibit glycation end products by reducing the carbonyl load from glycation and glycoxidation are an emerging pharmacologic approach to treat complications of diabetes. We previously demonstrated that antibodies generated to the glycoprotein keyhole limpet hemocyanin (KLH) can cross-link with reactive carbonyl residues on protein conjugates. Here, we immunized streptozotocin-induced diabetic rats with KLH to assess the capacity of the elicited antibodies to intercept carbonyl residues on glycated proteins and to mitigate glycation-related pathology. Compared with diabetic rats immunized with adjuvant alone, KLH-immunized diabetic rats had decreased levels of glycated peptides in sera and demonstrated a reduction in albuminuria, proteinuria, deposition of glycation end products in the kidney, and histologic damage. In vitro, low molecular weight glycated peptides from rat serum reacted with anti-KLH antibodies at a faster rate than normal IgG and selectively modified the lambda chains. The reaction products contained peptide sequences from type I collagen alpha chain, albumin, and LDL receptor-related protein. These adduction reactions were inhibited by free KLH and by reduction of glycated peptides with borohydride. In summary, these results suggest that inherent reactivity of Ig light chains provides a natural mechanism for the removal of cytotoxic glycation products. This reactivity can be augmented by glycoprotein-specific reactive immunization, a potential biopharmaceutical approach to glycation-related pathology.

  14. Electrochemical characterization of platinum-ruthenium nanoparticles prepared by water-in-oil microemulsion

    Energy Technology Data Exchange (ETDEWEB)

    Solla-Gullon, J.; Vidal-Iglesias, F.J.; Montiel, V.; Aldaz, A. [Universidad de Alicante (Spain). Instituto Universitario de Electroquimica, Departamento de Quimica-Fisica

    2004-11-01

    The synthesis, physical characterization, decontamination and some electrocatalytic properties of PtRu nanoparticles prepared using the microemulsion method are reported. The nanoparticles are synthesized by reduction with sodium borohydride of H{sub 2}PtCl{sub 6} and RuCl{sub 3} in a water-in-oil microemulsion of water/polyethylenglycol-dodecylether (BRIJ(Registered Trademark) 30)/n-heptane. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive analysis by X-rays (EDAX) experiments were carried out to characterize the single and bimetallic nanoparticles obtained. Cyclic voltammograms (CV) of clean nanoparticles were obtained after a controlled decontamination procedure of their surfaces. CO adsorption-oxidation and methanol electrooxidation were tested as test reactions to check the electrocatalytic behaviour of the bimetallic nanoparticles. Pt{sub 80}Ru{sub 20} (nominal atomic composition) nanoparticles are the best electrocatalyst for both CO{sub ad} and methanol oxidation. All these results show that the microemulsion method can be used to produce bimetallic nanoparticles in a very easy way. The method can be very easily scaled-up for industrial use. (author)

  15. Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices.

    Science.gov (United States)

    Llorens, Amparo; Lloret, Elsa; Picouet, Pierre; Fernandez, Avelina

    2012-08-17

    Cellulose/copper composites with antifungal properties have been synthesized by physical/chemical methods. Physical treatments by heat or by a combination of heat and UV radiation provided composites with metallic copper and excellent interfacial adhesion; in contrast, chemical reduction with borohydride generated small although partially aggregated copper oxide nanoparticles. Copper micro/nano-particles and copper ions (Cu(2+)) were released from the cellulose matrix at an adequate rate to achieve a strong antimicrobial activity against Saccharomyces cerevisiae in in vitro experiments. Moreover, the copper oxide composites showed an excellent antifungal activity in pineapple and melon juice, reducing about 4 log cycles the loads of spoilage-related yeasts and moulds. The metallic copper composites reduced in 4 log cycles the load of yeasts and moulds in pineapple juice, although their antifungal activity was weaker in contact with melon juice. Copper loaded absorbent materials could be selectively implemented during the shelf-life of minimally processed fruits to reduce the number of spoilage-related microorganisms in the drip.

  16. Ku80 interaction with apurinic/apyrimidinic sites depends on the structure of DNA ends

    Directory of Open Access Journals (Sweden)

    Kosova A. A.

    2014-01-01

    Full Text Available Aim. The identification of a protein from human cell extract which specifically interacts with the apurinic/apyrimidinic (AP site in the partial DNA duplex containing 5'and 3'-dangling ends (DDE-AP DNA and mimicking clustered DNA damage. Methods. The Schiff base-dependent cross-linking of a protein to AP DNA (borohydride trapping, MALDI-TOF-MS, chromatography, and gel electrophoresis. Results. A human cell extract protein which forms a major covalent adduct with the AP DNA duplex with dangling ends was identified as the Ku80 subunit of Ku antigen by peptide mass mapping based on MALDI-TOF-MS data. The Ku antigen purified from the HeLa cell extract was shown to form the covalent adducts with the same mobility as observed in cell extracts. Conclusions. The Ku80 subunit of Ku antigen can specifically interact with AP DNA forming the Schiff base-mediated adducts which electrophoretic mobility depends on the structure of DNA ends. The difference in electrophoretic mobility can be caused by the cross-linking of AP DNA to distinct target amino acids that appears to reflect unequal positioning of AP DNAs in the complex with Ku antigen.

  17. Investigation of oxygen reduction and methanol oxidation reaction activity of PtAu nano-alloy on surface modified porous hybrid nanocarbon supports

    Science.gov (United States)

    Parambath Vinayan, Bhaghavathi; Nagar, Rupali; Ramaprabhu, Sundara

    2016-09-01

    We investigate the electrocatalytic activity of PtAu alloy nanoparticles supported on various chemically modified carbon morphologies towards oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). The surface-modification of graphene nanosheets (f-G), multi-walled carbon nanotubes (f-MWNTs) and (graphene nanosheets-carbon nanotubes) hybrid support (f-G-MWNTs) were carried out by soft functionalization method using a cationic polyelectrolyte poly-(diallyldimethyl ammonium chloride). The Pt and PtAu alloy nanoparticles were dispersed over chemically modified carbon supports by sodium-borohydride assisted modified polyol reduction method. The electrochemical performance of all electrocatalysts were studied by half- and full-cell proton exchange membrane fuel cell (PEMFC) measurements and PtAu/f-G-MWNTs catalyst comparatively yielded the best catalytic performance. PEMFC full cell measurements of PtAu/f-G-MWNTs cathode electrocatalyst yield a maximum power density of 319 mW cm-2 at 60 °C without any back pressure,which is 2.1 times higher than that of cathode electrocatalyst Pt on graphene support. The high ORR and MOR activity of PtAu/f-G-MWNTs electrocatalyst is due to the alloying effect and inherent beneficial properties of porous hybrid nanocarbon support.

  18. Thematic outlook: the technical outlook for the fuel cell research network (PACO). September 23, 2003 update no. 16; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 23 septembre 2003, no. 16

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Summaries of several recent articles and patents are gathered here. They deal with fuel cells and hydrogen production and storage. Their different titles are given below: 1)the behaviour of the electrode potential in direct hydrazine fuels 2)a device of desalination fed with a fuel cell 3)experiment in the field of residential fuel cell systems at ECN (Energy Research Center) 4)'design of a divided feeding' for SOFC with an internal reforming system 5)water management and thermal management in a fuel cell vehicle fed with hydrogen extracted from sodium borohydride (NaBH{sub 4}) 6)a mathematical model of propulsion systems by PEMFC for mobile applications 7)assessment of the feasibility of a DMFC containing an alkaline membrane 8)semi-empirical assessment model of the performance of a DMFC, first part: development of the model and validation 9)PEMFC and the challenge of CO 10)materials for SOFC 11)natural gas and LPG desulfurization for fuel cells reformers 12)heat exchangers for reforming techniques 13)desulfurization of a fuel for fuel cell system 14)hydrogen production from solar thermal reactor 15)hydrogen physico-chemical storage: nano-structured storage materials having modified covalent bonds sp2. The references of these articles and patents are detailed. (O.M.)

  19. Design of Cobalt Nanoparticles with Tailored Structural and Morphological Properties via O/W and W/O Microemulsions and Their Deposition onto Silica

    Directory of Open Access Journals (Sweden)

    Gabriella Di Carlo

    2015-03-01

    Full Text Available Cobalt nanostructures with different size and morphology, i.e., spherical nanoparticles, nanorods, and particles arranged into elongated structures, were prepared using micelles and microemulsions as confined reaction media. The syntheses were carried out using three types of systems: aqueous surfactant solutions, oil-in water (O/W, and water-in-oil (W/O microemulsions. The influence of the surfactant and the precipitating agent used for synthesis was also investigated. For this purpose, cobalt nanostructures were prepared using different non-ionic surfactants, namely Synperonic® 10/6, Pluronic® P123 and a mixture of SPAN 20–TWEEN 80. Three different precipitating agents were used: sodium borohydride, sodium hydroxide, and oxalic acid. Our findings revealed that by changing the type of reaction media as well as the precipitating agent it is possible to modify the shape and size of the cobalt nanostructures. Moreover, the use of O/W microemulsion generates better results in terms of colloidal stability and uniformity of particle size with respect to W/O microemulsion. The different cobalt nanostructures were supported on commercial and mesoporous silica; transmission electron microscopy (TEM images showed that after deposition the Co nanocrystals remain well dispersed on the silica supports. This behavior suggests their great potential in catalytic applications.

  20. Template-Assisted Synthesis and Characterization of Passivated Nickel Nanoparticles

    Directory of Open Access Journals (Sweden)

    Al-Omari IA

    2010-01-01

    Full Text Available Abstract Potential applications of nickel nanoparticles demand the synthesis of self-protected nickel nanoparticles by different synthesis techniques. A novel and simple technique for the synthesis of self-protected nickel nanoparticles is realized by the inter-matrix synthesis of nickel nanoparticles by cation exchange reduction in two types of resins. Two different polymer templates namely strongly acidic cation exchange resins and weakly acidic cation exchange resins provided with cation exchange sites which can anchor metal cations by the ion exchange process are used. The nickel ions which are held at the cation exchange sites by ion fixation can be subsequently reduced to metal nanoparticles by using sodium borohydride as the reducing agent. The composites are cycled repeating the loading reduction cycle involved in the synthesis procedure. X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron microscopy, Energy Dispersive Spectrum, and Inductively Coupled Plasma Analysis are effectively utilized to investigate the different structural characteristics of the nanocomposites. The hysteresis loop parameters namely saturation magnetization and coercivity are measured using Vibrating Sample Magnetometer. The thermomagnetization study is also conducted to evaluate the Curie temperature values of the composites. The effect of cycling on the structural and magnetic characteristics of the two composites are dealt in detail. A comparison between the different characteristics of the two nanocomposites is also provided.

  1. Tunable synthesis of SiO2-encapsulated zero-valent iron nanoparticles for degradation of organic dyes.

    Science.gov (United States)

    Mao, Zhou; Wu, Qingzhi; Wang, Min; Yang, Yushi; Long, Jia; Chen, Xiaohui

    2014-01-01

    A series of nanocomposites consisting of zero-valent iron nanoparticles (ZVI NPs) encapsulated in SiO2 microspheres were successfully synthesized through a successive two-step method, i.e., the wet chemical reduction by borohydride followed by a modified Stöber method. The as-synthesized nanocomposites were characterized using X-ray diffraction, field emission scanning electron microscopy, vibrating sample magnetometer, and inductively coupled plasma-atomic emission spectrometer. The catalytic performance of SiO2-encapsulated ZVI nanocomposites for the degradation of organic dyes was investigated using methylene blue (MB) as the model dye in the presence of H2O2. The results showed that the degradation efficiency and apparent rate constant of the degradation reaction were significantly enhanced with increased ZVI NPs encapsulated in SiO2 microspheres, whereas the dosage of H2O2 remarkably promoted degradation rate without affecting degradation efficiency. The content-dependent magnetic property ensured the excellent magnetic separation of degradation products under an external magnet. This strategy for the synthesis of SiO2-encapsulated ZVI NPs nanocomposites was low cost and easy to scale-up for industrial production, thereby enabling promising applications in environmental remediation.

  2. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.

    Science.gov (United States)

    Guo, Huizhang; Chen, Yuanzhi; Chen, Xiaozhen; Wen, Ruitao; Yue, Guang-Hui; Peng, Dong-Liang

    2011-05-13

    Magnetically recyclable Ag-Ni core-shell nanoparticles have been fabricated via a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as a surfactant. As characterized by transmission electron microscopy (TEM), the as-synthesized Ag-Ni core-shell nanoparticles exhibit a very narrow size distribution with a typical size of 14.9 ± 1.2 nm and a tunable shell thickness. UV-vis absorption spectroscopy study shows that the formation of a Ni shell on Ag core can damp the surface plasmon resonance (SPR) of the Ag core and lead to a red-shifted SPR absorption peak. Magnetic measurement indicates that all the as-synthesized Ag-Ni core-shell nanoparticles are superparamagnetic at room temperature, and their blocking temperatures can be controlled by modulating the shell thickness. The as-synthesized Ag-Ni core-shell nanoparticles exhibit excellent catalytic properties for the generation of H(2) from dehydrogenation of sodium borohydride in aqueous solutions. The hydrogen generation rate of Ag-Ni core-shell nanoparticles is found to be much higher than that of Ag and Ni nanoparticles of a similar size, and the calculated activation energy for hydrogen generation is lower than that of many bimetallic catalysts. The strategy employed here can also be extended to other noble-magnetic metal systems.

  3. Silver nanoparticles of variable morphology synthesized in aqueous foams as novel templates

    Indian Academy of Sciences (India)

    Saikat Mandal; Sujatha K Arumugam; Renu Pasricha; Murali Sastry

    2005-08-01

    In this paper, we describe the synthesis of silver nanocrystals within aqueous foams as a template. More specifically, we show that aqueous Ag+ ions may be electrostatically complexed with the anionic surfactants aerosol OT (sodium bis-2-ethylhexyl-sulfosuccinate, (AOT) and sodium dodecyl sulphate (SDS)) in a highly stable liquid foam. After drainage of the foam, the silver ions are reduced in situ by introducing sodium borohydride into the foam by capillary flow. This leads to the formation of silver nanoparticles of spherical, tape- and sheet-like morphology in the foam. The structure of the foam is extremely complex and presents reaction sites of different spatial extent. The differences in foam reaction–site geometry are believed to be responsible for the morphology variation in the silver nanoparticles observed. The silver nanoparticles are observed to be extremely stable in solution suggesting that the AOT or SDS molecules stabilize them. This approach appears promising for application in large-scale synthesis of nanoparticles and may be readily extended to other chemical compositions.

  4. Effect of cationic plastoquinone SkQ1 on electron transfer reactions in chloroplasts and mitochondria from pea seedlings.

    Science.gov (United States)

    Samuilov, V D; Kiselevsky, D B

    2015-04-01

    Plastoquinone bound with decyltriphenylphosphonium cation (SkQ1) penetrating through the membrane in nanomolar concentrations inhibited H2O2 generation in cells of epidermis of pea seedling leaves that was detected by the fluorescence of 2',7'-dichlorofluorescein. Photosynthetic electron transfer in chloroplasts isolated from pea leaves is suppressed by SkQ1 at micromolar concentrations: the electron transfer in chloroplasts under the action of photosystem II or I (with silicomolybdate or methyl viologen as electron acceptors, respectively) is more sensitive to SkQ1 than under the action of photosystem II + I (with ferricyanide or p-benzoquinone as electron acceptors). SkQ1 reduced by borohydride is oxidized by ferricyanide, p-benzoquinone, and, to a lesser extent, by silicomolybdate, but not by methyl viologen. SkQ1 is not effective as an electron acceptor supporting O2 evolution from water in illuminated chloroplasts. The data on suppression of photosynthetic O2 evolution or consumption show that SkQ1, similarly to phenazine methosulfate, causes conversion of the chloroplast redox-chain from non-cyclic electron transfer mode to the cyclic mode without O2 evolution. Oxidation of NADH or succinate in mitochondria isolated from pea roots is stimulated by SkQ1.

  5. Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2015-05-01

    Full Text Available Ag@α-Fe2O3 nanocomposite having a core–shell structure was synthesized by a two-step reduction-sol gel approach, including Ag nanoparticles synthesis by sodium borohydride as the reducing agent in a first step and the subsequent mixing with a Fe+3 sol for α-Fe2O3 coating. The synthesized Ag@α-Fe2O3 nanocomposite has been characterized by various techniques, such as SEM, TEM and UV-Vis spectroscopy. The electrical and gas sensing properties of the synthesized composite towards low concentrations of ethanol have been evaluated. The Ag@α-Fe2O3 nanocomposite showed better sensing characteristics than the pure α-Fe2O3. The peculiar hierarchical nano-architecture and the chemical and electronic sensitization effect of Ag nanoparticles in Ag@α-Fe2O3 sensors were postulated to play a key role in modulating gas-sensing properties in comparison to pristine α-Fe2O3 sensors.

  6. Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity.

    Science.gov (United States)

    Huang, Lanlan; Weng, Xiulan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2014-09-15

    Iron nanoparticles (Fe NPs) are often synthesized using sodium borohydride with aggregation, which is a high cost process and environmentally toxic. To address these issues, Fe NPs were synthesized using green methods based on tea extracts, including green, oolong and black teas. The best method for degrading malachite green (MG) was Fe NPs synthesized by green tea extracts because it contains a high concentration of caffeine/polyphenols which act as both reducing and capping agents in the synthesis of Fe NPs. These characteristics were confirmed by a scanning electron microscope (SEM), UV-visible (UV-vis) and specific surface area (BET). To understand the formation of Fe NPs using various tea extracts, the synthesized Fe NPs were characterized by SEM, X-ray energy-dispersive spectrometer (EDS), and X-ray diffraction (XRD). What emerged were different sizes and concentrations of Fe NPs being synthesized by tea extracts, leading to various degradations of MG. Furthermore, kinetics for the degradation of MG using these Fe NPs fitted well to the pseudo first-order reaction kinetics model with more than 20 kJ/mol activation energy, suggesting a chemically diffusion-controlled reaction. The degradation mechanism using these Fe NPs included adsorption of MG to Fe NPs, oxidation of iron, and cleaving the bond that was connected to the benzene ring.

  7. Biomimetic synthesis of silver nanoparticles using the fish scales of Labeo rohita and their application as catalysts for the reduction of aromatic nitro compounds.

    Science.gov (United States)

    Sinha, Tanur; Ahmaruzzaman, M; Sil, A K; Bhattacharjee, Archita

    2014-10-15

    In this article, a cleaner, greener, cheaper and environment friendly method for the generation of self assembled silver nanoparticles (Ag NPs) applying a simple irradiation technique using the aqueous extract of the fish scales (which is considered as a waste material) of Labeo rohita is described. Gelatin is considered as the major ingredient responsible for the reduction as well as stabilisation of the self assembled Ag NPs. The size and morphology of the individual Ag NPs can be tuned by controlling the various reaction parameters, such as temperature, concentration, and pH. Studies showed that on increasing concentration and pH Ag NPs size decreases, while on increasing temperature, Ag NPs size increases. The present process does not need any external reducing agent, like sodium borohydride or hydrazine or others and gelatin itself can play a dual role: a 'reducing agent' and 'stabilisation agent' for the formation of gelatin-Ag NPs colloidal dispersion. The synthesized Ag NPs were characterised by Ultraviolet-Visible spectroscopy (UV-Vis), Transmission electron microscopy (TEM) and Selected area electron diffraction (SAED) analyses. The synthesized Ag NPs was used to study the catalytic reduction of various aromatic nitro compounds in aqueous and three different micellar media. The hydrophobic and electrostatic interaction between the micelle and the substrate is responsible for the catalytic activity of the nanoparticles in micelle.

  8. Electrical and Thermal Behavior of Copper-Epoxy Nanocomposites Prepared via Aqueous to Organic Phase Transfer Technique

    Directory of Open Access Journals (Sweden)

    N. H. Mohd Hirmizi

    2012-01-01

    Full Text Available The preparation, electrical, and thermal behaviors of copper-epoxy nanocomposites are described. Cetyltrimethylammonium bromide- (CTAB- stabilized copper (Cu particles were synthesized via phase transfer technique. Isopropanol (IPA, sodium borohydride (NaBH4, and toluene solution of diglycidyl ether of bisphenol A (DGEBA were used as transferring, reducing agent, and the organic phase, respectively. The UV-Vis absorbance spectra of all the sols prepared indicate that the presence of Cu particles with the particles transfer efficiency is ≥97%. The amount, size, and size distribution of particles in the organosol were dependent on the content of organic solute in the organosol. The composites were obtained upon drying the organosols and these were then subjected to further studies on the curing, thermal, and electrical characteristic. The presence of Cu fillers does not significantly affect the completeness of the composite curing process and only slightly reduce the thermal stability of the composites that is >300°C. The highest conductivity value of the composites obtained is 3.06×10-2 S cm-1.

  9. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol.

    Science.gov (United States)

    Alshehri, Saad M; Almuqati, Turki; Almuqati, Naif; Al-Farraj, Eida; Alhokbany, Norah; Ahamad, Tansir

    2016-10-20

    A novel catalyst for the reduction of 4-nitrophenol (4-NP) was prepared using carboxyl group-functionalized multiwalled carbon nanotubes (MWCNTs), polymer matrix, and silver nanoparticles (AgNPs). The AgNPs were prepared by the reduction of silver nitrate by trisodium citrate in the MWCNTs-polymer nanocomposite; the size of the synthesized AgNPs was found to be 3nm (average diameter). The synthesized nanocomposites were characterized using several analytical techniques. Ag@MWCNTs-polymer composite in the presence of sodium borohydride (NaBH4) in aqueous solution is an effective catalyst for the reduction of 4-NP. The apparent kinetics of reduction has a pseudo-first-order kinetics, and the rate constant and catalytic activity parameter were found to be respectively 7.88×10(-3)s(-1)and 11.64s(-1)g(-1). The MWCNTs-polymer nanocomposite renders stability to AgNPs against the environment and the reaction medium, which means that the Ag@MWCNTs-polymer composite can be re-used for many catalytic cycles.

  10. Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol

    Science.gov (United States)

    Naraginti, Saraschandra; Sivakumar, A.

    2014-07-01

    The present study reports a simple and robust method for synthesis of silver and gold nanoparticles using Coleus forskohlii root extract as reducing and stabilizing agent. Stable silver nanoparticles (AgNPs) and gold nanopoarticles (AuNPs) were formed on treatment of an aqueous silver nitrate (AgNO3) and chloroauric acid (HAuCl4) solutions with the root extract. The nanoparticles obtained were characterized by UV-Visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). UV-Vis and TEM analysis indicate that with higher quantities of root extract, the interaction is enhanced leading to size reduction of spherical metal nanoparticles. XRD confirms face-centered cubic phase and the diffraction peaks can be attributed to (1 1 1), (2 0 0), (2 2 2) and (3 1 1) planes for these nanoparticles. These synthesized Ag and Au nanoparticles were found to exhibit excellent bactericidal activity against clinically isolated selected pathogens such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The synthesized AgNPs were also found to function as an efficient green catalyst in the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride, which was apparent from the periodical color change from bright yellow to colorless, after the addition of AgNPs.

  11. Performance of nitrogen-containing macroporous carbon supported cobalt catalyst synthesized through in-situ construction of catalytic sites for oxygen reduction reaction

    Science.gov (United States)

    He, Fan; Yang, Jun; Li, Rui; Liu, Bin Hong; Li, Zhou Peng

    2015-01-01

    A novel method of in-situ catalytic site (CoNx) construction in macroporous carbon (MPC) is developed. The nitrogen-containing MPC-supported cobalt (Co/N-MPC) catalysts are synthesized via the pyrolysis of a mixture of glucose-urea resin, nano-CaCO3, and cobalt nitrate. The nano-CaCO3 functions as a template to fabricate MPC that provides high electric conductivity and large specific surface area. The catalytic CoNx sites are simultaneously created during the formation of N-MPC. The use of glucose-urea resin as the carbon and nitrogen sources significantly increases the nitrogen content as high as 8.8 at% in the MPC. The synthesized Co/N-MPC demonstrates superb catalytic activity toward oxygen reduction reaction. The direct borohydride fuel cell using the Co/N-MPC shows a power density as high as 170 mW cm-2 which is much higher than the cell using 10 wt.% Pt/C but slightly lower than the cell using 20 wt.% Pt/C as the cathode catalyst at ambient conditions.

  12. Use of PtAu/C electrocatalysts toward formate oxidation: electrochemical and fuel cell considerations

    Directory of Open Access Journals (Sweden)

    Sirlane G. da Silva

    2016-09-01

    Full Text Available Abstract This study reports the use of PtAu/C electrocatalysts with different atomic ratios (90:10, 70:30 and 50:50 supported on Vulcan XC 72 carbon and prepared by the sodium borohydride method toward formate electro-oxidation in alkaline media. The materials were characterized by X-ray diffraction, showing peaks characteristics of Pt and Au face-centered-cubic structures, and also by transmission electron micrographs that show the nanoparticles well dispersed on carbon and a mean particle size between 4 and 5 nm for all electrocatalysts. Electrochemical experiments show PtAu/C as promising catalysts toward formate oxidation, while single cell experiments reveal PtAu/C 90:10 as the best material since it provides a power density higher than Pt/C. The incorporation of Au could increase formate oxidation for more than one reason: (i a facilitated rupture of C–H bond; (ii the Au/oxide interface or (iii by regenerating active sites.

  13. Oxygen reduction reaction catalyzed by platinum nanonetwork prepared by template free one step synthesis for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Narayanamoorthy, B. [Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (SCSVMV University), Enathur, Kanchipuram 631 561 (India); Kumar, B.V.V.S. Pavan; Eswaramoorthy, M. [Nanomaterials and Catalysis Lab, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560 064 (India); Balaji, S., E-mail: prof.balaji13@gmail.com [Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (SCSVMV University), Enathur, Kanchipuram 631 561 (India)

    2014-07-01

    Highlights: • Supportless Pt nanonetwork (Pt NN) synthesized by novel template free one step method as per our earlier reported procedure. • Electrocatalytic activity of Pt NN studied taking oxygen reduction reaction in acid medium. • Kinetic and thermodynamic parameters were deduced under hydrodynamic conditions. • ORR mechanistic pathway was proposed based on kinetic rate constants. • ADT analysis found enhanced stability (5000 cycles) for Pt NN than Pt NN/VC and reported Pt/C. - Abstract: The reduction reaction of molecular oxygen (ORR) was investigated using supportless Pt nanonetwork (Pt NN) electrocatalyst in sulfuric acid medium. Pt NN was prepared by template free borohydride reduction. The transmission electron microscope images revealed a network like nano-architecture having an average cluster size of 30 nm. The electrochemical characterization of supportless and Vulcan carbon supported Pt NN (Pt NN/VC) was carried out using rotating disc and ring disc electrodes at various temperatures. Kinetic and thermodynamic parameters were estimated under hydrodynamic conditions and compared with Pt NN/VC and reported Pt/C catalysts. The accelerated durability test revealed that supportless Pt NN is quite stable for 5000 potential cycles with 22% reduction in electrochemical surface area (ECSA). While the initial limiting current density has in fact increased by 11.6%, whereas Pt NN/VC suffered nearly 55% loss in ECSA and 13% loss in limiting current density confirming an enhanced stability of supportless Pt NN morphology for ORR compared to conventional Pt/C ORR catalysts in acid medium.

  14. Structural analysis of O-glycosidic type of sialyloligosaccharide-alditols derived from urinary glycopeptides of a sialidosis patient.

    Science.gov (United States)

    Van Pelt, J; Van Bilsen, D G; Kamerling, J P; Vliegenthart, J F

    1988-05-16

    Sialidosis urine was fractionated by gel filtration on Bio-Gel P-6. All pooled fractions containing carbohydrates showed the presence of small amounts of GalNAc in non-reducing position, besides free N-acetyllactosamine type of oligosaccharides as major constituents. The fractions were subjected to reductive alkaline borohydride degradation, after which the major part of GalNAc was recovered as N-acetyl-D-galactosaminitol (GalNAc-ol). The GalNAc-ol-containing material was separated from the N-glycosidic oligosaccharides by a second gel-filtration step on AcA 202. Subsequently, the O-glycosidic sialyloligosaccharide-alditols were subfractionated by anion-exchange chromatography on Mono Q. Structural analysis by 500-MHz 1H-NMR spectroscopy revealed two major components in all fractions, namely: NeuAc alpha 2-3Gal beta 1-3GalNAc-ol and NeuAc alpha 2-3Gal beta 1-3[NeuAc alpha 2-6]GalNAc-ol. Furthermore, NeuAc alpha 2-3Gal beta 1-3[NeuAc alpha 2-3Gal beta 1-4GlcNAc beta 1-6]GalNAc-ol was found as a minor component in some of the fractions. The presence of these carbohydrate chains in Bio-Gel fractions differing in molecular mass suggested that they are derived from glycopeptides which are heterogeneous in their peptide part.

  15. One-step preparation of Fe3O4/Pd@polypyrrole composites with enhanced catalytic activity and stability.

    Science.gov (United States)

    Zhang, Hui; Liu, Yang; Wu, Jie; Xin, Baifu

    2016-08-15

    Core/shell Fe3O4/Pd@polypyrrole (PPy) composites with a Fe3O4 core and a PPy shell embedding Pd nanoparticles were prepared in one-step. The diameter of highly dispersed Pd nanoparticles was as small as 2.9nm owing to coordination interaction generated between Pd(2+) ions and amino groups on PPy chains. The outer PPy shell was only 6.8nm: on one hand, the coverage was beneficial to improving the stability of resulting composites; on the other hand, the shell was thin enough to permit free contact between embedding Pd nanoparticles and reactants. Additionally, the as-prepared Fe3O4/Pd@PPy composites displayed good magnetic separation property due to incorporation of Fe3O4 nanospheres. Based on above merits, they served as suitable catalyst candidates. Their catalytic performance and reusability were evaluated by reduction of 4-nitrophenol with sodium borohydride as reducing agent. Compared with traditional Fe3O4/Pd composites, Fe3O4/Pd@PPy composites not only showed superior catalytic activity; but also exhibited much better stability in successive cycling tests.

  16. Synthesis and Conformation Analysis of cis-1,2-Disubstituted Cyclododecanes

    Institute of Scientific and Technical Information of China (English)

    HAN Xiang-Yu; WANG Ming-An; LI Tai-Gong; LIANG Xiao-Mei; DONG Yan-Hong; CHEN Fu-Heng; WANG Dao-Quan

    2007-01-01

    cis-1,2-Disubstituted cyclododecanes 2 were synthesized by sodium borohydride reduction of 2-monosubstituted cyclododecanones and their structures were confirmed by 1HNMR, 13C NMR and elemental analysis. The higher cis-selectivity of NaBH4 reduction of 2- monosubstituted cyclododecanones was rationalized by the mode of "corner position carbonyl participation". Crystal data for 2c: Mr = 263.21, monoclinic, space group P21/c, a = 1.11140(7), b = 2.62590(17), c = 0.91360(6) nm, β= 106.1840(10)°, V = 2.5606(3) nm3, Dc = 1.366 g/cm3, Z = 8, F(000) = 1104, μ(MoKα= 3.182 mm-1, S = 0.837, the final R = 0.0460 and wR = 0.1033. Crystal X-ray diffraction analysis for 2c showed that its ring skeleton adopts [3333] conformation, in which the OH group presents at the side-exo position and the other one at the corner carbon. The 1H NMR data of 2 showed that 1-corner-R-2-side-exo-OH [3333] and 1-corner-OH-2-side-exo-R [3333] conformations coexist in dynamic equilibrium in the solution, but only the former presents in the crystal.

  17. A Study of Groundwater Matrix Effects for the Destruction of Trichloroethylene Using Fe/Pd Nanoaggregates.

    Science.gov (United States)

    Meyer, D E; Hampson, S; Ormsbee, L; Bhattacharyya, D

    2009-01-30

    Iron nanoaggregates have been prepared using the sodium borohydride reduction method and post-coated with Pd using aqueous phase electro-deposition. The Fe/Pd nanoaggregates were used to examine dechlorination of trichloroethylene (TCE) with regard to matrix effects using materials representative of a potential zero-valent metal remediation site surrounding the Paducah gaseous diffusion plant in Paducah, KY. A surface-area-normalized first-order rate constant of 1.4 x 10(-1) L m(-2) h(-1) was obtained for the case of ideal dechlorination of 19.6 mg L(-1) TCE at room temperature and pH 6.2 using 0.5 g L(-1) Fe/Pd (0.42 wt % Pd) loading. This value decreases by an order of magnitude to 1.9 x 10(-2) L m(-2) h(-1) when the reaction is carried out in a realistic background matrix when the pH is high (8.8). For all variables tested, Pd content has the most impact on reaction rates. Circulating batch-column experiments are used to study dechlorination under flow conditions and demonstrate the ability of nonstabilized Fe/Pd nanoaggregates to remove significant amounts of TCE (80-90%) over a broad range of groundwater velocities (12.9-83 ft per day) using moderate metal loadings (0.23-0.5 g L(-1)).

  18. Mechanism for formation of NaBH4 proposed as low-pressure process for storing hydrogen in borosilicate glass–sodium solid system: a hydrogen storage material

    Indian Academy of Sciences (India)

    Aysel Kantürk Figen; Sabriye Pişkin

    2012-04-01

    The mechanism for the formation of sodium borohydride (NaBH4) was investigated for its ability to store hydrogen in the borosilicate glass–sodium (BSG–Na) solid system under low hydrogen pressure. BSG, which was prepared by melting borax with silica, was used as the starting material in the BSG–Na system that would be prepared to store hydrogen. It was observed that the mechanism for storing hydrogen in the BSG–Na solid system consisted of six steps and when the BSG–Na system was heated under a pressure of 4 atm, which was created through the use of hydrogen atmosphere, the storage of hydrogen occurred at nearly 480°C for approximate duration of 200 min, with the excellent yield (97%). In addition, the hydrogen storage capacity of the NaBH4 sample was measured using the Au–PS structure, which was designed as a mini-hydrogen cell. It was determined that the minimum amount of NaBH4 to generate the maximum volume of hydrogen gas was 12 mg/ml at 270 mV.

  19. Ground and excited state behavior of 1,4-dimethoxy-3-methyl-anthracene-9,10-dione in silver nanoparticles: Spectral and computational investigations

    Energy Technology Data Exchange (ETDEWEB)

    Umadevi, M., E-mail: ums10@yahoo.com [Department of Physics, Mother Teresa Women' s University, Kodaikanal 624101, Tamil Nadu (India); Kavitha, S.R. [Department of Physics, Mother Teresa Women' s University, Kodaikanal 624101, Tamil Nadu (India); Vanelle, P.; Terme, T.; Khoumeri, O. [Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05 (France)

    2013-10-15

    Silver nanoparticles (Ag NPs) of various sizes have been successfully synthesized by the simple and convenient Creighton method using sodium borohydride as the reducing agent under microwave irradiation. Optical absorption and fluorescence emission spectroscopic techniques were employed to investigate the effect of silver nanoparticles on the ground and excited state of 1,4-dimethoxy-3-methylanthracene-9,10-dione (DMMAD). The surface plasmon resonance (SPR) peak of the prepared silver colloidal solution was observed at 400 nm. Fluorescence quenching of DMMAD by silver nanoparticles has been found to increase with increase in the size of Ag. The fluorescence quenching has been explained by Forster Resonance Energy Transfer (FRET) theory between DMMAD and silver nanoparticles. The Stern–Volmer quenching constant and Benesi–Hildebrand association constant for the above system were calculated. DFT calculations were also performed to study the charge distribution of DMMAD in Ag both in ground and excited states. -- Highlights: • Silver nanoparticles (Ag NPs) have been synthesized using the Creighton method. • Effect of Ag NPs on the ground state of DMMAD was studied. • Influence of Ag NPs on the excited state of DMMAD was investigated. • Fluorescence quenching has been explained by Forster Resonance Energy Transfer. • Quenching and binding constants were also calculated.

  20. Histochemical and structural analysis of mucous glycoprotein secreted by the gill of Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hae-Young.

    1988-01-01

    Studies were carried out to characterized various mucous cells in the gill filament, to ascertain structural characteristics of the secreted mucous glycoproteins, and to determine the ability of the gill epithelium to incorporate ({sup 14}C)glucosamine as a precursor in the biosynthesis and secretion of mucous glycoproteins. Using histochemical staining techniques, mucous cells containing neutral and acidic mucins were found in the lateral region, whereas mucous cells containing primarily neutral or sulfated mucins were found in the postlateral region. Serotonin, but not dopamine, stimulated the mucous secretion. In tissues pretreated with ({sup 14}C)glucosamine, the secreted glycoproteins contain incorporated radiolabel. Analysis by column chromatography using Bio-Gel P-2 and P-6 shows that the secretion contains two glycoprotein populations. Glycoprotein II has a molecular weight of 2.3 {times} 10{sup 4} daltons. Upon alkaline reductive borohydride cleavage of the O-glycosidic linkages of glycoprotein I, about 70% of the radiolabel was removed from the protein. Gas chromatographic analysis of the carbohydrate composition shows that the glycoproteins contains N-acetylglucosamine (GluNAc), N-acetylgalactosamine (GalNAc), and galactose, fucose and mannose. Amino acid analysis shows that the glycoproteins are rich in serine, threonine and proline.

  1. Biosynthesis of ascites sialoglycoprotein-1, the major O-linked glycoprotein of 13762 rat mammary adenocarcinoma ascites cells

    Energy Technology Data Exchange (ETDEWEB)

    Spielman, J.

    1987-01-01

    The present studies were undertaken to determine the timing of the major events in biosynthesis, and to characterize the contributions of chain initiation and elongation in maturation of the glycoprotein. Initiation of the earliest O-linked chains was detected by analysis of conversion of {sup 3}H-thr to {sup 3}H 2-aminobutyrate following mild alkaline borohydride elimination of O-linked sugars from peanut lectin-precipitated ASGP-1. Initiation was detected within 5 min of translation; amino sugar analysis of GlcNH{sub 2}-labeled, trypsinized cells also showed that GalNAc was added as late as 5 min prior to arrival of ASGP-1 at the cell surface. Thus initiation occurs throughout biosynthesis. Maturation of the glycoprotein from a lightly-glycosylated immature form to the heavily-glycosylated mature from involved both continued initiation of new chains and chain elongation, and occurred with a half-time of about 30 min. Analysis of labeled ASGP-1 released from the cell surface by trypsinization showed that although some newly-synthesized ASGP-1 reached the cell surface within 70-80 min of protein synthesis, the half-time for appearance of mature glycoprotein was in excess of 4 hr, indicating that most molecules reside in an intracellular compartment(s) for a considerable time.

  2. S-3-奎宁醇的合成研究%Study on the Synthesis of S-3-Quinine Alcohol

    Institute of Scientific and Technical Information of China (English)

    任彦荣

    2012-01-01

    A new method is reported for synthesizingS-3-quininealcohoL Based on a configuration transformation strategy, the raw material 3-quinineketoneis, in turn, reduced,esterified, and finally hydrolyzed into S-3-quinine alcohol by potassium borohydride, acetyl chloride, and sodium hydroxide, respectively- Subsequently, 1H NMRcharacterization is employed to confirm the S -3 -quinine alcohol and HPLC also reveals that theoverall yield of the desired product isabout 88-96%-The proposedsynthesis method appears to be convenient,high-yielding, and applicable for industrial purpose.%探讨S-3-奎宁醇的合成新工艺.通过构型转化的方法,以3-奎宁酮为原料,经硼氢化钾还原、与乙酰氯成酯、水解得S-3-奎宁醇.其结构经1H NMR等表征证实,总收率可达到88.96%.该合成路线操作步骤简单、收率高,具有工业应用价值.

  3. Versatile synthesis of PHMB-stabilized silver nanoparticles and their significant stimulating effect on fodder beet (Beta vulgaris L.).

    Science.gov (United States)

    Gusev, Alexander А; Kudrinsky, Alexey A; Zakharova, Olga V; Klimov, Alexey I; Zherebin, Pavel M; Lisichkin, George V; Vasyukova, Inna A; Denisov, Albert N; Krutyakov, Yurii A

    2016-05-01

    Silver nanoparticles (AgNPs) are well-known bactericidal agents. However, information about the influence of AgNPs on the morphometric parameters and biochemical status of most important agricultural crops is limited. The present study reports the influence of AgNPs stabilized with cationic polymer polyhexamethylene biguanide hydrochloride (PHMB) on growth, development, and biochemical status of fodder beet Beta vulgaris L. under laboratory and greenhouse conditions. PHMB-stabilized AgNPs were obtained via sodium borohydride reduction of silver nitrate in an aqueous solution. The average diameter of thus prepared AgNPs was 10 nm. It appears that the results of experiments with laboratory-grown beets in the nanosilver-containing medium, where germination of seeds and growth of roots were suppressed, do not correlate with the results of greenhouse experiments. The observed growth-stimulating action of PHMB-stabilized AgNPs can be explained by the change of activity of oxidases and, consequently, by the change of auxins amount in plant tissues. In beets grown in the presence of PHMB-stabilized AgNPs no negative deviations of biological parameters from normal values were registered. Furthermore, the SEM/EDS examination revealed no presence of silver in the tissues of the studied plants.

  4. Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tufail Ahmad

    2014-01-01

    Full Text Available Metal nanoparticles harbour numerous exceptional physiochemical properties absolutely different from those of bulk metal as a function of their extremely small size and large superficial area to volume. Naked metal nanoparticles are synthesized by various physical and chemical methods. Chemical methods involving metal salt reduction in solution enjoy an extra edge over other protocols owing to their relative facileness and capability of controlling particle size along with the attribute of surface tailoring. Although chemical methods are the easiest, they are marred by the use of hazardous chemicals such as borohydrides. This has led to inclination of scientific community towards eco-friendly agents for the reduction of metal salts to form nanoparticles. Tannic acid, a plant derived polyphenolic compound, is one such agent which embodies characteristics of being harmless and environmentally friendly combined with being a good reducing and stabilizing agent. In this review, first various methods used to prepare metal nanoparticles are highlighted and further tannic acid mediated synthesis of metal nanoparticles is emphasized. This review brings forth the most recent findings on this issue.

  5. Novel compliant electrodes based on platinum salt reduction

    Science.gov (United States)

    Delille, Remi; Urdaneta, Mario; Hsieh, Kuangwen; Smela, Elisabeth

    2006-03-01

    A compliant electrode material is presented that was inspired by the electroding process used to manufacture ionic polymer-metal composites (IPMCs). However, instead of an ion-exchange membrane, a UV-curable acrylated urethane elastomer is employed. The electrode material consists of the UV-curable elastomer (Loctite 3108) loaded with tetraammineplatinum(II) chloride salt particles through physical mixing and homogenization. The composite material is made conductive by immersion in a reducing agent, sodium borohydride, which reduces the salt to platinum metal on the surface of the elastomer film. Because the noble metal is mixed into the elastomer precursor as a salt, the amount of UV light absorbed by the precursor is not significantly reduced, and the composite loses little photopatternability. As a result meso-scale electrodes of varying geometries can be formed by exposing the precursor/salt mixture through a mask. The materials are mechanically and electrically characterized. The percolation threshold of the composite is estimated to be 9 vol. % platinum salt, above which the compliant electrode material exhibits a maximum conductivity of 1 S/cm. The composite maintains its electrical conductivity under axial tensile strains of up to 40%.

  6. Noble metal nanoparticle-decorated TiO2 nanobelts for enhanced photocatalysis

    Science.gov (United States)

    He, Haiyan; Yang, Ping; Jia, Changchao; Miao, Yanping; Zhao, Jie; Du, Yingying

    2014-07-01

    TiO2 nanobelts have been fabricated through a hydrothermal method and subsequently sulfuric-acid-corrosion-treated for a rough surface. Noble metal nanoparticles such as Ag and Au were deposited on the coarse surface of TiO2 nanobelts via a coprecipitation procedure. Ag-TiO2 nanobelts were prepared in ethanolic solution contained silver nitrate (AgNO3) and sodium hydroxide (NaOH). Au-TiO2 nanobelts were obtained in chloroauric acid (HAuCl4) using sodium borohydride (NaBH4) as the reductant. It is confirmed by the results of XRD patterns together with the SEM images that the composite of noble metal and TiO2 nanobelts were obtained successfully and the Ag or Au nanoparticles were well-dispersed on the TiO2 nanobelts. Moreover, the as-prepared Ag and Au nanoparticle-decorated TiO2 nanobelts represent an enhanced photocatalytic activity compared with pure TiO2 nanobelts, which is due to the fact that the Ag and Au nanoparticles on the surface of TiO2 nanobelts act as sinks for the photogenerated electrons and promote the separation of the electrons and holes.

  7. Magnetic solid-phase extraction for determination of the total malachite green, gentian violet and leucomalachite green, leucogentian violet in aquaculture water by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Zhao, Jiao; Wei, Daqiao; Yang, Yaling

    2016-06-01

    In this study, magnetic multi-walled carbon nanotube nanoparticles were synthesized and used as the adsorbent for the sums of malachite green, gentian violet and leucomalachite green, leucogentian violet in aquaculture water samples followed by high performance liquid chromatography with fluorescence detection. This method was based on in situ reduction of chromic malachite green, gentian violet to colorless leucomalachite green, leucogentian violet with potassium borohydride, respectively. The obtained adsorbent combines the advantages of carbon nanotubes and Fe3 O4 nanoparticles in one material for separation and preconcentration of the reductive dyes in aqueous media. The structure and properties of the prepared nanoparticles were characterized by transmission and scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The main parameters affecting the adsorption recoveries were investigated and optimized, including reducing agent concentration, type and amount of sorbent, sample pH, and eluting conditions. Under the optimum conditions, the limits of detection in this method were 0.22 and 0.09 ng/mL for malachite green and gentian violet, respectively. Product recoveries ranged from 87.0 to 92.8% with relative standard deviations from 4.6 to 5.9%. The results indicate that the sorbent is a suitable material for the removal and concentration of triphenylmethane dyes from polluted environmental samples.

  8. One pot synthesis of copper nanoparticles at room temperature and its catalytic activity

    Directory of Open Access Journals (Sweden)

    Nikhil V. Suramwar

    2016-11-01

    Full Text Available A facile reduction approach with sodium borohydride as a reducing agent and starch as a stabilizing agent leads to monodispersed Cu nanoparticles in aqueous medium at an ambient condition. The synthesized nanoparticles are highly pure with no traces of CuO found on surface. They are uniform in size in the range of 40–80 nm. The Cu nanoparticles have a FCC structure as characterized by powder X-ray diffraction (XRD. Transmission electron microscopy (TEM images show that they are arranged in a regular array which is separated by starch thin layer which controls the growth as well as stabilizes the Cu nanoparticles from air oxidation. The catalytic activity of prepared Cu nanomaterial was tested in Ullman reaction for the synthesis of biphenyl from iodobenzene. We have shown in this paper that the size as well as exposed surface area of the copper nanoparticles is responsible for the increase in yield of biphenyl up to 92%. This is higher compare to the 40% yield with the normal size copper powder under the same reaction condition.

  9. Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol.

    Science.gov (United States)

    Narayanan, Kannan Badri; Park, Hyun Ho; Sakthivel, Natarajan

    2013-12-01

    Green synthesis of extracellular mycogenic silver nanoparticles using the fungus, Cylindrocladium floridanum is reported. The synthesized mycogenic silver nanoparticles were characterized using UV-Vis absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. The nanoparticles exhibit fcc structure with Bragg's reflections of (111), (200), (220) and (311) was evidenced by XRD pattern, high-resolution TEM lattice fringes and circular rings in selected-area electron diffraction (SAED) pattern. The morphology of nanoparticles was roughly spherical in shape with an average size of ca. 25 nm. From FTIR spectrum, it was found that the biomolecules with amide I and II band were involved in the stabilization of nanoparticles. These mycogenic silver nanoparticles exhibited the homogeneous catalytic potential in the reduction of pollutant, 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using sodium borohydride, which followed a pseudo-first-order kinetic model. Thus, the synthesis of metal nanoparticles using sustainable microbial approach opens up possibilities in the usage of mycogenic metal nanoparticles as catalysts in various chemical reactions.

  10. Fast determination of paraquat in plasma and urine samples by solid-phase microextraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Gao, Lina; Liu, Junting; Wang, Chunyuan; Liu, Guojie; Niu, Xiaodong; Shu, Cuixia; Zhu, Juan

    2014-01-01

    A simple, sensitive and reliable gas chromatographic-mass spectrometric method (GC-MS) for quantifying paraquat concentration in biological samples has been developed, using ethyl paraquat as an internal standard. The method involved the procedures of sodium borohydride-nickel chloride (NaBH4-NiCl2) reduction and solid-phase microextraction (SPME) of the perhydrogenated products. GC-MS was used to identify and quantify the analytes in selected ion monitoring (SIM) mode. Under the optimal conditions, recoveries in plasma and urine samples were 94.00-99.85% and 95.00-100.34%, respectively. Excellent sample clean-up was observed and good linearities (r=0.9982 for plasma sample and 0.9987 for urine sample) were obtained in the range of 0.1-50μg/mL. The limits of detection (S/N=3) were 0.01μg/mL in plasma and urine samples. The intra-day precision was less than 8.43%, 4.19% (n=3), and inter-day precision was less than 10.90%, 10.49% (n=5) for plasma and urine samples, respectively. This method was successfully applied to the analysis of the biological samples collected from a victim who died as a result of ingestion of paraquat.

  11. Facile solvothermal synthesis of highly active and robust Pd1.87Cu0.11Sn electrocatalyst towards direct ethanol fuel cell applications

    Science.gov (United States)

    Jana, Rajkumar; Dhiman, Shikha; Peter, Sebastian C.

    2016-08-01

    Ordered intermetallic Pd1.87Cu0.11Sn ternary electrocatalyst has been synthesized by sodium borohydride reduction of precursor salts Pd(acac)2, CuCl2.2H2O and SnCl2 using one-pot solvothermal synthesis method at 220 °C with a reaction time of 24 h. To the best of our knowledge, here for the first time we report surfactant free synthesis of a novel ordered intermetallic ternary Pd1.87Cu0.11Sn nanoparticles. The ordered structure of the catalyst has been confirmed by powder x-ray diffraction, transmission electron microscopy (TEM). Composition and morphology of the nanoparticles have been confirmed through field emission scanning electron microscopy, energy-dispersive spectrometry and TEM. The electrocatalytic activity and stability of the ternary electrocatalyst towards ethanol oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry techniques. The catalyst is proved to be highly efficient and stable upto 500th cycle and even better than commercially available Pd/C (20 wt%) electrocatalysts. The specific and mass activity of the as synthesized ternary catalyst are found to be ∼4.76 and ∼2.9 times better than that of commercial Pd/C. The enhanced activity and stability of the ordered ternary Pd1.87Cu0.11Sn catalyst can make it as a promising candidate for the alkaline direct ethanol fuel cell application.

  12. Preparation of 9-hydroxynonanoic acid methyl ester by ozonolysis of vegetable oils and its polycondensation

    Directory of Open Access Journals (Sweden)

    Cvetković Ivana

    2008-01-01

    Full Text Available Vegetable oil-based and potentially biodegradable polyesters were prepared from 9-hydroxynonanoic acid methyl ester. This paper describes ozonolysis of vegetable oils and the method for preparation of useful monomers and in particular 9-hydroxynonanoic acid methyl ester. Ozonolysis of soybean oil and castor oil in methanol and methylene chloride solution, followed by reduction with sodium borohydride was used to obtain a mixture of triols, diols and monols. Triglyceride triols were separated from the rest of the mixture and transesterified with methanol to obtain methyl esters of fatty acids and glycerin. The main component of fatty acids was 9-hydroxynonanoic acid methyl ester, which was characterized and used for polycondensation by transesterification. High molecular weight polyhydroxy alcanoate was a solid having a melting point of 75°C. The molecular weight of the resulting polyester was affected by the purity of the monomer and side reactions such as cyclization. The polymer was characterized by chromatographic, thermal and analytical methods.

  13. Ex Situ Formation of Metal Selenide Quantum Dots Using Bacterially Derived Selenide Precursors

    Energy Technology Data Exchange (ETDEWEB)

    Fellowes, Jonathan W.; Pattrick, Richard; Lloyd, Jon; Charnock, John M.; Coker, Victoria S.; Mosselmans, JFW; Weng, Tsu-Chien; Pearce, Carolyn I.

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of Se-IV by Veillonella atypica and compared directly against borohydride-reduced Se-IV for the production of glutathione-stabilized CdSe and beta-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  14. Synthesis of CdSe quantum dots using selenium dioxide as selenium source and its interaction with pepsin.

    Science.gov (United States)

    Wang, Yilin; Mo, Yunchuan; Zhou, Liya

    2011-09-01

    A novel method has been developed for the synthesis of thioglycolic acid (TGA)-capped CdSe quantum dots (QDs) in an aqueous medium when selenium dioxide worked as a selenium source and sodium borohydride acted as a reductant. The interaction between CdSe QDs and pepsin was investigated by fluorescence spectroscopy. It was proved that the fluorescence quenching of pepsin by CdSe QDs was mainly a result of the formation of CdSe-pepsin complex. Based on the fluorescence quenching results, the Stern-Volmer quenching constant (Ksv), binding constant (KA) and binding sites (n) were calculated. According to the Foster's non-radiative energy transfer theory, the binding distance (r) between pepsin and CdSe QDs was obtained. The influence of CdSe QDs on the conformation of pepsin has been analyzed by synchronous fluorescence spectra, which provided that the secondary structure of pepsin has been changed by the interaction of CdSe QDs with pepsin.

  15. Combined bactericidal activity of silver nanoparticles and hexadecylpyridinium salicylate ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Leonardo T. [Universidade Federal de São Paulo, Laboratório de Materiais Híbridos, Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas (Brazil); Liberatore, Ana Maria A.; Koh, Ivan H. J. [Universidade Federal de São Paulo, Laboratório de Transplante Experimental de Órgãos, Departamento de Cirurgia, Escola Paulista de Medicina (Brazil); Bizeto, Marcos A.; Camilo, Fernanda F., E-mail: ffcamilo@unifesp.br [Universidade Federal de São Paulo, Laboratório de Materiais Híbridos, Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas (Brazil)

    2015-03-15

    Recently, ionic liquids have been used as dispersing agents for silver nanoparticle (AgNP) preparation. In this paper, we have shown a simple method to prepare AgNP in aqueous media using an ionic liquid called hexadecylpyridinium salicylate (HDPSal) as dispersing agent. The dispersions were produced by the chemical reduction of silver ions in aqueous media with different concentrations of HDPSal and tetrabutylammonium borohydride as reducing agent. The UV–Visible electronic spectra showed the characteristic plasmonic resonance band around 420 nm, confirming the formation of AgNPs. The TEM images confirmed the formation of spherical particles with diameters lower than 10 nm. The charge of these particles was determined by Zeta potential and they were around +50 mV, indicating that the HDP cations are surrounding the AgNPs, avoiding their agglomeration. Most of the dispersions remained stable for at least 1 month. Microbiological assays showed that the combination of AgNP with HDPSal results in wider range of antimicrobial effect.

  16. Microstructure and magnetic properties of MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wangwei@mail.buct.edu.cn; Ding, Zui; Zhao, Xiruo [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Wu, Sizhu [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Feng [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Yue, Ming [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022 (China); Liu, J. Ping [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2015-05-07

    Three kinds of spinel ferrite nanocrystals, MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH{sub 4}) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (M{sub s}). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  17. A solid control strategy for preparation of silver nanoparticles in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Daechul [Soonchunhyang University, Asan (Korea, Republic of); Kwon, Sung-Hyun [Gyeongsang National University, Tongyong (Korea, Republic of)

    2015-12-15

    Uniformly distributed, spherically shaped, mild concentrated silver nanoparticles with single-digit to hundreds nm size have been prepared by reducing silver nitrate with popular reducers like sodium borohydride or hydrazine in the presence of ordinary stabilizers such as SDS, PVP, Polysorbates and ultrasonication. Uv-visble spectroscopic analysis, particle size analysis, and particle-imaging through transmission electron microscopy (TEM) were used for nanoparticle characterization. Higher temperature accelerated the reduction rates, which follows the typical autocatalytic kinetics. Particularly, ultrasonication helped to facilitate the crucial stage of reduction phase to result in excellent quality of nanosolution, such as narrow distribution of particles and size uniformity. We found that initial location or arrangement of silver ions in clouds of stabilizers and 'effectve mixing' in the stage of reduction were vital for successful preparation of silver nanosolution. Also, reagent/stabilizer ratio, reducer input, solution environment such as pH, temperature, and stabilizer properties were optimized and discussed in detail. Proper selection of stabilizer and molar ratio to reagent and effective 'mixing' for preventing grain growth needs to be investigated more in the future work.

  18. Differential determination of arsenic(III) and arsenic(V), and antimony(III) and antimony-(V) by hydride generation-atomic absorption spectrophotometry, and its application to the determination of these species in sea water

    Science.gov (United States)

    Yamamoto, Manabu; Urata, Keiji; Murashige, Kiyoto; Yamamoto, Yuroku

    A method is described for the differential determination of As(III) and As(V). and Sb(III) and Sb(V) by hydride generation-atomic absorption spectrophotometry with hydrogen-nitrogen flame using sodium borohydride solution as a reductant. For the determination of As(III) and Sb(III), most of the elements, other than Ag +, Cu 2+, Sn 2+, Se 4+ and Te 4+, do not interfere in an at least 30,000 fold excess with respect to As(III) or Sb(III). This method was applied to the determination of these species in sea water and it was found that a sample size of only 100 ml is enough to determine them with a precision of 1.5-2.5%. Analytical results for surface sea water of Hiroshima Bay were 0.72 μgl -1, 0.27 μgl -1 and 0.22 μgl -1 for As(total), As(III) and Sb(total), respectively, but Sb(III) was not detected in the present sample. The effect of acidification on storage was also examined.

  19. Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity

    Science.gov (United States)

    Huang, Lanlan; Weng, Xiulan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2014-09-01

    Iron nanoparticles (Fe NPs) are often synthesized using sodium borohydride with aggregation, which is a high cost process and environmentally toxic. To address these issues, Fe NPs were synthesized using green methods based on tea extracts, including green, oolong and black teas. The best method for degrading malachite green (MG) was Fe NPs synthesized by green tea extracts because it contains a high concentration of caffeine/polyphenols which act as both reducing and capping agents in the synthesis of Fe NPs. These characteristics were confirmed by a scanning electron microscope (SEM), UV-visible (UV-vis) and specific surface area (BET). To understand the formation of Fe NPs using various tea extracts, the synthesized Fe NPs were characterized by SEM, X-ray energy-dispersive spectrometer (EDS), and X-ray diffraction (XRD). What emerged were different sizes and concentrations of Fe NPs being synthesized by tea extracts, leading to various degradations of MG. Furthermore, kinetics for the degradation of MG using these Fe NPs fitted well to the pseudo first-order reaction kinetics model with more than 20 kJ/mol activation energy, suggesting a chemically diffusion-controlled reaction. The degradation mechanism using these Fe NPs included adsorption of MG to Fe NPs, oxidation of iron, and cleaving the bond that was connected to the benzene ring.

  20. Synthesis of self-assembly plasmonic silver nanoparticles with tunable luminescence color

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, Haifa S.; Mahmoud, Waleed E., E-mail: w_e_mahmoud@yahoo.com

    2014-01-15

    Assembly is an elegant and effective bottom-up approach to prepare arrays of nanoparticles from nobel metals. Noble metal nanoparticles are perfect building blocks because they can be prepared with an adequate functionalization to allow their assembly and with controlled sizes. Herein, we report a novel recipe for the synthesis of self-assembled silver nanoparticles with tunable optical properties and sizes. The synthetic route followed here based on the covalent binding among silver nanoparticles by means of poly vinyl alcohol for the first time. The size of silver nanoparticle is governed by varying the amount of sodium borohydride. The as-synthesized nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, selected area electron diffraction and UV–vis spectroscopy. Results depicted that self-assembly of mono-dispersed silver nanoparticles with different sizes have been achieved. The silver nanostructure has a single crystalline faced centered cubic structure with growth orientation along (1 1 1) facet. These nanoparticles exhibited localized surface plasmon resonance at 403 nm. The luminescence peaks were red-sifted from violet to green due to the increase of the particle sizes. -- Highlights: • Self-assembled silver nanoparticles based PVA were synthesized. • NaBH{sub 4} amount was found particle size dependent. • Silver nanoparticles strongly affected the surface plasmon resonance. • Highly symmetric luminescence emission band narrow width is obtained. • Dark field image showed a tunable color change from violet to green.

  1. Quantification of glycated N-terminal peptide of hemoglobin using derivatization for multiple functional groups of amino acids followed by liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Sakaguchi, Yohei; Kinumi, Tomoya; Yamazaki, Taichi; Takatsu, Akiko

    2016-02-01

    A novel method of amino acid analysis using derivatization of multiple functional groups (amino, carboxyl, and phenolic hydroxyl groups) was applied to measure glycated amino acids in order to quantify glycated peptides and evaluate the degree of glycation of peptide. Amino and carboxyl groups of amino acids were derivatized with 1-bromobutane so that the hydrophobicities and basicities of the amino acids, including glycated amino acids, were improved. These derivatized amino acids could be detected with high sensitivity using LC-MS/MS. In this study, 1-deoxyfructosyl-VHLTPE and VHLTPE, which are N-terminal peptides of the β-chains of hemoglobin, were selected as target compounds. After reducing the peptide sample solution with sodium borohydride, the obtained peptides were hydrolyzed with hydrochloric acid. The released amino acids were then derivatized with 1-bromobutane and analyzed with LC-MS/MS. The derivatized amino acids, including glycated amino acids, could be separated using an octadecyl silylated silica column and good sharp peaks were detected. We show a confirmatory experiment that the proposed method can be applied to evaluate the degree of glycation of peptides, using mixtures of glycated and non-glycated peptide.

  2. Electrochemical Aspects of the Synthesis of Iron Particles

    Directory of Open Access Journals (Sweden)

    Tatjana MALIAR

    2012-09-01

    Full Text Available The preparation of Fe-particles by reduction of FeSO4 with either sodium borohydride or lithium triethylborohydride in water, and reverse micelles in rapeseed and mineral oil phases is described in electrochemical terms. The influence of surfactants on the electrochemical parameters and resulting size of iron particles was studied as well. The resulting size of Fe-particles synthesized in water (with and without surfactants correlates with the determined values of open circuit potential (OCP: the more negative OCP, the obtained Fe-particles are bigger, because values of OCP correspond to different range of polarization determined for the reduction of Fe2+. The sizes of Fe-particles synthesized in water or oil phases without surfactants using LiBEt3H are less than using NaBH4 because of electrochemical factors. By varying oils and surfactants it is possible to obtain opposite results as in water phase: smaller Fe-particles obtained using NaBH4 than using LiBEt3H. It is explained by the simultaneous influence of electrochemical and steric stabilization factors, and the last one becomes dominating in some cases.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2429

  3. One-Step Synthesis and Magnetic Phase Transformation of Ln-TM-B Alloy by Chemical Reduction.

    Science.gov (United States)

    Kim, Chang Woo; Kim, Young Hwan; Cha, Hyun Gil; Lee, Don Keun; Kang, Young Soo

    2007-04-11

    Binary and ternary intermetallic alloy systems are of interest for a variety of academic and technological applications. Despite recent advances in synthesizing binary alloy, there are very few reports of ternary alloy related to lanthanide series. The purpose of this work is to contribute to ternary alloy systems such as lanthanide-transition metal-boron with a simple chemical method and analysis of its magnetic behavior. Ternary Nd-Fe-B amorphous alloy was successfully synthesized with borohydride. The magnetic behavior in the process of formation of ternary Nd-Fe-B alloy and Nd2Fe14B from amorphous phase alloy is reported. Compared with the synthesis of a transition metal, the existence of a lanthanide ion makes aggregates-like particles with a diameter of 2 nm possible in the formation of a nanosphere, which is a significantly important result in terms of acceleration of the reduction-diffusion reaction for the formation of ternary alloy. In the process of reduction and diffusion, the Nd phase is diffused into the Fe-based phase, and then the ternary Nd2Fe14B intermetallic compound is fabricated.

  4. Ligand-optimized electroless synthesis of silver nanotubes and their activity in the reduction of 4-nitrophenol.

    Science.gov (United States)

    Muench, Falk; Rauber, Markus; Stegmann, Christian; Lauterbach, Stefan; Kunz, Ulrike; Kleebe, Hans-Joachim; Ensinger, Wolfgang

    2011-10-14

    A facile electroless plating procedure for the controlled synthesis of nanoscale silver thin films and derived structures such as silver nanotubes was developed and the products were characterized by SEM, TEM and EDS. The highly stable plating baths consist of AgNO(3) as the metal source, a suitable ligand and tartrate as an environmentally benign reducing agent. Next to the variation of the coordinative environment of the oxidizing component, the influence of the pH value was evaluated. These two governing factors strongly affect the plating rate and the morphology of the developing silver nanoparticle films and can be used to adapt the reaction to synthetic demands. The refined electroless deposition allows the fabrication of homogeneous high aspect-ratio nanotubes in ion track etched polycarbonate. Template-embedded metal nanotubes can be interpreted as parallelled microreactors. Following this concept, both the silver nanotubes and spongy gold nanotubes obtained by the use of the silver structures as sacrificial templates were applied in the reduction of 4-nitrophenol by sodium borohydride, proving to be extraordinarily effective catalysts.

  5. Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment

    Science.gov (United States)

    Saleh, Tawfik A.; Al-Shalalfeh, Mutasem M.; Al-Saadi, Abdulaziz A.

    2016-01-01

    Graphene functionalized with polyamidoamine dendrimer, decorated with silver nanoparticles (G-D-Ag), was synthesized and evaluated as a substrate with surface-enhanced Raman scattering (SERS) for methimazole (MTZ) detection. Sodium borohydride was used as a reducing agent to cultivate silver nanoparticles on the dendrimer. The obtained G-D-Ag was characterized by using UV-vis spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (TEM), Fourier-transformed infrared (FT-IR) and Raman spectroscopy. The SEM image indicated the successful formation of the G-D-Ag. The behavior of MTZ on the G-D-Ag as a reliable and robust substrate was investigated by SERS, which indicated mostly a chemical interaction between G-D-Ag and MTZ. The bands of the MTZ normal spectra at 1538, 1463, 1342, 1278, 1156, 1092, 1016, 600, 525 and 410 cm−1 were enhanced due to the SERS effect. Correlations between the logarithmical scale of MTZ concentrations and SERS signal intensities were established, and a low detection limit of 1.43 × 10−12 M was successfully obtained. The density functional theory (DFT) approach was utilized to provide reliable assignment of the key Raman bands. PMID:27572919

  6. Synthesis of amorphous Mg(BH{sub 4}){sub 2} from MgB{sub 2} and H{sub 2} at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pistidda, Claudio [Karlsruhe Institute of Technology, Institute of Nanotechnology, Postfach 3640, 76021 Karlsruhe (Germany); Garroni, Sebastiano [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Dolci, Francesco; Bardaji, Elisa Gil [Karlsruhe Institute of Technology, Institute of Nanotechnology, Postfach 3640, 76021 Karlsruhe (Germany); Khandelwal, Ashish [Dipartimento di Ingegneria Meccanica, Settore Materiali and CNISM, Universita di Padova, Via Marzolo 9, 35131 Padova (Italy); Nolis, Pau [Servei de Ressonancia Magnetica Nuclear (SeRMN), Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Dornheim, Martin; Gosalawit, Rapee [Institute of Materials Research, Materials Technology, GKSS Research Centre Geesthacht GmbH, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Jensen, Torben [Interdisciplinary Nanoscience Centre (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgabe 140, DK-8000 (Denmark); Cerenius, Yngve [MAX-lab, Lund University, S-22100 Lund (Sweden); Surinach, Santiago; Baro, Maria Dolors [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Lohstroh, Wiebke [Karlsruhe Institute of Technology, Institute of Nanotechnology, Postfach 3640, 76021 Karlsruhe (Germany); Fichtner, Maximilian, E-mail: m.fichtner@kit.ed [Karlsruhe Institute of Technology, Institute of Nanotechnology, Postfach 3640, 76021 Karlsruhe (Germany)

    2010-10-15

    Graphical abstract: Display Omitted Research highlights: {yields} Amorphous Mg(BH{sub 4}){sub 2} can be synthesized from MgB{sub 2} in a solvent-free route. {yields} Synthesis is performed room temperature by ball milling MgB{sub 2} under hydrogen pressure. {yields} The material is X-ray amorphous but shows characteristic near order and decomposition products. - Abstract: Due to its high hydrogen content and its favourable overall thermodynamics magnesium tetrahydroborate has been considered interesting for hydrogen storage applications. In this work we show that unsolvated amorphous magnesium tetrahydroborate can be obtained by reactive ball milling of commercial MgB{sub 2} under 100 bar hydrogen atmosphere. The material was characterized by solid-state NMR which showed the characteristic features of Mg(BH{sub 4}){sub 2}, together with those of higher borohydride species. High pressure DSC and TPD-MS showed thermal behaviour similar to that of Mg(BH{sub 4}){sub 2} but with broadened signals. In situ synchrotron X-ray powder diffraction confirmed the amorphous state of the material and showed the typical crystalline decomposition products of Mg(BH{sub 4}){sub 2} at elevated temperatures.

  7. Facile and One Pot Synthesis of Gold Nanoparticles Using Tetraphenylborate and Polyvinylpyrrolidone for Selective Colorimetric Detection of Mercury Ions in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Sidhureddy Boopathi

    2012-01-01

    Full Text Available In this work, we reported for the first time, a facile and one step synthesis of gold nanoparticles from HAuCl4, employing tetraphenylborate as the reducing agent. The synthesis is not only facile but also yields “dumb-bell-shaped”particles. This shape appears to arise from a possible emulsion of the products of oxidation/decomposition of tetraphenylborate by HAuCl4, surrounding the particle. The size and shape of the AuNPs were characterized by Transmission electron microscopy (TEM and UV-visible Spectroscopy. Interestingly, the addition of polyvinylpyrrolidone (PVP during the synthesis was found to enhance the stability of the nanoparticle dispersion. The particles synthesized under these conditions assume “spherical” shape with the appearance of only transverse surface plasmon resonance band. The highlight of the observations is that the gold nanoparticles synthesized using tetraphenylborate as reducing agent and PVP as stabilizer are highly stable in alkaline medium, in contrast to the synthesis wherein borohydride is used as reducing agent. The AuNPs synthesized using tetraphenylborate and PVP show their mercury sensing behavior only in the alkaline medium. The color of the nanoparticle dispersion undergoes distinct color change from pink to blue with the addition of mercury ions. They also show dramatic selectivity to mercury ions in presence of other interfering ions, Pb2+, Zn2+ and Ca2+.

  8. Development of novel protein-Ag nanocomposite for drug delivery and inactivation of bacterial applications.

    Science.gov (United States)

    Vimala, Kanikireddy; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Ramam, Koduri; Kanny, Krishnan

    2014-02-01

    The potential applications, in the biomedical fields, of curcumin loaded silver nanocomposite were studied by using bovine serum albumin (protein) and acrylamide. The design and development of silver nanoparticles with small size and adequate stability are very important, in addition to their applicability, particularly in bio-medicine. In this study, silver nanoparticles were prepared by chemical reduction method, employing sodium borohydride as the reducing agent for silver nanoparticles. The properties of the protein hydrogels formed were characterized via Fourier transform infrared spectroscopy and X-ray diffraction analyses. The size and its distribution, and formation of metal nanoparticles were confirmed by transmission electron microscopy indicating the diameter of the silver nanoparticles in the range of 3-8 nm. The thermal study of curcumin-silver nanocomposite hydrogels was determined by thermo-gravimetric analysis. In order to increase the antibacterial activity of theses inorganic nanomaterials, natural biological curcumin was incorporated into the protein hydrogel. The main emphasis in this investigation is to increase the antibacterial activity of the hydrogels by loading curcumin, for advanced medical application and as a model drug.

  9. Novel Method for Indirect Determination of Iodine in Marine Products by Atomic Fluorescence Spectrometry

    Institute of Scientific and Technical Information of China (English)

    LU Jian-ping; TAN Fang-wei; TANG Qiong; JIANG Tian-cheng

    2013-01-01

    A method for the determination of iodine based upon compound H2HgI4,formed between I-and Hg2+ in nitric acid and extracted in methyl isobutyl ketone(MIBK),was developed via atomic fluorescence spectrometry(AFS).After the compound is reduced with potassium borohydrid(KBH4),the resultant mercury vapor was injected into the instrument and iodine was,therefore,indirectly determined.Experimental parameters such as the conditions of extraction reagents,aqueous phase acidity,elemental mercury diffusion temperature in a vial and other factors were investigated and optimized.Under the optimum experimental conditions,this method shows a detection limit of 0.038 μg/L iodine and a linear relationship between 0.04-20 μg/L.The method was applied to determining the iodine content in marine duck eggs,kelps,laver and Ganoderma lucidum spirulina,showing a relative standard deviation(RSD) of 2.15% and the recoveries in the range of 98.1%-102.5%.

  10. Ultra-Thin Films of Poly(acrylic acid/Silver Nanocomposite Coatings for Antimicrobial Applications

    Directory of Open Access Journals (Sweden)

    Alaa Fahmy

    2016-01-01

    Full Text Available In this work not only colloids of poly(acrylic acid (PAA embedded with silver nanoparticles (Ag-NPs but thin films (10 nm also were deposited using electrospray deposition technique (ESD. A mixture of sodium borohydride (NaBH4 and ascorbic acid (AA were utilized to reduce the silver ions to generate Ag-NPs in the PAA matrix. Moreover, sodium tricitrate was used to stabilize the prepared colloids. The obtained colloids and films were characterized using UV-visible, transmission electron microscopy (TEM. UV-Vis results reveal that an absorption peak at 425 nm was observed in presence of PAA-AgNO3-AA-citrate-NaBH4. This peak is attributed to the well-known surface plasmon resonance of the silver bound in Ag-NPs, while the reduction was rendering and/or inhibiting in absence of the AA and citrate. FTIR spectroscopy was used to study the mechanism of the reaction process of silver nitrate with PAA. TEM images showed the well dispersion of Ag-NPs in the PAA matrix with average particle size of 8 nm. The antimicrobial studies showed that the Ag-NPs embedded in the PAA matrix have proven to have a significant antimicrobial activity against E. coli, B. subtilis, and C. albicans.

  11. An analytical method for determination of mercury by cold vapor atomic absorption spectroscopy; Determinazione di mercurio. Metodo per spettrometria di assorbimento atomico a vapori freddi (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, L. [Rome Univ. La Sapienza, Rome (Italy); Mastroianni, D.; Capri, S.; Pettine, M. [CNR, Rome (Italy). Ist. di Ricerca sulle Acque; Spezia, S.; Bettinelli, M. [ENEL, Unified Modelling Language, Piacenza (Italy)

    1999-09-01

    An analytical procedure for the determination of total mercury in wastewaters and natural waters is described. Aqueous samples are fast digested with nitric acid by using the microwave-oven technique; the analysis of mercury is then performed by cold vapor atomic absorption spectrometry (CV-AAS) using two possible instrumental apparatus (batch system or flow injection). Sodium borohydride is used as the reducing agent for mercury in solution (Method A). The use of amalgamation traps on gold for the preconcentration of mercury lowers the detection limit of the analyte (Method B). [Italian] Viene descritta una procedura analitica per la determinazione del mercurio totale in acque di scarico e naturali. Il campione acquoso viene sottoposto a mineralizzazione con acido nitrico in forno a microonde e analizzato mediante spettroscopia di assorbimento atomico a vapori freddi (CV-AAS) in due possibili configurazioni strumentali (sistema batch oppure flow injection), utilizzando sodio boro idruro come agente riducente del mercurio (metodo A). L'impiego della trappola di oro per la preconcentrazione del mercurio mediante amalgama consente di determinare l'analita a livelli di pochi ng/L (metodo B).

  12. STUDY ON SYNTHESIS OF 2-PHENYL-4-FORMYLSELENAZOLE%2-苯基-4-硒唑甲醛的合成工艺研究

    Institute of Scientific and Technical Information of China (English)

    程吉; 陈宝泉; 赵婕; 赵海川

    2012-01-01

    以硒粉、硼氢化钠、苯腈、1,3-二氯丙酮为原料,合成了2-苯基-4-硒唑甲醛,考察了反应条件对收率的影响,最佳反应条件为:n(乌洛托品):n(2-苯基-4-氯甲基硒唑):n(乙酸)=1.6:1:15,回流反应6h,收率可达76.2%.产物结构经元素分析、IR、1H NMR及ESI-MS等方法进行了确证.%2-Phenyl-4-formylselenazole was synthesized from selenium, sodium borohydride, benzoni-trile and 1,3-dichloroacetone. The effects of the reaction conditions to the yield were checked. The optimal reaction conditions of the oxidation step were found as follows: n(hexamethylenetetramine) : n(2-phenyl-4-chloromethylseienazole) : n(acetic acid) = l. 6 : 1 : 15, tke reflux reaction time 6 hours. The total yield could reach 76. 2%. The target compound was confirmed by elemental analysis, IR, 1 H NMR and ESI-MS.

  13. Chiral [Mo3S4H3(diphosphine)3]+ hydrido clusters and study of the effect of the metal atom on the kinetics of the acid-assisted substitution of the coordinated hydride: Mo vs W.

    Science.gov (United States)

    Algarra, Andrés G; Basallote, Manuel G; Fernández-Trujillo, M Jesús; Feliz, Marta; Guillamón, Eva; Llusar, Rosa; Sorribes, Ivan; Vicent, Cristian

    2010-07-05

    The molybdenum(IV) cluster hydrides of formula [Mo(3)S(4)H(3)(diphosphine)(3)](+) with diphosphine = 1,2-(bis)dimethylphosphinoethane (dmpe) or (+)-1,2-bis-(2R,5R)-2,5-(dimethylphospholan-1-yl)ethane ((R,R)-Me-BPE) have been isolated in moderate to high yields by reacting their halide precursors with borohydride. Complex [Mo(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) as well as its tungsten analogue are obtained in optically pure forms. Reaction of the incomplete cuboidal [M(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) (M = Mo, W) complex with acids in CH(2)Cl(2) solution shows kinetic features similar to those observed for the related incomplete cuboidal [W(3)S(4)H(3)(dmpe)(3)](+) cluster. However, there is a decrease in the value of the rate constants that is explained as a result of the higher steric effect of the diphosphine. The rate constants for the reaction of both clusters [M(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) (M = Mo, W) with HCl have similar values, thus indicating a negligible effect of the metal center on the kinetics of reaction of the hydrides coordinated to any of both transition metals.

  14. Electrocatalysts Prepared by Galvanic Replacement

    Directory of Open Access Journals (Sweden)

    Athanasios Papaderakis

    2017-03-01

    Full Text Available Galvanic replacement is the spontaneous replacement of surface layers of a metal, M, by a more noble metal, Mnoble, when the former is treated with a solution containing the latter in ionic form, according to the general replacement reaction: nM + mMnoblen+ → nMm+ + mMnoble. The reaction is driven by the difference in the equilibrium potential of the two metal/metal ion redox couples and, to avoid parasitic cathodic processes such as oxygen reduction and (in some cases hydrogen evolution too, both oxygen levels and the pH must be optimized. The resulting bimetallic material can in principle have a Mnoble-rich shell and M-rich core (denoted as Mnoble(M leading to a possible decrease in noble metal loading and the modification of its properties by the underlying metal M. This paper reviews a number of bimetallic or ternary electrocatalytic materials prepared by galvanic replacement for fuel cell, electrolysis and electrosynthesis reactions. These include oxygen reduction, methanol, formic acid and ethanol oxidation, hydrogen evolution and oxidation, oxygen evolution, borohydride oxidation, and halide reduction. Methods for depositing the precursor metal M on the support material (electrodeposition, electroless deposition, photodeposition as well as the various options for the support are also reviewed.

  15. Characterization and electrocatalytic properties of sonochemical synthesized PdAg nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Godinez-Garcia, Andres, E-mail: agodinez@qro.cinvestav.mx [Depto. Materiales, Centro de Investigacion y de Estudios Avanzados del IPN, Libramiento norponiente 2000, Fracc. Real de Juriquilla, C.P. 76230 Santiago de Queretaro, Qro. (Mexico); Perez-Robles, Juan Francisco [Depto. Materiales, Centro de Investigacion y de Estudios Avanzados del IPN, Libramiento norponiente 2000, Fracc. Real de Juriquilla, C.P. 76230 Santiago de Queretaro, Qro. (Mexico); Martinez-Tejada, Hader Vladimir [Grupo de Energia y Termodinamica, Universidad Pontificia Bolivariana, Medellin, Antioquia C.P. 050031 (Colombia); Solorza-Feria, Omar [Depto. Quimica, CINVESTAV-IPN, Av. IPN 2508, A. P. 14-740, 07360 D.F. Mexico (Mexico)

    2012-06-15

    High intensity ultrasound was used in the synthesis of PdAg nanoparticles. PdAg nanoparticles were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). Catalytic properties for oxygen reduction reaction (ORR) were determined by electrochemical techniques of cyclic voltammetry (CV) and thin-film rotating disk electrode (TF-RDE). Finally the electrocatalyst was tested as a cathode in a single polymer electrolyte membrane fuel cell (PEMFC). Sonochemical synthesis (SS) decreased the overpotential required for the ORR and increased the double-layer capacitance (DLC) respect to the sodium borohydride reduction method due to a better distribution on vulcan carbon support. The electrocatalytic activity of the nanometric bimetallic electrocatalyst for the ORR in acid media showed a favorable multielectron charge transfer process (n = 4e{sup -}) to water formation. The performance of the membrane electrode assembly (MEA) prepared with dispersed PdAg/C as a cathode catalyst in a single PEMFC is lower in comparison to platinum. - Highlights: Black-Right-Pointing-Pointer Sonochemical synthesized PdAg nanoparticles supported on carbon were produced. Black-Right-Pointing-Pointer The material showed catalytic properties for the oxygen reduction reaction (ORR). Black-Right-Pointing-Pointer The ORR favored the pathway to water formation.

  16. Preparation and characterization of Pt-CeO2/C and Pt-TiO2/C electrocatalysts with improved electrocatalytic activity for methanol oxidation

    Science.gov (United States)

    Hameed, R. M. Abdel; Amin, R. S.; El-Khatib, K. M.; Fetohi, Amani E.

    2016-03-01

    Pt-TiO2/C and Pt-CeO2/C electrocatalysts were synthesized by solid state reaction of TiO2/C and CeO2/C powders using intermittent microwave heating, followed by chemical reduction of platinum ions using mixed reducing agents of ethylene glycol and sodium borohydride. The crystal structure, surface morphology and chemical composition of prepared electrocatalysts were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). The phase angle values of different Pt diffraction planes in Pt-TiO2/C and Pt-CeO2/C were shifted in the positive direction relative to those in Pt/C. Pt particles with diameter values of 3.06 and 2.78 nm were formed in Pt-TiO2/C and Pt-CeO2/C, respectively. The electrochemical performance of prepared electrocatalysts was examined using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Pt-CeO2/C showed an enhanced oxidation current density when compared to Pt/C. Long time oxidation test at Pt-TiO2/C and Pt-CeO2/C revealed their improved stability. Lower charge transfer resistance values were estimated at Pt-metal oxide/C electrocatalysts.

  17. Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment

    Science.gov (United States)

    Saleh, Tawfik A.; Al-Shalalfeh, Mutasem M.; Al-Saadi, Abdulaziz A.

    2016-08-01

    Graphene functionalized with polyamidoamine dendrimer, decorated with silver nanoparticles (G-D-Ag), was synthesized and evaluated as a substrate with surface-enhanced Raman scattering (SERS) for methimazole (MTZ) detection. Sodium borohydride was used as a reducing agent to cultivate silver nanoparticles on the dendrimer. The obtained G-D-Ag was characterized by using UV-vis spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (TEM), Fourier-transformed infrared (FT-IR) and Raman spectroscopy. The SEM image indicated the successful formation of the G-D-Ag. The behavior of MTZ on the G-D-Ag as a reliable and robust substrate was investigated by SERS, which indicated mostly a chemical interaction between G-D-Ag and MTZ. The bands of the MTZ normal spectra at 1538, 1463, 1342, 1278, 1156, 1092, 1016, 600, 525 and 410 cm-1 were enhanced due to the SERS effect. Correlations between the logarithmical scale of MTZ concentrations and SERS signal intensities were established, and a low detection limit of 1.43 × 10-12 M was successfully obtained. The density functional theory (DFT) approach was utilized to provide reliable assignment of the key Raman bands.

  18. Controllable Synthesis and Tunable Photocatalytic Properties of Ti(3+)-doped TiO2.

    Science.gov (United States)

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-06-05

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti(3+)-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti(4+) on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti(3+)-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity.

  19. 稳定分散的纳米银溶胶的制备及其表征%Preparation and Characterization of Stable Dispersive Colloidal Silver Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    王悦辉; 周济; 王婷

    2007-01-01

    Stable aqueous dispersive colloidal Ag nanoparticles were prepared by reducing silver nitrate with sodium borohydride in the presence of 3-mercaptopropionic acid. The formation process of the Ag nanoparticles was investigated by UV-Visible spectroscopy and transmission electron microscopy. The results show that the spherical and rodlike particles and aggregates are formed in the initial stage of the reaction, then the rodlike particles and aggregates are gradually decomposed into small Spherical particles, and the final obtained Ag nanoparticles with an average size of 8 nm are in uniform shapes and narrow size distribution, and the colloid remains stable for more than one month, which makes it convenient for use in practice. The presence of capping agent plays an extra role over nanoparticles stabilization and morphology.The presence of capping agent on the surface of Ag nanoparticle is confirmed by the X-ray photoelectron spectroscopy. It is found that Ag nanoparticles are negatively charged in alkaline condition, whereas they are positively charged in acid condition. Electrosteric effect is responsible for their long-term stability.

  20. Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst

    Science.gov (United States)

    Jin, Zhao; Liu, Chang; Qi, Kun; Cui, Xiaoqiang

    2017-01-01

    Non-noble metal nanoparticles are becoming more and more important in catalysis recently. Cu/CuO nanoclusters on highly ordered TiO2 nanotube arrays are successfully developed by a surfactant-free photoreduction method. This non-noble metal Cu/CuO-TiO2 catalyst exhibits excellent catalytic activity and stability for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with the presence of sodium borohydride (NaBH4). The rate constant of this low-cost Cu/CuO based catalyst is even higher than that of the noble metal nanoparticles decorated on the same TiO2 substrate. The conversion efficiency remains almost unchanged after 7 cycles of recycling. The recycle process of this Cu/CuO-TiO2 catalyst supported by Ti foil is very simple and convenient compared with that of the common powder catalysts. This catalyst also exhibited great catalytic activity to other organic dyes, such as methylene blue (MB), rhodamine B (RhB) and methyl orange (MO). This highly efficient, low-cost and easily reusable Cu/CuO-TiO2 catalyst is expected to be of great potential in catalysis in the future. PMID:28071708