WorldWideScience

Sample records for borehole seismic imaging

  1. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  2. Seismic imaging in the eastern Scandinavian Caledonides: siting the 2.5 km deep COSC-2 borehole, central Sweden

    Science.gov (United States)

    Juhlin, Christopher; Hedin, Peter; Gee, David G.; Lorenz, Henning; Kalscheuer, Thomas; Yan, Ping

    2016-05-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) project, a contribution to the International Continental Scientific Drilling Program (ICDP), aims to provide a deeper understanding of mountain belt dynamics. Scientific investigations include a range of topics, from subduction-related tectonics to the present-day hydrological cycle. COSC investigations and drilling activities are focused in central Scandinavia, where rocks from the middle to lower crust of the orogen are exposed near the Swedish-Norwegian border. Here, rock units of particular interest occur in the Seve Nappe Complex (SNC) of the so-called Middle Allochthon and include granulite facies migmatites (locally with evidence of ultra-high pressures) and amphibolite facies gneisses and mafic rocks. This complex overlies greenschist facies metasedimentary rocks of the dolerite-intruded Sarv Nappes and underlying, lower grade Jamtlandian Nappes (Lower Allochthon). Reflection seismic profiles have been an important component in the activities to image the subsurface structure in the area. Subhorizontal reflections in the upper 1-2 km are underlain and interlayered with strong west- to northwest-dipping reflections, suggesting significant east-vergent thrusting. Two 2.5 km deep fully cored boreholes are a major component of the project, which will improve our understanding of the subsurface structure and tectonic history of the area. Borehole COSC-1 (IGSN: http://hdl.handle.net/10273/ICDP5054EEW1001), drilled in the summer of 2014, targeted the subduction-related Seve Nappe Complex and the contact with the underlying allochthon. The COSC-2 borehole will be located further east and will investigate the lower grade, mainly Cambro-Silurian rocks of the Lower Allochthon, the Jamtlandian decollement, and penetrate into the crystalline basement rocks to identify the source of some of the northwest-dipping reflections. A series of high-resolution seismic profiles have been acquired along a composite ca

  3. Development of a hydraulic borehole seismic source

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, R.P.

    1998-04-01

    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  4. 3D reflection seismic imaging at the 2.5 km deep COSC-1 scientific borehole, central Scandinavian Caledonides

    Science.gov (United States)

    Hedin, Peter; Almqvist, Bjarne; Berthet, Théo; Juhlin, Christopher; Buske, Stefan; Simon, Helge; Giese, Rüdiger; Krauß, Felix; Rosberg, Jan-Erik; Alm, Per-Gunnar

    2016-10-01

    The 2.5 km deep scientific COSC-1 borehole (ICDP 5054-1-A) was successfully drilled with nearly complete core recovery during spring and summer of 2014. Downhole and on-core measurements through the targeted Lower Seve Nappe provide a comprehensive data set. An observed gradual increase in strain below 1700 m, with mica schists and intermittent mylonites increasing in frequency and thickness, is here interpreted as the basal thrust zone of the Lower Seve Nappe. This high strain zone was not fully penetrated at the total drilled depth and is thus greater than 800 m in thickness. To allow extrapolation of the results from downhole logging, core analysis and other experiments into the surrounding rock and to link these with the regional tectonic setting and evolution, three post-drilling high-resolution seismic experiments were conducted in and around the borehole. One of these, the first 3D seismic reflection land survey to target the nappe structures of the Scandinavian Caledonides, is presented here. It provides new information on the 3D geometry of structures both within the drilled Lower Seve Nappe and underlying rocks down to at least 9 km. The observed reflectivity correlates well with results from the core analysis and downhole logging, despite challenges in processing. Reflections from the uppermost part of the Lower Seve Nappe have limited lateral extent and varying dips, possibly related to mafic lenses or boudins of variable character within felsic rock. Reflections occurring within the high strain zone, however, are laterally continuous over distances of a kilometer or more and dip 10-15° towards the southeast. Reflections from structures beneath the high strain unit and the COSC-1 borehole can be followed through most of the seismic volume down to at least 9 km and have dips of varying degree, mainly in the east-west thrust direction of the orogen.

  5. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  6. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996

    Energy Technology Data Exchange (ETDEWEB)

    Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben; Rust, Colleen F.

    2007-01-28

    This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.

  7. Development of the Borehole 2-D Seismic Tomography Software Using MATLAB

    Science.gov (United States)

    Nugraha, A. D.; Syahputra, A.; Fatkhan, F.; Sule, R.; Hendriyana, A.

    2011-12-01

    We developed 2-D borehole seismic tomography software that we called "EARTHMAX-2D TOMOGRAPHY" to image subsurface physical properties including P-wave and S-wave velocities between two boreholes. We used Graphic User Interface (GUI) facilities of MATLAB programming language to create the software. In this software, we used travel time of seismic waves from source to receiver by using pseudo bending ray tracing method as input for tomography inversion. We can also set up a model parameterization, initial velocity model, ray tracing processes, conduct borehole seismic tomography inversion, and finally visualize the inversion results. The LSQR method was applied to solve of tomography inversion solution. We provided the Checkerboard Test Resolution (CTR) to evaluate the model resolution of the tomography inversion. As validation of this developed software, we tested it for geotechnical purposes. We then conducted data acquisition in the "ITB X-field" that is located on ITB campus. We used two boreholes that have a depth of 39 meters. Seismic wave sources were generated by impulse generator and sparker and then they were recorded by borehole hydrophone string type 3. Later on, we analyzed and picked seismic arrival time as input for tomography inversion. As results, we can image the estimated weathering layer, sediment layer, and basement rock in the field depicted by seismic wave structures. More detailed information about the developed software will be presented. Keywords: borehole, tomography, earthmax-2D, inversion

  8. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, Bjorn N.P. [Paulsson, Inc.; Thornburg, Jon A [Paulsson, Inc.; He, Ruiqing [Paulsson, Inc.

    2015-04-21

    that the system can record events at magnitudes much smaller than M-2.6 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). Simultaneously with the fiber optic based seismic 3C vector sensors we are using the lead-in fiber to acquire Distributed Acoustic Sensor (DAS) data from the surface to the bottom of the vector array. While the DAS data is of much lower quality than the vector sensor data it provides a 1 m spatial sampling of the downgoing wavefield which will be used to build the high resolution velocity model which is an essential component in high resolution imaging and monitoring.

  9. Borehole-explosion and air-gun data acquired in the 2011 Salton Seismic Imaging Project (SSIP), southern California: description of the survey

    Science.gov (United States)

    Rose, Elizabeth J.; Fuis, Gary S.; Stock, Joann M.; Hole, John A.; Kell, Annie M.; Kent, Graham; Driscoll, Neal W.; Goldman, Mark; Reusch, Angela M.; Han, Liang; Sickler, Robert R.; Catchings, Rufus D.; Rymer, Michael J.; Criley, Coyn J.; Scheirer, Daniel S.; Skinner, Steven M.; Slayday-Criley, Coye J.; Murphy, Janice M.; Jensen, Edward G.; McClearn, Robert; Ferguson, Alex J.; Butcher, Lesley A.; Gardner, Max A.; Emmons, Iain; Loughran, Caleb L.; Svitek, Joseph R.; Bastien, Patrick C.; Cotton, Joseph A.; Croker, David S.; Harding, Alistair J.; Babcock, Jeffrey M.; Harder, Steven H.; Rosa, Carla M.

    2013-01-01

    earthquake energy can travel through the sediments. All of these factors determine how hard the earth will shake during a major earthquake. If we can improve on our understanding of how and where earthquakes will occur, and how strong their resultant shaking will be, then buildings can be designed or retrofitted accordingly in order to resist damage and collapse, and emergency plans can be adequately prepared. In addition, SSIP will investigate the processes of rifting and magmatism in the Salton Trough in order to better understand this important plate-boundary region. The Salton Trough is a unique rift in that subsidence is accompanied by huge influxes of infilling sediment from the Colorado River. Volcanism that accompanies the subsidence here is muted by these influxes of sediment. The Salton Trough, in the central part of the Imperial Valley, is apparently made up of entirely new crust: young sediment in the upper crust and basaltic intrusive rocks in the mid-to-lower crust (Fuis and others, 1984). Similar to the ultrasound and computed tomography (CT) scans performed by the medical industry, seismic imaging is a collection of techniques that enable scientists to obtain a picture of what is underground. The petroleum industry routinely uses these techniques to search for oil and gas at relatively shallow depths; however, the scope of this project demanded that we image as much as 30 km into the Earth’s crust. This project generated and recorded seismic waves, similar to sound waves, which move downward into the Earth and are bent (refracted) or echoed (reflected) back to the surface. SSIP acquired data in a series of intersecting lines that cover key areas of the Salton Trough. The sources of sound waves were detonations (shots) in deep boreholes, designed to create energy equivalent to magnitude 1–2 earthquakes. The study region routinely experiences earthquakes of these magnitudes, but earthquakes are not located in such a way as to permit us to create the

  10. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  11. Borehole Seismic Monitoring of Injected CO2 at the Frio Site

    Energy Technology Data Exchange (ETDEWEB)

    Daley, Thomas M.; Myer, Larry R.; Hoversten, G.M.; Peterson, JohnE.; Korneev, Valeri A.

    2006-04-21

    As part of a small scale sequestration test (about 1500 tonsof CO2) in a saline aquifer, time-lapse borehole seismic surveys wereconducted to aid in characterization of subsurface CO2 distribution andmaterial property changes induced by the injected CO2. A VSP surveydemonstrated a large increase (about 75 percent) in seismic reflectivitydue to CO2 injection and allowed estimation of the spatial extent of CO2induced changes. A crosswell survey imaged a large seismic velocitydecrease (up to 500 m/s) within the injection interval and provided ahigh resolution image of this velocity change which maps the subsurfacedistribution of CO2 between two wells. Numerical modeling of the seismicresponse uses the crosswell measurements to show that this small CO2volume causes a large response in the seismic reflectivity. This resultdemonstrates that seismic detection of small CO2 volumes in salineaquifers is feasible and realistic.

  12. System and method for generating 3D images of non-linear properties of rock formation using surface seismic or surface to borehole seismic or both

    Science.gov (United States)

    Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.; Guyer, Robert A.; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2016-06-07

    A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acoustic waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.

  13. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  14. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson Geophysical Services

    2008-03-31

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  15. Borehole seismic in crystalline environment at the COSC-project in Central Sweden

    Science.gov (United States)

    Krauß, Felix; Hedin, Peter; Almqvist, Bjarne; Simon, Helge; Giese, Rüdiger; Buske, Stefan; Juhlin, Christopher; Lorenz, Henning

    2016-04-01

    As support for the COSC drilling project (Collisional Orogeny in the Scandinavian Caledonides), an extensive seismic survey took place during September and October 2014 in and around the newly drilled 2.5 km deep COSC-1 borehole. The main aim of the COSC project is to better understand orogenic processes in past and recently active mountain belts. For this, the Scandinavian Caledonides provide a well preserved case of Paleozoic collision of the Laurentia and Baltica continental plates. Surface geology and geophysical data provide knowledge about the geometry of the Caledonian structure. The reflectivity geometry of the upper crust was imaged by regional seismic data and the resistivity structure by magnetotelluric methods. The crustal model was refined by seismic pre-site surveys in 2010 and 2011 to define the exact position of the first borehole, COSC-1. The completely cored COSC-1 borehole was drilled in Central Sweden through the Seve Nappe Complex, a part of the Middle Allochthon of the Scandinavian Caledonides that comprises units originating from the outer margin of Baltica. The upper 2350 m consist of alternating layers of highly strained felsic and calc-silicate gneisses and amphibolites. Below 1710 m the mylonite content increases successively and indicates a high strain zone of at least 800 m thickness. At ca. 2350 m, the borehole leaves the Seve Nappe Complex and enters underlying mylonitised lower grade metasedimentary units of unknown tectonostratigraphic position. The seismic survey consisted of three parts: a limited 3D-survey, a high resolution zero-offset VSP (vertical seismic profile) and a multi-azimuthal walkaway VSP (MSP) experiment with sources and receivers along three surface profiles and receivers at seven different depth levels of the borehole. For the zero-offset VSP (ZVSP) a hydraulic hammer source was used and activated over a period of 20 s as a sequence of impacts with increasing hit frequency. The wave field was recorded with 3

  16. The derivation of an anisotropic velocity model from combined surface and borehole seismic experiments at the COSC-1 borehole, central Sweden

    Science.gov (United States)

    Simon, Helge; Krauß, Felix; Hedin, Peter; Buske, Stefan; Giese, Rüdiger; Juhlin, Christopher

    2016-04-01

    The Scandinavian Caledonides provide a well preserved example of a Paleozoic continent-continent collision, where the surface geology in combination with geophysical data provide control of the geometry of parts of the Caledonian structure. The project COSC (Collisional Orogeny in the Scandinavian Caledonides) investigates the structure and physical conditions of the orogen units and the underlying basement with two approximately 2.5 km deep fully cored boreholes in western Jämtland, central Sweden. In 2014 the COSC-1 borehole was successfully drilled through the Seve Nappe Complex. This unit, mainly consisting of gneisses, belongs to the so-called Middle Allochthons and has been ductilely deformed and transported during collisional orogeny. A major seismic survey was conducted in and around the COSC-1 borehole which comprised both seismic reflection and transmission experiments. Combined with core analysis and downhole logging, the survey will allow extrapolation of the structures away from the borehole. The survey consisted of three parts: 1) a high-resolution zero-offset Vertical Seismic Profile (VSP), 2) a multi-azimuthal walkaway VSP in combination with three long offset surface receiver lines, and 3) a limited 3D seismic survey. Data from the multi-azimuthal walkaway VSP experiment and the long offset surface lines were used to derive a detailed velocity model around the borehole from the inversion of first arrival traveltimes. The comparison of velocities from these tomography results with a velocity function calculated from the zero-offset VSP revealed clear differences in velocities for mainly horizontally and vertically traveling waves. Therefore, an anisotropic VTI model was constructed, using the P-wave velocity function from zero-offset VSP and the Thomson parameters ɛ and δ. The latter were partly derived from ultrasonic lab measurements on COSC-1 core samples. Traveltimes were calculated with an anisotropic eikonal solver and serve as the basis

  17. Imaging seismic reflections

    NARCIS (Netherlands)

    Op 't Root, Timotheus Johannes Petrus Maria

    2011-01-01

    The goal of reflection seismic imaging is making images of the Earth subsurface using surface measurements of reflected seismic waves. Besides the position and orientation of subsurface reflecting interfaces it is a challenge to recover the size or amplitude of the discontinuities. We investigate tw

  18. Numerical Simulation of Borehole Seismic Scattered Wave Imaging for the Detection of Underground Obstacles%地下障碍物探测井中地震散射波成像数值模拟

    Institute of Scientific and Technical Information of China (English)

    刘伍; 曾来; 司永峰; 沈恩来

    2012-01-01

      井中地震具有多波接收、高精度、高分辨率、能量传播距离短、接近探测目标、避开低速带等优点,在工程中得到了越来越广泛的应用。地震散射波是由地下三维不均匀体引起的地震波的变化,因此散射波成像特征与不均匀体分布情况密切相关。采用声波方程有限差分法对城市地下不均匀体如桩基、深埋管道等的散射波成像特征进行了数值模拟和分析;根据理论模拟给出了多种探测方式,并讨论了各方式的适用条件及应注意的问题。为城市地下空间开发中地下障碍物探测提供了理论指导。%  Borehole seismic imaging has been widely applied in a variety of engineering projects, and its advantages include multi-wave receiving, accuracy, high resolution, a short energy transfer distance, ease of use, and the avoidance of low-speed zones. Scattered seismic waves are generated when the original waves pass through subsurface 3D inhomogeneous layers, and the imaging characteristics of such scattered waves are closely related to the characteristics of the inhomogeneous body. This paper discusses the numerical simulation and analysis of the imaging features of scattered waves from typical inhomogeneous bodies in urban underground spaces (e.g., piles and deep-buried tubes) by applying the finite difference method to the acoustic equation. Several detection methods are used in the theoretical simulations, with the relevant conditions and other important points highlighted for each method, and we present theoretical guidance for detecting underground obstructions in urban developments.

  19. Characterization of magnetized ore bodies based on three-component borehole magnetic and directional borehole seismic measurements

    Science.gov (United States)

    Virgil, Christopher; Neuhaus, Martin; Hördt, Andreas; Giese, Rüdiger; Krüger, Kay; Jurczyk, Andreas; Juhlin, Christopher; Juhojuntti, Niklas

    2016-04-01

    In the last decades magnetic prospecting using total field data was used with great success for localization and characterization of ferromagnetic ore bodies. Especially borehole magnetic measurements reveal important constraints on the extent and depth of potential mining targets. However, due to the inherent ambiguity of the interpretation of magnetic data, the resulting models of the distribution of magnetized material, such as iron ore bodies, are not entirely reliable. Variations in derived parameters like volume and estimated ore content of the expected body have significant impact on the economic efficiency of a planned mine. An important improvement is the introduction of three-component borehole magnetic sondes. Modern tools comprise orientation modules which allow the continuous determination of the tool's heading regardless of the well inclination and independent of the magnetic field. Using the heading information the recorded three-component magnetic data can be transferred from the internal tool's frame to the geographic reference frame. The vector information yields a more detailed and reliable description of the ore bodies compared to total field or horizontal and vertical field data. Nevertheless complementary information to constrain the model is still advisable. The most important supplementary information for the interpretation of magnetic data is the knowledge of the structural environment of the target regions. By discriminating dissimilar rock units, a geometrical starting model can be derived, constraining the magnetic interpretation and leading to a more robust estimation of the rock magnetizations distribution. The most common approach to reveal the lithological setting rests upon seismic measurements. However, for deep drilling targets surface seismic and VSP lack the required spatial resolution of 10s of meters. A better resolution is achieved by using directed sources and receivers inside the borehole. Here we present the application of

  20. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  1. Reproducibility in Seismic Imaging

    Directory of Open Access Journals (Sweden)

    González-Verdejo O.

    2012-04-01

    Full Text Available Within the field of exploration seismology, there is interest at national level of integrating reproducibility in applied, educational and research activities related to seismic processing and imaging. This reproducibility implies the description and organization of the elements involved in numerical experiments. Thus, a researcher, teacher or student can study, verify, repeat, and modify them independently. In this work, we document and adapt reproducibility in seismic processing and imaging to spread this concept and its benefits, and to encourage the use of open source software in this area within our academic and professional environment. We present an enhanced seismic imaging example, of interest in both academic and professional environments, using Mexican seismic data. As a result of this research, we prove that it is possible to assimilate, adapt and transfer technology at low cost, using open source software and following a reproducible research scheme.

  2. The detection and characterization of natural fractures using P-wave reflection data, multicomponent VSP, borehole image logs and the in-situ stress field determination

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, P. [Coleman Research Corp., Orlando, FL (United States)

    1995-04-01

    The objectives of this project are to detect and characterize fractures in a naturally fractured tight gas reservoir, using surface seismic methods, borehole imaging logs, and in-situ stress field data. Further, the project aims to evaluate the various seismic methods as to their effectiveness in characterizing the fractures, and to formulate the optimum employment of the seismic methods as regards fracture characterization.

  3. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Martin G.; Price, Randall K.

    2007-02-01

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  4. OGS improvements in 2012 in running the Northeastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, Damiano; Romanelli, Marco; Barnaba, Carla; Bragato, Pier Luigi; Durì, Giorgio

    2013-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB

  5. An acoustic imaging system of migration technique used in borehole

    Institute of Scientific and Technical Information of China (English)

    LIN Weijun; WU Nan; SUN Jian; ZHANG Hailan

    2008-01-01

    In order to detect the damage of casing boreholes, an acoustic imaging method with a two-dimensional ultrasonic array was presented. Each element of the array independently emits down ultrasonic waves, the echoes received by all elements are sampled and transmitted to a computer on ground surface, where the dynamic migration method is used to form a 2 or 3-dimensional image of the situation in the borehole. The numerical simulation and experiment are conducted that demonstrate a high imaging accuracy with a small number of elements used in array. Since the delay circuits used in the traditional phased array imaging system is not needed in this system, and all data process could be completed in a ground system,the complexity and the volume of system in borehole may be significantly simplified, which is critical to the borehole instrument.

  6. Seismic signatures of partial saturation on acoustic borehole modes

    NARCIS (Netherlands)

    Chao, G.E.; Smeulders, D.M.J.; Van Dongen, M.E.H.

    2007-01-01

    We present an exact theory of attenuation and dispersion of borehole Stoneley waves propagating along porous rocks containing spherical gas bubbles by using the Biot theory. An effective frequency-dependent fluid bulk modulus is introduced to describe the dynamic (oscillatory) behavior of the gas bu

  7. Chemical energy system for a borehole seismic source. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Engelke, R.; Hedges, R.O.

    1996-03-01

    We describe a detonation system that will be useful in the seismological examination of geological structures. The explosive component of this system is produced by the mixing of two liquids; these liquids are classified as non-explosive materials by the Department of Transportation. This detonation system could be employed in a borehole tool in which many explosions are made to occur at various points in the borehole. The explosive for each explosion would be mixed within the tool immediately prior to its being fired. Such an arrangement ensures that no humans are ever in proximity to explosives. Initiation of the explosive mixture is achieved with an electrical slapper detonator whose specific parameters are described; this electrical initiation system does not contain any explosive. The complete electrical/mechanical/explosive system is shown to be able to perform correctly at temperatures {le}120{degrees}C and at depths in a water-filled borehole of {le} 4600 ft (i.e., at pressures of {le}2000 psig).

  8. OGS improvements in 2012 in running the North-eastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, D.; Romanelli, M.; Barnaba, C.; Bragato, P. L.; Durì, G.

    2014-07-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the North-eastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data centre in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of North-eastern Italy. The south-western edge of the OGS seismic network (Fig. 1) stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML = 5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on 20 May 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the North-eastern Italy Seismic Network, including details of

  9. Seismic Wave Velocities in Deep Sediments in Poland: Borehole and Refraction Data Compilation

    Directory of Open Access Journals (Sweden)

    Polkowski Marcin

    2015-06-01

    Full Text Available Sedimentary cover has significant influence on seismic wave travel times and knowing its structure is of great importance for studying deeper structures of the Earth. Seismic tomography is one of the methods that require good knowledge of seismic velocities in sediments and unfortunately by itself cannot provide detailed information about distribution of seismic velocities in sedimentary cover. This paper presents results of P-wave velocity analysis in the old Paleozoic sediments in area of Polish Lowland, Folded Area, and all sediments in complicated area of the Carpathian Mountains in Poland. Due to location on conjunction of three major tectonic units - the Precambrian East European Craton, the Paleozoic Platform of Central and Western Europe, and the Alpine orogen represented by the Carpathian Mountains the maximum depth of these sediments reaches up to 25 000 m in the Carpathian Mountains. Seismic velocities based on 492 deep boreholes with vertical seismic profiling and a total of 741 vertical seismic profiles taken from 29 seismic refraction profiles are analyzed separately for 14 geologically different units. For each unit, velocity versus depth relations are approximated by second or third order polynomials.

  10. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; Ampuero, Jean Paul; Leprince, Sebastien; Michel, Remi

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  11. Imaging for Borehole Wall by a Cylindrical Linear Phased Array

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bi-Xing; SHI Fang-Fang; WU Xian-Mei; GONG Jun-Jie; ZHANG Cheng-Guang

    2010-01-01

    @@ A new ultrasonic cylindrical linear phased array (CLPA) transducer is designed and fabricated for the borehole wall imaging in petroleum logging based on the previous theoretical researches.First,the CLPA transducer,which is made up of numbers of the piezoelectric elements distributed on the surface of a cylinder uniformly,is designed and fabricated.

  12. Stochastic estimation of aquifer geometry using seismic refraction data with borehole depth constraints

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Hubbard, S.S.; Gaines, D.; Korneev, V.; Baker, G.; Watson, D.

    2010-09-01

    We develop a Bayesian model to invert surface seismic refraction data with depth constraints from boreholes for characterization of aquifer geometry and apply it to seismic and borehole datasets collected at the contaminated Oak Ridge National Laboratory site in Tennessee. Rather than the traditional approach of first inverting the seismic arrival times for seismic velocity and then using that information to aid in the spatial interpolation of wellbore data, we jointly invert seismic first arrival time data and wellbore-based information, such as depths of key lithological boundaries. We use a staggered-grid finite-difference algorithm with second order accuracy in time and fourth order accuracy in space to model seismic full waveforms and use an automated method to pick the first arrival times. We use Markov Chain Monte Carlo methods to draw many samples from the joint posterior probability distribution, on which we can estimate the key interfaces and their associated uncertainty as a function of horizontal location and depth. We test the developed method on both synthetic and field case studies. The synthetic studies show that the developed method is effective at rigorous incorporation of multiscale data and the Bayesian inversion reduces uncertainty in estimates of aquifer zonation. Applications of the approach to field data, including two surface seismic profiles located 620 m apart from each other, reveal the presence of a low-velocity subsurface zone that is laterally persistent. This geophysically-defined feature is aligned with the plume axis, suggesting it may serve as an important regional preferential flow pathway.

  13. Deep-sea borehole seismological observatories in the western Pacific: temporal variation of seismic noise level and event detection

    Directory of Open Access Journals (Sweden)

    Y. Kaiho

    2006-06-01

    Full Text Available Seismological networks provide critical data for better understanding the dynamics of the Earth; however, a great limitation on existing networks is the uneven distribution of stations. In order to achieve a more uniform distribution of seismic stations, observatories must be constructed in marine areas. The best configuration for oceanic seismic observatories is thought to be placement of seismometers in deep boreholes. Two deep-sea borehole seismological observatories (WP-1 and WP-2 were constructed in the western Pacific and form the initial installations of a 1000 km span network. At present, seismic records of more than 400 total days were retrieved from both the WP-1 and WP-2. Long-term variations in broadband seismic noise spectra (3mHz - 10 Hz in the western Pacific were revealed from these records, and the data showed that ambient seismic noise levels in borehole observatories are comparable to those of the quietest land seismic stations. In addition, there is little temporal variation of noise levels in periods greater than 10 seconds. Due to this low seismic noise environment, many teleseismic events with magnitudes greater than 5 were recorded. It is confirmed that seismic observation in deep-sea borehole gives the best environment for earthquake observation in marine areas.

  14. Automating Shallow Seismic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Steeples, Don W.

    2004-12-09

    This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy

  15. Geophysical borehole logging and optical imaging of the boreholes KR34, KR35 and KR36, at Olkiluoto 2005

    Energy Technology Data Exchange (ETDEWEB)

    Majapuro, J. [Suomen Malmi Oy, Espoo (Finland)

    2005-09-15

    Suomen Malmi Oy conducted geophysical borehole logging and optical imaging surveys of the boreholes KR34, KR35 and KR36 at the Olkiluoto site in Eurajoki during May - June 2005. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are magnetic susceptibility, natural gamma radiation, gamma-gamma density, single point resistance, Wenner-resistivity, borehole radar, full waveform sonic and optical imaging. The assignment included the field work of all surveys, interpretation and processing of the acoustic and borehole radar data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  16. Geological interpretation of borehole image and sonic logs. A case study from the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Vahle, C. [Eriksfiord GmbH, Walldorf (Germany)

    2013-08-01

    Borehole imagers and dipole sonic tools form the ideal pair of instruments for observation and evaluation of structural tilt, faulting and fracturing as well as sediment transport direction and depositional architecture. In addition, the stress field can be inverted in combination with rock mechanical data. The structural tilt and its variation along the well are evaluated in stereograms and projections along the well trace. Changes in structural tilt are attributed to fault block rotation as well as angular unconformities. Fault zones are usually easily recognised in borehole images by e.g. juxtaposition of different strata/facies and deformation of adjacent layering. Integration with micro-scale core data as well as macro-scale seismics, if available, is of vital importance. Furthermore, calibration against core observations is helpful for e.g. fracture characterisation. The stress field orientation is interpreted from breakout and drilling-induced fractures, which are usually easy to detect in borehole images. However, in case of slanted and highly deviated wells the full stress tensor including the stress magnitudes is necessary to evaluate the stress field orientation. The full stress tensor is inverted by utilising rock mechanical data from core measurement and/or from empirical relations with elastic properties such as Poission's ratio and Young's modulus with respect to breakout and drilling-induced fractures. In addition, the stress field can be simulated using numerical methods to match the current observations. Sedimentary features such as cross-beds or slumps may indicate sediment transport directions after the data set was corrected for structural tilt. Image facies and their stacking patterns in combination with standard petrophysical curves are interpreted with respect to the depositional environment and included in a sequence stratigraphic framework. A correlation with core observations provides important calibration of the image facies

  17. An Effective Method for Borehole Imaging of Buried Tunnels

    Directory of Open Access Journals (Sweden)

    Loreto Di Donato

    2012-01-01

    Full Text Available Detection and imaging of buried tunnels is a challenging problem which is relevant to both geophysical surveys and security monitoring. To comply with the need of exploring large portions of the underground, electromagnetic measurements carried out under a borehole configuration are usually exploited. Since this requires to drill holes in the soil wherein the transmitting and receiving antennas have to be positioned, low complexity of the involved apparatus is important. On the other hand, to effectively image the surveyed area, there is the need for adopting efficient and reliable imaging methods. To address these issues, in this paper we investigate the feasibility of the linear sampling method (LSM, as this inverse scattering method is capable to provide almost real-time results even when 3D images of very large domains are built, while not requiring approximations of the underlying physics. In particular, the results of the reported numerical analysis show that the LSM is capable of performing the required imaging task while using a quite simple measurement configuration consisting of two boreholes and a few number of multiview-multistatic acquisitions.

  18. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-01

    Seismic exploration utilizes controlled sources, which emit seismic waves that propagate through the earth subsurface and get reflected off subsurface interfaces and scatterers. The reflected and scattered waves are recorded by recording stations installed along the earth surface or down boreholes. Seismic imaging is a powerful tool to map these reflected and scattered energy back to their subsurface scattering or reflection points. Seismic imaging is conventionally based on the single-scattering assumption, where only energy that bounces once off a subsurface scatterer and recorded by a receiver is projected back to its subsurface position. The internally multiply scattered seismic energy is considered as unwanted noise and is usually suppressed or removed from the recorded data. Conventional seismic imaging techniques yield subsurface images that suffer from low spatial resolution, migration artifacts, and acquisition fingerprint due to the limited acquisition aperture, number of sources and receivers, and bandwidth of the source wavelet. Hydrocarbon traps are becoming more challenging and considerable reserves are trapped in stratigraphic and pinch-out traps, which require highly resolved seismic images to delineate them. This thesis focuses on developing and implementing new advanced cost-effective seismic imaging techniques aiming at enhancing the resolution of the migrated images by exploiting the sparseness of the subsurface reflectivity distribution and utilizing the multiples that are usually neglected when imaging seismic data. I first formulate the seismic imaging problem as a Basis pursuit denoise problem, which I solve using an L1-minimization algorithm to obtain the sparsest migrated image corresponding to the recorded data. Imaging multiples may illuminate subsurface zones, which are not easily illuminated by conventional seismic imaging using primary reflections only. I then develop an L2-norm (i.e. least-squares) inversion technique to image

  19. Change in Seismic Attenuation of the Nojima Fault Zone Measured Using Spectral Ratios from Borehole Seismometers

    Science.gov (United States)

    Kano, Y.; Tadokoro, K.; Nishigami, K.; Mori, J.

    2006-12-01

    We measured the seismic attenuation of the rock mass surrounding the Nojima fault, Japan, by estimating the P-wave quality factor, Qp, using spectral ratios derived from a multi-depth (800 m and 1800 m) seismometer array. We detected an increase of Qp in 2003-2006 compared to 1999-2000. Following the 1995 Kobe earthquake, the project "Fault Zone Probe" drilled three boreholes to depths of 500 m, 800 m, 1800 m, in Toshima, along the southern part of the Nojima fault. The 1800-m borehole was reported to reach the fault surface. One seismometer (TOS1) was installed at the bottom of the 800-m borehole in 1996 and another (TOS2) at the bottom of 1800-m borehole in 1997. The sampling rate of the seismometers is 100 Hz. The slope of the spectral ratios for the two stations plotted on a linear-log plot is -π t^{*}, where t^{*} is the travel time divided by the Qp for the path difference between the stations. For the estimation of Qp, we used events recorded by both TOS1 and TOS2 for periods of 1999-2000 and 2003-2006. To improve the signal-to-noise ratio of the spectral ratios, we first calculated spectra ratios between TOS1 and TOS2 for each event and averaged the values over the earthquakes for each period. We used the events that occurred within 10 km from TOS2, and the numbers of events are 74 for 1999-2000 and 105 for 2003-2006. Magnitudes of the events range from M0.5 to M3.1. The average value of Qp for 1999-2000 increased significantly compared to 2003-2006. The attenuation of rock mass surrounding the fault in 2003-2006 is smaller than that in 1999-2000, which suggests that the fault zone became stiffer after the earthquake. At the Nojima fault, permeability measured by repeated pumping tests decreased with time from the Kobe earthquake, infering the closure of cracks and a fault healing process occurred The increase of Qp is another piece of evidence for the healing process of the Nojima fault zone. u.ac.jp/~kano/

  20. Quantitative elastic migration. Applications to 3D borehole seismic surveys; Migration elastique quantitative. Applications a la sismique de puits 3D

    Energy Technology Data Exchange (ETDEWEB)

    Clochard, V.

    1998-12-02

    3D VSP imaging is nowadays a strategic requirement by petroleum companies. It is used to precise in details the geology close to the well. Because of the lack of redundancy and limited coverage in the data. this kind of technology is more restrictive than surface seismic which allows an investigation at a higher scale. Our contribution was to develop an elastic quantitative imagine (GRT migration) which can be applied to 3 components borehole dataset. The method is similar to the Kirchhoff migration using sophistical weighting of the seismic amplitudes. In reality. GRT migration uses pre-calculated Green functions (travel time. amplitude. polarization). The maps are obtained by 3D ray tracing (wavefront construction) in the velocity model. The migration algorithm works with elementary and independent tasks. which is useful to process different kind of dataset (fixed or moving geophone antenna). The study has been followed with validations using asymptotic analytical solution. The ability of reconstruction in 3D borehole survey has been tested in the Overthrust synthetic model. The application to a real circular 3D VSP shows various problems like velocity model building, anisotropy factor and the preprocessing (deconvolution. wave mode separation) which can destroy seismic amplitudes. An isotropic 3 components preprocessing of the whole dataset allows a better lateral reconstruction. The choice of a big migration aperture can help the reconstruction of strong geological dip in spite of migration smiles. Finally, the methodology can be applied to PS converted waves. (author)

  1. Enhanced seismic depth imaging of complex fault-fold structures

    Science.gov (United States)

    Kirtland Grech, Maria Graziella

    Synthetic seismic data were acquired over numerical and physical models, representing fault-fold structures encountered in the Canadian Rocky Mountain Foothills, to investigate which migration algorithm produces the best image in such complex environments. Results showed that pre-stack depth migration from topography with the known velocity model yielded the optimum migrated image. Errors in the positioning of a target underneath a dipping antisotropic overburden were also studied using multicomponent data. The largest error was observed on P-wave data where anisotropy was highest at 18%. For an overburden thickness of 1500 m, the target was imaged 300 m updip from the true location. Field data from a two-dimensional surface seismic line and a multioffset vertical seismic profile (VSP) from the Foothills of southern Alberta, Canada, were processed using a flow designed to yield an optimum depth image. Traveltime inversion of the first arrivals from all the shots from the multioffset VSP revealed that the Mesozoic shale strata in the area exhibit seismic velocity anisotropy. The anisotropy parameters, ε and delta, were calculated to be 0.1 and 0.05 respectively. Anisotropic pre-stack depth migration code for VSP and surface seismic data, which uses a modified version of a raytracer developed in this thesis for the computation of traveltime tables, was also developed. The algorithm was then used in a new method for integrated VSP and surface seismic depth imaging. Results from the migration of synthetic and field data show that the resulting integrated image is superior to that obtained from the migration of either data set alone or to that obtained from the conventional "splicing" approach. The combination of borehole and surface seismic data for anisotropy analysis, velocity model building, and depth migration, yielded a robust image even when the geology was complex, thus permitting a more accurate interpretation of the exploration target.

  2. Seismic velocities and geologic logs from boreholes at three downhole arrays in San Francisco, California

    Science.gov (United States)

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.; Warrick, Richard E.; Liu, Hsi-Ping; Westerlund, Robert E.

    1994-01-01

    The Loma Prieta earthquake of October 17, 1989 (1704 PST), has reinforced observations made by Wood and others (1908) after the 1906 San Francisco earthquake, that poor ground conditions (soft soil) increase the likelihood of shaking damage to structures. Since 1908 many studies (for example Borcherdt, 1970, Borcherdt and Gibbs, 1976, Borcherdt and Glassmoyer, 1992) have shown that soft soils amplify seismic waves at frequencies that can be damaging to structures. Damage in the City of San Francisco from the Loma Prieta earthquake was concentrated in the Marina District, the Embarcadero, and the China Basin areas. Each of these areas, to some degree, is underlain by soft soil deposits. These concentrations of damage raise important questions regarding the amplification effects of such deposits at damaging levels of motion. Unfortunately, no strong-motion recordings were obtained in these areas during the Loma Prieta earthquake and only a limited number (< 10) have been obtained on other soft soil sites in the United States. Consequently, important questions exist regarding the response of such deposits during damaging earthquakes, especially questions regarding the nonlinear soil response. Towards developing a data set to address these important questions, borehole strong-motion arrays have been installed at three locations. These arrays consist of groups of wide-dynamic-range pore-pressure transducers and three-component accelerometers, the outputs of which are recorded digitally. The arrays are designed to provide an integrated set of data on ground shaking, liquifaction-induced ground failure, and structural response. This report describes the detailed geologic, seismic, and material-property determinations derived at each of these sites.

  3. Anomalous fluid emission of a deep borehole in a seismically active area of Northern Apennines (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Heinicke, J., E-mail: heinicke@physik.tu-freiberg.de [Saechsische Akademie der Wissenschaften zu Leipzig, Arbeitsstelle an der TU Bergakademie Freiberg, 09599 Freiberg (Germany); Italiano, F. [Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, 90146 Palermo (Italy); Koch, U. [Saechsische Akademie der Wissenschaften zu Leipzig, Arbeitsstelle Bad Brambach, 09599 Bad Brambach (Germany); Martinelli, G. [ARPA Emilia Romagna, 42100 Reggio Emilia (Italy); Telesca, L. [Istituto di Metodologie per l' Analisi Ambientale, CNR, 85050 Tito (Italy)

    2010-04-15

    The Miano borehole, 1047 m deep, is located close to the river Parma in the Northern Apennines, Italy. A measuring station has been installed to observe the discharge of fluids continuously since November 2004. The upwelling fluid of this artesian well is a mixture of thermal water and CH{sub 4} as main components. In non-seismogenic areas, a relatively constant fluid emission would be expected, perhaps overlaid with long term variations from that kind of deep reservoir over time. However, the continuous record of the fluid emission, in particular the water discharge, the gas flow rate and the water temperature, show periods of stable values interrupted by anomalous periods of fluctuations in the recorded parameters. The anomalous variations of these parameters are of low amplitude in comparison to the total values but significant in their long-term trend. Meteorological effects due to rain and barometric pressure were not detected in recorded data probably due to reservoir depth and relatively high reservoir overpressure. Influences due to the ambient temperature after the discharge were evaluated by statistical analysis. Our results suggest that recorded changes in fluid emission parameters can be interpreted as a mixing process of different fluid components at depth by variations in pore pressure as a result of seismogenic stress variation. Local seismicity was analyzed in comparison to the fluid physico-chemical data. The analysis supports the idea that an influence on fluid transport conditions due to geodynamic processes exists. Water temperature data show frequent anomalies probably connected with possible precursory phenomena of local seismic events.

  4. Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, Bjorn N.P. [Paulsson, Inc., Van Nuys, CA (United States)

    2015-02-28

    To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.

  5. Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Judith; Johnson, Timothy C.; Slater, Lee D.

    2015-02-02

    There is an increasing need to characterize discrete fractures away from boreholes to better define fracture distributions and monitor solute transport. We performed a 3D evaluation of static and time-lapse cross-borehole electrical resistivity tomography (ERT) data sets from a limestone quarry in which flow and transport are controlled by a bedding-plane feature. Ten boreholes were discretized using an unstructured tetrahedral mesh, and 2D panel measurements were inverted for a 3D distribution of conductivity. We evaluated the benefits of 3D versus 2.5D inversion of ERT data in fractured rock while including the use of borehole regularization disconnects (BRDs) and borehole conductivity constraints. High-conductivity halos (inversion artifacts) surrounding boreholes were removed in static images when BRDs and borehole conductivity constraints were implemented. Furthermore, applying these constraints focused transient changes in conductivity resulting from solute transport on the bedding plane, providing a more physically reasonable model for conductivity changes associated with solute transport at this fractured rock site. Assuming bedding-plane continuity between fractures identified in borehole televiewer data, we discretized a planar region between six boreholes and applied a fracture regularization disconnect (FRD). Although the FRD appropriately focused conductivity changes on the bedding plane, the conductivity distribution within the discretized fracture was nonunique and dependent on the starting homogeneous model conductivity. Synthetic studies performed to better explain field observations showed that inaccurate electrode locations in boreholes resulted in low-conductivity halos surrounding borehole locations. These synthetic studies also showed that the recovery of the true conductivity within an FRD depended on the conductivity contrast between the host rock and fractures. Our findings revealed that the potential exists to improve imaging of fractured

  6. Seismic Imaging of Sandbox Models

    Science.gov (United States)

    Buddensiek, M. L.; Krawczyk, C. M.; Kukowski, N.; Oncken, O.

    2009-04-01

    Analog sandbox simulations have been applied to study structural geological processes to provide qualitative and quantitative insights into the evolution of mountain belts and basins. These sandbox simulations provide either two-dimensional and dynamic or pseudo-three-dimensional and static information. To extend the dynamic simulations to three dimensions, we combine the analog sandbox simulation techniques with seismic physical modeling of these sandbox models. The long-term objective of this approach is to image seismic and seismological events of static and actively deforming 3D analog models. To achieve this objective, a small-scale seismic apparatus, composed of a water tank, a PC control unit including piezo-electric transducers, and a positioning system, was built for laboratory use. For the models, we use granular material such as sand and glass beads, so that the simulations can evolve dynamically. The granular models are required to be completely water saturated so that the sources and receivers are directly and well coupled to the propagating medium. Ultrasonic source frequencies (˜500 kHz) corresponding to wavelengths ˜5 times the grain diameter are necessary to be able to resolve small scale structures. In three experiments of different two-layer models, we show that (1) interfaces of layers of granular materials can be resolved depending on the interface preparation more than on the material itself. Secondly, we show that the dilation between the sand grains caused by a string that has been pulled through the grains, simulating a shear zone, causes a reflection that can be detected in the seismic data. In the third model, we perform a seismic reflection survey across a model that contains both the prepared interface and a shear zone, and apply 2D-seismic reflection processing to improve the resolution. Especially for more complex models, the clarity and penetration depth need to be improved to study the evolution of geological structures in dynamic

  7. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies

    Science.gov (United States)

    Williams, J.H.; Johnson, C.D.

    2004-01-01

    Imaging with acoustic and optical televiewers results in continuous and oriented 360?? views of the borehole wall from which the character, relation, and orientation of lithologic and structural planar features can be defined for studies of fractured-rock aquifers. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing of the character of and relation between lithology, fractures, foliation, and bedding. The most powerful approach is the combined application of acoustic and optical imaging with integrated interpretation. Imaging of the borehole wall provides information useful for the collection and interpretation of flowmeter and other geophysical logs, core samples, and hydraulic and water-quality data from packer testing and monitoring. ?? 2003 Elsevier B.V. All rights reserved.

  8. Seismic time-lapse monitoring of potential gas hydrate dissociation around boreholes : could it be feasible? A conceptual 2D study linking geomechanical and seismic FD models

    Energy Technology Data Exchange (ETDEWEB)

    Pecher, I.; Yang, J.; Anderson, R.; Tohidi, B.; MacBeth, C. [Heriot-Watt Univ., Edinburgh (United Kingdom). Inst. of Petroleum Engineering; Freij-Ayoub, R.; Clennell, B. [CSIRO Petroleum, Bentley, WA (Australia)

    2008-07-01

    Dissociation of gas hydrate to water and potentially overpressured gas around boreholes may pose a hazard for deep-water hydrocarbon production. Strategies to mitigate this risk include monitoring for early detection of dissociation. Seismic methods are especially promising, primarily because of a high sensitivity of P-wave velocity to gas in the pore space of unconsolidated sediments. This paper presented a study that applied commonly used rock physics modeling to predict the seismic response to gas hydrate dissociation with a focus on P-impedance and performed sensitivity tests. The geomechanical model was translated into seismic models. In order to determine which parameters needed to be particularly well calibrated in experimental and modeling studies, the sensitivity of seismic properties to a variation of input parameters was estimated. The seismic response was predicted from dissociating gas hydrates using two-dimensional finite-difference wave-propagation modeling to demonstrate that despite the small predicted lateral extent of hydrate dissociation, its pronounced effect on seismic properties should allow detection with a seismic source on a drilling platform and receivers on the seafloor. The paper described the methods, models, and results of the study. It was concluded that the key factors for predicting the seismic response of sediments to hydrate dissociation were the mode of gas hydrate distribution, gas distribution in the sediments, gas saturation, and pore pressure. 33 refs., 3 tabs., 8 figs.

  9. Seismically Initiated Carbon Dioxide Gas Bubble Growth in Groundwater: A Mechanism for Co-seismic Borehole Water Level Rise and Remotely Triggered Secondary Seismicity

    Science.gov (United States)

    Crews, Jackson B.

    of freshwater. Co-seismic borehole water level increases of the same magnitude were observed in Parkfield, California, and Long Valley caldera, California, in response to the propagation of a Rayleigh wave in the same amplitude and frequency range produced by the June 28, 1992 MW 7.3 Landers, California, earthquake. Co-seismic borehole water level rise is well documented in the literature, but the mechanism is not well understood, and the results of core-scale experiments indicate that seismically initiated CO2 gas bubble nucleation and growth in groundwater is a reasonable mechanism. Remotely triggered secondary seismicity is also well documented, and the reduction of effective stress due to CO2 bubble nucleation and growth in critically loaded faults may potentially explain how, for example, the June 28, 1992 MW 7.3 Landers, California, earthquake triggered seismicity as far away as Yellowstone, Wyoming, 1250 km from the hypocenter. A numerical simulation was conducted using Euler's method and a first-order kinetic model to compute the pore fluid pressure response to confining stress excursions on a Berea sandstone core flooded with initially under-saturated aqueous CO2. The model was calibrated on the pore pressure response to a rapid drop and later recovery of the confining stress. The model predicted decreasing overpressure as the confining stress oscillation frequency increased from 0.05 Hz to 0.30 Hz, in contradiction with the experimental results and field observations, which exhibit larger excess pore fluid pressure in response to higher frequency oscillations. The limitations of the numerical model point to the important influence of non-ideal behavior arising from a discontinuous gas phase and complex dynamics at the gas-liquid interface.

  10. Scientific results from the deepened Lopra-1 borehole, Faroe Islands: Borehole seismic studies of a volcanic succession from the Lopra-1/1A borehole in the Faroe Islands, northern North Atlantic

    Directory of Open Access Journals (Sweden)

    Cowper, David

    2006-07-01

    Full Text Available Extruded basalt flows overlying sedimentary sequences present a challenge to hydrocarbon exploration using reflection seismic techniques. The Lopra-1/1A re-entry well on the Faroese island of Suðuroy allowed us to study the seismic characteristics of a thick sequence of basalt flows from well logs and borehole seismic recordings. Data acquired during the deepening operation in 1996 are presented here.The re-entry well found that the seismic event at 2340 m, prognosed from the pre-drill Vertical Seismic Profile (VSP as a decrease in impedance, was not base basalt and the deepened well remainedwithin the lower series basalts. Nonetheless, compressional and shear sonic logs and a density log were recorded over the full open hole interval. These allowed a firm tie to be made with the reflectedwavefield from a new VSP. The sonic logs show a compressional to shear wavespeed ratio of 1.84 which is almost constant with depth. Sonic compressional wavespeeds are 3% higher than seismicvelocities, suggesting dispersion in the basalt flows. Azimuthal anisotropy was weakly indicated by the shear sonic log but its orientation is consistent with the directions of mapped master joints in the vicinity of the well.The VSP downgoing compressional wavelet shows good persistence, retaining a dominant period of 28 ms at 3510 m depth. Average vertical velocity is 5248 m/s, higher than previously reported.Attenuation can largely be modelled by geometrical spreading and scattering loss, consistent with other studies. Within the piled flows, the effective Q from scattering is about 35. Elastic layeredmedium modelling shows some hope that a mode-converted shear wave may be observed at moderate offsets. Like its predecessor, the 1996 VSP indicates a decrease in impedance below the final depth ofthe well. However, it is unlikely to be basement or sediment and is probably an event within the volcanic sequence.

  11. Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bob A. Hardage; Milo M. Backus; Michael V. DeAngelo; Sergey Fomel; Khaled Fouad; Robert J. Graebner; Paul E. Murray; Randy Remington; Diana Sava

    2006-07-31

    The purpose of our research has been to develop and demonstrate a seismic technology that will provide the oil and gas industry a better methodology for understanding reservoir and seal architectures and for improving interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic stratigraphy beyond the constraints of compressional (P-P) seismic data by using all modes (P-P, P-SV, SH-SH, SV-SV, SV-P) of a seismic elastic wavefield to define depositional sequences and facies. Our objective was to demonstrate that one or more modes of an elastic wavefield may image stratal surfaces across some stratigraphic intervals that are not seen by companion wave modes and thus provide different, but equally valid, information regarding depositional sequences and sedimentary facies within that interval. We use the term elastic wavefield stratigraphy to describe the methodology we use to integrate seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples that we use to document the principles of elastic wavefield stratigraphy. We have also used examples from published papers that illustrate some concepts better than did the multicomponent seismic data that were available for our analysis. In each interpretation study, we used rock physics modeling to explain how and why certain geological conditions caused differences in P and S reflectivities that resulted in P-wave seismic sequences and facies being different from depth-equivalent S-wave sequences and facies across the targets we studied.

  12. Seismic Interpretation and Well Logging Results of a Deep Borehole into the Canadian Shield in Northeastern Alberta: Preliminary Results

    Science.gov (United States)

    Chan, J.; Schmitt, D.; Majorowicz, J. A.; Nieuwenhuis, G.; Poureslami Ardakani, E.; van der Baan, M.; Sahay, P. N.; Kueck, J.; Abasolo, M. R.

    2011-12-01

    With the increasing awareness of the need for the reduction of carbon emissions globally, geothermal energy, which offers a potential for cleaner energy generation, is one potential new source. In Alberta, these geothermal resources are likely to be found in the sedimentary basin, or in the deeper crystalline basement rocks. Alberta exhibits a very low geothermal gradient compared to other existing geothermal fields located in areas of volcanic and tectonic activity. To mitigate this effect, the focus in Alberta will involve the development of engineered geothermal systems (EGS) in the target resource. This project is part of the Helmholtz-Alberta Initiative (HAI), which is a research collaboration between scientists in Germany and Canada on energy projects for cleaner energy production. The first goal for EGS research and development is to develop a detailed geological-geophysical characterization of selected sites to delineate potential geothermal reservoirs in Northern Alberta. One of the selected sites is in the Fort McMurray area. Using an existing deep borehole that reaches a depth of 2.3 km into the crystalline basement, our aim is to identify geological features such as zones of fractures in the basin and/or basement that could provide an indication of enhanced fluid flow potential - a necessary component for any geothermal systems to be viable. The earlier stage of our research involves re-processing of surface seismic data. This helps to improve the signal-to-noise ratio for the geological interpretation of the subsurface, such as the locations of saline aquifers and faults that allow heat flow in the rocks, and zones of fractures that may indicate elevated porosity. Current re-processing of the seismic data displays sets of dipping reflectors which may intersect the borehole. Zero offset and walkaway vertical seismic profiles (VSP) were conducted at the borehole for direct comparison with the surface seismic sections. They are also useful in obtaining

  13. An automatic recognition and parameter extraction method for structural planes in borehole image

    Science.gov (United States)

    Wang, Chuanying; Zou, Xianjian; Han, Zengqiang; Wang, Yiteng; Wang, Jinchao

    2016-12-01

    As a breakthrough in borehole imaging technology, digital panoramic borehole camera technology has been widely employed. The high-resolution panoramic borehole images can accurately reproduce the geometric features of structural planes. However, the detection of these features is usually done manually, which is both time-consuming and introduces human errors. To solve this problem, this paper presents a method for the automatic recognition and parameter extraction of borehole geometric features of camera images. In this method, the image's gray and gradient level, and also their projection on the depth axis are used to identify the locations of structural planes. Afterwards, iterative matching is employed by using a template of sinusoidal function to search for structural planes in the identified image blocks. Finally, optimal sine curves are selected as the feature curves of structural planes, and their related parameters are converted into structural plane parameters required for engineering, such as their positions, dip directions, dip angles and fracture widths. The method can automatically identify all of structural planes throughout the whole borehole camera image in a continuous and rapid manner, and obtain the corresponding structural parameters. It has proven highly reliable, accurate and efficient.

  14. Site study plan for EDBH (Engineering Design Boreholes) seismic surveys, Deaf Smith County site, Texas: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Hume, H.

    1987-12-01

    This site study plan describes seismic reflection surveys to run north-south and east-west across the Deaf Smith County site, and intersecting near the Engineering Design Boreholes (EDBH). Both conventional and shallow high-resolution surveys will be run. The field program has been designed to acquire subsurface geologic and stratigraphic data to address information/data needs resulting from Federal and State regulations and Repository program requirements. The data acquired by the conventional surveys will be common-depth- point, seismic reflection data optimized for reflection events that indicate geologic structure near the repository horizon. The data will also resolve the basement structure and shallow reflection events up to about the top of the evaporite sequence. Field acquisition includes a testing phase to check/select parameters and a production phase. The field data will be subjected immediately to conventional data processing and interpretation to determine if there are any anamolous structural for stratigraphic conditions that could affect the choice of the EDBH sites. After the EDBH's have been drilled and logged, including vertical seismic profiling, the data will be reprocessed and reinterpreted for detailed structural and stratigraphic information to guide shaft development. The shallow high-resulition seismic reflection lines will be run along the same alignments, but the lines will be shorter and limited to immediate vicinity of the EDBH sites. These lines are planned to detect faults or thick channel sands that may be present at the EDBH sites. 23 refs. , 7 figs., 5 tabs.

  15. Geophysical borehole logging and optical imaging of the pilot hole ONK-PH2

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, M. [Suomen Malmi Oy, Espoo (Finland); Heikkinen, E. [JP-Fintact Oy, Vantaa (Finland)

    2005-01-15

    Suomen Malmi Oy conducted geophysical borehole logging and optical imaging surveys of pilot hole ONK-PH2 in ONKALO tunnel at the Olkiluoto site in December 2004. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are magnetic susceptibility, natural gamma radiation, gamma-gamma density, single point resistance, Wenner-resistivity, borehole radar, full waveform sonic and optical imaging. The assignment included the field work of all the surveys, integration of the data as well as interpretation of the acoustic and borehole radar data. The report describes the field operation, equipment, processing procedures, interpretation results and shows the obtained geophysical and image data. The data as well as the interpretation results are delivered digitally in WellCAD and Excel format. (orig.)

  16. Geostatistical borehole image-based mapping of karst-carbonate aquifer pores

    Science.gov (United States)

    Michael Sukop,; Cunningham, Kevin J.

    2016-01-01

    Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes.

  17. Experimental evidence for seismically initiated gas bubble nucleation and growth in groundwater as a mechanism for coseismic borehole water level rise and remotely triggered seismicity

    Science.gov (United States)

    Crews, Jackson B.; Cooper, Clay A.

    2014-09-01

    Changes in borehole water levels and remotely triggered seismicity occur in response to near and distant earthquakes at locations around the globe, but the mechanisms for these phenomena are not well understood. Experiments were conducted to show that seismically initiated gas bubble growth in groundwater can trigger a sustained increase in pore fluid pressure consistent in magnitude with observed coseismic borehole water level rise, constituting a physically plausible mechanism for remote triggering of secondary earthquakes through the reduction of effective stress in critically loaded geologic faults. A portion of the CO2 degassing from the Earth's crust dissolves in groundwater where seismic Rayleigh and P waves cause dilational strain, which can reduce pore fluid pressure to or below the bubble pressure, triggering CO2 gas bubble growth in the saturated zone, indicated by a spontaneous buildup of pore fluid pressure. Excess pore fluid pressure was measured in response to the application of 0.1-1.0 MPa, 0.01-0.30 Hz confining stress oscillations to a Berea sandstone core flooded with initially subsaturated aqueous CO2, under conditions representative of a confined aquifer. Confining stress oscillations equivalent to the dynamic stress of the 28 June 1992 Mw 7.3 Landers, California, earthquake Rayleigh wave as it traveled through the Long Valley caldera, and Parkfield, California, increased the pore fluid pressure in the Berea core by an average of 36 ± 15 cm and 23 ± 15 cm of equivalent freshwater head, respectively, in agreement with 41.8 cm and 34 cm rises recorded in wells at those locations.

  18. Seismic reflection imaging at a Shallow Site

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, P.; Rector, J.; Bainer, R.

    1997-01-01

    The objective of our studies was to determine the best seismic method to image these sediments, between the water table at 3 m depth to the basement at 35 m depth. Good cross-correlation between well logs and the seismic data was also desirable, and would facilitate the tracking of known lithological units away from the wells. For instance, known aquifer control boundaries may then be mapped out over the boundaries, and may be used in a joint inversion with reflectivity data and other non-seismic geophysical data to produce a 3-D image containing quantitative physical properties of the target area.

  19. null Seismic Creep, null Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seismic creep is the constant or periodic movement on a fault as contrasted with the sudden rupture associated with an earthquake. It is a usually slow deformation...

  20. The multi-parameter borehole system and high resolution seismic studies in the western part of the main Marmara Fault in the frame of MARSITE Project.

    Science.gov (United States)

    Ozel, Oguz; Guralp, Cansun; Tunc, Suleyman; Yalcinkaya, Esref

    2016-04-01

    The main objective of this study is to install a multi-parameter borehole system and surface array as close to the main Marmara Fault (MMF) in the western Marmara Sea as possible, and measure continuously the evolution of the state of the fault zone surrounding the MMF and to detect any anomaly or change, which may occur before earthquakes by making use of the data from the arrays already running in the eastern part of the Marmara Sea. The multi-parameter borehole system is composed of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, and incorporate strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices. The borehole seismic station uses the latest update technologies and design ideas to record "Earth tides" signals to the smallest magnitude -3 events. Additionally, a surface microearthquake observation array, consisting of 8-10 seismometers around the borehole is established to obtain continuous high resolution locations of micro-seismicity and to better understand the existing seismically active structures and their roles in local tectonic settings.Bringing face to face the seismograms of microearthquakes recorded by borehole and surface instruments portrays quite different contents. The shorter recording duration and nearly flat frequency spectrum up to the Nyquist frequencies of borehole records are faced with longer recording duration and rapid decay of spectral amplitudes at higher frequencies of a surface seismogram. The main causative of the observed differences are near surface geology effects that mask most of the source related information the seismograms include, and that give rise to scattering, generating longer duration seismograms. In view of these circumstances, studies on microearthquakes employing surface seismograms may bring on misleading results. Particularly, the works on earthquake physics and nucleation process of earthquakes requires elaborate analysis of tiny events. It is

  1. Salvo: Seismic imaging software for complex geologies

    Energy Technology Data Exchange (ETDEWEB)

    OBER,CURTIS C.; GJERTSEN,ROB; WOMBLE,DAVID E.

    2000-03-01

    This report describes Salvo, a three-dimensional seismic-imaging software for complex geologies. Regions of complex geology, such as overthrusts and salt structures, can cause difficulties for many seismic-imaging algorithms used in production today. The paraxial wave equation and finite-difference methods used within Salvo can produce high-quality seismic images in these difficult regions. However this approach comes with higher computational costs which have been too expensive for standard production. Salvo uses improved numerical algorithms and methods, along with parallel computing, to produce high-quality images and to reduce the computational and the data input/output (I/O) costs. This report documents the numerical algorithms implemented for the paraxial wave equation, including absorbing boundary conditions, phase corrections, imaging conditions, phase encoding, and reduced-source migration. This report also describes I/O algorithms for large seismic data sets and images and parallelization methods used to obtain high efficiencies for both the computations and the I/O of seismic data sets. Finally, this report describes the required steps to compile, port and optimize the Salvo software, and describes the validation data sets used to help verify a working copy of Salvo.

  2. Determination of in-situ fracture apertures from digital borehole images

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Maria C.; Stephansson, O. [Royal Inst. of Tech., Stockholm (Sweden). Engineering Geology

    1998-09-01

    Imaging methods applied to borehole investigations have become common for mapping and characterisation of the rock mass. Today we have access to detailed information about the rock, but we lack some methods for analysis. In this study we develop a methodology for measurements of in-situ fracture geometry, from optical borehole images (BIP-system). We focus on the detailed information about fracture geometry, available thanks to the high image resolution. We have decided to perform the measurements using digital image processing, to avoid bias from the human analyst, and we present on-going work on the image processing methodology. Our method is based on iterative intensity thresholding. We work on grey-scale images, of open fractures that fully intersect the borehole. The fracture trace comes out as a dark sinusoidal in the borehole image. First, the darkest pixels in the image are extracted. Then the pixels, which are immediate neighbours to the first set, are included, under the condition that they are darker than a somewhat lower threshold. The including of neighbours is repeated until the fracture trace is filled. The resulting sinusoidal fracture trace is then used for finding an approximation of the fracture plane. The fracture plane orientation is used for determination of true aperture from the apparent aperture seen in the image. After this, fracture aperture statistics can be determined. The method works well for images of open fractures of simple geometry (sine wave). It needs to be improved to handle more complex geometry, e.g. crossing fracture traces. Today, some minor interaction from the analyst is needed, but slight modifications will minimise this 4 refs, 4 figs

  3. Report for borehole explosion data acquired in the 1999 Los Angeles Region Seismic Experiment (LARSE II), Southern California: Part I, description of the survey

    Science.gov (United States)

    Fuis, Gary S.; Murphy, Janice M.; Okaya, David A.; Clayton, Robert W.; Davis, Paul M.; Thygesen, Kristina; Baher, Shirley A.; Ryberg, Trond; Benthien, Mark L.; Simila, Gerry; Perron, J. Taylor; Yong, Alan K.; Reusser, Luke; Lutter, William J.; Kaip, Galen; Fort, Michael D.; Asudeh, Isa; Sell, Russell; Van Schaack, John R.; Criley, Edward E.; Kaderabek, Ronald; Kohler, Will M.; Magnuski, Nickolas H.

    2001-01-01

    The Los Angeles Region Seismic Experiment (LARSE) is a joint project of the U.S. Geological Survey (USGS) and the Southern California Earthquake Center (SCEC). The purpose of this project is to produce seismic images of the subsurface of the Los Angeles region down to the depths at which earthquakes occur, and deeper, in order to remedy a deficit in our knowledge of the deep structure of this region. This deficit in knowledge has persisted despite over a century of oil exploration and nearly 70 years of recording earthquakes in southern California. Understanding the deep crustal structure and tectonics of southern California is important to earthquake hazard assessment. Specific imaging targets of LARSE include (a) faults, especially blind thrust faults, which cannot be reliably detected any other way; and (b) the depths and configurations of sedimentary basins. Imaging of faults is important in both earthquake hazard assessment but also in modeling earthquake occurrence. Earthquake occurrence cannot be understood unless the earthquake-producing "machinery" (tectonics) is known (Fuis and others, 2001). Imaging the depths and configurations of sedimentary basins is important because earthquake shaking at the surface is enhanced by basin depth and by the presence of sharp basin edges (Wald and Graves, 1998, Working Group on California Earthquake Probabilities, 1995; Field and others, 2001). (Sedimentary basins are large former valleys now filled with sediment eroded from nearby mountains.) Sedimentary basins in the Los Angeles region that have been investigated by LARSE include the Los Angeles, San Gabriel Valley, San Fernando Valley, and Santa Clarita Valley basins. The seismic imaging surveys of LARSE include recording of earthquakes (both local and distant earthquakes) along several corridors (or transects) through the Los Angeles region and also recording of man-made sources along these same corridors. Man-made sources have included airguns offshore and borehole

  4. Combined Borehole Seismic and Electromagnetic Inversion For High-Resolution Petrophysical Assessment Of Hydocarbon Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Torres-Verdin; G. Michael Hoversten; Ki Ha Lee; Gregory Newman; Kurt Nihei

    2008-12-31

    This report summarizes the work performed between January 2005 and December 2007, under DOE research contract DE-FC26-04NT15507. The project is was performed by the Center for Petroleum and Geosystems Engineering of The University of Texas at Austin and Lawrence Berkeley National Laboratory under the auspices of the National Energy Technology Office (NETL) and the Strategic Center for Natural Gas and Oil (SCNGO). During the three-year project, we developed new methods to combine borehole sonic and electromagnetic (EM) measurements for the improved assessment of elastic and petrophysical properties of rock formations penetrated by a well. Sonic measurements consisted of full waveform acoustic amplitudes acquired with monopole and dipole sources, whereas EM measurements consisted of frequency-domain voltages acquired with multi-coil induction systems. The combination of sonic and EM measurements permitted the joint estimation of elastic and petrophysical properties in the presence of mud-filtrate invasion. It was conclusively shown that the combined interpretation of sonic and EM measurements reduced non-uniqueness in the estimation of elastic and petrophysical properties and improved the spatial resolution of the estimations compared to estimations yielded separately from the two types of measurements. Moreover, this approach enabled the assessment of dynamic petrophysical properties such as permeability, as it incorporated the physics of mud-filtrate invasion in the interpretation of the measurements. The first part of the project considered the development of fast and reliable numerical algorithms to simulate borehole sonic waveforms in 2D, 3D, and radial 1D media. Such algorithms were subsequently used in the quantitative estimation of elastic properties jointly from borehole sonic and EM measurements. In the second part of the project we developed a new algorithm to estimate water saturation, porosity, and dry-rock elastic moduli jointly from borehole sonic and

  5. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    Science.gov (United States)

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew

    2016-04-01

    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  6. Late-stage stretching and subsidence rates in the Danakil Depression, evidenced from borehole records and seismic reflection data

    Science.gov (United States)

    Booth, Adam; Bastow, Ian; Magee, Craig; Keir, Derek; Corti, Giacomo; Jackson, Chris; Wilkinson, Jason

    2016-04-01

    The Ethiopian and Afar Rift systems provide a globally unique opportunity to study the incipient transition from continental rifting to sea-floor spreading. A consensus has emerged that a considerable proportion of plate extension in Ethiopia is accommodated by dyke intrusion, with smaller contributions from crustal thinning. However, observations of thinned crust and a pulse in Quaternary-Recent basaltic volcanism within Ethiopia's Danakil Depression have been cited (Bastow and Keir, 2011) as evidence that localised plate stretching may mark the final stages of continent-ocean transition. We explore this hypothesis using an archive of five 2-D seismic reflection profiles, each between 7-10 km in length, and ˜120 borehole records distributed over an area of 225 km2. From depth and age relationships of key marker horizons, we also suggest local subsidence and extension rates. The borehole archive reveals extensive evaporite sequences deposited in and around an asymmetric basin, bounded to the west by a network of east-dipping normal faults. West of the basin, the maximum observed thickness of evaporites is 150 m, beneath which are deposits of clastic sediment, but a sequence of evaporites at least 900 m thick is observed at the basin centre. The sedimentary architecture of these sequences suggests deposition in a shallow salt-pan environment, with seasonal - potentially diurnal - freshening of the brine supply (Warren, 2012). Isotopic analysis of reef carbonates in the basin flank dates the last marine incursion into the Danakil Depression at 24-230ka (Lalou et al., 1970; Bonatti et al., 1971; Bannert et al., 1971), therefore the evaporite sequence must be younger than this. A key marker horizon within the evaporites is the potash-bearing Houston Formation, also distinct in borehole records given its high porosity (25-40%) and radioactivity (50-250 API units). The elevation of the Houston Formation is ˜500 m deeper in the centre of the basin than on the flank

  7. Tube-wave seismic imaging

    Science.gov (United States)

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  8. Distributed computing of Seismic Imaging Algorithms

    CERN Document Server

    Emami, Masnida; Jaberi, Nasrin

    2012-01-01

    The primary use of technical computing in the oil and gas industries is for seismic imaging of the earth's subsurface, driven by the business need for making well-informed drilling decisions during petroleum exploration and production. Since each oil/gas well in exploration areas costs several tens of millions of dollars, producing high-quality seismic images in a reasonable time can significantly reduce the risk of drilling a "dry hole". Similarly, these images are important as they can improve the position of wells in a billion-dollar producing oil field. However seismic imaging is very data- and compute-intensive which needs to process terabytes of data and require Gflop-years of computation (using "flop" to mean floating point operation per second). Due to the data/computing intensive nature of seismic imaging, parallel computing are used to process data to reduce the time compilation. With introducing of Cloud computing, MapReduce programming model has been attracted a lot of attention in parallel and di...

  9. Full 3-D numerical modeling of borehole electric image logging and the evaluation model of fracture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A full 3-D finite element method numerical modeling program is written based on the principle and technical specification of borehole electric image well logging tool. The response of well logging is computed in the formation media model with a single fracture. The effect of changing fracture aperture and resistivity ratio to the logging response is discussed. The identification ability for two parallel fractures is also present. A quantitative evaluation formula of fracture aperture from borehole electric image logging data is set up. A case study of the model well is done to verify the accuracy of the for-mula. The result indicates that the formula is more accurate than the foreign one.

  10. Advanced seismic imaging for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  11. Variations in geoacoustic emissions in a deep borehole and its correlation with seismicity

    Directory of Open Access Journals (Sweden)

    A. Storcheus

    2008-06-01

    Full Text Available Continuous geoacoustic emission (GAE measurements were acquired using a three-component geophone placed in a borehole at a depth of near 1000 m at Petropavlovsk-Kamchatsky starting in August 2000. Using geophones consisting of magneto-elastic crystal ferromagnetic sensors, and installed at such a depth allows measurement of natural geoacoustic background with signal amplitude less than 1×10-4 m/s3 in frequency band from 3 to 1500 Hz. According to the data from a 4-year survey period the characteristics of diurnal geoacoustic variations change before every earthquake with MLH? 5.0 that occurs at a distance of less than 300 km from the observation point or before each earthquake with MLH?5.5 occurring at distance R?550 km from the observation point. The changes in GAE regime correlate with the strongest earthquakes that occurred during survey period. Measurements of the natural electromagnetic field of the Earth were carried out simultaneously with the help of an underground electric antenna. The behavior of GAE in aseismic periods appears to be related to the effect of diurnal variations of the natural electromagnetic field.

  12. Three-dimensional gravity modeling of Chicxulub Crater structure, constrained with marine seismic data and land boreholes

    Science.gov (United States)

    Batista-Rodríguez, J. A.; Pérez-Flores, M. A.; Urrutia-Fucugauchi, J.

    2013-09-01

    We present a three-dimensional multi-formation inversion model for the gravity anomaly over Chicxulub Crater, constrained with available marine seismic data and land boreholes. We used eight formations or rock units as initial model, corresponding to: sea water, Paleogene sediments, suevitic and bunte breccias, melt, Cretaceous carbonates and upper and lower crust. The model response fits 91.5% of the gravity data. Bottom topography and thickness plots for every formation are shown, as well as vertical cross-sections for the 3-D model. The resulting 3-D model shows slightly circular features at crater bottom topography, which are more prominent at the base of the breccias unit. These features are interpreted as normal faults oriented towards the crater center, revealing a circular graben-like structure, whose gravity response correlates with the rings observed in the horizontal gravity gradient. At the center of the model is the central uplift of upper and lower crust, with the top covered by an irregular melt layer. Top of the upper crust shows two protuberances that can be correlated with the two positive peaks of the gravity anomaly. Top of Cretaceous seems to influence most of the response to the gravity anomaly, associated with a high density contrast.

  13. New developments in high resolution borehole seismology and their applications to reservoir development and management

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, B.N.P. [Chevron Petroleum Technology Company, La Habra, CA (United States)

    1997-08-01

    Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

  14. a Borehole Seismic System for Active and Passive Seimsic Studies to 3 KM at Ptrc's Aquistore Project

    Science.gov (United States)

    Schmitt, D. R.; Nixon, C.; Kofman, R.; White, D. J.; Worth, K.

    2015-12-01

    We have constructed a downhole seismic recording system for application to depths of nearly 3 km and temperatures up to 135 °C at Aquistore, an independent research and monitoring project in which liquid CO2 is being stored in a brine and sandstone water formation. The key component to this system is a set of commercially available slim-hole 3-C sondes carrying 15 Hz geophones deployable in open and cased boreholes with diameters as small as 57 mm. The system is currently hosted on a 4-conductor wireline with digital information streamed to the surface recording unit. We have further incorporated these sondes into a mobile passive monitoring unit that includes a number of redundancies such as a multiple Tbyte network accessible RAID hard-drive system (NAS) and a self-designed uninterruptible power supply. The system can be remotely controlled via the internet. The system is currently deployed covering a range of depths from 2850 m to 2910 m. Ambient temperatures at this depth are approximately 110 °C with onboard tool temperatures running at 115 °C. Data is continuously streamed to the NAS for archiving, approximately 11 GBytes of data is recorded per day at the sampling period of 0.5 ms. The lack of noise at this depth allows short data snippets to be flagged with a simple amplitude threshold criteria. The greatly reduced data volume of the snippets allows for ready access via the internet to the system for ongoing quality control. Spurious events, mostly small amplitude tube waves originating at or near the surface, are readily discounted. Active seismic measurements are carried out simultaneously but these require that an appropriately accurate independent GPS based time synchronization be used. Various experiences with event detection, orientation of sondes using both explosives and seismic vibrator, potential overheating of the surface electronics, and issues related to loss of shore power provide for a detailed case study. Aquistore, managed by the

  15. High Resolution Seismic Imaging of the Brawley Seismic Fault Zone

    Science.gov (United States)

    Goldman, M.; Catchings, R. D.; Rymer, M. J.; Lohman, R. B.; McGuire, J. J.; Sickler, R. R.; Criley, C.; Rosa, C.

    2011-12-01

    In March 2010, we acquired a series of high-resolution P-wave seismic reflection and refraction data sets across faults in the Brawley seismic zone (BSZ) within the Salton Sea Geothermal Field (SSGF). Our objectives were to determine the dip, possible structural complexities, and seismic velocities within the BSZ. One dataset was 3.4 km long trending east-west, and consisted of 334 shots recorded by a 2.4 km spread of 40 hz geophones placed every 10 meters. The spread was initially laid out from the first station at the eastern end of the profile to roughly 2/3 into the profile. After about half the shots, the spread was shifted from roughly 1/3 into the profile to the last station at the western end of the profile. P-waves were generated by Betsy-Seisgun 'shots' spaced every 10 meters. Initial analysis of first breaks indicate near-surface velocities of ~500-600 meters/sec, and deeper velocities of around 2000 meters/sec. Preliminary investigation of shot gathers indicate a prominent fault that extends to the ground surface. This fault is on a projection of the Kalin fault from about 40 m to the south, and broke the surface down to the west with an approximately north-south strike during a local swarm of earthquakes in 2005 and also slipped at the surface in association with the 2010 El Mayor-Cucapah earthquake in Baja California. The dataset is part of the combined Obsidian Creep data set, and provides the most detailed, publicly available subsurface images of fault structures in the BSZ and SSGF.

  16. Borehole images while drilling : real-time dip picking in the foothills

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, D. [Schlumberger Canada Ltd., Calgary, AB (Canada); Brezsnyak, F. [Talisman Energy Inc., Calgary, AB (Canada); Roth, J. [Talisman Energy Inc., Calgary, AB (Canada)

    2008-07-01

    The Alberta Foothills drilling environment is a structurally complex thrust belt with slow costly drilling and frequent plan changes after logging. The cross sections are not always accurate due to poor resolution. Therefore, the placement of the wellbore is crucial to success. This presentation showed borehole images from drilling in the Foothills. Topics that were addressed included the Foothills drilling environment; target selection; current well placement methods; and current well performance. Borehole images included resistivity images and density images. The presentation addressed why real-time images should be run. These reasons include the ability to pick dips in real-time; structural information in real time allows for better well placement; it is easier to find and stay in producing areas; reduced non-productive time and probability of sidetracks; and elimination of pipe conveys logs. Applications in the Alberta Foothills such as the commercial run for GVR4 were also offered. Among the operational issues and lessons learned, it was determined that the reservoir thickness to measurement point distance ratio is too great to avoid exiting the sweet spot and that the survey calculation error cause image offset. It was concluded that GVR is a drillers tool for well placement. figs.

  17. Towards Exascale Seismic Imaging and Inversion

    Science.gov (United States)

    Tromp, J.; Bozdag, E.; Lefebvre, M. P.; Smith, J. A.; Lei, W.; Ruan, Y.

    2015-12-01

    Post-petascale supercomputers are now available to solve complex scientific problems that were thought unreachable a few decades ago. They also bring a cohort of concerns tied to obtaining optimum performance. Several issues are currently being investigated by the HPC community. These include energy consumption, fault resilience, scalability of the current parallel paradigms, workflow management, I/O performance and feature extraction with large datasets. In this presentation, we focus on the last three issues. In the context of seismic imaging and inversion, in particular for simulations based on adjoint methods, workflows are well defined.They consist of a few collective steps (e.g., mesh generation or model updates) and of a large number of independent steps (e.g., forward and adjoint simulations of each seismic event, pre- and postprocessing of seismic traces). The greater goal is to reduce the time to solution, that is, obtaining a more precise representation of the subsurface as fast as possible. This brings us to consider both the workflow in its entirety and the parts comprising it. The usual approach is to speedup the purely computational parts based on code optimization in order to reach higher FLOPS and better memory management. This still remains an important concern, but larger scale experiments show that the imaging workflow suffers from severe I/O bottlenecks. Such limitations occur both for purely computational data and seismic time series. The latter are dealt with by the introduction of a new Adaptable Seismic Data Format (ASDF). Parallel I/O libraries, namely HDF5 and ADIOS, are used to drastically reduce the cost of disk access. Parallel visualization tools, such as VisIt, are able to take advantage of ADIOS metadata to extract features and display massive datasets. Because large parts of the workflow are embarrassingly parallel, we are investigating the possibility of automating the imaging process with the integration of scientific workflow

  18. Seismic Borehole Monitoring of CO2 Injection in an Oil Reservoir

    Science.gov (United States)

    Gritto, R.; Daley, T. M.; Myer, L. R.

    2002-12-01

    A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO2 into a hydrofracture zone, based on P- and S-wave data. A high-frequency piezo-electric P-wave source and an orbital-vibrator S-wave source were used to generate waves that were recorded by hydrophones as well as three-component geophones. The injection well was located about 12 m from the source well. During the pre-injection phase water was injected into the hydrofrac-zone. The set of seismic experiments was repeated after a time interval of 7 months during which CO2 was injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO2 within the hydrofracture. Furthermore it was intended to determine which experiment (cross well or single well) is best suited to resolve these features. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5%). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6%). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous (~ 50%) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5%. Both, velocity and Poisson estimates indicate the dissolution of CO2 in the liquid phase of the reservoir accompanied by a pore-pressure increase. The single well data supported the findings of the cross well experiments. P- and S-wave velocities as well as Poisson ratios were comparable to the estimates of the cross well data.

  19. Anatomy of the Chesapeake Bay impact structure revealed by seismic imaging, Delmarva Peninsula, Virginia, USA

    Science.gov (United States)

    Catchings, R.D.; Powars, D.S.; Gohn, G.S.; Horton, J.W.; Goldman, M.R.; Hole, J.A.

    2008-01-01

    A 30-km-long, radial seismic reflection and refraction survey completed across the northern part of the late Eocene Chesapeake Bay impact structure (CBIS) on the Delmarva Peninsula, Virginia, USA, confirms that the CBIS is a complex central-peak crater. We used a tomographic P wave velocity model and low-fold reflection images, constrained by data from two deep boreholes located on the profile, to interpret the structure and composition of the upper 5 km of crust. The seismic images exhibit well-defined structural features, including (with increasing radial distance) a collapsed central uplift, a breccia-filled moat, and a collapsed transient-crater margin (which collectively constitute a ???40-km-wide collapsed transient crater), and a shallowly deformed annular trough. These seismic images are the first to resolve the deep structure of the crater (>1 km) and the boundaries between the central uplift, moat, and annular trough. Several distinct seismic signatures distinguish breccia units from each other and from more coherent crystalline rocks below the central uplift, moat, and annular trough. Within the moat, breccia extends to a minimum depth of 1.5 km or a maximum of 3.5 km, depending upon the interpretation of the deepest layered materials. The images show ???350 to 500 m of postimpact sediments above the impactites. The imaged structure of the CBIS indicates a complex sequence of event during the cratering process that will provide new constraints for numerical modeling. Copyright 2008 by the American Geophysical Union.

  20. Investigations on alluvial deposits through borehole stratigraphy, radiocarbon dating and passive seismic technique (Carnic Alps, NE Italy)

    Science.gov (United States)

    Viero, Alessia; Marchi, Lorenzo; Cavalli, Marco; Crema, Stefano; Fontana, Alessandro; Mozzi, Paolo; Venturini, Corrado

    2016-04-01

    their extent and the maximum depths. Two passive seismic campaigns were carried out near the borehole site and along the But valley at different elevations. The aim was to investigate the depth of the buried bedrock and therefore to indirectly characterize the thickness of alluvial deposits. We calibrated the fundamental frequency of each site by constraining average shear velocity of the alluvial sediments close to the borehole site with known stratigraphy. Eight HVSR (Horizontal to Vertical Spectral Ratio, Nakamura, 1989) were carried out, and thus a first sketch of the buried valley floor along a longitudinal profile of about 5 km was depicted. The values of the derived bedrock depth allow to quantify the differences in thickness between the alluvial deposits and the Moscardo Torrent fan deposits. This information helps to address the contribution of the debris-flow processes in damming the upper But River during the last five centuries. The results confirm the role of debris-flow deposits from the Moscardo Torrent in shaping the morphology of the valley floor of But River and show suitability of an integrated approach, encompassing log stratigraphy, geophysical surveys and analysis of historical documents, for gaining insights on the evolution of alpine valleys. Reference Nakamura, Y., 1989. A method for dynamic characteristic estimation of subsurface using microtremor on the ground surface. Quarterly Report of Railway Technical Research Institute, 30(1): 25-33.

  1. Imaging fault zones using 3D seismic image processing techniques

    Science.gov (United States)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  2. Deep Mantle Seismic Modeling and Imaging

    Science.gov (United States)

    Lay, Thorne; Garnero, Edward J.

    2011-05-01

    Detailed seismic modeling and imaging of Earth's deep interior is providing key information about lower-mantle structures and processes, including heat flow across the core-mantle boundary, the configuration of mantle upwellings and downwellings, phase equilibria and transport properties of deep mantle materials, and mechanisms of core-mantle coupling. Multichannel seismic wave analysis methods that provide the highest-resolution deep mantle structural information include network waveform modeling and stacking, array processing, and 3D migrations of P- and S-wave seismograms. These methods detect and identify weak signals from structures that cannot be resolved by global seismic tomography. Some methods are adapted from oil exploration seismology, but all are constrained by the source and receiver distributions, long travel paths, and strong attenuation experienced by seismic waves that penetrate to the deep mantle. Large- and small-scale structures, with velocity variations ranging from a fraction of a percent to tens of percent, have been detected and are guiding geophysicists to new perspectives of thermochemical mantle convection and evolution.

  3. Acoustic Borehole Images for Fracture Extraction and Analysis in Second Pre-pilot Drillhole of CCSD

    Institute of Scientific and Technical Information of China (English)

    Zou Changchun; Shi Ge; Pan Lingzhi

    2004-01-01

    Ultrasonic imaging logging provides continuous and oriented images of structures vs. depth. In the Chinese Continental Scientific Drilling (CCSD) Project, acoustic borehole images were recorded in the second pre-pilot drillhole which penetrates the metamorphic rocks. This paper focuses on fracture evaluation of the drillhole with these images. Both least square fit and a modified Hough transform are used for fracture extraction, and 269 fractures were mapped in the interval from 69.5 to 1 020 m. Most fractures dip steeply, with an average angle of 54°.Fracture dip directions are dominantly in the range of 220°-280° above the depth of 267 m, but 80°-120°in the lower zones. These observations may indicate the differences in structural movements or in-situ stress fields between the upper and lower zones in the drillhole.

  4. Seismic imaging and evaluation of channels modeled by boolean approach

    Energy Technology Data Exchange (ETDEWEB)

    Spinola, M.; Aggio, A. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1999-07-01

    The seismic method attempt to image the subsurface architecture and has been able to significantly contribute to detect areal and vertical changes in rock properties. This work presents a seismic imaging study of channel objects generated using the boolean technique. Three channels having different thicknesses were simulated, using the same width, sinuosity and direction. A velocity model was constructed in order to allow seismic contrasts between the interior of channels and the embedding rock. To examine the seismic response for different channel thicknesses, a 3D ray tracing with a normal incident point survey was performed. The three channels were resolved and the way the seismic could image them was studied. (author)

  5. Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections

    OpenAIRE

    Kukowski, N.; Oncken, O.; M.-L. Buddensiek; C. M. Krawczyk

    2012-01-01

    With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezo-electric transducers used here the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox mo...

  6. Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections

    OpenAIRE

    C. M. Krawczyk; Buddensiek, M.-L.; Oncken, O.; Kukowski, N.

    2013-01-01

    With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale str...

  7. Characterization from borehole wall and X-ray scan images of heterogeneities in carbonate reservoirs

    Science.gov (United States)

    Hébert, V.; Pezard, P. A.; Garing, C.; Gouze, P.; Camoin, G.; Lapointe, P.

    2009-12-01

    Salt water intrusion in coastal reservoirs is highly influenced by geological and petrophysical structures. In particular, heterogeneities and anisotropy in porous media (karst, vug) control fluid transport and dispersion. To develop new strategies for the quantitative description and analysis of fluid flow and salt transport in coastal aquifers, a new experimental site was developed in SE Mallorca (Spain) in the context of the ALIANCE EC project (2002-2005). Multi-scalar quantitative and descriptive methods (from µm to m) are developed to identify and map microstructures, heterogeneities and their hydrogeological impact on the reservoir. The objective of this study is to better understand the link between geological and hydrogeological properties of heterogeneous reservoir. The Mallorcan site cuts the Miocene carbonate reef platform and is located 6 km inland, where a salt wedge transition is found from 60 to 80 m depth. The geological structure includes large multi-scale heterogeneities, often bound to lateral facies variations. This experimental site provides thus a unique laboratory to study saltwater intrusion processes and develop new downhole investigation methods. This study focuses on borehole geophysical measurements and images, and X-ray core scan images. New image analysis methods have been developed to better characterize heterogeneities in terms of size distribution, aspect ratio and porosity. Optical and acoustic borehole wall images offer a continuous insight into meso-scale porosity (such as karstic channels and megapores) from mm to 100 m scale. X-ray cores scans were obtained from a tomography scanner by TOTAL. These two methodologies from RX tomography scans and borehole wall images are compared and discussed. Petrophysical parameters were extracted from X-ray images with a dedicated 3D data analysis software. The scan images lead to the identification and quantification of the micro- and vuggy porosity. It is found that the distribution of

  8. Improving Seismic Image with Advanced Processing Techniques

    Directory of Open Access Journals (Sweden)

    Mericy Lastra Cunill

    2012-07-01

    Full Text Available Taking Taking into account the need to improve the seismic image in the central area of Cuba, specifically in the area of the Venegas sector, located in the Cuban Folded Belt, the seismic data acquired by Cuba Petróleo (CUPET in the year 2007 was reprocessed according to the experience accumulated during the previous processing carried out in the same year, and the new geologic knowledge on the area. This was done with the objective of improving the results. The processing applied previously was analyzed by reprocessing the primary data with new focuses and procedures, among them are the following: the attenuation of the superficial wave with a filter in the Radon domain in its lineal variant, the change of the primary statics corrections of elevation by those of refraction, the study of velocity with the selection automatic biespectral of high density, the study of the anisotropy, the attenuation of the random noise, and the pre stack time and depth migration. As a result of this reprocessing, a structure that was not identified in the seismic sections of the previous processing was located at the top of a Continental Margin sediment located to the north of the sector that increased the potentialities of finding hydrocarbons in quantities of economic importance thus diminishing the risk of drilling in the sector Venegas.

  9. Conductive fracture mapping. A study on the correlation between borehole TV- and radar images and difference flow logging results in borehole KLX02

    Energy Technology Data Exchange (ETDEWEB)

    Carlsten, S.; Straahle, A.; Ludvigson, Jan-Erik [GEOSIGMA AB, Uppsala (Sweden)

    2001-10-01

    This study presents an attempt to correlate images from borehole-TV (BIPS) and borehole radar with interpreted flow anomalies from Difference Flow Meter logging (DIFF). The measurements were performed in the interval 200-400 m in borehole KLX02 at Laxemar. In total, 59 flow anomalies were interpreted by the DIFF-log in this borehole interval. However, 14 flow anomalies were below the rigorous measurement limit for the actual flow meter and are thus regarded as uncertain. In total, 261 features were primarily interpreted by the BIPS-characterization in the borehole interval 200-400 m but only 12 radar reflectors. The low number of interpreted radar reflectors most likely depends on the low frequency of the antenna used in this case which gave a poor depth resolution. The total number of fractures recorded by the core mapping in this interval was 374 (279 in the rock together with 95 fractures in interpreted crush zones). Prior to the correlation analysis it was necessary to adjust the length scales of the BIPS-measurements relative to the length scale of the Difference Flow logging due to non-linear stretching of logging cables etc to achieve the necessary resolution of the depth scale.This adjustment was done by comparing the distances between clearly identified single features in the BIPS-images with the corresponding distances between clearly identified flow anomalies. The BIPS-measurements consist of 5 independent logging sequences in the studied borehole interval, which resulted in 'jumps' when comparing the non-conform length scales of the different sequences. All of the 59 flow anomalies could be correlated (matched) with BIPS-features with varying degree of certainty. A majority of the correlated BIPS-features was classified as open fractures or fractures with cavities. Most of the flow anomalies below the measurement limit were correlated to veins in the rock. In the correlation between borehole radar reflectors and BIPS-features, the calculated

  10. Conductive fracture mapping. A study on the correlation between borehole TV- and radar images and difference flow logging results in borehole KLX02

    Energy Technology Data Exchange (ETDEWEB)

    Carlsten, S.; Straahle, A.; Ludvigson, Jan-Erik [GEOSIGMA AB, Uppsala (Sweden)

    2001-10-01

    This study presents an attempt to correlate images from borehole-TV (BIPS) and borehole radar with interpreted flow anomalies from Difference Flow Meter logging (DIFF). The measurements were performed in the interval 200-400 m in borehole KLX02 at Laxemar. In total, 59 flow anomalies were interpreted by the DIFF-log in this borehole interval. However, 14 flow anomalies were below the rigorous measurement limit for the actual flow meter and are thus regarded as uncertain. In total, 261 features were primarily interpreted by the BIPS-characterization in the borehole interval 200-400 m but only 12 radar reflectors. The low number of interpreted radar reflectors most likely depends on the low frequency of the antenna used in this case which gave a poor depth resolution. The total number of fractures recorded by the core mapping in this interval was 374 (279 in the rock together with 95 fractures in interpreted crush zones). Prior to the correlation analysis it was necessary to adjust the length scales of the BIPS-measurements relative to the length scale of the Difference Flow logging due to non-linear stretching of logging cables etc to achieve the necessary resolution of the depth scale.This adjustment was done by comparing the distances between clearly identified single features in the BIPS-images with the corresponding distances between clearly identified flow anomalies. The BIPS-measurements consist of 5 independent logging sequences in the studied borehole interval, which resulted in 'jumps' when comparing the non-conform length scales of the different sequences. All of the 59 flow anomalies could be correlated (matched) with BIPS-features with varying degree of certainty. A majority of the correlated BIPS-features was classified as open fractures or fractures with cavities. Most of the flow anomalies below the measurement limit were correlated to veins in the rock. In the correlation between borehole radar reflectors and BIPS-features, the calculated

  11. Combined analysis of surface reflection imaging and vertical seismic profiling at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Daley, T.M.; Majer, E.L.; Karageorgi, E. [Lawrence Berkeley Lab., CA (United States). Earth Sciences Div.

    1994-08-01

    This report presents results from surface and borehole seismic profiling performed by the Lawrence Berkeley Laboratory (LBL) on Yucca Mountain. This work was performed as part of the site characterization effort for the potential high-level nuclear waste repository. Their objective was to provide seismic imaging from the near surface (200 to 300 ft. depth) to the repository horizon and below, if possible. Among the issues addressed by this seismic imaging work are location and depth of fracturing and faulting, geologic identification of reflecting horizons, and spatial continuity of reflecting horizons. The authors believe their results are generally positive, with tome specific successes. This was the first attempt at this scale using modem seismic imaging techniques to determine geologic features on Yucca Mountain. The principle purpose of this report is to present the interpretation of the seismic reflection section in a geologic context. Three surface reflection profiles were acquired and processed as part of this study. Because of environmental concerns, all three lines were on preexisting roads. Line 1 crossed the mapped surface trace of the Ghost Dance fault and it was intended to study the dip and depth extent of the fault system. Line 2 was acquired along Drill Hole wash and was intended to help the ESF north ramp design activities. Line 3 was acquired along Yucca Crest and was designed to image geologic horizons which were thought to be less faulted along the ridge. Unfortunately, line 3 proved to have poor data quality, in part because of winds, poor field conditions and limited time. Their processing and interpretation efforts were focused on lines 1 and 2 and their associated VSP studies.

  12. Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool

    Science.gov (United States)

    Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong

    2016-06-01

    The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.

  13. Geoelectrical Resistivity Imaging and Refraction Seismic Investigations at Sg.Udang, Melaka

    Directory of Open Access Journals (Sweden)

    Zeinab Asry

    2012-01-01

    Full Text Available Problem statement: A Reconnaissance geophysical survey of an area near Sg.Udang, Melaka was conducted using geoelectrical resistivity and seismic refraction methods. The main objective of this study is to determine the depth of bedrock in the study area. The resistivity imaging measurement employing Wenner electrode configuration was carried out using an ABEM SAS 1000 terrameter and electrode selector system ES464. Electrodes were arranged in a straight line with constant spacing and connected to a multicore cable. The refraction seismic was conducted using 24 channel ABEM Mark6 signal enhancement seismograph with 5 m geophone spacing. The resistivity layer is associated with the residual soil with thickness of about 0.5-3 m. The high velocity layer is an average depth of about 9.4 m. The intermediate velocity zone is associated with weathered schist with thickness of about 2.5 m. The low velocity zone is with thickness of about 6 m. The thickness of residual soil obtained by seismic refraction survey appears to agree very well with the borehole data. Resistivity and the seismic refraction data have been successfully used to determine the thickness of residual soil layer and depth of bedrock. Approach: In this survey, electrodes were arranged in a straight line with constant spacing and connected to a multicore cable. The refraction seismic was conducted using 24 channel ABEM Mark6 signal enhancement seismograph with 5 m geophone spacing. The seismic data have been interpreted using SeisOpt@2D which automatically produced 2-D seismic velocity sections of the subsurface. Results: The resistivity results showed that the subsurface layers are associated with variable resistivity (296-2600Ω. m. The resistivity layer is associated with the residual soil with thickness of about 0.5-3 m. The interpreted 2-D seismic sections showed three different velocity layers. The high velocity layer (1600-2000 m sec-1 is interpreted to be associated with bedrock

  14. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India

    Science.gov (United States)

    Riedel, M.; Collett, T.S.; Kumar, P.; Sathe, A.V.; Cook, A.

    2010-01-01

    Gas hydrate was discovered in the Krishna-Godavari (KG) Basin during the India National Gas Hydrate Program (NGHP) Expedition 1 at Site NGHP-01-10 within a fractured clay-dominated sedimentary system. Logging-while-drilling (LWD), coring, and wire-line logging confirmed gas hydrate dominantly in fractures at four borehole sites spanning a 500m transect. Three-dimensional (3D) seismic data were subsequently used to image the fractured system and explain the occurrence of gas hydrate associated with the fractures. A system of two fault-sets was identified, part of a typical passive margin tectonic setting. The LWD-derived fracture network at Hole NGHP-01-10A is to some extent seen in the seismic data and was mapped using seismic coherency attributes. The fractured system around Site NGHP-01-10 extends over a triangular-shaped area of ~2.5 km2 defined using seismic attributes of the seafloor reflection, as well as " seismic sweetness" at the base of the gas hydrate occurrence zone. The triangular shaped area is also showing a polygonal (nearly hexagonal) fault pattern, distinct from other more rectangular fault patterns observed in the study area. The occurrence of gas hydrate at Site NGHP-01-10 is the result of a specific combination of tectonic fault orientations and the abundance of free gas migration from a deeper gas source. The triangular-shaped area of enriched gas hydrate occurrence is bound by two faults acting as migration conduits. Additionally, the fault-associated sediment deformation provides a possible migration pathway for the free gas from the deeper gas source into the gas hydrate stability zone. It is proposed that there are additional locations in the KG Basin with possible gas hydrate accumulation of similar tectonic conditions, and one such location was identified from the 3D seismic data ~6 km NW of Site NGHP-01-10. ?? 2010.

  15. Numerical simulation and development of data inversion in borehole ultrasonic imaging

    Science.gov (United States)

    Renaud, V.; Balland, C.; Verdel, T.

    2011-04-01

    The major function of underground nuclear waste disposal is to avoid the migration of radionucleides towards the biosphere during their active period. This function can be deteriorated by the EDZ (excavated damaged zone) around the excavation. The EDZ analysis is therefore crucial in the performance assessment of the storage. The paper deals with the determination of the EDZ around a nuclear waste storage cavity using borehole ultrasonic imaging (azimuthal tomography). Indeed, before processing experimental data obtained with this tool, it is necessary to establish that data can be satisfactorily inverted. This analysis is based on a method that is able to sound and image the rock mass velocity field. The velocity field is numerically simulated (3D geomechanical modeling) based on an assumption on the relationship between stress and velocity fields. In order to evaluate a radial velocity profile starting from inter-sensor distance and their corresponding traveltimes, different ray tracing algorithms are tested using synthetic data. These tests led to a simple and fast approach (implemented in a Mathematica package) to process a large quantity of data.

  16. Broadband hydroseismograms observed by closed borehole wells in the Kamioka mine, central Japan: Response of pore pressure to seismic waves from 0.05 to 2 Hz

    Science.gov (United States)

    Kano, Yasuyuki; Yanagidani, Takashi

    2006-03-01

    We obtained broadband hydroseismograms by monitoring the pore pressure changes of a rock mass in the Kamioka mine, using borehole wells. The wellhead was sealed to maintain an undrained condition, under which there is no flow of water through the interface between the well and the rock mass. This reduces the wellbore storage effect, which can cause a high-frequency cutoff response for systems of conventional open wells and rock mass. Using these closed borehole wells, 16 hydroseismograms were recorded for earthquakes in a range of magnitudes of 4.5-7.9 and epicentral distances of 1.0°-71.6°. Direct P waves, SV waves converted to P, and Rayleigh phases are clearly observed on the hydroseismograms. The similarity between hydroseismograms and seismograms reveals a clear relationship between radial ground velocity and pore pressure. The relationship is expressed as a zero-order system, which is characterized by no distortion or time lag between the input and output, and the pore pressure has no coupling with shear deformation. These results are consistent with an undrained constitutive relation of linear poroelastic theory and confirm that the relation is valid for the seismic frequency range. We determined in situ values of pore pressure sensitivity to volumetric change of the rock mass, which were then used to estimate in situ Skempton coefficients with values of 0.70-0.85.

  17. Psudeo-seismic Imaging on CSAMT Psudeo-pulse Response of Coal Bed Methane Exploration

    Science.gov (United States)

    zhao, Y.; wu, J.

    2012-12-01

    As a unique natural gas extracted from coal beds, coal bed methane (CBM) resources has become an important source of energy in China. For CBM exploration, it is still a challenge to improve the accuracy for locating and evaluating CBM deposits due to its complicated absorption characteristics. Considering the distinct change of electromagnetic parameters caused by CBM, it is possible to detect the electromagnetic anomalies using the controlled source audio-frequency magnetotellurics (CSAMT). Psudeo-pulse response of EM was re-constructed using the impendence measured on the ground surface by CSAMT, and psudeo-seismic images can be produced using linear programming inversion with stratum model restriction. An anticline structure model was built to verify the proposal of psudeo-seismic imaging using CSAMT data. Inversion results clearly revealed the electrical structure interfaces of the model. Meanwhile, a set of CSAMT data was collected from the test area located in Heshun coal field in China. The V8 CSAMT system was used for data acquisition and the frequency ranges from 0.2 to 7680 Hz. Inversed psudeo-seismic images exactly exhibited the stratum structure and the electrical property distribution. A comparison of inversion results with exploration borehole data revealed the approximate relationship between electrical property and the CBM content. The higher the value of resistivity, the more likely the coal bed is to contain CBM. Model and field test analysis demonstrated that the psudeo-seismic image improved the CSAMT interpretation results, and it can reveal the electrical property distribution, and be applied to approximately evaluate the CBM content.

  18. System and method to create three-dimensional images of non-linear acoustic properties in a region remote from a borehole

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves

    2013-01-01

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  19. Testing & Validating: 3D Seismic Travel Time Tomography (Detailed Shallow Subsurface Imaging)

    Science.gov (United States)

    Marti, David; Marzan, Ignacio; Alvarez-Marron, Joaquina; Carbonell, Ramon

    2016-04-01

    A detailed full 3 dimensional P wave seismic velocity model was constrained by a high-resolution seismic tomography experiment. A regular and dense grid of shots and receivers was use to image a 500x500x200 m volume of the shallow subsurface. 10 GEODE's resulting in a 240 channels recording system and a 250 kg weight drop were used for the acquisition. The recording geometry consisted in 10x20m geophone grid spacing, and a 20x20 m stagered source spacing. A total of 1200 receivers and 676 source points. The study area is located within the Iberian Meseta, in Villar de Cañas (Cuenca, Spain). The lithological/geological target consisted in a Neogen sedimentary sequence formed from bottom to top by a transition from gyspum to silstones. The main objectives consisted in resolving the underground structure: contacts/discontinuities; constrain the 3D geometry of the lithology (possible cavities, faults/fractures). These targets were achieved by mapping the 3D distribution of the physical properties (P-wave velocity). The regularly space dense acquisition grid forced to acquire the survey in different stages and with a variety of weather conditions. Therefore, a careful quality control was required. More than a half million first arrivals were inverted to provide a 3D Vp velocity model that reached depths of 120 m in the areas with the highest ray coverage. An extended borehole campaign, that included borehole geophysical measurements in some wells provided unique tight constraints on the lithology an a validation scheme for the tomographic results. The final image reveals a laterally variable structure consisting of four different lithological units. In this methodological validation test travel-time tomography features a high capacity of imaging in detail the lithological contrasts for complex structures located at very shallow depths.

  20. Imaging Fracture Networks Using Angled Crosshole Seismic Logging and Change Detection Techniques

    Science.gov (United States)

    Knox, H. A.; Grubelich, M. C.; Preston, L. A.; Knox, J. M.; King, D. K.

    2015-12-01

    We present results from a SubTER funded series of cross borehole geophysical imaging efforts designed to characterize fracture zones generated with an alternative stimulation method, which is being developed for Enhanced Geothermal Systems (EGS). One important characteristic of this stimulation method is that each detonation will produce multiple fractures without damaging the wellbore. To date, we have collected six full data sets with ~30k source-receiver pairs each for the purposes of high-resolution cross borehole seismic tomographic imaging. The first set of data serves as the baseline measurement (i.e. un-stimulated), three sets evaluate material changes after fracture emplacement and/or enhancement, and two sets are used for evaluation of pick error and seismic velocity changes attributable to changing environmental factors (i.e. saturation due to rain/snowfall in the shallow subsurface). Each of the six datasets has been evaluated for data quality and first arrivals have been picked on nearly 200k waveforms in the target area. Each set of data is then inverted using a Vidale-Hole finite-difference 3-D eikonal solver in two ways: 1) allowing for iterative ray tracing and 2) with fixed ray paths determined from the test performed before the fracture stimulation of interest. Utilizing these two methods allows us to compare and contrast the results from two commonly used change detection techniques. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Lamont Doherty Seismic Reflection Scanned Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains single channel seismic reflection profiles as provided to NGDC by Lamont Doherty Earh Observatory (LDEO). The profiles were originally...

  2. Geological and hydrogeological conditions of the Aigion seismic active fault zone (Deep Geodynamic Laboratory Corinth) based on borehole data and hydraulic tests

    Science.gov (United States)

    Rettenmaier, D.; Giurgea, V.; Pizzino, L.; Unkel, I.; Hoetzl, H.; Foerster, A.; Quattrocchi, F.; Nikas, K.

    2003-04-01

    The Gulf of Corinth and the northern part of the Peloponnesus/Greece, an area of asymmetric graben structure, step faults and tilted blocks, is one of the most active seismic zones in the world. Six major faults are known to be most responsible for the historic and present seismic activities in the area of Aigion. Our study focuses preliminarily on the area around the Aigion fault, whose trace runs E-W through the harbour of Aigion. Investigations of the stratigraphic sequence, tectonic structure and hydrogeologic conditions of the southern Corinth graben shoulder and first drilling activities there, have started in summer 2001. From July until September 2002 the International Continental Deep Drilling Project (ICDP) and the EU Project DGLab-Gulf of Corinth drilled the AIG10 borehole in the harbour of Aigion to a total depth of 1001 m. Our investigations in this ICDP/EU framework are aimed at studying the thermal-hydraulic conditions on the southern graben shoulder. Here we report the first results on sampling and hydraulic testing. The deep AIG10 borehole has successfully cored in approx. 760 m depth the fault plane, which separates fractured radiolarite in the hanging wall from highly fractured and karstified platy, micritic limestone (Olonos-Pindos Unit) in the footwall. A complete lithologic section is now available through the monitoring of cuttings and cores, which built a major cornerstone for defining an integrated regional tectonic and geologic model. Several pumping tests and hydrochemical investigations made in the region of Aigion and especially in the AIG10 borehole deliver together with geophysical borehole logging the database for a thermo-hydraulic heat flow model. The pumping test AIG10C in the conglomerates of the graben sediments show a hydraulic conductivity of about 2 x 10E-5 m/s - 3 x 10E-4 m/s at a depth of approximately 211 m. The result was a residual drawdown, which indicates a closed hydraulic system between the semi-permeable Aigion

  3. Time-lapse seismic imaging of the Reykjanes geothermal reservoir

    Science.gov (United States)

    Weemstra, Cornelis; Obermann, Anne; Blanck, Hanna; Verdel, Arie; Paap, Bob; Árni Guðnason, Egill; Páll Hersir, Gylfi; Jousset, Philippe; Sigurðsson, Ómar

    2016-04-01

    We report on the results obtained from a dense seismic deployment over a geothermal reservoir. The reservoir has been producing continuously for almost a decade and is located on the tip of the Reykjanes peninsula, SW Iceland. The seismic stations on top of the reservoir have continuously recorded the ambient seismic wavefield between April 2014 and September 2015. The density of the seismic network makes the data well suited for time-lapse seismic imaging of the reservoir. To that end we compute time-lapse responses through the application of seismic interferometry. These interferometric lapse responses are obtained by simple crosscorrelation of the seismic noise recorded by the different seismic stations. We subsequently evaluate the temporal variation of the coda of these crosscorrelations. The term coda refers to the later arriving, multiple scattered waves. The multiple scattering implies that these waves have sampled the subsurface very densely and hence become highly sensitive to tiny mechanical and structural changes in that subsurface. This sensitivity allows one, in principle at least, to monitor the geothermal reservoir. Preliminary results indeed suggest a relation between the temporal variation of the coda waves and the reservoir. Ultimately, this method may lead to a means to monitor a geothermal reservoir in both space and time.

  4. Imaging of converted-wave ocean-bottom seismic data

    Science.gov (United States)

    Rosales Roche, Daniel Alejandro

    Converted-wave data can be imaged with several methodologies. The transformation of data into the image space, is defined by an imaging operator, the simplest of which is normal moveout correction plus stack. Most of the converted-wave processing is carried out in the data domain, that is in time, data midpoint location, and data offset, this processing is not ideal for this type of seismic data. The processing should be carried out in the image domain, that is the one composed of depth, image midpoint location and image subsurface offset. Different processing techniques are created for an accurate image of converted wave seismic data. First, in 2-D Ocean-Bottom Seismic (OBC), the image space for converted-wave data is defined in the angle domain to form converted-wave angle-domain common-image gathers (PS-ADCIGs). The PS-ADCIGs can also be mapped into two complementary ADCIGs, the first one is function only of the P-incidence angle, the second ADCIG is function of the S-reflection angle. The method to obtain PS-ADCIGs is independent of the migration algorithm implemented, as long as the migration algorithm is based on wavefield downward-continuation, and the final prestack image is a function of the horizontal subsurface offset. The final process is done for 3-D seismic data, the creation of the converted-wave azimuth moveout operator (PS-AMO) and the converted-wave common-azimuth migration (PS-CAM) allows the definition and accurate image of 3-D prestack ocean-bottom seismic data.

  5. The Obsidian Creep Project: Seismic Imaging in the Brawley Seismic Zone and Salton Sea Geothermal Field, Imperial County, California

    Science.gov (United States)

    Catchings, R. D.; Rymer, M. J.; Goldman, M.; Lohman, R. B.; McGuire, J. J.

    2010-12-01

    the south, which broke the surface during a local swarm of earthquakes in 2005 and which also slipped at the surface in association with the 2010 El Mayor-Cucapah earthquake in Baja California. The faults imaged in our profiles will be compared to high-precision earthquake relocations for the 2005 earthquake swarm and more recent events recorded by the Cal Energy borehole seismic network, and will be used as input into a reanalysis of geodetic observations spanning the 2005 earthquake swarm. The combined Obsidian Creep data set provides the most detailed, publicly available subsurface images of fault structures in the BSZ and SSGF.

  6. Sparse seismic imaging using variable projection

    NARCIS (Netherlands)

    Aravkin, Aleksandr Y.; Tu, Ning; van Leeuwen, Tristan

    2013-01-01

    We consider an important class of signal processing problems where the signal of interest is known to be sparse, and can be recovered from data given auxiliary information about how the data was generated. For example, a sparse Green's function may be recovered from seismic experimental data using s

  7. Seismic imaging of Southern African cratons

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad

    Cratonic regions are the oldest stable parts of continents that hold most of Earth’s mineral resources. There are several open questions regarding their formation and evolution. In this PhD study, passive source seismic methods have been used to investigate the crustal and lithosphere structures...

  8. Use of processed resistivity borehole imaging to assess the insoluble content of the massively bedded Preesall Halite NW England

    Science.gov (United States)

    Kingdon, Andrew; Evans, David J.

    2013-04-01

    With the decline of the UK's remaining conventional reserves of natural gas and associated growth of imports, the lack of adequate storage capacity is a matter of concern for ensuring energy security year-round. In a number of countries, subsurface caverns for gas storage have been created by solution mining of massive halite deposits and similar storage facilities are likely to become an important part of the UK's energy infrastructure. Crucial to the economic viability of such facilities is the percentage of insoluble material within the halite intervals, which influences strongly the relationship between cavern sump and working volumes: successful development of these caverns is dependent upon maximising the efficiency of cavern design and construction. The purity of a massive halite sequence can only be assessed either by direct means (i.e. coring) or indirectly by downhole geophysical logs The use of conventional geophysical logs in subsurface exploration is well established but literature generally relies on a very low resolution tools with a typical vertical logging sample interval of 15 centimetres. This means that such tools provide, at best, a "blurred" view of the sedimentary successions penetrated by the borehole and that discrete narrow bands of insoluble material will not be identifiable or distinguishable from zones of "dirtier" halite with disseminated mud materials. In 2008, Halite-Energy Group (formerly Canatxx Gas Storage Ltd) drilled the Burrows Marsh #1 borehole and acquired resistivity borehole imaging (FMI) logs through the Triassic Preesall Halite in the Preesall Saltfield, NW England. In addition to near full circumferal imaging capability, rather than a single measurement per increment, FMI logs allows millimetre to centimetre scale imaging of sedimentary features, that is one to two orders of magnitude higher vertical resolution. After binary segmentation of the FMI images to achieve a simple halite-insoluble ("mud") separation these were

  9. Reflection seismic imaging of a hydraulically conductive fracture zone in a high noise area, Forsmark, Sweden

    Science.gov (United States)

    Juhlin, C.; Stephens, M. B.; Cosma, C.

    2007-05-01

    High resolution reflection seismic methods have proven to be useful tools for locating fracture zones in crystalline rock. Siting of potential high-level nuclear waste repositories is a particularly important application of these methods. By using small explosive sources (15-75 grams), high resolution images of the sub-surface have been obtained in the depth range 100 m to 2 km in Sweden, Canada and elsewhere. Although ambient noise conditions in areas such as the Fennoscandian and Canadian shields are generally low, industrial noise can be high in some areas, particularly at potential sites suitable for repositories, since these are often close to existing infrastructure. In addition, the presence of this infrastructure limits the choice of sources available to the geophysicist. Forsmark, located about 140 km north of Stockholm, is one such potential site where reflection seismics have been carried out. Existing infrastructure includes nuclear reactors for power generation and a low- level waste repository. In the vicinity of the reactors, it was not possible to use an explosive source due to permitting restrictions. Instead, a VIBSIST system consisting of a tractor mounted hydraulic hammer was used in the vicinity of the reactors. By repeatedly hitting the pavement, without breaking it, at predefined sweeps and then stacking the signals, shot records comparable to explosive data could be generated. These shot records were then processed using standard methods to produce stacked sections along 3 profiles within the reactor area. Clear reflections are seen in the uppermost 600 m along 3 of these profiles. Correlation of crossing profiles shows that the strongest reflection (B8) is generated by a gently east-southeast dipping interface. Prior to construction of the reactors, several boreholes were drilled to investigate the bedrock in the area. One of these boreholes was located close to where two of the profiles cross. Projection of the B8 reflection into the

  10. Stratigraphy of a proposed wind farm site southeast of Block Island: Utilization of borehole samples, downhole logging, and seismic profiles

    Science.gov (United States)

    Sheldon, Dane P. H.

    Seismic stratigraphy, sedimentology, lithostratigraphy, downhole geophysical logging, mineralogy, and palynology were used to study and interpret the upper 70 meters of the inner continental shelf sediments within a proposed wind farm site located approximately two to three nautical miles to the southeast of Block Island, Rhode Island. Core samples and downhole logging collected from borings drilled for geotechnical purposes at proposed wind turbine sites along with seismic surveys in the surrounding area provide the data for this study. Cretaceous coastal plain sediments that consist of non-marine to marine sand, silt, and clay are found overlying bedrock at a contact depth beyond the sampling depth of this study. The upper Cretaceous sediments sampled in borings are correlated with the Magothy/Matawan formations described regionally from New Jersey to Nantucket. An unconformity formed through sub-aerial, fluvial, marine, and glacial erosion marks the upper strata of the Cretaceous sediments separating them from the overlying deposits. The majority of Quaternary deposits overlying the unconformity represent the advance, pulsing, and retreat of the Laurentide ice sheet that reached its southern terminus in the area of Block Island approximately 25,000 to 21,000 years before present. The sequence consists of a basal glacial till overlain by sediments deposited by meltwater environments ranging from deltaic to proglacial lakefloor. A late Pleistocene to early Holocene unconformity marks the top of the glacial sequence and was formed after glacial retreat through fluvial and subaerial erosion/deposition. Overlying the glacial sequence are sediments deposited during the late Pleistocene and Holocene consisting of interbedded gravel, sand, silt, and clay. Sampling of these sediments was limited and surficial reflectors in seismic profiles were masked due to a hard bottom return. However, two depositional periods are interpreted as representing fluvial and estuarine

  11. Seismic reflection imaging of mixing processes in Fram Strait

    Science.gov (United States)

    Sarkar, Sudipta; Sheen, Katy L.; Klaeschen, Dirk; Brearley, J. Alexander; Minshull, Timothy A.; Berndt, Christian; Hobbs, Richard W.; Naveira Garabato, Alberto C.

    2015-10-01

    The West Spitsbergen Current, which flows northward along the western Svalbard continental slope, transports warm and saline Atlantic water (AW) into the Arctic Ocean. A combined analysis of high-resolution seismic images and hydrographic sections across this current has uncovered the oceanographic processes involved in horizontal and vertical mixing of AW. At the shelf break, where a strong horizontal temperature gradient exists east of the warmest AW, isopycnal interleaving of warm AW and surrounding colder waters is observed. Strong seismic reflections characterize these interleaving features, with a negative polarity reflection arising from an interface of warm water overlying colder water. A seismic-derived sound speed image reveals the extent and lateral continuity of such interleaving layers. There is evidence of obliquely aligned internal waves emanating from the slope at 450-500 m. They follow the predicted trajectory of internal S2 tidal waves and can promote vertical mixing between Atlantic and Arctic-origin waters.

  12. Seismic Imaging of Complex Structures in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    Ning Guo; Chao Wu; Stuart Fagin

    2015-01-01

    Conventional time imaging techniques are not capable of producing accurate seismic imaging of the subsurface in the mountain front of the Tarim Basin, China. Their imaged structures have led to some major drilling failures before, bearing a disrepute that “their structural closures have wheels and their structural highs have springs”. This article first lists the imaging challenges, and explains in a schematic why the time imaging techniques fail in this area. Then through a series of real data examples, it demonstrates that when there exist lateral velocity variations, depth imaging is the only solution to tackle the imaging challenges in this area. Depth imaging accounts for the com-plexity of the wavefield, therefore produces superior and geological plausible images. The core task in properly performing depth imaging is building the velocity model. This article stresses some the main aspects in this regard.

  13. Subsalt Depth Seismic Imaging and Structural Interpretation in Dumre Area, Albania.

    OpenAIRE

    Jardin A.; Roure F.; Nikolla L.

    2011-01-01

    The challenge of seismic exploration in fold and thrust belt settings is to optimize the depth seismic images of the deep structural objectives beneath a complex overburden that may show strong horizontal and vertical velocity variations. In such areas, the seismic image is frequently of poor quality and the depth models of deep layers is often false due to the perturbed propagation of seismic energy through the deforming lens of the overlying layers. A range of seismic processing tools, incl...

  14. Seismic imaging of sandbox experiments - laboratory hardware setup and first reflection seismic sections

    Science.gov (United States)

    Krawczyk, C. M.; Buddensiek, M.-L.; Oncken, O.; Kukowski, N.

    2012-10-01

    With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezo-electric transducers used here the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads). Source receiver-offsets less than 14 cm for imaging structures as small as 2.0-1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and being applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of very good quality showing constant thickness layers as well as predefined channel structures and fault traces from shear zones. Since these can be regarded in sandbox models as zones of decompaction, they behave as reflectors and can be imaged. The multiple-offset surveying introduced here improves the quality with respect to S/N-ratio and source signature even more; the maximum depth penetration in glass bead layers thereby amounts to 5 cm. Thus, the presented mini-seismic device is

  15. Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections

    Directory of Open Access Journals (Sweden)

    N. Kukowski

    2012-10-01

    Full Text Available With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezo-electric transducers used here the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads. Source receiver-offsets less than 14 cm for imaging structures as small as 2.0–1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and being applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of very good quality showing constant thickness layers as well as predefined channel structures and fault traces from shear zones. Since these can be regarded in sandbox models as zones of decompaction, they behave as reflectors and can be imaged. The multiple-offset surveying introduced here improves the quality with respect to S/N-ratio and source signature even more; the maximum depth penetration in glass bead layers thereby amounts to 5 cm. Thus, the presented mini-seismic

  16. True-Amplitude Seismic Imaging Beneath Gas Clouds

    NARCIS (Netherlands)

    Ghazali, A.R.

    2011-01-01

    A gas cloud is a region of gas accumulation in the subsurface, which can severely deteriorate the seismic data quality from deeper reflectors. Due to complex wave propagation through the anomaly and the resulting transmission imprint on the reflections from below this area, the image below the gas c

  17. Fabry-Perot MEMS Accelerometers for Advanced Seismic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chisum, Brad [Lumedyne Technologies Incorporated, San Diego, CA (United States)

    2015-05-31

    This report summarizes the technical achievements that occurred over the duration of the project. On November 14th, 2014, Lumedyne Technologies Incorporated was acquired. As a result of the acquisition, the work toward seismic imaging applications was suspended indefinitely. This report captures the progress achieved up to that time.

  18. Borehole Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature derived from boreholes drilled into the Earth crust. Parameter keywords describe what was measured in this data set. Additional summary...

  19. Seismic Imaging in Three Dimensions on the East Pacific Rise

    Science.gov (United States)

    Mutter, John C.; Carbotte, Suzanne; Nedimovic, Mladen; Canales, Juan Pablo; Carton, Hélène

    2009-10-01

    The U.S. R/V Marcus G. Langseth (operated by the Lamont-Doherty Earth Observatory of Columbia University) sailed in late June 2008 from Manzanillo, Mexico, to the 9°50'N area of the East Pacific Rise (EPR), a site of vigorous hydrothermal venting (Figure 1). The cruise, MGL0812, the first research deployment of the Langseth's advanced three-dimensional (3-D) seismic imaging capability, had as its objective obtaining high-resolution images of crustal structure beneath the ridge crest and adjacent regions. The benefits of 3-D seismic imaging had been outlined in a U.S. National Science Foundation (NSF)-sponsored workshop in 2005 [Mutter and Moore, 2005]. Short courses on techniques of 3-D survey planning were given at AGU Fall Meetings in 2007 and 2008. This brief report describes experiences during the cruise, with the objective of aiding future researchers in planning cruises using Langseth's unique imaging capability for 3-D.

  20. Seismic imaging of sandbox experiments - laboratory hardware setup and first reflection seismic sections

    Science.gov (United States)

    Krawczyk, C. M.; Buddensiek, M.-L.; Oncken, O.; Kukowski, N.

    2013-02-01

    With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first 2-D experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads). Source receiver-offsets less than 14 cm for imaging structures as small as 2.0-1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and is applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of high quality showing constant thickness layers as well as predefined channel structures and indications of the fault traces from shear zones. Since these were artificially introduced in our test models, they can be regarded as zones of disturbance rather than tectonic shear zones characterized by decompaction. The multiple-offset surveying introduced here, improves the quality with respect to S / N ratio and source signature even more; the maximum depth penetration in glass

  1. Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections

    Directory of Open Access Journals (Sweden)

    C. M. Krawczyk

    2013-02-01

    Full Text Available With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first 2-D experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads. Source receiver-offsets less than 14 cm for imaging structures as small as 2.0–1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and is applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of high quality showing constant thickness layers as well as predefined channel structures and indications of the fault traces from shear zones. Since these were artificially introduced in our test models, they can be regarded as zones of disturbance rather than tectonic shear zones characterized by decompaction. The multiple-offset surveying introduced here, improves the quality with respect to S / N ratio and source signature even more; the maximum depth

  2. Seismic Imaging of Reservoir Structure at The Geysers Geothermal Reservoir

    Science.gov (United States)

    Gritto, R.; Yoo, S.; Jarpe, S.

    2013-12-01

    Three-dimensional Vp/Vs-ratio structure is presented for The Geysers geothermal field using seismic travel-time data. The data were recorded by the Lawrence Berkeley National Laboratory (LBNL) using a 34-station seismic network. The results are based on 32,000 events recorded in 2011 and represent the highest resolution seismic imaging campaign at The Geysers to date. The results indicate low Vp/Vs-ratios in the central section of The Geysers within and below the current reservoir. The extent of the Vp/Vs anomaly deceases with increasing depth. Spatial correlation with micro-seismicity, used as a proxy for subsurface water flow, indicates the following. Swarms of seismicity correlate well with areas of high and intermediate Vp/Vs estimates, while regions of low Vp/Vs estimates appear almost aseismic. This result supports past observations that high and low Vp/Vs-ratios are related to water and gas saturated zones, respectively. In addition, the correlation of seismicity to intermediate Vp/Vs-ratios is supportive of the fact that the process of water flashing to steam requires four times more energy than the initial heating of the injected water to the flashing point. Because this energy is dawn from the reservoir rock, the associated cooling of the rock generates more contraction and thus seismic events than water being heated towards the flashing point. The consequences are the presence of some events in regions saturated with water, most events in regions of water flashing to steam (low steam saturation) and the absence of seismicity in regions of high steam concentrations where the water has already been converted to steam. Furthermore, it is observed that Vp/Vs is inversely correlated to Vs but uncorrelated to Vp, leading support to laboratory measurements on rock samples from The Geysers that observe an increase in shear modulus while the core samples are dried out. As a consequence, traditional poroelastic theory is no applicable at The Geysers geothermal

  3. A Numerical Feasibility Study of Three-Component Induction Logging for Three Dimensional Imaging About a Single Borehole

    Energy Technology Data Exchange (ETDEWEB)

    ALUMBAUGH, DAVID L.; WILT, MICHAEL J.

    1999-08-01

    A theoretical analysis has been completed for a proposed induction logging tool designed to yield data which are used to generate three dimensional images of the region surrounding a well bore. The proposed tool consists of three mutually orthogonal magnetic dipole sources and multiple 3 component magnetic field receivers offset at different distances from the source. The initial study employs sensitivity functions which are derived by applying the Born Approximation to the integral equation that governs the magnetic fields generated by a magnetic dipole source located within an inhomogeneous medium. The analysis has shown that the standard coaxial configuration, where the magnetic moments of both the source and the receiver are aligned with the axis of the well bore, offers the greatest depth of sensitivity away from the borehole compared to any other source-receiver combination. In addition this configuration offers the best signal-to-noise characteristics. Due to the cylindrically symmetric nature of the tool sensitivity about the borehole, the data generated by this configuration can only be interpreted in terms of a two-dimensional cylindrical model. For a fill 3D interpretation the two radial components of the magnetic field that are orthogonal to each other must be measured. Coil configurations where both the source and receiver are perpendicular to the tool axis can also be employed to increase resolution and provide some directional information, but they offer no true 3D information.

  4. Enhanced Seismic Imaging of Turbidite Deposits in Chicontepec Basin, Mexico

    Science.gov (United States)

    Chavez-Perez, S.; Vargas-Meleza, L.

    2007-05-01

    We test, as postprocessing tools, a combination of migration deconvolution and geometric attributes to attack the complex problems of reflector resolution and detection in migrated seismic volumes. Migration deconvolution has been empirically shown to be an effective approach for enhancing the illumination of migrated images, which are blurred versions of the subsurface reflectivity distribution, by decreasing imaging artifacts, improving spatial resolution, and alleviating acquisition footprint problems. We utilize migration deconvolution as a means to improve the quality and resolution of 3D prestack time migrated results from Chicontepec basin, Mexico, a very relevant portion of the producing onshore sector of Pemex, the Mexican petroleum company. Seismic data covers the Agua Fria, Coapechaca, and Tajin fields. It exhibits acquisition footprint problems, migration artifacts and a severe lack of resolution in the target area, where turbidite deposits need to be characterized between major erosional surfaces. Vertical resolution is about 35 m and the main hydrocarbon plays are turbidite beds no more than 60 m thick. We also employ geometric attributes (e.g., coherent energy and curvature), computed after migration deconvolution, to detect and map out depositional features, and help design development wells in the area. Results of this workflow show imaging enhancement and allow us to identify meandering channels and individual sand bodies, previously undistinguishable in the original seismic migrated images.

  5. Use of seismic interferometry to improve the imaging of a heterogeneous landfill

    NARCIS (Netherlands)

    Konstantaki, L.A.; Draganov, D.S.; Ghose, R.; Heimovaara, T.J.

    2015-01-01

    In this study we investigate the application of seismic interferometry (SI) to seismic reflection data recorded over a landfill. Landfills represent strongly heterogeneous subsurfaces making the seismic reflection imaging challenging. We show that SI improves the imaging of high-density areas, which

  6. Reflection seismic imaging of shallow aquifers in Milano (northern Italy)

    Science.gov (United States)

    Francese, R.; Zaja, A.; Giudici, M.; Schmitt, D.

    2003-04-01

    A high resolution P-wave seismic reflection survey was conducted in the Lambro park within the city of Milano (northern Italy). The objective of the survey was to image structure and stratigraphy of shallow late tertiary and quaternary deposits. This information is necessary to develop a comprehensive 3D hydrological model of the fresh water aquifers where the municipality drilled several production wells. The expected complexity of the acoustic framework and the urban environment with its complications created a challenging test site for the reflection technique. The aquifer system was targeted with a 2-D high resolution seismic reflection survey to outline its vertical and lateral dimensions to a depth of 150-200 m and to estimate some petrophysical properties of the depositional units. A 0.8-km CMP seismic line, with 1-m station spacing, was deployed to collect reflection data. The recording geometry was a 240-channel split spread array, with 6-m shot separation, resulting in a maximum of 20-fold dataset. A single 40-Hz geophone at each station location detected the incoming signals. Field records exhibit clear reflections although the signal to noise ratio is poor because of strong surface waves and severe disturbances from the nearby highway. Optimized FK and KL transforms were used to attenuate these coherent noises and to enhance the primary reflections from the main horizons. The data analysis was also assisted by forward modeling to guide the selection of the processing parameters. The seismic data have a good correlation thourhgout the section and most of the acoustic units show flat bedding. The boundaries of the three major depositional units are clearly resolved by the seismic images. The stacked section clearly indicates that reflection technique provides a powerful method to characterize aquifers, even in a very noisy environment like the urban areas.

  7. The Salton Seismic Imaging Project (SSIP): Active Rift Processes in the Brawley Seismic Zone

    Science.gov (United States)

    Han, L.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Rymer, M. J.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Gonzalez-Fernandez, A.; Lazaro-Mancilla, O.

    2011-12-01

    The Salton Seismic Imaging Project (SSIP), funded by NSF and USGS, acquired seismic data in and across the Salton Trough in southern California and northern Mexico in March 2011. The project addresses both rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. Seven lines of onshore refraction and low-fold reflection data were acquired in the Coachella, Imperial, and Mexicali Valleys, two lines and a grid of airgun and OBS data were acquired in the Salton Sea, and onshore-offshore data were recorded. Almost 2800 land seismometers and 50 OBS's were used in almost 5000 deployments at almost 4300 sites, in spacing as dense as 100 m. These instruments received seismic signals from 126 explosive shots up to 1400 kg and over 2300 airgun shots. In the central Salton Trough, North American lithosphere appears to have been rifted completely apart. Based primarily on a 1979 seismic refraction project, the 20-22 km thick crust is apparently composed entirely of new crust added by magmatism from below and sedimentation from above. Active rifting of this new crust is manifested by shallow (geothermal energy production. This presentation is focused on an onshore-offshore line of densely sampled refraction and low-fold reflection data that crosses the Brawley Seismic Zone and Salton Buttes in the direction of plate motion. At the time of abstract submission, data analysis was very preliminary, consisting of first-arrival tomography of the onshore half of the line for upper crustal seismic velocity. Crystalline basement (>5 km/s), comprised of late-Pliocene to Quaternary sediment metamorphosed by the high heat flow, occurs at ~2 km depth beneath the Salton Buttes and geothermal field and ~4 km depth south of the BSZ. Preliminary result suggests that the velocity of basement is lower in the BSZ than to the south, which may result from fracturing. Basement velocity appears to be

  8. Three-dimensional forward modeling and inversion of borehole-to-surface electrical imaging with different power sources

    Science.gov (United States)

    Bai, Ze; Tan, Mao-Jin; Zhang, Fu-Lai

    2016-09-01

    Borehole-to-surface electrical imaging (BSEI) uses a line source and a point source to generate a stable electric field in the ground. In order to study the surface potential of anomalies, three-dimensional forward modeling of point and line sources was conducted by using the finite-difference method and the incomplete Cholesky conjugate gradient (ICCG) method. Then, the damping least square method was used in the 3D inversion of the formation resistivity data. Several geological models were considered in the forward modeling and inversion. The forward modeling results suggest that the potentials generated by the two sources have different surface signatures. The inversion data suggest that the low-resistivity anomaly is outlined better than the high-resistivity anomaly. Moreover, when the point source is under the anomaly, the resistivity anomaly boundaries are better outlined than when using a line source.

  9. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    Science.gov (United States)

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  10. Imaging Near-Surface Controls on Hot Spring Expression Using Shallow Seismic Refraction in Yellowstone National Park

    Science.gov (United States)

    Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.; Larson, P. B.

    2015-12-01

    We used shallow seismic refraction to image near-surface materials in the vicinity of a small group of hot springs, located in the Morning Mist Springs area of Lower Geyser Basin, Yellowstone National Park, Wyoming. Seismic velocities in the area surveyed range from a low of 0.3 km/s to a high of approximately 2.5 km/s. The survey results indicate an irregular surface topography overlain by silty sediments. The observed seismic velocities are consistent with a subsurface model in which sorted sands and gravels, probably outwash materials from the Pinedale glaciation, are overlain by silts and fine sands deposited in the flat-lying areas of the Morning Springs area. These findings are supported by published geologic maps of the area and well logs from a nearby borehole. The near-surface materials appear to be saturated with discharging hydrothermal fluids of varying temperature, and interbedded with semi-lithified geothermal deposits (sinter). We hypothesize that the relatively low-conductivity deposits of fines at the surface may serve to confine a shallow, relatively low-temperature (sub-boiling) hydrothermal aquifer, and that the distribution of sinter in the shallow subsurface plays an important role in determining the geometry of hydrothermal discharge (hot springs) at the land surface. Few studies of the shallow controls on hot spring expression exist for the Yellowstone caldera, and the present study therefore offers a unique glimpse into near-subsurface fluid flow controls.

  11. LAND STREAMER SEISMIC DATA FROM NORTHERN DELAWARE: A VIABLE ALTERNATIVE FOR IMAGING AQUIFERS IN SUBURBAN AREAS

    Science.gov (United States)

    Velez, C. C.; McLaughlin, P. P.; McGeary, S. E.; Sargent, S. L.

    2009-12-01

    The Potomac Formation includes the most important confined aquifers in the Coastal Plain of northern Delaware. Development and a growing suburban population are increasing demand for groundwater in the area, making accurate assessment of groundwater water supply increasingly important. Previous studies of subsurface geology indicate that the Potomac Formation is characterized by laterally discontinuous fluvial sand bodies, making it difficult to precisely delineate the distribution and geometry of the aquifer facies based on well correlations alone. A 20-km high-resolution seismic reflection dataset was collected using a land-streamer system in 2008 to constrain subsurface stratigraphy between disparate well locations. The data were collected along roadways in an area of mixed development that includes suburban housing tracts, farmlands, and large industry. A 152-m-deep continuous-cored test hole was drilled in the summer of 2009 adjacent to one of the lines and a full suite of borehole geophysical logs obtained. The land-streamer data are compared to a 3-km dataset collected also in 2008 using conventional methods on farmland in the northern part of the study area. The land streamer system proved to be more effective than conventional seismic reflection methods in this area. Several advantages are evident for the land streamer: 1) overall, the conventional dataset has a higher S/N, 2) on average, collecting data with the land streamer system is four times faster, and 3) the land streamer lines can be longer and therefore more continuous than the conventional lines in a developed area. The land-streamer system has minor disadvantages: traffic control, traffic noise, and in some cases a need for larger crews. Regardless, the land streamer dataset is easier to process, of higher quality, and more cost effective. The final depth images from the land streamer data indicate that the minimum and maximum depths imaged are ~18 m and ~ 268m, with a resolution of ~4 m. This

  12. Toward seismic source imaging using seismo-ionospheric data

    Science.gov (United States)

    Rolland, L.; Larmat, C. S.; Mikesell, D.; Sladen, A.; Khelfi, K.; Astafyeva, E.; Lognonne, P. H.

    2014-12-01

    The worldwide coverage offered by global navigation space systems (GNSS) such as GPS, GLONASS or Galileo allows seismological measurements of a new kind. GNSS-derived total electron content (TEC) measurements can be especially useful to image seismically active zones that are not covered by conventional instruments. For instance, it has been shown that the Japanese dense GPS network GEONET was able to record images of the ionosphere response to the initial coseismic sea-surface motion induced by the great Mw 9.0 2011 Tohoku-Oki earthquake less than 10 minutes after the rupture initiation (Astafyeva et al., 2013). But earthquakes of lower magnitude, down to about 6.5 would also induce measurable ionospheric perturbations, when GNSS stations are located less than 250 km away from the epicenter. In order to make use of these new data, ionospheric seismology needs to develop accurate forward models so that we can invert for quantitative seismic sources parameters. We will present our current understanding of the coupling mechanisms between the solid Earth, the ocean, the atmosphere and the ionosphere. We will also present the state-of-the-art in the modeling of coseismic ionospheric disturbances using acoustic ray theory and a new 3D modeling method based on the Spectral Element Method (SEM). This latter numerical tool will allow us to incorporate lateral variations in the solid Earth properties, the bathymetry and the atmosphere as well as realistic seismic source parameters. Furthermore, seismo-acoustic waves propagate in the atmosphere at a much slower speed (from 0.3 to ~1 km/s) than seismic waves propagate in the solid Earth. We are exploring the application of back-projection and time-reversal methods to TEC observations in order to retrieve the time and space characteristics of the acoustic emission in the seismic source area. We will first show modeling and inversion results with synthetic data. Finally, we will illustrate the imaging capability of our approach

  13. Mesoscopics of ultrasound and seismic waves: application to passive imaging

    Science.gov (United States)

    Larose, É.

    2006-05-01

    This manuscript deals with different aspects of the propagation of acoustic and seismic waves in heterogeneous media, both simply and multiply scattering ones. After a short introduction on conventional imaging techniques, we describe two observations that demonstrate the presence of multiple scattering in seismic records: the equipartition principle, and the coherent backscattering effect (Chap. 2). Multiple scattering is related to the mesoscopic nature of seismic and acoustic waves, and is a strong limitation for conventional techniques like medical or seismic imaging. In the following part of the manuscript (Chaps. 3 5), we present an application of mesoscopic physics to acoustic and seismic waves: the principle of passive imaging. By correlating records of ambient noise or diffuse waves obtained at two passive sensors, it is possible to reconstruct the impulse response of the medium as if a source was placed at one sensor. This provides the opportunity of doing acoustics and seismology without a source. Several aspects of this technique are presented here, starting with theoretical considerations and numerical simulations (Chaps. 3, 4). Then we present experimental applications (Chap. 5) to ultrasound (passive tomography of a layered medium) and to seismic waves (passive imaging of California, and the Moon, with micro-seismic noise). Physique mésoscopique des ultrasons et des ondes sismiques : application à l'imagerie passive. Cet article de revue rassemble plusieurs aspects fondamentaux et appliqués de la propagation des ondes acoustiques et élastiques dans les milieux hétérogènes, en régime de diffusion simple ou multiple. Après une introduction sur les techniques conventionelles d'imagerie sismique et ultrasonore, nous présentons deux expériences qui mettent en évidence la présence de diffusion multiple dans les enregistrements sismologiques : l'équipartition des ondes, et la rétrodiffusion cohérente (Chap. 2). La diffusion multiple des

  14. Advanced Reservoir Imaging Using Frequency-Dependent Seismic Attributes

    Energy Technology Data Exchange (ETDEWEB)

    Fred Hilterman; Tad Patzek; Gennady Goloshubin; Dmitriy Silin; Charlotte Sullivan; Valeri Korneev

    2007-12-31

    Our report concerning advanced imaging and interpretation technology includes the development of theory, the implementation of laboratory experiments and the verification of results using field data. We investigated a reflectivity model for porous fluid-saturated reservoirs and demonstrated that the frequency-dependent component of the reflection coefficient is asymptotically proportional to the reservoir fluid mobility. We also analyzed seismic data using different azimuths and offsets over physical models of fractures filled with air and water. By comparing our physical model synthetics to numerical data we have identified several diagnostic indicators for quantifying the fractures. Finally, we developed reflectivity transforms for predicting pore fluid and lithology using rock-property statistics from 500 reservoirs in both the shelf and deep-water Gulf of Mexico. With these transforms and seismic AVO gathers across the prospect and its down-dip water-equivalent reservoir, fluid saturation can be estimated without a calibration well that ties the seismic. Our research provides the important additional mechanisms to recognize, delineate, and validate new hydrocarbon reserves and assist in the development of producing fields.

  15. Seismic imaging in laboratory trough laser Doppler vibrometry

    Science.gov (United States)

    Brito, Daniel; Poydenot, Valier; Garambois, Stéphane; Diaz, Julien; Bordes, Clarisse; Rolando, Jean-Paul

    2016-04-01

    Mimic near-surface seismic field measurements at a small scale, in the laboratory, under a well-controlled environment, may lead to a better understanding of wave propagation in complex media such as in geological materials. Laboratory experiments can help in particular to constrain and refine theoretical and numerical modelling of physical phenomena occurring during seismic propagation, in order to make a better use of the complete set of measurements recorded in the field. We have developed a laser Doppler vibrometer (laser interferometry) platform designed to measure non-contact seismic displacements (or velocities) of a surface. This technology enables to measure displacements as small as a tenth of a nanometer on a wide range of frequencies, from a few tenths to a few megahertz. Our experimental set-up is particularly suited to provide high-density spatial and temporal records of displacements on the edge of any vibrating material. We will show in particular a study of MHz wave propagation (excited by piezoelectric transducers) in cylindrical cores of typical diameter size around 10 cm. The laser vibrometer measurements will be first validated in homogeneous materials cylinders by comparing the measurements to a direct numerical simulation. Special attention will be given to the comparison of experimental versus numerical amplitudes of displacements. In a second step, we will conduct the same type of study through heterogeneous carbonate cores, possibly fractured. Tomographic images of velocity in 2D slices of the carbonate core will be derived based upon on the time of first arrival. Preliminary attempts of tomographic attenuation maps will also be presented based on the amplitudes of first arrivals. Experimental records will be confronted to direct numerical simulations and tomographic images will be compared to x-ray scanner imaging of the cylindrical cores.

  16. P-wave seismic imaging through dipping transversely isotropic media

    Science.gov (United States)

    Leslie, Jennifer Meryl

    2000-10-01

    P-wave seismic anisotropy is of growing concern to the exploration industry. The transmissional effects through dipping anisotropic strata, such as shales, cause substantial depth and lateral positioning errors when imaging subsurface targets. Using anisotropic physical models the limitations of conventional isotropic migration routines were determined to be significant. In addition, these models were used to validate both anisotropic depth migration routines and an anisotropic, numerical raytracer. In order to include anisotropy in these processes, one must be able to quantify the anisotropy using two parameters, epsilon and delta. These parameters were determined from headwave velocity measurements on anisotropic strata, in the parallel-, perpendicular- and 45°-to-bedding directions. This new method was developed using refraction seismic techniques to measure the necessary velocities in the Wapiabi Formation shales, the Brazeau Group interbedded sandstones and shales, the Cardium Formation sandstones and the Palliser Formation limestones. The Wapiabi Formation and Brazeau Group rocks were determined to be anisotropic with epsilon = 0.23 +/- 0.05, delta = --0.05 +/- 0.07 and epsilon = 0.11 +/- 0.04, delta = 0.42 +/- 0.06, respectively. The sandstones and limestones of the Cardium and Palliser formations were both determined to be isotropic, in these studies. In a complementary experiment, a new procedure using vertical seismic profiling (VSP) techniques was developed to measure the anisotropic headwave velocities. Using a multi-offset source configuration on an appropriately dipping, uniform panel of anisotropic strata, the required velocities were measured directly and modelled. In this study, the geologic model was modelled using an anisotropic raytracer, developed for the experiment. The anisotropy was successfully modelled using anisotropic parameters based on the refraction seismic results. With a firm idea of the anisotropic parameters from the

  17. Model experiments on imaging subsurface fracture permeability by pulsed Doppler borehole televiewer; Pulse doppler borehole televiewer ni yoru kiretsu tosuisei hyoka ni kansuru model jikken

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Y.; Niitsuma, H. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-05-01

    This paper reports model experiments to evaluate flow rates of fluids passing through a fracture by using a Doppler borehole televiewer (DBHTV). A supersonic transducer disposed on a well axis transmits transmission pulses, and a transducer receives scattered waves generated by particulates in water and waves reflected on a well wall. This signal is applied with time gating to extract only the scattered waves from particulates in the vicinity of the well wall. Deriving spectra in the recorded Doppler signal obtains flow velocity components in the direction of the well radius. A model was made with a polyvinylchloride pipe with a diameter of 14.6 cm to simulate a well, to which an aluminum pipe with an inner diameter of 2 mm is connected to be used as a simulated fracture, and mud water is circulated in the pipe. The result of deriving a passed flow volume in this model by integrating flow rate distribution derived by using the above method to a predetermined range in the vicinity of the fracture showed a good proportional relationship with actual flow rate in the simulated fracture. 1 ref., 7 figs.

  18. Structure and Stratigraphy of the Rift Basins in the Northern Gulf of California: Results from Analysis of Seismic Reflection and Borehole Data.

    Science.gov (United States)

    Martín, A.; González, M.; Helenes, J.; García, J.; Aragón, M.; Carreño, A.

    2008-12-01

    The northern Gulf of California contains two parallel, north-south trending rift basin systems separated by a basement-high. The interpretation of several exploration wells, and ~4500 km of seismic reflection data from PEMEX (Mexican national oil company) indicate that the tectonically active basins to the west (Wagner- Consag and Upper Delfin basins) may have initiated synchronously with the now abandoned Tiburón- Tepoca-Altar basins to the east in the Sonora margin. In both basin systems the lower sequence (A) is marine mudstone-siltstone, has parallel reflectors and a largely uniform thickness that reaches up to1.5 km, and gradually pinches out toward the lateral margins. This suggests that the unit was deposited prior to their segmentation by transtensional faulting. Marine microfossils from borehole samples from sequence A in the Tiburón and Consag basins indicates middle Miocene (>11.2 Ma) proto-Gulf conditions. Sequence B conformably overlies sequence A, and is characterized by up to 2 km growth strata with a fanning geometry that show a clear genetic relationship to the major transtensional faults that control the segmentation of the two basin systems. Sequence C in the Tiburón and Tepoca basins is comparatively thin (<800 m) and includes several unconformities, but is much less affected by faulting. In contrast, sequence C in the active Wagner, Consag and Upper Delfin basin is a much thicker (up to 2 km) growth sequence with abundant volcanic intrusions. Marked variations in sequence C in the different basin systems clearly demonstrate a major westward shift of deformation and subsidence at this time. The modern depocenter in Wagner-Consag basins is controlled by the Consag and Wagner faults, which trend parallel to the north ~20 km apart, and show opposite normal offset. These two faults merge at an oblique angle (70°-50°, respectively) into the Cerro Prieto transform fault to the north and likely accommodate an important amount of dextral shear. To

  19. Seismic Imaging and Seismicity Analysis in Beijing-Tianjin-Tangshan Region

    Directory of Open Access Journals (Sweden)

    Xiangwei Yu

    2011-01-01

    Full Text Available In this study a new tomographic method is applied to over 43,400 high-quality absolute direct P arrival times and 200,660 relative P arrival times to determine detailed 3D crustal velocity structures as well as the absolute and relative hypocenter parameters of 2809 seismic events under the Beijing-Tianjin-Tangshan region. The inferred velocity model of the upper crust correlates well with the surface geological and topographic features in the BTT region. In the North China Basin, the depression and uplift areas are imaged as slow and fast velocities, respectively. After relocation, the double-difference tomography method provides a sharp picture of the seismicity in the BTT region, which is concentrated along with the major faults. A broad low-velocity anomaly exists in Tangshan and surrounding area from 20 km down to 30 km depth. Our results suggest that the top boundary of low-velocity anomalies is at about 25.4 km depth. The event relocations inverted from double-difference tomography are clusted tightly along the Tangshan-Dacheng Fault and form three clusters on the vertical slice. The maximum focal depth after relocation is about 25 km depth in the Tangshan area.

  20. High-resolution seismic imaging of the Kevitsa mafic-ultramafic Cu-Ni-PGE hosted intrusion, northern Finland

    Science.gov (United States)

    Malehmir, Alireza; Koivisto, Emilia; Wjins, Chris; Tryggvason, Ari; Juhlin, Christopher

    2014-05-01

    Kevitsa, in northern Finland, is a large nickel/copper ore body hosted by a massive mafic-ultramafic intrusion with measured and indicated resources of 240 million tons (cutoff 0.1%) grading 0.30% Ni and 0.41% Cu. Mining started in 2012 with an open pit that will extend down to about 550-600 m depth. The expected mine life is more than 20 years. Numerous boreholes are available in the area, but the majority of them are shallow and do not provide a comprehensive understanding of the dimensions of the intrusion. However, a number of boreholes do penetrate the basal contact of the intrusion. Most of these are also shallow and concentrated at the edge of the intrusion. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area, but also a better understanding of the geology. Exact mapping of the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu than the disseminated mineralization away from the contact. With the objective of better characterizing the intrusion, a series of 2D profiles were acquired followed by a 3D reflection survey that covered an area of about 3 km by 3 km. Even though the geology is complex and the seismic P-wave velocity ranges between 5 to 8 km/s, conventional processing results show gently- to steeply-dipping reflections from depths of approximately 2 km to as shallow as 100 m. Many of these reflections are interpreted to originate from either fault systems or internal magmatic layering within the Kevitsa main intrusion. Correlations between the 3D surface seismic data and VSP data, based upon time shifts or phase changes along the reflections, support the interpretation that numerous faults are imaged in the volume. Some of these faults cross the planned open-pit mine at depths of about 300-500 m, and it is, therefore, critical to map them for mine planning. The seismic 3D

  1. Contourite Deposition in the North Atlantic Ocean Moderated By Mantle Plume Activity: Evidence from Seismic Reflection Images

    Science.gov (United States)

    Parnell-Turner, R. E.; McCave, I. N. N.; White, N. J.; Henstock, T.; Murton, B. J.; Jones, S. M.

    2014-12-01

    It is generally accepted that the strength of Northern Component Water overflow, the ancient precursor of North Atlantic Deep Water, has varied throughout Neogene times. Variations in dynamic support of the lithosphere, due to transient behavior of the Iceland mantle plume, probably control spatial and temporal water depth variations this region. Pathways and intensities of oceanic bottom currents, together with deposition of contourite drifts, are strongly influenced by changing bathymetry. Here, we combine detailed observations of contourite drift deposits from seismic reflection profiles with a chronology of plume activity, to test the relationships between deep-water circulation, sedimentary drift accumulation and mantle convection. We present multi-channel seismic reflection profiles acquired over Bjorn, Gardar and Hatton Drifts in the Iceland Basin and over the northernmost portion of Eirik Drift, east of Greenland. Depositional hiatuses are easily identified and correlated between these high-quality images and nearby boreholes, which allows us to construct history of sedimentation across the North Atlantic Ocean over the past 5 Ma. We observe kilometer-scale westward-migration of Bjorn Drift, which can be explained by varying current strength and sediment supply, probably moderated by fluctuating dynamic support on overall subsidence. We place these observations into a new continuous 55 Ma record of Iceland mantle plume activity. There is compelling evidence to support the hypothesis that variations in mantle convection deep beneath the plates has profound consequences for deep-water flow and sediment deposition at Earth's surface.

  2. A novel muon detector for borehole density tomography

    Science.gov (United States)

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; Rowe, Charlotte; Guardincerri, Elena; Durham, J. Matthew; Morris, Christopher L.; Poulson, Daniel C.; Plaud-Ramos, Kenie; Morley, Deborah J.; Bacon, Jeffrey D.; Bynes, James; Cercillieux, Julien; Ketter, Chris; Le, Khanh; Mostafanezhad, Isar; Varner, Gary; Flygare, Joshua; Lintereur, Azaree T.

    2017-04-01

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable imaging of density structure to monitor small changes in density - a proxy for fluid migration - at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. Testing and measurements using a prototype detector in the laboratory and shallow underground laboratory demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.

  3. Seismic imaging using finite-differences and parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Ober, C.C. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    A key to reducing the risks and costs of associated with oil and gas exploration is the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico and overthrust regions in US onshore regions. Prestack depth migration generally yields the most accurate images, and one approach to this is to solve the scalar wave equation using finite differences. As part of an ongoing ACTI project funded by the US Department of Energy, a finite difference, 3-D prestack, depth migration code has been developed. The goal of this work is to demonstrate that massively parallel computers can be used efficiently for seismic imaging, and that sufficient computing power exists (or soon will exist) to make finite difference, prestack, depth migration practical for oil and gas exploration. Several problems had to be addressed to get an efficient code for the Intel Paragon. These include efficient I/O, efficient parallel tridiagonal solves, and high single-node performance. Furthermore, to provide portable code the author has been restricted to the use of high-level programming languages (C and Fortran) and interprocessor communications using MPI. He has been using the SUNMOS operating system, which has affected many of his programming decisions. He will present images created from two verification datasets (the Marmousi Model and the SEG/EAEG 3D Salt Model). Also, he will show recent images from real datasets, and point out locations of improved imaging. Finally, he will discuss areas of current research which will hopefully improve the image quality and reduce computational costs.

  4. Review on improved seismic imaging with closure phase

    KAUST Repository

    Schuster, Gerard T.

    2014-08-13

    The timing and amplitudes of arrivals recorded in seismic traces are influenced by velocity variations all along the associated raypaths. Consequently, velocity errors far from the target can lead to blurred imaging of the target body. To partly remedy this problem, we comprehensively reviewed inverting differential traveltimes that satisfied the closure-phase condition. The result is that the source and receiver statics are completely eliminated in the data and velocities far from the target do not need to be known. We successfully used the phase closure equation for traveltime tomography, refraction statics, migration, refraction tomography, and earthquake location, all of which demonstrated the higher resolution achievable by processing data with differential traveltimes rather than absolute traveltimes. More generally, the stationary version of the closure-phase equation is equivalent to Fermat’s principle and can be derived from the equations of seismic interferometry. In summary, the general closure-phase equation is the mathematical foundation for approximately redatuming sources and/or receivers to the target of interest without the need to accurately know the statics or the velocity model away from the target.

  5. Automatic performance tuning of parallel and accelerated seismic imaging kernels

    KAUST Repository

    Haberdar, Hakan

    2014-01-01

    With the increased complexity and diversity of mainstream high performance computing systems, significant effort is required to tune parallel applications in order to achieve the best possible performance for each particular platform. This task becomes more and more challenging and requiring a larger set of skills. Automatic performance tuning is becoming a must for optimizing applications such as Reverse Time Migration (RTM) widely used in seismic imaging for oil and gas exploration. An empirical search based auto-tuning approach is applied to the MPI communication operations of the parallel isotropic and tilted transverse isotropic kernels. The application of auto-tuning using the Abstract Data and Communication Library improved the performance of the MPI communications as well as developer productivity by providing a higher level of abstraction. Keeping productivity in mind, we opted toward pragma based programming for accelerated computation on latest accelerated architectures such as GPUs using the fairly new OpenACC standard. The same auto-tuning approach is also applied to the OpenACC accelerated seismic code for optimizing the compute intensive kernel of the Reverse Time Migration application. The application of such technique resulted in an improved performance of the original code and its ability to adapt to different execution environments.

  6. Novel approach for improving signal to noise ratio of seismic images

    Institute of Scientific and Technical Information of China (English)

    陈凤; 李金宗; 李冬冬

    2004-01-01

    A novel approach of digital image processing technology is applied to improve SNR of seismic images. At first,we analyze the characters of line-like texture in seismic images, and then a preprocessing method named 2 D tracing horizon filtering is designed. After that, the technology of optical flow analysis is adopted to calculate the displacement vectors of adjacent pixels between neighboring seismic images. At last, the novel image accumulation algorithms are proposed, which are applied to greatly improve SNR and definition of seismic images. The experimental results show that SNR of seismic section images with SNR of about 20 dB and 17 dB are increased 8 dB~9 dB under keeping signal energy 67%~80% by processing section images and 3dB~4dB under keeping signalenergy 80~90% by processing horizontal slice images. Thereby, the proposed novel approaches are very helpful to the correct seismic interpretation and have very important significance for seismic exploring.

  7. Improvement of seismic imaging of complex geologic structures

    Energy Technology Data Exchange (ETDEWEB)

    Duquet, B.

    1996-04-11

    Successful imaging of complex geologic structures by pre-stack depth migration requires a correct velocity model of the subsurface. In recent years, it has been proposed to use pre-stack depth migration of the cube of pre-stack depth migrated images and the subsequent use of the interpretation for velocity model update. However, in complex geologic structures, pre-stack depth migration does not yield results of sufficient quality for interpretation. We therefore propose a new wave-field imaging technique based on linearized inversion using the paraxial approximation of the wave equation. Using this technique we can remove the artifacts contaminating the individual depth images by integrating a priori information in the inverse problem. The application of the method to synthetic and real data shows that it allows us to largely improve the quality of the depth images at reasonable cost.We thus obtain an interpretable cube of depth images that makes migration velocity analysis feasible in complex structures. In 3D, due to the size of the problem there is still a large interest in using post stack techniques for velocity model determination. The quality of the results of such techniques relies on the quality of the stacking process. Classical data stacking techniques rely on simplifications that are not valid anymore in case of complex geologic structures. We propose a data stacking technique based on depth domain stacking after pre-stack depth migration, followed by explosive reflector modeling, to obtain the stacked seismic data. This method which is totally automatic yield 3 D stacked data that are suitable for 3D post stack velocity determination techniques.

  8. Passive Seismic Imaging of the Ruby Mountains Core Complex, Nevada

    Science.gov (United States)

    Litherland, M.; Klemperer, S. L.

    2015-12-01

    We investigate the deep crustal structure of the Ruby Mountains Core Complex (RMCC) using data collected from the Ruby Mountains Seismic Experiment. This project, part of the Earthscope Flexible Array program, deployed 50 passive broadband stations across the RMCC from 2010 to 2012. Previous investigations of the area have included extensive surface mapping and active seismic profiles across the surrounding basins, but better imaging beneath the mountain range is needed to understand the tectonic processes that formed the RMCC. The RMCC exhibits typical core-complex structure of deep crustal rocks exhumed to the surface beneath a gently dipping detachment, with a thick mylonitic shear zone directly underlying the detachment. In the RMCC, the westward dip of the detachment, the ~1km-thick mylonite zone formed in the Paleogene, and a south-to-north increase in metamorphic grade provide targets for imaging. We used common conversion point stacking of receiver functions to produce 3 profiles of structural discontinuities beneath the RMCC: one along the axis of the RMCC, and two crossing lines, one in the northern RMCC, and one in the southern part of the range. Due to the deep sedimentary basins surrounding the RMCC, various de-multiple processes were required to reduce the effects of basin reverberations. To better constrain the velocity structure of the area, we used ambient-noise tomography, and finally, we produced a joint inversion of our receiver functions and ambient-noise data. We observe a mostly flat Moho at about 30 km depth beneath the RMCC that dips slightly to the south, with faint mid-crustal converters that also dip south at ~30°. In the southern RMCC, the Moho dips ~20° westward, but this is not observed in the northern RMCC. This suggests that much of the exhumation involved in the RMCC formation likely involved ductile flow that left a mostly flat Moho, but more recent processes also may have left observable changes in lower-crustal structure.

  9. EVOLUTION OF SOUTHERN AFRICAN CRATONS BASED ON SEISMIC IMAGING

    DEFF Research Database (Denmark)

    Thybo, Hans; Soliman, Mohammad Youssof Ahmad; Artemieva, Irina

    2014-01-01

    present a new seismic model for the structure of the crust and lithospheric mantle of the Kalahari Craton, constrained by seismic receiver functions and finite-frequency tomography based on the seismological data from the South Africa Seismic Experiment (SASE). The combination of these two methods...

  10. Chronicle of Bukit Bunuh for possible complex impact crater by 2-D resistivity imaging (2-DERI) with geotechnical borehole records

    Science.gov (United States)

    Jinmin, M.; Saad, R.; Saidin, M.; Ismail, N. A.

    2015-03-01

    A 2-D resistivity imaging (2-DERI) study was conducted at Bukit Bunuh, Lenggong, Perak. Archaeological Global Research Centre, Universiti Sains Malaysia shows the field evidence of shock metamorphisms (suevite breccia) and crater morphology at Bukit Bunuh. A regional 2-DERI study focusing at Bukit Bunuh to identify the features of subsurface and detail study was then executed to verify boundary of the crater with the rebound effects at Bukit Bunuh which covered approximately 132.25 km2. 2-DERI survey used resistivity equipment by ABEM SAS4000 Terrameter and ES10-64C electrode slector with pole-dipole array. The survey lines were carried out using `roll-along' technique. The data were processed and analysed using RES2DINV, Excel and Surfer software to obtain resistivity results for qualitative interpretations. Bedrock depths were digitized from section by sections obtained. 2-DERI results gives both regional and detail study shows that the study area was divided into two main zones, overburden consists of alluvium mix with boulders embedded with resistivity value of 10-800 Ωm and granitic bedrock with resistivity value of >1500 Ωm and depth 5-50 m. The low level bedrock was circulated by high level bedrock (crater rim) was formed at the same area with few spots of high level bedrock which appeared at the centre of the rim which suspected as rebound zones (R). Assimilations of 2-DERI with boreholes are successful give valid and reliable results. The results of the study indicates geophysical method are capable to retrieve evidence of meteorite impact subsurface of the studied area.

  11. Quantification of tracer plume transport parameters in 2D saturated porous media by cross-borehole ERT imaging

    Science.gov (United States)

    Lekmine, G.; Auradou, H.; Pessel, M.; Rayner, J. L.

    2017-04-01

    Cross-borehole ERT imaging was tested to quantify the average velocity and transport parameters of tracer plumes in saturated porous media. Seven tracer tests were performed at different flow rates and monitored by either a vertical or horizontal dipole-dipole ERT sequence. These sequences were tested to reconstruct the shape and temporally follow the spread of the tracer plumes through a background regularization procedure. Data sets were inverted with the same inversion parameters and 2D model sections of resistivity ratios were converted to tracer concentrations. Both array types provided an accurate estimation of the average pore velocity vz. The total mass Mtot recovered was always overestimated by the horizontal dipole-dipole and underestimated by the vertical dipole-dipole. The vertical dipole-dipole was however reliable to quantify the longitudinal dispersivity λz, while the horizontal dipole-dipole returned better estimation for the transverse component λx. λ and Mtot were mainly influenced by the 2D distribution of the cumulated electrical sensitivity and the Shadow Effects induced by the third dimension. The size reduction of the edge of the plume was also related to the inability of the inversion process to reconstruct sharp resistivity contrasts at the interface. Smoothing was counterbalanced by a non-realistic rise of the ERT concentrations around the centre of mass returning overpredicted total masses. A sensitivity analysis on the cementation factor m and the porosity ϕ demonstrated that a change in one of these parameters by 8% involved non negligible variations by 30 and 40% of the dispersion coefficients and mass recovery.

  12. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    Science.gov (United States)

    Dawson, Phillip B.; Chouet, Bernard A.; Pitt, Andrew M.

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10−3 to 7.9 × 10−3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10−4 to 3.4 × 10−3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day−1, the reservoir could supply the emission of CO2 for ∼25–1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  13. 3D Seismic Imaging over a Potential Collapse Structure

    Science.gov (United States)

    Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.

  14. Determination of porosity and facies trends in a complex carbonate reservoir, by using 3-D seismic, borehole tools, and outcrop geology

    Energy Technology Data Exchange (ETDEWEB)

    Zacharakis, T.G. Jr.; Comet, J.N.; Murillo, A.A. [Respol Exploracion, S.A., Madrid (Spain)] [and others

    1996-08-01

    Mesozoic carbonate reservoirs are found in the Mediterranean Sea, off the east coast of Spain. A wide variation of porosities are found in the core samples and logs: vuggy, breccia, fractures, and cavern porosity. In addition, complex Tertiary carbonate geometries include olistostromes, breccia bodies, and reef buildups, which are found on top of Mesozoic carbonates. Predicting the porosity trends within these oil productive reservoirs requires an understanding of how primary porosity was further enhanced by secondary processes, including fractures, karstification, and dolomitization in burial conditions. Through an extensive investigation of field histories, outcrop geology, and seismic data, a series of basic reservoir styles have been identified and characterized by well log signature and seismic response. The distribution pattern of the different reservoirs styles is highly heterogeneous, but by integrating subsurface data and outcrop analogs, it is possible to distinguish field-scale and local patterns of both vertical and local variations in reservoir properties. Finally, it is important to quantify these reservoir properties through the study of seismic attributes, such as amplitude variations, and log responses at the reservoir interval. By incorporating 3-D seismic data, through the use of seismic inversion, it is possible to predict porosity trends. Further, the use of geostatistics can lead to the prediction of reservoir development within the carbonate facies.

  15. Joint Geophysical Assessments of Geothermal Potential from a Deep Borehole in the Canadian Shield Rocks of NE Alberta

    Science.gov (United States)

    Chan, J.; Schmitt, D. R.; Kueck, J.; Moeck, I. S.

    2012-12-01

    Part of the feasibility study for geothermal development in Northern Alberta consists of investigating the presence of subsurface fluid pathways in the crystalline basement rocks. The deepest borehole drilled in Northeastern Alberta has a depth of 2350 m and offers substantial depth coverage to study the basement rocks. Due to the limited cores available for this deep borehole, a comprehensive suite of geophysical logs and borehole seismic methods are used to provide subsurface characterization of the basement in addition to the existing surface seismic reflection data. Interpretation of the geophysical logs indicate potential fracture zones at different depths that could serve as zones with enhanced fluid potential - a necessary component for any geothermal systems to be viable. Fractures within the subsurface tend to be aligned by the deviatoric stress in the subsurface and their orientations can be imaged using the Formation MicroImager (FMI) log. Two sets of vertical seismic profiles (VSP) were acquired in the deep borehole in July 2011. First, a high resolution zero-offset VSP was acquired to measure the seismic responses at the borehole. Upgoing tube waves can be identified and attributed to fracture zones interpreted from the geophysical logs. Since VSP data contains higher frequency content, the final corridor stack from the zero-offset VSP offers greater resolution in correlating seismic reflections with the primary reflectors and multiples interpreted from the surface seismic reflection data. The second set of VSP data is a multi-azimuth, multi-depth walk-away VSP acquired using three-component receivers placed at depths of 800 and 1780 m. The degree of seismic anisotropy in the crystalline basement can be revealed by analyzing the first arrivals at different geophone depths. Using an assumption that the presence of fractures causes P-wave reflection anisotropy, interpretation from the walk-away VSP can be used as a method for gross fracture detection

  16. Seismic wave attenuation from borehole and surface records in the top 2.5 km beneath the city of Basel, Switzerland

    KAUST Repository

    Bethmann, Falko

    2012-08-01

    We investigate attenuation (Q−1) of sediments of 2.5–3.5km thickness underneath the city of Basel, Switzerland. We use recordings of 195 induced events that were obtained during and after the stimulation of a reservoir for a Deep Heat Mining Project in 2006 and 2007. The data set is ideally suited to estimate Q as all events are confined to a small source volume and were recorded by a dense surface network as well as six borehole sensors at various depths. The deepest borehole sensor is positioned at a depth of 2.7km inside the crystalline basement at a mean hypocentral distance of 1.8km. This allows us to measure Q for frequencies between 10 and 130 Hz. We apply two different methods to estimate Q. First, we use a standard spectral ratio technique to obtain Q, and as a second measure we estimate Q in the time domain, by convolving signals recorded by the deepest sensor with a Q operator and then comparing the convolved signals to recordings at the shallower stations. Both methods deliver comparable values for Q. We also observe similar attenuation for P- and S- waves (QP∼QS). As expected, Q increases with depth, but with values around 30–50, it is low even for the consolidated Permian and Mesozoic sediments between 500 and 2700 m.

  17. Characterization and interpretation of a fractured rocky massif from borehole data. Boreholes of geothermal project at Soultz-sous-Forets and other examples of unidirectional sampling; Caracterisation et interpretation d`un volume rocheux fracture a partir de donnees de forages. Les forages geothermiques de Soultz-sous-Forets et autres exemples d`echantillonnages unidirectionnels

    Energy Technology Data Exchange (ETDEWEB)

    Dezayes, CH.

    1995-12-18

    In this thesis, we study fractures from borehole data on two sites: in one, located at Soultz-sous-Forets (Alsace) in the Rhine graben, boreholes reach a delta Jurassic series forming a petroleum reservoir. At Soultz, fractures have been studied on cores and borehole images. Striated faults present on cores permit to determine the tectonic history of the granite, completed by field study in Vosges Massif. This history corresponds to the Rhine graben history knowing by different authors. The analysis of vertical induced fractures observed on borehole images indicates a present-day NW-SE to NNW-SSE compression. These variations of stress direction are confirmed by others in situ measurements, as hydraulic injection, micro-seismicity, etc... On cores and borehole images, numerous fractures have been observed. Most of them are linked to the E-W distension, which permits the Rhine graben opening at Oligocene. At greatest scale, in quartz minerals, the micro-fractures are constitute by fluid inclusion trails. Several sets are related to the E-W distension, but others sets are linked to compressive stages. These sets are not observed on cores. This is a under-sampling of some fractures by the boreholes, but theses fractures exit into to rock massif. On borehole images, fracture density is weakest than the cores, however the set organisation is the same. At Ravenscar, the distribution of fracture spacing along different unidirectional sampling shows a exponential negative law. However, the fracture density varies with sampling. (author) 199 refs.

  18. The Salton Seismic Imaging Project: Seismic velocity structure of the Brawley Seismic Zone, Salton Buttes and Geothermal Field, Salton Trough, California

    Science.gov (United States)

    Delph, J.; Hole, J. A.; Fuis, G. S.; Stock, J. M.; Rymer, M. J.

    2011-12-01

    The Salton Trough is an active rift in southern California in a step-over between the plate-bounding Imperial and San Andreas Faults. In March 2011, the Salton Seismic Imaging Project (SSIP) investigated the rift's crustal structure by acquiring several seismic refraction and reflection lines. One of the densely sampled refraction lines crosses the northern-most Imperial Valley, perpendicular to the strike-slip faults and parallel to a line of small Quaternary rhyolitic volcanoes. The line crosses the obliquely extensional Brawley Seismic Zone and goes through one of the most geothermally productive areas in the United States. Well logs indicate the valley is filled by several kilometers of late Pliocene-recent lacustrine, fluvial, and shallow marine sediment. The 42-km long seismic line was comprised of eleven 110-460 kg explosive shots and receivers at a 100 m spacing. First arrival travel times were used to build a tomographic seismic velocity image of the upper crust. Velocity in the valley increases smoothly from 5 km/s, indicating diagenesis and gradational metamorphism of rift sediments at very shallow depth due to an elevated geotherm. The velocity gradient is much smaller in the relatively low velocity (Chocolate Mountains. The tomographic model shows that the shallow metasedimentary basement as well as the geothermal and volcanic activity seem to be bounded by the sharp western and eastern margins of the Brawley Seismic Zone. At this location, strongly fractured crust allows both hydrothermal and magmatic fluids to rise to the surface in the most rapidly extending portion of the rift basin.

  19. Integration of 2D and 3D reflection seismic data with deep boreholes in the Kevitsa Ni-Cu-PGE deposit, northern Finland

    Science.gov (United States)

    Koivisto, Emilia; Malehmir, Alireza; Voipio, Teemu; Wijns, Chris

    2013-04-01

    Kevitsa is a large disseminated sulphide Ni-Cu-PGE deposit hosted by the Kevitsa mafic-ultramafic intrusion in northern Finland and dated as about 2.06 Ga old. The Geological Survey of Finland first discovered the Kevitsa deposit in 1987. Open pit mining by Kevitsa Mining Oy/First Quantum Minerals Ltd. commenced in June 2012. The final pit depth is planned to be 550-600 m. The estimated ore reserves of the Kevitsa intrusion are about 240 million tones (using a nickel cut-off grade of 0.1%). The expected life-of-mine is 20-30 years. More than 400 hundred holes have been drilled in the Kevitsa area, but most are concentrated close to the known deposit and do not provide a comprehensive understanding of the extent of the intrusion. The basal contact of the intrusion is penetrated by only about 30 drill holes, most of which are shallow. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area. An exact knowledge on the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu. In December 2007, a series of 2D reflection seismic profiles was acquired in the Kevitsa area. It consisted of four connected survey lines between 6 and 11 km long. In 2010, the initial positive results of the 2D seismic survey led Kevitsa Mining Oy/First Quantum Minerals Ltd. to initiate a 3D reflection seismic survey. The 3D seismic survey is limited to the closer vicinity of the known deposit, while the 2D seismic survey was designed to provide a more regional view of the Kevitsa intrusive complex. The main aims of the 2D and 3D seismic surveys were to delineate the shape and extent of the ore-bearing Kevitsa intrusion and the geometry of some of the host rock and surrounding units, and extract information about the larger-scale structures and structures important for mine-planning purposes. The 2D and 3D seismic data were used to

  20. Laboratory Seismic Monitoring and X-ray CT imaging of Supercritical CO2 Injection in Reservoir Sand: WESTCAB King Island Project

    Science.gov (United States)

    Nakashima, S.; Kneafsey, T. J.; Nakagawa, S.; Harper, E. J.

    2013-12-01

    The Central Valley of California contains promising locations for on-shore geologic CO2 storage. DOE's WESTCARB (West Coast Regional Carbon Sequestration Partnership) project drilled and cored a borehole (Citizen Green Well) at King Island (near Stockton, CA) to study the CO2 storage capability of saline and gas-bearing formations in the southwestern Sacramento Basin. Potential reservoirs encountered in the borehole include Domengine, Mokelumne River (primary target), and Top Starkey formations. In anticipation of geophysical monitoring of possible CO2 injection into this particular borehole and of the long-term migration of the CO2, we conducted small-scale CO2 injection experiments on three core samples retrieved from the well (Mokelumne River sand A and B) and from a mine outcrop (Domengine sandstone). During the experiment, a jacketed core sample (diameter 1.5 inches, length 4.0-6.0 inches) saturated with brine- (1% NaCl aq.) was confined within a pressure vessel via compressed nitrogen to 3,500-4,000psi, and supercritical CO2 was injected into the core at 2,000-2,500psi and 45-60 degrees C. The CO2 pressure and temperature were adjusted so that the bulk elastic modulus of the CO2 was close to the expected in-situ modulus--which affects the seismic properties most--while keeping the confining stress within our experimental capabilities. After the CO2 broke through the core, fresh brine was re-injected to remove the CO2 by both displacement and dissolution. Throughout the experiment, seismic velocity and attenuation of the core sample were measured using the Split Hopkinson Resonant Bar method (Nakagawa, 2012, Rev. Sci. Instr.) at near 1 kHz (500Hz--1.5 kHz), and the CO2 distribution determined via x-ray CT imaging. In contrast to relatively isotropic Mokelumne sand A, Domengine sandstone and Mokelumne sand B cores exhibited CO2 distributions strongly controlled by the bedding planes. During the CO2 injection, P-wave velocity and attenuation of the layered

  1. A new tomographic image on the Philippine Sea Slab beneath Tokyo - Implication to seismic hazard in the Tokyo metropolitan region -

    Science.gov (United States)

    Hirata, N.; Sakai, S.; Nakagawa, S.; Ishikawa, M.; Sato, H.; Kasahara, K.; Kimura, H.; Honda, R.

    2012-12-01

    In central Japan, the Philippine Sea plate (PSP) subducts beneath the Tokyo metropolitan region. Devastating M8-class earthquakes occurred on the upper surface of the Philippine Sea plate (SPS), examples of which are the Genroku earthquake of 1703 (magnitude M=8.0) and the Kanto earthquake of 1923 (M=7.9), which had 105,000 fatalities. A M7 or greater (M7+) earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions although it is smaller than the megathrust type M8-class earthquakes. This great earthquake is evaluated to occur with a probability of 70 % in 30 years by the Earthquake Research Committee of Japan. The M7+ earthquakes may occur either on the upper surface or intra slab of PSP. The Central Disaster Management Council of Japan estimates the next great M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (1 trillion US$) economic loss at worst case if it occur beneath northern Tokyo bay with M7.3. However, the estimate is based on a source fault model by conventional studies about the PSP geometry. To evaluate seismic hazard due to the great quake we need to clarify the geometry of PSP and also the Pacific palate (PAP) that subducs beneath PSP. We identify those plates with use of seismic tomography and available deep seismic reflection profiling and borehole data in southern Kanto area. We deployed about 300 seismic stations in the greater Tokyo urban region under the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area. We obtain clear P- and S- wave velocity (Vp and Vs) tomograms which show a clear image of PSP and PAP. A depth to the top of PSP, 20 to 30 kilometer beneath northern part of Tokyo bay, is about 10 km shallower than previous estimates based on the distribution of seismicity (Ishida, 1992). This shallower plate geometry changes estimations of strong ground motion for seismic hazards analysis within the Tokyo

  2. 3-D imaging of seismic data from a physical model of a salt structure

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P. M. (Peter M.); Huang, L. (Lianjie); House, L. S. (Leigh S.); Wiley, R. (Robert)

    2001-01-01

    Seismic data from a physical model of the SEG/EAGE salt structure were imaged to evaluate the quality of imaging of a complex structure and benchmark imaging codes. The physical model was constructed at the University of Houston. Two simulated marine surveys were collected from it: a conventional towed streamer survey, and a vertical receiver cable survey.

  3. Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating.

    Science.gov (United States)

    Guo, Jingjing; Xue, Shigui; Zhao, Qun; Yang, Changxi

    2014-08-11

    We report what is to our knowledge the first ultrasonic imaging of seismic physical models by using a phase-shifted fiber Bragg grating (PS-FBG). Seismic models, which consist of multiple layer structures, were immersed in water. Piezoelectric (PZT) transducer was used to generate ultrasonic waves and a PS-FBG as a receiver. Two-dimensional (2D) ultrasonic images were reconstructed by scanning the PS-FBG with a high-precision position scanning device. In order to suppress the low-frequency drift of the Bragg wavelength during scanning, a tight wavelength tracking method was employed to lock the laser to the PS-FBG resonance in its reflection bandgap. The ultrasonic images captured by the PS-FBG have been compared with the images obtained by the geophysical imaging system, Sinopec, demonstrating the feasibility of our PS-FBG based imaging system in seismic modeling studies.

  4. Seismic Imaging and Inversion: Application of Linear Theory (2012), Cambridge University Press, co-authored with Bob Stolt

    Energy Technology Data Exchange (ETDEWEB)

    Weglein, Arthur B.; Stolt, Bob H.

    2012-03-01

    Extracting information from seismic data requires knowledge of seismic wave propagation and reflection. The commonly used method involves solving linearly for a reflectivity at every point within the Earth, but this book follows an alternative approach which invokes inverse scattering theory. By developing the theory of seismic imaging from basic principles, the authors relate the different models of seismic propagation, reflection and imaging - thus providing links to reflectivity-based imaging on the one hand and to nonlinear seismic inversion on the other. The comprehensive and physically complete linear imaging foundation developed presents new results at the leading edge of seismic processing for target location and identification. This book serves as a fundamental guide to seismic imaging principles and algorithms and their foundation in inverse scattering theory and is a valuable resource for working geoscientists, scientific programmers and theoretical physicists.

  5. Numerical study on scanning radiation acoustic field in formations generated from a borehole

    Institute of Scientific and Technical Information of China (English)

    CHE Xiaohua; ZHANG Hailan; QIAO Wenxiao; JU Xiaodong

    2005-01-01

    Numerical study on scanning radiation acoustic field in formations generated by linear phased array transmitters in a fluid-filled borehole is carried out using a real axis integration (RAI) method. The main lobe width of the acoustic beams and the incident angle on the borehole wall can be controlled by means of adjusting parameters, such as the element number and the delay time between the neighboring array elements of linear phased array transmitter. The steered angle of longitudinal waves generated in the formation satisfies the Snell's law for plane waves when the incident angle on the borehole wall is less than the first critical angle. When the lobe width of the acoustic beams is narrow and the steered angle is less than the first critical angle, the acoustic field in the formation can be approximately calculated given that the linear phased array is put in the formation without borehole. The technique of scanning radiation acoustic field can be applied to enhancing investigation resolution and signal-to-noise ratio in crosswell seismic survey and borehole acoustic reflection imaging.

  6. New seismic images of the crust across the Rivera Plate and Jalisco Block (Mexico)

    Science.gov (United States)

    Cordoba, Diego; Núñez-Cornú, Francisco Javier; Bartolomé, Rafael; José Dañobeitia, Juan; Bandy, William Lee; Núñez, Diana; Prada, Manel; Escudero-Ayala, Christian; Espíndola, Juan Manuel; Zamora, Araceli; Gómez, Adán; Ortiz, Modesto; Tsujal Working Group

    2015-04-01

    (Jalisco coast).These instruments registered 3 borehole explosions of 1000 kg specially made for this project, in the northern, central and southern parts of this profile. These new data provide a dense sampling of tectonic plates, W Mexico, and give new seismic constraints on the deformation along and across the subduction zone, accretionary wedge size, at contact between Rivera and North American Plates and, in the transition zone between oceanic and continental crust.

  7. PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.

    Science.gov (United States)

    Lee, M.W.

    1987-01-01

    Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.

  8. The Utility of the Extended Images in Ambient Seismic Wavefield Migration

    Science.gov (United States)

    Girard, A. J.; Shragge, J. C.

    2015-12-01

    Active-source 3D seismic migration and migration velocity analysis (MVA) are robust and highly used methods for imaging Earth structure. One class of migration methods uses extended images constructed by incorporating spatial and/or temporal wavefield correlation lags to the imaging conditions. These extended images allow users to directly assess whether images focus better with different parameters, which leads to MVA techniques that are based on the tenets of adjoint-state theory. Under certain conditions (e.g., geographical, cultural or financial), however, active-source methods can prove impractical. Utilizing ambient seismic energy that naturally propagates through the Earth is an alternate method currently used in the scientific community. Thus, an open question is whether extended images are similarly useful for ambient seismic migration processing and verifying subsurface velocity models, and whether one can similarly apply adjoint-state methods to perform ambient migration velocity analysis (AMVA). Herein, we conduct a number of numerical experiments that construct extended images from ambient seismic recordings. We demonstrate that, similar to active-source methods, there is a sensitivity to velocity in ambient seismic recordings in the migrated extended image domain. In synthetic ambient imaging tests with varying degrees of error introduced to the velocity model, the extended images are sensitive to velocity model errors. To determine the extent of this sensitivity, we utilize acoustic wave-equation propagation and cross-correlation-based migration methods to image weak body-wave signals present in the recordings. Importantly, we have also observed scenarios where non-zero correlation lags show signal while zero-lags show none. This may be a valuable missing piece for ambient migration techniques that have yielded largely inconclusive results, and might be an important piece of information for performing AMVA from ambient seismic recordings.

  9. Multiscale Seismic Inversion in the Data and Image Domains

    KAUST Repository

    Zhang, Sanzong

    2015-12-01

    I present a general methodology for inverting seismic data in either the data or image domains. It partially overcomes one of the most serious problems with current waveform inversion methods, which is the tendency to converge to models far from the actual one. The key idea is to develop a multiscale misfit function that is composed of both a simplified version of the data and one associated with the complex part of the data. Misfit functions based on simple data are characterized by many fewer local minima so that a gradient optimization method can make quick progress in getting to the general vicinity of the actual model. Once we are near the actual model, we then use the gradient based on the more complex data. Below, we describe two implementations of this multiscale strategy: wave equation traveltime inversion in the data domain and generalized differential semblance optimization in the image domain. • Wave Equation Traveltime Inversion in the Data Domain (WT): The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we present a waveequation method that inverts the traveltimes of reflection events, and so is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function is a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag which maximizes the crosscorrelation amplitude represents the reflection-traveltime residual that is back-projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions are introduced to estimate the reflection-traveltime residual by semblance analysis and scanning. In theory, only the traveltime information is inverted and there is no need to precisely fit the amplitudes or assume a high-frequency approximation. Results

  10. Core spatial position restoring of WFSD-1 borehole with borehole imaging logging data%汶川地震断裂带科学钻探WFSD-1孔成像测井岩心空间归位

    Institute of Scientific and Technical Information of China (English)

    聂昕; 邹长春; 肖昆; 徐晋; 牛一雄; 孔广胜

    2012-01-01

    After the Wenchuan earthquake in 2008, the government of our country rapidly implemented the Wenchuan Earthquake Fault Zone Scientific Drilling Project (WFSD). Form drilling cores can obtain the direct data of the underground. This is very important for scientific drilling researches. But the original depths and orientations of cores cannot be positive, so core spatial position restoring is needed. By being processed by imaging log-core scanning picture processing integrated software (CCSDLogCore), the spatial positions of 2055 pieces of core scanning images collected from No. 1 borehole of Wenchuan Earthquake Fault Zone Scientific Drilling (WFSD-1) are restored precisely and visually. By analyzing the results of the restoring work, it is found that the depth error of the cores increased with the depth of the hole, and that confirmed the results accord the reality. These results lay a good foundation for the following geological structure analysis; the problems during the work are summed up and suggestions are presented as follows:it' s better to do the acoustic imaging logging and the resistivity imaging logging at the same hole so that we can obtain better information about the wall of the borehole; we should also avoid the problems caused by human during the preliminary work of position restoring before we can start the accurate and efficient work of core position restoring.%2008年汶川大地震发生后,我国迅速实施了汶川地震断裂带科学钻探项目(WFSD).钻井取心是研究地下情况的直接资料,但取心时通常采用非定向取心技术,缺少准确的深度和方位信息,需要利用测井资料对其进行深度和方向的还原,即岩心空间归位.针对汶川地震断裂带科学钻探项目一号孔(WFSD-1孔),利用成像-岩心扫描图像综合处理软件(CCSDLogCore)精确和直观的完成了2055块岩心图像的空间归位.对归位成果进行了分析,发现随着钻孔深度的增加,岩心深度误差增大,说

  11. Characterization of heterogeneities from core X-ray scans and borehole wall images in a reefal carbonate reservoir: influence on the porosity structure.

    Science.gov (United States)

    Hebert, V.; Garing, C.; Pezard, P. A.; Gouze, P.; Maria-Sube, Y.; Camoin, G.; Lapointe, P.

    2009-04-01

    Petrophysical properties of rocks can be largely influenced by heterogeneities. This is particularly true in reefal carbonates, with heterogeneities due to the primary structure of the reef, the degradation of that structure into a fossil form, and fluid circulations with associated dissolutions and recrystallization. We report here a study conducted on Miocene reefal carbonates drilled in the context of salt water intrusion in coastal reservoirs. Salt water intrusion along coastlines is highly influenced by geological and petrophysical structures. In particular, heterogeneities and anisotropy in porous media (karsts, vugs…) control fluid flow and dispersion. A new experimental site has been developed in the South East of Mallorca Island (Spain) in the context of the ALIANCE EC project (2002-2005). This project aimed at developing a strategy for the quantitative analysis and description of fluid flow and salt transport in coastal carbonate aquifers. The site drilled the Miocene carbonate reef platform at Ses Sitjoles, 6 km inland, near the city of Campos. Sea water is found there at 60 to 80 m depth. The geological structure present multi-scale heterogeneities, often bound to either lateral variations of geological facies, or dissolution patterns. The Campos site provides a unique laboratory to study the heterogeneities of carbonate rocks with a saltwater intrusion and develop new borehole investigation methods in this context. The present study focuses on borehole geophysical measurements and images, and core scans. New image analysis methods have been developed to better characterize the presence of heterogeneities in terms of grain-size distribution, formation factor changes and porosity. Cores scans from RX tomography can lead to the extraction of petrophysical parameters from 3D images. For this, the AVIZO software was used here to represent the micro-porosity and vuggy porosity structure. Beyond core analyses, the optical and acoustic borehole wall images

  12. 利用成像测井自动判别礁滩储层沉积相和岩性%Automatic discrimination of sedimentary facies and lithologies in reef-bank reservoirs using borehole image logs

    Institute of Scientific and Technical Information of China (English)

    柴华; 李宁; 肖承文; 刘兴礼; 李多丽; 王才志; 吴大成

    2009-01-01

    Reef-bank reservoirs are an important target for petroleum exploration in marine carbonates and also an essential supplemental area for oil and gas production in China. Due to the diversity of reservoirs and the extreme heterogeneity of reef-banks, it is very difficult to discriminate the sedimentary facies and lithologies in reef-bank reservoirs using conventional well logs. The borehole image log provides clear identification of sedimentary structures and textures and is an ideal tool for discriminating sedimentary facies and lithologies. After examining a large number of borehole images and cores, we propose nine typical patterns for borehole image interpretation and a method that uses these patterns to discriminate sedimentary facies and lithologies in reef-bank reservoirs automatically. We also develop software with user-friendly interface. The results of applications in reef-bank reservoirs in the middle Tarim Basin and northeast Sichuan have proved that the proposed method and the corresponding software are quite effective.

  13. Rock mass structure analysis based on seismic velocity and attenuation images

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Seismic traveltime, amplitude and pulse-width can be used to reconstruct seismic velocity and attenuation coefficient images for a rock mass. This study discusses the appearance differences of velocity and attenuation coefficient in the ore vein and rock mass in the images. The location of the rock vein and the characteristic of the rock mass are discussed according to the difference responses of velocity and attenuation from the ore vein and mixed rock vein, fracture and rock body. The effect and limitation of the seismic tomography method for investigating ore body and rock mass is suggested on the basis of a field test result. The special observation method in this study gives a good reference for obtaining full position and directional observation in seismic tomography.

  14. Using Seismic Tomography and Holography Ground Imaging to Investigate Ground Conditions

    Institute of Scientific and Technical Information of China (English)

    Ed Kase; Tim Ross

    2004-01-01

    Unforeseen, variable subsurface ground conditions present the greatest challenge to the heavy construction and civil engineering industry in the design, construction, and maintenance of large projects. A detailed, accurate site investigation will reduce project risk, improve construction performance and safety, prolong the life of the tunnel or structure,and prevent waste in over - design. Presently, site characterization and geotechnical engineering are limited by the inability to adequately describe these subsurface ground conditions.NSA Geotechnical Services has successfully applied seismic tomography and holography ground imaging technologies on tunneling and heavy civil excavations worldwide. Seismic signal waveforms traveling through a complex medium consist of various arrivals from refractions, reflections, scattering, and dispersion. Tomography and holography are proven inversion technologies for estimating location and extent of material property variations causing changes in signal waveforms.ent attenuation rates and velocities. Seismic waves will travel faster through competent material and be generally less attenuated than through broken/fractured ground or voids.encounters an interface between ground zones possessing different seismic properties. Most geologic structures, anomalies,and changes in lithology provide detectable seismic reflections if they are within a reasonable distance of the seismic source.This paper will present various applications of these technologies, illustrating how seismic imaging can provide accurate information regarding ground conditions associated with tunneling projects. With this information, engineers can complete projects safely, within time and budget constraints.

  15. Seismic calibration shots conducted in 2009 in the Imperial Valley, southern California, for the Salton Seismic Imaging Project (SSIP)

    Science.gov (United States)

    Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg

    2011-01-01

    Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5

  16. Seismic wave imaging in visco-acoustic media

    Institute of Scientific and Technical Information of China (English)

    WANG Huazhong; ZHANG Libin; MA Zaitian

    2004-01-01

    Realistic representation of the earth may be achieved by combining the mechanical properties of elastic solids and viscousliquids. That is to say, the amplitude will be attenuated withdifferent frequency and the phase will be changed in the seismicdata acquisition. In the seismic data processing, this effect mustbe compensated. In this paper, we put forward a visco-acoustic wavepropagator which is of better calculating stability and tolerablecalculating cost (little more than an acoustic wave propagator).The quite good compensation effect is demonstrated by thenumerical test results with synthetic seismic data and real data.

  17. Seismic Imaging of Sub-Glacial Sediments at Jakobshavn Isbræ and NEEM Greenland

    Science.gov (United States)

    Tsoflias, G. P.; Velez-Gonzalez, J. A.; Black, R. A.; van der Veen, C. J.

    2015-12-01

    Sub-glacial sediment conditions can have a major control on glacier flow yet these are difficult to measure directly. We present active source seismic reflection experiments that imaged sub-glacial sections at Jakobshavn Isbræ, West Greenland and at the North Greenland Eemian Ice Drilling (NEEM) location. At Jakobshavn Isbræ we re-processed an existing 9.8 km-long high-resolution seismic line using an iterative approach to determine seismic velocities for enhancing sub-glacial imaging. The seismic profile imaged sediments ranging in thickness between 35 and 200 meters, and the underlying bedrock. Based on the geometry of the reflections we interpret three distinct seismic facies: a basal till layer, accreted sediments and re-worked till. The basal till and accreted sediments vary in thickness from less than 5 m to nearly 100 m thick and are interpreted as the zone of most recent deposition. A reflection polarity reversal observed at a low topographic region along the ice-sediment interface suggests the presence of liquid water spanning approximately 200 m along the profile. At NEEM we acquired a 5.8 km long-offset shot gather. Seismic imaging revealed two prominent reflections at the base of the ice. The upper reflection is interpreted at the base of ice - top of till interface whereas the lower reflection is interpreted as the base of till - top of bedrock. The thickness of the subglacial sediment section at NEEM is estimated to approximately 50 m using seismic imaging. The NEEM ice core drilled through the upper part of this section and ceased drilling before reaching bedrock.

  18. Joint inversion of 3-D seismic, gravimetric and magnetotelluric data for sub-basalt imaging in the Faroe-Shetland Basin

    Science.gov (United States)

    Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.

    2012-12-01

    collected along parallel lines by a shipborne gradiometer and the marine MT data set is composed of 41 stations that are distributed over the whole investigation area. Logging results from a borehole located in the central part of the investigation area enable us to derive parameter relationships between seismic velocities, resistivities and densities that are adequately describe the rock property behaviors of both the basaltic lava flows and sedimentary layers in this region. In addition, a 3-D reflection seismic survey covering the central part allows us to incorporate the top of basalt and other features as constraints in the joint inversions and to evaluate the quality of the final results. Literature: D. Colombo, M. Mantovani, S. Hallinan, M. Virgilio, 2008. Sub-basalt depth imaging using simultaneous joint inversion of seismic and electromagnetic (MT) data: a CRB field study. SEG Expanded Abstract, Las Vegas, USA, 2674-2678. M. Jordan, J. Ebbing, M. Brönner, J. Kamm , Z. Du, P. Eliasson, 2012. Joint Inversion for Improved Sub-salt and Sub-basalt Imaging with Application to the More Margin. EAGE Expanded Abstracts, Copenhagen, DK. M. Moorkamp, B. Heincke, M. Jegen, A.W.Roberts, R.W. Hobbs, 2011. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184, 477-493.

  19. Geophysical imaging of subsurface structures in volcanic area by seismic attenuation profiling

    Science.gov (United States)

    Tsuru, Tetsuro; No, Tetsuo; Fujie, Gou

    2017-01-01

    Geophysical imaging by using attenuation property of multichannel seismic reflection data was tested to map spatial variation of physical properties of rocks in a volcanic area. The study area is located around Miyakejima volcanic island, where an intensive earthquake swarm was observed associated with 2000 Miyakejima eruption. Seismic reflection survey was conducted five months after the swarm initiation in order to clarify crustal structure around the hypocenters of the swarm activity. However, the resulting seismic reflection profiles were unable to provide significant information of deep structures around the hypocenters. The authors newly applied a seismic attribute method that focused seismic attenuation instead of reflectivity to the volcanic area, and designed this paper to assess the applicability of this method to subsurface structural studies in poorly reflective volcanic areas. Resulting seismic attenuation profiles successfully figured out attenuation structures around the Miyakejima volcanic island. Interestingly, a remarkable high-attenuation zone was detected between Miyakejima and Kozushima islands, being well correlated with the hypocenter distribution of the earthquake swarm in 2000. The high-attenuation zone is interpreted as a fractured area that was developed by magma activity responsible for the earthquake swarms that have been repeatedly occurring there. The present study can be one example showing the applicability of seismic attenuation profiling in a volcanic area. [Figure not available: see fulltext. Caption: .

  20. Developments of borehole strain observation outside China

    Institute of Scientific and Technical Information of China (English)

    邱泽华; 石耀霖

    2004-01-01

    Borehole strain observation is playing an increasingly important role in the study on the crustal movements. It hasbeen used by many countries such as China, USA, Japan, Peru, Australia, South Africa, Iceland and Italy, in research fields of plate tectonics, earthquake, volcanic eruption, dam safety, oil field subsidence, mining collapse andso on. Borehole strainmeter has been improved rapidly and tends to get more and more components included inone probe. Based on observations by this kind of instruments, studies on seismic strain step, slow earthquake,earthquake precursor and volcanic eruption forecasting have made remarkable achievements. In the coming years,borehole strain observation is going to become one major geodetic means, together with GPS and InSAR.

  1. Seismic imaging of the shallow subsurface with high frequency seismic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kaelin, Bruno [Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics

    1998-07-01

    Elastic wave propagation in highly heterogeneous media is investigated and theoretical calculations and field measurements are presented. In the first part the dynamic composite elastic medium (DYCEM) theory is derived for one-dimensional stratified media. A self-consistent method using the scattering functions of the individual layers is formulated, which allows the calculation of phase velocity, attenuation and waveform. In the second part the DYCEM theory has been generalized for three-dimensional inclusions. The specific case of spherical inclusions is calculated with the exact scattering functions and compared with several low frequency approximations. In the third part log and VSP data of partially water saturated tuffs in the Yucca Mountain region of Nevada are analyzed. The anomalous slow seismic velocities can be explained by combining self-consistent theories for pores and cracks. The fourth part analyzes an air injection experiment in a shallow fractured limestone, which has shown large effects on the amplitude, but small effects on the travel time of the transmitted seismic waves. The large amplitude decrease during the experiment is mainly due to the impedance contrast between the small velocities of gas-water mixtures inside the fracture and the formation. The slow velocities inside the fracture allow an estimation of aperture and gas concentration profiles.

  2. High Resolution Seismic Imaging of Fault Zones: Methods and Examples From The San Andreas Fault

    Science.gov (United States)

    Catchings, R. D.; Rymer, M. J.; Goldman, M.; Prentice, C. S.; Sickler, R. R.; Criley, C.

    2011-12-01

    Seismic imaging of fault zones at shallow depths is challenging. Conventional seismic reflection methods do not work well in fault zones that consist of non-planar strata or that have large variations in velocity structure, two properties that occur in most fault zones. Understanding the structure and geometry of fault zones is important to elucidate the earthquake hazard associated with fault zones and the barrier effect that faults impose on subsurface fluid flow. In collaboration with the San Francisco Public Utilities Commission (SFPUC) at San Andreas Lake on the San Francisco peninsula, we acquired combined seismic P-wave and S-wave reflection, refraction, and guided-wave data to image the principal strand of the San Andreas Fault (SAF) that ruptured the surface during the 1906 San Francisco earthquake and additional fault strands east of the rupture. The locations and geometries of these fault strands are important because the SFPUC is seismically retrofitting the Hetch Hetchy water delivery system, which provides much of the water for the San Francisco Bay area, and the delivery system is close to the SAF at San Andreas Lake. Seismic reflection images did not image the SAF zone well due to the brecciated bedrock, a lack of layered stratigraphy, and widely varying velocities. Tomographic P-wave velocity images clearly delineate the fault zone as a low-velocity zone at about 10 m depth in more competent rock, but due to soil saturation above the rock, the P-waves do not clearly image the fault strands at shallower depths. S-wave velocity images, however, clearly show a diagnostic low-velocity zone at the mapped 1906 surface break. To image the fault zone at greater depths, we utilized guided waves, which exhibit high amplitude seismic energy within fault zones. The guided waves appear to image the fault zone at varying depths depending on the frequency of the seismic waves. At higher frequencies (~30 to 40 Hz), the guided waves show strong amplification at the

  3. Strike-slip faults imaging from galleries with seismic waveform imaging methods

    Science.gov (United States)

    Bretaudeau, F.; Gélis, C.; Leparoux, D.; Cabrera, J.; Côte, P.

    2011-12-01

    Deep argillaceous formations are potential host media for radioactive waste due to their physical properties such as low intrinsic permeability and radionuclide retention (Boisson et al 2001). The experimental station of Tournemire is composed of an old tunnel excavated in 1885 in a 250m thick Toarcien argilitte layer, and of several galleries excavated more recently in directions perpendicular and parallel to the tunnel. This station is operated by the French Institute for Radiological protection and Nuclear Safety (IRSN) in order to expertise possible projects of radioactive waste disposal in a geological clay formation. The presence of secondary strike-slip faults in argillaceous formations must be well assessed since they could change any rock properties such as permeability. The ones with small vertical offsets as observed in the station cannot be seen from the surface, indeed we investigate on new approaches to image them directly from the underground works. We investigate here on the potential of new imaging methods that take advantage of the full seismic waveforms in order to optimise the imaging performances: Full Waveform Inversion (FWI) and Reverse Time Migration (RTM). We try to assess the capacities and limits of those methods in this specific context, and to determine the optimum acquisition and processing parameters. The subvertical fault in the nearly homogeneous subhorizontal structure of the clay layer allows us to consider a 2D imaging problem with no anisotropy where the fault is surrounded by three galleries. The waveform inversion strategy used is based on the frequency domain formulation proposed by Pratt et al. (1990). Non linearity is mitigated by introducing sequentially information from 50Hz to 1000Hz and starting from an homogeneous medium as initial model. Preliminary tests on synthetic data (fig. 1) show the ability of FWI to quantitatively image the fault zone and illustrate the impact of the illumniation configuration. RTM suceeds to

  4. Seismic reflection data imaging and interpretation from Braniewo2014 experiment using additional wide-angle refraction and reflection and well-logs data

    Science.gov (United States)

    Trzeciak, Maciej; Majdański, Mariusz; Białas, Sebastian; Gaczyński, Edward; Maksym, Andrzej

    2015-04-01

    Braniewo2014 reflection and refraction experiment was realized in cooperation between Polish Oil and Gas Company (PGNiG) and the Institute of Geophysics (IGF), Polish Academy of Sciences, near the locality of Braniewo in northern Poland. PGNiG realized a 20-km-long reflection profile, using vibroseis and dynamite shooting; the aim of the reflection survey was to characterise Silurian shale gas reservoir. IGF deployed 59 seismic stations along this profile and registered additional full-spread wide-angle refraction and reflection data, with offsets up to 12 km; maximum offsets from the seismic reflection survey was 3 km. To improve the velocity information two velocity logs from near deep boreholes were used. The main goal of the joint reflection-refraction interpretation was to find relations between velocity field from reflection velocity analysis and refraction tomography, and to build a velocity model which would be consistent for both, reflection and refraction, datasets. In this paper we present imaging results and velocity models from Braniewo2014 experiment and the methodology we used.

  5. Low Noise Borehole Triaxial Seismometer Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, James D; McClung, David W

    2006-11-06

    This report describes the preliminary design and the effort to date of Phase II of a Low Noise Borehole Triaxial Seismometer for use in networks of seismic stations for monitoring underground nuclear explosions. The design uses the latest technology of broadband seismic instrumentation. Each parameter of the seismometer is defined in terms of the known physical limits of the parameter. These limits are defined by the commercially available components, and the physical size constraints. A theoretical design is proposed, and a preliminary prototype model of the proposed instrument has been built. This prototype used the sensor module of the KS2000. The installation equipment (hole locks, etc.) has been designed and one unit has been installed in a borehole. The final design of the sensors and electronics and leveling mechanism is in process. Noise testing is scheduled for the last quarter of 2006.

  6. Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source

    Science.gov (United States)

    Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos

    2013-04-01

    In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission

  7. Identifying Reflectors in Seismic Images via Statistic and Syntactic Methods

    Directory of Open Access Journals (Sweden)

    Carlos A. Perez

    2010-04-01

    Full Text Available In geologic interpretation of seismic reflection data, accurate identification of reflectors is the foremost step to ensure proper subsurface structural definition. Reflector information, along with other data sets, is a key factor to predict the presence of hydrocarbons. In this work, mathematic and pattern recognition theory was adapted to design two statistical and two syntactic algorithms which constitute a tool in semiautomatic reflector identification. The interpretive power of these four schemes was evaluated in terms of prediction accuracy and computational speed. Among these, the semblance method was confirmed to render the greatest accuracy and speed. Syntactic methods offer an interesting alternative due to their inherently structural search method.

  8. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry

    Science.gov (United States)

    Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan

    2016-04-01

    The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).

  9. Seismic wavefield imaging based on the replica exchange Monte Carlo method

    Science.gov (United States)

    Kano, Masayuki; Nagao, Hiromichi; Ishikawa, Daichi; Ito, Shin-ichi; Sakai, Shin'ichi; Nakagawa, Shigeki; Hori, Muneo; Hirata, Naoshi

    2017-01-01

    Earthquakes sometimes cause serious disasters not only directly by ground motion itself but also secondarily by infrastructure damage, particularly in densely populated urban areas that have capital functions. To reduce the number and severity of secondary disasters, it is important to evaluate seismic hazards rapidly by analysing the seismic responses of individual structures to input ground motions. We propose a method that integrates physics-based and data-driven approaches in order to obtain a seismic wavefield for use as input to a seismic response analysis. The new contribution of this study is the use of the replica exchange Monte Carlo (REMC) method, which is one of the Markov chain Monte Carlo (MCMC) methods, for estimation of a seismic wavefield, together with a 1-D local subsurface structure and source information. Numerical tests were conducted to verify the proposed method, using synthetic observation data obtained from analytical solutions for two horizontally layered subsurface structure models. The geometries of the observation sites were determined from the dense seismic observation array called the Metropolitan Seismic Observation network, which has been in operation in the Tokyo metropolitan area in Japan since 2007. The results of the numerical tests show that the proposed method is able to search the parameters related to the source and the local subsurface structure in a broader parameter space than the Metropolis method, which is an ordinary MCMC method. The proposed method successfully reproduces a seismic wavefield consistent with a true wavefield. In contrast, ordinary kriging, which is a classical data-driven interpolation method for spatial data, is hardly able to reproduce a true wavefield, even in the low frequency bands. This suggests that it is essential to employ both physics-based and data-driven approaches in seismic wavefield imaging, utilizing seismograms from a dense seismic array. The REMC method, which provides not only

  10. Seismic wavefield imaging based on the replica exchange Monte Carlo method

    Science.gov (United States)

    Kano, Masayuki; Nagao, Hiromichi; Ishikawa, Daichi; Ito, Shin-ichi; Sakai, Shin'ichi; Nakagawa, Shigeki; Hori, Muneo; Hirata, Naoshi

    2016-11-01

    Earthquakes sometimes cause serious disasters not only directly by ground motion itself but also secondarily by infrastructure damage, particularly in densely populated urban areas that have capital functions. To reduce the number and severity of secondary disasters, it is important to evaluate seismic hazards rapidly by analyzing the seismic responses of individual structures to input ground motions. We propose a method that integrates physics-based and data-driven approaches in order to obtain a seismic wavefield for use as input to a seismic response analysis. The new contribution of this study is the use of the replica exchange Monte Carlo (REMC) method, which is one of the Markov chain Monte Carlo (MCMC) methods, for estimation of a seismic wavefield, together with a one-dimensional (1-D) local subsurface structure and source information. Numerical tests were conducted to verify the proposed method, using synthetic observation data obtained from analytical solutions for two horizontally-layered subsurface structure models. The geometries of the observation sites were determined from the dense seismic observation array called the Metropolitan Seismic Observation network (MeSO-net), which has been in operation in the Tokyo metropolitan area in Japan since 2007. The results of the numerical tests show that the proposed method is able to search the parameters related to the source and the local subsurface structure in a broader parameter space than the Metropolis method, which is an ordinary MCMC method. The proposed method successfully reproduces a seismic wavefield consistent with a true wavefield. In contrast, ordinary kriging, which is a classical data-driven interpolation method for spatial data, is hardly able to reproduce a true wavefield, even in the low frequency bands. This suggests that it is essential to employ both physics-based and data-driven approaches in seismic wavefield imaging, utilizing seismograms from a dense seismic array. The REMC method

  11. Seismic imaging of deformation zones associated with normal fault-related folding

    Science.gov (United States)

    Lapadat, Alexandru; Imber, Jonathan; Iacopini, David; Hobbs, Richard

    2016-04-01

    Folds associated with normal faulting, which are mainly the result of fault propagation and linkage of normal fault segments, can exhibit complex deformation patterns, with multiple synthetic splay faults, reverse faults and small antithetic Riedel structures accommodating flexure of the beds. Their identification is critical in evaluating connectivity of potential hydrocarbon reservoirs and sealing capacity of faults. Previous research showed that seismic attributes can be successfully used to image complex structures and deformation distribution in submarine thrust folds. We use seismic trace and coherency attributes, a combination of instantaneous phase, tensor discontinuity and semblance attributes to identify deformation structures at the limit of seismic resolution, which accommodate seismic scale folding associated with normal faulting from Inner Moray Firth Basin, offshore Scotland. We identify synthetic splay faults and reverse faults adjacent to the master normal faults, which are localized in areas with highest fold amplitudes. This zone of small scale faulting is the widest in areas with highest fault throw / fold amplitude, or where a bend is present in the main fault surface. We also explore the possibility that changes in elastic properties of the rocks due to deformation can contribute to amplitude reductions in the fault damage zones. We analyse a pre-stack time-migrated 3D seismic data-set, where seismic reflections corresponding to a regionally-continuous and homogeneous carbonate layer display a positive correlation between strain distribution and amplitude variations adjacent to the faults. Seismic amplitude values are homogeneously distributed within the undeformed area of the footwall, with a minimum deviation from a mean amplitude value calculated for each seismic line. Meanwhile, the amplitude dimming zone is more pronounced (negative deviation increases) and widens within the relay zone, where sub-seismic scale faults, which accommodate

  12. Anatomy of the western Java plate interface from depth-migrated seismic images

    Science.gov (United States)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-01-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the d??collement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous d??collement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous d??collement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the d??collement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity. ?? 2009 Elsevier B.V.

  13. Seismic imaging constraints on megathrust fault zone properties

    Science.gov (United States)

    Abers, G. A.; Janiszewski, H. A.; Keranen, K. M.; Saffer, D. M.; Shillington, D. J.

    2014-12-01

    Several lines of evidence suggest that subduction zone thrusts lie within overpressured channels. Seismic reflection data often shows a relatively thin, high-reflectivity surface with occasional bright spots, indicative of rapidly varying impedance contrasts over length scales of tens of meters. Scattered coda of teleseismic P waves, such as in receiver functions, often show a thin low-velocity layer corresponding to the top of the subducting plate. The latter have been best documented in Cascadia, where a 2-4 km thick very low velocity channel is seen above a moderately slow subducting crust, and in Alaska where similar structure has been seen. High-reflectivity bright spots occur in the same region, although perhaps over more limited areas. The low velocity zones are characterized by elevated Vp/Vs ratios (>2.0), and extend both throughout the locked, seismogenic fault zone and downdip into the region where episodic tremor and slip occur. Commonly, this combination of low velocities and high Vp/Vs is taken to indicate high pore pressures, and hence a fault zone that can withstand only very low shear stresses. However, models of the low wavespeeds suggest static porosities of 2-5% throughout a 2-4 km thick layer, extending to depths of 40 km, a situation that seems difficult to sustain. At both the Alaska and Cascadia margins, low Vp, high Poisson's ratios, and high anisotropies should result in part from the subduction of sediments well into and beyond the seismogenic zone. The presence of a significant thickness of subducted and underplated sediment is consistent with observations of preserved subduction "channels" in exhumed examples from tens of km depth. Although some elevation of pore pressure may be still needed to explain observations, if the subduction of 2-4 km of sediment is a significant factor in generating the seismic signatures, then the geophysical observations could reflect a much stronger thrust zone than one sustained by high pore pressure alone.

  14. Seismic image of the Ivanhoe Lake Fault Zone in the Kapuskasing Uplift of the Canadian Shield

    Science.gov (United States)

    Wu, Jianjun; Mereu, Robert F.; Percival, John A.

    1992-02-01

    The Kapuskasing uplift, located in the central Canadian shield, represents an oblique exposure of the Archean middle to lower crust. The Ivanhoe Lake fault zone, believed to be the basal thrust carrying the high-grade rocks of the Kapuskasing zone over the low-grade Abitibi greenstone belt, holds the key to understanding the nature and evolution of the Kapuskasing uplift. Despite numerous geological and geophysical studies, including LITHOPROBE deep seismic reflection profiles, and because of very limited bedrock exposure in the area, the shallow structure of the Ivanhoe Lake fault zone remains obscure. Here we present results obtained by reprocessing data from a LITHOPROBE seismic reflection profile across the fault zone. For the first time, the Ivanhoe Lake fault zone is clearly imaged on the seismic section as a series of west-dipping reflectors with an average dip of 20°, which can be traced to the surface. The results support the conclusion that fault zones form good reflectors.

  15. Frequency-dependent traveltime tomography using fat rays: application to near-surface seismic imaging

    Science.gov (United States)

    Jordi, Claudio; Schmelzbach, Cedric; Greenhalgh, Stewart

    2016-08-01

    Frequency-dependent traveltime tomography does not rely on the high frequency assumption made in classical ray-based tomography. By incorporating the effects of velocity structures in the first Fresnel volume around the central ray, it offers a more realistic and accurate representation of the actual physics of seismic wave propagation and thus, enhanced imaging of near-surface structures is expected. The objective of this work was to apply frequency-dependent first arrival traveltime tomography to surface seismic data that were acquired for exploration scale and near-surface seismic imaging. We adapted a fat ray tomography algorithm from global-earth seismology that calculates the Fresnel volumes based on source and receiver (adjoint source) traveltime fields. The fat ray tomography algorithm was tested on synthetic model data that mimics the dimensions of two field data sets. The field data sets are presented as two case studies where fat ray tomography was applied for near-surface seismic imaging. The data set of the first case study was recorded for high-resolution near-surface imaging of a Quaternary valley (profile length 10 km). All results of fat ray tomography are compared against the results of classical ray-based tomography. We show that fat ray tomography can provide enhanced tomograms and that it is possible to recover more information on the subsurface when compared to ray tomography. However, model assessment based on the column sum of the Jacobian matrix revealed that especially the deep parts of the structure in the fat ray tomograms might not be adequately covered by fat rays. Furthermore, the performance of the fat ray tomography depends on the chosen input frequency in relation to the scale of the seismic survey. Synthetic data testing revealed that the best results were obtained when the frequency was chosen to correspond to an approximate wavelength-to-target depth ratio of 0.1.

  16. Source estimation with surface-related multiples—fast ambiguity-resolved seismic imaging

    Science.gov (United States)

    Tu, Ning; Aravkin, Aleksandr; van Leeuwen, Tristan; Lin, Tim; Herrmann, Felix J.

    2016-06-01

    We address the problem of obtaining a reliable seismic image without prior knowledge of the source wavelet, especially from data that contain strong surface-related multiples. Conventional reverse-time migration requires prior knowledge of the source wavelet, which is either technically or computationally challenging to accurately determine; inaccurate estimates of the source wavelet can result in seriously degraded reverse-time migrated images, and therefore wrong geological interpretations. To solve this problem, we present a `wavelet-free' imaging procedure that simultaneously inverts for the source wavelet and the seismic image, by tightly integrating source estimation into a fast least-squares imaging framework, namely compressive imaging, given a reasonably accurate background velocity model. However, this joint inversion problem is difficult to solve as it is plagued with local minima and the ambiguity with respect to amplitude scalings because of the multiplicative, and therefore nonlinear, appearance of the source wavelet in the otherwise linear formalism. We have found a way to solve this nonlinear joint-inversion problem using a technique called variable projection, and a way to overcome the scaling ambiguity by including surface-related multiples in our imaging procedure following recent developments in surface-related multiple prediction by sparse inversion. As a result, we obtain without prior knowledge of the source wavelet high-resolution seismic images, comparable in quality to images obtained assuming the true source wavelet is known. By leveraging the computationally efficient compressive-imaging methodology, these results are obtained at affordable computational costs compared with conventional processing work flows that include surface-related multiple removal and reverse-time migration.

  17. Three-dimensional seismic imaging of the Rye Patch geothermal reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Feighner, M.; Gritto, R.; Daley, T.M.; Keers, H.; Majer, E.L.

    1999-11-01

    A 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada), to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The seismic survey covered an area of 3.03 square miles and was designed with 12 north-south receiver lines and 25 east-west source lines. The receiver group interval was 100 feet and the receiver line spacing was 800 feet. The source interval was 100 feet while the source line spacing was 400 feet. The sources were comprised of 4 vibrator trucks arranged in a box array. Seismic processing involved, among other steps, the picking of over 700,000 of the possible one million traces to determine first arrival travel times, normal moveout correction, 3-D stack, deconvolution, time migration, and depth conversion. The final data set represents a 3-D cube of the subsurface structure in the reservoir. Additionally, the travel times were used to perform tomographic inversions for velocity estimates to support the findings of the surface seismic imaging. The results suggest the presence of at least one dominant fault responsible for the migration of fluids in the reservoir. Furthermore, it is suggested that this feature might be part of a fault system that includes a graben structure.

  18. Imaging of discontinuities in nonlinear 3-D seismic inversion

    Energy Technology Data Exchange (ETDEWEB)

    Carrion, P.M.; Cerveny, V. (PPPG/UFBA, Salvador (Brazil))

    1990-09-01

    The authors present a nonlinear approach for reconstruction of discontinuities in geological environment (earth's crust, say). The advantage of the proposed method is that it is not limited to a Born approximation (small angles of propagation and weak scatterers). One can expect significantly better images since larger apertures including wide angle reflection arrivals can be incorporated into the imaging operator. In this paper, they treat only compressional body waves: shear and surface waves are considered as noise.

  19. Vertical seismic profiling and integration with reflection seismic studies at Laxemar, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, C.; Bergman, B. [Uppsala Univ. (Sweden); Cosma, C.; Keskinen, J.; Enescu, N. [Vibrometric Oy, Helsinki (Finland)

    2002-02-01

    Vertical seismic profile (VSP) data were acquired in October 2000 in the 1700 m deep KLX02 borehole, near Laxemar in southeastern Sweden. The objectives of the VSP were to image reflectors in the borehole for correlation with surface seismic and borehole data, study the signal penetration of explosive versus mechanical sources and determine the seismic velocity as a function of depth. Five principal source points were used, one located close to the KLX02 wellhead and 4 others that were offset by about 200 m to 400 m. An explosive source was only used at the wellhead and consisted of 15 grams of dynamite in 90 cm deep shot holes in bedrock. A swept impact seismic source (SIST) was also used at the wellhead, as well as at the other four offset source points. The primary SIST source consisted of a computer controlled mechanical hammer mounted on a tractor. By activating the hammer over a 15 second sweep length, the total energy transferred to the ground is on the same order as that produced by the dynamite. The recorded data are then processed to generate seismic records that are equivalent to a single impact source. A smaller hand held SIST source was also tested at the wellhead. Tests of both the tractor mounted source and dynamite were made at a location offset somewhat from the wellhead at a site containing loose sediments at the surface. Full waveform sonic, resistivity and gamma logs were also acquired in conjunction the VSP survey. A comparison between the explosive and large SIST source shows that comparable energy levels are produced by the two methods. The SIST source appears to be more stable in terms of the energy level, although the frequency content of data are somewhat lower. However, its most significant advantage is the low cost of preparation of the source points and the speed of the acquisition. Numerous reflections are observed on the VSP, as is the case on the surface seismic, implying a complex structure in the vicinity of the KLX02 borehole

  20. Using boreholes as windows into groundwater ecosystems.

    Directory of Open Access Journals (Sweden)

    James P R Sorensen

    Full Text Available Groundwater ecosystems remain poorly understood yet may provide ecosystem services, make a unique contribution to biodiversity and contain useful bio-indicators of water quality. Little is known about ecosystem variability, the distribution of invertebrates within aquifers, or how representative boreholes are of aquifers. We addressed these issues using borehole imaging and single borehole dilution tests to identify three potential aquifer habitats (fractures, fissures or conduits intercepted by two Chalk boreholes at different depths beneath the surface (34 to 98 m. These habitats were characterised by sampling the invertebrates, microbiology and hydrochemistry using a packer system to isolate them. Samples were taken with progressively increasing pumped volume to assess differences between borehole and aquifer communities. The study provides a new conceptual framework to infer the origin of water, invertebrates and microbes sampled from boreholes. It demonstrates that pumping 5 m(3 at 0.4-1.8 l/sec was sufficient to entrain invertebrates from five to tens of metres into the aquifer during these packer tests. Invertebrates and bacteria were more abundant in the boreholes than in the aquifer, with associated water chemistry variations indicating that boreholes act as sites of enhanced biogeochemical cycling. There was some variability in invertebrate abundance and bacterial community structure between habitats, indicating ecological heterogeneity within the aquifer. However, invertebrates were captured in all aquifer samples, and bacterial abundance, major ion chemistry and dissolved oxygen remained similar. Therefore the study demonstrates that in the Chalk, ecosystems comprising bacteria and invertebrates extend from around the water table to 70 m below it. Hydrogeological techniques provide excellent scope for tackling outstanding questions in groundwater ecology, provided an appropriate conceptual hydrogeological understanding is applied.

  1. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  2. Imaging Reservoir Quality: Seismic Signatures of Geologic Processes

    Energy Technology Data Exchange (ETDEWEB)

    Department of Geophysics

    2008-06-30

    }20 % to 23%). This trend is explained by a sequence stratigraphic model which predicts progressive increase in sorting by turbidity current along the flow, as well as, quantified by a rock model that heuristically accounts for sorting. The results can be applied to improve quantitative predication of sediment parameters from seismic impedance, away from well locations.

  3. A seismic reflection image for the base of a tectonic plate.

    Science.gov (United States)

    Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T

    2015-02-05

    Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.

  4. Upper crustal structures beneath Yogyakarta imaged by ambient seismic noise tomography

    Science.gov (United States)

    Zulfakriza, Saygin, E.; Cummins, P.; Widiyantoro, S.; Nugraha, Andri Dian

    2013-09-01

    Delineating the upper crustal structures beneath Yogyakarta is necessary for understanding its tectonic setting. The presence of Mt. Merapi, fault line and the alluvial deposits contributes to the complex geology of Yogyakarta. Recently, ambient seismic noise tomography can be used to image the subsurface structure. The cross correlations of ambient seismic noise of pair stations were applied to extract the Green's function. The total of 27 stations from 134 seismic stations available in MERapi Amphibious EXperiment (MERAMEX) covering Yogyakarta region were selected to conduct cross correlation. More than 500 Rayleigh waves of Green's functions could be extracted by cross-correlating available the station pairs of short-period and broad-band seismometers. The group velocities were obtained by filtering the extracted Green's function between 0.5 and 20 s. 2-D inversion was applied to the retrieved travel times. Features in the derived tomographic images correlate with the surface geology of Yogyakarta. The Merapi active volcanoes and alluvial deposit in Yogyakarta are clearly described by lower group velocities. The high velocity anomaly contrasts which are visible in the images obtained from the period range between 1 and 5 s, correspond to subsurface imprints of fault that could be the Opak Fault.

  5. Coherent features of the Alpine mantle slabs imaged by recent seismic tomography studies

    Science.gov (United States)

    Brueckl, E.; Brueckl, J.; Keller, G. R.; Dando, B.

    2012-04-01

    The bifurcation of the East Alpine mountain range into branches extending northeastward to the Carpathians and southeastward to the Dinarides represents a triple junction between the European platform (EU), the Adriatic micro-plate (AD), and the Pannonian fragment (PA). During the last decade, controlled source and passive source seismic data have provided a variety of detailed images of the lithosphere and upper mantle in this area. However, the geodynamic interpretation of lithospheric slabs under the Alpine - Adriatic collision zone is still under debate. So far, arguments have been based mainly on images provided by individual seismic tomography studies. In order to enhance robust features of the upper mantle structure, we have averaged four tomographic models, weighted according to their coverage by seismic stations and boundaries of high resolution. We achieved an image of the Alpine slab of unprecedented clarity. It extends coherently from the border between the Western Alps and the Apennines to the EU-AD-PA triple junction, dipping southeastward in the west and nearly vertically in the east. The whole slab can be connected to European mantle lithosphere and a flip of subduction polarity must not be induced. The geometry of the slab infers also additional constraints on the development of the triple junction during the post-collision phase of the Eastern Alps.

  6. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay

    2005-06-06

    In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator

  7. Drilling, logging, and testing information from borehole UE-25 UZ{number_sign}16, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Thamir, F.; Thordarson, W.; Kume, J.; Rousseau, J. [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch; Long, R. [Dept. of Energy, Las Vegas, NV (United States); Cunningham, D.M. Jr. [Science Applications International Corp., Las Vegas, NV (United States)

    1998-09-01

    Borehole UE-25 UZ{number_sign}16 is the first of two boreholes that may be used to determine the subsurface structure at Yucca Mountain by using vertical seismic profiling. This report contains information collected while this borehole was being drilled, logged, and tested from May 27, 1992, to April 22, 1994. It does not contain the vertical seismic profiling data. This report is intended to be used as: (1) a reference for drilling similar boreholes in the same area, (2) a data source on this borehole, and (3) a reference for other information that is available from this borehole. The reference information includes drilling chronology, equipment, parameters, coring methods, penetration rates, completion information, drilling problems, and corrective actions. The data sources include lithology, fracture logs, a list of available borehole logs, and depths at which water was recorded. Other information is listed in an appendix that includes studies done after April 22, 1994.

  8. Theory of reflectivity blurring in seismic depth imaging

    Science.gov (United States)

    Thomson, C. J.; Kitchenside, P. W.; Fletcher, R. P.

    2016-05-01

    A subsurface extended image gather obtained during controlled-source depth imaging yields a blurred kernel of an interface reflection operator. This reflectivity kernel or reflection function is comprised of the interface plane-wave reflection coefficients and so, in principle, the gather contains amplitude versus offset or angle information. We present a modelling theory for extended image gathers that accounts for variable illumination and blurring, under the assumption of a good migration-velocity model. The method involves forward modelling as well as migration or back propagation so as to define a receiver-side blurring function, which contains the effects of the detector array for a given shot. Composition with the modelled incident wave and summation over shots then yields an overall blurring function that relates the reflectivity to the extended image gather obtained from field data. The spatial evolution or instability of blurring functions is a key concept and there is generally not just spatial blurring in the apparent reflectivity, but also slowness or angle blurring. Gridded blurring functions can be estimated with, for example, a reverse-time migration modelling engine. A calibration step is required to account for ad hoc band limitedness in the modelling and the method also exploits blurring-function reciprocity. To demonstrate the concepts, we show numerical examples of various quantities using the well-known SIGSBEE test model and a simple salt-body overburden model, both for 2-D. The moderately strong slowness/angle blurring in the latter model suggests that the effect on amplitude versus offset or angle analysis should be considered in more realistic structures. Although the description and examples are for 2-D, the extension to 3-D is conceptually straightforward. The computational cost of overall blurring functions implies their targeted use for the foreseeable future, for example, in reservoir characterization. The description is for scalar

  9. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet.

    Science.gov (United States)

    Tilmann, Frederik; Ni, James

    2003-05-30

    A tomographic image of the upper mantle beneath central Tibet from INDEPTH data has revealed a subvertical high-velocity zone from approximately 100- to approximately 400-kilometers depth, located approximately south of the Bangong-Nujiang Suture. We interpret this zone to be downwelling Indian mantle lithosphere. This additional lithosphere would account for the total amount of shortening in the Himalayas and Tibet. A consequence of this downwelling would be a deficit of asthenosphere, which should be balanced by an upwelling counterflow, and thus could explain the presence of warm mantle beneath north-central Tibet.

  10. Deep boreholes; Tiefe Bohrloecher

    Energy Technology Data Exchange (ETDEWEB)

    Bracke, Guido [Gesellschaft fuer Anlagen- und Reaktorsicherheit gGmbH Koeln (Germany); Charlier, Frank [NSE international nuclear safety engineering gmbh, Aachen (Germany); Geckeis, Horst [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Nukleare Entsorgung; and others

    2016-02-15

    The report on deep boreholes covers the following subject areas: methods for safe enclosure of radioactive wastes, requirements concerning the geological conditions of possible boreholes, reversibility of decisions and retrievability, status of drilling technology. The introduction covers national and international activities. Further chapters deal with the following issues: basic concept of the storage in deep bore holes, status of the drilling technology, safe enclosure, geomechanics and stability, reversibility of decisions, risk scenarios, compliancy with safe4ty requirements and site selection criteria, research and development demand.

  11. Installation of borehole seismometer for earthquake characteristics in deep geological environment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Hee; Choi, Weon Hack; Cho, Sung Il; Chang, Chun Joong [KHNP CRI, Seoul (Korea, Republic of)

    2014-10-15

    Deep geological disposal is currently accepted as the most appropriate method for permanently removing spent nuclear fuel from the living sphere of humans. For implementation of deep geological disposal, we need to understand the geological changes that have taken place over the past 100,000 years, encompassing active faults, volcanic activity, elevation, ubsidence, which as yet have not been considered in assessing the site characteristics for general facilities, as well as to investigate and analyze the geological structures, fracture systems and seismic responses regarding deep geological environment about 500 meters or more underground. In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. Korea Hydro and Nuclear Power Co., Ltd. (KHNP) have installed the deep borehole earthquake observatory at depths of about 300 to 600 meters in order to study the seismic response characteristics in deep geological environment on June, 2014 in Andong area. This paper will show the status of deep borehole earthquake observatory and the results of background noise response characteristics of these deep borehole seismic data as a basic data analysis. We present here the status of deep borehole seismometer installation by KHNP. In order to basic data analysis for the borehole seismic observation data, this study shows the results of the orientation of seismometer and background noise characteristics by using a probability density function. Together with the ground motion data recorded by the borehole seismometers can be utilized as basic data for seismic response characteristics studies with regard to spent nuclear fuel disposal depth and as the input data for seismic hazard assessment that

  12. Seismic imaging of a megathrust splay fault in the North Chilean subduction zone (Central Andes)

    Science.gov (United States)

    Storch, Ina; Buske, Stefan; Schmelzbach, Cedric; Wigger, Peter

    2016-10-01

    Prominent trench-parallel fault systems in the arc and fore-arc of the Chilean subduction zone can be traced for several thousand kilometers in north-south direction. These fault systems possibly crosscut the entire crust above the subduction megathrust and are expected to have a close relationship to transient processes of the subduction earthquake cycles. With the motivation to image and characterize the structural inventory and the processes that occur in the vicinity of these large-scale fault zones, we re-processed the ANCORP'96 controlled-source seismic data set to provide images of the faults at depth and to allow linking geological information at the surface to subsurface structures. The correlation of the imaging results with observed hypocenter locations around these fault systems reveals the origin and the nature of the seismicity bound to these fault systems. Active and passive seismic data together yield a picture of a megathrust splay fault beneath the Longitudinal Valley at mid-crustal level, which can be observed from the top of the subduction plate interface and which seems to be connected to the Precordilleran Fault System (PFS) known at the surface. This result supports a previously proposed tectonic model where a megathrust splay fault defines the Western Altiplano as a crustal-scale fault-bend-fold. Furthermore, we clearly imaged two branches of the Uyuni-Kenayani Fault (UKF) in a depth range between 0 and 20 km. In summary, imaging of these faults is important for a profound understanding of the tectonic evaluation and characterization of the subduction zone environment, for which the results of this study provide a reliable basis.

  13. Transition Zone of the Cascadia Subduction Fault: Insights from Seismic Imaging of Slow Earthquakes

    Science.gov (United States)

    Ghosh, A.

    2012-12-01

    Transition zone lies between the updip locked and downdip freely slipping zone, and presumably marks the downdip extent of rupture during large megathrust earthquakes. Tectonic behavior of the transition zone and its possible implications on the occurrence of destructive megathurst earthquakes, however, remain poorly understood mainly due to lack of seismic events in this zone. Slow earthquakes, marked by seismically observed tremor and geodetically observed slow slip, occur in the transition zone offering a unique window to this zone, and allow us to study the dynamics of this enigmatic part of the fault. I developed a novel multi beam-backprojection (MBBP) algorithm to image slow earthquakes with high resolution using small-aperture seismic arrays. Application of MBBP technique on slow earthquakes in Cascadia indicates that the majority of the tremor is located near the plate interface [Ghosh et al., JGR, 2012]. Spatiotemporal distribution of tremor is fairly complex, and strikingly different over different time scales. Transition zone appears to be characterized by several patches with dimension of tens of kilometers. The patches behave like asperities, and possibly represent more seismic part of the fault embedded within a relatively aseismic background. Tremor asperities are spatially stable and marked by prolific tremor activity. These tremor asperities seem to control evolution of slow earthquakes and likely represent rheological and/or frictional heterogeneity on the fault plane. In addition, structural features on the fault plane of the transition zone seem to play an important role in shaping the characteristics of the seismic energy radiated from here. Dynamically evolving state-of-stress during slow earthquakes and its interaction with the fault structures possibly govern near-continuous rapid streaking of tremor [Ghosh et al., G-cubed, 2010] and diverse nature of tremor propagations observed over different time scales. Overall, slow quakes are giving

  14. Point spread functions for earthquake source imaging: An interpretation based on seismic interferometry

    Science.gov (United States)

    Nakahara, Hisashi; Haney, Matt

    2015-01-01

    Recently, various methods have been proposed and applied for earthquake source imaging, and theoretical relationships among the methods have been studied. In this study, we make a follow-up theoretical study to better understand the meanings of earthquake source imaging. For imaging problems, the point spread function (PSF) is used to describe the degree of blurring and degradation in an obtained image of a target object as a response of an imaging system. In this study, we formulate PSFs for earthquake source imaging. By calculating the PSFs, we find that waveform source inversion methods remove the effect of the PSF and are free from artifacts. However, the other source imaging methods are affected by the PSF and suffer from the effect of blurring and degradation due to the restricted distribution of receivers. Consequently, careful treatment of the effect is necessary when using the source imaging methods other than waveform inversions. Moreover, the PSF for source imaging is found to have a link with seismic interferometry with the help of the source-receiver reciprocity of Green’s functions. In particular, the PSF can be related to Green’s function for cases in which receivers are distributed so as to completely surround the sources. Furthermore, the PSF acts as a low-pass filter. Given these considerations, the PSF is quite useful for understanding the physical meaning of earthquake source imaging.

  15. Active-source seismic imaging below Lake Malawi (Nyasa) from the SEGMeNT project

    Science.gov (United States)

    Shillington, D. J.; Scholz, C. A.; Gaherty, J. B.; Accardo, N. J.; McCartney, T.; Chindandali, P. R. N.; Kamihanda, G.; Trinhammer, P.; Wood, D. A.; Khalfan, M.; Ebinger, C. J.; Nyblade, A.; Mbogoni, G. J.; Mruma, A. H.; Salima, J.; Ferdinand-Wambura, R.

    2015-12-01

    Little is known about the controls on the initiation and development of magmatism and segmentation in young rift systems. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined in the upper crust by ~100-km-long border faults. Very little volcanism is associated with rifting; the only surface expression of magmatism occurs in an accommodation zone between segments to the north of the lake in the Rungwe Volcanic Province. The SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project is a multidisciplinary, multinational study that is acquiring a suite of geophysical, geological and geochemical data to characterize deformation and magmatism in the crust and mantle lithosphere along 2-3 segments of this rift. As a part of the SEGMeNT project, we acquired seismic reflection and refraction data in Lake Malawi (Nyasa) in March-April 2015. Over 2000 km of seismic reflection data were acquired with a 500 to 2580 cu in air gun array from GEUS/Aarhus and a 500- to 1500-m-long seismic streamer from Syracuse University over a grid of lines across and along the northern and central basins. Air gun shots from MCS profiles and 1000 km of additional shooting with large shot intervals were also recorded on 27 short-period and 6 broadband lake bottom seismometers from Scripps Oceanographic Institute as a part of the Ocean Bottom Seismic Instrument Pool (OBSIP) as well as the 55-station onshore seismic array. The OBS were deployed along one long strike line and two dip lines. We will present preliminary data and results from seismic reflection and refraction data acquired in the lake and their implications for crustal deformation within and between rift segments. Seismic reflection data image structures up to ~5-6 km below the lake bottom, including syntectonic sediments, intrabasinal faults and other complex horsts. Some intrabasinal faults in both the northern and

  16. Enhancement in Seismic Imaging using Diffraction Studies and Hybrid Traveltime Technique for PSDM

    Science.gov (United States)

    Bashir, Y.; Ghosh, D. P.; Moussavi Alashloo, S. Y.; Sum, C. W.

    2016-07-01

    The accurate migration of seismic data is conditional on the parameters which are nominated. The effective velocity used in residual processing for migration is small compared to the original migration velocity. Considering traveltime computation is a significant part of seismic imaging algorithms. Conventional implementation of Kirchhoff migration is essential for precomputing a traveltime table from the categories involving traditional ray-tracing methods and finite difference eikonal solvers. In this paper, we examine the accuracy using, the eikonal solver and paraxial ray tracing traveltime computation in pre-stack Kirchhoff depth migration. This hybrid traveltime technique can be applied to a variety of problems related to faults, fractures, and complex region. To evaluate the relevance of this identical traveltime technique, we applied on a Marmousi data set.

  17. Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California

    Science.gov (United States)

    Pratt, Thomas L.; Shaw, John H.; Dolan, James F.; Christofferson, Shari A.; Williams, Robert A.; Odum, Jack K.; Plesch, Andreas

    2002-05-01

    High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.

  18. Retrieving Drill Bit Seismic Signals Using Surface Seismometers

    Institute of Scientific and Technical Information of China (English)

    Linfei Wang; Huaishan Liu; Siyou Tong; Yanxin Yin; Lei Xing; Zhihui Zou; Xiugang Xu

    2015-01-01

    Seismic while drilling (SWD) is an emerging borehole seismic imaging technique that uses the downhole drill-bit vibrations as seismic source. Without interrupting drilling, SWD technique can make near-real-time images of the rock formations ahead of the bit and optimize drilling operation, with reduction of costs and the risk of drilling. However, the signal to noise ratio (SNR) of surface SWD-data is severely low for the surface acquisition of SWD data. Here, we propose a new method to retrieve the drill-bit signal from the surface data recorded by an array of broadband seismometers. Taking advantages of wavefield analysis, different types of noises are identified and removed from the surface SWD-data, resulting in the significant improvement of SNR. We also optimally synthesize seis-mic response of the bit source, using a statistical cross-coherence analysis to further improve the SNR and retrieve both the drill-bit direct arrivals and reflections which are then used to establish a reverse vertical seismic profile (RVSP) data set for the continuous drilling depth. The subsurface images de-rived from these data compare well with the corresponding images of the three-dimension surface seis-mic survey cross the well.

  19. Next Generation Seismic Imaging; High Fidelity Algorithms and High-End Computing

    Science.gov (United States)

    Bevc, D.; Ortigosa, F.; Guitton, A.; Kaelin, B.

    2007-05-01

    The rich oil reserves of the Gulf of Mexico are buried in deep and ultra-deep waters up to 30,000 feet from the surface. Minerals Management Service (MMS), the federal agency in the U.S. Department of the Interior that manages the nation's oil, natural gas and other mineral resources on the outer continental shelf in federal offshore waters, estimates that the Gulf of Mexico holds 37 billion barrels of "undiscovered, conventionally recoverable" oil, which, at 50/barrel, would be worth approximately 1.85 trillion. These reserves are very difficult to find and reach due to the extreme depths. Technological advances in seismic imaging represent an opportunity to overcome this obstacle by providing more accurate models of the subsurface. Among these technological advances, Reverse Time Migration (RTM) yields the best possible images. RTM is based on the solution of the two-way acoustic wave-equation. This technique relies on the velocity model to image turning waves. These turning waves are particularly important to unravel subsalt reservoirs and delineate salt-flanks, a natural trap for oil and gas. Because it relies on an accurate velocity model, RTM opens new frontier in designing better velocity estimation algorithms. RTM has been widely recognized as the next chapter in seismic exploration, as it can overcome the limitations of current migration methods in imaging complex geologic structures that exist in the Gulf of Mexico. The chief impediment to the large-scale, routine deployment of RTM has been a lack of sufficient computer power. RTM needs thirty times the computing power used in exploration today to be commercially viable and widely usable. Therefore, advancing seismic imaging to the next level of precision poses a multi-disciplinary challenge. To overcome these challenges, the Kaleidoscope project, a partnership between Repsol YPF, Barcelona Supercomputing Center, 3DGeo Inc., and IBM brings together the necessary components of modeling, algorithms and the

  20. Imaging using cross-hole seismoelectric tomography

    Science.gov (United States)

    Araji, A.H.; Revil, A.; Jardani, A.; Minsley, B.

    2011-01-01

    We propose a new cross-hole imaging approach based on seismoelectric conversions associated with the transmission of seismic waves from seismic sources located in a borehole to receivers electrodes located in a second borehole. The seismoelectric seismic-to-electric problem is solved using Biot theory coupled with a generalized Ohm's law with an electrokinetic coupling term. The components of the displacement of the solid phase, the fluid pressure, and the electrical potential are solved using a finite element approach with PML boundary conditions for the seismic waves and boundary conditions mimicking an infinite material for the electrostatic problem. We have developed an inversion algorithm using the electrical disturbances recorded in the second borehole to localize the position of the heterogeneities responsible for the seismoelectric conversions. Because of the ill-posed nature of the inverse problem, regularization is used to constrain the solution at each time in the seismoelectric time window comprised between the time of the seismic shot and the time of the first arrival of the seismic waves in the second borehole. All the inverted volumetric current source densities are stacked to produce an image of the position of the heterogeneities between the two boreholes. Two simple synthetic case studies are presented to test this concept. The first case study corresponds to a vertical discontinuity between two homogeneous sub-domains. The second case study corresponds to a poroelastic inclusion embedded into an homogenous poroelastic formation. In both cases, the position of the heterogeneity is fairly well-recovered using only the electrical disturbances associated with the seismoelectric conversions. ?? 2011 Society of Exploration Geophysicists.

  1. Gravitational self-organizing map-based seismic image classification with an adaptive spectral-textural descriptor

    Science.gov (United States)

    Hao, Yanling; Sun, Genyun

    2016-10-01

    Seismic image classification is of vital importance for extracting damage information and evaluating disaster losses. With the increasing availability of high resolution remote sensing images, automatic image classification offers a unique opportunity to accommodate the rapid damage mapping requirements. However, the diversity of disaster types and the lack of uniform statistical characteristics in seismic images increase the complexity of automated image classification. This paper presents a novel automatic seismic image classification approach by integrating an adaptive spectral-textural descriptor into gravitational self-organizing map (gSOM). In this approach, seismic image is first segmented into several objects based on mean shift (MS) method. These objects are then characterized explicitly by spectral and textural feature quantization histograms. To objectify the image object delineation adapt to various disaster types, an adaptive spectral-textural descriptor is developed by integrating the histograms automatically. Subsequently, these objects as classification units are represented by neurons in a self-organizing map and clustered by adjacency gravitation. By moving the neurons around the gravitational space and merging them according to the gravitation, the object-based gSOM is able to find arbitrary shape and determine the class number automatically. Taking advantage of the diversity of gSOM results, consensus function is then conducted to discover the most suitable classification result. To confirm the validity of the presented approach, three aerial seismic images in Wenchuan covering several disaster types are utilized. The obtained quantitative and qualitative experimental results demonstrated the feasibility and accuracy of the proposed seismic image classification method.

  2. Micro-seismic Imaging Using a Source Independent Waveform Inversion Method

    KAUST Repository

    Wang, Hanchen

    2016-04-18

    Micro-seismology is attracting more and more attention in the exploration seismology community. The main goal in micro-seismic imaging is to find the source location and the ignition time in order to track the fracture expansion, which will help engineers monitor the reservoirs. Conventional imaging methods work fine in this field but there are many limitations such as manual picking, incorrect migration velocity and low signal to noise ratio (S/N). In traditional surface survey imaging, full waveform inversion (FWI) is widely used. The FWI method updates the velocity model by minimizing the misfit between the observed data and the predicted data. Using FWI to locate and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. Use the FWI technique, and overcomes the difficulties of manual pickings and incorrect velocity model for migration. However, the technique of waveform inversion of micro-seismic events faces its own problems. There is significant nonlinearity due to the unknown source location (space) and function (time). We have developed a source independent FWI of micro-seismic events to simultaneously invert for the source image, source function and velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. To examine the accuracy of the inverted source image and velocity model the extended image for source wavelet in z-axis is extracted. Also the angle gather is calculated to check the applicability of the migration velocity. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity in the synthetic experiments with both parts of the Marmousi and the SEG

  3. Faults dominant structure? -Seismic images of the subsurface structure for the Ilan geothermal field in Taiwan.

    Science.gov (United States)

    Chang, Yu-Chun; Shih, Ruey-Chyuan; Wang, Chien-Ying; Kuo, Hsuan-Yu; Chen, Wen-Shan

    2016-04-01

    A prototype deep geothermal power plant is to be constructed at the Ilan plain in northeastern Taiwan. The site will be chosen from one of the two potential areas, one in the west and the other in the eastern side of the plain. The triangle-shaped Ilan plane is bounded by two mountain ranges at the northwest and the south, with argillite and slate outcrops exposed, respectively. The Ilan plane is believed situating in a structure extending area at the southwestern end of the Okinawa Trough. Many studies about subsurface structure of the plain have been conducted for years. The results showed that the thickest sediments, around 900 m, is located at the eastern coast of the plain, at north of the largest river in the plain, the Lanyang river, and then became shallower to the edges of the plain. Since the plane is covered by thick sediments, formations and structures beneath the sediments are barely known. However, the observed high geothermal gradient and the abundant hot spring in the Ilan area indicate that this area is having a high potential of geothermal energy. In order to build up a conceptual model for tracing the possible paths of geothermal water and search for a suitable site for the geothermal well, we used the seismic reflection method to delineate the subsurface structure. The seismic profiles showed a clear unconformity separating the sediments and the metamorphic bedrock, and some events dipping to the east in the bedrock. Seismic images above the unconformity are clear; however, seismic signals in the metamorphic bedrock are sort of ambiguous. There were two models interpreted by using around 10 seismic images that collected by us in the past 3 years by using two mini-vibrators (EnviroVibe) and a 360-channel seismic data acquisition system. In the first model, seismic signals in the bedrock were interpreted as layer boundaries, and a fractured metamorphic layer down the depth of 1200m was thought as the source of geothermal water reservoir. In the

  4. Toward Exascale Seismic Imaging: Taming Workflow and I/O Issues

    Science.gov (United States)

    Lefebvre, M. P.; Bozdag, E.; Lei, W.; Rusmanugroho, H.; Smith, J. A.; Tromp, J.; Yuan, Y.

    2013-12-01

    Providing a better understanding of the physics and chemistry of Earth's interior through numerical simulations has always required tremendous computational resources. Post-petascale supercomputers are now available to solve complex scientific problems that were thought unreachable a few decades ago. They also bring a cohort of concerns on how to obtain optimum performance. Several issues are currently being investigated by the HPC community. To name a few, we can list energy consumption, fault resilience, scalability of the current parallel paradigms, large workflow management, I/O performance and feature extraction with large datasets. For this presentation, we focus on the last three issues. In the context of seismic imaging, in particular for simulations based on adjoint methods, workflows are well defined. They consist of a few collective steps (e.g., mesh generation or model updates) and of a large number of independent steps (e.g., forward and adjoint simulations of each seismic event, pre- and postprocessing of seismic traces). The greater goal is to reduce the time to solution, that is, obtaining a more precise representation of the subsurface as fast as possible. This brings us to consider both the workflow in its entirety and the parts composing it. The usual approach is to speedup the purely computational parts by code tuning in order to reach higher FLOPS and better memory usage. This still remains an important concern, but larger scale experiments show that the imaging workflow suffers from a severe I/O bottleneck. This limitation occurs both for purely computational data and seismic time series. The latter are dealt with by the introduction of a new Adaptable Seismic Data Format (ASDF). In both cases, a parallel I/O library, ORNL's ADIOS, is used to drastically lessen the weight of disk access. Moreover, parallel visualization tools, such as VisIt, are able to take advantage of the metadata included in our ADIOS outputs to extract features and

  5. New imaging method for seismic reflection wave and its theoretical basis

    Institute of Scientific and Technical Information of China (English)

    HUANG; Guangyuan

    2001-01-01

    [1]Huang Guangyuan, Principle of "3-Basic Colors" for imaging from reflected seismic wave, Acta Geophysica Sinica (in Chinese), 2000, 43(1): 138.[2]Huang Guangyuan, Revisions of convolution model of reflected seismic wave, Chinese Physics Letters, 1998, 15(11): 851.[3]Charles, K. C., An Introduction to Wavelets, San Diego: Academic Press, Inc., 1992.[4]Huang Guangyuan, Liu Weiqian, Revision wave expression and wave equation, Abstracts of Chinese Sci. & Tech. (Letters) (in Chinese), 1999, 5(3): 335.[5]Silvia, M. T., Deconvolution of geophysical time series in the exploration for oil and natural gas, Amsterdam-Oxford-New York: Elsevier Scientific Publishing Company, 1973.[6]Huang Guangyuan, Liu Xiaojun, Inverse Problems in Mathematical Physics (in Chinese), Jinan: Shandong Sci. & Tech. Press, 1993.[7]Huang Guangyuan, Liu Xiaojun, Discussion of several mathematical inverse models in seismic prospecting, CT Theory and Application (in Chinese), 1992, 1(2): 8.[8]Huang Guangyuan, The second discussion on acoustic velocity inversion from wave equation, CT Theory and Application (in Chinese), 1993, 2(3): 14[9]Huang Guangyuan, Dynamic revision of classical laws in physics from the viewpoint of system science, Systems Science and Systems Engineering, 1993, 2(1): 15[10]Brekhovskikh, L. M., Wave in Layered Media, San Diego: Academic Press, 1980.

  6. Anatomy of the Java plate interface from depth-migrated seismic images: Implications for sediment transfer

    Science.gov (United States)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2008-12-01

    We present seismic data from the western Java margin off Indonesia. The newly pre-stack depth migrated seismic images resolve the structural details of the western Java forearc and the fate of sediment subducted at the trench. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is transported down a subduction channel. Basal mass transfer occurs by episodic accretion of sediment beneath the submerged forearc as the active detachment stepwise descends to a deeper level below the outer wedge. Fluctuations in subduction channel dimensions are enhanced by deep-reaching thrust faults that are traced from a velocity singularity marking the top of the oceanic basement towards the seafloor. These thrust faults breach the subduction channel and inhibit recycling of material to mantle depth, while serving as an incremental ramp along which the active detachment is transferred to a lower position. The high ratio of accreted/subducted sediment is associated with the evolution of a large bivergent wedge (>100 km) despite the comparatively low sediment input to the trench (member type of subduction zone where near-complete accretion of the trench sediment fill by frontal and basal accretion is supported by the lack of evidence for subducted sediment in the geochemical signature of Mt. Guntur and Mt. Gallunggung, two volcanoes positioned in the prolongation of our seismic line on Java.

  7. Imaging the Black Hills Fault, Clark County, Nevada Utilizing High-Resolution Seismic Reflection and Vibroseis

    Science.gov (United States)

    Zaragoza, S. A.; Snelson, C. M.; Saldana, S. C.; Hirsch, A.; Poche, S.; Taylor, W. J.

    2006-12-01

    Historically, the location, geometries, and seismic potential of southern Nevada faults are poorly constrained. Collection of such data and seismic hazard characterization of the Black Hills fault (BHF) are important steps in better defining one of these faults. The BHF forms the northwestern structural boundary of the Eldorado Valley, which lies ~20 km southeast of Las Vegas, Nevada, between the growing communities of Henderson and Boulder City. Earthquake magnitude estimates based on surface rupture length (SRL) indicate an earthquake potential of Mw 5.7; however, estimates based on displacement values documented in a paleoseismic trench indicate a higher value of Mw 6.4-6.8. This implies that the subsurface rupture length is significantly greater than the length of the scarp. Although previous attempts to image the fault with a hammer source were inconclusive, gravity studies and local geology imply that the fault continues south of the scarp. Therefore, additional high-resolution seismic reflection and refraction data were acquired in SEG2 format along portions of a 1 km profile at 5 m station spacing utilizing a vibroseis source. At each shot point, a stack of four 30-160 Hz vibroseis sweeps of 15 s duration was recorded on a 60-channel system with 40 Hz geophones. A preliminary examination of these data indicates the existence of an eastward dipping structure, potentially confirming that the BHF continues in the subsurface south of the scarp.

  8. High-resolution seismic reflection/refraction imaging from Interstate 10 to Cherry Valley Boulevard, Cherry Valley, Riverside County, California: implications for water resources and earthquake hazards

    Science.gov (United States)

    Gandhok, G.; Catchings, R.D.; Goldman, M.R.; Horta, E.; Rymer, M.J.; Martin, P.; Christensen, A.

    1999-01-01

    This report is the second of two reports on seismic imaging investigations conducted by the U.S. Geological Survey (USGS) during the summers of 1997 and 1998 in the Cherry Valley area in California (Figure 1a). In the first report (Catchings et al., 1999), data and interpretations were presented for four seismic imaging profiles (CV-1, CV-2, CV-3, and CV-4) acquired during the summer of 1997 . In this report, we present data and interpretations for three additional profiles (CV-5, CV-6, and CV-7) acquired during the summer of 1998 and the combined seismic images for all seven profiles. This report addresses both groundwater resources and earthquake hazards in the San Gorgonio Pass area because the shallow (upper few hundred meters) subsurface stratigraphy and structure affect both issues. The cities of Cherry Valley and Beaumont are located approximately 130 km (~80 miles) east of Los Angeles, California along the southern alluvial fan of the San Bernardino Mountains (see Figure 1b). These cities are two of several small cities that are located within San Gorgonio Pass, a lower-lying area between the San Bernardino and the San Jacinto Mountains. Cherry Valley and Beaumont are desert cities with summer daytime temperatures often well above 100 o F. High water usage in the arid climate taxes the available groundwater supply in the region, increasing the need for efficient management of the groundwater resources. The USGS and the San Gorgonio Water District (SGWD) work cooperatively to evaluate the quantity and quality of groundwater supply in the San Gorgonio Pass region. To better manage the water supplies within the District during wet and dry periods, the SGWD sought to develop a groundwater recharge program, whereby, excess water would be stored in underground aquifers during wet periods (principally winter months) and retrieved during dry periods (principally summer months). The SGWD preferred a surface recharge approach because it could be less expensive than a

  9. Imaging Enhancement on Deep Seismic Reflection with Petrel and Ocean Working Environment

    Science.gov (United States)

    Yu, P.; Huang, D.; Feng, X.; Li, L.; Liu, W.; Wang, Y.; Zhao, Q.

    2011-12-01

    SinoProbe has been initiated to enhance understanding of earth deep structure, resources and geological disasters forecasting throughout Chinese continent. Besides traditional deep exploration methods, various state-of-the-art technologies have been carried out in order to acquire data and jointly utilize all possible information reflecting deep crust and mantle structures and evolution.Petrel, a powerful software application developed by Schlumberger, has been successfully applied to the O&G industry. It is now a complete seismic-to-simulation application for 3D and 2D seismic interpretation. However, it has a great potential to allow the user to extend utilization with multiple types of data sets to deal with much deeper geophysical information. Petrel all-in-one concept, that functionally comprises of massive data integration, multiple domains experts participation and 3D geological object-oriented etc., will come benefit to the deep earth study. Currently, there is no special tool designed for this purpose so that Petrel is required to extend its potential to cope with not only O&G area but also a larger area with unique requests of deeper objects.Ocean, a software framework for Petrel, provides an open development environment offering seamless integration of developer intellectual contribution to the Petrel mainstream workflow. It is able to accelerate the development and deployment of user's Petrel-like workflows to resolve complex problems. It can be implemented by means of plug-ins utilities although there is additional challenge to write a robust code with Ocean framework. Deep seismic reflection profiling is a well recognized technique to reveal the fine structure of lithosphere. Moreover, it can perform a significant role for prospective evaluation of O&G and mineral resources, and geological disasters. Its near-vertical deep seismic reflection method can enhance broad band seismic observations for imaging of the deep crust and continental geodynamics

  10. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jaana; Gustafsson, Christer (Malaa Geoscience AB (Sweden))

    2010-01-15

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  11. Quantitative Seismic Amplitude Analysis

    OpenAIRE

    Dey, A. K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes. Currently, the seismic value chain paradigm is in a feed-forward mode. Modern seismic data now have the potential to yield the best images in terms of spatial resolution, amplitude accuracy, and incre...

  12. Bayesian uncertainty analysis for advanced seismic imaging - Application to the Mentelle Basin, Australia

    Science.gov (United States)

    Michelioudakis, Dimitrios G.; Hobbs, Richard W.; Caiado, Camila C. S.

    2016-04-01

    Quantifying the depths of target horizons from seismic reflection data is among the most important aspects of exploration geophysics. In order to constrain these depths we need a reliable and accurate velocity model. Here, we apply Bayesian methods, such as Gaussian process emulators, to estimate the uncertainties of the depths of key horizons near the well DSDP-258 located in the Mentelle Basin, south west of Australia, and compared the results with the drilled core extracted from that well. Eventually, this method will be applied to identify the drilling targets for the International Ocean Discovery Program (IODP), leg 369. The Mentelle Basin is a sparsely explored, deep water sedimentary basin, located between the Naturaliste Plateau and the southern part of the Western Australian Shelf. Its main depocenter, is believed to contain sediments that span from Cretaceous to Holecene, but most importantly it hosts a continuous shale sequence that it is over a kilometer thick, the study of which, is crucial for the correlation between the paleoclimate conditions and the tectonic history of the region. Using two 2D multichannel seismic reflection profiles around the drill site, we generate detailed anisotropic velocity models for the well location in order to construct initially the optimum Pre -- stack time (PSTM) and eventually the Pre - stack depth migrated (PSDM) subsurface images. Moreover, in order to enhance the sub - basalt imaging of the region of interest with the goal to constrain the tectonic models of the area, we apply deterministic deconvolution filters using the source function extracted from our seismic data. The best velocity model created from the initial processing serves as the prior information to the Bayesian model. The final goal is to try to build a multi-layered model of n layers and estimate the zero offset two way time, t0, and the interval velocities,Vi, both for isotropic (Vxi ≈ Vzi) and anisotropic (Vxi ≠ Vzi) cases, in terms of a

  13. Tomographic Imaging of Jakarta Area from Cross-correlation of Seismic Ambient Noise

    Science.gov (United States)

    Pranata, B.; Saygin, E.; Cummins, P. R.; Widiyantoro, S.; Nugraha, A. D.; Harjadi, P.; Suhardjono, S.

    2012-12-01

    Seismic imaging of sediment thickness of Jakarta is crucial where Jakarta city is currently being rapidly developed with major installations and high-rise structures being constructed at a fast pace. Therefore, information of surface geology and surface sediment thickness for Jakarta city is urgently required in order to mitigate the effects of earthquake hazards in the future. Because of this need, we deployed 36 broadband and shortperiod stations across Jakarta to record seismic ambient noise. We apply cross-correlation method to the simultaneously recorded data to retrieve interstation Green's functions. We measure group velocity dispersion of the retrieved Green's functions by applying narrowband filters. Dispersion measurements are then inverted with a nonlinear tomographic technique to image the shallow structure of Jakarta and its surrounding regions. Preliminary results from tomographic maps show low velocities dominantly located in central, west and north Jakarta. While the highest rate obtained is between stations in South Jakarta. This conforms with the known geological conditions in which the structure of sedimentary cover in northern Jakarta is thicker than the southern part.

  14. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and

  15. Advances in directional borehole radar data analysis and visualization

    Science.gov (United States)

    Smith, D.V.G.; Brown, P.J.

    2002-01-01

    The U.S. Geological Survey is developing a directional borehole radar (DBOR) tool for mapping fractures, lithologic changes, and underground utility and void detection. An important part of the development of the DBOR tool is data analysis and visualization, with the aim of making the software graphical user interface (GUI) intuitive and easy to use. The DBOR software system consists of a suite of signal and image processing routines written in Research Systems' Interactive Data Language (IDL). The software also serves as a front-end to many widely accepted Colorado School of Mines Center for Wave Phenomena (CWP) Seismic UNIX (SU) algorithms (Cohen and Stockwell, 2001). Although the SU collection runs natively in a UNIX environment, our system seamlessly emulates a UNIX session within a widely used PC operating system (MicroSoft Windows) using GNU tools (Noer, 1998). Examples are presented of laboratory data acquired with the prototype tool from two different experimental settings. The first experiment imaged plastic pipes in a macro-scale sand tank. The second experiment monitored the progress of an invasion front resulting from oil injection. Finally, challenges to further development and planned future work are discussed.

  16. Seismic imaging of shallow reflectors in the eastern Kapuskasing structural zone, with correction of crossdip attitudes

    Science.gov (United States)

    Kim, Jisoo; Moon, Wooil M.; Percival, John A.; West, F. G.

    1992-10-01

    Cascaded processes of crossdip correction and residual statics are tested and applied in the reprocessing of regional data from LITHOPROBE Kapuskasing Transect line 2. The objective was to improve seismic imaging of shallow, gently dipping reflectors in the eastern Kapuskasing structural zone, a thrusted slice of Archean middle to lower crust. This focusing strategy proved to be very effective in improving the image of the reflected energy and in identifying a set of conformally dipping reflectors whose true crossdip is estimated to be approximately 17 deg NW. The estimated crossdip for a reflective, compositionally layered zone and for the basal thrust, the Ivanhoe Lake Fault zone, support the previously estimated average dip of 15-20 deg.

  17. New imaging method for seismic reflection wave and its theoretical basis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Some new imaging formulas for seismic reflection wave and theirtheoretical basis are given. Phenomena of wave propagation should be characterized by instantaneous spectrum and expressed by complex function of three variables (time, space and frequency) in mathematics. Various physical parameters of medium are also complex functions of two variables (space and frequency). The relationship between reflection coefficient of medium and spectrum of reflected wave is given. Multi-reflection and filter of formations are considered in inversion formulas. Prob-lems in classical convolution model and wave equation are illustrated. All these inversion formulas can be used to image underground medium by wavelet transform and method of "3-basic colors". Different colors mean different media.

  18. Research borehole drilling activity for boreholes DH-18, DH-19, DC-12, DC-13, DC-14, DC-15, and deepening of existing borehole DC-7

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    This report is an environmental evaluation of the impacts of proposed borehole drilling activities at the Hanford Site, northwest of Richland, Washington. The proposed action is to drill six research boreholes ranging in depth from 137 to 1372 meters (m) (250 to 4500 +- feet (ft)). In addition, an existing borehole (DC-7) will be extended from 1249 to 1524 m (4099 to 5000 +- ft). The purpose of the US Department of Energy's (DOE) borehole drilling activities is to collect data on in situ rock formations that are considered potentialy suitable for nuclear waste repositories. The technical program efforts necessary to identify and qualify specific underground waste facility sites in candidate rock formations include geologic and hydrologic studies (seismicity and tectonics, rock structure and stratigraphy, lithology, etc.). Borehole drilling is an integral part of the geological studies and is essential to a thorough understanding of potentially suitable geologic formations. The purpose of the proposed drilling activities is to obtain data for evaluating Columbia River basalts that are being evaluated by the National Waste Terminal Storage (NWTS) Program to determine their suitability potential for nuclear waste repositories. Unavoidable impact to the environment is limited primarily to the clearing of land needed for access and drilling operations. Considerations exercised during site preparation, drilling, and subsequent site restoration will limit modification of the natural environment to the minimum required for accomplishment of test objectives.

  19. Subduction Zone Science - Examples of Seismic Images of the Central Andes and Subducting Nazca Slab

    Science.gov (United States)

    Beck, S. L.; Zandt, G.; Scire, A. C.; Ward, K. M.; Portner, D. E.; Bishop, B.; Ryan, J. C.; Wagner, L. S.; Long, M. D.

    2015-12-01

    Subduction has shaped large regions of the Earth and constitute over 55,000 km of convergent plate margin today. The subducting slabs descend from the surface into the lower mantle and impacts earthquake occurrence, surface uplift, arc volcanism and mantle convection as well as many other processes. The subduction of the Nazca plate beneath the South America plate is one example and constitutes the largest present day ocean-continent convergent margin system and has built the Andes, one of the largest actively growing mountain ranges on Earth. This active margin is characterized by along-strike variations in arc magmatism, upper crustal shortening, crustal thickness, and slab geometry that make it an ideal region to study the relationship between the subducting slab, the mantle wedge, and the overriding plate. After 20 years of portable seismic deployments in the Central Andes seismologists have combined data sets and used multiple techniques to generate seismic images spanning ~3000 km of the South American subduction zone to ~800 km depth with unprecedented resolution. For example, using teleseismic P- waves we have imaged the Nazca slab penetrating through the mantle transition zone (MTZ) and into the uppermost lower mantle. Our tomographic images show that there is significant along-strike variation in the morphology of the Nazca slab in the upper mantle, MTZ, and the lower mantle, including possible tears, folding, and internal deformation. Receiver function studies and surface wave tomography have revealed major changes in lithospheric properties in the Andes. Improved seismic images allow us to more completely evaluate tectonic processes in the formation and uplift of the Andes including: (1) overthickened continental crust driven by crustal shortening, (2) changes in slab dip and coupling with the overlying plate (3) localized lithospheric foundering, and (4) large-scale mantle and crustal melting leading to magmatic addition and/or crustal flow. Although

  20. A Low Velocity Zone along the Chaochou Fault in Southern Taiwan: Seismic Image Revealed by a Linear Seismic Array

    Directory of Open Access Journals (Sweden)

    Hsin-Chieh Pu

    2010-01-01

    Full Text Available The Chaochou fault is one of the major boundary faults in southern Taiwan where strong convergence has taken place between the Eurasian and Philippine Sea plates. The surface fault trace between the Pingtung plain and the Central Range follows a nearly N-S direction and stretches to 80 km in length. In order to examine the subsurface structures along the Chaochou fault, a linear seismic array with 14 short-period stations was deployed across the fault to record seismic data between August and December 2001. Detailed examination of seismic data generated by 10 local earthquakes and recorded by the linear array has shown that the incidence angles of the first P-waves recorded by several seismic stations at the fault zone were significantly larger than those located farther away from the fault zone. This difference might reflect the lateral variation of velocity structures across the Chaochou fault. Further examination of ray-paths of seismic wave propagation indicates that a low-velocity zone along the Chaochou fault is needed to explain the significant change in incidence angles across the fault zone. Although we do not have adequate information to calculate the exact geometry of the fault zone well, the variation in incidence angles across the fault can be explained by the existence of a low-velocity zone that is about 3 km in width on the surface and extends downward to a depth of 5 km. The low-velocity zone along the Chaochou fault might imply that the fault system consists of several splay faults on the hanging wall in the Central Range.

  1. Joint Geophysical Imaging of the Utah Area Using Seismic Body Waves, Surface Waves and Gravity Data

    Science.gov (United States)

    Zhang, H.; Maceira, M.; Toksoz, M. N.; Burlacu, R.; Yang, Y.

    2009-12-01

    We present a joint geophysical imaging method that makes use of seismic body wave arrival times, surface wave dispersion measurements, and gravity data to determine three-dimensional (3D) Vp and Vs models. An empirical relationship mapping densities to Vp and Vs for earth materials is used to link them together. The joint inversion method takes advantage of strengths of individual data sets and is able to better constrain the velocity models from shallower to greater depths. Combining three different data sets to jointly invert for the velocity structure is equivalent to a multiple-objective optimization problem. Because it is unlikely that the different “objectives” (data types) would be optimized by the same parameter choices, some trade-off between the objectives is needed. The optimum weighting scheme for different data types is based on relative uncertainties of individual observations and their sensitivities to model parameters. We will apply this joint inversion method to determine 3D Vp and Vs models of the Utah area. The seismic body wave arrival times are assembled from waveform data recorded by the University of Utah Seismograph Stations (UUSS) regional network for the past 7 years. The surface wave dispersion measurements are obtained from the ambient noise tomography study by the University of Colorado group using EarthScope/USArray stations. The gravity data for the Utah area is extracted from the North American Gravity Database managed by the University of Texas at El Paso. The preliminary study using the seismic body wave arrival times indicates strong low velocity anomalies in middle crust beneath some known geothermal sites in Utah. The joint inversion is expected to produce a reasonably well-constrained velocity structure of the Utah area, which is helpful for characterizing and exploring existing and potential geothermal reservoirs.

  2. Seismic Images of Faulting and Fossil Subduction of the Southern Baja California Margins

    Science.gov (United States)

    Gonzalez, A.; Fletcher, J. M.; Lizarralde, D.; Kent, G. M.; Harding, A. J.; Holbrook, S.; Umhoefer, P. J.; Axen, G. J.; Gorman, A. R.

    2003-12-01

    From September to November 2002, a marine geophysics experiment was carried out, using 2 ships and onshore personell, recording deep MCS (Multichannel Seismics), wide angle, gravity, magnetic and bathymetric data. The main objective of this experiment is to better understand the continental breakup processes and the rifting of the Baja California Peninsula from Mexico mainland. An array of airguns with a total air volume of 8000 cu.in. was the seismic source and a 6000 km-long, 480-channel streamer was used to record the deep MCS data. This equipment was towed by the R/V Maurice Ewing. A series of stacked and migrated sections have been obtained, showing a number of noticeable structures. To the W of the line corresponding to the Pacific margin, the fossil trench is covered by recent sediments, that are part of the Magdalena Fan. Towards the E, near the slope break, the Tosco-Abreojos fault zone is clearly imaged, showing some extensional component. Further to the E, an old syncline is covered in erosive unconformity by recent sediments. In the eastern part of the section, a half-graben structure can be observed. Under this structure, a reflective zone can be interpreted as the mylonitic zone corresponding to a detachment. Some basement scarpments seem to be parallel faults to the semigraben master fault. Other normal faults in the sediments of the basin are synthetic and antithetic with it. The master fault probably is the continuation to the S of the Santa Margarita-San Lazaro fault, reported previously as a detachment in Santa Margarita and Magdalena islands. The seismic line in the Gulf of California margin begins at a conspicuous slope at the mouth of the La Paz Bay, and corresponds to the same strike-slip fault observed in Partida and Espiritu Santo islands. The rest of the line is characterized by numerous strike-slip and normal faults, producing strong bathymetric variations.

  3. Advanced seismic imaging technology. Data acquisition (computer simulation of elastic wave propagation); Koseido imaging gijutsu. Data shutoku gijutsu (danseiha simulation)

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, T. [Tech. Research Center, Japan National Oil Corp., Tokyo (Japan)

    1995-11-10

    Development of software was examined for the purpose of making basic data for an advanced seismic imaging technology by obtaining a seismic exploration data from a complicated underground structural model through a numerical simulation. The result in fiscal 1994 was as follows. A dimensional division difference calculus is superior in the stability and accuracy of numerical calculation and capable of calculating by dividing into one dimensional differences. Attenuation items were added which were due to medium absorbing effect by Maxwell viscoelastic model, and simultaneously a function was added which was capable of dealing with the multi focuses and a group installation of geophones. A pseudospectral method is a kind of difference calculus for numerically solving a partial differential equation, and capable of dividing an underground structural model in lattice and calculating the field on the lattice point. The space direction is differentiated by calculating Fourier series without difference approximation; and, therefore, the number of lattice may be reduced to 2 for the maximum wave length; namely, a lattice interval may be coarsened to reduce calculation time. An improvement was made on the parallel calculation part of the program for two-dimensional analysis developed in the preceding fiscal year, enabling reduction in the calculation time. 4 figs.

  4. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    Science.gov (United States)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  5. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  6. Drill bit seismic, vertical seismic profiling, and seismic depth imaging to aid drilling decisions in the Tho Tinh structure, Nam Con Son basin, Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Borland, W.; Hayashida, N.; Kusaka, H.; Leaney, W.; Nakanishi, S.

    1996-10-01

    This paper reviews the problem of overpressure, a common reason for acquiring look-ahead VSPs, and the seismic trace inversion problem, a fundamental issue in look-ahead prediction. The essential components of intermediate VSPs were examined from acquisition through processing to inversion, and recently acquired real data were provided, which were indicative of the advances being made toward developing an exclusive high resolution VSP service. A simple interpretation method and an end product of predicted mud weight versus depth were also presented, which were obtained from the inverted acoustic impedance and empirical relations. Of paramount importance in predicting the depth to a target was the velocity function used below the intermediate TD. The use of empirical or assumed density functions was an obvious weak link in the procedure. The advent of real-time time-depth measurements from drill bit seismic allowed a continuously updated predicted target depth below the present bit depth. 8 refs., 7 figs.

  7. Shallow seismic imaging of flank collapse structures in oceanic island volcanoes: Application to the Western Canary Islands

    Science.gov (United States)

    Sanchez, L.; González, P.; Tiampo, K. F.

    2013-12-01

    Volcanic flank collapse counts among the many hazards associated with volcanic activity. This type of event involves the mobilization of large volumes, producing debris avalanches. It affects mostly oceanic island volcanoes, involving the potential for tsunami occurrence. Geophysical imaging can illuminate subvolcanic features such as volcano-tectonic structures, magmatic plumbing systems or differences in rock type. The most commonly used geophysical methods are gravity, electromagnetics and seismics. In particular, seismic measurements quantify anomalies in seismic waves propagation velocities and can be used to obtain information on the subsurface arrangement of different materials. In the Western Canary Islands, the Cumbre Vieja volcano in La Palma (Canary Islands) has been proposed to be near the collapse stage. Previous geophysical studies that have been carried out on the flank of the volcano comprise gravity and electromagnetic methods. These types of surveys gather information on the deep structures of the volcano (1-2 km). In this project, we complement previous studies by using seismic methods to investigate the near-surface seismic structure of the Cumbre Vieja fault system (La Palma Island) and the structure of the well-developed San Andres fault system (El Hierro Island). We aim to compare the Cumbre Vieja and San Andres fault systems to infer the degree of maturity of collapse structures. We carried out reflection and refraction seismic surveys in order to image approximately the first 10 meters of the subsurface. We used 24 low frequency (4,5 Hz) geophones as receivers and a sledge hammer as the seismic source. The survey lines were located across visible parts of the fault systems at the Cumbre Vieja volcano and the San Andres fault in El Hierro. Here, we present the survey setup and results from the preliminary analysis of the data.

  8. Imaging blended vertical seismic profiling data using full-wavefield migration in the common-receiver domain

    NARCIS (Netherlands)

    Soni, A.K.; Verschuur, D.J.

    2015-01-01

    For vertical-seismic-profiling (VSP) measurements, the use of blended acquisition, with time-overlapping shot records, can greatly reduce the downtime and, thereby, provide large cost savings. For directly imaging blended VSP measurements, we have used full-wavefield migration (FWM). FWM is an inver

  9. JPEG image of Seismic-Reflection Profiles Collected in the Pulley Ridge Study Area

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These seismic data were collected to infer the paleodepositional environment of Pulley Ridge through seismic facies analysis. Without actual rock cores, remote...

  10. Exploring the potentials and limitations of the time-reversal imaging of finite seismic sources

    Directory of Open Access Journals (Sweden)

    S. Kremers

    2011-06-01

    Full Text Available The characterisation of seismic sources with time-reversed wave fields is developing into a standard technique that has already been successful in numerous applications. While the time-reversal imaging of effective point sources is now well-understood, little work has been done to extend this technique to the study of finite rupture processes. This is despite the pronounced non-uniqueness in classic finite source inversions.

    The need to better constrain the details of finite rupture processes motivates the series of synthetic and real-data time reversal experiments described in this paper. We address questions concerning the quality of focussing in the source area, the localisation of the fault plane, the estimation of the slip distribution and the source complexity up to which time-reversal imaging can be applied successfully. The frequency band for the synthetic experiments is chosen such that it is comparable to the band usually employed for finite source inversion.

    Contrary to our expectations, we find that time-reversal imaging is useful only for effective point sources, where it yields good estimates of both the source location and the origin time. In the case of finite sources, however, the time-reversed field does not provide meaningful characterisations of the fault location and the rupture process. This result cannot be improved sufficiently with the help of different imaging fields, realistic modifications of the receiver geometry or weights applied to the time-reversed sources.

    The reasons for this failure are manifold. They include the choice of the frequency band, the incomplete recording of wave field information at the surface, the excitation of large-amplitude surface waves that deteriorate the depth resolution, the absence of a sink that should absorb energy radiated during the later stages of the rupture process, the invisibility of small slip and the neglect of prior information concerning the fault

  11. Multichannel Seismic Images of Cascadia Forearc Structure at the Oregon Margin

    Science.gov (United States)

    Han, S.; Carbotte, S. M.; Carton, H. D.; Canales, J.; Nedimovic, M. R.

    2013-12-01

    We present new Multichannel Seismic (MCS) images of the Cascadia forearc and downgoing Juan de Fuca plate offshore Oregon. The data were collected during the Cascadia Ridge-to-Trench experiment conducted in June-July 2012 aboard the R/V Langseth. 2D processing including geometry definition, filtering and editing, deconvolution, amplitude correction, velocity analysis, CMP stacking, and post-stack time migration, has been conducted. The new images confirm some previous observations on the location of the plate boundary and structure of the forearc and also reveal new features of the Oregon margin. West of the deformation front, the Juan de Fuca Plate has a dip of ~1.5o and sediment thickness is > 3 km. A bright Moho reflection and reflections from faults cutting through the crust are imaged. The subducting oceanic crust can be traced continuously landward at least to 15 km from the deformation front. One major forearc basin and a smaller basin 10 km from its west end are imaged. Sediments in both basins are folded with wavelengths of 4-6 km and several faults are identified in the larger basin. Beneath the major basin, a low-frequency reflection is imaged at 3.7 s TWTT similar to that imaged by Trehu et al (1995) and interpreted as originating from the top of Siletz terrane. About 70-80 km from the deformation front, a shallowly dipping reflection is imaged at 7.3 s, which likely corresponds to the top of the downgoing plate. Based on existing velocity models for the margin, the location of this reflection is approximately coincident with the July 2004 earthquake cluster interpreted to have occurred at the plate boundary. This bright reflection is presumably similar in origin to the 'bright spot' imaged from two prior multichannel and wide-angle seismic reflection surveys lines located 40 km and 60 km north of our line. The brightness of the reflection may reflect high pore fluid pressure at the plate interface. Just 4 km west of this presumed top

  12. Macroscopic Fault Structure of the 1911 Mw8.1 Chon Kemin Earthquake (Tien Shan, Kyrgyzstan) from Combined Seismic Imaging, Palaeo-Seismological Investigations and Historial Seismicity

    Science.gov (United States)

    Haberland, C. A.; Sonnemann, T.; Landgraf, A.; Ryberg, T.; Kulikova, G.; Krueger, F.; Dzhumabaeva, A.; Abdrakhmatov, K.; Abdybachaev, U.; Orunbaev, S.; Rosenwinkel, S.; Sharshebaev, A.

    2014-12-01

    Earthquakes in low-strain regions and their driving forces are still sparsely studied and understood, and constitute serious first-order research questions. Data acquisition concerning paleo-earthquakes, related hazards, and tectonic activity beyond historical records plays an important role. Such information can be obtained with tools from tectonic geomorphology, geophysics, historic seismicity, and paleo-seismology that should span a variety of time and length scales. The Chon-Kemin Valley in the northern Tien Shan (Kyrgyzstan) is a small, intermontane basin of unknown origin framed by a network of active faults. In the year 1911, the Chon-Kemin earthquake (Mw=8.1) activated fault structures of about 200 km length which also ruptured the surface along the Chon-Kemin Valley and caused numerous landslides and rock avalanches of up to several tens of millions of cubic meters in volume. The Chon-Kemin earthquake was one of a series of strong seismic events that affected the northern Tien Shan between 1885 and 1938. A seismic survey across the Chon-Kemin Valley was conducted to investigate the subsurface velocity structure of the valley and its surrounding faults. Tomographic inversion techniques were applied to first-arrival traveltimes of refracted P waves, and the seismic data were screened for reflection signatures. Additionally, the region was analyzed through paleo-seismological trenching. Tomographic and reflection images identified a shallow basin structure bounded by a set of thrust faults in the south only which - in part - correlate with the surface trace of the rupture. The deformation seems to be distributed in time and space across several sub-parallel fault strands. Synthesis of historical (analog) recordings of this earthquake provide new insights into the source mechanisms and processes.

  13. Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau

    Science.gov (United States)

    Tharimena, Saikiran; Rychert, Catherine A.; Harmon, Nicholas

    2016-09-01

    Ontong Java Plateau (OJP) is a huge, completely submerged volcanic edifice that is hypothesized to have formed during large plume melting events ∼90 and 120 My ago. It is currently resisting subduction into the North Solomon trench. The size and buoyancy of the plateau along with its history of plume melting and current interaction with a subduction zone are all similar to the characteristics and hypothesized mechanisms of continent formation. However, the plateau is remote, and enigmatic, and its proto-continent potential is debated. We use SS precursors to image seismic discontinuity structure beneath Ontong Java Plateau. We image a velocity increase with depth at 28 ± 4 km consistent with the Moho. In addition, we image velocity decreases at 80 ± 5 km and 282 ± 7 km depth. Discontinuities at 60-100 km depth are frequently observed both beneath the oceans and the continents. However, the discontinuity at 282 km is anomalous in comparison to surrounding oceanic regions; in the context of previous results it may suggest a thick viscous root beneath OJP. If such a root exists, then the discontinuity at 80 km bears some similarity to the mid-lithospheric discontinuities (MLDs) observed beneath continents. One possibility is that plume melting events, similar to that which formed OJP, may cause discontinuities in the MLD depth range. Plume-plate interaction could be a mechanism for MLD formation in some continents in the Archean prior to the onset of subduction.

  14. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  15. Drill bit seismic, vertical seismic profiling, and seismic depth imaging to acid drilling decisions in the Tho Tinh structure Nam Con Son Basin-Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Borland, W.; Leaney, W.; Nakanishi, S.; Kusaka, H.

    1998-02-01

    Rapid deposition in the Nam Con Son Basin during the Miocene resulted in under-compacted shales. These under-compacted shales are often associated with over-pressured formations. As these shales have excess water and tend to be mechanically weak, the safe mud window for drilling the under-compacted interval can be quite narrow. Efficient and safe drilling operations require accurate depth predictions of these over-pressured formations as well a knowledge of the magnitude of the over-pressure. In this paper we describe a technique which combines the best aspects of conventional Vertical Seismic Profiles (VSP) and Reverse Vertical Seismic Profiles (RVSP) to detect under-compacted shales and predict formation pressures to locate drilling hazards below TD. Under-compacted shales with excess water will have a lower acoustic impedance than expected from the compaction trend. Shales that depart from the compaction trend may indicate potential drilling hazards below. Conventional VSPs provide high quality reflection data at discrete intervals in the well, and can be used to accurately predict acoustic impedance below the bit. This acoustic impedance is then interpreted to provide both the location (in time and depth) of the drilling hazard and the mud weight necessary to contain it. The two-way time estimate of the hazard location is usually quite accurate but the depth estimate is less certain due to the estimation error in formation velocities below TD. The RVSP using the drill bit as a source, provides a continuous time versus depth relationship while drilling. This time versus depth is used to continually update the conventional VSP depth prediction of the drilling hazard and thus provide the most accurate depth of the hazard prior to its penetration. It is also used to update a depth-indexed display of existing surface seismic at the wellsite. 10 refs., 22 figs.

  16. Deep Borehole Field Test Laboratory and Borehole Testing Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herrick, Courtney G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gardner, W. Payton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jang, Je-Hun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Daley, Tom [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spane, Frank A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-19

    Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).

  17. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    Science.gov (United States)

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  18. Chicxulub Post-Impact Sedimentary Sequence: Integrated Borehole Paleogene Carbonate Stratigraphy

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Escobar-Sanchez, E.; Ortega-Nieto, A.; Velasco-Villarreal, M.

    2014-12-01

    The Chicxulub crater was formed by a bolide impact on the southern Gulf of Mexico at ~66 Ma ago that marked the Cretaceous/Paleogene (K/Pg) boundary, represented worldwide by the ejecta layer. The K/Pg boundary layer with its global distribution provides a high resolution marker, allowing high precision stratigraphic analyses in marine and continental sequences. Following crater formation, sedimentation re-established in the carbonate platform, filling the basin. Crater is located half on-land and half offshore, with the crater floor covered by sediments with variable thickness up to about 1 km. The target, impact and post-impact sequences have been drilled and cored, providing samples for stratigraphic, petrographic and physical-chemical laboratory studies. The post-impact stratigraphy has been analyzed in several studies at proximal, intermediate and distal outcrops and in the crater boreholes, using e.g., radiometric dating, micropaleontology, paleomagnetism, and strontium and stable isotope geochemistry. Emphasis has been given on the impact breccias-carbonates contact and the basal Paleocene sequence. Here we re-analyze the available data, revisiting the stratigraphy for the Santa Elena, Tekax, Peto and Yaxcopoil-1 boreholes using newly constructed detailed lithostratigraphic columns in the continuously cored boreholes. Additionally we extend the study to the Paleogene sequence in the Santa Elena and Yaxcopoil-1 boreholes using bulk carbon and oxygen isotopes, magnetic polarity, XRF core geochemistry and magnetic susceptibility stratigraphy. Results spanning chrons c29 to c24 constrain the K/Pg boundary, c29r-c29n polarity reversal and the Paleocene-Eocene thermal maximum, providing high resolution records. The basal Paleocene gap and age differences in an integrated stratigraphy are discussed and correlated to the GPTS scale and IODP marine isotope records. The extent and characteristics of crater structure and target/cover sediments have been imaged with

  19. Imaging Geological Structures Up to the Acquisition Surface Using a Hybrid Refraction-Reflection Seismic Method

    Directory of Open Access Journals (Sweden)

    Mendes M.

    2013-08-01

    Full Text Available The aim of seismic imaging is to reconstruct the reflectivity associated with subsurface structures. In standard imaging techniques, the reflectivity model usually starts a few meters below the surface, the actual depth being dependent on data acquisition parameters and the mute used to remove stretching of first arrivals after normal moveout correction. In this paper, we describe a method to image the reflectivity of near-surface structures starting from the acquisition surface. This is achieved by processing both the first arrivals and the reflected phases present in data collected for refraction surveys. The proposed imaging procedure works in three steps. First, we obtain a velocity model for the shallow region by combining the Plus-Minus method of refraction interpretation with tomographic inversion of first arrival times. Second, by processing reflection events present in the refraction data, we obtain a standard reflectivity section for the deeper region. Finally, we compute reflectivity for the shallow region using the velocity model estimated from first arrival information in step 1. This velocity model is used both to compute reflectivity and to convert it in time. The reflectivity obtained for the shallow region is associated with velocity contrasts. In order to merge it with the reflectivity section for the deeper region a scaling factor between the two sets of reflectivity sections must be computed and applied. The novelty of this contribution is the use the tomographic velocity model in evaluating reflectivity for the upper part of the section. This improves the continuity of information about all near-surface structures in comparison with previous works that were limited to reflection data. Three field examples illustrate the proposed procedure showing continuous information about reflectivity of structures starting from the acquisition surface.

  20. Using seismic reflection to locate a tracer testing complex south of Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Kryder, Levi

    Tracer testing in the fractured volcanic aquifer near Yucca Mountain, and in the alluvial aquifer south of Yucca Mountain, Nevada has been conducted in the past to determine the flow and transport properties of groundwater in those geologic units. However, no tracer testing has been conducted across the alluvium/volcanic interface. This thesis documents the investigative process and subsequent analysis and interpretations used to identify a location suitable for installation of a tracer testing complex, near existing Nye County wells south of Yucca Mountain. The work involved evaluation of existing geologic data, collection of wellbore seismic data, and a detailed surface seismic reflection survey. Borehole seismic data yielded useful information on alluvial P-wave velocities. Seismic reflection data were collected over a line of 4.5-km length, with a 10-m receiver and shot spacing. Reflection data were extensively processed to image the alluvium/volcanic interface. A location for installation of an alluvial/volcanic tracer testing complex was identified based on one of the reflectors imaged in the reflection survey; this site is located between existing Nye County monitoring wells, near an outcrop of Paintbrush Tuff. Noise in the reflection data (due to some combination of seismic source signal attenuation, poor receiver-to-ground coupling, and anthropogenic sources) were sources of error that affected the final processed data set. In addition, in some areas low impedance contrast between geologic units caused an absence of reflections in the data, complicating the processing and interpretation. Forward seismic modeling was conducted using Seismic Un*x; however, geometry considerations prevented direct comparison of the modeled and processed data sets. Recommendations for additional work to address uncertainties identified during the course of this thesis work include: drilling additional boreholes to collect borehole seismic and geologic data; reprocessing a

  1. New and Evolving Seismic Images of the Central Andes and Subducting Nazca Slab: 20 Years of Portable Seismology Results

    Science.gov (United States)

    Beck, S. L.

    2014-12-01

    Beno Gutenberg first identified a seismic low velocity zone in the upper mantle that we now refer to as the asthenosphere that is still the focus of many studies in active tectonic regions. The upper-most mantle is very heterogeneous and occupies the depth range where much of the tectonic action occurs especially in subduction zones and convergent margins. The central South American convergent margin is the result of the subduction of the Nazca Plate beneath the South American Plate and includes the Andes, one of the largest actively growing mountain ranges on Earth. The South American subduction zone has two regions of "flat" subduction in Peru and central Chile and Argentina separated by a segment of "normal" subduction and an active magmatic arc. The central Andean plateau has an average elevation of 3-4 km and some of the thickest crust on Earth with deformation reaching ~800 km inland. This active margin is characterized by along-strike variations in magmatism, upper crustal shortening, crustal thickness, and slab geometry that make it an ideal region to study the relationship between the subducting slab, the mantle wedge, and the overriding plate. After 20 years of portable seismic deployments in the Central Andes seismologists have generated unprecedented seismic images spanning ~3000 km of the Andean lithosphere, the subducting Nazca slab, and the surrounding mantle. Seismic travel-time, ambient noise and earthquake surface-wave tomography, receiver function imaging, and joint receiver function - surface wave dispersion inversions have produced along strike images of the Central Andes from the surface to a depth of ~700 km. These new images were made possible by PI-driven portable broadband seismic deployments and data sharing by many international groups. I will highlight images of along-strike variations in crustal properties and thickness, mantle lithospheric structure, and slab geometry. These seismic images allow us to more completely evaluate the role

  2. Application of advanced seismic reflection imaging techniques to mapping permeable zones at Dixie Valley, Nevada. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-18

    Multifold seismic reflection data from the Dixie Valley geothermal field in Nevada were reprocessed using a nonlinear optimization scheme called simulated annealing to model subsurface acoustic velocities, followed by a pre-stack Kirchhoff migration to produce accurate and detailed depth-migrated images of subsurface structure. In contrast to conventional processing techniques, these methods account for significant lateral variations in velocity and thus have the potential ability to image steeply-dipping faults and fractures that may affect permeability within geothermal fields. The optimization scheme develops two-dimensional velocity models to within 6% of velocities obtained from well and surface geologic data. Only the seismic data (i.e., first arrival times of P waves) are used to construct the velocity models and pre-stack migration images, and no other a priori assumptions are invoked. Velocities obtained by processing individual seismic tracks were integrated to develop a block diagram of velocities to 2.3 km depth within the Dixie Valley geothermal field. Details of the tectonic and stratigraphic structure allowed three dimensional extension of the interpretations of two dimensional data. Interpretations of the processed seismic data are compared with well data, surface mapping, and other geophysical data. The Dixie Valley fault along the southeastern Stillwater Range Piedmont is associated with a pronounced lateral velocity gradient that is interpreted to represent the juxtaposition of relatively low velocity basin-fill strata in the hanging wall against higher velocity crystalline rocks in the footwall. The down-dip geometry of the fault was evaluated by inverting arrival times from a negative move-out event, which we associate with the dipping fault plane, on individual shot gathers for seismic line SRC-3 for the location and depth of the associated reflection points on the fault.

  3. Deep 3-D seismic reflection imaging of Precambrian sills in the crystalline crust of Alberta, Canada

    Science.gov (United States)

    Welford, Joanna Kim

    2005-07-01

    Using deep 3-D seismic reflection datasets collected by the Canadian petroleum exploration industry in southwestern and northwestern Alberta, the Head-Smashed-In and Winagami Precambrian sill complexes within the crystalline upper crust, previously identified on Lithoprobe 2-D multichannel reflection lines, are investigated to determine their 3-D geometries and reflective characteristics. During seismic processing of the dataset in southwestern Alberta, a recently developed wavelet-based method, Physical Wavelet Frame Denoising, is applied and shown to successfully suppress ground roll contamination while preserving low frequency signals from deeper structures. A new 3-D empirical trace interpolation scheme, DSInt, is developed to address the problem of spatial aliasing associated with 3-D data acquisition. Results from applying the algorithm to both datasets are comparable to available interpolation codes while allowing for greater flexibility in the handling of irregular acquisition geometries and interpolated trace headers. Evidence of the Head-Smashed-In reflector in southwestern Alberta is obtained using a dataset acquired to 8 s TWTT (approx. 24 km depth). From locally coherent, discontinuous pockets of basement reflectivity, the dataset appears to image the tapering western edge of the deep reflections imaged by Lithoprobe. A statistical approach of tracking reflectivity is developed and applied to obtain the spatial and temporal distribution of reflections. Simple 1-D forward modelling results reveal that the brightest reflections likely arise from a 50 to 150 m thick body of high density/high velocity material although variations in the amplitudes and lateral distribution of the reflections indicate that the thickness of the sills is laterally variable. Thus, the results are consistent with imaging the tapering edge of the sill complex. Clear evidence of the Winagami reflection sequence in northwestern Alberta, emerges from the second dataset acquired to 5

  4. Comparing plume characteristics inferred from cross-borehole geophysical data

    DEFF Research Database (Denmark)

    Haarder, Eline Bojsen; Binley, Andrew; Zibar, Majken Caroline Looms

    2012-01-01

    Three cross-borehole geophysical methods are used to image water migration in the unsaturated zone after a point injection of water. Mass balance calculations and moment analysis highlight the differences in resolution between the methods. The choice of moisture content threshold value significan......Three cross-borehole geophysical methods are used to image water migration in the unsaturated zone after a point injection of water. Mass balance calculations and moment analysis highlight the differences in resolution between the methods. The choice of moisture content threshold value...... significantly influences results of the moment analysis. We compare results of three cross-borehole geophysical approaches for imaging tracer migration arising from a point injection of water in the unsaturated zone: three-dimensional electrical resistivity tomography (ERT), two-dimensional ground...

  5. Safety valve for offshore borehole

    Energy Technology Data Exchange (ETDEWEB)

    McGill, H.L.; Randermann, E. Jr.; Musik, O.J.

    1977-10-06

    The invention concerns a new and improved submarine safety valve with a valve element which rotate, which can be used, in emergencies, to separate the wound-up piping which extends into the borehole and to close the production line.

  6. Quantitative Seismic Amplitude Analysis

    NARCIS (Netherlands)

    Dey, A.K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes. Cur

  7. Evidence for Along-Strike Variations in the Crustal Deformation beneath the Bhutan Himalaya from Receiver Function Imaging and Seismicity

    Science.gov (United States)

    Singer, J.; Kissling, E. H.; Diehl, T.; Hetényi, G.

    2015-12-01

    In the Bhutan Himalaya seismicity and geologic surface features like the Kuru Chu Spur (an embayment of the Main Central Thrust) or the Paro window indicate along-strike variations in the collisional structure. The deeper structure of the orogenic wedge and associated deformation processes, however, are poorly understood partly due to the lack of seismic images of the crust. To better understand these differences in structure and deformation, we use data of a temporary seismic broadband network in Bhutan to image the crustal structure with receiver functions (RF). We apply an iterative 3D wave-based migration scheme including a high-frequency ray approximation, which satisfies Snell's law for dipping interfaces. With this approach we image variably dipping intra-crustal interfaces and the Moho topography across the Bhutan Himalaya, and identify lateral variations in the orogenic structure, which we interpret jointly with a new local earthquake catalog. In West Bhutan, RF imaging depicts a northward dipping Moho at ~50 km depth. The low-angle dip steepens north of ~27.6°N which matches well observations by wide-angle seismics in South Tibet and the hypocenter of a deep crustal earthquake recorded by our network. We also identify the Main Himalayan Thrust (MHT) at ~14 km depth in West Bhutan with a ramp-like structure north of ~27.6°N. The ramp is characterized by a negative impedance contrast in the RF signals and coincides with a concentration of seismicity. In the East, the Moho appears to be almost flat at a depth of ~50 km without clear indications of steepening towards north. Beneath the Kuru Chu Spur in East Bhutan, we observe listric-shaped structures reaching from the upper crust beneath the Lesser Himalaya down to the Moho beneath the Greater Himalaya, which we interpret as a stack of crustal material typical for an accretionary wedge. While these structures appear aseismic, a horizontal alignment of seismicity at ~12 km depth suggests an active MHT in

  8. The magmatic plumbing system of the Askja central volcano, Iceland, as imaged by seismic tomography

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.; Roecker, Steven

    2016-10-01

    The magmatic plumbing system beneath Askja, a volcano in the central Icelandic highlands, is imaged using local earthquake tomography. We use a catalog of more than 1300 earthquakes widely distributed in location and depth to invert for the P wave velocity (Vp) and the Vp/Vs ratio. Extensive synthetic tests show that the minimum size of any velocity anomaly recovered by the model is 4 km in the upper crust (depth < 8 km below sea level (bsl)), increasing to 10 km in the lower crust at a depth of 20 km bsl. The plumbing system of Askja is revealed as a series of high-Vp/Vs ratio bodies situated at discrete depths throughout the crust to depths of over 20 km. We interpret these to be regions of the crust which currently store melt with melt fractions of 10%. The lower crustal bodies are all seismically active, suggesting that melt is being actively transported in these regions. The main melt storage regions lie beneath Askja volcano, concentrated at depths of 5 km bsl with a smaller region at 9 km bsl. Their total volume is 100 km3. Using the recorded waveforms, we show that there is also likely to be a small, highly attenuating magmatic body at a shallower depth of about 2 km bsl.

  9. Coseismic deformation pattern of the Emilia 2012 seismic sequence imaged by Radarsat-1 interferometry

    Directory of Open Access Journals (Sweden)

    Christian Bignami

    2012-10-01

    Full Text Available On May 20 and 29, 2012, two earthquakes of magnitudes 5.9 and 5.8 (Mw, respectively, and their aftershock sequences hit the central Po Plain (Italy, about 40 km north of Bologna. More than 2,000 sizable aftershocks were recorded by the Isti-tuto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology National Seismic Network (http://iside.rm.ingv.it/. The sequence was generated by pure compressional faulting over blind thrusts of the western Ferrara Arc, and it involved a 50-km-long stretch of this buried outer front of the northern Apennines. The focal mechanisms of the larger shocks agree with available structural data and with present-day tectonic stress indicators, which show locally a maximum horizontal stress oriented ca. N-S; i.e. oriented perpendicular to the main structural trends. Most of the sequence occurred between 1 km and 12 km in depth, above the local basal detachment of the outer thrust fronts of the northern Apennines. We measured the surface displacement patterns associated with the mainshocks and some of the larger aftershocks (some of which had Mw >5.0 by applying the Interferometric Synthetic Aperture Radar (InSAR technique to a pair of C-Band Radarsat-1 images. We then used the coseismic motions detected over the epicentral region as input information, to obtain the best-fit model fault for the two largest shocks. […

  10. 基于点散射地震-地质模型的地震散射波成像%Seismic scattering wave imaging based on seismic-earth model of point scattering

    Institute of Scientific and Technical Information of China (English)

    沈鸿雁; 李庆春; 边建民

    2014-01-01

    Seismic reflection imaging result is not satisfactory when the underground geological conditions are much complex,and the conventional reflection seismic exploration would be ineffective.In the paper,one 2D seismic scattering wave imaging method is achieved from the time-distance curve equation of 2D scattering wave based on the seismic-earth model of point scattering,and the seismic scattering wave kinematics law is ana-lyzed.With the processing results of fault model and a set of real seismic data,the characteristics of the seismic scattering wave imaging technique is discussed,and the imaging results of traditional reflection imaging tech-nique are compared to prove the effectiveness of this method.%地下地质条件比较复杂时,地震反射波成像效果不理想,致使常规反射地震勘探难以奏效。本文基于点散射地震-地质模型,推导出2D散射波时距曲线方程,分析了地震散射波的运动学规律;在此基础上,提出了2D地震散射波成像的方法与技术;结合断层模型和一套实际地震资料处理,讨论了散射波地震成像的特点,并与传统反射波成像结果进行了比较,证明了该方法的有效性。

  11. Miscellaneous High-Resolution Seismic Imaging Investigations in Salt Lake and Utah Valleys for Earthquake Hazards

    Science.gov (United States)

    Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.

    2007-01-01

    Introduction In support of earthquake hazards and ground motion studies by researchers at the Utah Geological Survey, University of Utah, Utah State University, Brigham Young University, and San Diego State University, the U.S. Geological Survey Geologic Hazards Team Intermountain West Project conducted three high-resolution seismic imaging investigations along the Wasatch Front between September 2003 and September 2005. These three investigations include: (1) a proof-of-concept P-wave minivib reflection imaging profile in south-central Salt Lake Valley, (2) a series of seven deep (as deep as 400 m) S-wave reflection/refraction soundings using an S-wave minivib in both Salt Lake and Utah Valleys, and (3) an S-wave (and P-wave) investigation to 30 m at four sites in Utah Valley and at two previously investigated S-wave (Vs) minivib sites. In addition, we present results from a previously unpublished downhole S-wave investigation conducted at four sites in Utah Valley. The locations for each of these investigations are shown in figure 1. Coordinates for the investigation sites are listed in Table 1. With the exception of the P-wave common mid-point (CMP) reflection profile, whose end points are listed, these coordinates are for the midpoint of each velocity sounding. Vs30 and Vs100, also shown in Table 1, are defined as the average shear-wave velocities to depths of 30 and 100 m, respectively, and details of their calculation can be found in Stephenson and others (2005). The information from these studies will be incorporated into components of the urban hazards maps along the Wasatch Front being developed by the U.S. Geological Survey, Utah Geological Survey, and numerous collaborating research institutions.

  12. SHEAR WAVE SEISMIC STUDY COMPARING 9C3D SV AND SH IMAGES WITH 3C3D C-WAVE IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    John Beecherl; Bob A. Hardage

    2004-07-01

    The objective of this study was to compare the relative merits of shear-wave (S-wave) seismic data acquired with nine-component (9-C) technology and with three-component (3-C) technology. The original proposal was written as if the investigation would be restricted to a single 9-C seismic survey in southwest Kansas (the Ashland survey), on the basis of the assumption that both 9-C and 3-C S-wave images could be created from that one data set. The Ashland survey was designed as a 9-C seismic program. We found that although the acquisition geometry was adequate for 9-C data analysis, the source-receiver geometry did not allow 3-C data to be extracted on an equitable and competitive basis with 9-C data. To do a fair assessment of the relative value of 9-C and 3-C seismic S-wave data, we expanded the study beyond the Ashland survey and included multicomponent seismic data from surveys done in a variety of basins. These additional data were made available through the Bureau of Economic Geology, our research subcontractor. Bureau scientists have added theoretical analyses to this report that provide valuable insights into several key distinctions between 9-C and 3-C seismic data. These theoretical considerations about distinctions between 3-C and 9-C S-wave data are presented first, followed by a discussion of differences between processing 9-C common-midpoint data and 3-C common-conversion-point data. Examples of 9-C and 3-C data are illustrated and discussed in the last part of the report. The key findings of this study are that each S-wave mode (SH-SH, SV-SV, or PSV) involves a different subsurface illumination pattern and a different reflectivity behavior and that each mode senses a different Earth fabric along its propagation path because of the unique orientation of its particle-displacement vector. As a result of the distinct orientation of each mode's particle-displacement vector, one mode may react to a critical geologic condition in a more optimal way than

  13. Discrete Fracture Network Characterization and Modeling in the Swedish Program for Nuclear Waste Disposal in Crystalline Rocks Using Information Acquired by Difference Flow Logging and Borehole Wall Image Logging

    Science.gov (United States)

    Follin, S.; Stigsson, M.; Levén, J.

    2006-12-01

    Difference flow logging is a relatively new hydraulic test method. It offers a superior geometrical resolution compared to the classic double-packer injection test method. Other significant features of the difference flow logging method are the long duration of the test period and the line source flow regime. These three features are vital for the characterization and the modeling of the conductive fracture frequency in crystalline rocks. Further, combining difference flow logging with core mapping and in situ borehole wall image logging (BIPS) allows for an enhanced geological cross correlation and structural interpretation. The data and analyses presented here come from the ongoing site investigations for a high-level nuclear waste repository in Forsmark managed by the Swedish Nuclear Fuel and Waste Management Co. First, we demonstrate the statistical properties of the fracture transmissivities acquired by difference flow logging for a number of one-kilometer-long cored boreholes. Secondly, we make a hydraulic comparison between these data and the transmissivities acquired by double-packer injection tests. Thirdly, we present a method for investigating the geometrical connectivity of open fractures in fracture network simulations and how this connectivity can be cross correlated to the fracture transmissivity distribution acquired by difference flow logging. Finally, we discuss the geometrical properties of flowing fractures as acquired by BIPS data and the correlation to the current stress situation in Forsmark. The geometrical anisotropy observed in the transmissivity data suggests that the current stress situation is very important for the flow field in Forsmark. This puts constraints on the collection and use of geological/structural data for hydrogeological discrete fracture network modeling.

  14. Geology and Geophysics of new boreholes at the FEBEX site

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, R.; Perez-Estaun, A. [Inst. Jaume Almera, CSIC (Spain); Missana, T.; Buil, B.; Garralon, A.; Gomez, J. [CIEMAT (Spain); Suso, J.; Carretero, G.; Bueno, J.; Martinez, L. [AITEMIN (Spain); Hernan, P. [ENRESA (Spain)

    2007-06-15

    Geophysical data has been acquired to characterized the fracture network of the surrounding volume within the FEBEX gallery. The geophysic data include new borehole logging such as Natural Gamma and Borehole Ground Penetrating radar and cross hole ultrasonic tomography. The preliminary processing and integration of these different data sets indicates that the GPR record can provide images of the fractures, specially if they are fluid filled. The GPR is specially sensitive to the water content as it directly affects the electrical conductivity and the dielectric permittivity Therefore it is adequate for mapping water conductive fractures of the crystalline rock. The correlation of the anomalies measured by the natural gamma can be correlated with the 'diffractions' in the GPR and the fractures imaged by the borehole televiewer. The cross hole ultrasonic tomography data is under processing and no interpretations have been attempted yet.

  15. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    Energy Technology Data Exchange (ETDEWEB)

    Lestari, Titik, E-mail: t2klestari@gmail.com [Meteorological Climatological and Geophysical Agency (MCGA), Jalan Angkasa I No.2 Kemayoran, Jakarta Pusat, 10720 (Indonesia); Faculty of Earth Science and Technology, Bandung Institute of Technology, Jalan Ganesa No.10, Bandung 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology, Jalan Ganesa 10 Bandung 40132 (Indonesia)

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  16. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    Science.gov (United States)

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-01

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  17. Time-lapse crosswell seismic and VSP monitoring of injected CO2 ina brine aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Daley, Thomas M.; Myer, Larry R.; Peterson, J.E.; Majer, E.L.; Hoversten,G.M.

    2006-05-30

    Seismic surveys successfully imaged a small scale C02injection (1,600 tons) conducted in a brine aquifer of the Frio Formationnear Houston, Texas. These time-lapse bore-hole seismic surveys,crosswell and vertical seismic profile (VSP), were acquired to monitorthe C02 distribution using two boreholes (the new injection well and apre-existing well used for monitoring) which are 30 m apart at a depth of1500 m. The crosswell survey provided a high-resolution image of the C02distribution between the wells via tomographic imaging of the P-wavevelocity decrease (up to 500 mls). The simultaneously acquired S-wavetomography showed little change in S-wave velocity, as expected for fluidsubstitution. A rock physics model was used to estimate C02 saturationsof 10-20 percent from the P-wave velocity change. The VSP survey resolveda large (-70 percent) change in reflection amplitude for the Friohorizon. This C02 induced reflection amplitude change allowed estimationof the C02 extent beyond the monitor well and on 3 azimuths. The VSPresult is compared with numerical modeling of C02 saturations and isseismically modeled using the velocity change estimated in the crosswellsurvey.

  18. Imaging lithosphere structure and dynamic processes of a world-class metallogenic belt with passive and active seismic methods

    Science.gov (United States)

    Lu, Q.; Gu, Y.; Shi, D.; Yan, J.

    2012-12-01

    The lithosphere structure and deep processes are keys to understanding mineral system and ore-forming processes. Lithosphere-scale process could create big footprints or signatures which can be observed by geophysics methods. SinoProbe-03 has conducted a Transect exploration across middle and lower Yangtze Metallogenic Belt (YMT) in Eastern China. Broadband seismic, reflection seismic, wide-angle reflection and magnetotellurics survey were carried out along the Transect. Seismic reflection profiles and MT survey were also performed in Luzong, Tongling and Ningwu ore districts to construct 3D geological model. The resulting geophysical data provides new information which help to better understanding the lithosphere structure, deep processes and deformation history of the Metallogenic Belt. The major results are: (1) Lower velocity body at the top of upper mantle and a SE dipping high velocity body were imaged by teleseismic tomography beneath YMB; (2) Shear wave splitting results show NE parallel fast-wave polarization direction which parallel with tectonic lineament; (3) The reflection seismic data support the crustal-detachment model, the lower and upper crust was detached during contraction deformation near Tanlu fault and Ningwu volcanic basin; (4) Broadband and reflection seismic confirm the shallow Moho beneath YMB; (5) Strong correlation of lower crust reflectivity with magmatism. All these features suggest that introcontinental subduction, lithosphere delamination, mantle sources magmatic underplating, and MASH process are responsible for the formation of wild-class metallogenic belt. Acknowledgment: We acknowledge the financial support of SinoProbe by the Ministry of Finance and Ministry of Land and Resources, P. R. China, under Grant sinoprobe-03, and financial support by National Natural Science Foundation of China under Grant 40930418

  19. The Precambrian Structure of the Estancia Basin, Central New Mexico: New Seismic Images of the Mazatzal Province

    Science.gov (United States)

    Elebiju, O. O.; Miller, K. C.; Andronicos, C. L.

    2004-12-01

    The Estancia Basin, located between the Manzano Mountains and Pedernal Hills, in central New Mexico, provides an excellent location for studying the effects of Proterozoic structural grain on subsequent Phanerozoic tectonic events. The Estancia Basin lies within the Proterozoic Mazatzal province. In recent years, the National Science Foundation Continental Dynamics Program within the Rocky Mountains Project, (CD-ROM) group has been examining the boundary between the two broad northeast-trending tectonically-mixed Paleoproterozoic terranes in New Mexico: the Yavapai province to the north and the Mazatzal province to the south. Reflection data collected as part of the CD-ROM effort image a portion of the Mazatzal province at a location 100 km east of the Estancia Basin. In an effort to contribute to a deeper understanding of the CD-ROM seismic image and regional Precambrian geology, we are analyzing ten seismic reflection profiles, well-logs, magnetic and gravity data from the Estancia basin area. The seismic data show numerous dipping reflections within the Precambrian basement that may represent prominent Precambrian ductile shear zones similar to those exposed in the adjacent Manzano Mountains and Pedernal Hills. An earlier study that focused on the Paleozoic evolution of the Estancia Basin, by Barrow and Keller (1994) also noted these same reflectors and that a prominent gravity low observed in the vicinity of the basin could not be fully explained by the Paleozoic geology. We present a new interpretation of these data.

  20. Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Queen, John H. [Hi-Geophysical, Inc., Ponca, OK (United States)

    2016-05-09

    Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both surface seismic and vertical seismic profile (VSP) methods. We adapted these methods to the unique conditions encountered in Enhanced Geothermal Systems (EGS) creation. These conditions include geological environments with volcanic cover, highly altered rocks, severe structure, extreme near surface velocity contrasts and lack of distinct velocity contrasts at depth. One of the objectives was the development of methods for identifying more appropriate seismic acquisition parameters for overcoming problems associated with these geological factors. Because temperatures up to 300º C are often encountered in these systems, another objective was the testing of VSP borehole tools capable of operating at depths in excess of 1,000 m and at temperatures in excess of 200º C. A final objective was the development of new processing and interpretation techniques based on scattering and time-frequency analysis, as well as the application of modern seismic migration imaging algorithms to seismic data acquired over geothermal areas. The use of surface seismic reflection data at Brady's Hot Springs was found useful in building a geological model, but only when combined with other extensive geological and geophysical data. The use of fine source and geophone spacing was critical in producing useful images. The surface seismic reflection data gave no information about the internal structure (extent, thickness and filling) of faults and fractures, and modeling suggests that they are unlikely to do so. Time-frequency analysis was applied to these data, but was not found to be significantly useful in their interpretation. Modeling does indicate that VSP and other seismic methods with sensors located at depth in wells will be the most

  1. Forsmark site investigation. Geophysical, radar and BIPS logging in boreholes HFM01, HFM02, HFM03 and the percussion drilled part of KFM01A

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Christer; Nilsson, Per [Malaa Geoscience AB/RAYCON, Jaerfaella (Sweden)

    2003-03-01

    This document reports the data gained during logging operations, which is one of the activities performed within the site investigation at Forsmark. The logging operations presented here include geophysical logging with Wellmac, RAMAC and BIPS. In total, 430 metres of logging was carried out in four percussion drilled boreholes. The boreholes in question are; KFM01A (c. 100 m deep of which 50 m were logged/diameter 165 mm), HFM01 (200 m/140 mm), HFM02 (100 m/140 mm) and HFM03 (30 m/140 mm). The borehole referred to as KFM01A is the uppermost, percussion drilled part of a c 1000 m deep telescopic drilled borehole of which the section 1001000 metres is core drilled. All measurements were conducted in June 2002. Instruments used: Borehole radar (RAMAC) system with dipole radar antennas. Borehole TV system (Borehole Image Processing System BIPS), a high resolution, side viewing, colour borehole TV system. Borehole geophysical logging system (WELLMAC)

  2. A new interpretation of the deep-part of Senegal-Mauritanian Basin in the Diourbel-Thies area by integrating seismic, magnetic, gravimetric and borehole data: Implication for petroleum exploration

    Science.gov (United States)

    Ndiaye, Matar; Ngom, Papa Malick; Gorin, Georges; Villeneuve, Michel; Sartori, Mario; Medou, Joseph

    2016-09-01

    The Diourbel-Thies area is located in the centre of the onshore part of the Senegal-Mauritanian Basin (SMB). The new interpretation of old petroleum data (2-D seismic lines and drilling data of three oil wells) in the deeppart of this poorly evaluated zone, integrating gravimetric and magnetic data, has allowed the distinction of the Hercynian ante-rift phase (U1) which is distinguished from the syn-rift phase (U2) probably of Permo-Triassic to Middle Jurassic age. The syn-rift phase resulted in a series of compartments or grabens infilling aligned in a North-South direction. Tholeiitic volcanism of the Central Atlantic Magmatic Province (CAMP) is present in the syn-rift phase of the Diourbel-Thies area. The syn-rift deposits and associated volcanics allow us to surmise that the Diourbel basin represents a deeper rift basin. In comparison with other Central Atlantic Margins (CAM), the Diourbel rift basin could be one of the numerous rift basins that formed during the Permo-Triassic age. From a petroleum exploration perspective, the existence of the Diourbel rift basin is attractive because of the presence of structures that are excellent for deep gas exploration.

  3. Comparing seismic tomographic images from automatically- and manually-detected arrival times

    Science.gov (United States)

    Spallarossa, Daniele; Scafidi, Davide; Turino, Chiara; Ferretti, Gabriele; Viganò, Alfio

    2013-04-01

    In this work we compare local earthquake tomographic images obtained using arrival times detected by an automatic picking procedure and by an expert seismologist. For this purpose we select a reference dataset composed of 476 earthquakes occurred in the Trentino region (north-eastern Italy) in the period 1994-2007. Local magnitudes are comprised between 0.8 and 5.3. Original recordings are mainly from the Provincia Autonoma di Trento (PAT), and from other networks operating in the surrounding areas (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - INOGS; Istituto Nazionale di Geofisica e Vulcanologia - INGV; others available via the European Integrated Data Archive). The automatic picking of P and S phases is performed through a picker engine based on the Akaike information criterion (AIC). In particular, the proposed automatic phase picker includes: (i) envelope calculation, (ii) band-pass filtering, (iii) Akaike information criterion (AIC) detector for both P- and S-arrivals, (iv) checking for impulsive arrivals, (v) evaluation of expected S onset on the basis of a preliminary location derived from the P-arrival times, and (vi) quality assessment. Simultaneously, careful manual inspection by expert seismologists is applied to the same waveform dataset, to obtain manually-repicked phase readings. Both automatic and manual procedures generate a comparable amount of readings (about 6000 P- and 5000 S-phases). These data are used for the determination of two similar 3-D propagation models for the Trentino region, applying the SIMULPS code. In order to quantitatively estimate the difference of these two models we measure their discrepancies in terms of velocity at all grid points. The small differences observed among tomographic results allow us to demonstrate that the automatic picking engine adopted in this test can be used for reprocessing large amount of seismic recordings with the aim of perform a local tomographic study with an accuracy

  4. Seismic imaging of the upper mantle beneath the northern Central Andean Plateau: Implications for surface topography

    Science.gov (United States)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.

    2015-12-01

    Extending over 1,800 km along the active South American Cordilleran margin, the Central Andean Plateau (CAP) as defined by the 3 km elevation contour is second only to the Tibetan Plateau in geographic extent. The uplift history of the 4 km high Plateau remains uncertain with paleoelevation studies along the CAP suggesting a complex, non-uniform uplift history. As part of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we use surface waves measured from ambient noise and two-plane wave tomography to image the S-wave velocity structure of the crust and upper mantle to investigate the upper mantle component of plateau uplift. We observe three main features in our S-wave velocity model including (1), a high velocity slab (2), a low velocity anomaly above the slab where the slab changes dip from near horizontal to a normal dip, and (3), a high-velocity feature in the mantle above the slab that extends along the length of the Altiplano from the base of the Moho to a depth of ~120 km with the highest velocities observed under Lake Titicaca. A strong spatial correlation exists between the lateral extent of this high-velocity feature beneath the Altiplano and the lower elevations of the Altiplano basin suggesting a potential relationship. Non-uniqueness in our seismic models preclude uniquely constraining this feature as an uppermost mantle feature bellow the Moho or as a connected eastward dipping feature extending up to 300 km in the mantle as seen in deeper mantle tomography studies. Determining if the high velocity feature represents a small lithospheric root or a delaminating lithospheric root extending ~300 km into the mantle requires more integration of observations, but either interpretation shows a strong geodynamic connection with the uppermost mantle and the current topography of the northern CAP.

  5. Seismic reflection imaging of underground cavities using open-source software

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R J

    2011-12-20

    The Comprehensive Nuclear Test Ban Treaty (CTBT) includes provisions for an on-site inspection (OSI), which allows the use of specific techniques to detect underground anomalies including cavities and rubble zones. One permitted technique is active seismic surveys such as seismic refraction or reflection. The purpose of this report is to conduct some simple modeling to evaluate the potential use of seismic reflection in detecting cavities and to test the use of open-source software in modeling possible scenarios. It should be noted that OSI inspections are conducted under specific constraints regarding duration and logistics. These constraints are likely to significantly impact active seismic surveying, as a seismic survey typically requires considerable equipment, effort, and expertise. For the purposes of this study, which is a first-order feasibility study, these issues will not be considered. This report provides a brief description of the seismic reflection method along with some commonly used software packages. This is followed by an outline of a simple processing stream based on a synthetic model, along with results from a set of models representing underground cavities. A set of scripts used to generate the models are presented in an appendix. We do not consider detection of underground facilities in this work and the geologic setting used in these tests is an extremely simple one.

  6. Characterization of intrabasin faulting and deformation for earthquake hazards in southern Utah Valley, Utah, from high-resolution seismic imaging

    Science.gov (United States)

    Stephenson, William J.; Odum, Jack K.; Williams, Robert A.; McBride, John H.; Tomlinson, Iris

    2012-01-01

    We conducted active and passive seismic imaging investigations along a 5.6-km-long, east–west transect ending at the mapped trace of the Wasatch fault in southern Utah Valley. Using two-dimensional (2D) P-wave seismic reflection data, we imaged basin deformation and faulting to a depth of 1.4 km and developed a detailed interval velocity model for prestack depth migration and 2D ground-motion simulations. Passive-source microtremor data acquired at two sites along the seismic reflection transect resolve S-wave velocities of approximately 200 m/s at the surface to about 900 m/s at 160 m depth and confirm a substantial thickening of low-velocity material westward into the valley. From the P-wave reflection profile, we interpret shallow (100–600 m) bedrock deformation extending from the surface trace of the Wasatch fault to roughly 1.5 km west into the valley. The bedrock deformation is caused by multiple interpreted fault splays displacing fault blocks downward to the west of the range front. Further west in the valley, the P-wave data reveal subhorizontal horizons from approximately 90 to 900 m depth that vary in thickness and whose dip increases with depth eastward toward the Wasatch fault. Another inferred fault about 4 km west of the mapped Wasatch fault displaces horizons within the valley to as shallow as 100 m depth. The overall deformational pattern imaged in our data is consistent with the Wasatch fault migrating eastward through time and with the abandonment of earlier synextensional faults, as part of the evolution of an inferred 20-km-wide half-graben structure within Utah Valley. Finite-difference 2D modeling suggests the imaged subsurface basin geometry can cause fourfold variation in peak ground velocity over distances of 300 m.

  7. Shear Wave Reflection Seismics Image Internal Structure of Quick-Clay Landslides in Sweden

    Science.gov (United States)

    Polom, U.; Krawczyk, C. M.; Malehmir, A.

    2014-12-01

    Covering many different sizes of scale, landslides are widespread and pose a severe hazard in many areas as soon as humans or infrastructure are affected. In order to provide geophysical tools and techniques to better characterize sites prone to sliding, a geophysical assessment working towards a geotechnical understanding of landslides is necessary. As part of a joint project studying clay-related landslides in Nordic countries by a suite of geophysical methods, we therefore tested the use of shear wave reflection seismics to survey shallow structures that are known to be related to quick-clay landslide processes in southern Sweden. On two crossing profiles, a land streamer consisting of 120 SH-geophones with 1 m spacing was deployed, and an ELVIS micro-vibrator was shaking every 4 m to generate the shear wave signal. SH-wave data of high quality were thereby acquired to resolve the gaps between P-wave data and electrical and surface wave based methods of lower resolution. After quality control, correlation, subtractive stack, and geometry setup, single shot gathers already demonstrate the high data quality gained in the region, especially on a gravel road. The migrated depth sections image the structural inventory down to ca. 50 m depth with vertical resolution of less than 1 m. Horizontally layered sediments are visible in the upper 40 m of soft (marine) sediments, followed by top basement with a rough topography varying between ca. 20-40 m depth. The imaged, bowl-shaped basement morphology centres near the profile crossing, and basement is exposed at three sides of the profiles. Three distinct sediment sequences are separated by high-amplitude unconformities. The quick-clay layer may be located above the marked reflection set that lies on top of the more transparent sequence that levels out the basement. Located between 15-20 m depth, this correlates with the height of the last scarp that occurred in the area. In addition, shear wave velocities are determined

  8. Neural network analysis of crosshole tomographic images: The seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada)

    Science.gov (United States)

    Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.

    2008-10-01

    Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.

  9. Location Capability and Site Characterization Installing a Borehole VBB Seismometer: the OGS Experience in Ferrara (Italy)

    Science.gov (United States)

    Pesaresi, D.; Barnaba, C.

    2014-12-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 19 very sensitive broad band and 17 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS CRS data centre in Udine. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara and to the deployment of a temporary seismographic network consisting of eight portable seismological stations, to record the local earthquakes that occurred during the seismic sequence. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate seismic site responses in the area. We will introduce details of the Ferrara VBB borehole station and the OGS temporary seismographic network configuration and installation. We will then illustrate the location capability performances, and finally we will shortly describe seismic site characterization with surface/borehole comparisons in terms of seismic noise, site amplification and resonance frequencies.

  10. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    Science.gov (United States)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  11. 3D Seismic Imaging of a Geological Storage of CO2 Site: Hontomín (Spain)

    Science.gov (United States)

    Alcalde, Juan; Martí, David; Juhlin, Christopher; Malehmir, Alireza; Sopher, Daniel; Marzán, Ignacio; Calahorrano, Alcinoe; Ayarza, Puy; Pérez-Estaún, Andrés; Carbonell, Ramon

    2013-04-01

    A 3D seismic reflection survey was acquired in the summer of 2010 over the Hontomín CO2 storage site (Spain), with the aim of imaging its internal structure and to provide a 3D seismic baseline model prior to CO2 injection. The 36 km2 survey utilised 25 m source and receiver point spacing and 5000 shotpoints recorded with mixed source (Vibroseis and explosives). The target reservoir is a saline aquifer located at approximately 1450 m, within Lower Jurassic carbonates (Lias). The main seal is formed by inter-layered marls and marly limestones of Early to Middle Jurassic age (Dogger and Lias). The relatively complex geology and the rough topography strongly influenced the selection of parameters for the data processing. Static corrections and post stack migration were shown to be the most important processes affecting the quality of the final image. The match between the differing source wavelets is also studied here. The resulting 3D image provides information of all the relevant geological features of the storage site, including position and shape of the main underground formations. The target structure is an asymmetric dome. The steepest flank of the structure was selected as the optimum location for CO2 injection, where the updip migration of the plume is anticipated. A major strike slip fault (the South fault), crossing the study area W-E, has been mapped through the whole seismic volume. The injection position and the expected migration plume are located to the north of this main fault and away from its influence.

  12. Application of Mixture of Gaussian Clustering on Joint Facies Interpretation of Seismic and Magnetotelluric Sections

    Science.gov (United States)

    Shahrabi, Mohammad Ali; Hashemi, Hosein; Hafizi, Mohammad Kazem

    2016-02-01

    Seismic and magnetotelluric (MT) methods are the most applicable geophysical methods in exploration of hydrocarbon resources. In this paper, mixture of Gaussian clustering is used to combine seismic and MT images under the scheme of Expectation/Maximization (EM) algorithm. Pre-Stack Depth Migration (PSDM) velocity, Root Mean Square (RMS) velocity and vertical gradient of RMS velocity of seismic and resistivity model of MT along 19.3 km MUN-21 profile in Munir Block that has been located in Southwest of Iran in Dezful embayment over the Seh-Qanat anticline are applied. The anticline is the most important oil trap of this area. The Expectation/Maximization (EM) method that has been applied includes: (1) creation of data vectors from the seismic and MT images using image processing techniques, (2) normalizing and mapping using Principal Component Analysis (PCA) procedure (3) unsupervised learning of dataset matrix, (4) setting the matrix in Expectation/Maximization (EM) iteration algorithm (5) remapping to physical space. The final model consists fof six classes which could be given to eight formations that belong to Eocene to Neocomian geological age. Pre-Stack Depth Migration (PSDM) velocity model obtained from seismic study on Seh-Qanat anticline only detected 2 horizons of formations, Asmari and Sarvak Formations; however, the current methodology introduces subdivision anticline into six classes by matching it to the log information of Seh-Qanat Deep-1 (SQD-1) borehole where it was excavated over the anticline with total depth of 2876 m.

  13. Seismic zonation of Port-Au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    Science.gov (United States)

    Yong, Alan; Hough, Susan E.; Cox, Brady R.; Rathje, Ellen M.; Bachhuber, Jeff; Dulberg, Ranon; Hulslander, David; Christiansen, Lisa; and Abrams, Michael J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, VS30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available VS30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data.

  14. Seismic-zonation of Port-au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    Science.gov (United States)

    Yong, A.; Hough, S.E.; Cox, B.R.; Rathje, E.M.; Bachhuber, J.; Dulberg, R.; Hulslander, D.; Christiansen, L.; Abrams, M.J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, Vs30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available Vs30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data. ?? 2011 American Society for Photogrammetry and Remote Sensing.

  15. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    Science.gov (United States)

    Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis

    2016-10-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  16. Two-dimensional Co-Seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching

    Science.gov (United States)

    Hu, Jun; Li, Zhi-Wei; Ding, Xiao-Li; Zhu, Jian-Jun

    2008-01-01

    The Mw=7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS) direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D) co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction), with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground). Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more advantageous than the DIn

  17. Imaging the Seismic Cycle in the Central Andean Subduction Zone from Geodetic Observations

    Science.gov (United States)

    Ortega-Culaciati, F.; Becerra-Carreño, V. C.; Socquet, A.; Jara, J.; Carrizo, D.; Norabuena, E. O.; Simons, M.; Vigny, C.; Bataille, K. D.; Moreno, M.; Baez, J. C.; Comte, D.; Contreras-Reyes, E.; Delorme, A.; Genrich, J. F.; Klein, E.; Ortega, I.; Valderas, M. C.

    2015-12-01

    We aim to quantify spatial and temporal evolution of fault slip behavior during all stages of the seismic cycle in subduction megathrusts, with the eventual goal of improving our understanding of the mechanical behavior of the subduction system and its implications for earthquake and tsunami hazards. In this work, we analyze the portion of the Nazca-SouthAmerican plates subduction zone affected by the 1868 southern Peru and 1877 northern Chile mega-earthquakes. The 1868 and 1878 events defined a seismic gap that did not experience a large earthquake for over 124 years. Only recently, the 1995 Mw 8.1 Antofagasta, 2001 Mw 8.4 Arequipa, 2007 Mw 7.7 Tocopilla, and 2014 Mw 8.2 Pisagua earthquakes released only a small fraction of the potential slip budget, thereby raising concerns about continued seismic and tsunami hazard. We use over a decade of observations from continuous and campaign GPS networks to analyze inter-seismic strain accumulation, as well as co-seimic deformation associated to the more recent earthquakes in the in the Central Andean region. We obtain inferences of slip (and back-slip) behavior using a consistent and robust inversion framework that accounts for the spatial variability of the constraint provided by the observations on slip across the subduction megathrust. We present an updated inter-seismic coupling model and estimates of pre-, co- and post- seismic slip behavior associated with the most recent 2014 Mw 8.2 Pisagua earthquake. We analyze our results, along with published information on the recent and historical large earthquakes, to characterize the regions of the megathrust that tend to behave aseismically, and those that are capable to accumulate a slip budget (ultimately leading to the generation of large earthquakes), to what extent such regions may overlap, and discuss the potential for large earthquakes in the region.

  18. Seismic Imaging of the crust and upper mantle beneath Afar, Ethiopia

    Science.gov (United States)

    Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Ebinger, C. J.

    2009-12-01

    In March 2007 41 seismic stations were deployed in north east Ethiopia. These stations recorded until October 2009, whereupon the array was condensed to 13 stations. Here we show estimates of crustal structure derived from receiver functions and upper mantle velocity structure, derived from tomography and shear-wave splitting using the first 2.5 years of data. Bulk crustal structure has been determined by H-k stacking receiver functions. Crustal Thickness varies from ~45km on the rift margins to ~16km beneath the northeastern Afar stations. Estimates of Vp/Vs show normal continental crust values (1.7-1.8) on the rift margins, and very high values (2.0-2.2) in Afar, similar to results for the Main Ethiopian Rift (MER). This supports ideas of high levels of melt in the crust beneath the Ethiopian Rift. Additionally, we use a common conversion point migration technique to obtain high resolution images of crustal structure beneath the region. Both techniques show a linear region of thin crust (~16km) trending north-south, the same trend as the Red Sea rift. SKS-wave splitting results show a general north east-south west fast direction in the MER, systematically rotating to a more north-south fast direction towards the Red Sea. Additionally, stations close to the recent Dabbahu diking episode show sharp lateral changes over small lateral distances (40° over Danakil microplate. Outside of these focused regions the velocities are relatively fast. Below ~250km the anomaly broadens to cover most of the Afar region with only the rift margins remaining fast. At transition zone depths little anomaly is seen beneath Afar, but some low velocities remain present beneath the MER. These studies suggest that in northern Ethiopia the Red Sea rift is dominant. The presence of thin crust beneath northern Afar suggests that the Red Sea rift is creating oceanic like crust in this region. The lack of deep mantle low velocity anomalies beneath Afar suggest that a typical narrow conduit

  19. The 1946 Unimak Tsunami Earthquake Area: revised tectonic structure in reprocessed seismic images and a suspect near field tsunami source

    Science.gov (United States)

    Miller, John J.; von Huene, Roland; Ryan, Holly F.

    2014-01-01

    In 1946 at Unimak Pass, Alaska, a tsunami destroyed the lighthouse at Scotch Cap, Unimak Island, took 159 lives on the Hawaiian Islands, damaged island coastal facilities across the south Pacific, and destroyed a hut in Antarctica. The tsunami magnitude of 9.3 is comparable to the magnitude 9.1 tsunami that devastated the Tohoku coast of Japan in 2011. Both causative earthquake epicenters occurred in shallow reaches of the subduction zone. Contractile tectonism along the Alaska margin presumably generated the far-field tsunami by producing a seafloor elevation change. However, the Scotch Cap lighthouse was destroyed by a near-field tsunami that was probably generated by a coeval large undersea landslide, yet bathymetric surveys showed no fresh large landslide scar. We investigated this problem by reprocessing five seismic lines, presented here as high-resolution graphic images, both uninterpreted and interpreted, and available for the reader to download. In addition, the processed seismic data for each line are available for download as seismic industry-standard SEG-Y files. One line, processed through prestack depth migration, crosses a 10 × 15 kilometer and 800-meter-high hill presumed previously to be basement, but that instead is composed of stratified rock superimposed on the slope sediment. This image and multibeam bathymetry illustrate a slide block that could have sourced the 1946 near-field tsunami because it is positioned within a distance determined by the time between earthquake shaking and the tsunami arrival at Scotch Cap and is consistent with the local extent of high runup of 42 meters along the adjacent Alaskan coast. The Unimak/Scotch Cap margin is structurally similar to the 2011 Tohoku tsunamigenic margin where a large landslide at the trench, coeval with the Tohoku earthquake, has been documented. Further study can improve our understanding of tsunami sources along Alaska’s erosional margins.

  20. High-resolution seismic reflection imaging of growth folding and shallow faults beneath the Southern Puget Lowland, Washington State

    Science.gov (United States)

    Odum, Jackson K.; Stephenson, William J.; Pratt, Thomas L.; Blakely, Richard J.

    2016-01-01

    Marine seismic reflection data from southern Puget Sound, Washington, were collected to investigate the nature of shallow structures associated with the Tacoma fault zone and the Olympia structure. Growth folding and probable Holocene surface deformation were imaged within the Tacoma fault zone beneath Case and Carr Inlets. Shallow faults near potential field anomalies associated with the Olympia structure were imaged beneath Budd and Eld Inlets. Beneath Case Inlet, the Tacoma fault zone includes an ∼350-m wide section of south-dipping strata forming the upper part of a fold (kink band) coincident with the southern edge of an uplifted shoreline terrace. An ∼2 m change in the depth of the water bottom, onlapping postglacial sediments, and increasing stratal dips with increasing depth are consistent with late Pleistocene to Holocene postglacial growth folding above a blind fault. Geologic data across a topographic lineament on nearby land indicate recent uplift of late Holocene age. Profiles acquired in Carr Inlet 10 km to the east of Case Inlet showed late Pleistocene or Holocene faulting at one location with ∼3 to 4 m of vertical displacement, south side up. North of this fault the data show several other disruptions and reflector terminations that could mark faults within the broad Tacoma fault zone. Seismic reflection profiles across part of the Olympia structure beneath southern Puget Sound show two apparent faults about 160 m apart having 1 to 2 m of displacement of subhorizontal bedding. Directly beneath one of these faults, a dipping reflector that may mark the base of a glacial channel shows the opposite sense of throw, suggesting strike-slip motion. Deeper seismic reflection profiles show disrupted strata beneath these faults but little apparent vertical offset, consistent with strike-slip faulting. These faults and folds indicate that the Tacoma fault and Olympia structure include active structures with probable postglacial motion.

  1. MWD tool for deep, small diameter boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Buytaert, J.P.R.; Duckworth, A.

    1992-03-17

    This patent describes an apparatus for measuring a drilling parameters while drilling a borehole in an earth formation, wherein the borehole includes a small diameter deep borehole portion and a large diameter upper borehole portion. It includes small diameter drillstring means for drilling the deep borehole portion; sensor means, disposed within the small diameter drillstring means, for measuring a drilling parameter characteristic of the deep portion of the borehole while drilling the deep portion of the borehole and for providing sensor output signals indicative of the measured parameter; an upper drillstring portion extending between the surface of the formation and the small diameter drillstring means, the upper drillstring portion including a large diameter drillstring portion; data transmission means disposed within the large diameter drillstring portion and responsive to the sensor output.

  2. Imagerie sismique d'un réservoir carbonaté : le dogger du Bassin parisien Seismic Imaging a Carbonate Reservoir: the Paris Basin Dogger

    Directory of Open Access Journals (Sweden)

    Mougenot D.

    2006-11-01

    organization of the amplitudes at the top reservoir reflector, which seems to suggest lateral variations in porosity, are a valuable guide for setting up wells and designing horizontal drilling. Three-component seismic (2D-3c and S-wave emissions did not produce any reflections beyond 30 Hz at the level of the target which is a poor reflector (PS & SS. Only borehole seismic (VSP, offset VSP, where high frequencies are much less attenuated than with surface seismic, provides detailed imaging of the reservoir in converted mode (up to 120 Hz in PP and in PS. Despite a deterioration in the signal-to-noise ratio, the anisotropy calculated on the SS sections, by comparing the propagation times in the Kimmeridgian-Bajocian interval surrounding the reservoir, evidences lateral variations which link up consistently with the anisotropy measurements made at the boreholes. Along the 2D-3c profile, the impedances obtained by inversion of the P amplitudes indicate a reduction in porosity and hence an increase in the rigidity of the reservoir where the anisotropy is greatest. Despite these encouraging initial results and given the high cost of threecomponent surface acquisitions, we do not consider this method to be appropriate for describing the Dogger reservoir. As a conclusion, the combination of continuous spatial sampling, such as that obtained in 3D, and a vibroseis emission adapted to frequency attenuation, such as that used in 2D-HR but restricted to 100 Hz, can supply useful information about the thin and discontinuous Dogger reservoir which cannot be provided by mere correlation of the borehole data. In this way, the geometry of the reservoir could be described with accuracy (5 m in addition to a number of heterogeneities corresponding to faults or lateral variations in impedance. Other parameters of significance for production, such as the distribution of drains R1 and R2, which barely alters the acoustic impedances in the reservoir, remain however inaccessible to surface seismic

  3. 3D Seismic Imaging through Reverse-Time Migration on Homogeneous and Heterogeneous Multi-Core Processors

    Directory of Open Access Journals (Sweden)

    Mauricio Araya-Polo

    2009-01-01

    Full Text Available Reverse-Time Migration (RTM is a state-of-the-art technique in seismic acoustic imaging, because of the quality and integrity of the images it provides. Oil and gas companies trust RTM with crucial decisions on multi-million-dollar drilling investments. But RTM requires vastly more computational power than its predecessor techniques, and this has somewhat hindered its practical success. On the other hand, despite multi-core architectures promise to deliver unprecedented computational power, little attention has been devoted to mapping efficiently RTM to multi-cores. In this paper, we present a mapping of the RTM computational kernel to the IBM Cell/B.E. processor that reaches close-to-optimal performance. The kernel proves to be memory-bound and it achieves a 98% utilization of the peak memory bandwidth. Our Cell/B.E. implementation outperforms a traditional processor (PowerPC 970MP in terms of performance (with an 15.0× speedup and energy-efficiency (with a 10.0× increase in the GFlops/W delivered. Also, it is the fastest RTM implementation available to the best of our knowledge. These results increase the practical usability of RTM. Also, the RTM-Cell/B.E. combination proves to be a strong competitor in the seismic arena.

  4. Seismic imaging of esker structures from a combination of high-resolution broadband multicomponent streamer and wireless sensors, Turku-Finland

    Science.gov (United States)

    Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti; Malehmir, Alireza

    2015-04-01

    Eskers and glaciofluvial interlobate formations, mainly composed of sands and gravels and deposited in winding ridges, define the locations of glacial melt-water streams. These sediments, porous and permeable, form the most important aquifers in Finland and are often used as aggregates or for artificial aquifer recharge. The Virttaankangas interlobate suite and artificial aquifer recharge plant provides the entire water supply for the city of Turku and therefore an accurate delineation of the aquifer is critical for long term planning and sustainable use of these natural resources. The study area is part of the Säkylänharju-Virttaankangas Glaciofluvial esker-chain complex and lies on an igneous, crystalline basement rocks. To provide complementary information to existing boreholes and GPR studies at the site, such as identification of potential esker cores, planning for a water extraction, fractured bedrock and possible kettle holes, a new seismic investigation was designed and carried out during summer 2014. Two seismic profiles each about 1 km long were acquired using a newly developed 200 m long prototype, comprising of 80-3C MEMs-based, landstreamer system. To provide velocity information at larger depths (and longer offsets), fifty-two 10-Hz 1C wireless sensors spaced at about every 20 m were used. A Bobcat mounted drop-hammer source, generating three hits per source location, was used as the seismic source. This proved to be a good choice given the attenuative nature of the dry sediments down to about 20 m depth. One of the seismic lines overlaps an existing streamer survey and thus allows a comparison between the system used in this study and the one employed before. Except at a few places where the loose sands mixed with leaves affected the coupling, the data quality is excellent with several reflections identifiable in the raw shot gathers. First arrivals were easily identifiable in almost all the traces and shots and this allowed obtaining velocity

  5. Depth imaging system for seismic reflection data. Part 1. Outline of system; Hanshaho jishin tansa data no tame no shindo imaging system. 1. System no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, N. [Japex Jeoscience Institute, Tokyo (Japan); Matsuoka, T. [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsuru, T. [Japan National Oil Corp., Tokyo (Japan)

    1996-10-01

    Structures of oil and gas fields to be recently explored have changed from simple structures represented by anticline into more complicated and more delicate structures in the deeper underground. In order to discover and develop prospective oil and gas fields among such geological structures, it is indispensable to construct a system which can treat seismic exploration date collectively before stacking and can easily perform imaging of underground structures accurately. Based on the advancement of hardware, Japan National Oil Corporation and Japan Petroleum Exploration Co., Ltd. have developed a depth imaging system as an interactive tool for constructing underground structures accurately through a cooperation of highly accurate imaging technology. Using this system, two-dimensional underground structure models can be easily given and modified by interactively referring to results of depth migration velocity analysis and stacking velocity analysis, well data, cross sections after depth transform, etc. 1 fig.

  6. Growth of borehole breakouts with time after drilling: Implications for state of stress, NanTroSEIZE transect, SW Japan

    OpenAIRE

    Moore, J. Casey; Chang, Chandong; Mcneill, Lisa; Thu, Moe Kyaw; Yamada, Yasuhiro; Huftile, Gary

    2011-01-01

    Resistivity at the bit tools typically provide images of wellbore breakouts only a few minutes after the hole is drilled. In certain cases images are taken tens of minutes to days after drilling of the borehole. The sonic caliper can also image borehole geometry. We present four examples comparing imaging a few minutes after drilling to imaging from about 30 min to 3 days after drilling. In all cases the borehole breakouts widen with time. The tendency to widen with time is most pronounced wi...

  7. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models

    Directory of Open Access Journals (Sweden)

    Tingting Gang

    2016-12-01

    Full Text Available A micro-fiber-optic Fabry-Perot interferometer (FPI is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF. The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs, especially to the high-frequency (up to 10 MHz UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  8. The Antartic Ice Borehole Probe

    Science.gov (United States)

    Behar, A.; Carsey, F.; Lane, A.; Engelhardt, H.

    2000-01-01

    The Antartic Ice Borehole Probe mission is a glaciological investigation, scheduled for November 2000-2001, that will place a probe in a hot-water drilled hole in the West Antartic ice sheet. The objectives of the probe are to observe ice-bed interactions with a downward looking camera, and ice inclusions and structure, including hypothesized ice accretion, with a side-looking camera.

  9. Slant Borehole Demonstration Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    GARDNER, M.G.

    2000-07-19

    This report provides a summary of the demonstration project for development of a slant borehole to retrieve soil samples from beneath the SX-108 single-shell tank. It provides a summary of the findings from the demonstration activities and recommendations for tool selection and methods to deploy into the SX Tank Farm. Daily work activities were recorded on Drilling and Sampling Daily Work Record Reports. The work described in this document was performed during March and April 2000.

  10. DeepNet: An Ultrafast Neural Learning Code for Seismic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Protopopescu, V.; Reister, D.

    1999-07-10

    A feed-forward multilayer neural net is trained to learn the correspondence between seismic data and well logs. The introduction of a virtual input layer, connected to the nominal input layer through a special nonlinear transfer function, enables ultrafast (single iteration), near-optimal training of the net using numerical algebraic techniques. A unique computer code, named DeepNet, has been developed, that has achieved, in actual field demonstrations, results unattainable to date with industry standard tools.

  11. 基于Gabor滤波器族的地震图像增强算法%Seismic image enhancement algorithm based on Gabor filter bank

    Institute of Scientific and Technical Information of China (English)

    刘天时; 杨雪; 李湘眷

    2015-01-01

    为在增强地震剖面图像时获取纹线的构造及层序信息,提出一种基于地震剖面图像纹线方向的地震图像增强算法。根据地震剖面纹线的方向性,设计一个Gabor滤波器族,用其对低频分量图进行滤波去噪。利用小波变换与Gabor滤波器族各自的优点,实现地震剖面图像纹线的增强,提高整体运算效率。仿真结果表明,该算法对地震剖面图像处理后,均方误差与峰值信噪比均有明显的改善。%To obtain the structure and sequence information of stripe lines accurately while enhancing the seismic profile image ,a seismic image enhancement algorithm was proposed based on the directions of stripe lines on seismic profile image .Based on the directionality of stripe lines on seismic profile image ,a Gabor filter bank was designed ,by which low frequency component figure was filtered and denoised .With the advantages of wavelet transform and Gabor filter bank ,the enhancement of stripe lines on seismic profile was realized ,which improved overall operational efficiency .The simulation results show that the mean square er‐ror and peak signal to noise ratio are improved obviously after the seismic profile image being processed using this algorithm .

  12. Seismic Velocities Imaging around "AFA" Hydrothermal Area in West Java, Indonesia derived from Dense Seimometer Network

    Science.gov (United States)

    Fanani Akbar, Akhmad; Nugraha, Andri Dian; Jousset, Philippe GM; Ryannugroho, Riskiray; Gassner, Alexandra; Jaya, Makky S.; Sule, Rachmat; Diningrat, Wahyuddin; Hendryana, Andri; Kusnadi, Yosep; Umar, Muksin; Indrinanto, Yudi; Erbas, Kemal

    2015-04-01

    We have deployed about 48 three component seismometers around "AFA" hydrothermal are in West Java, Indonesia from October 2012 up to October 2014 in order to detect microseismic event and to enhance our knowledge about subsurface seismic stucture. The seismometer network in this study, is the first dense seismometer array monitoring around hydrothermal area in Indonesia so far. We analyzed a huge waveform data set to distinguish microseismic, local and regional events. Then, we picked the onset of P-and S-wave arrival of microseismic events carefully visually by eye. We determined the initial microseismic event by applying Geiger's method with uniform seismic velocity model. Totally, we have been successfully determined 2,497 microseismic events around this hydrothermal area. We also improved 1D seismic velocities (Vp, Vs) and simultaneously with hypocenter adjustment as input for the tomography inversion in this study. Overall, the microseismic events are concentrated around production area activities and we also found strong cluster microseismic event in Southern part of this region which still need to be investigated in more details. Now, we are going on tomographic inversion step by using double-difference method. We are going to show more information during the meeting.

  13. Rock stress orientation measurements using induced thermal spalling in slim boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Eva [Geosigma AB, Uppsala (Sweden)

    2011-05-15

    In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes

  14. Imaging the continental lithosphere: Perspectives from global and regional anisotropic seismic tomography

    Science.gov (United States)

    Lebedev, Sergei; Schaeffer, Andrew

    2016-04-01

    Azimuthal seismic anisotropy, the dependence of seismic wave speeds on propagation azimuth, is largely due to fabrics within the Earth's crust and mantle, produced by deformation. It thus provides constraints on the distribution and evolution of deformation within the upper mantle. Lateral variations in isotropic-average seismic velocities reflect variations in the temperature of the rocks at depth. Seismic tomography thus also provides a proxy for lateral changes in the temperature and thickness of the lithosphere. It can map the deep boundaries between tectonic blocks with different properties and age of the lithosphere. Our new global, anisotropic, 3D tomographic models of the upper mantle and the crust are constrained by an unprecedentedly large global dataset of broadband waveform fits (over one million seismograms) and provide improved resolution of the lithosphere at the global scale, compared to other available models. The most prominent high-velocity anomalies, seen down to around 200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons. The tomography resolves the deep boundaries of the cratons even where they are not exposed and difficult to map at the surface. Our large waveform dataset, with complementary large global networks and high-density regional array data, also produces improved resolution of azimuthal anisotropy patterns, so that regional-scale variations related to lithospheric deformation and mantle flow can be resolved, in particular in densely sampled regions. The depth of the boundary between the cold, rigid lithosphere (preserving ancient, frozen anisotropic fabric) and the rheologically weak asthenosphere (characterized by fabric developed recently) can be inferred from the depth layering of seismic anisotropy and its comparison to the past and present plate motions. Beneath oceans, the lithosphere-asthenosphere boundary (LAB) is defined clearly by the layering of anisotropy, with a dependence on

  15. The Application of Seismic Array Techniques to Image UXO-Contaminated Littoral Environments

    Science.gov (United States)

    Gritto, R.; Korneev, V.; Nihei, K.; Johnson, L.

    2004-12-01

    We investigate the application of seismic array techniques to increase the energy radiation and resolution of seismic waves in littoral areas to improve the success rate of detecting UXO in contaminated underwater sites. The investigation is carried out based on numerical modeling, including 2-D finite difference modeling and 3-D analytical solutions of the problem. In addition to various UXO orientations, we also modeled the presence of clutter in the subsurface. An array of 31 source and receiver elements was located floating in the water as well as sited on the seafloor, which allowed the comparison between single source-receiver combinations and beam-forming techniques. The numerical forward modeling involved noise-free and noisy data as well as interferences by free surface reflections (off the water-air interface), which produced the strongest phases on the seismograms. The inversion of the scattered seismic energy was performed using a 2-D eikonal solver (curved rays), which stacked and located the recorded amplitudes in space to determine the location of the UXO. The inversion also included the determination of the best fitting velocity model for the bay mud. The results of the 2-D modeling indicated that a single, horizontally oriented, UXO could be well detected as a function of depth and horizontal location. In the case of the source-receiver array being placed on the seafloor, the edges of the UXO were resolved indicating its horizontal extent, while the top of the UXO was correctly located. The cases of a second, vertically oriented, UXO and clutter located 0.1 m next to the first UXO, produced similar results. In each case the two objects produced slight interference in the backscattered seismic signal, yet the resolution of the seismic wave was still good enough to resolve the two objects from each other. The introduction of a rippled water-seafloor interface during the forward modeling didn't change the results for the case of a floating source

  16. The application of active-source seismic imaging techniques to transtensional problems the Walker Lane and Salton Trough

    Science.gov (United States)

    Kell, Anna Marie

    The plate margin in the western United States is an active tectonic region that contains the integrated deformation between the North American and Pacific plates. Nearly focused plate motion between the North American and Pacific plates within the northern Gulf of California gives way north of the Salton Trough to more diffuse deformation. In particular a large fraction of the slip along the southernmost San Andreas fault ultimately bleeds eastward, including about 20% of the total plate motion budget that finds its way through the transtensional Walker Lane Deformation Belt just east of the Sierra Nevada mountain range. Fault-bounded ranges combined with intervening low-lying basins characterize this region; the down-dropped features are often filled with water, which present opportunities for seismic imaging at unprecedented scales. Here I present active-source seismic imaging from the Salton Sea and Walker Lane Deformation Belt, including both marine applications in lakes and shallow seas, and more conventional land-based techniques along the Carson range front. The complex fault network beneath the Salton Trough in eastern California is the on-land continuation of the Gulf of California rift system, where North American-Pacific plate motion is accommodated by a series of long transform faults, separated by small pull-apart, transtensional basins; the right-lateral San Andreas fault bounds this system to the north where it carries, on average, about 50% of total plate motion. The Salton Sea resides within the most youthful and northerly "spreading center" in this several thousand-kilometer-long rift system. The Sea provides an ideal environment for the use of high-data-density marine seismic techniques. Two active-source seismic campaigns in 2010 and 2011 show progression of the development of the Salton pull-apart sub-basin and the northerly propagation of the Imperial-San Andreas system through time at varying resolutions. High fidelity seismic imagery

  17. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    Science.gov (United States)

    Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis

    2016-06-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  18. Simpevarp site investigation. Geophysical, radar and BIPS logging in borehole KSH01A, HSH01, HSH02 and HSH03

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Per; Gustafsson, Christer [RAYCON, Malaa (Sweden)

    2003-04-01

    The objective of the surveys is to both receive information of the borehole itself, and from the rock mass around the borehole. Bore hole radar was used to investigate the nature and the structure of the rock mass located around the boreholes, and BIPS for geological surveying and fracture mapping and orientation. Geophysical logging was used to measure changes in physical properties in the borehole fluid and the bedrock surrounding the boreholes. This field report describes the equipment used as well the measurement procedures. For the BIPS survey, the result is presented as images. Radar data is presented in radargrams and identified reflectors in each borehole are listed in tables. Geophysical logging data is presented in graphs as a function of depth.

  19. Seismic waveform inversion and imaging of deepwater glacial sedimentary fans in the northern Norwegian-Greenland Sea

    Science.gov (United States)

    Libak, Audun; Poor Moghaddam, Peyman; Minakov, Alexander; Ruud, Bent Ole; Keers, Henk; Mjelde, Rolf

    2013-04-01

    In this poster we show results from 2D acoustic pre-stack depth migration and full waveform inversion using multichannel seismic data, complemented by coincident travel-time tomography of wide-angle ocean bottom seismometer data. The study area is located within the deep ocean basin in the northeastern parts of the Norwegian-Greenland Sea. This area was affected by intense Quaternary glacial sedimentation in the Storfjorden and Bjørnøya Fans and formation of submarine mega-slides. The seismic source used for the data acquisition consisted of an array of six airguns, and the wavefield was recorded by a 3-km-long 240-channel streamer. After some initial processing, pre-stack depth migration and waveform inversion was performed in order to obtain an image the glacial sedimentary package. The background velocity model was obtained from travel time tomography on the coincident ocean bottom seismometer data. We first show inversion results for a test model which is based on the our knowledge of the geology of the area. We then show the inversion results on the real data. One of the main differences between the test inversion and the real data inversion is the inknown source wavelet in the latter case. We show how the source wavelet affects the inversion results and how to properly take the source wavelet into account.

  20. Joint Audio-Magnetotelluric and Passive Seismic Imaging of the Cerdanya Basin

    Science.gov (United States)

    Gabàs, A.; Macau, A.; Benjumea, B.; Queralt, P.; Ledo, J.; Figueras, S.; Marcuello, A.

    2016-09-01

    The structure of Cerdanya Basin (north-east of Iberian Peninsula) is partly known from geological cross sections, geological maps and vintage geophysical data. However, these data do not have the necessary resolution to characterize some parts of Cerdanya Basin such as the thickness of soft soil, geometry of bedrock or geometry of geological units and associated faults. For all these reasons, the main objective of this work is to improve this deficiency carrying out a detailed study in this Neogene basin applying jointly the combination of passive seismic methods ( H/V spectral ratio and seismic array) and electromagnetic methods (audio-magnetotelluric and magnetotelluric method). The passive seismic techniques provide valuable information of geometry of basement along the profile. The maximum depth is located near Alp village with a bedrock depth of 500 m. The bedrock is located in surface at both sites of profile. The Neogene sediments present a shear-wave velocity between 400 and 1000 m/s, and the bedrock basement presents a shear-wave velocity values between 1700 and 2200 m/s. These results are used as a priori information to create a 2D resistivity initial model which constraints the inversion process of electromagnetic data. We have obtained a 2D resistivity model which is characterized by (1) a heterogeneous conductivity zone (conductive zone (600 Ohm m approx.) and is explained as a combination of fractured rock and a fluid network. The result highlights that the support between different geophysical methods is essential in producing geophysical meaningful models.

  1. The Katla volcanic system imaged using local earthquakes recorded with a temporary seismic network

    Science.gov (United States)

    Jeddi, Zeinab; Tryggvason, Ari; Gudmundsson, Ólafur

    2016-10-01

    Katla is one of the most active subglacial volcanoes in Iceland. A temporary seismic network was operated on and around Katla for 2.5 years. A subset of 800 analyzed local earthquakes clustered geographically in four regions: (1) the caldera, (2) the western region, (3) the southern rim, and (4) the eastern rim of the glacier. Based on the frequency content of recorded seismograms, each event was labeled as volcano tectonic (VT), long period (LP), or `Mixed'. The southern cluster consists of LP events only, and the eastern cluster consists of VT events, while the western cluster is `Mixed' although primarily LP. The caldera seismicity is confined to a subregion centered in the northeastern part of the caldera above 1 km below sea level (bsl) and gradually deepens away from its center to about 4 km depth. Deeper events are almost all VT, whereas LP events in the center of caldera locate at shallow depths. This is also where the velocities are lowest in the top 3 km of the crust of our 3-D tomographic model. A high-velocity core ( 6.5 km/s) is found at 4 km bsl beneath this low-velocity zone. We propose that a "subcaldera" may be developing within the present caldera and suggest a conceptual model for Katla volcano with a thin volume ( 1 km thick) that may host hot rhyolitic material in the shallow crust below the relocated seismic activity and above the high-velocity core. We interpret this core to consist of mafic cumulates resulting from fractionation of mafic intrusions and partial melting of subsiding hydrothermally altered rocks.

  2. Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect

    Energy Technology Data Exchange (ETDEWEB)

    Frary, R.; Louie, J. [UNR; Pullammanappallil, S. [Optim; Eisses, A.

    2016-08-01

    Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract T13G-07.

  3. Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G. [UNR; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: presented at Geothermal Resources Council Annual Meeting, San Diego, Oct. 23-26.

  4. A magnetotelluric investigation of the Scandinavian Caledonides in western Jämtland, Sweden, using the COSC borehole logs as prior information

    Science.gov (United States)

    Yan, Ping; Garcia Juanatey, Maria A.; Kalscheuer, Thomas; Juhlin, Christopher; Hedin, Peter; Savvaidis, Alexandros; Lorenz, Henning; Kück, Jochem

    2017-03-01

    In connection with the Collisional Orogeny in the Scandinavian Caledonides (COSC) project, broad-band magnetotelluric (MT) data were acquired at 78 stations along a recent ca. 55-km-long NW-SE directed reflection seismic profile (referred to as the COSC Seismic Profile; CSP), with the eastern end located ˜30 km to the west of the orogenic Caledonian front. The MT component of the project aims at (i) delineating the highly conductive (˜0.1 Ω ṡ m) alum shales that are associated with an underlying main décollement and (ii) calibrating the MT model to borehole logs. Strike and distortion analyses of the MT data show a 3-D structure in the western 10 km of the profile around the 2.5 km deep COSC-1 borehole (IGSN: ICDP5054EHW1001) and a preferred strike angle of N34°E in the central and eastern parts of the profile. 2-D modelling of MT impedances was tested using different inversion schemes and parameters. To adjust the resistivity structure locally around the borehole, resistivity logging data from COSC-1 were successfully employed as prior constraints in the 2-D MT inversions. Compared with the CSP, the model inverted from the determinant impedances shows the highest level of structural similarity. A shallow resistor (>1000 Ω ṡ m) in the top 2-3 km depth underneath the western most 10 km of the profile around COSC-1 corresponds to a zone of high seismic reflectivity, and a boundary at less than 1 km depth where the resistivity decreases rapidly from >100 to 3 km depth. Based upon the COSC-1 borehole logs, the CSP reflection seismic image, and the surface geologic map, the MT resistivity models were interpreted geologically. In the vicinity of COSC-1, the resistor down to 2-3 km depth pertains to the metamorphic Middle Allochthon. The up to 1000-m-thick shallow resistor in the central and eastern parts of the profile is interpreted to overly an imbricated unit at the bottom of the Lower Allochthon that includes the alum shales. In the MT resistivity model

  5. Two-dimensional Co-Seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching

    Directory of Open Access Journals (Sweden)

    Jian-Jun Zhu

    2008-10-01

    Full Text Available The Mw=7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction, with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground. Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more

  6. Imaging fluid channels within the NW Bohemia/Vogtland region using ambient seismic noise and MFP analysis

    Science.gov (United States)

    Umlauft, Josefine; Flores Estrella, Hortencia; Korn, Michael

    2016-04-01

    Presently ongoing geodynamic processes within the intracontinental lithospheric mantle give rise to different natural phenomena in the NW Bohemia/Vogtland region, among others: earthquake swarms, mineral springs and degassing zones of mantle-derived fluids (mofettes). Their interaction mechanisms and relations are not yet fully understood, therefore they are intensively studied using geophysical, geological and biological approaches. We focus on the investigation of near-surface channels that conduct mantle-originating fluids as well as CO2 near the Earth's surface. We aim at the detection, imaging and characterization of the fluid channel structure as well as the observation of their temporal and spatial variability. The Hartoušov Mofette Field within the Cheb Basin (NW Bohemia/Vogtland region) is a key site to study fluid flow as it is characterized by strong surface degassing of CO2. On this field, we applied the noise source localization method Matched Field Processing (MFP) considering the fluid flow as seismic noise source. Within multiple campaigns, we measured ambient seismic noise in continous mode during the night to avoid cultural noise generated by human activity. We used arrays of about 30 randomly distributed stations with 1 to 4 ha extent. We compared the surface position of the MFP output with punctual CO2 flux measurements performed by Nickschick et al. (2015) and observed a strong relation between high CO2 flux values and the position of the MFP maxima. Additionally, we observed surface indicators for CO2 degassing on the same positions of the MFP predicted noise sources: wet and dry mofettes accompanied by bog cotton, bug traps and brown to yellow coloured grass. The MFP maxima can be followed into the subsoil to image the fluid channel structure down to 50 m depth. We analyzed the influence of the array size on the vertical and horizontal MFP resolution as well as the temporal and spatial variability of the flow activity.

  7. Comparison of seismic sources for imaging geologic structures on the Oak Ridge Reservation, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Doll, W.E. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Miller, R.D.; Xia, J. [Kansas Geological Survey, Lawrence, KS (United States)

    1997-02-01

    In this study, five non-invasive swept sources, three non-invasive impulsive sources and one invasive impulsive source were compared. Previous shallow seismic source tests (Miller and others, 1986, 1992, 1994) have established that site characteristics should be considered in determining the optimal source. These studies evaluated a number of invasive sources along with a few non-invasive impulsive sources. Several sources (particularly the high frequency vibrators) that were included in the ORR test were not available or not practical during previous tests, cited above. This study differs from previous source comparisons in that it (1) includes many swept sources, (2) is designed for a greater target depth, (3) was conducted in a very different geologic environment, and (4) generated a larger and more diverse data set (including high fold CMP sections and walkaway vertical seismic profiles) for each source. The test site is centered around test injection well HF-2, between the southern end of Waste Area Grouping 5 (WAG 5) and the High Flux Isotope Reactor (HFIR).

  8. The Salton Seismic Imaging Project: Tomographic characterization of a sediment-filled rift valley and adjacent ranges, southern California

    Science.gov (United States)

    Davenport, K.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Carrick, E.; Tikoff, B.

    2011-12-01

    The Salton Trough in Southern California represents the northernmost rift of the Gulf of California extensional system. Relative motion between the Pacific and North American plates is accommodated by continental rifting in step-over zones between the San Andreas, Imperial, and Cerro Prieto transform faults. Rapid sedimentation from the Colorado River has isolated the trough from the southern portion of the Gulf of California, progressively filling the subsiding rift basin. Based on data from previous seismic surveys, the pre-existing continent has ruptured completely, and a new ~22 km thick crust has been created entirely by sedimentation overlying rift-related magmatism. The MARGINS, EarthScope, and USGS-funded Salton Seismic Imaging Project (SSIP) was designed to investigate the nature of this new crust, the ongoing process of continental rifting, and associated earthquake hazards. SSIP, acquired in March 2011, comprises 7 lines of onshore seismic refraction / wide-angle reflection data, 2 lines of refraction / reflection data in the Salton Sea, and a line of broadband stations. This presentation focuses on the refraction / wide-angle reflection line across the Imperial Valley, extending ~220 km across California from Otay Mesa, near Tijuana, to the Colorado River. The data from this line includes seventeen 100-160 kg explosive shots and receivers at 100 m spacing across the Imperial Valley to constrain the structure of the Salton Trough rift basin, including the Imperial Fault. Eight larger shots (600-920 kg) at 20-35 km spacing and receivers at 200-500 m spacing extend the line across the Peninsular Ranges and the Chocolate Mountains. These data will contrast the structure of the rift to that of the surrounding crust and provide constraints on whole-crust and uppermost mantle structure. Preliminary work has included tomographic inversion of first-arrival travel times across the Valley, emphasizing a minimum-structure approach to create a velocity model of the

  9. Study of borehole probing methods to improve the ground characterization

    Science.gov (United States)

    Naeimipour, Ali

    Collecting geological information allows for optimizing ground control measures in underground structures. This includes understanding of the joints and discontinuities and rock strength to develop rock mass classifications. An ideal approach to collect such information is through correlating the drilling data from the roofbolters to assess rock strength and void location and properties. The current instrumented roofbolters are capable of providing some information on these properties but not fully developed for accurate ground characterization. To enhance existing systems additional instrumentation and testing was conducted in laboratory and field conditions. However, to define the geology along the boreholes, the use of probing was deemed to be most efficient approach for locating joints and structures in the ground and evaluation of rock strength. Therefore, this research focuses on selection and evaluation of proper borehole probes that can offer a reliable assessment of rock mass structure and rock strength. In particular, attention was paid to borehole televiewer to characterize rock mass structures and joints and development of mechanical rock scratcher for determination of rock strength. Rock bolt boreholes are commonly drilled in the ribs and the roof of underground environments. They are often small (about 1.5 inches) and short (mostly 2-3 meter). Most of them are oriented upward and thus, mostly dry or perhaps wet but not filled with water. No suitable system is available for probing in such conditions to identify the voids/joints and specifically to measure rock strength for evaluation of rock mass and related optimization of ground support design. A preliminary scan of available borehole probes proved that the best options for evaluation of rock structure is through analysis of borehole images, captured by optical televiewers. Laboratory and field trials with showed that these systems can be used to facilitate measurement of the location, frequency and

  10. A multi-scale case study of natural fracture systems in outcrops and boreholes with applications to reservoir modelling

    NARCIS (Netherlands)

    Taal-van Koppen, J.K.J.

    2008-01-01

    Fractured reservoirs are notoriously difficult to characterize because the resolution of seismic data is too low to detect fractures whereas borehole data is detailed but sparse. Therefore, outcrops can be of great support in gaining knowledge of the three-dimensional geometry of fracture networks,

  11. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Youzuo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-26

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversion method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity mode ls produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.

  12. Character and distribution of borehole breakouts and their relationship to in situ stresses in Deep Columbia River Basalts

    Science.gov (United States)

    Paillet, Frederick L.; Kim, Kunsoo

    1987-06-01

    The character and distribution of borehole breakouts in deeply buried basalts at the Hanford Site in south central Washington State are examined in light of stress indicator data and hydraulic-fracturing stress data by means of acoustic televiewer and acoustic waveform logging systems. A series of boreholes penetrating the Grande Ronde Basalt of the Columbia River Basalt Group were logged to examine the extent of breakouts at depths near 1000 m. Breakouts occur discontinuously throughout the interiors of most flows. In some boreholes the distribution of borehole wall breakouts closely correlates with the incidence of core disking. Differences in the distribution of breakouts and disking are attributed to differences in failure mechanisms. A thin interval of breakout-free basalt occurs near the upper and lower limits of flow interiors, with many intervals of breakouts terminating at the intersection of oblique fractures with the borehole. Hydraulic-fracturing stress measurement results obtained from four deep boreholes indicate anisotropic horizontal principal stresses, with maximum principal stress along an approximate north trending axis, consistent with the east trending orientation of breakouts. Acoustic waveform logs indicate that there is no measurable difference between the seismic properties of breakout-free flow tops and flow interiors. The highly coherent waveforms obtained in almost all flow interiors indicate that damage to the borehole wall associated with breakout formation remains confined to the thin annulus of stress concentration.

  13. 3D imaging of the Corinth rift from a new passive seismic tomography and receiver function analysis

    Science.gov (United States)

    Godano, Maxime; Gesret, Alexandrine; Noble, Mark; Lyon-Caen, Hélène; Gautier, Stéphanie; Deschamps, Anne

    2016-04-01

    The Corinth Rift is the most seismically active zone in Europe. The area is characterized by very localized NS extension at a rate of ~ 1.5cm/year, the occurrence of frequent and intensive microseismic crises and occasional moderate to large earthquakes like in 1995 (Mw=6.1). Since the year 2000, the Corinth Rift Laboratory (CRL, http://crlab.eu) consisting in a multidisciplinary natural observatory, aims at understanding the mechanics of faulting and earthquake nucleation in the Rift. Recent studies have improved our view about fault geometry and mechanics within CRL, but there is still a critical need for a better knowledge of the structure at depth both for the accuracy of earthquake locations and for mechanical interpretation of the seismicity. In this project, we aim to analyze the complete seismological database (13 years of recordings) of CRL by using recently developed methodologies of structural imaging, in order to determine at the same time and with high resolution, the local 3D structure and the earthquake locations. We perform an iterative joint determination of 3D velocity model and earthquake coordinates. In a first step, P and S velocity models are determined using first arrival time tomography method proposed by Taillandier et al. (2009). It consists in the minimization of the cost function between observed and theoretical arrival times which is achieved by the steepest descent method (e.g. Tarantola 1987). This latter requires computing the gradient of the cost function by using the adjoint state method (Chavent 1974). In a second step, earthquakes are located in the new velocity model with a non-linear inversion method based on a Bayesian formulation (Gesret et al. 2015). Step 1 and 2 are repeated until the cost function no longer decreases. We present preliminary results consisting in: (1) the adjustement of a 1D velocity model that is used as initial model of the 3D tomography and (2) a first attempt of the joint determination of 3D velocity

  14. Seismicity in Northern Germany

    Science.gov (United States)

    Bischoff, Monika; Gestermann, Nicolai; Plenefisch, Thomas; Bönnemann, Christian

    2013-04-01

    Northern Germany is a region of low tectonic activity, where only few and low-magnitude earthquakes occur. The driving tectonic processes are not well-understood up to now. In addition, seismic events during the last decade concentrated at the borders of the natural gas fields. The source depths of these events are shallow and in the depth range of the gas reservoirs. Based on these observations a causal relationship between seismicity near gas fields and the gas production is likely. The strongest of these earthquake had a magnitude of 4.5 and occurred near Rotenburg in 2004. Also smaller seismic events were considerably felt by the public and stimulated the discussion on the underlying processes. The latest seismic event occurred near Langwedel on 22nd November 2012 and had a magnitude of 2.8. Understanding the causes of the seismicity in Northern Germany is crucial for a thorough evaluation. Therefore the Seismological Service of Lower Saxony (NED) was established at the State Office for Mining, Energy and Geology (LBEG) of Lower Saxony in January 2013. Its main task is the monitoring and evaluation of the seismicity in Lower Saxony and adjacent areas. Scientific and technical questions are addressed in close cooperation with the Seismological Central Observatory (SZO) at the Federal Institute for Geosciences and Natural Resources (BGR). The seismological situation of Northern Germany will be presented. Possible causes of seismicity are introduced. Rare seismic events at greater depths are distributed over the whole region and probably are purely tectonic whereas events in the vicinity of natural gas fields are probably related to gas production. Improving the detection threshold of seismic events in Northern Germany is necessary for providing a better statistical basis for further analyses answering these questions. As a first step the existing seismic network will be densified over the next few years. The first borehole station was installed near Rethem by BGR

  15. Study of iron deposit using seismic refraction and resistivity in Carajás Mineral Province, Brazil

    Science.gov (United States)

    Nogueira, Pedro Vencovsky; Rocha, Marcelo Peres; Borges, Welitom Rodrigues; Silva, Adalene Moreira; Assis, Luciano Mozer de

    2016-10-01

    This work comprises the acquisition, processing and interpretation of 2D seismic shallow refraction (P-wave) and resistivity profiles located in the iron ore deposit of N4WS, Carajás Mineral Province (CMP), northern Brazil. The geophysical methods were used to identify the boundaries of the iron ore deposit. Another objective was to evaluate the potentiality of these geophysical methods in that geological context. In order to validate the results, the geophysical lines were located to match a geological borehole line. For the seismic refraction, we used 120 channels, spaced by 10 m, in a line of 1190 m, with seven shot points. The resistivity method used in the acquisition was the electrical resistivity imaging, with pole-pole array, in order to reach greater depths. The resistivity line had a length of 1430 m, with 10 m spacing between electrodes. The seismic results produced a model with two distinct layers. Based on the velocities values, the first layer was interpreted as altered rocks, and the second layer as more preserved rocks. It was not possible to discriminate different lithologies with the seismic method inside each layer. From the resistivity results, a zone of higher resistivity (> 3937 Ω·m) was interpreted as iron ore, and a region of intermediate resistivity (from 816 to 2330 Ω·m) as altered rocks. These two regions represent the first seismic layer. On the second seismic layer, an area with intermediated resistivity values (from 483 to 2330 Ω·m) was interpreted as mafic rocks, and the area with lower resistivity (< 483 Ω·m) as jaspilite. Our results were compared with geological boreholes and show reasonable correlation, suggesting that the geophysical anomalies correspond to the main variations in composition and physical properties of rocks.

  16. Imaging near-subsurface subrosion structures and faults using SH-wave reflection seismics

    Science.gov (United States)

    Wadas, Sonja; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte

    2016-04-01

    Subrosion is a term for underground leaching of soluble rocks and is a global phenomenon. It involves dissolution of evaporites due to the presence of unsaturated water, fractures and faults. Fractures and faults are pathways for water to circulate and to generate subsurface cavities. Depending on the leached material and the parameters of the generation process, especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. Subrosion is a natural process, but it can be enhanced by anthropogenic factors like manipulation of the aquifer system and groundwater flow and by e.g. extraction of saline water. The formation of sinkholes and depressions are a dangerous geohazard, especially if they occur in urban areas, which often leads to building and infrastructural damage and life-threatening situations. For this reason investigations of the processes that induce subrosion and a detailed analysis of the resulting structures are of importance. To develop a comprehensive model of near-subsurface subrosion structures, reflection seismics is one of the methods used by the Leibniz Institute for Applied Geophysics. The study area is located in the city of Bad Frankenhausen in northern Thuringia, Germany. Most of the geological underground of Thuringia is characterized by Permian deposits. Bad Frankenhausen is situated directly south of the Kyffhäuser mountain range at the Kyffhäuser Southern Margin Fault. This major fault is one of the main pathways for the circulating ground- and meteoric waters that leach the Permian deposits, especially the Leine-, Staßfurt- and Werra Formations. 2014 and 2015 eight shear wave reflection seismic profiles were carried out in the urban area of Bad Frankenhausen and three profiles in the countrified surroundings. Altogether ca. 3.6 km were surveyed using a landstreamer as receiver and an electro-dynamic vibrator as source. The surveys were

  17. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array

    Science.gov (United States)

    Li, Zhiwei; Ni, Sidao; Zhang, Baolong; Bao, Feng; Zhang, Senqi; Deng, Yang; Yuen, David A.

    2016-05-01

    The Wudalianchi Volcano Field (WDF) is a typical intraplate volcano in northeast China with generation mechanism not yet well understood. As its last eruption was around 300 years ago, the present risk for volcano eruption is of particular public interest. We have carried out a high-resolution ambient noise tomography to investigate the location of magma chambers beneath the volcanic cones with a dense seismic array of 43 seismometers and ~ 6 km spatial interval. Significant low-velocity anomalies up to 10% are found at 7-13 km depth under the Weishan volcano, consistent with the pronounced high electrical-conductivity anomalies from previous magnetotelluric survey. We propose these extremely low velocity anomalies can be interpreted as partial melting in a shallow magma chamber with volume at least 200 km3 which may be responsible for most of the recent volcanic eruptions in WDF. Therefore, this magma chamber may pose a serious hazard for northeast China.

  18. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    Science.gov (United States)

    Firmansyah, Rizky; Nugraha, Andri Dian; Kristianto

    2015-04-01

    Historical records that before the 17th century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon's central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 - 5 years, with an average interval of 3 years and a rest interval ranged from 8 - 64 years. Then, on June 26th, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4th, 2011 that Mount Lokon erupted continuously until August 28th, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.

  19. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    Energy Technology Data Exchange (ETDEWEB)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Kristianto, E-mail: kris@vsi.esdm.go.id [Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency, Bandung, 40122 (Indonesia)

    2015-04-24

    Historical records that before the 17{sup th} century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon’s central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 – 5 years, with an average interval of 3 years and a rest interval ranged from 8 – 64 years. Then, on June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4{sup th}, 2011 that Mount Lokon erupted continuously until August 28{sup th}, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.

  20. Applications of seismic pattern recognition and gravity inversion techniques to obtain enhanced subsurface images of the Earth's crust under the Central Metasedimentary Belt, Grenville Province, Ontario

    Science.gov (United States)

    Roy, Baishali; Mereu, R. F.

    2000-12-01

    Project Lithoprobe's Abitibi-Grenville transect seismic reflection lines 32 and 33 traverse the exposed Central Metasedimentary Belt (CMB) located in the Grenville province of the Precambrian Shield of Canada in southern Ontario. These seismic lines image a zone with a protracted deformational history spanning more than 300Myr. Detailed examination of the commercially processed stacked sections reveals a number of significant deficiencies in some important areas. The image quality in these zones of reduced coherency needs to be enhanced to examine specific features and their relation to the surface geology. Examination of near-vertical seismic data from Lines 32 and 33 revealed that the signal-to-noise ratio was not improved by stacking, due to misalignment of signals even after static, normal moveout corrections and residual static corrections. The presumed reason is that reflected seismic energy following long ray paths in heterogeneous media suffers from relative advances and delays in its propagation, and hence arrives at slightly different times at the receivers, tending to be poorly aligned relative to its theoretical traveltime curves. A pattern recognition (PR) method for signal enhancement followed by energy stacking in moving time windows was used in this study to improve the images in spite of misalignments. Reprocessing has refined the geometry of the reflection profiles. The objective of this paper is to use enhanced images of the seismic reflection data obtained by using a PR approach together with gravity data, using 2.5-D forward and 3-D inversion routines, to give an improved model of subsurface structure in the vicinity of lines 32 and 33. Line 32 is dominated by southeast-dipping reflectors soling into the lower crust. The listric geometry of the strong reflection packages of the CMB boundary thrust zone is interpreted to represent a crustal-scale ramp-flat geometry that accommodated northwest-directed tectonic transport of the CMB. This

  1. High-resolution shear-wave seismic reflection as a tool to image near-surface subrosion structures - a case study in Bad Frankenhausen, Germany

    Science.gov (United States)

    Wadas, Sonja H.; Polom, Ulrich; Krawczyk, Charlotte M.

    2016-10-01

    Subrosion is the subsurface leaching of soluble rocks that results in the formation of depression and collapse structures. This global phenomenon is a geohazard in urban areas. To study near-surface subrosion structures, four shear-wave seismic reflection profiles, with a total length of ca. 332 m, were carried out around the famous leaning church tower of Bad Frankenhausen in northern Thuringia, Germany, which shows an inclination of 4.93° from the vertical. Most of the geological underground of Thuringia is characterized by soluble Permian deposits, and the Kyffhäuser Southern Margin Fault is assumed to be a main pathway for water to leach the evaporite. The seismic profiles were acquired with the horizontal micro-vibrator ELVIS, developed at Leibniz Institute for Applied Geophysics (LIAG), and a 72 m long landstreamer equipped with 72 horizontal geophones. The high-resolution seismic sections show subrosion-induced structures to a depth of ca. 100 m and reveal five features associated with the leaching of Permian deposits: (1) lateral and vertical varying reflection patterns caused by strongly heterogeneous strata, (2) discontinuous reflectors, small offsets, and faults, which show the underground is heavily fractured, (3) formation of depression structures in the near-surface, (4) diffractions in the unmigrated seismic sections that indicate increased scattering of the seismic waves, and (5) varying seismic velocities and low-velocity zones that are presumably caused by fractures and upward-migrating cavities. A previously undiscovered southward-dipping listric normal fault was also found, to the north of the church. It probably serves as a pathway for water to leach the Permian formations below the church and causes the tilting of the church tower. This case study shows the potential of horizontal shear-wave seismic reflection to image near-surface subrosion structures in an urban environment with a horizontal resolution of less than 1 m in the uppermost 10

  2. Backtracking urbanization from borehole temperature

    Science.gov (United States)

    Bayer, Peter; Rivera, Jaime A.; Blum, Philipp; Rybach, Ladislaus

    2016-04-01

    The thermal regime in shallow ground is influenced by various factors such as short and long term climatic variations, atmospheric urban warming, land use change and geothermal energy use. Temperature profiles measured in boreholes represent precious archives of the past thermal conditions at the ground surface. Changes at the ground surface induce time-dependent variations in heat transfer. Consequently, instantaneous and persistent changes such as recent atmospheric climate change or paving of streets cause perturbations in temperature profiles, which now can be found in depths of hundred meters and even more. In our work, we focus on the influence of urbanization on temperature profiles. We inspect profiles measured in borehole heat exchanger (BHE) tubes before start of energy extraction. These were obtained at four locations in the city and suburbs of Zurich, Switzerland, by lowering a specifically developed temperature logging sensor in the 200-400 m long tubes. Increased temperatures indicate the existence of a subsurface urban heat island (SUHI). At the studied locations groundwater flow can be considered negligible, and thus conduction is the governing heat transport process. These locations are also favorable, as long-term land use changes and atmospheric temperature variations are well documented for more than the last century. For simulating transient land use changes and their effects on borehole temperature profiles, a novel analytical framework based on the superposition of Green's functions is presented. This allows flexible and fast computation of the long term three-dimensional evolution of the thermal regime in shallow ground. It also facilitates calibration of unknown spatially distributed parameter values and their correlation. With the given spatial and temporal discretization of land use and background atmospheric temperature variations, we are able to quantify the heat contribution by asphalt and buildings. By Bayesian inversion it is

  3. Reflection imaging of the Moho and the aseismic Nazca slab in the Malargüe region with global-phase seismic interferometry

    Science.gov (United States)

    Draganov, D.; Nishitsuji, Y.; Ruigrok, E.; Gomez, M.; Wapenaar, C. P. A.

    2015-12-01

    A number of passive seismic methods have been developed over many decades. Still, imaging of aseismical zones of the subducting slabs is one of challenging themes in the geoscience community. Conventional seismological approaches, such as hypocentral mapping, receiver functions, and global tomography, have been providing useful imaging of the Nazca slab, which subducts under the South American plate; however, the aseismic zones remained unclear. Here, we propose to apply global-phase seismic interferometry (GloPSI) for the imaging of the aseismic zones of the Nazca slab beneath the Malargüe region (Mendoza, Argentina). GloPSI uses global phases (epicentral distances ≥ 120°) such as PKP, PKiKP, and PKIKP, recorded on the vertical component of the seismic sensors. These phases illuminate the lithosphere below the receivers with small angles of incidence, which illumination suffices for creating virtual sources that radiate primarily downwards. We then migrate the retrieved virtual responses to obtain a subsurface reflection image with high resolution (< 15 km in depth). We use data recorded in the Malargüe region using an exploration-type receiver array called MalARRgue. This array was recording continuously in 2012 for one year. In this presentation, we show the imaging results from the Moho down to the aseismic Nazca slab, including the upper mantle.

  4. Deep Borehole Disposal Safety Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Tillman, Jack Bruce [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

  5. Data Compression of Seismic Images by Neural Networks Compression d'images sismiques par des réseaux neuronaux

    Directory of Open Access Journals (Sweden)

    Epping W. J. M.

    2006-11-01

    Full Text Available Neural networks with the multi-layered perceptron architecture were trained on an autoassociation task to compress 2D seismic data. Networks with linear transfer functions outperformed nonlinear neural nets with single or multiple hidden layers. This indicates that the correlational structure of the seismic data is predominantly linear. A compression factor of 5 to 7 can be achieved if a reconstruction error of 10% is allowed. The performance on new test data was similar to that achieved with the training data. The hidden units developed feature-detecting properties that resemble oriented line, edge and more complex feature detectors. The feature detectors of linear neural nets are near-orthogonal rotations of the principal eigenvectors of the Karhunen-Loève transformation. Des réseaux neuronaux à architecture de perceptron multicouches ont été expérimentés en auto-association pour permettre la compression de données sismiques bidimensionnelles. Les réseaux neuronaux à fonctions de transfert linéaires s'avèrent plus performants que les réseaux neuronaux non linéaires, à une ou plusieurs couches cachées. Ceci indique que la structure corrélative des données sismiques est à prédominance linéaire. Un facteur de compression de 5 à 7 peut être obtenu si une erreur de reconstruction de 10 % est admise. La performance sur les données de test est très proche de celle obtenue sur les données d'apprentissage. Les unités cachées développent des propriétés de détection de caractéristiques ressemblant à des détecteurs de lignes orientées, de bords et de figures plus complexes. Les détecteurs de caractéristique des réseaux neuronaux linéaires sont des rotations quasi orthogonales des vecteurs propres principaux de la transformation de Karhunen-Loève.

  6. Body-wave retrieval and imaging from ambient seismic fields with very dense arrays

    Science.gov (United States)

    Nakata, N.; Boué, P.; Beroza, G. C.

    2015-12-01

    Correlation-based analyses of ambient seismic wavefields is a powerful tool for retrieving subsurface information such as stiffness, anisotropy, and heterogeneity at a variety of scales. These analyses can be considered to be data-driven wavefield modeling. Studies of ambient-field tomography have been mostly focused on the surface waves, especially fundamental-mode Rayleigh waves. Although the surface-wave tomography is useful to model 3D velocities, the spatial resolution is limited due to the extended depth sensitivity of the surface wave measurements. Moreover, to represent elastic media, we need at least two stiffness parameters (e.g., shear and bulk moduli). We develop a technique to retrieve P diving waves from the ambient field observed by the dense geophone network (~2500 receivers with 100-m spacing) at Long Beach, California. With two-step filtering, we improve the signal-to-noise ratio of body waves to extract P wave observations that we use for tomography to estimate 3D P-wave velocity structure. The small scale-length heterogeneity of the velocity model follows a power law with ellipsoidal anisotropy. We also discuss possibilities to retrieve reflected waves from the ambient field and show other applications of the body-wave extraction at different locations and scales. Note that reflected waves penetrate deeper than diving waves and have the potential to provide much higher spatial resolution.

  7. High Resolution Seismic Survey off the Pacific Shore of Costa Rica - Detailed Imaging of Deformational Patterns, Fluid Venting and Carbonate Mounds

    Science.gov (United States)

    Fekete, N.; Spiess, V.; Heidersdorf, F.; v. Lom, H.; Zuehlsdorff, L.; Denil, D.; Huguen, C.; Schnabel, M.

    2003-04-01

    R/V METEOR Research Cruise M54/1 in summer 2002 from Balboa (Panama) to Caldera (Costa Rica) aimed at imaging the near sea floor sedimentary structures of both the continental and oceanic plates of the Costa Rican Subduction Zone with the high resolution seismic method. The cruise evolved from a cooperation of the Marine Seismics Group of the University of Bremen with the DFG funded Special Research Project 574 - Fluids and Volatiles in Subduction Zones - and is intended to supplement the marine geophysical, geological and geochemical as well as oceanographic data collected during R/V SONNE cruises in the area, as well as subsequent R/V METEOR cruises M54/2 and /3. The objectives of SFB 574 are the investigation of shallow and deep processes in subduction zones through near surface sampling of fluid vent sites and gas hydrate occurrences, as well as through detailed seismic and acoustic imaging of related structures. The main objectives of the cruise were to study 1) the volatile and material input into the sedimentary system on the oceanic plate, 2) the distribution of gas hydrates within the sediments, and 3) possible pathways and resulting structures of fluid/gas escape. Several working areas were selected, which had been identified as highly fractured sediment packages above subducting seamounts (Jaco Scar, Parrita Scar, Rio Bongo, Hongo area), areas of pronounced decollement reflection, major slump masses (Nicoya slide), regions of major fracturing of the oceanic crust, or carbonate mounds (Hongo area, Mound Culebra) during previous cruises. For calibration of seismic data, survey lines were also shot in the vicinity of ODP Leg 170 drill sites. Several seismic examples from various survey sites will be shown. Closely spaced profiles, allowing the acquisition of 3D and 2.5D seismic data in the Hongo area and near Mound Culebra, respectively, reveal the complex internal structure of fluid pathways, the distribution of gas hydrates, and the tectonic framework of

  8. Spoc-experiment: Seismic Imaging and Bathymetry of The Central Chile Margin - First Results

    Science.gov (United States)

    Ladage, S.; Reichert, C.; Schreckenberger, B.; Block, M.; Bönnemann, C.; Canuta, J.; Damaske, D.; Diaz-Naveas, J.; Gaedicke, C.; Krawczyk, C.; Kus, J.; Urbina, O.; Sepulveda, J.

    During the RV SONNE cruise 161 Leg 1 to 5 (October 2001 to January 2002) Sub- duction Processes Off Chile (SPOC) have been investigated using a multi-disciplinary geoscientific approach. Here we report first results of multi channel seismic (MCS) experiments and high-resolution swath bathymetry data from Leg 3, south of Val- paraiso. 24 MCS profiles with a total length of 3670 km were run between 36 S to 4020' S, providing a detailed view of the structures related to the subduction of the Nazca Plate under the Chile Margin. The oceanic crust of the Nazca Plate shows at least three sets of structural trends associated with the Mocha and Valdivia Fractures Zones, the spreading lineations and subduction related horst and graben structures. In the study area the trench is filled with well stratified turbidites up to 2 seconds TWT thick. Along the trench axis a turbidite channel exceeding 80 m relief exists. Several large deep sea fan complexes are developed at the slope toe. Their distributary canyons cut deep into the slope and shelf and can be traced back to major river mouths. The deformation front is coincident with the slope toe; compressional structures of the trench fill are uncommon. The deformation front is curved and offset along strike, caused presumably by collision and indentation of structures of the Nazca Plate. The most remarkable features of the MCS - profiles, yet, are the only very rudimentary developed modern accretionary prism as well as the high variability of the lower slope angles. Lower slope angles locally exceed 10. The continental crust extends seawards to the middle slope and acts as a backstop. Several profiles reveal landward dipping reflectors above the downgoing slab, possibly depicting a subduction channel beneath the slope. Thus, the geometry of the subduction units U a young thick trench fill, only rudimental frontal accretion and a subduction channel U argues for subduction of the bulk of the sediments.

  9. Model on surface borehole squeezing deformation fracture*

    Institute of Scientific and Technical Information of China (English)

    SUN Hai-tao; HU Qian-ting; HUANG Sheng-shu

    2009-01-01

    As a good method to solve the problem of high methane on the workface and in the goaf, drawing coal strata methane through a surface borehole is used. However, the excavation affected the overlying rock strata greatly. When the excavation face passed through the surface borehole position, the surface borehole fractures fast. This problem was seriously related to the unformed squeeze effect. Therefore, a squeezing deformation fracture model based on the rock strata squeezing effect was set up. At the same time, a 3DEC simulation model is presented to confirm the theory. The result shows that the mod-el is reliable and has a good engineering application value.

  10. Reverse Time Migration: A Seismic Imaging Technique Applied to Synthetic Ultrasonic Data

    Directory of Open Access Journals (Sweden)

    Sabine Müller

    2012-01-01

    Full Text Available Ultrasonic echo testing is a more and more frequently used technique in civil engineering to investigate concrete building elements, to measure thickness as well as to locate and characterise built-in components or inhomogeneities. Currently the Synthetic Aperture Focusing Technique (SAFT, which is closely related to Kirchhoff migration, is used in most cases for imaging. However, this method is known to have difficulties to image steeply dipping interfaces as well as lower boundaries of tubes, voids or similar objects. We have transferred a processing technique from geophysics, the Reverse Time Migration (RTM method, to improve the imaging of complicated geometries. By using the information from wide angle reflections as well as from multiple events there are fewer limitations compared to SAFT. As a drawback the required computing power is significantly higher compared to the techniques currently used. Synthetic experiments have been performed on polyamide and concrete specimens to show the improvements compared to SAFT. We have been able to image vertical interfaces of step-like structures as well as the lower boundaries of circular objects. It has been shown that RTM is a step forward for ultrasonic testing in civil engineering.

  11. Characterization of a complex near-surface structure using well logging and passive seismic measurements

    Science.gov (United States)

    Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara

    2016-04-01

    We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.

  12. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  13. Integrated interpretation of seismic and resistivity images across the «Val d'Agri» graben (Italy

    Directory of Open Access Journals (Sweden)

    E. Ceragioli

    2002-06-01

    Full Text Available Val d'Agri is a «recent SSW - NNE graben» located in the middle of the Southern Apennines thrust belt «chain» and emplaced in Plio-Pleistocene.The recent sedimentation of the valley represents a local critical geophysical problem. Several strong near surface velocity anomalies and scattering degrades seismic data in different ways and compromises the seismic visibility. In 1998, ENI and Enterprise, with the contribution of the European Community (ESIT R & D project - Enhance Seismic In Thrust Belt; EU Thermie fund acquired two «experimental seismic and Resistivity lines» across the valley. The purpose of the project was to look for methods able to enhance seismic data quality and optimize the data processing flow for «thrust belt» areas. During the work, it was clear that some part of the seismic data processing flow could be used for the detailed geological interpretation of the near subsurface too. In fact, the integrated interpretation of the near surface tomography velocity/depth seismic section, built for enhancing the resolution of static corrections, with the HR resistivity profile, acquired for enhancing the seismic source coupling, allowed a quite detailed lithological interpretation of the main shallow velocity changes and the 2D reconstruction of the structural setting of the valley.

  14. REPROCESSING OF SHALLOW SEISMIC REFLECTION DATA TO IMAGE FAULTS NEAR A HAZARDOUS WASTE SITE ON THE OAK RIDGE RESERVATION, TENNESSEE

    Energy Technology Data Exchange (ETDEWEB)

    DOLL, W.E.

    1997-12-30

    Shallow seismic reflection data from Bear Creek Valley on the Oak Ridge Reservation demonstrates that spectral balancing and tomographic refraction statics can be important processing tools for shallow seismic data. At this site, reprocessing of data which had previously yielded no useable CMP stacked sections was successful after application of these processing techniques.

  15. Reprocessing of Shallow Seismic Reflection Data to Image Faults Near a Hazardous Waste Site on the Oak Ridge Reservation, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Doll, W.E.

    1997-12-31

    Shallow seismic reflection data from Bear Creek Valley on the Oak Ridge Reservation demonstrates that spectral balancing and tomographic refraction statics can be important processing tools for shallow seismic data. At this site, reprocessing of data which had previously yielded no usable CMP stacked sections was successful after application of these processing techniques.

  16. Seismic basement in Poland

    Science.gov (United States)

    Grad, Marek; Polkowski, Marcin

    2016-06-01

    The area of contact between Precambrian and Phanerozoic Europe in Poland has complicated structure of sedimentary cover and basement. The thinnest sedimentary cover in the Mazury-Belarus anteclize is only 0.3-1 km thick, increases to 7-8 km along the East European Craton margin, and 9-12 km in the Trans-European Suture Zone (TESZ). The Variscan domain is characterized by a 1- to 2-km-thick sedimentary cover, while the Carpathians are characterized by very thick sediments, up to c. 20 km. The map of the basement depth is created by combining data from geological boreholes with a set of regional seismic refraction profiles. These maps do not provide data about the basement depth in the central part of the TESZ and in the Carpathians. Therefore, the data set is supplemented by 32 models from deep seismic sounding profiles and a map of a high-resistivity (low-conductivity) layer from magnetotelluric soundings, identified as a basement. All of these data provide knowledge about the basement depth and of P-wave seismic velocities of the crystalline and consolidated type of basement for the whole area of Poland. Finally, the differentiation of the basement depth and velocity is discussed with respect to geophysical fields and the tectonic division of the area.

  17. The geological implications of some 3-D 'Fishnet' seismic images of Guelph pinnacle reefs in Ontario : a different perspective on their growth, destruction and complexity

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, S.M.B. [Bailey Geological Services Ltd., London, ON (Canada)

    2002-07-01

    Exploration of underground oil and gas reservoirs has been enhanced since the development of 3-D seismic technology, which provides the ability to view structural anomalies, salt domes or lithologic buildups. 3-D seismic images were used to view the true geometry of carbonate structures within Silurian Guelph reefs in southwestern Ontario. The images provided a better understanding of how they grew, plus when and how they were destroyed by post-depositional weathering processes. 3-D seismic images allow oil and gas companies to explore and develop a series of wells through tight and porous segments of a reservoir with extreme precision. The Guelph reefs of Ontario are Middle Silurian in age and are part of an entire complex of reefs, banks, barriers and associated facies which grew in a circular fashion around a structural basement sag known as the Michigan Basin. The author explains how two reefs of the same physical height can be so evidently different in physical appearance. He presents his interpretation of how the Bentpath East Pinnacle Reef and the Tipperary Pinnacle reef underwent completely different histories of weathering, destruction, and construction. 16 refs., 1 tab., 33 figs.

  18. A new model for estimating subsurface ice content based on combined electrical and seismic data sets

    Directory of Open Access Journals (Sweden)

    C. Hauck

    2011-06-01

    Full Text Available Detailed knowledge of the material properties and internal structures of frozen ground is one of the prerequisites in many permafrost studies. In the absence of direct evidence, such as in-situ borehole measurements, geophysical methods are an increasingly interesting option for obtaining subsurface information on various spatial and temporal scales. The indirect nature of geophysical soundings requires a relation between the measured variables (e.g. electrical resistivity, seismic velocity and the actual subsurface constituents (rock, water, air, ice. In this work, we present a model which provides estimates of the volumetric fractions of these four constituents from tomographic electrical and seismic images. The model is tested using geophysical data sets from two rock glaciers in the Swiss Alps, where ground truth information in form of borehole data is available. First results confirm the applicability of the so-called 4-phase model, which allows to quantify the contributions of ice-, water- and air within permafrost areas as well as detecting solid bedrock. Apart from a similarly thick active layer with enhanced air content for both rock glaciers, the two case studies revealed a heterogeneous distribution of ice and unfrozen water within Muragl rock glacier, where bedrock was detected at depths of 20–25 m, but a comparatively homogeneous ice body with only minor heterogeneities within Murtèl rock glacier.

  19. The Larderello-Travale geothermal field (Tuscany, central Italy): seismic imaging as a tool for the analysis and assessment of the reservoir

    Science.gov (United States)

    Anselmi, M.; Piccinini, D.; Casini, M.; Spinelli, E.; Ciuffi, S.; De Gori, P.; Saccorotti, G.; chiarabba, C.

    2013-12-01

    The Larderello-Travale is a geothermal field with steam-dominated reservoirs (1300 kg/s of steam and running capacity of 700 MWatt), which is exploited by Enel Green Power, the electric company involved in the renewable energy and resources. The area is located in the pre-Apennine belt of southern Tuscany and has been characterized by extensional tectonics and sporadic events of compression. The result of these tectonic phases is a block-faulting structure with NW-SE trending horsts and basins. Small post-orogenic granitic stocks were emplaced along the main axes of the uplifted structures, causing the anomalous heat flow that marks the area. Results from seismic reflection lines crossing the study area show the presence of the top of a discontinuous reflector in the 3-8 km depth range and with thickness up to ~1 km, referred to as the ';K-horizon'. In this framework we present the results obtained by the processing of a high-quality local earthquake dataset, recorded during the 1977-2005 time interval by the seismic network managed by Enel Green Power. The geothermal target volume was parameterized using a 3-D grid for both Vp (P-wave velocities) and Qp (quality factor of P-waves). Grid nodes are spaced by 5 and 2 km along the two horizontal and vertical directions, respectively. The tomographic Vp images show an overall velocity increase with depth down to the K-horizon. Conversely, some characteristic features are observed in the distribution of Qp anomalies, with high Qp values in the 300-600 range located just below the K-horizon. The relationship between K-horizon and the seismicity distribution doesn't show a clear and homogeneous coupling: the bulk of re-located earthquakes are placed either above or below the top of the K-horizon in the shallower 8 km depth, with an abrupt cut-off at depth greater than 10 km. We then present the preliminary result from the G.A.P.S.S. (Geothermal Area Passive Seismic Sources) experiment, a project that the Istituto

  20. SNG-log in borehole Ermelund-208

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C

    1996-01-01

    A Spectral Natural Gamma-ray log has been run in a borehole in Ermelunden. The vertical distribution of Th, U, and K is similar to that observed in neighbouring boreholes. A new measuring and data processing technique was used and the probes own background signal was determined. Surprisingly a si......-rays are emitted and detected by the probe. The intensity of cosmic radiation varies with depth, and, therefore, slightly influences the accuracy of the thorium concentration determination....

  1. Slim hole logging in shallow boreholes

    OpenAIRE

    Monnet, R.; L. Baron; Chapellier, D. M.

    2000-01-01

    While well logging, a continuous recording of the physical parameters down a borehole, is employed systematically in petroleum exploration, its application in environmental prospections, such as hydrogeology or civil engeering, has been very limited. This deficiency is partly due to the fact that logging probes used in this kind of boreholes are generally not calibrated and the results are more or less qualitative. The purpose of this lecture is to show that it is possible to calibrate these ...

  2. Working programme for MIU-4 borehole investigations

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Kunio; Nakano, Katsushi; Metcalfe, R.; Ikeda, Koki; Goto, Jun-ichi; Amano, Kenji; Takeuchi, Shinji; Hama, Katsuhiro; Matsui, Hiroya [Japan Nuclear Cycle Development Inst., Toki, Gifu (Japan). Tono Geoscience Center

    1999-08-01

    Surface-based investigations have now been carried out since 1997 according to the Master Plan of the Mizunami Underground Research Laboratory (MIU) (PNC, 1996). The specific goals of the surface-based investigations are: To acquire information necessary for understanding the undisturbed deep geological environment as a background of the MIU and for predicting the effects of the construction of underground facilities. To establish methodologies for evaluating predictions. To formulate detailed design concepts for underground facilities and to plan scientific investigations during the construction of the MIU. In addition, appropriate, systematic methodologies for investigating the deep subsurface should be developed through the surface-based investigations. It is expected that the surface-based investigations with further borehole investigations will last until March 2002. However, the construction of the MIU was provisionally planned to commence in the 2000 financial year. JNC has drilled four 1,000m-deep boreholes and one 400m-deep borehole at the MIU site (JNC's land of about 140,000m{sup 2}) in Akeyo-cho, Mizunami City, Gifu Prefecture. In the surface-based investigations, specifically three 1,000m-deep boreholes, MIU-1, MIU-2 and MIU-3, have been drilled. Investigations in these boreholes have characterised mainly the geological structure and hydrogeological features of the deep geological environment. In addition, JNC has been developing investigation techniques and improving equipment for these investigations. At the time of writing, a series of borehole investigations are being carried out in the MIU-3 borehole. The MIU-3 borehole investigations aim mainly at characterising the Tsukiyoshi fault that intersects the crystalline basement in the site. (J.P.N.)

  3. Acoustic and seismic imaging of the Adra Fault (NE Alboran Sea: in search of the source of the 1910 Adra earthquake

    Directory of Open Access Journals (Sweden)

    E. Gràcia

    2012-11-01

    Full Text Available Recently acquired swath-bathymetry data and high-resolution seismic reflection profiles offshore Adra (Almería, Spain reveal the surficial expression of a NW–SE trending 20 km-long fault, which we termed the Adra Fault. Seismic imaging across the structure depicts a sub-vertical fault reaching the seafloor surface and slightly dipping to the NE showing an along-axis structural variability. Our new data suggest normal displacement of the uppermost units with probably a lateral component. Radiocarbon dating of a gravity core located in the area indicates that seafloor sediments are of Holocene age, suggesting present-day tectonic activity. The NE Alboran Sea area is characterized by significant low-magnitude earthquakes and by historical records of moderate magnitude, such as the Mw = 6.1 1910 Adra Earthquake. The location, dimension and kinematics of the Adra Fault agree with the fault solution and magnitude of the 1910 Adra Earthquake, whose moment tensor analysis indicates normal-dextral motion. The fault seismic parameters indicate that the Adra Fault is a potential source of large magnitude (Mw ≤ 6.5 earthquakes, which represents an unreported seismic hazard for the neighbouring coastal areas.

  4. Seismic Imaging of the Waltham Canyon Fault, California: Comparison of Ray-Theoretical and Fresnel Volume Prestack Migration

    Science.gov (United States)

    Bauer, K.; Ryberg, T.; Fuis, G. S.; Lueth, S.

    2011-12-01

    Steep faults can be imaged by migration of reflected refractions observed in controlled-source seismic data. The processing can be focussed on the enhancement of the reflected refractions and simultaneous suppression of undesired phases. The Kirchhoff prestack migration is then applied where migration noise is suppressed by constructive stacking of multi-fold data. The Fresnel volume migration is an efficient alternative method, where smearing along isochrones (potential reflection points, partly migration noise) is limited to the first Fresnel zone in this technique. This makes the Fresnel volume migration particularly interesting for the imaging of steep faults using only low-fold data. We depeloped a ray-theroretical line drawing migration, which can be considered as the high-frequency approximation of the Fresnel volume migration. The ray-theoretical migration is less time consuming, and, hence, can be used to optimize the migration parameters before the final application of Fresnel volume migration. Another advantage of our ray-theoretical migration is possible wave field separation before and after migration. This feature can be used to optimize the pre-processing of the data before migration. We tested the prestack migration techniques with synthetic data. The methods were then applied to low-fold data collected across the SAFOD drill site near Parkfield, California. We chose five shot gathers with clear phases interpreted as reflected refractions. The phases are not obvious in shot gathers apart from the five shot locations. The resulting images show near-vertical reflector segments at 1-5 km depth, which project close to the surface track of the Waltham Canyon fault running approximately 10 km eastward and parallel to the San Andreas fault. Some more details were resolved in comparison with previous investigations. Based on modeling studies, the imaged features can be interpreted as reflections from a fault with lower internal velocities compared with the

  5. Joint inversion of multichannel seismic reflection and wide-angle seismic data: Improved imaging and refined velocity model of the crustal structure of the north Ecuador-south Colombia convergent margin

    Science.gov (United States)

    Agudelo, W.; Ribodetti, A.; Collot, J.-Y.; Operto, S.

    2009-02-01

    Improving seismic imaging of the crust is essential for understanding the structural factors controlling subduction zones processes. We developed a processing work flow based on the combined analysis of multichannel seismic reflection (MCS) and wide angle (WA) reflection/refraction data to derive both shallow and deep velocities suitable for prestack depth migration and to construct a blocky velocity model integrating all identifiable seismic phases contained in MCS and WA data. We apply this strategy to the study of the north Ecuador-SW Colombia subduction margin to improve the imaging and geostructural interpretation of a splay fault and surrounding outer and inner margin wedges. Results show improvements over tomographic inversion of WA data only, such as (1) sediment velocity variation across the trench and margin slope that correlates with lateral lithologic changes, tectonic compaction and effect of mass wasting processes; (2) a two-layer velocity structure of the inner wedge basement that is consistent with the crust of an oceanic plateau; (3) a complex velocity structure of the outer wedge basement that consists of a deep, high-velocity (5.0-5.5 km s-1) core and a low-velocity zone (3.8-5.0 km s-1) associated with the major splay fault; (4) a ˜1.3-km-thick, low-velocity (3.5-4.0 km s-1) subduction channel that extends beneath the margin outer wedge. Both the splay fault and subduction channel are expected to direct fluid flows; and (5) downdip velocity increase (5-6 km s-1) in the subducting oceanic crust associated with a low (7.8 km s-1) upper mantle velocity, possibly reflecting changes in rock nature or properties.

  6. Fracture detection, mapping, and analysis of naturally fractured gas reservoirs using seismic technology. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Many basins in the Rocky Mountains contain naturally fractured gas reservoirs. Production from these reservoirs is controlled primarily by the shape, orientation and concentration of the natural fractures. The detection of gas filled fractures prior to drilling can, therefore, greatly benefit the field development of the reservoirs. The objective of this project was to test and verify specific seismic methods to detect and characterize fractures in a naturally fractured reservoir. The Upper Green River tight gas reservoir in the Uinta Basin, Northeast Utah was chosen for the project as a suitable reservoir to test the seismic technologies. Knowledge of the structural and stratigraphic geologic setting, the fracture azimuths, and estimates of the local in-situ stress field, were used to guide the acquisition and processing of approximately ten miles of nine-component seismic reflection data and a nine-component Vertical Seismic Profile (VSP). Three sources (compressional P-wave, inline shear S-wave, and cross-line, shear S-wave) were each recorded by 3-component (3C) geophones, to yield a nine-component data set. Evidence of fractures from cores, borehole image logs, outcrop studies, and production data, were integrated with the geophysical data to develop an understanding of how the seismic data relate to the fracture network, individual well production, and ultimately the preferred flow direction in the reservoir. The multi-disciplinary approach employed in this project is viewed as essential to the overall reservoir characterization, due to the interdependency of the above factors.

  7. Deep seismic image enhancement with the common reflection surface (CRS) stack method: evidence from the Aravalli-Delhi fold belt of northwestern India

    Science.gov (United States)

    Mandal, Biswajit; Sen, Mrinal K.; Vaidya, Vijaya Rao; Mann, Juergen

    2014-02-01

    Imaging of deep crustal features from narrow-angle deep seismic reflection data, especially from fold belt region, has been a challenging task. The common reflection surface (CRS) stack is an alternative seismic imaging technique for multicoverage reflection data. It is an automatic stacking process, which does not require explicit knowledge of stacking velocity. This CRS stack is especially useful when the data quality is poor and foldage is low. In this paper, we demonstrate an application of the CRS stack to a deep seismic reflection data set acquired across the Aravalli-Delhi fold belt of the northwestern India, which provides a seismic stack section with much improved signal-to-noise ratio. Comparing the conventional common mid-point (CMP) Stack with the CRS stack, we find that the Moho and other crustal reflections have been resolved clearly and the continuity of the reflectors has also been enhanced with the CRS stack method. The major findings from our CRS processing include clear image of the Moho discontinuity below the Marwar Basin and Sandmata Complex, and prominent upper and mid-crustal reflections. Our study for the first time images an extension of crustal-scale Jahazpur thrust below the Sandmata Complex, which becomes listric at the Moho. Some of the crustal features derived in this study were not identified in the earlier investigations using the CMP stack. Our study clearly demonstrates that the CRS stacking method is more appropriate for imaging the crustal and subcrustal structures of the thrust fold belt region than the conventional CMP method, where limited velocity information is available. Crustal thickness across the Proterozoic orogenic Aravalli-Delhi fold belt varies between 38 and 50 km. Global correlation of the seismic results suggests no relation between crustal thickness and age of the crustal block, but it depends on the thermorheological and tectonic history of the region. Palaeosignatures of the Proterozoic subduction and

  8. Techniques for Surveying Urban Active Faults by Seismic Methods

    Institute of Scientific and Technical Information of China (English)

    Xu Mingcai; Gao Jinghua; Liu Jianxun; Rong Lixin

    2005-01-01

    Using the seismic method to detect active faults directly below cities is an irreplaceable prospecting technique. The seismic method can precisely determine the fault position. Seismic method itself can hardly determine the geological age of fault. However, by considering in connection with the borehole data and the standard geological cross-section of the surveyed area, the geological age of reflected wave group can be qualitatively (or semi-quantitatively)determined from the seismic depth profile. To determine the upper terminal point of active faults directly below city, it is necessary to use the high-resolution seismic reflection technique.To effectively determine the geometric feature of deep faults, especially to determine the relation between deep and shallow fracture structures, the seismic reflection method is better than the seismic refraction method.

  9. Growth of borehole breakouts with time after drilling: Implications for state of stress, NanTroSEIZE transect, SW Japan

    Science.gov (United States)

    Moore, J. Casey; Chang, Chandong; McNeill, Lisa; Thu, Moe Kyaw; Yamada, Yasuhiro; Huftile, Gary

    2011-04-01

    Resistivity at the bit tools typically provide images of wellbore breakouts only a few minutes after the hole is drilled. In certain cases images are taken tens of minutes to days after drilling of the borehole. The sonic caliper can also image borehole geometry. We present four examples comparing imaging a few minutes after drilling to imaging from about 30 min to 3 days after drilling. In all cases the borehole breakouts widen with time. The tendency to widen with time is most pronounced within a few hundred meters below the seafloor (mbsf), but may occur at depths greater than 600 mbsf. In one example the widening may be due to reduced borehole fluid pressure that would enhance borehole failure. In the three other cases, significant decreases in fluid pressure during temporal evolution of breakouts are unlikely. The latter examples may be explained by time-dependent failure of porous sediments that are in an overconsolidated state due to drilling of the borehole. This time-dependent failure could be a consequence of dilational deformation, decrease of pore fluid pressure, and maintenance of sediment strength until migrating pore fluids weaken shear surfaces and allow spallation into the borehole. Breakout orientations, and thus estimates of stress orientations, remain consistent during widening in all four cases. In vertical boreholes, breakouts wider than those initially estimated by resistivity imaging would result in higher estimates of horizontal stress magnitudes. Because the vertical overburden stress is fixed, higher estimated horizontal stresses would favor strike-slip or thrust faulting over normal faulting.

  10. Borehole strainmeter measurements spanning the 2014, Mw6.0 South Napa Earthquake, California: The effect from instrument calibration

    Science.gov (United States)

    Langbein, John O.

    2015-01-01

    The 24 August 2014 Mw6.0 South Napa, California earthquake produced significant offsets on 12 borehole strainmeters in the San Francisco Bay area. These strainmeters are located between 24 and 80 km from the source and the observed offsets ranged up to 400 parts-per-billion (ppb), which exceeds their nominal precision by a factor of 100. However, the observed offsets of tidally calibrated strains differ by up to 130 ppb from predictions based on a moment tensor derived from seismic data. The large misfit can be attributed to a combination of poor instrument calibration and better modeling of the strain fit from the earthquake. Borehole strainmeters require in-situ calibration, which historically has been accomplished by comparing their measurements of Earth tides with the strain-tides predicted by a model. Although the borehole strainmeter accurately measure the deformation within the borehole, the long-wavelength strain signals from tides or other tectonic processes recorded in the borehole are modified by the presence of the borehole and the elastic properties of the grout and the instrument. Previous analyses of surface-mounted, strainmeter data and their relationship with the predicted tides suggest that tidal models could be in error by 30%. The poor fit of the borehole strainmeter data from this earthquake can be improved by simultaneously varying the components of the model tides up to 30% and making small adjustments to the point-source model of the earthquake, which reduces the RMS misfit from 130 ppb to 18 ppb. This suggests that relying on tidal models to calibrate borehole strainmeters significantly reduces their accuracy.

  11. Borehole strainmeter measurements spanning the 2014 Mw6.0 South Napa Earthquake, California: The effect from instrument calibration

    Science.gov (United States)

    Langbein, John

    2015-10-01

    The 24 August 2014 Mw6.0 South Napa, California earthquake produced significant offsets on 12 borehole strainmeters in the San Francisco Bay area. These strainmeters are located between 24 and 80 km from the source, and the observed offsets ranged up to 400 parts per billion (ppb), which exceeds their nominal precision by a factor of 100. However, the observed offsets of tidally calibrated strains differ by up to 130 ppb from predictions based on a moment tensor derived from seismic data. The large misfit can be attributed to a combination of poor instrument calibration and better modeling of the strain field from the earthquake. Borehole strainmeters require in situ calibration, which historically has been accomplished by comparing their measurements of Earth tides with the strain tides predicted by a model. Although the borehole strainmeter accurately measures the deformation within the borehole, the long-wavelength strain signals from tides or other tectonic processes recorded in the borehole are modified by the presence of the borehole and the elastic properties of the grout and the instrument. Previous analyses of surface-mounted, strainmeter data and their relationship with the predicted tides suggest that tidal models could be in error by 30%. The poor fit of the borehole strainmeter data from this earthquake can be improved by simultaneously varying the components of the model tides up to 30% and making small adjustments to the point source model of the earthquake, which reduces the RMS misfit from 130 ppb to 18 ppb. This suggests that relying on tidal models to calibrate borehole strainmeters significantly reduces their accuracy.

  12. Geostatistical methods for rock mass quality prediction using borehole and geophysical survey data

    Science.gov (United States)

    Chen, J.; Rubin, Y.; Sege, J. E.; Li, X.; Hehua, Z.

    2015-12-01

    For long, deep tunnels, the number of geotechnical borehole investigations during the preconstruction stage is generally limited. Yet tunnels are often constructed in geological structures with complex geometries, and in which the rock mass is fragmented from past structural deformations. Tunnel Geology Prediction (TGP) is a geophysical technique widely used during tunnel construction in China to ensure safety during construction and to prevent geological disasters. In this paper, geostatistical techniques were applied in order to integrate seismic velocity from TGP and borehole information into spatial predictions of RMR (Rock Mass Rating) in unexcavated areas. This approach is intended to apply conditional probability methods to transform seismic velocities to directly observed RMR values. The initial spatial distribution of RMR, inferred from the boreholes, was updated by including geophysical survey data in a co-kriging approach. The method applied to a real tunnel project shows significant improvements in rock mass quality predictions after including geophysical survey data, leading to better decision-making for construction safety design.

  13. High-resolution images of tremor migrations beneath the Olympic Peninsula from stacked array of arrays seismic data

    Science.gov (United States)

    Peng, Yajun; Rubin, Allan M.

    2016-02-01

    Episodic tremor and slip (ETS) in subduction zones is generally interpreted as the manifestation of shear slip near the base of earthquake-generating portion of the plate interface. Here we devise a new method of cross-correlating stacked Array of Arrays seismic data that provides greatly improved tremor locations, a proxy for the underlying slow slip, beneath the Olympic Peninsula. This increased resolution allows us to image many features of tremor that were not visible previously. We resolve the spatial transition between the rupture zones of the inter-ETS and major ETS episodes in 2010, suggesting stress redistribution by the former. Most tremor migrations propagated along the slowly advancing main tremor front during both the inter-ETS and the major ETS episodes, even though the main front of the former deviated strongly from its usual (along-dip) orientation. We find a distinct contrast between along-dip rupture extent of large-scale rapid tremor reversals (RTRs) to the south and that to the north in our study region that anticorrelates with the locations of inter-ETS events. These RTRs originate from the main front, similar to smaller-scale RTRs previously observed at high-resolution, and many start by propagating along the main front. This could be consistent with RTRs being triggered by a cascading failure of brittle asperities. After initiation, the RTRs repeatedly occupy the same source region, and the early repetitions appear not to be tidally driven. Their stress drop may come from continuing fault weakening processes within the tremor zone, or loading by aseismic slip in surrounding regions.

  14. New CHIRP Seismic Images of Submarine Terraces Around San Clemente Island Constrain its Tectonic Evolution and Geomorphology

    Science.gov (United States)

    Derosier, B.; Driscoll, N. W.; Graves, L. G.; Holmes, J. J.; Nicholson, C.

    2015-12-01

    New High-resolution CHIRP data acquired on the R/V Point Loma in 2015 imaged flights of submarine Terraces off of San Clemente Island. Outboard terraces at ~90 to 115 m below sea level (using a nominal water column velocity of 1500 m/s) may correlate with the Marine Isotope Stage 2 (MIS2); the last glacial maximum (LGM). Submarine terraces were mapped on both the gentle sloping windward (west) and the steeper sloping leeward (east) sides of San Clemente Island. The submarine terrace's depths are roughly the same on both sides of the island and suggest uniform uplift. These findings are consistent with the onshore mapping of terraces on San Clemente Island. The island exhibits a marked asymmetry both onshore and offshore, with a steeply dipping eastern margin and a gentle dipping western margin. This marked asymmetry cannot be explained by the uniform uplift of San Clemente Island based on the observed onshore and offshore terraces. In our model, the asymmetry of San Clemente Island records an early phase of predominantly extensional deformation during the middle to late Miocene, with San Clemente Island being the footwall block. Such asymmetry is also observed across the 30-mile bank and the Coronado Bank with steeply dipping eastern margins and gently dipping western margins. New regional multichannel seismic data and reprocessed industry data show no sediment divergence along the hangingwall blocks, which suggests that extensional deformation predated sedimentation. Finally, the elevations of the terraces on San Clemente Island are similar to those observed on the mainland from Baja California to Newport Beach, requiring any tectonic model fitting the uplift pattern of mainland terraces to account for the similar elevations not only along the margin but also across the margin out to 70 nautical miles offshore.

  15. BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool

    Science.gov (United States)

    Schulte, Daniel; Rühaak, Wolfram; Welsch, Bastian; Bär, Kristian; Sass, Ingo

    2016-04-01

    Borehole heat exchangers represent a well-established technology, which pushes for new fields of applications and novel modifications. Current simulation tools cannot - or only to some extent - describe features like inclined or partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We present a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. The presented tool benefits from the fast analytical solution of the thermal interactions within the boreholes while still allowing for a detailed consideration of the borehole heat exchanger properties.

  16. Optimization of Borehole Heat Exchanger Arrays

    Science.gov (United States)

    Schulte, Daniel; Rühaak, Wolfram; Welsch, Bastian; Oladyshkin, Sergey; Sass, Ingo

    2016-04-01

    Arrays of borehole heat exchangers are an increasingly popular source for renewable energy. Furthermore, they can serve as borehole thermal energy storages for seasonally fluctuating heat sources like solar thermal energy or district heating grids. However, the uncertainty of geological parameters and the nonlinear behavior of the complex system make it difficult to simulate and predict the required design of borehole heat exchanger arrays. As a result, the arrays easily turn out to be over or undersized, which compromises the economic feasibility of these systems. Here, we present a novel optimization strategy for the design of borehole thermal energy storages. The arbitrary polynomial chaos expansion method is used to build a proxy model from a set of numerical training simulations, which allows for the consideration of parameter uncertainties. Thus, the resulting proxy model bypasses the problem of excessive computation time for the numerous function calls required for a mathematical optimization. Additionally, we iteratively refine the proxy model during the optimization procedure using additional numerical simulation runs. With the presented solution, many aspects of borehole heat exchanger arrays can be optimized under geological uncertainty.

  17. 2D and 3D imaging of the metamorphic carbonates at Omalos plateau/polje, Crete, Greece by employing independent and joint inversion on resistivity and seismic data

    Directory of Open Access Journals (Sweden)

    Pangratis Pangratis

    2012-07-01

    Full Text Available A geophysical survey carried out at Omalos plateau in Chania, Western Crete, Greece employed seismic as well as electrical tomography methods in order to image karstic structures and the metamorphic carbonates (Tripali unit and Plattenkalk group which are covered by post-Mesozoic deposits (terra rossa, clays, sands and gravels. The geoelectrical sections image the metamorphic carbonates which exhibit a highly irregular relief. At the central part of the plateau the thickness of post-Mesozoic deposits (terra rossa, clays, sands and gravels ranges from 40-130 m. A 3D resistivity image was generated by inverting resistivity data collected on a grid to the south west at the Omalos plateau. The 3D resistivity image delineated a karstic structure at a depth of 25 to 55 m. On the same grid the depth to the top of the karstified carbonates ranges from 25-70 m. This is also verified on the resistivity sections and seismic velocity sections along lines 5 and 7 of the above mentioned grid which are derived from the cross-gradients joint inversion.

  18. Seismic explosion sources on an ice cap

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...... as a strong ice wave. The ice cap leads to low transmission of energy into the crust such that charges need be larger than in conventional onshore experiments to obtain reliable seismic signals. The strong reflection coefficient at the base of the ice generates strong multiples which may mask for secondary...... phases. This effect may be crucial for acquisition of reflection seismic profiles on ice caps. Our experience shows that it is essential to use optimum depth for the charges and to seal the boreholes carefully....

  19. Seismic Fault Preserving Diffusion

    CERN Document Server

    Lavialle, Olivier; Germain, Christian; Donias, Marc; Guillon, Sebastien; Keskes, Naamen; Berthoumieu, Yannick

    2007-01-01

    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non linear diffusion filtering leading to a better detection of seismic faults. The non linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.

  20. Seismic fault preserving diffusion

    Science.gov (United States)

    Lavialle, Olivier; Pop, Sorin; Germain, Christian; Donias, Marc; Guillon, Sebastien; Keskes, Naamen; Berthoumieu, Yannick

    2007-02-01

    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non-linear diffusion filtering leading to a better detection of seismic faults. The non-linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.

  1. Multiple Suppression and Imaging of Marine Seismic Data from The Shallow Water Area in Southern East China Sea Shelf Basin

    Science.gov (United States)

    Shi, J.; Luan, X.; Yang, C.

    2015-12-01

    Neither surface-related multiple elimination(SRME) nor predictive de-convolution method is effective to suppress the multiple of marine seismic data from the shallow water area. The former method needs the accurate reflection of seafloor, which is mixed with the direct wave in the near offset range. The other one could probably lose the primary wave when applied to the shallow water seismic data. We introduced the new method: deterministic water-layer de-multiple method (DWD) which is capable for the poor extrapolate result of near-offset traces. Firstly, the data shifts as downward continuation in tau-p domain with a water-layer period and the multiple model will be obtained. Then, the original seismic subtracts adaptively with the multiple model. Finally, we would get the de-multiple data after inverse tau-p transform. Marine seismic real data is from southern part of East China Sea Shelf Basin. This area has become the potential target for marine hydrocarbon exploration, it is located in the junction of the Eurasian plate pacific plate and Indian plate. Because the average water depth is less than 100 meters, seismic data contains abundant of multiple, especially the surface-related multiple. As a result it is difficult to distinguish the strata structure clearly. We used DWD approach to remove the water-layer multiple, cut off the seafloor reflection events and then suppressed the residual surface-related multiple by the traditional SRME. At last , the radon transform was applied to eliminate the multiple with long period . With these steps, we suppressed the multiple of marine seismic data from this area effectively. After multiple is removed , we acquired more accurate velocity to build the velocity model of migration. With the pre-stack migration technique, reflections from each geological period are shown clearly in the seismic section. This work was supported by the National Science Foundation of China(grant no. 41476053).

  2. Seismic surveying for coal mine planning

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, B. [CMTE/CSIRO Exploration and Mining, Kenmore, Qld. (Australia)

    2002-07-01

    More and more coal in Australia is extracted by underground mining methods especially by longwall mining. These methods can be particularly sensitive to relatively small-scale structural discontinuities and variations in roof and floor rock character. Traditionally, information on these features has been obtained through drilling. However, this is an expensive process and its relevance is limited to the immediate neighbourhood of the boreholes. Seismic surveying, especially by 3D seismic, is an alternative tool for geological structure delineation. It is one of the most effective geophysical methods available for identification of geological structures such as faults, folds, washouts, seam splits and thickness changes which are normally associated with potential mining hazards. Seismic data even can be used for stratigraphic identification. The information extracted from seismic data can be integrated into mine planning and design. In this paper, computer aided interpretation techniques for maximising the information from seismic data are demonstrated and the ability of seismic reflection methods to resolve localised geological features illustrated. Both synthetic and real seismic data obtained in recent 2D and 3D seismic surveys from Australian coal mines are used. 7 refs., 9 figs.

  3. Heat Calculation of Borehole Heat Exchangers

    Directory of Open Access Journals (Sweden)

    S. Filatov

    2013-01-01

    Full Text Available The paper considers a heat calculation method of borehole heat exchangers (BHE which can be used for designing and optimization of their design values and included in a comprehensive mathematical model of heat supply system with a heat pump based on utilization of low-grade heat from the ground.The developed method of calculation is based on the reduction of the problem general solution pertaining to heat transfer in BHE with due account of heat transfer between top-down and bottom-up flows of heat carrier to the solution for a boundary condition of one kind on the borehole wall. Used the a method of electrothermal analogy has been used for a calculation of the thermal resistance and  the required shape factors for calculation of  a borehole filler thermal resistance have been obtained numerically. The paper presents results of heat calculation of various BHE designs in accordance with the proposed method.

  4. Fractal analysis of INSAR and correlation with graph-cut based image registration for coastline deformation analysis: post seismic hazard assessment of the 2011 Tohoku earthquake region

    Directory of Open Access Journals (Sweden)

    P. K. Dutta

    2012-04-01

    Full Text Available Satellite imagery for 2011 earthquake off the Pacific coast of Tohoku has provided an opportunity to conduct image transformation analyses by employing multi-temporal images retrieval techniques. In this study, we used a new image segmentation algorithm to image coastline deformation by adopting graph cut energy minimization framework. Comprehensive analysis of available INSAR images using coastline deformation analysis helped extract disaster information of the affected region of the 2011 Tohoku tsunamigenic earthquake source zone. We attempted to correlate fractal analysis of seismic clustering behavior with image processing analogies and our observations suggest that increase in fractal dimension distribution is associated with clustering of events that may determine the level of devastation of the region. The implementation of graph cut based image registration technique helps us to detect the devastation across the coastline of Tohoku through change of intensity of pixels that carries out regional segmentation for the change in coastal boundary after the tsunami. The study applies transformation parameters on remotely sensed images by manually segmenting the image to recovering translation parameter from two images that differ by rotation. Based on the satellite image analysis through image segmentation, it is found that the area of 0.997 sq km for the Honshu region was a maximum damage zone localized in the coastal belt of NE Japan forearc region. The analysis helps infer using matlab that the proposed graph cut algorithm is robust and more accurate than other image registration methods. The analysis shows that the method can give a realistic estimate for recovered deformation fields in pixels corresponding to coastline change which may help formulate the strategy for assessment during post disaster need assessment scenario for the coastal belts associated with damages due to strong shaking and tsunamis in the world under disaster risk

  5. LAqui-core, a 150 m deep borehole into the depocenter of the basin controlled by the 2009 Mw=6.1 L'Aquila earthquake fault

    Science.gov (United States)

    Porreca, M.; Mochales Lopez, T.; Smedile, A.; Buratti, N.; Macri', P.; Di Chiara, A.; Nicolosi, I.; D'ajello Caracciolo, F.; Carluccio, R.; Di Giulio, G.; Vassallo, M.; Amoroso, S.; Villani, F.; Tallini, M.; Sagnotti, L.; Speranza, F.

    2013-12-01

    INSAR images showed that the 2009 Mw=6.1 normal faulting L'Aquila earthquake produced a maximum co-seismic subsidence of ca. 15 cm in the depocenter of the Middle Aterno basin (Abruzzi, central Italy), on the hanging-wall of the Paganica fault. This continental basin is one of the several fault-controlled extensional basins of the central Apennines and its sedimentation history is poorly known due to the scarcity of outcrops in the weakly incised infilling cover. During May-June 2013, a 151 m deep borehole was drilled in the basin depocenter, as shown by INSAR images. The recovered core (LAqui-core) consists of continental Holocene and Pleistocene clastic sediments and it do not reach the basin substrate. In the same area, we have also performed preliminary geological and geophysical (electrical resistivity tomography and seismic noise survey) investigations in order to select the best drilling location. We have also taken into account recently published high-resolution seismic tomographic data acquired in the same area, showing an evident thickening of low Vp sediments in correspondence of the depocenter. These approaches have been useful to infer the geometry and sedimentary facies architecture of the basin. A first general stratigraphic setting has been defined by means of lithostratigraphic description of the core. It can be subdivided in two main sequences. The upper sequence is composed by 41 meters of silt and sand deposits, interbedded with m-thick rounded gravel intervals. This sequence is interpreted as related to fluvial-alluvial fan depositional environments. An erosional discontinuity separates this upper sequence from the lower clay and sand sequence, typical of a lacustrine depositional environment. The lacustrine sequence continues till the bottom of the borehole and is interrupted in the middle by a 30 m thick coarse gravel deposit. On this stratigraphic record we have collected samples for different kind of analyses (now in progress), involving

  6. Near Surface Structure of the Frijoles Strand of the San Gregorio Fault, Point Año Nuevo, San Mateo County, California, from Seismic Imaging

    Science.gov (United States)

    Campbell, L.; Catchings, R. D.; Rymer, M. J.; Goldman, M.; Weber, G. E.

    2012-12-01

    The San Gregorio Fault Zone (SGFZ) is one of the major faults of the San Andreas Fault (SAF) system in the San Francisco Bay region of California. The SGFZ is nearly 200 km long, trends subparallel to the SAF, and is located primarily offshore with two exceptions- between Point Año Nuevo and San Gregorio Beach and between Pillar Point and Moss Beach. It has a total width of 2 to 3 km and is comprised of seven known fault strands with Quaternary activity, five of which also demonstrate late Holocene activity. The fault is clearly a potential source of significant earthquakes and has been assigned a maximum likely magnitude of 7.3. To better understand the structure, geometry, and shallow-depth P-wave velocities associated with the SGFZ, we acquired a 585-m-long, high-resolution, combined seismic reflection and refraction profile across the Frijoles strand of the SGFZ at Point Año Nuevo State Park. Both P- and S-wave data were acquired, but here we present only the P-wave data. We used two 60-channel Geometrics RX60 seismographs and 120 40-Hz single-element geophones connected via cable to record Betsy Seisgun seismic sources (shots). Both shots and geophones were approximately co-located and spaced at 5-m intervals along the profile, with the shots offset laterally from the geophones by 1 m. We measured first-arrival refractions from all shots and geophones to develop a seismic refraction tomography velocity model of the upper 70 m. P-wave velocities range from about 600 m/s near the surface to more than 2400 m/s at 70 m depth. We used the refraction tomography image to infer the depth to the top of the groundwater table on the basis of the 1500 m/s velocity contour. The image suggests that the depth, along the profile, to the top of groundwater varies by about 18 m, with greater depth on the west side of the fault. At about 46 m depth, a 60- to 80-m-wide, low-velocity zone, which is consistent with faulting, is observed southwest of the Frijoles strand of the

  7. Borehole radar and BIPS investigations in boreholes at the Boda area

    Energy Technology Data Exchange (ETDEWEB)

    Carlsten, S.; Straahle, A. [GEOSIGMA AB, Uppsala (Sweden)

    2000-12-01

    As part of the studies conducted in the Boda area, measurements with borehole radar, borehole TV (BIPS) and deviation measurements were performed during May 2000. The investigations were carried out in four percussion-drilled boreholes with a total length of 514 m. Two boreholes are vertical and two are directed into and below the cave area. The BIPS measurement showed the presence of 14 open fractures. Largest apparent aperture width of open fractures was 133 mm. In the lowest part in boreholes 2, 3, and 4, particles in suspension deteriorated the visibility. BIPS has revealed a dominating subhorizontal fracture set and another striking NW to N-S with a dip close to vertical. Possible but very uncertain is a third fracture set striking NE and dipping steeply towards S. The open and partly open fractures forms an average block size 11 m wide and 6 m high, while the length of the block is uncertain. Of 98 borehole radar reflectors interpreted to intersect within BIPS-mapped sections, 90 were possible to combine with BIPS-mapped structures, i.e. 92% of the radar reflectors. The fractured rock around Boda is a shallow feature, since borehole radar and BIPS measurements shows no evidence of increased fracturing or the presence of caves at larger depth in the Boda area. The result indicates that the formation of the superficial fracture system (with caves included) at Boda in all probability is connected to glacial action, such as banking.

  8. Slim hole logging in shallow boreholes

    Directory of Open Access Journals (Sweden)

    R. Monnet

    2000-06-01

    Full Text Available While well logging, a continuous recording of the physical parameters down a borehole, is employed systematically in petroleum exploration, its application in environmental prospections, such as hydrogeology or civil engeering, has been very limited. This deficiency is partly due to the fact that logging probes used in this kind of boreholes are generally not calibrated and the results are more or less qualitative. The purpose of this lecture is to show that it is possible to calibrate these tools in order to obtain quantitative results, to make available to geologists, engineers and technicians engaged in shallow exploration, the information required for effectively applying the well-logging method.

  9. Integrated Seismic Arrays for Imaging the North China Craton: the ¡°Destruction of the North China Craton¡± Project

    Science.gov (United States)

    Chen, Y. J.; Chen, L.; Zheng, T.; Zhou, S.

    2007-12-01

    imaging results of the crustal and upper mantle structures this integrated seismic arrays will provide the fundamental observational information to the overarching goal of understanding the ¡°Destruction of the North China cration¡±, which is one of the important tectonic processes in the evolution of the continents on the earth.

  10. Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G. [UNR; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: Geothermal Resources Council Transactions, 35, 7 pp. Preprint at http://crack.seismo.unr.edu/geothermal/Eisses-GRCpaper-sm.pdf The Pyramid Lake fault zone lies within a vitally important area of the northern Walker Lane where not only can transtension can be studied through a complex arrangement of strike-slip and normal faults but also geothermal activity can be examined in the extensional regime for productivity. This study used advanced and economical seismic methods in attempt to develop the Paiute Tribe’s geothermal reservoir and to expand upon the tectonics and earthquake hazard knowledge of the area. 500 line-kilometers of marine CHIRP data were collected on Pyramid Lake combined with 27 kilometers of vibrator seismic on-land data from the northwest side of the basin were collected in 2010 that highlighted two distinct phases of faulting. Preliminary results suggest that the geothermal fluids in the area are controlled by the late Pleistoceneto Holocene-aged faults and not through the mid-Miocene-aged conduits as originally hypothesized.

  11. Numerical simulation of an acoustic field generated by a phased arc array in a fluid-filled borehole

    Institute of Scientific and Technical Information of China (English)

    Che Xiaohua; Qiao Wenxiao

    2009-01-01

    The acoustic tools widely used in borehole well logging and being developed in borehole acoustic reflection imaging do not have the function of azimuthal measurement due to a symmetric source, so they can not be used to evaluate the azimuthal character of borehole formation. In this paper, a 3D finite difference method was used to simulate the acoustic fields in a fluid-filled borehole generated by a traditional monopole source and a phased arc array. Acoustic waveforms were presented for both cases. The analysis of the simulated waveforms showed that different from the monopole source, the acoustic energy generated by the phased arc array transmitter mainly radiated to the borehole in a narrow azimuthal range, which was the key technique to implement azimuthal acoustic well logging. Similar to the monopole source, the waveforms generated by the phased arc array in the fluid-filled borehole also contain compressional (P) waves and shear (S) waves refracted along the borehole, which is the theoretical foundation of phased arc array acoustic well logging.

  12. How the structure of a continental margin affects the development of a fold and thrust belt. 2: Imaging basement structures with seismic velocities and seismicity in south-central Taiwan

    Science.gov (United States)

    Biete, Cristina; Brown, Dennis; Alvarez-Marron, Joaquina; Camanni, Giovanni; Kuo-Chen, Hao; Ho, Chun-Wei

    2016-04-01

    We investigate the geophysical signature within the south-central Taiwan fold and thrust belt of the reactivation of pre-existing structures developed on the Eurasian margin. Seismic tomography (P-wave) and earthquake hypocenters are combined to trace structures mapped on the margin offshore western Taiwan into the fold and thrust belt. The extensional tectonic history of the margin began in the Early Eocene and culminated in the Late Eocene to Early Oligocene with sea-floor spreading and the opening of the South China Sea. Several NE trending basins developed during the rifting of a pre-Cenozoic basement and these were filled with Eocene sediments. Further extension on the outer margin took place during the Middle to Late Miocene, forming basins that are now involved in the Taiwan deformation. Finally, the margin's transition from the platform to the slope takes place across south-central Taiwan and is oriented at a high angle to the active deformation front. We define the basement as pre-Eocene rocks and use a P-wave velocity (Vp) of 5.2 km/s as a proxy for the interface between them and their younger cover. This Vp interface is characterized by highs and lows that can be interpreted to image basement topography whose possible causes we investigate here. In the Hsuehshan Range there is a pronounced shallowing of the 5.2 km/s surface across the Shuilikeng fault. It is accompanied by an east-dipping cluster of seismicity down to more than 25 km depth, and forming what appears to be a crustal ramp across which the Eocene-age Hsuehshan Basin is being inverted. Westward, the 5.2 km/s interface forms a high called Paikang basement high, the southern flank of which is the on land projection of the Mesozoic basement shelf break. Southward, there is an increase in seismicity and topography that is associated to a NE-SW oriented lateral structure in the fold and thrust belt. South of this lateral structure, beneath the Alishan Range, a shallowing of the 5.2 km/s interface

  13. Joint inversion of surface and borehole magnetic amplitude data

    Science.gov (United States)

    Li, Zelin; Yao, Changli; Zheng, Yuanman; Yuan, Xiaoyu

    2016-04-01

    3D magnetic inversion for susceptibility distribution is a powerful tool in quantitative interpretation of magnetic data in mineral exploration. However, the inversion and interpretation of such data are faced with two problems. One problem is the poor imaging results of deep sources when only surface data are inverted. The other is the unknown total magnetization directions of sources when strong remanence exists. To deal with these problems simultaneously, we propose a method through the joint inversion of surface and borehole magnetic amplitude data. In this method, we first transform both surface and borehole magnetic data to magnetic amplitude data that are less sensitive to the directions of total magnetization, and then preform a joint inversion of the whole amplitude data to generate a 3D susceptibility distribution. The amplitude inversion algorithm uses Tikhonov regularization and imposes a positivity constraint on the effective susceptibility defined as the ratio of magnetization magnitude over the geomagnetic field strength. In addition, a distance-based weighting function is used to make the algorithm applicable to joint data sets. To solve this positivity-constraint inversion problem efficiently, an appropriate optimization method must be chosen. We first use an interior-point method to incorporate the positivity constraint into the total objective function, and then minimize the objective function via a Gauss-Newton method due to the nonlinearity introduced by the positivity constraint and the amplitude data. To further improve the efficiency of the inversion algorithm, we use a conjugate gradient method to carry out the fast matrix-vector multiplication during the minimization. To verify the utility of the proposed method, we invert the synthetic and field data using three inversion methods, including the joint inversion of surface and borehole three-component magnetic data, the inversion of surface magnetic amplitude data, and the proposed joint

  14. Tomographic Imaging of a New Seismic Zone in Northern Taiwan: Implications for Crustal Magnetism and Tectonic Inheritance

    Science.gov (United States)

    Cheng, Win-Bin; Chang, Gen-Sin; Hsu, Shu-Kun

    2016-04-01

    To the west of 121°E, we found that the northern South China Sea magnetic anomaly in central Taiwan is coincident with high seismic velocity zone derived from a joint analysis of gravity anomaly and seismic travel time data. To the east of 121°E, we found a new seismic zone which remains enigmatic because of its apparent relationship with both the emplacement of high magnetic anomaly and termination of Okinawa Trough. In order to understand the new seismic zone and breakup of the high magnetic anomaly, a joint analysis of gravity anomaly and seismic travel time data have been used to construct three-dimensional velocity structure for the study area. Earthquake data were collected by the Central Weather Bureau Seismological Network from 2000 to 2012. A modified velocity model obtained by previously local earthquake tomography, was used to construct an initial three-dimensional gravity model, using a linear velocity-density relationship. To derive a crustal velocity-density model that accounts for both types of observations, this study performed a sequential inversion of traveltime and gravity data. The main features of our three-dimensional velocity model are: (1) an uplifted zone with velocity greater than 6.5 km/s is observed in the lower crust, (2) the width and the shape of the uplifted zone is found strongly correlated with the high magnetic belt, (3) the trend of the high-velocity zone turns from NE to N in central Taiwan, where the feature of high magnetic was truncated. This study suggested that integration of seismic data with new perspectives on crustal magnetism will provide a better understanding of terrane accretion, rifting processes, and passive margin formation in the Taiwan region.

  15. Development and testing of a two-dimensional ultrasonic laboratory model system for seismic imaging of heterogeneous structures

    Science.gov (United States)

    Mo, Yike; Karaman, Hakki; Greenhalgh, Stewart

    2014-05-01

    dispersion curves were experimentally determined for both modes in aluminium, brass and perspex plates. For the heterogeneous models, we collected reflection data for various source positions and applied various processing techniques such as AGC, filtering, deconvolution, and pre-stack Kirchhoff migration. Some muting and pre-processing was necessary to attenuate the refractions, guided waves and surface waves produced by the low velocity near surface layer (perspex) which has a large impedance contrast with the host rock (aluminium). Pre-stack migration was able to resolve the two main buried interfaces when the surface layer was flat but for the variable thickness irregular surface layer the interfaces could not be properly imaged. First-arrival tomography was implemented to the crosshole seismic data set and yielded the correct velocity distribution. Unfortunately, the presence of anti-symmetric Lamb waves in this data precluded the application of 2D full waveform inversion. The VSP data enhanced the imaging of the near-surface layer as well as providing additional control for the reflection experiments.

  16. Seismostratigraphy and tectonic architecture of the Carboneras Fault offshore based on multiscale seismic imaging: Implications for the Neogene evolution of the NE Alboran Sea

    Science.gov (United States)

    Moreno, Ximena; Gràcia, Eulàlia; Bartolomé, Rafael; Martínez-Loriente, Sara; Perea, Héctor; de la Peña, Laura Gómez; Iacono, Claudio Lo; Piñero, Elena; Pallàs, Raimon; Masana, Eulàlia; Dañobeitia, Juan José

    2016-10-01

    In the SE Iberian Margin, which hosts the convergent boundary between the European and African Plates, Quaternary faulting activity is dominated by a large left-lateral strike-slip system referred to as the Eastern Betic Shear Zone. This active fault system runs along more than 450 km and it is characterised by low to moderate magnitude shallow earthquakes, although large historical events have also occurred. The Carboneras Fault is the longest structure of the Eastern Betic Shear Zone, and its southern termination extends further into the Alboran Sea. Previously acquired high-resolution data (i.e. swath-bathymetry, TOBI sidescan sonar and sub-bottom profiler) show that the offshore Carboneras Fault is a NE-SW-trending upwarped zone of deformation with a length of 90 km long and a width of 0.5 to 2 km, which shows geomorphic features typically found in subaerial strike-slip faults, such as deflected drainage, pressure ridges and "en echelon" folds. However, the neotectonic, depth architecture, and Neogene evolution of Carboneras Fault offshore are still poorly known. In this work we present a multiscale seismic imaging of the Carboneras Fault (i.e. TOPAS, high-resolution multichannel-seismic reflection, and deep penetration multichannel-seismic reflection) carried out during three successive marine cruises, from 2006 to 2010. The new dataset allowed us to define a total of seven seismostratigraphic units (from Tortonian to Late Quaternary) above the basement, to characterise the tectonic architecture and structural segmentation of the Carboneras Fault, and to estimate its maximum seismic potential. We finally discuss the role of the basement in the present-day tectonic evolution of the Carboneras Fault, and explore the northern and southern terminations of the fault and how the strain is transferred to nearby structures.

  17. Joint 3D seismic travel time and full channel electrical resistivity inversion with cross gradient structure constraint

    Science.gov (United States)

    Gao, J.; Zhang, H.

    2015-12-01

    Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones

  18. 3D Seismic Reflection Images of An Off-Axis Melt Lens And Its Associated Upper Crust Around 9°39'N, East Pacific Rise

    Science.gov (United States)

    Han, S.; Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J.; Nedimović, M. R.

    2011-12-01

    During the 3D multi-channel seismic (MCS) survey MGL0812 aboard the R/V Langseth, several mid-crust reflectors were discovered off axis on both flanks of the East Pacific Rise from 9°35.6-57.0'N. The reversed polarity of these off-axis reflections with respect to the seafloor and Moho reflections and the high attenuation of the crust detected beneath two of them in the north suggest that they arise from melts residing at the mid-crust level outside the axial low velocity zone (Canales et al. 2010). These off-axis melt lenses (OAML) are probable sites of off-axis volcanism and potential heat sources for localized hydrothermal circulation on the ridge flanks. We focus here on a prominent OAML discovered on the eastern flank around 9°39'N. Results from 1D travel time modeling and 2D streamer tomography of downward continued shot gathers show the presence of a thinner seismic layer 2A above the center of the OAML compared with its surrounding crust. We attribute this thinning to the effects of alteration associated with localized off-axis hydrothermal circulation driven by the OAML, where precipitation of secondary minerals infills pore space within the lower basalt section, leading to increased seismic velocities and thereby converting the lowermost seismic layer 2A into seismic layer 2B. To further constrain the respective 3D geometries of the OAML and the AMC, their spatial relations, and the spatial extent and shape of the region of altered upper crust associated with the OAML, we conduct 3D processing of a small MCS grid that encompasses most of this OAML, aimed at imaging both on- and off-axis melt lens events and the base of seismic layer 2A. This grid covers an ~4 km x 24 km area centered on the ridge crest between ˜9°37.5'-40'N and extending on both flanks, within which a third order ridge axis discontinuity and two high temperature hydrothermal vents identified during Alvin dives in 1991 and 1994 are present. The data were recorded by four 468-channel

  19. Subduction-to-Strike-Slip-Transition in the Southeastern Caribbean Imaged Using Deeply-Penetrating Seismic Reflection Lines and Tomography

    Science.gov (United States)

    Alvarez, T.; Vargas, C. A.; Mann, P.; Latchman, J.

    2010-12-01

    The subduction-to-strike-slip transition (SSST) zone of the southeastern Caribbean is one of thirty identified locations where active subduction and strike-slip tectonic styles transition along strongly curved and seismogenic plate boundaries. This SSST zone provides a field laboratory for understanding how sedimentary basins, faults, basement areas and subducted slabs change from an area of dominantly westward-directed subduction beneath the Lesser Antilles arc to an area of dominantly east-west strike-slip faulting along northern South America. We use two geophysical data types to image the lithosphere and study the relationships between lithospheric scale deformation and basin scale response to the transitional tectonic configuration. Interpretation of deeply-penetrating seismic reflection lines recorded down to 16 seconds two-way time, or depths of about 18 km, is combined with tomographic slices of the upper mantle and lower crust which were constructed using the coda method on ~ 700 earthquakes in the depth range of 70-250 km. Results from the tomographic study are compared with nine seismogenic zones in the southeast Caribbean SSST zone which are defined based on the depth, and focal mechanism of earthquake events. These zones include: (1) the Paria slab tear region; (2) Caribbean/South American strike-slip zone; (3) Hinge area separating continental margin in Trinidad from Tobago forearc basin; (4) Central Range -strike-slip fault zone, onshore Trinidad; (5) Underthrust zone of South American beneath southern onshore and offshore eastern Trinidad, including the prolific hydrocarbon-bearing Columbus Basin; (6) Venezuela foreland and fold-thrust belt; (7) flexural bulge area of oceanic crust located east of Barbados accretionary prism (BAP); (8) Subducted slab beneath the stabilized and supracomplex zones of the BAP; (9) Inner accretionary prism of the BAP. Primary controls on the seismogenic character of each curving tectonic belt include the strike of the

  20. Advanced seismic and GPR survey of a rock glacier in the Upper Choapa Valley, semi-arid Andes of Chile

    Science.gov (United States)

    Monnier, S.; Bodet, L.; Camerlynck, C. M.; Dhemaied, A.; Galibert, P.; Kinnard, C.; Vitale, Q.; Saéz, R.

    2011-12-01

    In semi-arid to arid contexts, rock glaciers, as other prominent permafrost features, can represent critical permanent resources of solid water. It is thus important to analyze their internal structure and estimate their ice content, especially in mining areas where human activities may have an impact on permafrost features. In the upper Choapa Valley, semi-arid Andes of Chile (31.59°S, 70.50°W), we investigate a small rock glacier located in an open-pit copper mine, using data from two boreholes and advanced geophysical methods. The two boreholes, performed using diamond drill hole technique, reveal relatively low ice content (order of magnitude: 20-25%) in the rock glacier. Seismic and ground-penetrating (GPR) radar surveys were performed on the surface of the rock glacier. P- and S-wave refraction seismics were employed along two profiles. The ground-penetrating radar operation mode was quite new and innovative for a rock glacier site; it consisted, (1) for three-dimensional imaging, of a rectangular grid of 25 evenly (2 m) spaced constant-offset (2 m) profiles, and (2) for velocity analysis, of a 150 m-long profile performed many times in constant-offset mode with offset varying between 0.5 and 16 m. The processing of the acquired data permits to obtain an accurate representation of the internal structure and an estimation of the overall ice content in the rock glacier.

  1. Critical condition study of borehole stability during air drilling

    Institute of Scientific and Technical Information of China (English)

    Deng Jingen; Zou Linzhan; Tan Qiang; Yan Wei; Gao Deli; Zhang Hanlin; Yan Xiuliang

    2009-01-01

    The purpose of this paper is to establish the existence of the critical condition of borehole stability during air drilling.Rock Failure Process Analysis Code2D was used to set up a damage model of the borehole excavated in strain-softening rock.Damage evolution around the borehole was studied by tracking acoustic emission.The study indicates that excavation damaged zone (EDZ) is formed around borehole because of stress concentration after the borehole is excavated.There is a critical condition for borehole stability; the borehole will collapse when the critical damage condition is reached.The critical condition of underground excavation exists not only in elastic and ideal plastic material but in strain-softening material as well.The research is helpful to developing an evaluation method of borehole stability during air drilling.

  2. Seismic investigation of gas hydrates in the Gulf of Mexico: 2013 multi-component and high-resolution 2D acquisition at GC955 and WR313

    Science.gov (United States)

    Haines, Seth S.; Hart, Patrick E.; Shedd, William W.; Frye, Matthew

    2014-01-01

    The U.S. Geological Survey led a seismic acquisition cruise at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313) in the Gulf of Mexico from April 18 to May 3, 2013, acquiring multicomponent and high-resolution 2D seismic data. GC955 and WR313 are established, world-class study sites where high gas hydrate saturations exist within reservoir-grade sands in this long-established petroleum province. Logging-while-drilling (LWD) data acquired in 2009 by the Gulf of Mexico Gas Hydrates Joint Industry Project provide detailed characterization at the borehole locations, and industry seismic data provide regional- and local-scale structural and stratigraphic characterization. Significant remaining questions regarding lithology and hydrate saturation between and away from the boreholes spurred new geophysical data acquisition at these sites. The goals of our 2013 surveys were to (1) achieve improved imaging and characterization at these sites and (2) refine geophysical methods for gas hydrate characterization in other locations. In the area of GC955 we deployed 21 ocean-bottom seismometers (OBS) and acquired approximately 400 km of high-resolution 2D streamer seismic data in a grid with line spacing as small as 50 m and along radial lines that provide source offsets up to 10 km and diverse azimuths for the OBS. In the area of WR313 we deployed 25 OBS and acquired approximately 450 km of streamer seismic data in a grid pattern with line spacing as small as 250 m and along radial lines that provide source offsets up to 10 km for the OBS. These new data afford at least five times better resolution of the structural and stratigraphic features of interest at the sites and enable considerably improved characterization of lithology and the gas and gas hydrate systems. Our recent survey represents a unique application of dedicated geophysical data to the characterization of confirmed reservoir-grade gas hydrate accumulations.

  3. Seismic detection of meteorite impacts on Mars

    OpenAIRE

    Teanby, N.A.; Wookey, J.

    2011-01-01

    Abstract Meteorite impacts provide a potentially important seismic source for probing Mars? interior. It has recently been shown that new craters can be detected from orbit using high resolution imaging, which means the location of any impact-related seismic event could be accurately determined thus improving the constraints that could be placed on internal structure using a single seismic station. This is not true of other seismic sources on Mars such as sub-surface faulting, whic...

  4. Borehole radar modeling for reservoir monitoring applications

    NARCIS (Netherlands)

    Miorali, M.; Slob, E.C.; Arts, R.J.

    2010-01-01

    The use of down-hole sensors and remotely controlled valves in wells provide enormous benefits to reservoir management and oil production. We suggest borehole radar measurements as a promising technique capable of monitoring the arrival of undesired fluids in the proximity of production wells. The h

  5. Deep Borehole Field Test Research Activities at LBNL

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsang, Chin-Fu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kneafsey, Timothy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Borglin, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piceno, Yvette [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andersen, Gary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nakagawa, Seiji [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nihei, Kurt [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Doughty, Christine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reagan, Matthew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-19

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterized by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.

  6. Seismically Imaged Architecture of the Chicxulub Impact Crater: Preliminary Results From the Last Cruise of the R/V Maurice Ewing

    Science.gov (United States)

    Gulick, S. S.; Barton, P. J.; Christeson, G.; Morgan, J. V.; Warner, M. R.; Urrutia-Fucugauchi, J.; Melosh, H. J.; Rebolledo-Vieyra, M.; McDonald, M.; Vermeesch, P. M.; Surendra, A. T.; Goldin, T.; Mendoza, K.; Sears, T. J.

    2005-05-01

    A new suite of multi-channel seismic reflection lines image key structural elements of the 195 km wide Chicxulub Impact Crater, the best preserved, large impact crater on Earth. The seismic transects, acquired using the R/V Maurice Ewing in January and February 2005, include regional radial lines (dip-oriented), a regional constant-radius profile (strike-oriented), and a dense grid of lines spaced 2 km by 5 km apart near the center of the crater. The radial lines image, from the exterior to interior, the crater rings, crater rim, slump blocks, and peak ring providing an enhanced look at the 3-D architecture of Chicxulub. The constant-radius profile, together with the radial lines, was designed to study any radial variations in deformation, or possibly ejecta, which may lend insight into impact angle and direction. The grid of lines near the crater center examine the structural relationships between the slump blocks, peak ring, and central uplift which according to impact modeling all formed within minutes of the Cretaceous-Tertiary impact. The regional lines, both radial and the constant radius profile, largely confirm the observations of the regional seismic lines collected in 1996. Both datasets show the existence of at least one ring outside of the crater rim and an elevated crater rim with as much as 500 m of offset between the top of the crater rim and the KT boundary within the crater that was subsequently buried by ~1 km of Tertiary sediments. Our preliminary interpretations from the seismic grid near the crater center yield a general architecture of the central crater that includes a 10-15 km wide, doughnut-shaped peak ring that lies ~25 km from the crater center. Underlying the peak ring are sediments with inconsistent reflectivity (possibly breccia), underlain by inward slumped blocks of varying widths, and underlain by ~10 km thick package of reflective lower crust ending with the Moho. The slump blocks, where imaged, underlie the peak ring suggesting

  7. Near-Surface Structure and Velocities of the Northeastern Santa Cruz Mountains and the Western Santa Clara Valley, California, From Seismic Imaging

    Science.gov (United States)

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Steedman, Clare

    2007-01-01

    reservoirs, pipelines, and flood-protection facilities maintained by SCVWD. As one component of these joint studies, the USGS acquired an approximately 10-km-long, high-resolution, combined seismic reflection/refraction transect from the Santa Cruz Mountains to the central SCV in December 2000 (Figs. 1 and 2a,b). The overall seismic investigation of the western Santa Clara Valley also included an ~18-km-long, lower-resolution (~50-m sensor) seismic imaging survey from the central Santa Cruz Mountains to the central part of the valley (Fig. 1). Collectively, we refer to these seismic investigations as the 2000 western Santa Clara Seismic Investigations (SCSI). Results of the high-resolution investigation, referred to as SCSI-HR, are presented in this report, and Catchings et al. (2006) present results of the low-resolution investigation (SCSI-LR) in a separate report. In this report, we present data acquisition parameters, unprocessed and processed seismic data, and interpretations of the SCSI-HR seismic transect.

  8. Borehole radar survey at the granodiorite quarry mine, Cheonan, Chungnam province

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Ho; Cho, Seong Jun; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il; Shin, In Chul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Borehole radar survey in combination with the reflection and tomography methods was conducted at the granodiorite quarry mine of Cheonan area near Asan city in Chungnam province. The purpose of radar survey in quarry mine is to delineate the inhomogeneities including fractures and to estimate the freshness of rock. 20 MHz was adopted as the central frequency for the radar reflection and tomography surveys for the longer distance of penetration. The reflection survey using the direction finding antenna was also conducted to get the information on the spatial orientation of reflectors. The reflection data processing package, RADPRO version 2.2, developed continuously through in this study, was used to process the borehole reflection radar data. The new tomographic inversion programs were devised and used to get the both of velocity and attenuation tomograms. The inverting algorithm is based on the least squared method with smoothness constraint. In spite of straight ray assumption, the new programs could give more reasonable images than the conventional programs based on the ART or SIRT. The major dip angle of fractured zones were determined from the radar reflection images. With the aid of direction finding antenna, it was possible to get the three dimensional attitudes of reflectors. Detailed interpretation results of the surveyed area are included in this report. Through the interpretation of borehole reflection data using dipole and direction finding antenna, we could determine the orientation of the major fractured zone detected in the borehole DH-1 between about 40 and 50 meter depths. The tomographic images also show the image of the fractured zone very well, and it would be coincided with the interpretation result of the borehole reflection data. The fracture zone tends to go shallower with the dip of 30 degrees approximately, when going southwards. Underneath of the fracture zone, the fresh granodiorite mass will be widely distributed. (author). 9 refs., 3

  9. Report on the Test and Evaluation of the Kinemetrics/Quanterra Q730B Borehole Digitizers

    Energy Technology Data Exchange (ETDEWEB)

    KROMER,RICHARD P.; MCDONALD,TIMOTHY S.

    1999-10-01

    Sandia National Laboratories has tested and evaluated the Kinemetrics/Quanterra Q730B-bb (broadband) and Q730B-sp (short period) borehole installation remote digitizers. The test results included in this report were for response to static and dynamic input signals, seismic application performance, data time-tag accuracy, and reference signal generator (calibrator) performance. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and P1241 (Preliminary Draft) for Analog to Digital Converters; others were designed by Sandia specifically for seismic application evaluation and for supplementary criteria not addressed in the IEEE standards. When appropriate, test instrumentation calibration is traceable to the National Institute for Standards Technology (NIST).

  10. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    Science.gov (United States)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to

  11. High-Resolution Seismic Reflection and Refraction Imaging of the Hayward Fault in Fremont, Alameda County, California

    Science.gov (United States)

    Everson, E. D.; Rymer, M. J.; Goldman, M. R.; Catchings, R. D.

    2007-12-01

    In July 2007, the U.S. Geological Survey acquired a 60-m-long seismic reflection and refraction profile across the main trace of the Hayward fault in Fremont Central Park, Fremont, California. The profile was designed to determine the geometry, seismic velocities, and possible structural complexities of the fault. The study was along a part of the surface rupture of the 1868 M 7.0 Hayward earthquake. We used single-element, 40-Hz vertical geophones placed at 1-m intervals along the profile with 0.5-m lateral offset from the shot points, also with 1-m intervals. Seismic sources were generated by multiple sledgehammer blows at each shot point. Data were recorded unfiltered in the field on a Geometrics Strataview RX-60 seismograph at a sampling rate of 0.5 ms for 2 s. Geophone locations were measured in 3D using differential GPS. We developed a velocity model using the Hole (1992) code to invert P-wave first arrivals of the refraction data. Seismic P-wave velocities range from about 200 m/s near the surface to approximately 800 m/s at a depth of 13 to 16 m. The velocity model was then applied to the reflection data to develop an unmigrated common depth point (CDP) stack. The reflection data indicate the presence of at least three fault strands in an approximately 20-m-wide zone. We believe the three strands define an upwardly flaring 'flower structure', with the central strand being the main strand of the Hayward fault. The three strands project to merge at a depth of about 150 m; the overall dip of the fault zone in the upper 100 m is to the northeast, at about 88 degrees.

  12. Seismic characterization of hydrates in faulted, fine-grained sediments of Krishna-Godavari basin: Unified imaging

    Digital Repository Service at National Institute of Oceanography (India)

    Jaiswal, P.; Dewangan, P.; Ramprasad, T.; Zelt, C.A.

    (Clennell et al., 1999). However, in basins affected by structural deformation, local fluid and heat flow, and spatially variable sedimentation, e.g., Gulf of Mexico (Ding et al., 2008) and Krishna-Godavari (Dewangan et al., 2011), the BSR profile may..., northern Gulf of Mexico: Part I. A seismic approach based on geologic model, inversion, and rock physics principles. Marine and Petroleum Geology 25, 830-844. Daigle, H., Dugan, B., 2011. Capillary controls on methane hydrate distribution and fracturing...

  13. A Sparse Bayesian Imaging Technique for Efficient Recovery of Reservoir Channels With Time-Lapse Seismic Measurements

    KAUST Repository

    Sana, Furrukh

    2016-06-01

    Subsurface reservoir flow channels are characterized by high-permeability values and serve as preferred pathways for fluid propagation. Accurate estimation of their geophysical structures is thus of great importance for the oil industry. The ensemble Kalman filter (EnKF) is a widely used statistical technique for estimating subsurface reservoir model parameters. However, accurate reconstruction of the subsurface geological features with the EnKF is challenging because of the limited measurements available from the wells and the smoothing effects imposed by the \\\\ell _{2} -norm nature of its update step. A new EnKF scheme based on sparse domain representation was introduced by Sana et al. (2015) to incorporate useful prior structural information in the estimation process for efficient recovery of subsurface channels. In this paper, we extend this work in two ways: 1) investigate the effects of incorporating time-lapse seismic data on the channel reconstruction; and 2) explore a Bayesian sparse reconstruction algorithm with the potential ability to reduce the computational requirements. Numerical results suggest that the performance of the new sparse Bayesian based EnKF scheme is enhanced with the availability of seismic measurements, leading to further improvement in the recovery of flow channels structures. The sparse Bayesian approach further provides a computationally efficient framework for enforcing a sparse solution, especially with the possibility of using high sparsity rates through the inclusion of seismic data.

  14. Acoustic–electromagnetic effects of tectonic movements of the crust – borehole survey

    Directory of Open Access Journals (Sweden)

    V. N. Uvarov

    2015-04-01

    Full Text Available Borehole radiophysical properties are briefly described. Borehole investigation of lithosphere acoustic-electromagnetic radiation was carried out in a seismically active region. Four main types of anomalies of acoustic-electromagnetic radiation were distinguished. They correspond to shear and bulk relaxations of tectonic stress. Stability of phase relations of acoustic and electromagnetic signals in the region of anomalies was detected that allows us to state their coherence. It was concluded that the reason of mutual coherence of acoustic and electromagnetic signals is the magnetoelastic effect of the casing pipe. A mechanism of generation of rock self-induced vibrations during tectonic stress relaxation causing acoustic-electromagnetic emission was suggested. It was concluded that "sigmoid" anomalies may correlate with excitation of eigen vibrations in a fracture cavity during brittle shear relaxation of rock tectonic stress. An explanation of the change of anomalous "sigmoid" signal frequency was given. It is considered to be the result of growth of rock fracture cavity and the decrease of tectonic stress relaxation. It was concluded that a borehole, cased in a steel pipe, together with a system of inductance coils and a hydrophone is the effective sounding sensor for acoustic fields of interior deep layers. It may be applied to investigate and to monitor the geodynamic activity, in particular, in earthquake forecasts and in monitoring of hydrocarbon deposits during their production.

  15. A new capacitive borehole tiltmeter for crustal deformation measurement and its performance analysis

    Institute of Scientific and Technical Information of China (English)

    Wu Liheng; Li Tao; Chen Zheng; Li Hong

    2015-01-01

    Borehole inclinometers are important observation instruments used to measure ground tilt movement and monitor crustal deformation of solid tides and geological landslide disasters. They are widely used in oil exploration, mineral resource drilling, well logging, exploration and other fields. There is potential for development of rock stress strain monitoring tools. Many types of tiltmeters have been installed, such as SQ-7, FSQ, VS and JB. However, these tiltmeters are generally installed in a deep cave to avoid the inter-ference of temperature, humidity, and human activities. With the urbanization of human society, suitable installation locations are difficult to find. To solve the problem, a two-component borehole tiltmeter, named the CBT-type tiltmeter, is proposed in this paper. It can be installed in a borehole less than 500 m deep to eliminate environmental influences. The tiltmeter is composed of two sophisticated gravitational swing and two capacitive transducers. From preliminary theory and experiment analysis, its linear correlation coefficient is higher than 0.99, its co-seismic response is rapid and its noise level is up to 10-4 arc seconds in practice.

  16. Optical seismic sensor systems and methods

    Science.gov (United States)

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  17. Near Field Investigation of Borehole Heat Exchangers

    OpenAIRE

    2015-01-01

    As an alternative and renewable energy source, the shallow geothermal energy evolving as one of the most popular energy source due to its easy accessibility and availability worldwide, and the ground source heat pump (GSHP) systems are the most frequent applications for extracting the energy from the shallow subsurface. As the heat extraction capacity of the GSHP system applications arises, the design of the borehole heat exchangers (BHE), which is the connected part of the system in the grou...

  18. Deep Borehole Field Test Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  19. Landslide seismic magnitude

    Science.gov (United States)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or satellites, is highly time consuming. Here we analyze very long period seismic signals (20-50 s) generated by large landslides such as Typhoon Morakot, which passed though Taiwan in August 2009. In addition to successfully locating 109 large landslides, we define landslide seismic magnitude based on an empirical formula: Lm = log ⁡ (A) + 0.55 log ⁡ (Δ) + 2.44, where A is the maximum displacement (μm) recorded at one seismic station and Δ is its distance (km) from the landslide. We conclude that both the location and seismic magnitude of large landslides can be rapidly estimated from broadband seismic networks for both academic and applied purposes, similar to earthquake monitoring. We suggest a real-time algorithm be set up for routine monitoring of landslides in places where they pose a frequent threat.

  20. A Handbook for the Application of Seismic Methods for Quantifying Naturally Fractured Gas Reservoirs in the San Juan Basin, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Majer, Ernest; Queen, John; Daley, Tom; Fortuna, Mark; Cox, Dale; D' Onfro, Peter; Goetz, Rusty; Coates, Richard; Nihei, Kurt; Nakagawa, Seiji; Myer, Larry; Murphy, Jim; Emmons, Charles; Lynn, Heloise; Lorenz, John; LaClair, David; Imhoff, Mathias; Harris, Jerry; Wu, Chunling; Urban, Jame; Maultzsch, Sonja; Liu, Enru; Chapman, Mark; Li, Xiang-Yang

    2004-09-28

    A four year (2000-2004) comprehensive joint industry, University and National Lab project was carried out in a 20 square mile area in a producing gas field in the Northwest part of the San Juan Basin in New Mexico to develop and apply multi-scale seismic methods for detecting and quantifying fractures in a naturally fractured gas reservoirs. 3-D surface seismic, multi-offset 9-C VSP, 3-C single well seismic, and well logging data were complemented by geologic/core studies to model, process and interpret the data. The overall objective was to determine the seismic methods most useful in mapping productive gas zones. Data from nearby outcrops, cores, and well bore image logs suggest that natural fractures are probably numerous in the subsurface reservoirs at the site selected and trend north-northeast/south-southwest despite the apparent dearth of fracturing observed in the wells logged at the site (Newberry and Moore wells). Estimated fracture spacing is on the order of one to five meters in Mesaverde sandstones, less in Dakota sandstones. Fractures are also more frequent along fault zones, which in nearby areas trend between north-northeast/south-southwest and northeast-southwest and are probably spaced a mile or two apart. The maximum, in situ, horizontal, compressive stress in the vicinity of the seismic test site trends approximately north-northeast/south-southwest. The data are few but they are consistent. The seismic data present a much more complicated picture of the subsurface structure. Faulting inferred from surface seismic had a general trend of SW - NE but with varying dip, strike and spacing. Studies of P-wave anisotropy from surface seismic showed some evidence that the data did have indications of anisotropy in time and amplitude, however, compared to the production patterns there is little correlation with P-wave anisotropy. One conclusion is that the surface seismic reflection data are not detecting the complexity of fracturing controlling the

  1. Non-integral dimensions ultrasonic phased arrays in a borehole

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bixing; ZHANG Chengguang; Deng Fangqing

    2009-01-01

    The non-integral dimensions ultrasonic phased arrays and their scanning and test-ing methods in a borehole are studied. First, the focusing acoustic fields excited by the 1.25D, 1.5D, and 1.75D phased arrays are analyzed, and then the imaging resolution in the elevation direction and the influence of the dynamic elements are investigated. Second, the focusing and deflexion characteristics of the acoustic fields excited by the annular and segmented annular phased arrays are studied, and they are compared with those excited by the 2D surface array. The application method of the 1.25D, 1.5D, and 1.75D, annular and segmented annular phased arrays in acoustic logging are analyzed and discussed. It provides a theoretical foundation for the application of the ultrasonic phased arrays in acoustic logging.

  2. Seismic Creep

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seismic creep is the constant or periodic movement on a fault as contrasted with the sudden erupture associated with an earthquake. It is a usually slow deformation...

  3. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 2. Borehole constraints

    Science.gov (United States)

    Ruppel, Carolyn; Herman, Bruce M.; Brothers, Laura L.; Hart, Patrick E.

    2016-01-01

    Borehole logging data from legacy wells directly constrain the contemporary distribution of subsea permafrost in the sedimentary section at discrete locations on the U.S. Beaufort Margin and complement recent regional analyses of exploration seismic data to delineate the permafrost's offshore extent. Most usable borehole data were acquired on a ∼500 km stretch of the margin and within 30 km of the contemporary coastline from north of Lake Teshekpuk to nearly the U.S.-Canada border. Relying primarily on deep resistivity logs that should be largely unaffected by drilling fluids and hole conditions, the analysis reveals the persistence of several hundred vertical meters of ice-bonded permafrost in nearshore wells near Prudhoe Bay and Foggy Island Bay, with less permafrost detected to the east and west. Permafrost is inferred beneath many barrier islands and in some nearshore and lagoonal (back-barrier) wells. The analysis of borehole logs confirms the offshore pattern of ice-bearing subsea permafrost distribution determined based on regional seismic analyses and reveals that ice content generally diminishes with distance from the coastline. Lacking better well distribution, it is not possible to determine the absolute seaward extent of ice-bearing permafrost, nor the distribution of permafrost beneath the present-day continental shelf at the end of the Pleistocene. However, the recovery of gas hydrate from an outer shelf well (Belcher) and previous delineation of a log signature possibly indicating gas hydrate in an inner shelf well (Hammerhead 2) imply that permafrost may once have extended across much of the shelf offshore Camden Bay.

  4. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 2. Borehole constraints

    Science.gov (United States)

    Ruppel, Carolyn D.; Herman, Bruce M.; Brothers, Laura L.; Hart, Patrick E.

    2016-11-01

    Borehole logging data from legacy wells directly constrain the contemporary distribution of subsea permafrost in the sedimentary section at discrete locations on the U.S. Beaufort Margin and complement recent regional analyses of exploration seismic data to delineate the permafrost's offshore extent. Most usable borehole data were acquired on a ˜500 km stretch of the margin and within 30 km of the contemporary coastline from north of Lake Teshekpuk to nearly the U.S.-Canada border. Relying primarily on deep resistivity logs that should be largely unaffected by drilling fluids and hole conditions, the analysis reveals the persistence of several hundred vertical meters of ice-bonded permafrost in nearshore wells near Prudhoe Bay and Foggy Island Bay, with less permafrost detected to the east and west. Permafrost is inferred beneath many barrier islands and in some nearshore and lagoonal (back-barrier) wells. The analysis of borehole logs confirms the offshore pattern of ice-bearing subsea permafrost distribution determined based on regional seismic analyses and reveals that ice content generally diminishes with distance from the coastline. Lacking better well distribution, it is not possible to determine the absolute seaward extent of ice-bearing permafrost, nor the distribution of permafrost beneath the present-day continental shelf at the end of the Pleistocene. However, the recovery of gas hydrate from an outer shelf well (Belcher) and previous delineation of a log signature possibly indicating gas hydrate in an inner shelf well (Hammerhead 2) imply that permafrost may once have extended across much of the shelf offshore Camden Bay.

  5. Application of Seismic Data to Reservoir Modeling of the Chegu 201 Block

    Institute of Scientific and Technical Information of China (English)

    CaiYi; ZhangXiangzhong; ZhangXinshang

    2005-01-01

    Great uncertainty exists in reservoir models built for blocks where well spacing is uneven or large. The uncertainty in reservoir models can be significantly reduced by using Coordinate Cokriging Sequential Gaussian Simulation technology, in combination with the restriction of seismic characteristic data. Satisfactory reservoir parameter interpolation results, which are more accurate than those derived only from borehole data, are obtained, giving rise to a reasonable combination of widespread and dense-sampled seismic (soft data) data with borehole data (hard data). A significant effect has been made in reservoir parameter modeling in the Chegu 201 block of the Futai Oilfield by using this technology.

  6. Seismic seiches

    Science.gov (United States)

    McGarr, Arthur; Gupta, Harsh K.

    2011-01-01

    Seismic seiche is a term first used by Kvale (1955) to discuss oscillations of lake levels in Norway and England caused by the Assam earthquake of August 15, 1950. This definition has since been generalized to apply to standing waves set up in closed, or partially closed, bodies of water including rivers, shipping channels, lakes, swimming pools and tanks due to the passage of seismic waves from an earthquake.

  7. Crustal heat flow measurements in western Anatolia from borehole equilibrium temperatures

    Directory of Open Access Journals (Sweden)

    K. Erkan

    2014-01-01

    Full Text Available Results of a crustal heat flow analysis in western Anatolia based on borehole equilibrium temperatures and rock thermal conductivity data are reported. The dataset comprises 113 borehole sites that were collected in Southern Marmara and Aegean regions of Turkey in 1995–1999. The measurements are from abandoned water wells with depths of 100–150 m. Data were first classed in terms of quality, and the low quality data, including data showing effects of hydrologic disturbances on temperatures, were eliminated. For the remaining 34 sites, one meter resolution temperature-depth curves were carefully analyzed for determination of the background geothermal gradients, and any effects of terrain topography and intra-borehole fluid flow were corrected when necessary. Thermal conductivities were determined either by direct measurements on representative surface outcrop or estimated from the borehole lithologic records. The calculated heat flow values are 85–90 mW m−2 in the northern and central parts of the Menderes horst-graben system. Within the system, the highest heat flow values (> 100 mW m−2 are observed in the northeastern part of Gediz Graben, near Kula active volcanic center. The calculated heat flow values are also in agreement with the results of studies on the maximum depth of seismicity in the region. In the Menderes horst-graben system, surface heat flow is expected to show significant variations as a result of active sedimentation and thermal refraction in grabens, and active erosion on horst detachment zones. High heat flow values (90–100 mW m−2 are also observed in the peninsular (western part of Çanakkale province. The heat flow anomaly here may be an extension of the high heat flow zone previously observed in the northern Aegean Sea. Moderate heat flow values (60–70 mW m−2 are observed in eastern part of Çanakkale and central part of Balıkesir provinces.

  8. Coseismic offsets recorded by borehole strainmeters from the 2014, Mw 6.0 South Napa, California earthquake: Reconciling tidal calibrations with earthquake source models.

    Science.gov (United States)

    Langbein, J. O.

    2015-12-01

    The 24 August 2014 Mw 6.0 South Napa, California earthquake produced significant offsets on 12 borehole strainmeters in the San Francisco Bay area. These strainmeters are located between 24 and 80 km from the source and the observed offsets ranged up to 400 parts-per-billion (ppb), which exceeds their nominal precision by a factor of 100. However, the observed offsets in tidally-calibrated strains have RMS deviation of 130 ppb from strains predicted by previously published moment tensor derived from seismic data. Here, I show that the large misfit can be reduced by a combination of better tidal calibration and better modeling of the strain field from the earthquake. Borehole strainmeters require in-situ calibration, which historically has been accomplished by comparing their measurements of Earth tides with the strain-tides predicted by a model. Although borehole strainmeters accurately measure the deformation within the borehole, the long-wavelength strain signals from tides or other tectonic processes recorded in the borehole are modified by the presence of the borehole and the elastic properties of the grout and the instrument. Previous analyses of surface-mounted, strainmeter data and their relationship with the predicted tides suggest that tidal models could be in error by 30%. The poor fit of the borehole strainmeter data from this earthquake can be improved by simultaneously varying the components of the model tides up to 30% and making small adjustments to the point-source model of the earthquake, which reduces the RMS misfit from 130 to 18 ppb. This suggests that calibrations derived solely from tidal models limits the accuracy of borehole strainmeters. On the other hand, the revised calibration derived here becomes testable on strain measurements from future, large Bay area events.

  9. Comparative Tests Between Shallow Downhole Installation and Classical Seismic Vaults

    Science.gov (United States)

    Charade, Olivier; Vergne, Jérôme; Bonaimé, Sébastien; Bonnin, Mickaël; Louis-Xavier, Thierry; Beucler, Eric; Manhaval, Bertrand; Arnold, Benoît

    2016-04-01

    The French permanent broadband network is engaged in a major evolution with the installation of a hundred of new stations within the forthcoming years. Since most of them will be located in open field environments, we are looking for a standardized installation method able to provide good noise level performance at a reasonable cost. Nowadays, the use of posthole seismometers that can be deployed at the bottom of shallow boreholes appears to be an affordable and alternative solution to more traditional installation methods such as seismic vaults or dedicated underground cellars. Here we present some comparative tests performed at different sites (including two GEOSCOPE stations), spanning various geological conditions. On each site, posthole sensors were deployed for several weeks to months at various depths from 1.5m up to 20m. We compare the seismic noise levels measured in the different boreholes with the one for a reference sensor either directly buried or installed in a tunnel, a cellar or a seismic vault. Apart from the microseism frequency band, seismic noise level in most of the boreholes equals or outperforms the one obtained for the reference sensors. At periods higher than 20s we observe a strong reduction of the seismic noise on the horizontal components in the deepest boreholes compared to near surface installations. This improvement can reach up to 30dB and appears to be mostly due to a reduction in tilt noise induced by wind or local pressure variations. However, the absolute noise level that can be achieved strongly depends on the local geology.

  10. Midget Seismic in Sandbox Models

    Science.gov (United States)

    Krawczyk, C. M.; Buddensiek, M. L.; Philipp, J.; Kukowski, N.; Oncken, O.

    2008-12-01

    Analog sandbox simulation has been applied to study geological processes to provide qualitative and quantitative insights into specific geological problems. In nature, the structures, which are simulated in those sandbox models, are often inferred from seismic data. With the study introduced here, we want to combine the analog sandbox simulation techniques with seismic physical modeling of those sandbox models. The long-term objectives of this approach are (1) imaging of seismic and seismological events of actively deforming and static 3D analogue models, and (2) assessment of the transferability of the model data to field data in order to improve field data acquisition and interpretation according to the addressed geological problem. To achieve this objective, a new midget-seismic facility for laboratory use was designed and developed, comprising a seismic<