WorldWideScience

Sample records for borehole sealing technical

  1. Grimsel test site. Investigation phase IV. Borehole sealing. Technical report 07-01

    International Nuclear Information System (INIS)

    Within the context of the phase IV (1994 - 1996) research and development activities at the Grimsel Test Site (GTS), Nagra developed, in collaboration with the 'Agence nationale pour la gestion des dechets radioactifs' (Andra), an investigation project for the sealing of boreholes drilled from underground. The project had the following goals: (i) sealing of boreholes drilled from underground facilities with a length of up to 500 m; (ii) sealing of boreholes with mainly irregular shape (e.g. breakouts of borehole wall); (iii) ensuring a hydraulic conductivity of 10-11 - 10-12 m/s for the seal; (iv) ensuring reliable quality control in routine production. Nagra's new concept developed in this project was to use highly compacted bentonite pellets or granular bentonite while Andra evaluated the use of a cylindrical block of bentonite. This report deals with Nagra's concepts only. The two techniques tested by Nagra were: 1. Pneumatic injection of granular bentonite into a borehole using a grain size distribution of 4-10 mm. 2. Emplacement using a modified core barrel (MACMET tool) for transport and compaction of bentonite pellets. Following a detailed literature study and the development of appropriate concepts, the necessary tools were developed and successively tested in the laboratory. An appropriate test field was established and characterized at GTS where both techniques were tested in situ to estimate their performance under realistic field conditions. The swelling pressures were monitored for 4 months after seal emplacement until an almost constant value was attained. Finally, the hydraulic and mechanical performances of the seals were tested. It was found that the conductivities measured across the seal were at least equivalent to the matrix properties of the surrounding rock (3-6·10-12 m/s). The hydraulic testing also showed no linear preferential flow along the seals. (author)

  2. Borehole sealing method and apparatus

    International Nuclear Information System (INIS)

    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole. 5 claims, 1 figure

  3. Development of borehole sealing technology

    International Nuclear Information System (INIS)

    As a part of the geoscientific research in JNC Tono Geoscience Center, we are conducting the borehole investigation as a method of surveying techniques to gain an understanding of geological environment characterization (geology/geological structure, rock hydraulic characteristics, ground water geochemical characteristics and rock mechanics) from surface to deep underground. The borehole for the borehole investigation is used for monitoring hole after the borehole investigation. Since the borehole may act as a passage of groundwater flow and disturb the geological environment artificially, it has to be sealed in finally. Moreover, the hydraulic testing and the geochemical analysis of groundwater that be conducted in the zones injected some kind of lost circulation materials might be impacted on the accuracy of test result. The actual technologies regarding to these themes was researched and evaluated. In the second step, clarification of problems and procedure of R and D for solution of these problems was examined. In order to estimate the effect of lost circulation materials on hydraulic testing, a laboratory test of borehole behavior was performed using a scale model that consisted of a borehole and a water-loss zone. In this test, we found out that the lost circulation material was desorbed from the water-loss zone by back-flow action. It was proved by the test that there is little influence from lost circulation materials on hydraulic testing. Investigation regarding borehole sealing technology was conducted in literature search and interview to overseas researchers. In consequent, three kinds of materials - bentonite clay, bentonite pellet, and ethanol bentonite, were selected as effective sealing material. Moreover, five kinds of methods were selected as effective sealing methods. In water permeability test of sealing material, three kinds of sealing materials indicated lower permeability - order of 10-11 m/sec, and it was evaluated that it could be worked as

  4. Study on sealing of boreholes

    International Nuclear Information System (INIS)

    A bibliographical research on the problem of the backfilling and sealing of boreholes, shafts and tunnels for radioactive waste disposal has been carried out. Various materials - both natural and artificial - like clay, industrial cement, polymer concrete, geothermical and magnesium cement have been examined. Their main physico-chemical and durability characteristics have been examined. The problem of the interaction between the sealing and the geological environment has been also dealt. The final subject discussed in the bibliography is the damage caused to the host formation by the excavation of shafts and tunnels. The laboratory tests have been performed on a natural clay and other types of material (cement grout, cement grout with expansive additive, cement mortar and remoulded clay) which have been used as plug materials. The main conclusions obtained from the tests are the following: - The permeability of the cement is lower than the permeability of the clay; - no adhesion was observed between clay and cement mortar, with or without expansive additive, when cured under different ambient conditions, but without any application of load; - When curing took place under load, good adhesion was observed between the clay and the cement mortar; - The flow of water in a specimen consisting of a clay core surrounded by remoulded clay is larger than in the natural clay. These results seem to be caused by the different permeabilities of the remoulded and undisturbed clay and not to depend on flow at the contact between the two materials. A remote instrumentation package for the in situ evaluation of the performance of a plug, has been developed. In order to get rid of the uncertainty associated with the infiltration of the cables through the plug a wireless data transmission system, based on acoustic waves, has been developed

  5. Borehole sealing: conceptual design and feasibility study

    International Nuclear Information System (INIS)

    In this report criteria for sealing boreholes are first considered and the requirements for sealing materials are then specified. For the conceptual design use is made of a multiple-zone borehole plug consisting of key zones and intermediate zones in between. The key zones are located in competent, low-fissured rock and act as efficient barriers to prevent a drain effect by the borehole. Highly compacted bentonite in the form of cylinders with a diameter slightly smaller than that of the borehole and also in the form of spheres or pellets is used as plug material in the key zones, while cement is employed for the intermediate zones. A literature review has revealed that in past experiments mostly cement and bentonite were used as plug materials. The corresponding results showed that both materials are potentially successful candidates. For plug emplacement, it is proposed to employ either a specially designed emplacement tool or a perforated pipe. The latter method is easier to use but the pipe has to remain in the borehole. It is recommended to have a dry density of the bentonite after swelling of not less than 1.3 Mg/m3. This implies limiting values for the space between the bentonite cylinder and the borehole wall. By means of a bentonite slurry filled into the borehole at the key zone, the allowable ring space can be slightly enlarged. For the use of bentonite in the form of spheres or pellets experimental data are scarce and emplacement procedures are not sufficiently developed to guarantee the required minimum final dry density. In order to check the quality of the plug, an indirect procedure is recommended. For sealing boreholes penetrating into the repository zone, direct quality control is then limited to checking whether the procedure is adhered to as specified and to recording the quantities of materials emplaced. It is shown that the proposed plug design represents an efficient flow barrier and that it can satisfy the specified requirements. (author) 13

  6. Initial results of tuff borehole sealing experiments

    International Nuclear Information System (INIS)

    Laboratory and field experiments are in progress to determine the performance that can be expected of cementitious and of earthen (bentonite) seals when emplaced in welded tuff. Laboratory testing includes materials characterization testing radial permeameter testing of cementitious borehole plugs emplaced in welded tuff cylinders, flow testing of bentonite and of bentonite/crushed tuff plugs, axial strength of cementitious borehole plugs emplaced in welded tuff, and fracture grouting experiments. Experimental work is performed in Apache Leap tuff, a formation exposed in east-central Arizona. Mineralogical, chemical, hydrological and mechanical characterization shows reasonable similarity between the Apache Leap tuff and the Topopah Spring tuff, the proposed Yucca Mountain repository host formation. The main conclusion from the mechanical characterization testing is that the tested tuff, not unexpectedly, is an extremely heterogeneous rock, with highly variable properties. A second notable observation is the extremely low saturated hydraulic conductivity of intact welded tuff, notwithstanding its very high porosity. Mixtures of bentonite and crushed tuff show that samples containing 25 or 35 percent bentonite (by weight) have permeabilities of the same order of magnitude as similarly prepared and emplaced samples consisting of bentonite only. Permeability is noticeably pressure-dependent. Short-term bond strengths of cementitious seals emplaced in tuff cylinders are moderately high, in the range of 3 to 8 MPa, with considerable variability. Results indicate a marked decrease in strength with increasing plug (or borehole) diameter. A pronounced strength loss occurs at 90C, but not at 70C. 12 refs., 6 figs

  7. A strategy to seal exploratory boreholes in unsaturated tuff

    International Nuclear Information System (INIS)

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed

  8. Safe management of disused sealed radioactive sources: borehole disposal

    International Nuclear Information System (INIS)

    Borehole disposal of sealed radioactive sources (BOSS) is one of the most efficient options for disused sealed radioactive sources (DSRS). Currently, borehole disposal is considered one of the most promising options for DSRS including high activity and long-lived sources. It is the right time for Nuclear Malaysia to consider the borehole disposal as the ultimate solution to the increasing number of DSRS stored in the current facility. This paper will discuss the management of DSRS using borehole disposal as well as the needs, concept and the advantages. (Author)

  9. Borehole sealing with highly compactd Na bentonite

    International Nuclear Information System (INIS)

    This report describes the use of highly compacted Na bentonite for borehole plugging. Bentonites have an extremely low permeability and a low diffusivity, and a swelling ability which produces a nonleaching boundary between clay and rock if the initial bulk density of the bentonite is sufficiently high. The suggested technique, which is applicable to long vertical, and inclined, as well as horizontal boreholes, is based on the use of perforated copper pipes to insert elements of compacted bentonite. Such pipe segments are connected at the rock surface and successively inserted in the hole. When the hole is equipped, the clay takes up water spontaneously and swells through the perforation, and ultimately forms an almost completely homogenous clay core. It embeds the pipe which is left in the hole. Several tests were conducted in the laboratory and one field test was run in Stripa. They all showed that a gel soon fills the slot between the pipe and the confinement which had the form of metal pipes in the laboratory investigations. Subsequently, more clay migrates through the perforation and produces a stiff clay filling in the slot. The redistribution of minerals, leading ultimately to a high degree of homogeneity, can be described as a diffusion process. The rate of redistribution depends on the joint geometry and water flow pattern in the rock. In the rock with an average joint frequence of one per meter or higher, very good homogeneity and sealing ability of the clay are expected within a few months after the application of the plug. (author)

  10. Borehole sealing literature review of performance requirements and materials

    International Nuclear Information System (INIS)

    To ensure the safe disposal of nuclear wastes, all potential pathways for radionuclide release to the biosphere must be effectively sealed. This report presents a summary of the literature up to August 1982 and outlines the placement, mechanical property and durability-stability requirements for borehole sealing. An outline of the materials that have been considered for possible use in borehole sealing is also included. Cement grouts are recommended for further study since it is indicated in the literature that cement grouts offer the best opportunity of effectively sealing boreholes employing present technology. However, new and less well known materials should also be researched to ensure that the best possible borehole plugging system is developed. 78 refs

  11. Sealing of investigation boreholes, Phase 4 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Drawrite AB, Luleaa Technical University, Luleaa (Sweden); Ramqvist, Gunnar [El-Tekno AB, Figeholm (Sweden); Bockgaard, Niclas [Golder Associates, Goeteborg (Sweden); Ekman, Lennart [LE Geokonsult AB, Baelinge (Sweden)

    2011-09-15

    The report describes the outcome of Phase 4 of the project 'Sealing of investigation boreholes', which deals with 1) characterization and planning of borehole sealing, 2) performance and quality assessment, 3) sealing of large diameter holes, and 4) interaction of clay and concrete plugs. A specific goal was to find ways to characterize, plan and seal of boreholes so that their impact on the overall hydraulic performance of the repository rock can predicted and controlled. The work comprised selection of representative 'reference holes' at the Laxemar and Forsmark sites for development of a general programme for planning and simulating implementation of borehole plugging campaigns, considering also cost issues. A second aim was to define and quantify the role of seals in the reference holes for finding out how important sealing really is. A third was to test a practical way to seal large diameter boreholes and a fourth to find out how concrete matures and performs in contact with smectite clay. The study demonstrated, in conclusion, the need for developing techniques for preparing deep boreholes before lasting seals are installed in them, since poor sealing can short-circuit hydraulically important fracture zones intersected by the holes. The practically oriented sealing activities showed that the technique developed for tight sealing of large-diameter boreholes is practical and feasible. The issue of chemical stability was investigated by testing the performance and constitution of a plug consisting of CBI concrete in contact with smectite-rich seals for almost three years. This study showed that none of them underwent substantial degradation in this period of time, but chemical reactions and thereby generated changes in physical behaviour of the plug components had taken place, particularly in the clay. The rate of degradation is, however, not yet known. It was concluded from this study that it is suitable to carry out a corresponding

  12. Sealing of investigation boreholes, Phase 4 - Final report

    International Nuclear Information System (INIS)

    The report describes the outcome of Phase 4 of the project 'Sealing of investigation boreholes', which deals with 1) characterization and planning of borehole sealing, 2) performance and quality assessment, 3) sealing of large diameter holes, and 4) interaction of clay and concrete plugs. A specific goal was to find ways to characterize, plan and seal of boreholes so that their impact on the overall hydraulic performance of the repository rock can predicted and controlled. The work comprised selection of representative 'reference holes' at the Laxemar and Forsmark sites for development of a general programme for planning and simulating implementation of borehole plugging campaigns, considering also cost issues. A second aim was to define and quantify the role of seals in the reference holes for finding out how important sealing really is. A third was to test a practical way to seal large diameter boreholes and a fourth to find out how concrete matures and performs in contact with smectite clay. The study demonstrated, in conclusion, the need for developing techniques for preparing deep boreholes before lasting seals are installed in them, since poor sealing can short-circuit hydraulically important fracture zones intersected by the holes. The practically oriented sealing activities showed that the technique developed for tight sealing of large-diameter boreholes is practical and feasible. The issue of chemical stability was investigated by testing the performance and constitution of a plug consisting of CBI concrete in contact with smectite-rich seals for almost three years. This study showed that none of them underwent substantial degradation in this period of time, but chemical reactions and thereby generated changes in physical behaviour of the plug components had taken place, particularly in the clay. The rate of degradation is, however, not yet known. It was concluded from this study that it is suitable to carry out a corresponding investigation of the plugs

  13. Safety indicators in borehole disposal of sealed radioactive sources

    International Nuclear Information System (INIS)

    The Radioactive Waste Management Laboratory (RWML) at the Energy and Nuclear Research Institute of Sao Paulo, Brazil, is developing the concept of a geological repository adequate for the Brazilian inventory of disused sealed radioactive sources. Sealed sources are numbered to hundreds of thousands, have increasingly been used in industry as well as in medical applications in the last decades, and are believed to have a growing number of applications in the near future. The concept of repository under development is a borehole, drilled to a depth of some four hundred meters bellow ground surface in the crystalline bedrock, preferably in the same site of the national low-level waste disposal facility. In this paper, we present the work being carried out at RWML to identify safety indicators and explore their use as a tool to demonstrate the safety of a borehole disposal facility for disused sealed radioactive sources in Brazil. (author)

  14. Examination of simulated borehole specimens. Technical report

    International Nuclear Information System (INIS)

    The quality of the contact between portland cement grout and surrounding rock will be of prime importance if grout is used to seal boreholes for the isolation of nuclear waste. The contact will need to be tight and relatively impermeable. In the study reported herein, simulated borehole (SBH) specimens were prepared and tested in the laboratory. The specimens consisted of grout poured into a hole in sections of anhydrite rock core that had been grouted into a steel pipe to provide restraint. The study was largely devoted to investigating methods of avoiding artifacts during preparation of these SBH specimens for study of the grout-to-rock contact. The work was conducted and is reported in two parts. The first part was a study in which only large round SBH specimens (about 6 by 6 in.) were used, while the second also included some smaller round SBH specimens

  15. Borehole sealing. Final report, March 1, 1973--October 31, 1973

    International Nuclear Information System (INIS)

    A program to evaluate existing materials and techniques to permanently plug boreholes penetrating salt strata near prospective radioactive waste depository sites is described. A new subcontract No. 78X-33542C has been issued to seal a borehole near Lyons, Kansas, using the materials and techniques recommended in this report. It is recommended that the well be thoroughly cleaned including removing any casing penetrating the critical salt strata. Following this, any fluid-bearing zones should be grouted using the best grout available. Silica gel was recommended for porous zones backed up by Portland cement to seal fractures and vugs. Recommendations were made to use sulfate resistant Chem Comp or sulfate resistant regular Portland (Type V) as the primary sealing material in the areas where anhydrite strata are present such as the existing wells at Lyons, Kansas, or the prospective wells near Carlsbad, New Mexico. This would be modified to meet existing conditions such as salt saturated slurry through the salt strata or added powdered silica in the zones which might exceed 2300F at any time. A short epoxy plug was recommended at the top and bottom of the salt strata and a short Seal Ring plug at the base of any extensive water zones. Extensive water zones are not expected in the New Mexico area, however

  16. Borehole plugging telemetry system. Technical report

    International Nuclear Information System (INIS)

    This report summarizes the development of a through-the-earth electromagnetic communication system which was designed to demonstrate that a physical property could be measured deep in the earth and the data received at the surface by wireless telemetry. This system was configured to be placed in a borehole and sealed in place thus preventing the establishment of a pathway between a deep geologic nuclear waste repository and the biosphere. This report contains a detailed description of the downhole and wellhead telemetry electronics, the downhole sensor electronics, integrated system operation, test results, conclusions, and recommendations

  17. Ceramic Borehole Seals for Nuclear Waste Disposal Applications

    Science.gov (United States)

    Lowry, B.; Coates, K.; Wohletz, K.; Dunn, S.; Patera, E.; Duguid, A.; Arnold, B.; Zyvoloski, G.; Groven, L.; Kuramyssova, K.

    2015-12-01

    Sealing plugs are critical features of the deep borehole system design. They serve as structural platforms to bear the weight of the backfill column, and as seals through their low fluid permeability and bond to the borehole or casing wall. High hydrostatic and lithostatic pressures, high mineral content water, and elevated temperature due to the waste packages and geothermal gradient challenge the long term performance of seal materials. Deep borehole nuclear waste disposal faces the added requirement of assuring performance for thousands of years in large boreholes, requiring very long term chemical and physical stability. A high performance plug system is being developed which capitalizes on the energy of solid phase reactions to form a ceramic plug in-situ. Thermites are a family of self-oxidized metal/oxide reactions with very high energy content and the ability to react under water. When combined with engineered additives the product exhibits attractive structural, sealing, and corrosion properties. In the initial phase of this research, exploratory and scaled tests demonstrated formulations that achieved controlled, fine grained, homogeneous, net shape plugs composed predominantly of ceramic material. Laboratory experiments produced plug cores with confined fluid permeability as low as 100 mDarcy, compressive strength as high as 70 MPa (three times the strength of conventional well cement), with the inherent corrosion resistance and service temperature of ceramic matrices. Numerical thermal and thermal/structural analyses predicted the in-situ thermal performance of the reacted plugs, showing that they cooled to ambient temperature (and design strength) within 24 to 48 hours. The current development effort is refining the reactant formulations to achieve desired performance characteristics, developing the system design and emplacement processes to be compatible with conventional well service practices, and understanding the thermal, fluid, and structural

  18. Borehole, shaft, and tunnel sealing of rock repositories

    International Nuclear Information System (INIS)

    Precompacted blocks of Na bentonite powder absorb water and swell to several times their original size when exposed to low- and moderately saline water under unconfined conditions. On application in boreholes, shafts or tunnels, they can only undergo moderate swelling, which yields a homogeneous seal with high density and very low hydraulic conductivity. The swelling pressure exerted on the confining rock creates an intimate clay/rock contact and an effective mechanical rock support. By this, flow through the plugs and along the rock/bentonite interface is negligible and flow through the rock adjacent to the plugs is also diminished by self-sealing through penetration of clay into wider fractures and by the fracture-closing effect of the swelling pressure

  19. Permeameter studies of water flow through cement and clay borehole seals in granite, basalt and tuff

    International Nuclear Information System (INIS)

    Boreholes near a repository must be sealed to prevent rapid migration of radionuclide-contaminated water to the accessible environment. The objective of this research is to assess the performance of borehole seals under laboratory conditions, particularly with regard to varying stress fields. Flow through a sealed borehole is compared with flow through intact rock. Cement or bentonite seals have been tested in granite, basalt, and welded tuff. The main conclusion is that under laboratory conditions, existing commercial materials can form high quality seals. Triaxial stress changes about a borehole do not significantly affect seal performance if the rock is stiffer than the seal. Temperature but especially moisture variations (drying) significantly degrade the quality of cement seals. Performance partially recovers upon resaturation. A skillfully sealed borehole may be as impermeable as the host rock. Analysis of the influence of relative seal-rock permeabilities shows that a plug with permeability one order of magnitude greater than that of the rock results in a flow increase through the hole and surrounding rock of only 1-1/2 times compared to the undisturbed rock. Since a borehole is only a small part of the total rock mass, the total effect is even less pronounced. The simplest and most effective way to decrease flow through a rock-seal system is to increase the seal length, assuming it can be guaranteed that no dominant by-pass flowpath through the rock exists

  20. Final report of the borehole, shaft, and tunnel sealing test - Volume 1: Borehole plugging

    International Nuclear Information System (INIS)

    The Borehole Plugging Experiment comprised field tests of the sealing function and the practicality in handling and application of plugs consisting of segments of perforated metal casings filled with cylindrical blocks of highly compacted sodium bentonite. Preparative tests had shown that the clay swells out through the perforation and embeds the casings. The field tests demonstrated that even very long holes can be effectively sealed by such plugs and that the clay becomes very homogeneous and forms a tight contact with the rock in a relatively short time. By that the plugs become practically impervious and the flow along the clay/rock contact will be insignificant. The longevity of such plugs extends over several thousands years under the conditions that usually prevail in crystalline rock. (author) 8 refs., 37 figs., 8 tabs

  1. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    International Nuclear Information System (INIS)

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a high potential risk to workers and to the public. The IAEA has received numerous requests for assistance from Member States faced with the problem of safely managing disused sealed sources. The requests have related to both technical and safety aspects. Particularly urgent requests have involved emergency situations arising from unsafe storage conditions and lost sources. There is therefore an important requirement for the development of safe and cost-effective final disposal solutions. Consequently, a number of activities have been initiated by the IAEA to assist Member States in the management of disused sealed sources. The objective of this report is to address safety issues relevant to the disposal of disused sealed sources, and other limited amounts of radioactive waste, in borehole facilities. It is the first in a series of reports aiming to provide an indication of the present issues related to the use of borehole disposal facilities to safely disposal

  2. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Givens, C.A.; Carney, B.C. [IT Corp., Albuquerque, NM (United States)

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

  3. Experimental research on sealing of boreholes, shafts and ramps in welded tuff

    Energy Technology Data Exchange (ETDEWEB)

    Fuenkajorn, K. [Rock Engineering International, Tucson, AZ (United States)

    1996-04-01

    Laboratory and in-situ experiments have been conducted to determine the mechanical and hydraulic performance of cement borehole seals in densely welded Apache Leap tuff. Test results indicate that under saturated conditions, commercial expansive cement can provide good bond strength and adequate hydraulic performance for borehole seal under changing stress conditions. The cement seal should be installed at the intact portion of the opening, and should have a length-to-diameter ratio greater than four. Drying increases borehole plug permeability and decreases mechanical and hydraulic bonds at the plug-rock interface. In-situ testing indicates that installation procedure may significantly affect the cement plug performance.

  4. Experimental research on sealing of boreholes, shafts and ramps in welded tuff

    International Nuclear Information System (INIS)

    Laboratory and in-situ experiments have been conducted to determine the mechanical and hydraulic performance of cement borehole seals in densely welded Apache Leap tuff. Test results indicate that under saturated conditions, commercial expansive cement can provide good bond strength and adequate hydraulic performance for borehole seal under changing stress conditions. The cement seal should be installed at the intact portion of the opening, and should have a length-to-diameter ratio greater than four. Drying increases borehole plug permeability and decreases mechanical and hydraulic bonds at the plug-rock interface. In-situ testing indicates that installation procedure may significantly affect the cement plug performance

  5. Groundwater flow characterization in a fractured bedrock aquifer using active DTS tests in sealed boreholes

    Science.gov (United States)

    Coleman, Thomas I.; Parker, Beth L.; Maldaner, Carlos H.; Mondanos, Michael J.

    2015-09-01

    In recent years, wireline temperature profiling methods have evolved to offer new insight into fractured rock hydrogeology. Important advances in wireline temperature logging in boreholes make use of active line source heating alone and then in combination with temporary borehole sealing with flexible impervious fabric liners to eliminate the effects of borehole cross-connection and recreate natural flow conditions. Here, a characterization technique was developed based on combining fiber optic distributed temperature sensing (DTS) with active heating within boreholes sealed with flexible borehole liners. DTS systems provide a temperature profiling method that offers significantly enhanced temporal resolution when compared with conventional wireline trolling-based techniques that obtain a temperature-depth profile every few hours. The ability to rapidly and continuously collect temperature profiles can better our understanding of transient processes, allowing for improved identification of hydraulically active fractures and determination of relative rates of groundwater flow. The advantage of a sealed borehole environment for DTS-based investigations is demonstrated through a comparison of DTS data from open and lined conditions for the same borehole. Evidence for many depth-discrete active groundwater flow features under natural gradient conditions using active DTS heat pulse testing is presented along with high resolution geologic and geophysical logging and hydraulic datasets. Implications for field implementation are discussed.

  6. Rock damage induced by drilling: An experimental assessment of potential leakage around borehole seals

    International Nuclear Information System (INIS)

    The effective isolation of toxic or radioactive waste below ground requires that migration to the biosphere of unacceptable quantities of contaminants be eliminated. To accomplish this task, all shafts leading to repositories, repository chambers, exploratory boreholes and disposal boreholes used for waste injection must be sealed. It is the purpose of this study at the University of Arizona, which is funded by the US Nuclear Regulatory Commission, to evaluate the effectiveness of various borehole sealing techniques. As part of this study an evaluation is being made of the amount of cracking (damage) induced in the borehole wall by the drilling operation. The study of the damaged zone is of importance since it must be determined whether or not this zone should be considered as a flow path around the plug

  7. The assessment of borehole cement sealing characteristics by acoustic waveform analysis

    International Nuclear Information System (INIS)

    Acoustic waveform analysis has been used to provide a quantitative analysis of the effectiveness of cement grouting for sealing three adjacent boreholes drilled at Harwell, Oxon, as part of a research programme into the disposal of radioactive wastes into argillaceous formations. Results indicate that bonding at cement/casing and cement/formation interfaces would be inadequate for sealing a radioactive waste repository and the use of a backfilling material such as bentonite is advocated. (U.K.)

  8. Quantification of Natural Gradient Flow Using Active Fiber Optic DTS in Sealed Boreholes

    Science.gov (United States)

    Coleman, T. I.; Parker, B. L.; Munn, J. D.; Chalari, A.; Mondanos, M.

    2014-12-01

    Temperature has been used for many years to characterize flow in fractured rock systems. Fiber-optic distributed temperature sensing (DTS) was adopted by the oil/gas industry over two decades ago for monitoring processes in deep fractured rock environments. Improvements in DTS system resolutions, methodology advancements, and improved data processing techniques have caused recent popularity for shallow fractured rock hydrogeologic applications. A powerful advance in DTS methodology is the use of response data collected during active cable heating. When applied to borehole applications active heating creates a thermal disequilibrium in the aquifer system that enhances the detection of groundwater flow. Active DTS has been applied to open borehole environments; however, characterization methods based on open borehole measurements are limited in that only the effects of unnatural flow (i.e. vertical cross-connection and redistribution of flow creating local, induced flows) can be observed. To characterize natural gradient flow processes borehole effects need to be minimized.The literature shows borehole sealing using flexible impervious fabric liners creates a static water column in the well that eliminates the negative effects of cross-connection. Measurements in this sealed environment have been shown by others to be representative of natural gradient flow conditions, rather than the conditions created by the borehole short circuiting units or fractures with varying hydraulic head. A new method for flow system characterization using active DTS in sealed boreholes has been developed with excellent prospects for quantitation of natural gradient groundwater fluxes and related hydraulic properties. This project demonstrates the utility of using an analytical solution for calculating apparent thermal conductivities and natural gradient groundwater fluxes at depth-discrete intervals observed continuously along a borehole using active DTS. Groundwater flux data can then be

  9. Size influence on the sealing performance of cementitious borehole plugs

    International Nuclear Information System (INIS)

    Flow tests have been conducted on cement plugs with diameters of 158.8 mm and 196.9 mm, and length to diameter ratios of one, in boreholes in basalt blocks and in steel pipes. Expansion strains and curing temperatures have been monitored on cement plugs in boreholes in basalt blocks, in PVC and in steel pipes with diameters from 25.4 mm to 196.9 mm and length to diameter ratios of one and two. During permeability tests, basalt blocks have fractured, presumably due to water injection pressure, cement expansion and packer pressure. Falling head tests have been performed on some block fractures to study the influence of the complicated interaction between a cement borehole plug (e.g. swelling and shrinkage alternations) and the rock, as well as of the normal stress across the fracture, on the hydraulic conductivity of a fracture intersecting a plugged borehole. The hydraulic conductivity of the cement plugs in the steel pipes varies between 3.57 x 10-11 cm/min and 3.65 x 10-9 cm/min. Cement swelling tests remain inconclusive about size effects, primarily because of instrumentation problems. Cement curing temperatures increase from small to large diameter cement plugs

  10. New-Generation Sealing Slurries For Borehole Injection Purposes

    Science.gov (United States)

    Stryczek, Stanisław; Gonet, Andrzej; Wiśniowski, Rafał; Złotkowski, Albert

    2015-12-01

    The development of techniques and technologies thanks to which parameters of the ground medium can be modified makes specialists look for new recipes of geopolymers - binders for the reinforcing and sealing of unstable and permeable grounds. The sealing slurries are expected to meet a number of strict requirements, therefore it is important to find new admixtures and additives which could modify the fresh and hardened slurry. Special attention has been recently paid to the fluid ash - a by-product of the combustion of hard coals. However, the use of this additive is associated with the application of appropriate superplastifier. Laboratory analyses of rheological parameters of fresh sealing slurries and the ways of improving their liquidity by a properly selected third-generation superplastifier are presented in the paper. The slurries were based on Portland cement CEM I, milled granulated large-furnace slag and fly ash from fluidized-bed combustion of hard coal.

  11. The near-field programme and the tomography and borehole sealing projects

    International Nuclear Information System (INIS)

    The six projects described in this article have the following objectives: the aim of the Tomography Project is to investigate the applicability of this non-invasive technique over greater distances and to improve interpretation methods. The Borehole Sealing Project is designed to clarify the practical aspects of sealing horizontal and sub-horizontal boreholes with bentonite. It includes development and testing of equipment, actual sealing of boreholes and subsequent testing of the quality of the sealing. The focal points of the near-field programme (two-phase flow in fracture and shear zones, TPF; two-phase flow in fracture networks, ZPK; two-phase flow in the rock matrix, TPM; excavation disturbed zone, EDZ) are as follows: development of techniques for rock characterisation and investigation of two-phase flow properties in the near-field of tunnels and caverns, modelling two-phase flow parameters of fracture and matrix zones and modelling the mechanical and hydraulic properties of the excavation disturbed zone surrounding blasted and drilled tunnel sections. (author) 21 figs., 9 refs

  12. Design considerations for borehole and shaft seals for a nuclear fuel waste disposal vault

    International Nuclear Information System (INIS)

    The Canadian concept for the disposal of nuclear fuel waste proposes that the waste be emplaced in a vault at a depth of between 500 and 1000 m in plutonic rock. A number of shafts, for waste haulage, access and ventilation will connect the vault level directly to the ground surface. In addition, deep boreholes, drilled to characterize the region in which the vault is sited, will penetrate the vault horizon. After the period of vault operations, the shafts and boreholes, which provide the shortest flowpaths from the vault level to the biosphere or near-surface groundwater regime, must be sealed. A simplified flow chart for the seal design process is shown. The process is one of engineering design and involves an evaluation of appropriate materials and methods that will lead to design concepts that can be examined for performance. This paper describes a performance criterion for shaft and borehole seals for a nuclear fuel waste disposal vault, and discusses the progress made in the design of seals for the Canadian Nuclear Fuel Waste Management Program (CNFWMP)

  13. Analyses and field tests of the hydraulic performance of cement grout borehole seals

    International Nuclear Information System (INIS)

    Three tests are presented and analyzed in detail for determining the hydraulic properties of borehole seals as applicable to disposal of high-level radioactive wastes. Two consist of monitoring the rate of injection of water at constant pressure into an injection zone at one end of a seal and monitoring the collection rate or rate of flow into a free-draining collection zone at the other end. The third test is performed by shutting in the collection zone and monitoring the buildup in hydraulic head. One-dimensional and axisymmetric three-dimensional flow models are presented for analyzing test results. In the one-dimensional models, the seal is assumed to be a homogeneous and isotropic porous medium, and the rock is assumed to be impermeable. In the axisymmetric models, the seal and the surrounding rock mass are taken as homogeneous and isotropic porous media. The equation for saturated, confined ground-water flow is assumed to apply. The hydraulic properties of the seal are expressed by its hydraulic conductivity and specific storage. In the axisymmetric models, the conductivity and specific storage of the rock mass are included in the formulation. A fourth test, a tracer travel-time test, is presented as a means for detecting any high-velocity flow path through or around the seal. Detailed and specific recommendations are given for conducting borehole seal tests. In principle, these methods also should be applicable to testing shaft seals and tunnel dams. In practice, complications will be encountered for the implementation of the tests on a much larger scale, but these complications should be resolvable. 154 refs., 79 figs., 38 tabs

  14. Safety assessment of the disposal of sealed radiation sources in boreholes

    International Nuclear Information System (INIS)

    The Radioactive Waste Management Laboratory (RNML) at the Nuclear Energy Research Institute (NERI) in Sao Paulo, Brazil, is developing the concept of a repository for disused sealed radiation sources in a deep borehole. Several thousands disused sealed radiation sources are stored at NERI awaiting the decision on final disposal and tens of thousands are still under the possession of the licensees. A significant fraction of these sources are long-lived and will require final disposal in a geological repository. The purpose of this paper is to identify and discuss suitable safety assessment strategies for the repository concept and to illustrate a rational approach for a long-term safety assessment methodology. (author)

  15. In situ flow testing of a cement borehole seal in welded tuff

    International Nuclear Information System (INIS)

    The experimental determination of the hydraulic conductivities of cement borehole plugs in welded tuffs and the effects of field installation and in-situ environment is described. The field results are compared with those from related laboratory experiments which give hydraulic conductivity values nearly two orders of magnitude lower. This improved performance in sealing characteristics is brought about by the controlled installation procedures and conditions in the laboratory. Seal performance can be improved in the field by developing controlled emplacement techniques and careful evaluation of site conditions preparation prior to installing the plug. (4 figures, 1 table, 14 references) (UK)

  16. The sealing performance of bentonite/crushed basalt borehole plugs

    International Nuclear Information System (INIS)

    Mixtures of crushed rock and bentonite are considered for backfilling and sealing high-level nuclear waste repositories. Many variables affect the hydraulic conductivity of such mixtures, including the size and shape of the rock particles, method of mixing and emplacement, water content and density of the clay, and the weight ratio of rock to clay. Mixtures of crushed basalt and bentonite have been tested in two types of permeameters, 20 cm diameter stainless steel permeameters and 10 cm diameter PVC permeameters. Plugs were installed as a single lift or in many lifts; the water content of the clay ranged from air-dry to as high as 200%. Preliminary results show that a mixture of 75% crushed basalt and 25% bentonite has a hydraulic conductivity between 1 x 10-9 cm/s and 2.5 x 10-8 cm/s. In some cases, preferential flow paths have developed (possibly as a result of the montmorillonite washing out of the crushed rock matrix), giving hydraulic conductivities as high as 1 x 10-4 cm/s. Other ratios of rock to clay have similar bimodal results. The probability of failure is decreased by including a higher percentage of clay in the plug, crushing the rock finer, and evenly mixing the crushed rock and clay. 136 refs., 50 figs., 7 tabs

  17. Performance assessment of bentonite as a borehole seal when tested in situ in a medium-grained granite

    International Nuclear Information System (INIS)

    Commercial bentonite was tested in situ as a borehole seal using two 15.25 cm-long plugs emplaced in a 16.50 cm-diameter borehole. The borehole was located in a medium-grained granite in the Santa Catalina Mountains, near Tucson, Arizona. The hydraulic conductivity of the host rock was determined with pressure slug and constant pressure injection tests using straddle-packer assemblies to isolate the test interval. The hydraulic conductivity of the bentonite seals and seal-rock interfaces was estimated from observed pressure decays and volumes of water injected into the sealed test interval. The seals were emplaced in a two-plug configuration that provided for the collection of injection mass balance

  18. Sealing of 300 mm boreholes KXTT3 and KXTT4 at Aespoe HRL. Report of Subproject 3 of Borehole sealing Project

    International Nuclear Information System (INIS)

    Sealing of two moderately dipping 300 mm diameter holes that had been bored from a niche adjacent to the ramp in the Aespoe URL in conjunction with earlier geohydrological investigations (TRUE Project, Winberg et al. 2000) was successfully completed in early 2010. The work was preceded by a pilot test on the ground surface for investigating if a simple version of sealing by pressing down clay pellets into clay mud is feasible. The borehole was simulated by a steel tube that was filled with smectite mud in which a cage filled with clay pellets was moved down. The experience from this experiment was that the mud used was somewhat too stiff and that strong vibration significantly reduced its viscosity but not sufficiently much. The predicted average density at water saturation was 1,780 kg/m3 (dry density 1,240 kg/m3). The finally selected sealing method comprised casting of concrete plugs where the inflow of water was significant (up to 30 l/min), and to install precompacted blocks of smectite-rich clay where the rock was 'dry'. The finally matured clay plugs will have a density of around 2,000 kg/m3 (dry density 1,580 kg/m3) and a hydraulic conductivity of less than E-12 m/s, which is estimated to be at least one order of magnitude lower than the bulk conductivity of the surrounding rock mass (Pusch 2008). This provides excellent sealing of all parts of the holes deeper than about 1-2 m below the tunnel floor. Groundwater flow in the rock around the clay plugs can cause some minor erosion but this effect is deemed negligible considering the coagulating effect on released clay particles by the brackish Aespoe water. Inspection of the closed upper borehole ends showed accumulation of some very dilute mineral suspension after a few days. A careful analysis of the mineral content showed that it did not contain smectite particles, hence certifying that erosion of the clay plugs in the holes had not taken place. The particles were concluded to represent fracture minerals

  19. A new method to characterize hydraulic short-circuits in defective borehole seals.

    Science.gov (United States)

    Chesnaux, R; Chapuis, R P; Molson, J W

    2006-01-01

    A new approach has been developed to detect, characterize, and quantify hydraulic short-circuits in boreholes with faulty seals. The methodology, applicable to an aquifer-aquitard-aquifer system, involves a series of successive, constant-rate pumping tests in the lower aquifer while determining the leakage rate with a simultaneous nonreactive tracer test. During each pumping step, the tracer is injected under constant concentration and constant hydraulic head from a piezometer in the upper aquifer. If a seal defect exists, the tracer will follow the leak and will be recovered from the pumped water. The theoretical equations relate the leakage rate, the pumping rate, the concentration of the injected tracer, and the recovered concentration. Leakage rates can be determined for any pumping rate. The theory is tested using numerical analysis and a full-scale field test. PMID:16961489

  20. Full-scale borehole sealing test in anhydrite under simulated downhole conditions. Volume 1

    International Nuclear Information System (INIS)

    A full-scale borehole sealing test was conducted in anhydrite. The test was performed under the simulated in situ stress (4.83 MPa [700 psi] and temperature (300C) of a theoretical deposit overlying a nuclear waste repository. The borehole sealing material was an expansive grout formulated by the US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, under contract to the US Department of Energy. To evaluate and better understand the expansive nature of the grout, in situ pressure and temperature versus time histories were measured during the 29-day curing period and subsequent full-scale flow tests. Post-test microscopic and laboratory permeability tests were conducted on the grout and anhydrite. Data indicate the grout exothermic reaction was low (60C), with the expansive stresses approaching 2.55 MPa (370 psi) near the center, and 3.8 MPa (551 psi) at the interface, prior to transducer failure on day 17. The full-scale flow test conducted at the conclusion of the 29-day curing period resulted in large-scale flow. Megascopic post-test examination of the grout revealed channeling and apparent dissolution at the grout-anhydrite interface. Microscopic examination revealed voids within the grout, with laboratory tests showing a permeability of 10-6 darcys. Numerous fractures were evident in the anhydrite

  1. Assessment of the properties of disused sealed radioactive sources for disposal in a borehole facility

    International Nuclear Information System (INIS)

    Radioactive wastes arise from applications in which radioactive materials are used. Medicine, industries and agriculture are examples of areas where radioactive materials are used. Most of the radioactive materials used in nuclear applications are in the form of sealed radioactive sources (SRS). After a number of usages, the SRS may no longer be useful enough for its original purpose and will be considered as a disused sealed radioactive source (DSRS). DSRS are potentially dangerous to human health and the environment, and therefore important to manage them safely. Currently in Ghana, DSRS are collected and stored awaiting a final disposal option. There are ongoing plans to implement the Borehole Disposal of Disused Sealed Sources (BOSS) system in Ghana as a final disposal option. There are, however, concerns about the number of DSRS disposal packages that can safely be disposed in a narrow borehole underground in a long term without posing any harm to people and the environment. It is therefore necessary to assess the properties of DSRS that need to be placed into the borehole to determine the safety of this disposal option. For this study, 160 DSRS were selected from the DSRS inventory. The present activity, volume, A/D ratio and thermal output of all the DSRS were determined. The SIMBOD database tool was used to determine the number of capsules and disposal packages that will be required with respect to the DSRS registered into it. Also, verification measurements to confirm the DSRS inventory data were conducted. The assessment have shown that DSRS used in this study would require a total of seven (7) capsules. The estimated total activity of the disposal packages were below the waste acceptance criteria and the thermal output for each disposal package were also below the 50W limit. One borehole with an estimated length of 57 m will be safe to dispose the DSRS used in this study. The verification measurements confirmed the confirmed the DSRS inventory data. It

  2. Rock mass sealing: experimental assessment of borehole plug performance. Annual report, June 1983-May 1984

    International Nuclear Information System (INIS)

    This report describes experimental field and laboratory borehole plugging performance assessment studies that have been performed, completed, started, or planned during the period June 1, 1983-May 31, 1984. Results are given from field flow tests on three cement plugs installed in vertical boreholes in basalt and on one nearly horizontal cement plug. The horizontal plus seals the borehole very well, as does one of the vertical plugs. The initial hydraulic conductivity of the other two vertical field plugs has been relatively high, and remedial action is described. Laboratory simulations have been performed to study the influence of dynamic loading on cement plug performance, and no detrimental effects have been detected. Conversely, drying of cement plugs, especially over extended periods of time and at elevated temperatures does increase the hydraulic conductivity of the plugs severely, as well as reducing their bond strength along the plug-rock interface. Microscopic inspection, strength and flow tests on boreholes in basalt have been used to identify the characteristics of a drilling-induced damaged zone in basalt. While such a damaged zone exists, and has typical features (e.g., fracture density, size, location, orientation) determined by the drilling method and the rock characteristics, it is thin and not likely to be a preferential flowpath. A comprehensive suite of standard engineering characterization tests has been performed on seven commercial bentonites, complemented by flow tests on bentonite plugs, chemical analysis and swelling tests. Experimental designs are given for the study of size and of thermal effects on plug performance, and a few preliminary results are presented. Results are included from ongoing cement push-out tests and swelling measurements

  3. Full-scale borehole sealing test in anhydrite under simulated downhole conditions. Volume 2

    International Nuclear Information System (INIS)

    The large bench-scale permeability testing of anhydrite rock and a grout designed to act as a seal in contact with this rock was conducted at the Terra Tek, Inc. research facility in Salt Lake City, Utah. Pressurized flow of a dye-marked fluid from the borehole cavity of the test specimen was recorded at 45 psi (0.31 MPa) differential head pressure. Test parameters were altered and the flow recorded for differential pressures varying up to about 125 psi (0.86 MPa) in 25 psi (0.17 MPa) intervals with a constant confining pressure. In all cases, the fluid flow was observed to increase. The dimensions of the test specimen and test conditions correspond to an observed permeability of between 0.84 and 1.5 millidarcys, based upon the grout plug area. Post-test examination of the rock/grout core indicated that the flow was principally interfacial flow. However, marked flow paths within the grout were also noted. The development of numerous heavily dye-marked ''washout'' regions in the grout at the interface suggests that these channels acted as the main conduits for fluid flow from the borehole. A tentative explanation for the development of the large conduits was the formation of bubble trains in the paste. Similar behavior was observed in a laboratory-scale grout formulation at the Pennsylvania State University that approximated the rheologic properties and composition of the tested grout, TT84A. The performance of the melamine-based superplasticizer used in the formulation is questioned regarding its sealing ability in anhydrite

  4. Justification Of The Use Of Boreholes For Disposal Of Sealed Radiological Sources

    International Nuclear Information System (INIS)

    Soon there will be only 14 states in two compacts that are able to dispose of Low Level Waste (LLW): the Northwest and Rocky Mountain compact with disposal options in Richland, Washington, and the Atlantic compact with disposal options in Barnwell, South Carolina. How do states not in one of the two compacts dispose of their LLW? The Off-Site Source Recovery Project can take possession and dispose of some of the unwanted transuranic sources at the Waste Isolation Pilot Plant (WIPP). However, there will be no path forward for states outside of the two compacts for disposal of their non-transuranic LLW. A solution that has been much discussed, debated and researched, but has not been put into wide scale practice, is the borehole disposal concept. It is the author's position that companies that drill and explore for oil have been disposing of sources in borehole-like structures for years. It should be noted that these companies are not purposely disposing of these sources, but the sources are irretrievable and must be abandoned. Additionally, there are Nuclear Regulatory Commission (NRC) regulations that must be followed to seal the well that contains the lost and abandoned source. According to the NRC Event Notification Reports database, there were a minimum of 29 reports of lost and abandoned sources in oil wells between December 1999 and October 2006. The sources were lost at depths between 2,018-18,887 feet, or 600-5,750 meters. The companies that are performing explorations with the aid of sealed radiological sources must follow regulation 10 CFR Part 39. Subsection 15 outlines the procedures that must be followed if sources are determined to be irretrievable and abandoned in place. If the NRC allows and has regulations in place for oil companies, why can't states and/or companies be allowed to dispose of LLW in a similar fashion?

  5. Justification Of The Use Of Boreholes For Disposal Of Sealed Radiological Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zarling, John [Los Alamos National Laboratory; Johnson, Peter [Los Alamos National Laboratory

    2008-01-01

    Soon there will be only 14 states in two compacts that are able to dispose of Low Level Waste (LLW): the Northwest and Rocky Mountain compact with disposal options in Richland, Washington, and the Atlantic compact with disposal options in Barnwell, South Carolina. How do states not in one of the two compacts dispose of their LLW? The Off-Site Source Recovery Project can take possession and dispose of some of the unwanted transuranic sources at the Waste Isolation Pilot Plant (WIPP). However, there will be no path forward for states outside of the two compacts for disposal of their non-transuranic LLW. A solution that has been much discussed, debated and researched, but has not been put into wide scale practice, is the borehole disposal concept. It is the author's position that companies that drill and explore for oil have been disposing of sources in borehole-like structures for years. It should be noted that these companies are not purposely disposing of these sources, but the sources are irretrievable and must be abandoned. Additionally, there are Nuclear Regulatory Commission (NRC) regulations that must be followed to seal the well that contains the lost and abandoned source. According to the NRC Event Notification Reports database, there were a minimum of 29 reports of lost and abandoned sources in oil wells between December 1999 and October 2006. The sources were lost at depths between 2,018-18,887 feet, or 600-5,750 meters. The companies that are performing explorations with the aid of sealed radiological sources must follow regulation 10 CFR Part 39. Subsection 15 outlines the procedures that must be followed if sources are determined to be irretrievable and abandoned in place. If the NRC allows and has regulations in place for oil companies, why can't states and/or companies be allowed to dispose of LLW in a similar fashion?

  6. Implementation of the Borehole Disposal Project for Disused Sealed Radioactive Sources in the Philippines

    International Nuclear Information System (INIS)

    The Philippine Nuclear Research Institute currently manages radioactive waste generated from the various applications of radioactive materials in medicine, industry and research through its centralized treatment and storage facilities on site. Treated and conditioned wastes are temporarily stored in simple, roofed, above ground concrete bunkers. To date, a potential site for the co-location of near surface and the borehole disposal of disused sealed sources (BOSS) disposal facility has been identified for detailed investigation with the assistance of the IAEA. The preferred site is located in the northern part of the Philippines and has about 40 ha for potential development. A drilling programme that aimed to investigate further the geologic, hydrogeologic and hydrologic properties of the site has been carried out. Based on the current results of investigation, the design concept of the proposed BOSS facility as well as preliminary radionuclide transport calculations have been conducted. The paper presents the current status and initiatives that have been implemented for the borehole disposal concept of high activity sources in the Philippines. It focuses on the results of the drilling programme, the proposed design for consideration and the initial safety assessment of the site resulting from the disposal of major radionuclides from the waste inventory. (author)

  7. Full-scale borehole sealing test in salt under simulated downhole conditions. Volume 1

    International Nuclear Information System (INIS)

    A full-scale borehole sealing test was conducted in Avery Island diapiric salt. The test was performed under simulated in situ stress (15.86 MPa [2300 psi]) and temperature (300C) of a theoretical salt nuclear waste repository. To evaluate the sealing performance and the effect of the grout on the salt, temperature and pressure versus time histories of the grout were measured during the 28-day curing period and subsequent full-scale flow tests. Post-test microscopic tests, physical properties tests, and laboratory permeability tests were conducted on the grout and host rock. Data indicate the grout exothermic reaction was low (0C) with the expansive stresses in the grout exceeding 11.0 MPa (1595 psi) near the center and 24.8 MPa (3600 psi) at the grout/salt interface. The full-scale flow test conducted over 91 hours resulted in a non-steady-state flow, decreasing with time to approximately 10-6 darcys. Megascopic and microscopic examinations revealed fluid flow along a small area of the grout/salt interface and through adjacent salt. Laboratory data show a salt permeability in the order of 10-3 and grout at 10-6 darcys. Physical and permeability data indicate the salt has anisotropic properties

  8. Closure of the Spent Fuel Repository in Forsmark - Studies of alternative concepts for sealing of ramp, shafts and investigation boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Gylling, Bjoern [SKB AB, Stockholm (Sweden); Luterkort, David [SGI, Stockholm (Sweden); Johansson, Roland [Miljoe- och Energikonsult AB, Ekeroe (Sweden)

    2012-12-15

    In March 2011, SKB submitted applications under the Nuclear Activities Act and the Environmental Code for the construction and operation of a final repository for spent nuclear fuel in Forsmark. An important supporting document for the application under the Nuclear Activities Act was the SR-Site safety assessment. As a part of the work with the application and as background material for SR-Site, SKB prepared production reports, including the closure production report. The closure production report presented definitions, requirements and design premises, a reference design and the initial state for repository closure. SR-Site evaluated the reference design and related design premises that were presented in the closure production report. SR-Site thereby concluded that the design premises on which the reference design were based are adequate. Relaxing the requirements would require additional sensitivity analyses focusing on the hydraulic properties of the access, main and transport tunnels. SR-Site further concluded that the reference design could likely be simplified without violating the current design premises. Furthermore, additional simplifications could probably be made if the design premises could be revised. This has been studied in the project 'Closure - concept studies', whose results are presented in this report. SR-Site also evaluated the reference design for investigation boreholes that is presented in the production report. The evaluation showed that the impact of improper borehole seals is very moderate. Further, SR-Site concludes that the current design premises are appropriate but possibly too strict, since even open boreholes seem to have a limited impact on the groundwater flow in the repository. Since it might be difficult to inspect the outcome of the current design of borehole sealing, it could be of interest to assess whether a solution that may result in higher effective permeability of the borehole seals would provide sufficiently

  9. Closure of the Spent Fuel Repository in Forsmark - Studies of alternative concepts for sealing of ramp, shafts and investigation boreholes

    International Nuclear Information System (INIS)

    In March 2011, SKB submitted applications under the Nuclear Activities Act and the Environmental Code for the construction and operation of a final repository for spent nuclear fuel in Forsmark. An important supporting document for the application under the Nuclear Activities Act was the SR-Site safety assessment. As a part of the work with the application and as background material for SR-Site, SKB prepared production reports, including the closure production report. The closure production report presented definitions, requirements and design premises, a reference design and the initial state for repository closure. SR-Site evaluated the reference design and related design premises that were presented in the closure production report. SR-Site thereby concluded that the design premises on which the reference design were based are adequate. Relaxing the requirements would require additional sensitivity analyses focusing on the hydraulic properties of the access, main and transport tunnels. SR-Site further concluded that the reference design could likely be simplified without violating the current design premises. Furthermore, additional simplifications could probably be made if the design premises could be revised. This has been studied in the project 'Closure - concept studies', whose results are presented in this report. SR-Site also evaluated the reference design for investigation boreholes that is presented in the production report. The evaluation showed that the impact of improper borehole seals is very moderate. Further, SR-Site concludes that the current design premises are appropriate but possibly too strict, since even open boreholes seem to have a limited impact on the groundwater flow in the repository. Since it might be difficult to inspect the outcome of the current design of borehole sealing, it could be of interest to assess whether a solution that may result in higher effective permeability of the borehole seals would provide sufficiently good

  10. ESDRED Temporary Sealing Technology Final Technical Report

    International Nuclear Information System (INIS)

    The work in the ESDRED In te grated Project Module 4, Temporary Sealing (using low pH cement) Technology, consisted first of designing a low pH cement formulation and then of preparing several concrete designs suitable for the construction of sealing plugs and for rock support using shot crete techniques. Regarding sealing plugs, a short plug was constructed at Aspo in Sweden and it was very quickly loaded to failure i.e. slippage by applying water pressure to one face. A second, full scale plug was subsequently constructed at Grimsel test site in Switzerland. It was loaded using the swelling pressure created by bentonite blocks which were artificially hydrated. At time of writing the targeted pressure on the plug was not reached. As the saturation of the bentonite is taking longer than expected the partners involved agreed to continue with the saturation of the bentonite blocks and the related data monitoring beyond the ESDRED Project. The studies on low-pH shot crete for rock sup port were based on available recipes of low-pH concrete mixtures for use in a repository. Pilot and full scale tests were carried out in Sweden and in Switzerland. (Author) 5 refs

  11. Seal design alternatives study

    International Nuclear Information System (INIS)

    This report presents the results from a study of various sealing alternatives for the WIPP sealing system. Overall, the sealing system has the purpose of reducing to the extent possible the potential for fluids (either gas or liquid) from entering or leaving the repository. The sealing system is divided into three subsystems: drift and panel seals within the repository horizon, shaft seals in each of the four shafts, and borehole seals. Alternatives to the baseline configuration for the WIPP seal system design included evaluating different geometries and schedules for seal component installations and the use of different materials for seal components. Order-of-magnitude costs for the various alternatives were prepared as part of the study. Firm recommendations are not presented, but the advantages and disadvantages of the alternatives are discussed. Technical information deficiencies are identified and studies are outlined which can provide required information

  12. Seal design alternatives study

    Energy Technology Data Exchange (ETDEWEB)

    Van Sambeek, L.L. [RE/SPEC Inc., Rapid City, SD (US); Luo, D.D.; Lin, M.S.; Ostrowski, W.; Oyenuga, D. [Parsons Brinckerhoff Quade & Douglas, Inc., San Francisco, CA (US)

    1993-06-01

    This report presents the results from a study of various sealing alternatives for the WIPP sealing system. Overall, the sealing system has the purpose of reducing to the extent possible the potential for fluids (either gas or liquid) from entering or leaving the repository. The sealing system is divided into three subsystems: drift and panel seals within the repository horizon, shaft seals in each of the four shafts, and borehole seals. Alternatives to the baseline configuration for the WIPP seal system design included evaluating different geometries and schedules for seal component installations and the use of different materials for seal components. Order-of-magnitude costs for the various alternatives were prepared as part of the study. Firm recommendations are not presented, but the advantages and disadvantages of the alternatives are discussed. Technical information deficiencies are identified and studies are outlined which can provide required information.

  13. The design and performance of seals for controlling radionuclide migration along boreholes, shafts and adits

    International Nuclear Information System (INIS)

    Requirements for sealing an underground radioactive waste disposal facility are assessed, based on proposals for a deep repository in hard rock. Information is reviewed on the properties and performance characteristics of seals, of a range of materials, design and emplacement techniques, and for different industry end-uses. The ability to predict long-term seal performance is also addressed. Critical aspects of seal design and characteristics are proposed and recommendations are made for their performance testing. (author)

  14. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    CERN Document Server

    International Atomic Energ Agency. Vienna

    2003-01-01

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a ...

  15. Selection of technological parameters in borehole mining production by technical deep drilling and hydroexploitation

    OpenAIRE

    Mitrovic Vladimir; Pinka Ján; Dimitrijevic Bojan

    2004-01-01

    This paper shows the estimate technological parameters for borehole hydro-production of sand by technical deep drilling slim well differently diameters, where are determinate calculation of radius of jet for selects hydro-monitor, the effect of hydro-caving, caving capacity, hydro-transport of pulp and drawings of the most important parts of necessary equipment for exploitation at the mining field exemplified by experimental borerhole hydro-mining of underlying quartz sand at surface open pit...

  16. Influence of degree of saturation on the borehole sealing performance of an expansive cement grout

    International Nuclear Information System (INIS)

    The strength measures of expansive cement grout borehole plugs cast in welded tuff cylinders is investigated as a function of the degree of saturation of the plugged rock cylinder and of borehole size. Details on experimental procedure regarding rock cylinder and cement grout preparation, sample curing conditions, experimental apparatus, sample loading, mechanical characterization of the rock, and cement grout, along with procedures for the determination of the sample saturation assuming uniform saturation, and strength measures are presented. The extrapolated axial strengths to a plug radius of 100 mm show that the more saturated samples show higher strengths as compared to the dry samples. The strength measures decrease with increasing plug radius, obeying a power law

  17. Preliminary investigation on the chemical response of cementitious grouts used for borehole sealing in geologically stored CO2

    Science.gov (United States)

    Giannoukos, Konstantinos; Hall, Matthew; Rochelle, Christopher; Milodowski, Antoni; Rigby, Sean

    2014-05-01

    The successful geological storage of CO2 in underground reservoirs aims to immobilize the injected CO2 stream in the form of secondary minerals through reaction with primary minerals or pore fluids in the host rock formations. Injection wells and other boreholes within the reservoir represent a major potential pathway for CO2 to leak back to the surface. Therefore, the stability of well seals is a critical factor for the risk assessment of existing and the design of new CO2 injection wells. Cement-based grouts emplaced within the steel borehole liner, and between the liner and the rock formation, must seal the well against leakage, both during the CO2 injection stage and for a significant time after well abandonment, to allow for the CO2 to be immobilized though rock-water interaction in the reservoir. The injected super-critical CO2 (scCO2) experiences temperatures up to 180oC and pressures at depths greater than 800m, and when dissolved in rock formation waters create chemically reactive species that could impact the stability of cement seals. In an attempt to evaluate the impact of scCO2-saturated fluids in class G oilfield grouts, batch experiments at 80bar and 60oC/ 120oC were carried for pure cement and cement-steel cylindrical samples immersed in a realistic formation porewater composition. Destructive and healing features were observed by means of backscattered scanning electron microscopy (BSE) and energy-dispersive X-ray microanalysis (EDS) elemental mapping; both phenomena were evident in Ca leaching from, and deposition on, the surface of the samples, respectively. Structural cement components like Si appear to have retained their original particle-like shape in the regions affected by the CO2 in the 60oC experiments, but their preservation at 120oC is vaguer. The liberation of Ca2+ from the hydrated cement particles (indicated by local decrease of the Ca/Si ratio), and the reactions with the incoming carbonate/bicarbonate anions seem to evolve

  18. Axial strength of cement borehole plugs in granite and basalt. Topical report on rock mass sealing

    International Nuclear Information System (INIS)

    This report describes experimental and theoretical studies of the axial strength of cement plugs installed in boreholes drilled coaxially in granite and in basalt cylinders. Experimental work has consisted of loading the cement plugs to failure while measuring loads and displacements. Such tests have been performed on borehole plugs with a diameter and a length ranging from 2.5 cm to 10 cm. Results from over one hundred experiments show that the strength is high, sufficient for anticipated loads at repository depths, but very variable, complicating the design of very short plugs. Significant residual strength (thirty to fifty percent of the peak strength) is observed. A frictional model of the interface shear strength, tau = c + sigma(tan phi), in combination with the assumption of an exponential shear stress distribution or plug-rock load transfer, provides the simplest realistic model for plug strength characterization. The integrated strength thus calculated compares moderately well with experimental results. An extensive review is given of more sophisticated analysis procedures that should be of value for general plug design applications. Generic analyses and their implications for plug performance are included. Variability of experimental results complicates the assessment of their direct detailed applicability. 115 references, 70 figures, 19 tables

  19. Final report of the borehole, shaft, and tunnel sealing test. Vol.2

    International Nuclear Information System (INIS)

    Shaft sealing by use of highly compacted bentonite was investigated in a 14 m long shaft in which two plugs were constructed with a central sand-filled central space for injecting water. A first reference test with concrete plugs was followed by a main test in which the plug material consisted of blocks of highly compacted sodium bentonite powder. In the latter test, the outflow from the injection chamber was only a few percent of that with the concrete plugs, which demonstrates the excellent sealing properties of the clay. The main effect was that practically no water flow took place along the rock/clay interface. The longevity of smectite clay in crystalline rock is sufficient to make bentonite plugs operative for several thousand years. (authors)

  20. Sealing performance of bentonite and bentonite/crushed rock borehole plugs

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, S.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (United States). Dept. of Mining and Geological Engineering

    1992-07-01

    This study includes a systematic investigation of the sealing performance of bentonite and bentonite/crushed rock plugs. American Colloid C/S granular bentonite and crushed Apache Leap tuff have been mixed to prepare samples for laboratory flow testing. Bentonite weight percent and crushed tuff gradation are the major variables studied. The sealing performance assessments include high injection pressure flow tests, polyaxial flow tests, high temperature flow tests, and piping tests. The results indicate that a composition to yield a permeability lower than 5 {times} 10{sup {minus}8} cm/s would have at least 25% bentonite by weight mixed with well-graded crushed rock. Hydraulic properties of the mixture plugs may be highly anisotropic if significant particle segregation occurs during sample installation and compaction. Temperature has no significant effect on the sealing performance within the test range from room temperature to 600{degree}C. Piping damage to the sealing performance is small if the maximum hydraulic gradient does not exceed 120 and 280 for samples with a bentonite content of 25 and 35%, respectively. The hydraulic gradients above which flow of bentonite may take place are deemed critical. Analytical work includes the introduction of bentonite occupancy percentage and water content at saturation as two major parameters for plug design. A permeability model is developed for the prediction of permeability in clays, especially in view of the difficulties in obtaining this property experimentally. A piping model is derived based on plastic flow theory. This piping model permits the estimation of critical hydraulic gradients at which flow of bentonite takes place. The model can also be used to define the maximum allowable pore diameter of a protective filter layer.

  1. Full-scale borehole sealing test in salt under simulated downhole conditions. Volume 2

    International Nuclear Information System (INIS)

    Large-scale testing of the permeability by brine of a salt/grout sample designed to simulate a borehole plug was conducted. The results of these tests showed that a quantity of fluid equivalent to a permeability of 3 microdarcys was collected during the course of the test. This flow rate was used to estimate the smooth bore aperture. Details of this test ware presented in Volume 1 of this report. This report, Volume 2, covers post-test characterization including a detailed study of the salt/grout interface, as well as determination of the physical/mechanical properties of grout samples molded at Terra Tek, Inc. at the time of the large-scale test. Additional studies include heat of hydration, radial stress, and longitudinal volume changes for an equivalent grout mixture

  2. Borehole and facility sealing activities for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    The design of the Waste Isolation Pilot Plant (WIPP) proposed for a site in southeastern New Mexico includes a working level at 2150 ft with four shafts to the surface. About 70 holes have been drilled for site and mineral exploration in the 19,000-acre area being considered. Only eight of the holes penetrate below the repository level, however, and only four, all of them more than 1 mile from the underground workings, penetrate into the underlying aquifers. A development program is in progress at Sandia National Laboratories to provide adequate seals for these penetrations. Performance assessments indicated that effective permeabilities as high as 10 darcies do not result in doses to maximally exposed individuals greater than 0.01% of natural background. Materials have been developed, with emphasis on cementitious grouts, to match the WIPP lithologies. the grouts were evaluated in the laboratory, both alone and in contact with rock specimens, and in field tests. Results indicated that effective permeabilities of plugs measured in field tests (about 50 μdarcies), although still small, can be 100 times greater than the basic grout and 10 times greater than those observed in samples with the same rocks in the laboratory. Two major field tests, ERDA-10 and the Bell Canyon Test, were carried out, and a test series is planned which includes removal of an existing plug emplaced in 1976 - a 26-in.-diameter hole was plugged, but with a central tube for diagnosing seal performance - and numerous tests in the experimental facility within the WIPP. 24 references, 9 figures, 3 tables

  3. Sealing of exploratory boreholes in clay reactivity of ordinary portland cement (OPC) grouts and various lithologies from the Harwell research site. Volume 1

    International Nuclear Information System (INIS)

    As part of a research programme on the disposal of radioactive wastes in clay, Ordinary Portland Cement (OPC) has been used in the completion of boreholes on the Harwell Research Site, AERE, Oxfordshire. The purpose of this study was to examine the effect of OPC and the alkaline pore fluids generated during its setting on the various lithological types encountered in the boreholes. To facilitate this, samples of core representing the various rock types were selected and cement-rock composites were prepared from these in the laboratory to simulate the borehole cements. After a curing period of 15 months the cores and associated cement plugs were examined for any signs of reactivity or bonding. The best cement-rock bonding was shown by naturally well-cemented sandstone and limestone lithologies. Although no significant chemical reaction was seen to have occurred between OPC and rock, the OPC appears able to bind onto the rock surface because of the rigidity of the rock surface. Therefore, the best cement rock bonding and seal with OPC may be expected in the limestones of the Great Oolite Group, Inferior Oolite Group and parts of the Corallian beds. Because of the reactivity of OPC towards certain lithologies a better borehole seal in such a sedimentary sequence might be achieved using a bentonite backfill in those parts of the sequence which either react with or bond only weakly to OPC

  4. Technical findings related to Generic Issue 23: Reactor coolant pump seal failure

    International Nuclear Information System (INIS)

    Reactor coolant pumps contain mechanical seals to limit the leakage of pressurized coolant from the reactor coolant system to the containment. These seals have the potential to leak, and a few have degraded and even failed resulting in a small break loss of coolant accident (LOCA). As a result, ''Reactor Coolant Pump Seal Failure,'' Generic Issue 23 was established. This report summarizes the findings of a technical investigation generated as part of the program to resolve this issue. These technical findings address the various fact-finding issue tasks developed for the action plan associated with the generic issue, namely background information on seal failure, evaluation of seal cooling, and mechanical- and maintenance-induced failure mechanisms. 46 refs., 15 figs., 14 tabs

  5. Task Order 22 – Engineering and Technical Support, Deep Borehole Field Test. AREVA Summary Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Mark A. [AREVA Federal Services, Charlotte, NC (United States)

    2016-01-19

    Under Task Order 22 of the industry Advisory and Assistance Services (A&AS) Contract to the Department of Energy (DOE) DE-NE0000291, AREVA has been tasked with providing assistance with engineering, analysis, cost estimating, and design support of a system for disposal of radioactive wastes in deep boreholes (without the use of radioactive waste). As part of this task order, AREVA was requested, through a letter of technical direction, to evaluate Sandia National Laboratory’s (SNL’s) waste package borehole emplacement system concept recommendation using input from DOE and SNL. This summary review report (SRR) documents this evaluation, with its focus on the primary input document titled: “Deep Borehole Field Test Specifications/M2FT-15SN0817091” Rev. 1 [1], hereafter referred to as the “M2 report.” The M2 report focuses on the conceptual design development for the Deep Borehole Field Test (DBFT), mainly the test waste packages (WPs) and the system for demonstrating emplacement and retrieval of those packages in the Field Test Borehole (FTB). This SRR follows the same outline as the M2 report, which allows for easy correlation between AREVA’s review comments, discussion, potential proposed alternatives, and path forward with information established in the M2 report. AREVA’s assessment focused on three primary elements of the M2 report: the conceptual design of the WPs proposed for deep borehole disposal (DBD), the mode of emplacement of the WP into DBD, and the conceptual design of the DBFT. AREVA concurs with the M2 report’s selection of the wireline emplacement mode specifically over the drill-string emplacement mode and generically over alternative emplacement modes. Table 5-1 of this SRR compares the pros and cons of each emplacement mode considered viable for DBD. The primary positive characteristics of the wireline emplacement mode include: (1) considered a mature technology; (2) operations are relatively simple; (3) probability of a

  6. Technical position on postclosure seals, barriers, and drainage system in an unsaturated medium

    International Nuclear Information System (INIS)

    The purpose of this technical position is to provide guidance with respect to the current Department of Energy sealing and drainage concepts for a geologic repository in an unsaturated medium. Section 2.0 of the technical position provides a listing of the 10 CFR 60 regulations which are applicable to the design, testing, selection of materials and placement of the postclosure seals, barriers and drainage system. Staff position statements and the corresponding discussions are presented in Sections 3.0 and 4.0, respectively. Technical positions are organized according to the following topics: (1) design consideration, (2) site characterization considerations, (3) performance confirmation considerations, and (4) performance analysis considerations. 6 refs

  7. Seals

    International Nuclear Information System (INIS)

    An aperture through a biological shield is sealed by a flexible sheath having a beading at one end located on an annular member slidable in the aperture such that the beading bears in sealing engagement against the sides of the aperture. The annular member is retained by a retractable latch and can be rejected by pushing it out of the aperture using a replacement annular member with a replacement sheath thereon to butt against the annular member to be rejected. The replacement annular member may be mounted on a tubular device having an outer co-axial member for operating the latch when the replacement annular member butts against the annular member to be rejected. Applications include effecting a seal between a remote handling equipment and a wall through which the equipment extends. (author)

  8. Reference design and operations for deep borehole disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  9. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  10. Microscopic properties of drilling sealing materials and their influence on the sealing performance of boreholes%钻孔密封材料的微观特性及其对密封性能的影响

    Institute of Scientific and Technical Information of China (English)

    倪冠华; 林柏泉; 翟成; 李全贵; 李贤忠; 郑春山

    2013-01-01

    This article reports the microscopic properties of polyurethane and expansive cement jelly composite material (PD composite material) as well as their impacts on the sealing performance of boreholes.Simulated experiment of the coal mine drilling sealing process was carried out,and FEI QuantaTM 250 environmental scanning electron microscopy was used for analyzing the microstructure of polyurethane and PD composite material,together with the combination,penetration and development of these two materials with the coal wall.It is found that the permeability coefficient of PD composite material is approximately 1/48 of that of polyurethane.Polyurethane has a cellular networkz structure and larger internal porosity,and there exists a blank area between polyurethane and the hole wall.However,PD composite material has a smaller internal porosity,and the tight structure makes the combination of PD composite material with the hole wall more compact.Compared with polyurethane,PD composite material is easier to overcome gas pressure and water resistance and then gradually infiltrate at the fracture zone around the borehole.Moreover,PD composite material can continue to develop in residual cracks and holes around the borehole.%研究了钻孔密封材料聚氨酯和膨胀水泥冻复合材料(PD复合材料)的微观特性,并考察了其对钻孔密封性能的影响作用.实验模拟了煤矿井下钻孔封孔过程,利用FEI QuantaTM 250环境扫描电子显微镜对聚氨酯、PD复合材料本身,以及两者与煤壁的结合、渗透和发展进行微观对比和分析.PD复合材料的渗透系数约为聚氨酯瓦斯渗透性系数的1/48.聚氨酯为蜂窝网状结构,内部孔隙较大,与孔壁结合处存在空白区域;PD复合材料结构严实,内部孔隙极小,在孔壁处与煤体结合密实.PD复合材料比聚氨酯更容易克服钻孔周围裂隙区内瓦斯压力、水锁效应等各种阻力的作用,在钻孔周围裂隙内逐渐渗透,且其自身

  11. Development of the Borehole Disposal Concept

    International Nuclear Information System (INIS)

    The Nuclear Energy Corporation of South Africa (Necsa) initiated the Borehole Disposal Concept (BDC) with a view to improving radioactive waste management practices in Africa. An IAEA Technical Cooperation project was launched to investigate the technical feasibility and economic viability of a borehole for the disposal of disused sealed radioactive sources. Phase III of the project was completed by the end of 2004, and the main objective of this phase was to demonstrate the technical feasibility of the concept by means of a practical demonstration. The disposal concept consists of a 260 mm diameter borehole drilled to a depth of up to 100 m in which stainless steel disposal containers are emplaced and backfilled with cement. Each disposal container contains a source within a stainless steel capsule within a containment barrier. Included in the terms of reference of Phase III were the design and the evaluation of the disposal concept. The evaluation included container materials, backfill materials and a generic post-closure safety assessment. The post-closure safety assessment and the associated derivation of activity limits showed that, through the use of multiple physical and chemical barriers, the BDC provides an appropriate degree of long term safety. Furthermore, the safety of the disposal concept is not reliant on an extended period of institutional control, and owing to its small 'footprint', the likelihood of direct human intrusion into the borehole is small. An international peer review team positively assessed the technical feasibility, economic viability and overall safety of the concept, and thus concluded the development phase of the project. The Member States of the African Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (AFRA) have decided to proceed to Phase IV of the project with the main aim to implement the borehole disposal technology. (author)

  12. Radioactive waste disposal: testing and control for setting of plugging and sealing materials in reduced scale models, in boreholes or in shaft excavations

    International Nuclear Information System (INIS)

    In the case of an underground disposal of radioactive waste, the free space between the storage containers and the rock embedment must be backfilled in order to restore both mechanical and thermal continuity of the dug out material and to form a physico-chemical barrier against the diffusion into the subsoil of the radionucleides which may be released by the possible failure of a container. The aim of this research program is to formulate a hydraulic binder based sealing material, whose rheological properties at fresh state allow an easy placing and whose mechanical and physico-chemical properties at hardened state guarantee the effectiveness of the impervious barrier. A first part, done in laboratory, pointed out the formulations to be tested on scale models. These models simulate a storage in vertical shafts (high level radioactive waste) and in galleries (medium level radioactive waste), show the efficiency of placing techniques and the behaviour of the sealing submitted to the heat generated by the waste. The sorptive mortar PETRISOL, patented by SOLETANCHE, brings over a solution meeting not only the technical requirements but also the public expectations as far as environmental protection is concerned. 13 figs.; 14 tabs

  13. Research project MAW and HTR fuel element test storage in boreholes (MHV project). Emplacement and borehole sealing techniques (EBT part-project). Final report on project phase October 1, 1989 - December 31, 1992

    International Nuclear Information System (INIS)

    The paper documents the working results of the third project phase from 1.10.89 to 31.12.92. At the beginning, the atmosphere in the repository borehole during the operational and post-operational phase is described. The borehole atmosphere is decisively influenced by gas and humidity releases from the waste forms and the solid rock salt, by the propagation of gases in the unfilled part of the borehole and in the part backfilled with salt grit, and by the permiabilities of the borehole lock and the solid bedrock. Hydrogen gas may be oxidized by an addition agent. The reference concept of borehole storage is the embedding of the waste forms in salt grit. The salt grit backfill required therefore is characterized, and pressure distribution in the backfill during storing of the forms in the borehole is modelled. Finally the flame extinguishing effect of salt grit is described. Safety considerations and a draft concept of a borehole backfill container complete the work of this project phase. (orig./HP)

  14. Cross-section seals for underground cavities and boreholes under special consideration of ultimate disposal of radioactive waste products. Pt. 4

    International Nuclear Information System (INIS)

    The characteristics of the most important sealing materials for cross-section seals within the multiple barrier design are compiled: Clay, clay/sand mixtures, bitumen and asphalt. Bitumen and asphalts have very good characteristics with regard to corrosion restistance, ageing, solubility, adhesion, sorption characteristics and sealing effect. Experimental and theoretical investigations show that all requirements can be fulfilled by asphalt selection and construction technology, i.e. rheological parameters, solid sedimentation, pressure transmission and losses through annular flow. (orig.)

  15. Technical know-how relevant to planning of borehole investigation for fault characterization

    Science.gov (United States)

    Mizuno, T.; Takeuchi, R.; Tsuruta, T.; Matsuoka, T.; Kunimaru, T.; Saegusa, H.

    2011-12-01

    As part of the national R&D program for geological disposal of high-level radioactive waste (HLW), the broad scientific study of the deep geological environment, JAEA has established the Mizunami Underground Research Laboratory (MIU) in Central Japan as a generic underground research laboratory (URL) facility. The MIU Project focuses on the crystalline rocks. In the case of fractured rock, a fault is one of the major discontinuity structures which control the groundwater flow conditions. It is important to estimate geological, hydrogeological, hydrochemical and rock mechanical characteristics of faults, and then to evaluate its role in the engineering design of repository and the assessment of long-term safety of HLW disposal. Therefore, investigations for fault characterization have been performed to estimate its characteristics and to evaluate existing conceptual and/or numerical models of the geological environment in the MIU project. Investigations related to faults have been conducted based on the conventional concept that a fault consists of a "fault core (FC)" characterized by distribution of the faulted rocks and a "fractured zone (FZ)" along FC. With the progress of investigations, furthermore, it is clear that there is also a case in which an "altered zone (AZ)" characterized by alteration of host rocks to clay minerals can be developed around the FC. Intensity of alteration in AZ generally decreases with distance from the FC, and AZ transits to FZ. Therefore, the investigation program focusing on properties of AZ is required for revising the existing conceptual and/or numerical models of geological environment. In this study, procedures for planning of fault characterizations have been summarized based on the technical know-how learnt through the MIU Project for the development of Knowledge Management System performed by JAEA under a contract with the Ministry of Economy, Trade and Industry as part of its R&D supporting program for developing geological

  16. Radioactive sealed sources: Reasonable accountability, exemption, and licensing activity thresholds -- A technical basis

    International Nuclear Information System (INIS)

    Perhaps owing to their small size and portability, some radiation accidents/incidents have involved radioactive sealed sources (RSSs). As a result, programs for the control and accountability of RSSs have come to be recommended and emplaced that essentially require RSSs to be controlled in a manner different from bulk, unsealed radioactive material. Crucially determining the total number of RSSs for which manpower-intensive radiation protection surveillance is provided is the individual RSS activity above which such surveillance is required and below which such effort is not considered cost effective. Individual RSS activity thresholds are typically determined through scenarios which impart a chosen internal or external limiting dose to Reference Man under specified exposure conditions. The resultant RSS threshold activity levels have meaning commensurate with the assumed scenario exposure parameters, i.e., if they are realistic and technically based. A review of how the Department of Energy (DOE), the International Atomic Energy Agency (IAEA), and the Nuclear Regulatory Commission (NRC) have determined their respective accountability, exemption, and licensing threshold activity values is provided. Finally, a fully explained method using references readily available to practicing health physicists is developed using realistic, technically-based calculation parameters by which RSS threshold activities may be locally generated

  17. Cleaning of boreholes

    International Nuclear Information System (INIS)

    In terms of long-term safety it is a risk that the boreholes can eventually function as short-circuits between the repository and ground surface. Therefore sealing of investigation boreholes is an important issue for the long- term safety of high-level nuclear waste repositories. In order to seal a borehole properly, the conditions of the borehole have to meet certain predetermined requirements. One of the requirements is that no instruments or materials endangering the plugging operation or the long-term function of the sealing materials, are allowed to be left in the borehole. Sometimes drilling equipment will be left in the hole or it cannot be recovered from the hole with the given constraints of time, cost and resources in spite of attempts. Additionally various measurements may be carried out in the holes after the drilling has been completed and measuring devices may get stuck in holes. Consequently cleaning of the borehole is carried out as an essential activity before sealing can be implemented. There are two common reasons identified for the drill strings to get stuck in holes. First the drill string may get stuck due to acute drilling problems. The second case is where rods are left as casing in a hole either based on the structure of the upper part of the hole or in order to support the hole. To remove the drilling or measuring equipment lost in a borehole, special techniques and professional skill must be applied. Removing measuring equipment from a hole is often demanding and time consuming work. A vital part of the cleaning operation is planning the work in advance. In order to make the plan and to select the suitable methods it is important to know the condition of the stuck material. It is also important to know the exact depth where the equipment are stuck and to have an estimate of the reasons why they have got stuck. It is also very important to know the correct dimensions of the equipment or drill string before commencing the cleaning work

  18. Drip Sealing Grouting of Tunnels in Crystalline Rock: Conceptualisation and Technical Strategies

    International Nuclear Information System (INIS)

    A conceptual model of the groundwater hydraulic conditions around the tunnel contour in ancient brittle crystalline rocks has been developed and verified. The general aim has been to reach an understanding of the groundwater conditions in and close to the tunnel roof where dripping takes place and to propose technical and practical strategies for waterproofing. Dripping is accompanied by ice growth and icicle formation in cold regions, creating additional problems such as shotcrete fall-outs, icicle fall-outs, damage to vehicles, damage to trains, etc. The methodology for the development of the conceptual model is based mainly on transmissivity determinations from short-duration hydraulic tests and analyses of the connectivity of the fracture structure by means of semi-variogram analysis. The determination of the dimensionality of the flow in the fractures has also been found to be essential in order to describe the conductive system. This conceptual model describes the fracture systems as a combination of transmissive patches (2D-flow fractures) connected by less pervious channels (1D-flow fractures). It provides an understanding of the heterogeneity and connectivity of the fracture network and thus the groundwater conditions, not only in the roof but also around the tunnel contour. The pre-excavation grouting design process used in the tunnelling projects followed a structured approach and the evaluation showed that the grouting design reduced the inflow and fulfilled the environmental demands. However, dripping remained, making its characterisation very important when proposing a possible solution for its control. It is proposed that the remaining dripping comes from a channelised system that has been left unsealed and which would be extremely difficult to intersect with future boreholes, as well as from some ungrouted fractures with inconvenient orientations. Geomembrane lining and post-excavation grouting are possible solutions, although particular attention

  19. Semi-technical scale experiments proofed the functionality of a multilayer hydraulic sealing system in horizontal alignment

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Geotechnical barriers in deep geological disposal systems comprise buffer, backfill and drift or shaft sealing. The hydraulic sealing element of drift and shaft sealing systems is commonly a monolithic construction of compacted bentonite or a compacted bentonite/sand mixture. Hydration of the bentonite determines performance of the hydraulic sealing element. Preferential pathways due to inhomogeneities gained during construction or around sensors result in inhomogeneous moisture transport and reduce sealing of geotechnical barriers. Furthermore a sudden fluid entry with high hydraulic pressure might cause fraction of the hydraulic sealing and enhanced water flow. An innovative multilayer sealing system of bentonite and sandwiched equipotential layers (SANDWICH) supports homogeneous swelling independent of formation water (Nueesch et al., 2002). Functionality was demonstrated with semi-technical scale experiments in vertical and horizontal alignment (Koniger et al., 2008, Emmerich et al., 2009). Objective of the third semi-technical scale experiment HTV-3 in horizontal alignment was to prove functionality of the multilayer sealing system under extreme conditions. Two semi-technical scale experiments (diameter 0.8 m and height 1.8 m) set up as shaft and drift, in vertical (HTV-1) and horizontal (HTV-2) alignment, respectively, proofed the functionality of set up and scaling of SANDWICH sealing system under the inflow of a rock salt brine of 1.15 g/cm3. In HTV-3 thickness of most sealing segments (DS) and equipotential segments (ES) layers was reduced to 150 mm. Together with a fast rise of liquid input pressure to 100 bar within 16 days and three initial pressure peaks of 16 to 26 bar in the first two days this experiment was intended to proof the stability of the set up even under extreme conditions. Possible inhomogeneities that might occur during in-situ underground installation were simulated by installation of

  20. Repository seals requirements study

    International Nuclear Information System (INIS)

    The Yucca Mountain Site Characterization Project, managed by the Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) is conducting investigations to support the Viability Assessment and the License Application for a high-level nuclear waste repository at Yucca Mountain, Nevada. The sealing subsystem is part of the Yucca Mountain Waste Isolation System. The Yucca Mountain Site Characterization Project is currently evaluating the role of the sealing subsystem (shaft, ramp and exploratory borehole seals) in achieving the overall performance objectives for the Waste Isolation System. This report documents the results of those evaluations. This report presents the results of a repository sealing requirements study. Sealing is defined as the permanent closure of the shafts, ramps, and exploratory boreholes. Sealing includes those components that would reduce potential inflows above the repository, or that would divert flow near the repository horizon to allow vertical infiltration to below the repository. Sealing of such features as emplacement drifts was not done in this study because the current capability to calculate fracture flow into the drifts is not sufficiently mature. The objective of the study is to provide water or air flow performance based requirements for shafts, ramps, and exploratory boreholes located near the repository. Recommendations, as appropriate, are provided for developing plans, seals component testing, and other studies relating to sealing

  1. Repository seals requirements study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-03

    The Yucca Mountain Site Characterization Project, managed by the Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) is conducting investigations to support the Viability Assessment and the License Application for a high-level nuclear waste repository at Yucca Mountain, Nevada. The sealing subsystem is part of the Yucca Mountain Waste Isolation System. The Yucca Mountain Site Characterization Project is currently evaluating the role of the sealing subsystem (shaft, ramp and exploratory borehole seals) in achieving the overall performance objectives for the Waste Isolation System. This report documents the results of those evaluations. This report presents the results of a repository sealing requirements study. Sealing is defined as the permanent closure of the shafts, ramps, and exploratory boreholes. Sealing includes those components that would reduce potential inflows above the repository, or that would divert flow near the repository horizon to allow vertical infiltration to below the repository. Sealing of such features as emplacement drifts was not done in this study because the current capability to calculate fracture flow into the drifts is not sufficiently mature. The objective of the study is to provide water or air flow performance based requirements for shafts, ramps, and exploratory boreholes located near the repository. Recommendations, as appropriate, are provided for developing plans, seals component testing, and other studies relating to sealing.

  2. Borehole Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature derived from boreholes drilled into the Earth crust. Parameter keywords describe what was measured in this data set. Additional summary...

  3. Nuclear waste vault sealing

    International Nuclear Information System (INIS)

    A nuclear waste vault must be designed and built to ensure adequate isolation of the nuclear wastes from human contact. Consequently, after a vault has been fully loaded, it must be adequately sealed off to prevent radionuclide migration which may be provided by circulating groundwater. Vault sealing entails four major aspects, i.e.: (a) vault grouting; (b) borehole sealing; (c) buffer packing; and (d) backfilling. Of particular concern in vault sealing are the physical and chemical properties of the sealing material, its long-term durability and stability, and the techniques used for its emplacement. Present sealing technology and sealing materials are reviewed in terms of the particular needs of vault sealing. Areas requiring research and development are indicated

  4. Repository seals requirement study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-03

    The Yucca Mountain Site Characterization Project, managed by the Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) is conducting investigations to support the Viability Assessment and the License Application for a high-level nuclear waste repository at Yucca Mountain, Nevada. The sealing subsystem is part of the Yucca Mountain Waste Isolation System. The Yucca Mountain Site Characterization Project is currently evaluating the role of the sealing subsystem (shaft, ramp and exploratory borehole seals) in achieving the overall performance objectives for the Waste Isolation System. This report documents the results of those evaluations. The objective of the study is to provide water or air flow performance based requirements for shafts, ramps, and exploratory boreholes located near the repository. Recommendations, as appropriate, are provided for developing plans, seals component testing, and other studies relating to sealing.

  5. Meeting the Technical, Medical and Financial Challenges of Damages Caused by Radioactive Sealed Sources

    International Nuclear Information System (INIS)

    Sealed sources are used extensively in a number of fields, including industry, oil exploration activities, research, medicine and agriculture. Despite excellent records over the past 50 years, accidents involving radioactive sources occur. The paper is aimed at reviewing their implications as well the liability for damages arising from them. (author)

  6. Simulation of Mixing Eveness of Two - component Polyurethane Borehole Sealing Material by CFD Technique%聚氨酯封孔材料双液混合均匀度CFD模拟

    Institute of Scientific and Technical Information of China (English)

    成艳英; 林柏泉; 郝志勇; 高亚斌; 李飞; 代华明; 于俊洋

    2012-01-01

    Polyurethane is one of the most widely used material in borehole sealing. The two - component polyurethane must be mixed first in the static mixer before pumping into the drill hole. There. is no doubt that the mixing quality of polyurethane is very important to the sealing quality of various drillings. A mixing effect evaluation of uneven degree and sample variance through the mathematical meth- ods was established. Based on the previous studies, this paper designed a kind of special static mixer for mixing polyurethane, and car- ried on the optimization of the static mixer's structure by investigating the mixing effect of polyurethane through Fluent numerical simula- tion software.%聚氨酯材料是目前煤矿钻孔密封应用最广泛的材料之一。双液聚氨酯在用封孔泵注入钻孔前,先要在静态混合器中混合,其混合效果对于聚氨酯的封孔质量来说非常重要。利用数学方法建立了基于混合不均匀度和样本方差的混合效果评价指标,在前人研究的基础上,设计了一种适合聚氨酯封孔材料混合的静态混合器。同时运用Fluent数值模拟软件,考察聚氨酯在混合器内的混合效果,进而对静态混合器的结构参数进行优化。

  7. Deep Borehole Field Test Research Activities at LBNL

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsang, Chin-Fu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kneafsey, Timothy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Borglin, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piceno, Yvette [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andersen, Gary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nakagawa, Seiji [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nihei, Kurt [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Doughty, Christine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reagan, Matthew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-19

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterized by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.

  8. Seals and Sealing Techniques

    Science.gov (United States)

    1972-01-01

    Developments by the aerospace industry in seals and sealing techniques are announced for possible use in other areas. The announcements presented are grouped as: sealing techniques for cryogenic fluids, high pressure applications, and modification for improved performance.

  9. Borehole stability in densely welded tuffs

    Energy Technology Data Exchange (ETDEWEB)

    Fuenkajorn, K.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (United States). Dept. of Mining and Geological Engineering

    1992-07-01

    The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs.

  10. Borehole stability in densely welded tuffs

    International Nuclear Information System (INIS)

    The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs

  11. Seals and sealing handbook

    CERN Document Server

    Flitney, Robert K

    2014-01-01

    Seals and Sealing Handbook, 6th Edition provides comprehensive coverage of sealing technology, bringing together information on all aspects of this area to enable you to make the right sealing choice. This includes detailed coverage on the seals applicable to static, rotary and reciprocating applications, the best materials to use in your sealing systems, and the legislature and regulations that may impact your sealing choices. Updated in line with current trends this updated reference provides the theory necessary for you to select the most appropriate seals for the job and with its 'Failur

  12. Alternative technical summary report for immobilized disposition in deep boreholes: Immobilized disposal of plutonium in coated ceramic pellets in grout without canisters, Version 4.0. Fissile materials disposition program

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.

    1996-08-23

    This paper summarizes and compares the immobilized and direct borehole disposition alternatives previously presented in the alternative technical summary. The important design concepts, facility features and operational procedures are first briefly described. This is followed by a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

  13. Alternative technical summary report for immobilized disposition in deep boreholes: Immobilized disposal of plutonium in coated ceramic pellets in grout without canisters, Version 4.0. Fissile materials disposition program

    International Nuclear Information System (INIS)

    This paper summarizes and compares the immobilized and direct borehole disposition alternatives previously presented in the alternative technical summary. The important design concepts, facility features and operational procedures are first briefly described. This is followed by a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition

  14. Closure and Sealing Design Calculation

    Energy Technology Data Exchange (ETDEWEB)

    T. Lahnalampi; J. Case

    2005-08-26

    The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post

  15. Closure and Sealing Design Calculation

    International Nuclear Information System (INIS)

    The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not

  16. Refurbishing the seals of the H2S compressors in the isotopic exchange installations at the Heavy Water Reprocessing Plant. Technical solutions for replacing liquid seals by dry seals

    International Nuclear Information System (INIS)

    An analysis of the present sealing system in the H2S compressors showed that the risk of accidental hydrogen sulfide escape into the atmosphere is high in case of a seal oil pressure loss. At the same time there exist drawbacks occurring even in normal regime of functioning among which one can mention: - relatively high losses of oil occur, part of the oil being carried away by the compressors and released into the isotopic exchange columns where the water counter current flow produces a foaming that reduces the column processing capacity; - part of the sealing oil leaks reaches the final product, the heavy water, where from it must be removed by chemical procedures; - the installations adjacent to the sealing system are relatively sophisticated and require relatively high expenses for exploitation and maintenance. The classical sealing systems using sealing rings, sleeves, labyrinths, etc, cannot be used since their safe working range is exceeded due to either driving shaft rotational speed, or to the increase of its diameter, or else to an increase of the speed of motion of moving parts relative to the fix parts. The sealing systems with magnetic liquids are rather sophisticated and expensive while in case of electric supply loss they are completely unsafe, because their sealing capacity vanishes. The materials used for sealing gaskets limit their application only to the cases when the relative motion of the moving pieces is low or vanishing what happens only at shut down or failure situations. To prevent these drawbacks of the present seal system in the H2S compressors of the isotopic exchange columns and having in view the limitations of the currently used sealing systems a new system of sealing was conceived and designed on the basis of the patent titled 'Sealing Installation and Procedure' recorded by OSIM under No. A/0315/10.04.2003. The new system can be built as a single or double stage each of them having in turn a dynamic and a static sub-stage. The

  17. Deep Heat Mining Project - Technical report on the Otterbach 2 geothermal test borehole in Basel; Technischer Bericht Geothermie-Sondierbohrung Otterbach 2, Basel

    Energy Technology Data Exchange (ETDEWEB)

    Haering, M.O.

    2001-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes the borehole that has been driven into the underlying crystalline rock of the Rhine valley near Basle. This work has been carried out within the framework of the 'Deep Heat Mining' project. The 2,755 metre deep borehole provides geological information essential for the realisation of a proposed geothermal power station using the 'Hot Dry Rock' process. The boring of the test borehole is described. The results obtained from samples taken from the test borehole and the measurements made in it are presented, including details on geological formations, temperature, gas measurements and rock strain values. The author is of the opinion that the chances of finding temperatures of at least 200 {sup o}C in a depth of 5 km - as foreseen in the 'Deep Heat Mining' project - can be considered as being quite high.

  18. Low Cost, Durable Seal

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  19. Sealed source and device design safety testing. Volume 4: Technical report on the findings of Task 4, Investigation of sealed source for paper mill digester

    International Nuclear Information System (INIS)

    This report covers the Task 4 activities for the Sealed Source and Device Safety testing program. SwRI was contracted to investigate a suspected leaking radioactive source that was installed in a gauge that was on a paper mill digester. The actual source that was leaking was not available, therefore, SwRI examined another source. SwRI concluded that the encapsulated source examined by SwRI was not leaking. However, the presence of Cs-137 on the interior and exterior of the outer encapsulation and hending tube suggests that contamination probably occurred when the source was first manufactured, then installed in the handling tube

  20. Technical Discussion on Borehole Measurement in Surface Deep Hole Bench Blasting%露天深孔台阶爆破炮孔测量技术探讨

    Institute of Scientific and Technical Information of China (English)

    郝亚飞; 周桂松; 黎勇; 刘庆; 周宇

    2015-01-01

    The inclination and depth of borehole are important factors to ensure blasting effect in the surface deep hole bench blasting. The workload of traditional measurement methods about borehole is extensive,which becomes a short board of digital blasting construction. Aiming at the above problems,the measurement method of artificial tape,sound wave and laser are discussed respectively based on borehole measurement experiment,including test principle,advantages and disadvantages,a-dapted condition and improvement measures of the three borehole measurement methods. The measurement methods based on sound wave and laser have the potential improvement and application space,and it can provide reference for the development of digital borehole measure in surface deep hole bench blasting.%在露天深孔台阶爆破中,炮孔的倾角和深度是保证爆破效果的重要因素,而传统炮孔测量方法工作量巨大,成为数字化爆破施工发展的短板。针对上述问题,并基于炮孔测量试验,分别论述了人工皮尺、声波、激光3种炮孔测量方法,包括3种炮孔测量方法的测试原理、优缺点、适应条件及相应的改进措施。其中基于声波和激光的炮孔测量方法具有潜在的改进和应用空间,可以为露天深孔台阶爆破数字测孔技术的发展提供借鉴。

  1. Inventory and Radionuclide Data for Borehole Disposal Facility

    International Nuclear Information System (INIS)

    The inventory of the Disused Sealed Radioactive Sources or DSRS in Waste Technology Development Centre is currently managed by using Microsoft Excel. All of the important information of the of DSRS including the type of radionuclide, activities with reference dates, the last user that transferred the DSRS to the WasTeC (as a Waste Management Centre of Nuclear Malaysia), manufacturer, type and model of the devices and serial number were recorded in the spread sheet form and safely record in an authorized file. However, due to some of constrain, a better system is considered to manage the inventory in an effective manner. Therefore, an Inventory Management Database System has been developed through a technical collaboration project between WasTeC and Information Technology (IT) Unit, Nuclear Malaysia to manage the inventory data efficiently. Radioactive waste characterization should be performed to ensure that all of the radioactive waste that will be placed in borehole is completely documented. Safety assessment of the waste management strategies and plans for the operators should be verified by the regulatory body. The effort in completing the identification process for the related information such as DSRS source dimension is the key parameter of the inventory management process which will enable the first screening to be done in the point of view for safety assessment aspect critically in the development of borehole disposal facility in Malaysia. (author)

  2. Effect of Stresses and Strains of Roadway Surrounding Rocks on Borehole Airtightness

    Directory of Open Access Journals (Sweden)

    WU Wei

    2016-02-01

    Full Text Available At present, many high gas and outburst mines have poor gas drainage effects. An important reason influencing the gas drainage effect is a poor hole-sealing effect. Most studies on gas drainage borehole sealing focus on local and foreign borehole sealing methods, borehole sealing equipment, and borehole sealing materials. Numerical simulations of initial drilling sealing depth are insufficient because studies on this subject are few. However, when the initial sealing depth of the borehole is not chosen reasonably, air can enter the gas drainage drill hole through the circumferential crack of roadway surrounding rocks under the influence of suction pressure of the drainage system. This phenomenon ultimately affects the hole-sealing effect. To improve the drilling hole sealing of gas drainage boring, we deduced the expression formulas of the crushing zone, plastic zone, and elastic zone around the coal-seam floor stone drift and conducted a stress–strain analysis of the coal-seam floor stone drift of the 2145 working surfaces of the Sixth Coal Mine of Hebi Coal Mine Group Company by using theoretical analysis, numerical simulation, and on-scene verification. Finally, we obtain the initial drilling sealing depth, which is a main contribution of this study. The results prove the following. The performed hole-sealing process with an initial drilling sealing depth of 8 m has a gas drainage efficiency of 55%. Compared with the previous 6.8 m initial drilling sealing depth with a gas drainage efficiency of less than 30%, which was adopted by the mine, the initial sealing depth of 8 m chosen in the numerical simulation is reasonable and conforms to the actual situation on the spot. Therefore, the initial drilling sealing depth chosen in the numerical simulation will produce practical and effective guidance to study the field hole-sealing depth.

  3. On Boreholes and PBO Borehole Strain

    Science.gov (United States)

    Gladwin, M. T.; Mee, M. W.

    2003-12-01

    Borehole tensor strainmeters (GTSM) installed in Australia and California have established a baseline of data spanning more than twenty years. The current baseline of data allows characterisation of a moderate number of instruments in a range of very different environments in a way which defines reasonable performance expectations for the upcoming PBO deployments. A generic understanding of effects which result from the process of installation of the instrument in a stressed rock mass emerges. This indicates that, provided due allowance is made for experimentally determined borehole recovery effects, the contribution of borehole strain meters more than adequately fills the observational gap between high stability/long term geodetic measurements of strain and strain rates and high resolution/high frequency seismic observations of earth deformation processes. The various strain relief processes associated with the installation procedures and borehole recovery effects associated with pre-existing stress fields will be documented. Procedures for calibration of the total borehole inclusion and for progressive removal of effects due to rock anisotropy and visco-elastic creep of the grout and rock close to the borehole from far field tectonic effects will be defined and illustrated with examples. Observed deviations from these processes will be shown to be small and consistent with otherwise observed or implied fault motions. Full details of these borehole induced processes are, however, difficult to determine in the early years following installation, particularly if there is significant tectonic activity at the time. Once quantified for each site, the effects can be robustly removed from data streams.

  4. Emerging Sealing Technologies Development

    Science.gov (United States)

    2005-01-01

    Under this Cooperative Agreement, the objective was to investigate several emerging sealing technologies of interest to the Mechanical Components Branch of National Aeronautics and Space Administration Glenn Research Center at Lewis Field (NASA GRC). The majority of the work conducted was to support the development of Solid Oxide Fuel Cells for application to aeronautic auxiliary power units, though technical investigations of interest to other groups and projects were also conducted. In general, accomplishments and results were periodically reported to the NASA Technical Monitor, the NASA GRC Seal Team staff, and NASA GRC project management. Several technical reports, journal articles, and presentations were given internally to NASA GRC and to the external public.

  5. Site study plan for EDBH [Engineering Design Boreholes] No. 1 and 2: Revision 1

    International Nuclear Information System (INIS)

    This site study plan describes the Engineering Design Boreholes 1 and 2 field activities to be conducted during early stages of Site Characterization at the Deaf Smith County site, Texas. The field program has been designed to provide data useful in addressing information/data needs resulting from federal/state/local regulations and repository program requirements. A borehole will be drilled at the centerline of each of the planned exploratory shaft locations. The subsurface rock and fluids will be sampled as the boreholes are advanced to total depth of about 2600 ft. Continuous rock core will be taken below the base of the Dockum Group. Hydrologic testing will occur in units thought to be water bearing and in units of particular interest for shaft seals. Field methods/tests are chosen that provide the best or only means of obtaining the required data. The Salt Repository Project (SRP) Networks specify the schedule under which the program will operate. Drilling will not begin until after site ground-water baseline conditions have been established. The Technical Field Services Contractor is responsible for conducting the field program of drilling and testing. Samples and data will be handled and reported in accordance with established SRP procedures. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 28 refs., 10 figs., 4 tabs

  6. High-density support matrices: Key to the deep borehole disposal of spent nuclear fuel

    OpenAIRE

    Gibb, F.G.F.; McTaggart, N.A.; Travis, K.P.; Burley, D; Hesketh, K.W.

    2008-01-01

    Deep (4–5 km) boreholes are emerging as a safe, secure, environmentally sound and potentially cost-effective option for disposal of high-level radioactive wastes, including plutonium. One reason this option has not been widely accepted for spent fuel is because stacking the containers in a borehole could create load stresses threatening their integrity with potential for releasing highly mobile radionuclides like 129I before the borehole is filled and sealed. This problem can be overcome by u...

  7. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  8. VAK III. Seals and sealing system

    International Nuclear Information System (INIS)

    This report presents the VAK III seals and sealing system, which have been used over a period of two years at the Kahl nuclear facility (Federal Republic of Germany), where field tests and feasibility studies were conducted in order to offer a possible solution for the sealing of LWR fuel assemblies. It has been prepared with the aim of an assessment study to be done at the IAEA. It gives all characteristics and technical descriptions for: the sealing principle, the seal construction, the operating tools, the data processing, the drawings, the publications related to that seal. The main points of progress are: the Strong Random Internal Defects (STRID) incorporated in the seals, allowing the obtention of a good signature stability; the Integrity Check on the Seal Status (broken or not) obtained through a decisive mechanical improvement: the Double Breakage Integrity Check (DOBRIC) and with a better ultrasonic evidence of that status; the provision of new function tools, allowing the performance of Identity Measurements in dry conditions (which means also at the manufacturer plant) or in deeper water (wet storage); the study and development of a new JRC VAK 45 Compact Instrument Box, in which all the measuring functions can be grouped and incorporating an autonomous Minicomputer offering to the Inspection the possibility of performing, on the spot, Correlation and Decision processes. The general benefit of such a feasibility study should be to convince the potential users that such a Safeguards Sealing System can be studied for slightly - or largely - different other applications, provided that the Basic and Operating Functions required to the system be clearly defined, possibly after a common agreement would be stated

  9. Borehole seismic modeling

    Science.gov (United States)

    Zhen, Tao

    In many borehole seismic experiments, the velocity of the tube wave is higher than that of the surrounding rock shear wave. This fast tube wave creates a strong conical shear wave in the surrounding rock, similar to the Mach wave in supersonic aviation and the Cherenkov radiation in electrodynamics. Many geophysicists have tried to utilize the conical signal in VSP (vertical seismic profiling) and cross borehole data interpretation, using quasi static approximations to model the borehole effect. Two popular quasi static approximations are: the effective source array method for source borehole modeling and the squeeze strain method for receiver borehole modeling. These quasi static approximations are sensible as they qualitatively conform to Hueygen's principle and the typical wavelength of a VSP or a cross borehole seismic experiment is much larger than the borehole radius. However, they have not been quantitatively benchmarked against other non approximation method such as the frequency wave number method. The frequency wave number method is a rigorous, non approximation method for modeling straight boreholes without lengthwise variation. The boreholes may consist of many coaxial, homogeneous and axially symmetric shells. In this thesis, the results of the quasi static approximations are compared to the results obtained from the frequency wave number method. The comparison demonstrates that both the effective source array method and squeeze strain method gives the correct arrival time. The effective source array method gives incorrect amplitude and waveform for direct arrivals and tube waves due to its arbitrary assumption of the elementary source radiation pattern. The squeeze strain method gives fairly accurate amplitude and waveform for P and S direct arrivals but it fails to match the tube wave results obtained from the frequency wave number method. The omission of tube wave dispersion and amplitude loss by the quasi static approximation methods also

  10. Mechanical seals

    CERN Document Server

    Mayer, E

    1977-01-01

    Mechanical Seals, Third Edition is a source of practical information on the design and use of mechanical seals. Topics range from design fundamentals and test rigs to leakage, wear, friction and power, reliability, and special designs. This text is comprised of nine chapters; the first of which gives a general overview of seals, including various types of seals and their applications. Attention then turns to the fundamentals of seal design, with emphasis on six requirements that must be considered: sealing effectiveness, length of life, reliability, power consumption, space requirements, and c

  11. TV-2 test borehole

    International Nuclear Information System (INIS)

    A new test borehole was drilled for testing logging radiometers for uranium surveying and for dimensioning logging cables. The borehole is 660 m deep and located in it are 4 artificial radioactivity anomalies. The uncased interval is 120 m long, it has significant differences in resistance (200 to 14 000 Ωm) and makes it possible to test all types of electric logging probes. The test borehole makes possible the control of logging instruments after repair in the field, the testing of new probes prior to their being put into operation, the quality and quick dimensioning of logging cables and the performing of developmental and methodological measurements. (A.K.)

  12. VTT test borehole for bedrock investigations

    International Nuclear Information System (INIS)

    A borehole of depth 150 m and diameter 56 mm has been drilled in the area adjacent to the premises of the Technical Research Centre of Finland (VTT) at Otaniemi, Espoo, for the purposes of calibrating geophysical measurements devices. This report presents the test results obtained so far and illustrates the processing of these, in which the various measurements are plotted as curves and combinations of curves. The interpretations provided so far consists of analyses of lithological variations, bedrock fracturing, the nature and occurrence of fracture zones and groundwater flow patterns. Samples were taken from those parts of the core shown by the borehole measurements to be homogenous and thin sections made from these for mineralogical determinations. The rock mechanical and petrophysical properties of the same points were examined. The core is in the possession of VTT, and the hole itself is available to outsiders for the calibration and testing of borehole measurement equipment. (orig.). (21 refs., 13 figs., 5 tabs.)

  13. Excess plutonium disposition: The deep borehole option

    International Nuclear Information System (INIS)

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified

  14. Excess plutonium disposition: The deep borehole option

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, K.L.

    1994-08-09

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

  15. VTT test borehole for bedrock investigations

    Science.gov (United States)

    Okko, Olli; Hassinen, Pertti; Front, Kai

    1994-02-01

    A borehole of depth 150 m and diameter 56 mm has been drilled in the area adjacent to the premises of the Technical Research Center of Finland (VTT) at Otaniemi, Espoo, for the purposes of calibrating geophysical measurement devices. The report presents the test results obtained so far and illustrates the processing of these, in which the various measurements are plotted as curves and combinations of curves. The interpretations provided so far consist of analyses of lithological variations, bedrock fracturing, the nature and occurrence of fracture zones and groundwater flow patterns. Samples were taken from those parts of the core shown by the borehole measurements to be homogeneous and thin sections made from these for mineralogical determinations. The rock mechanical and petrophysical properties of the same points were examined. The core is in the possession of VTT, and the hole itself is available to outsiders for the calibration and testing of borehole measurement equipment.

  16. Borehole Disposal for Spent Radiation Sources

    International Nuclear Information System (INIS)

    As generally, many countries in the world, Indonesia still faces some difficulties in the storage and final disposal for spent radiation sources (SRS) which categorized as high risk. Spent radiation sources that have been stored in the Interim Storage 1 and 2 (IS-1 and IS-2), and High Activity Waste Storage (PSLAT) consist of Co-50 or Cs-137 (as irradiator), Pu-238 (as power sources), Am-241 (as neutron source) and Ra-226 (as sources in the medical field). The difficulties faced on storage and disposal are reasoned by long half-life, high gamma radiation, not established disposal system, expensiveness of disposal facility, difficulties on option to reexport of the SRS, lack of skilled labour, and the activity exceed for near surface disposal. For that reason, disposal system for SRS must be developed with the small scale national facility having some advances as well as costly cheaper, fulfill the safety standard, and could avoid the possibility of human intrusion. The answer of this problem is borehole disposal concept. By using this concept can be hoped that the problems of SRS disposal can be handled well, based on site characterization, borehole technology, SRS capsule packaged design, repository facility, and safety assessment. Finally, after obtained the optimum concepts, would be applied in the future to support the national nuclear program accepted by the public. The assessment of borehole disposal technology for SRS has been done. The assessment was done descriptively, involve the waste, site, technology, and safety aspects. Some concepts of borehole have been obtained that have been recommended by International Atomic Energy Agency (IAEA), applicable and suitable with the waste and site condition. The concepts are Borehole Disposal of Sealed Sources (BOSS) with variation as follow: 1) Unsaturated, non-sulphate environments type; 2) Saturated, non-sulphate, non-clay environments with high to medium permeability, and 3) saturated, very low permeability

  17. Reference design for a centralized spent sealed sources facility. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    International Nuclear Information System (INIS)

    To assist Member States in establishing facilities in which the most frequently occurring spent sealed sources can be safely conditioned, the IAEA has financed the development of a generic design for a Spent Sealed Sources Facility (SSS Facility). The purpose of this TECDOC is to provide enough general information about the functions and capabilities of the SSS Facility to enable the reader to understand what the facility can do to contribute towards the management of spent sealed sources without providing all the technical and/or design information available. Sufficient information is provided to enable the reader to judge how and to what extent such a facility can contribute to national radioactive waste management infrastructure. 2 refs, 5 figs, 1 tab

  18. Geochemical factors in borehole-shaft plug longevity

    International Nuclear Information System (INIS)

    Geochemical investigations that address factors controlling the longevity of repository sealing materials in a geochemical environment are discussed. Studies are being made of cement-based materials as major candidates for seals for borehole plugging, and shaft and tunnel sealing in certain potential repository environments. Factors controlling the extent of attainment of equilibrium of the plug components with time and the rate of approach to a state of stable equilibrium of the plug component chemical subsystem within the total system are discussed. The effect of these factors on changes in physical, mechanical and thermal properties of a seal system, and the consequent effectiveness of the seal in preventing transport of radioactive waste species are the dominant features to be determined. Laboratory experiments on the effects of anticipated temperature, pressure, and environmental factors (including chemical composition and specific rock type) are described. Thermodynamic studies are used to determine the potentially stable reaction products under conditions similar to those anticipated for the repository boreholes, shafts, and tunnels during and after the operating stage. Multitemperature reaction series are studied, and reaction kinetics are investigated for the purpose of predicting the course of likely reactions. Detailed studies of permeability, diffusion, and interfacial properties and chemical and microphase characterization of the products of experiments are carried out. Characterization studies of old and ancient cements, mortars, and concretes and prototype man-made seal materials are performed to further assess the factors associated with longevity

  19. Quantum seals

    OpenAIRE

    Singh, Sudhir Kumar; Srikanth, R.

    2004-01-01

    A quantum seal is a way of encoding a message into quantum states, so that anybody may read the message with little error, while authorized verifiers can detect that the seal has been broken. We present a simple extension to the Bechmann-Pasquinucci majority-voting scheme that is impervious to coherent attacks, and further, encompasses sealing quantum messages by means of quantum encryption. The scheme is relatively easy to implement, requiring neither entanglement nor controlled operations d...

  20. Geochemical analysis of the sealing system. Technical Report to work package 9.1.2. Preliminary safety case of the Gorleben site (VSG)

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Mingliang; Herbert, Horst-Juergen

    2012-02-15

    The geochemical reaction simulation of ground water and brines with sealing materials for a proposed repository at the Gorleben site is a task under the framework of the VSG project. The calculations presented in this report are aimed to provide a preliminary evaluation of the geochemical stability of three potential engineering barrier materials foreseen in the shaft sealing system in case of groundwater and brine intrusion. The long-term stability of these materials is a key issue for the sealing function of the shaft seals. This is governed by many factors such as geotechnical, hydraulic and geochemical processes. In order to better understand the potential effect of geochemical processes on the long-term properties of these sealing materials, geochemical simulations of the potential interactions between groundwater and brine and shaft sealing materials were performed.

  1. Geochemical analysis of the sealing system. Technical Report to work package 9.1.2. Preliminary safety case of the Gorleben site (VSG)

    International Nuclear Information System (INIS)

    The geochemical reaction simulation of ground water and brines with sealing materials for a proposed repository at the Gorleben site is a task under the framework of the VSG project. The calculations presented in this report are aimed to provide a preliminary evaluation of the geochemical stability of three potential engineering barrier materials foreseen in the shaft sealing system in case of groundwater and brine intrusion. The long-term stability of these materials is a key issue for the sealing function of the shaft seals. This is governed by many factors such as geotechnical, hydraulic and geochemical processes. In order to better understand the potential effect of geochemical processes on the long-term properties of these sealing materials, geochemical simulations of the potential interactions between groundwater and brine and shaft sealing materials were performed.

  2. Geophysical borehole logging

    International Nuclear Information System (INIS)

    Most of the available literature on geophysical borehole logging refers to studies carried out in sedimentary rocks. It is only in recent years that any great interest has been shown in geophysical logging in boreholes in metamorphic and igneous rocks following the development of research programmes associated with geothermal energy and nuclear waste disposal. This report is concerned with the programme of geophysical logging carried out on the three deep boreholes at Altnabreac, Caithness, to examine the effectiveness of these methods in crystalline rock. Of particular importance is the assessment of the performance of the various geophysical sondes run in the boreholes in relation to the rock mass properties. The geophysical data can be used to provide additional in-situ information on the geological, hydrogeological and engineering properties of the rock mass. Fracturing and weathering in the rock mass have a considerable effect on both the design parameters for an engineering structure and the flow of water through the rock mass; hence, the relation between the geophysical properties and the degree of fracturing and weathering is examined in some detail. (author)

  3. Electronic seal

    International Nuclear Information System (INIS)

    An electronic seal is presented for a volume such as container for fissile materials. The seal encloses a lock for barring the space as well as a device for the detection and the recording of the intervention of the lock. (AF)

  4. Geophysical borehole logging in Lavia borehole - results and interpretation of sonic and tube wave measurements

    International Nuclear Information System (INIS)

    Swedish Nuclear Fuel and Waste Management Co, SKB has been contracted by Industrial Power Company LTD, TVO to perform geophysical logging in a borehole at Lavia in Western Finland. The logging has been conducted by Swedish Geological Co, SGAB in accordance with an agreement for cooperation with SKB. The depth of the borehole is 1001 m, diameter 56 mm and inclination 10-20 degrees to the vertical. The aim of the logging was to determine the various geophysical parameters in the borehole in order to interpret and understand the rock mass properties in the vicinity of the borehole. According to the contract the report covers the following main objectives: a technical description of the field work and the equipment used; a review of the theoretical base for the sonic and tube wave methods; an interpretation and presentation of the results obtained by sonic and tube wave mesurements. The evaluation of the sonic and tube wave measurements shows good correlation. On a qualitative basis there seems to be a correlation between tube wave generating points, the relative tube wave amplitudes and the hydraulic conductivity measurements performed as hydraulical tests between packers in the borehole. The low velocity anamalies in the sonic log are mainly caused by tectonic features like fractures and fracture zones but to some extent also by contacts between granite and diorite. The estimation of elastic properties of the rock mass from observation of tube wave velocity are in accordance with laboratory determinations made on core samples. (author)

  5. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  6. Ice-Borehole Probe

    Science.gov (United States)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a

  7. Deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  8. Deep borehole disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of ∼100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole ∼45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  9. Identifying borehole geology projects

    OpenAIRE

    Brearley, S.D.

    2004-01-01

    Over the years, the British Geological Survey (BGS) has amassed a large collection of paper borehole logs from a variety of sources in the UK. This has partly occurred in response to various legal statutes requiring companies to lodge copies of this information with the BGS, as well as resulting from commercial storage contracts and voluntary donations. These hardcopy records, together with other geological and contextual documents, comprise BGS’ National Geological Records Cen...

  10. Directional borehole antenna - Theory

    International Nuclear Information System (INIS)

    A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)

  11. Seal Counts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Database of seal counts from aerial photography. Counts by image, site, species, and date are stored in the database along with information on entanglements and...

  12. Deep Borehole Field Test Requirements and Controlled Assumptions.

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  13. Borehole stability on Yme

    OpenAIRE

    Vikeså, Dan Ole

    2007-01-01

    The main object of this thesis it to perform an in-situ stress and borehole stability evaluation of the wells in the Yme field. The Inversion technique was used find the maximum and minimum horizontal stresses. The stresses were found for the whole well and for the location around each casing shoe. The field was found to be anisotropic. The outcome of the analysis was used together with data form each well to calculate fracture and collapse gradients for the wells. The fracturin...

  14. Composite seals

    International Nuclear Information System (INIS)

    This invention concerns the area of annular composite seals particularly intended for being pressed between two surfaces to be applied tightly to each other, in a leak tight manner. Metal seals, particularly those of the type comprising a core made of a spiral spring and surrounded by a metal lining, are growing considerably in use at the present time, particularly because of their ability to withstand high temperatures and their life which is very superior to elastomer seals and they are being considered for use in applications linked to a relatively dangerous environment, for instance in the area of nuclear energy, where the techniques make use of highly toxic gases, acid solutions, and more generally different types of dangerous substances

  15. Regulatory issues for deep borehole plutonium disposition

    International Nuclear Information System (INIS)

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission

  16. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff

    International Nuclear Information System (INIS)

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application

  17. Handling, conditioning and storage of spent sealed radioactive sources. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    International Nuclear Information System (INIS)

    This report is intended to provide reference material, guidance and know-how on handling, conditioning and storage of spent sealed radioactive sources (SRS) to both users of SRS and operators of waste management facilities. The scope of this report covers all types of SRS except those exempted from regulatory control. The report contains in some detail technical procedures for the conditioning of spent SRS, describes the means required to assure the quality of the resulting package and discusses the measures to prepare waste packages with a certain flexibility to accommodate possible future disposal requirements

  18. Preliminary seal design evaluation for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    This report presents a preliminary evaluation of design concepts for the eventual sealing of the shafts, drifts, and boreholes at the Waste Isolation Pilot Plant Facility. The purpose of the seal systems is to limit the flow of water into, through, and out of the repository. The principal design strategy involves the consolidation of crushed or granular salt in response to the closure of the excavations in salt. Other candidate seal materials are bentonite, cementitious mixtures, and possibly asphalt. Results from in situ experiments and modeling studies, as well as laboratory materials testing and related industrial experience, are used to develop seal designs for shafts, waste storage panel entryways, non-waste containing drifts, and boreholes. Key elements of the ongoing experimental program are identified. 112 refs., 25 figs., 1 tab

  19. Hydraulic effects of unsealed boreholes. Numerical groundwater flow modelling of the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Bockgaard, Niclas [Golder Associates AB, Stockholm (Sweden)

    2011-06-15

    The objective of the work was to investigate hydraulic effects of open and poorly sealed boreholes on groundwater flow conditions through simulations using a numerical groundwater model. Specifically, the boreholes KFM07A, KFM09A, and KFM09B in Forsmark and the boreholes KLX04, KLX06, and KLX10 in Laxemar were studied. The criteria for the selection of these boreholes were that the boreholes should represent typical conditions of the site, the borehole length should exceed 500 m, and that several major fractured zones should be intersected. The boreholes KFM07A and KLX06, respectively, were selected as reference boreholes for more detailed studies of different sealing schemes. The model setup of the Forsmark model followed the Forsmark 2.2 regional-scale conceptual hydrogeological model. The model domain was approximately 15 km (north-south) x 10 km (west- east) x 1.2 km (depth). The 131 deformation zones and three layers of superficial horizontal sheet joint were modelled deterministically. A stochastic discrete fracture network (DFN) representing fractures and minor deformation zones were also generated between the deterministic deformation zones inside central model volume. The side lengths of the square fractures were from 1,000 m down to 10 m. In order to resolve the details of flow in to and out from the borehole, a more detailed DFN was generated in a zone around the borehole KFM07A, where fractures down to a side length of 0.5 m were considered. The model setup of the Laxemar model followed the SDM-Site Laxemar (Laxemar 2.3) regional scale conceptual hydrogeological model. The model domain was approximately 12 km (north-south) x 20 km (west-east) x 2.1 km (depth). A number of 71 deformation zones were modelled deterministically, and one realization of a stochastic DFN, the so-called hydrogeological DFN model base case, was imported to the model. Similar to the Forsmark case, a more detailed DFN was also generated around the reference borehole KLX06. The

  20. Hydraulic effects of unsealed boreholes. Numerical groundwater flow modelling of the Forsmark and Laxemar sites

    International Nuclear Information System (INIS)

    The objective of the work was to investigate hydraulic effects of open and poorly sealed boreholes on groundwater flow conditions through simulations using a numerical groundwater model. Specifically, the boreholes KFM07A, KFM09A, and KFM09B in Forsmark and the boreholes KLX04, KLX06, and KLX10 in Laxemar were studied. The criteria for the selection of these boreholes were that the boreholes should represent typical conditions of the site, the borehole length should exceed 500 m, and that several major fractured zones should be intersected. The boreholes KFM07A and KLX06, respectively, were selected as reference boreholes for more detailed studies of different sealing schemes. The model setup of the Forsmark model followed the Forsmark 2.2 regional-scale conceptual hydrogeological model. The model domain was approximately 15 km (north-south) x 10 km (west- east) x 1.2 km (depth). The 131 deformation zones and three layers of superficial horizontal sheet joint were modelled deterministically. A stochastic discrete fracture network (DFN) representing fractures and minor deformation zones were also generated between the deterministic deformation zones inside central model volume. The side lengths of the square fractures were from 1,000 m down to 10 m. In order to resolve the details of flow in to and out from the borehole, a more detailed DFN was generated in a zone around the borehole KFM07A, where fractures down to a side length of 0.5 m were considered. The model setup of the Laxemar model followed the SDM-Site Laxemar (Laxemar 2.3) regional scale conceptual hydrogeological model. The model domain was approximately 12 km (north-south) x 20 km (west-east) x 2.1 km (depth). A number of 71 deformation zones were modelled deterministically, and one realization of a stochastic DFN, the so-called hydrogeological DFN model base case, was imported to the model. Similar to the Forsmark case, a more detailed DFN was also generated around the reference borehole KLX06. The

  1. Handling, conditioning and disposal of spent sealed sources

    International Nuclear Information System (INIS)

    The series entitled ''Technical Manual for the Management of Low and Intermediate Level Wastes Generated at Small Nuclear Research Centres and by Radioisotope Users in Medicine, Research and Industry'' will serve as reference material to experts on technical assistance missions and provide ''direct know-how'' for technical staff in developing countries. This document is the first in the series. It provides the technical guidance and know-how necessary to permit developing Member States to safely handle, condition and store spent sealed radiation sources. It covers: characterization of sealed sources, legislation and regulations, management of spent sealed sources, transportation and disposal of spent sealed sources. 5 refs, 10 figs, 6 tabs

  2. Final disposal of high-level nuclear waste in very deep boreholes. An evaluation based on recent research of bedrock conditions at great depths; Slutfoervaring av hoegaktivt kaernavfall i djupa borrhaal. En utvaerdering baserad paa senare aars forskning om berggrunden paa stora djup

    Energy Technology Data Exchange (ETDEWEB)

    Aahaell, Karl-Inge [Karlstad Univ. (Sweden)

    2007-01-15

    This report evaluates the feasibility of very deep borehole disposal of high-level nuclear waste, e.g., spent nuclear fuel, in the light of recent technological developments and research on the characteristics of bedrock at extreme depths. The evaluation finds that new knowledge in the field of hydrogeology and technical advances in drilling technology have advanced the possibility of using very deep boreholes (3-5 km) for disposal of the Swedish nuclear waste. Decisive factors are (1) that the repository can be located in stable bedrock at a level where the groundwater is isolated from the biosphere, and (2) that the waste can be deposited and the boreholes permanently sealed without causing long-term disturbances in the density-stratification of the groundwater that surrounds the repository. Very deep borehole disposal might offer important advantage compared to the relatively more shallow KBS approach that is presently planned to be used by the Swedish nuclear industry in Sweden, in that it has the potential of being more robust. The reason for this is that very deep borehole disposal appears to permit emplacement of the waste at depths where the entire repository zone would be surrounded by stable, density-stratified groundwater having no contact with the surface, whereas a KBS-3 repository would be surrounded by upwardly mobile groundwater. This hydro-geological difference is a major safety factor, which is particularly apparent in all scenarios that envisage leakage of radioactive substances. Another advantage of a repository at a depth of 3 to 5 km is that it is less vulnerable to impacts from expected events (e.g., changes in groundwater conditions during future ice ages) as well as undesired events (e.g. such as terrorist actions, technical malfunction and major local earthquakes). Decisive for the feasibility of a repository based on the very deep borehole concept is, however, the ability to emplace the waste without failures. In order to achieve this

  3. 30 CFR 75.335 - Seal strengths, design applications, and installation.

    Science.gov (United States)

    2010-07-01

    ... characteristics, flame spread index, entry size, engineering design and analysis, elasticity of design, material... land surveyor. (iv) Specific mine site information, including— (A) Type of seal; (B) Safety precautions... and materials used to maintain each type of seal; (K) Methods to address shafts and boreholes in...

  4. High-density support matrices: Key to the deep borehole disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gibb, F.G.F. [Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom)], E-mail: f.gibb@sheffield.ac.uk; McTaggart, N.A.; Travis, K.P.; Burley, D. [Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom); Hesketh, K.W. [Nexia Solutions Ltd., B709 Springfields, Preston PR4 0XJ (United Kingdom)

    2008-03-15

    Deep (4-5 km) boreholes are emerging as a safe, secure, environmentally sound and potentially cost-effective option for disposal of high-level radioactive wastes, including plutonium. One reason this option has not been widely accepted for spent fuel is because stacking the containers in a borehole could create load stresses threatening their integrity with potential for releasing highly mobile radionuclides like {sup 129}I before the borehole is filled and sealed. This problem can be overcome by using novel high-density support matrices deployed as fine metal shot along with the containers. Temperature distributions in and around the disposal are modelled to show how decay heat from the fuel can melt the shot within weeks of disposal to give a dense liquid in which the containers are almost weightless. Finally, within a few decades, this liquid will cool and solidify, entombing the waste containers in a base metal sarcophagus sealed into the host rock.

  5. High-density support matrices: Key to the deep borehole disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Deep (4-5 km) boreholes are emerging as a safe, secure, environmentally sound and potentially cost-effective option for disposal of high-level radioactive wastes, including plutonium. One reason this option has not been widely accepted for spent fuel is because stacking the containers in a borehole could create load stresses threatening their integrity with potential for releasing highly mobile radionuclides like 129I before the borehole is filled and sealed. This problem can be overcome by using novel high-density support matrices deployed as fine metal shot along with the containers. Temperature distributions in and around the disposal are modelled to show how decay heat from the fuel can melt the shot within weeks of disposal to give a dense liquid in which the containers are almost weightless. Finally, within a few decades, this liquid will cool and solidify, entombing the waste containers in a base metal sarcophagus sealed into the host rock

  6. TAML level 5 sealed junctions offer solutions for thermal production of heavy oil with multilateral wells

    Energy Technology Data Exchange (ETDEWEB)

    Fipke, S.R. [Halliburton, Houston, TX (United States)

    2009-07-01

    Multilateral wells are used in heterogenous heavy oil reservoirs to provide increased reservoir exposure. New level 5 junction designs have recently been developed by the Technical Advancement for Multilaterals (TAML) Association to provide the minimum temperature and pressure ratings required to effectively seal junctures and control the steam injection process during enhanced oil recovery (EOR) processes. This study described 2 new conceptual multilateral technology (MLT) design alternatives for use in steam assisted gravity drainage (SAGD) operations, notably stacked multilateral injectors above a multilateral producer, and a multilateral horizontally-applied steam drainage (ML-HASD). The designs addressed the thermal expansion, heat loss, and steam placement challenges caused by the steam flow's close proximity to the cooler oil being produced in the same borehole. It was concluded that both designs avoid the production problems associated with multilateral SAGD operations. 6 refs., 6 figs.

  7. Monitoring borehole flow dynamics using heated fiber optic DTS in a fractured rock aquifer

    Science.gov (United States)

    Coleman, Thomas; Chalari, Athena; Parker, Beth; Munn, Jonathan; Mondanos, Michael

    2014-05-01

    Temperature profiles in fractured rock have long been used to identify and characterize flow in the rock formation or in the borehole. Fiber optic distributed temperature sensing (DTS) is a tool that allows for continuous borehole temperature profiling in space and time. Recent technology advancements in the spatial, temperature, and temporal resolutions of DTS systems now allow temperature profiling methods to offer improved insight into fractured rock hydrogeologic processes. An innovation in shallow borehole temperature logging utilizes high resolution DTS temperature profiling in sealed and heated boreholes to identify fractures with natural gradient groundwater flow by creating a thermal disequilibrium and monitoring the temperature response. This technique can also be applied to open well conditions to monitor borehole flow distributions caused by hydraulic perturbations such as pumping or injection. A field trial was conducted in Guelph, Ontario, Canada to determine the capabilities of heated DTS for flow monitoring in both open and sealed wells. Intelligent distributed acoustic sensing (iDAS) measurements for vertical seismic profiling were carried out simultaneously with the DTS measurements to assist with characterization of the fractured aquifer system. DTS heat pulse tests were conducted in a single well under sealed conditions for natural gradient flow measurements and open conditions to monitor flow distributions during injection and pumping. The results of these tests indicate that borehole flow distributions can be monitored using DTS and that active heating allows for further information about the hydrogeologic system to be determined than from the passive measurements alone. Depth-continuous transmissivity data from the borehole correlate well with the DTS testing results. DTS based flow monitoring systems may be useful for monitoring transient production and injection processes for a variety of applications including groundwater remediation

  8. Radiological Characterization Technical Report on Californium-252 Sealed Source Transuranic Debris Waste for the Off-Site Source Recovery Project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-24

    This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

  9. Sealed source and device design safety testing. Volume 5: Technical report on the findings of Task 4, Investigation of failed radioactive stainless steel troxler gauges

    Energy Technology Data Exchange (ETDEWEB)

    Benac, D.J.; Schick, W.R. [Southwest Research Inst., San Antonio, TX (United States)

    1995-10-01

    This report covers the Task 4 activities for the Sealed Source and Device Safety testing program. SwRI was contracted to investigate failed radioactive stainless steel troxler gauges. SwRI`s task was to determine the cause of failure of the rods and the extent of the problem. SwRI concluded that the broken rod failed in a brittle manner due to a hard zone in the heat affected zone.

  10. Sealed source and device design safety testing. Volume 5: Technical report on the findings of Task 4, Investigation of failed radioactive stainless steel troxler gauges

    International Nuclear Information System (INIS)

    This report covers the Task 4 activities for the Sealed Source and Device Safety testing program. SwRI was contracted to investigate failed radioactive stainless steel troxler gauges. SwRI's task was to determine the cause of failure of the rods and the extent of the problem. SwRI concluded that the broken rod failed in a brittle manner due to a hard zone in the heat affected zone

  11. Control system for borehole tools

    Energy Technology Data Exchange (ETDEWEB)

    Bordon, E.E.

    1987-03-10

    A control assembly is described for use with a tool including one or more subassemblies adapted for controlling and/or monitoring various events within a borehole and actuating instrumentation positioned on the earth's surface for actuating the tool. The assembly comprises: control means connected to the tool for selectively actuating one or more of the subassemblies within the tool, the control means being adapted for operation within the borehole, power supply means connected to the tool for supplying electrical power to the control means for operation thereof independent of the surface actuating instrumentation, communication means connected to the surface actuating instrumentation for communicating therewith, and connection means for selectively connecting the communication means to the control means while the tool and the control means connected thereto are within the borehole to establish communication between the control means and the surface actuating instrumentation. The connection means is adapted for operation within the borehole.

  12. Drilling a borehole for LEP

    CERN Multimedia

    1981-01-01

    Boreholes were drilled along the earlier proposed line of the LEP tunnel under the Jura to find out the conditions likely to be encountered during the construction of the LEP tunnel (Annual Report 1981 p. 106, Fig. 10).

  13. 2005 CNPC S&E International Seminar on Borehole Technology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ From 23rd to 24th in September, the 2005 CNPC S&E International Seminar on Borehole Technology was held in Beijing. Invited by CNPC S&E, 68 honorable guests from 14 countries in Central Asia, Africa, North and South Americas and Southeast Asia and more than 100 representatives for the embassies in the People's Republic of China from 13 countries discussed the trend,progress and utilization of borehole technology and the service strength of CNPC's borehole technology together.The honorable attendees can further know the technical strength of CNPC S&E through this communication,and therefore find out the best cooperation way to create a higher value for the oil company in one hand, and improve the force and popularity of CNPC S&E in the international market on the other hand.

  14. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  15. Storage of nuclear waste in long boreholes

    International Nuclear Information System (INIS)

    This report constitutes a feasibility study for the storage of high level radioactive waste in long TBM drilled tunnels. The report will form the basis for a comparison with other concepts in future analysis of the isolation performance in a typical Swedish rock structure. The suggested repository concept consists of three parallel, 4.5 km long, horizontal tunnels at a depth of 500 m constructed using TBM technology. The tunnel diameter will be about 2.4 m for deployment of canisters with a diameter of 1.6 m. The space between the canisters and rock will be totally sealed off by bentonite. The study comprises the design of canisters, canister handling and deposition, near field design, near field sealing and behaviour, and technical design of the repository. The report also includes a tentative time schedule and cost estimate, incorporating the construction phase and deployment of canisters. (au)

  16. Exploratory borehole Leuggern: geology

    International Nuclear Information System (INIS)

    The Leuggern borehole was drilled in the Plateau Jura of Canton Aargau. The drill-site lies on land administered by the borough of Leuggern, and is located some 13 km to the north of Brugg. Drilling work lasted from July 9, 1984, until February 10, 1985. Isolated short sections were drilling using a centre-bit, but otherwise a roller-bit was used exclusively and the sedimentary cover and crystalline basement were cored virtually continuously down to the maximum depth of 1688.90 m. The 22.26 m thick sedimentary succession is subdivided into Quarternary, Upper, Middle and Lower Muschelkalk and Buntsandstein. The Upper Muschelkalk includes approximately 10 m of Trigonodus Dolomite in fully dolomitised Plattenkalk-facies. The Lower Muschelkalk is developed in its typical uniform mud-marl facies. The basement lies beneath the Bundsandstein, which rests in sharply discordant contact above the basement. The crystalline basement at Leuggern was overprinted by several post-metamorphic, post-granitic, tectonic-hydrothermal events. Later events are recorded by solution cavities and mineral fracture fillings which grew freely into open fractures. Despite problems with orientation of the core sketches, structural analyses yielded interesting results. The following petrophysical parameters were determined for the various basement lithologies: rock and grain density; total and effective porosity; internal and external specific surface and thermal conductivity. The effect of the hydrothermal alteration on these parameters is generally considerable. The location of water inflow was accomplished by means of 'fluid logging' and core inspection. A total of 35 inflow points were registered, of which 29 were clearly identifiable on the core itself. Four different types of flow systems could be characterised. (author) 22 tabs., 109 refs

  17. Sealing with U-shaped seal

    International Nuclear Information System (INIS)

    The application concerns a seal with a U-shaped sealing element. The sealing element consists of a stiff, elastic endless track, similar to a hose halved in the axial direction; the cross-section can change between ovoid and a flat segment of a circle and is free of bends. A counterbearing situated in the centre of its convex surface is used to spread the sealing element apart, i.e. it is a counterbearing rail parallel to the sealing element and a tensioning screw, which produces tension between the spreading rail and counterbearing rail. The seals according to the invention have proved successful in nuclear reactor construction. (RB)

  18. Nuclear borehole probes - theory and experiments

    International Nuclear Information System (INIS)

    The report gives a summary of the theoretical and expeimental work on borehole probes that has been performed since 1971 at The Department of Electrophysics, The Technical University of Denmark. The first part of the report concerns the use of a spectral natural gamma-ray probe (SNG-probe), which is used for measurements of the spectral distribution of the gamma-rays of the geological strata around a borehole. In general the spectrum is divided into three parts - the gamma-rays from potassium-40, from thorium-232 and daughters, and from uranium-238 and daughters. A set of curves showing the intensities of the gamm-radiation from K, Th, and U versus depth is called a SNG-log. If proper calibrated, the SNG-log gives the concentration of Th, U, and K in the formation surrounding the borehole. Initially the basis for an interpretation of SNG-logs is discussed. Then follows a description og some SNG-problems designed and built by The Department of Electrophysics, and a discussion of the calibration of SNG-probes. Some examples of SNG-logs are presented, and some general comments on the use of SNG-logs are given. The second part of the report concerns mainly the development of theoretical models for neutron-neutron probes, gamma-gamma probes, and pulsed-neutron probes. The purpose of this work has been to examine how well the models correlate with measured results and - where reasonable agreement is found - to use the models in studies of the factors that affect the probe responses in interpretation of experimental results and in probe design. (author)

  19. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

    1993-05-01

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

  20. Seals monitoring systems using wireless communications

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Wireless monitoring based on electromagnetic waves is a promising application for deep geological nuclear waste repositories. It should allow data transmission without installing wires across the various seals (disposal cell plugs, gallery plugs, shaft plugs). Developments of the wireless system (e.g. transmitter and receiver) are in progress in order to fit the repository requirements. A common research program has been elaborated by RWMC and Andra. The present work aims at developing the wireless monitoring technology to intermediate level waste (ILW) disposal facilities concept. In this concept, ILW packages will be emplaced in disposal cells with concrete liner. After the operational phase, the cells will be backfilled with sealing material. In practice, this work demonstrates the feasibility of adapting and optimizing the wireless transmission system for specific repository cases. After preliminary transmission studies, it was decided to make a representative test in situ of a wireless transmission through the clay from a sealed side to an accessible side of the repository. In order to reduce the attenuation of magnetic flux caused by steel components between the transmitter and the receiver, the receiving antenna is installed in a dedicated borehole (drilled from the accessible side). Two types of reception antennas have been designed. According to its coil orientation, type A antenna measures the electromagnetic wave perpendicular to the borehole axis. On the other hand, type B antenna with a coil set in-line with the tubular casing, measures the electromagnetic wave parallel to the borehole axis. The outside cylinder (pressure tight case) is made of PVC considering the attenuation of electromagnetic flux. According to the direction of electromagnetic flux and position of the boreholes in the final repository design, type A or type B will be chosen. For the 'representative' test, a borehole, TSF1002 has been

  1. Numerical Borehole Breakdown Investigations using XFEM

    Science.gov (United States)

    Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther

    2016-04-01

    During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum

  2. Triple acting radial seal

    Science.gov (United States)

    Ebert, Todd A; Carella, John A

    2012-03-13

    A triple acting radial seal used as an interstage seal assembly in a gas turbine engine, where the seal assembly includes an interstage seal support extending from a stationary inner shroud of a vane ring, the interstage seal support includes a larger annular radial inward facing groove in which an outer annular floating seal assembly is secured for radial displacement, and the outer annular floating seal assembly includes a smaller annular radial inward facing groove in which an inner annular floating seal assembly is secured also for radial displacement. A compliant seal is secured to the inner annular floating seal assembly. The outer annular floating seal assembly encapsulates the inner annular floating seal assembly which is made from a very low alpha material in order to reduce thermal stress.

  3. Sealed source peer review plan

    International Nuclear Information System (INIS)

    Sealed sources are known quantities of radioactive materials that have been encapsulated in quantities that produce known radiation fields. Sealed sources have multiple uses ranging from instrument calibration sources to sources that produce radiation fields for experimental applications. The Off-Site Source Recovery (OSR) Project at Los Alamos National Laboratory (LANL), created in 1999, under the direction of the Waste Management Division of the U.S. Department of Energy (DOE) Albuquerque has been assigned the responsibility to recover and manage excess and unwanted radioactive sealed sources from the public and private sector. LANL intends to ship drums containing qualified sealed sources to the Waste Isolation Pilot Plant (WIPP) for disposal. Prior to shipping, these drums must be characterized with respect to radiological content and other parameters. The U. S. Environmental Protection Agency (EPA) requires that ten radionulcides be quantified and reported for every container of waste to be disposed in the WIPP. The methods traditionally approved by the EPA include non-destructive assay (NDA) in accordance with Appendix A of the Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (DOE, 2002) (CH WAC). However, because of the nature and pedigree of historical records for sealed sources and the technical infeasibility of performing NDA on these sources, LANL proposes to characterize the content of these waste drums using qualified existing radiological data in lieu of direct measurement. This plan describes the process and documentation requirements for the use of the peer review process to qualify existing data for sealed radiological sources in lieu of perfonning radioassay. The peer review process will be performed in accordance with criteria provided in 40 CFR (section) 194.22 which specifies the use of the NUREG 1297 guidelines. The plan defines the management approach, resources, schedule, and technical requirements

  4. Stratigraphy of the Harwell boreholes

    International Nuclear Information System (INIS)

    Seven boreholes, five of them partially cored, were drilled at the Atomic Energy Research Establishment at Harwell as part of a general investigation to assess the feasibility of storing low- and intermediate-level radioactive waste in underground cavities. Two of the deeper boreholes were almost wholly cored to provide samples for hydrogeological, hydrochemical, mineralogical, geochemical, geotechnical, sedimentological and stratigraphical studies to enable variations in lithology and rock properties to be assessed, both vertically and laterally, and related to their regional geological setting. This report describes the lithologies, main faunal elements and stratigraphy of the Cretaceous, Jurassic, Triassic and Carboniferous sequences proved in the boreholes. More detailed stratigraphical accounts of the late Jurassic and Cretaceous sequences will be prepared when current studies of the faunal assemblages are complete. (author)

  5. Utility service entrance in boreholes

    International Nuclear Information System (INIS)

    This study evaluates alternatives for utility service entrances to the repository. We determined the requirements for a repository utility supply. These requirements were defined as safety, maintainability, flexibility, reliability, cost efficiency, voltage regulation, and simplicity of operation. The study showed that repository shafts can best satisfy all requirements for location of the utility supply without the use of borehole penetrations into the repository. It is recommended that the shafts be utilized for utility distribution to the repository, and that the current NWTS program position to minimize the number of boreholes penetrating the repository horizon be maintained. 42 refs., 2 figs., 3 tabs

  6. Tamper-Indicating Quantum Seal*

    Science.gov (United States)

    Williams, Brian P.; Britt, Keith A.; Humble, Travis S.

    2016-01-01

    Technical means for identifying when tampering occurs is a critical part of many containment and surveillance technologies. Conventional fiber-optic seals provide methods for monitoring enclosed inventories, but they are vulnerable to spoofing attacks based on classical physics. We address these vulnerabilities with the development of a quantum seal that offers the ability to detect the intercept-resend attack using quantum integrity verification. Our approach represents an application of entanglement to provide guarantees in the authenticity of the seal state by verifying it is transmitted coherently. We implement these ideas using polarization-entangled photon pairs that are verified after passing through a fiber-optic-channel test bed. Using binary-detection theory, we find the probability of detecting inauthentic signals is greater than 0.9999 with a false-alarm chance of 1 0-9 for a 10-s sampling interval. In addition, we show how the Hong-Ou-Mandel effect concurrently provides a tight bound on redirection attack, in which tampering modifies the shape of the seal. Our measurements limit the tolerable path-length change to submillimeter disturbances. These tamper-indicating features of the quantum seal offer unprecedented security for unattended monitoring systems.

  7. Radioactive waste isolation in salt: peer review of the D'Appolonia report on Schematic Designs for Penetration Seals for a Repository in the Permian Basin, Texas

    International Nuclear Information System (INIS)

    Argonne made the following recommedations for improving the reviewed reports. The authors of the report should: state the major assumptions of the study in Sec. 1.1 rather than later in the report; consider using salt for the shaft seals in salt horizons; reconsider whether keys are needed for the bulkheads; provide for interface grouting because use of expansive cement will not guarantee that interfaces will be impermeable; discuss the sealing schedule and, where appropriate, consider what needs to be done to ensure that emplaced radioactive waste could be retrieved if necessary; describe in more detail the sealing of the Dockum and Ogallala aquifers; consider an as low as reasonably achievable approach to performance requirements for the initial design phase; address the concerns in the 1983 US Nuclear Regulatory Commission document entitled Draft Technical Position: Borehole and Shaft Sealing of High-Level Nuclear Waste Repositories; cite the requirements for release of radioactivity by referring to specific clauses in the regulations of the US Environmental Protection Agency; and provide further explanation in the outline of future activities about materials development and verification testing. More emphasis on development of accelerated testing programs is also required

  8. Interpretation of hydraulic testing at the Weiach borehole

    International Nuclear Information System (INIS)

    This report presents the results of hydrogeologic interpretations of all analyzable single packer, double packer, and H-log tests conducted in the Weiach borehole. Ten of the 37 technically successful tests were conducted using a single packer configuration. One test of the Upper Muschelkalk was configured using temporary casing with an external casing packer to conduct a drawdown-recovery test in the isolated zone. Twenty-six intervals were tested using a double packer configuration. Nineteen of these intervals were tested using a hydraulic test tool (HTT). Seven of these intervals were tested using a drill-stem test (DST) tool and drill-stem test methods and one test was completed with a DST tool used to isolate the test interval for a pumping sequence. Three H-log tests were completed near the bottom of the borehole with the HTT and double packer configuration. All the tests were completed with one or more of the following test methodologies at each test interval: slug tests, pulse tests, drill-stem tests (DST) and pumping tests. The tests discussed in this report cover the section of the borehole from apparent depth (along the borehole length) of 188.0 m to the bottom of the borehole at 2482.2 m. The testing occurred within the Malm, Dogger, Lias, Keuper, Muschelkalk, Buntsandstein, Perm, Karbon, and Crystalline Groups. A discussion of the testing and interpretation methods is presented. Data analysis was performed using the INTERA Graph Theoretic Field Model (GTFM) which permits borehole pressure history and thermally-induced pressure effects to be incorporated into the simulatons, and Hornergraphical techniques. (author) 32 figs., 10 tabs., 37 refs

  9. The borehole disposal of spent sources (BOSS)

    International Nuclear Information System (INIS)

    During the International Atomic Energy Agency (IAEA) Regional Training Course on 'The Management of Low-Level Radioactive Waste from Hospitals and Other Nuclear Applications' hosted by the Atomic Energy Corporation of SA Ltd. (AEC), now NECSA, during July/August 1995, the African delegates reviewed their national radioactive waste programmes. Among the issues raised, which are common to most African countries, were the lack of adequate storage facilities, lack of disposal solutions and a lack of equipment to implement widely used disposal concepts to dispose of their spent sources. As a result of this meeting, a Technical Co-operation (TC) project was launched to look at the technical feasibility and economic viability of such a concept. Phase I and II of the project have been completed and the results can be seen in three reports produced by NECSA. The Safety Assessment methodology used in the evaluation of the concept was that developed during the ISAM programme and detailed in Van Blerk's PhD thesis. This methodology is specifically developed for shallow land repositories, but was used in this case as the borehole need not be more than 100m deep and could fit into the definition of a shallow land disposal system. The studies found that the BOSS concept would be suitable for implementation in African countries as the borehole has a large capacity for sources and it is possible that an entire country's disused sources can be placed in a single borehole. The costs are a lot lower than for a shallow land trench, and the concept was evaluated using radium (226) sources as the most limiting inventory. The conclusion of the initial safety assessment was that the BOSS concept is robust, and provides a viable alternative for the disposal of radium needles. The concept is expected to provide good assurance of safety at real sites. The extension of the safety assessment to other types of spent sources is expected to be relatively straightforward. Disposal of radium needles

  10. Overview of NASA Glenn Seal Project

    Science.gov (United States)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.; Proctor, Margaret; Delgado, Irebert; Finkbeiner,Joshua; deGroh, Henry; Ritzert, Frank; Daniels, Christopher; DeMange, Jeff; Taylor, Shawn; Wasowski, Janice; Smith, Ian; Penney, Nicholas; Garafolo, Nicholas

    2009-01-01

    NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage by applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. Advanced docking system seals need to be very robust resisting space environmental effects while exhibiting very low leakage and low compression and adhesion forces. NASA Glenn is developing seal technology and providing technical consultation for the Agencys key aero- and space technology development programs.

  11. Water flow in bedrock; estimation of influence of transmissive shaft and borehole

    International Nuclear Information System (INIS)

    The bedrock, a system of large and small fractures that permit water transport through the rock mass. The water content of the bedrock can, under varying hydrostatic pressure conditions, give rise to different flow patterns via boreholes or shafts drilled through the rock. A case is dealt with where a borehole connects a low point in the terrain with a point in the repository where the hydrostatic pressure is higher than at the mouth of the borehole. The situation may be conceived as having arisen when the area was investigated and a hole was drilled at an angle down from the valley to a point below the high point in the area. If the borehole is not sealed, an artesian well may be created. The conductivity used, 2 times 10-9 m/s, presumes that the repository has been emplaced in average quality rock at this depth. In reality, the repository site will be selected where the rock is better than average. In reality, a shaft - even if it is imperfectly backfilled - or a borehole exerts a flow resistance that reduces the available pressure difference at a depth of 500 m. Taken together, these factors indicate that approx. 5 m3/(year, 5 m) is the water flow that can be expected to emerge from the repository through a shaft or a borehole. Only this flow can have been contaminated with escaping substances from the repository area. Water that flows in from other parts of the hole dilutes this flow considerably. (G.B.)

  12. Imaging systems for geotechnical boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Scott Thomson; S. Adam [CoalBed Concepts Pty Ltd. (Australia)

    2009-05-15

    The objective of this project was to develop a new system for evaluating geotechnical boreholes in underground mining. This approach was predicated on the demonstration of a commercial prototype imaging system (the Slim Borehole Scanner (SBS)) which is designed to be suitable for application in all standard geotechnical boreholes and is certified Intrinsically Safe (IS) in Europe. This project was designed to test this new imaging system in Australian conditions and critically compare the outcomes from the work with currently available technologies. A key aspect of the project was the assessment of the likely impact the imaging system has on current practices and recommendations for improved methods of geotechnical assessment in underground operations. A comprehensive field-testing program of the SBS was undertaken to evaluate its suitability for application in Australian conditions. Test work was completed at BHPB Illawarra Appin Colliery and Xstrata Coal Tahmoor Colliery. The Slim Borehole Scanner (SBS) was found to be a useful tool for enhancing the capability of Australian underground mine operators to assess roof conditions. The SBS is a significant advance on existing qualitative assessment methods such as the Borescope, and is complementary to existing direct measurement methods such as Tel-tales and Gel-extensometers. It is recommended that the SBS system undergo Australian intrinsic safety approval and be adopted as a routine part of the geotechnical engineer's arsenal in assessing roof control issues in Australian mines.

  13. Exploratory borehole Kaisten. Geology - appendix

    International Nuclear Information System (INIS)

    The Kaisten borehole was the fifth (after Boettstein, Weiach, Riniken and Schafisheim) in Nagra's deep drilling programme in Northern Switzerland. It is located within the community of Kaisten, Canton Aargau, approximately 3 km south-west of Laufenburg railway station. The final depth of the borehole was 1306 m. Drilling began on 13th February 1984, continued up to 27th June 1984 and was carried out almost exclusively using the conventional rotary drilling method. With the exception of a 5.5 m-long section in the Muschelkalk and two shallow centering boreholes, the whole drilled section was cored. From a depth of 321.5 m in the Crystalline, removal of cores was done by wire core drilling. The wide range of field and laboratory investigations carried out included stratigraphic-sedimentological and mineralogical-petrographic programmes, as well as different petrophysical, geochemical and isotope geochemistry investigation. This report is a summary of all data acquired up to the end of December 1986. Beneath a sedimentary cover just 300 m thick, with Muschelkalk at the top and Permian at the base, the Kaisten borehole entered the crystalline basement at a depth of 296.5 m; investigations were carried out down to a depth of 1306 m. (author) 55 figs., 42 tabs

  14. Waste Isolation Pilot Plant borehole data

    International Nuclear Information System (INIS)

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable

  15. Detecting a fluid-filled borehole using elastic waves from a remote borehole.

    Science.gov (United States)

    Tang, Xiaoming; Cao, Jingji; Li, Zhen; Su, Yuanda

    2016-08-01

    The interaction of a fluid-filled borehole with incident elastic waves is an important topic for downhole acoustic measurements. By analyzing the wave phenomena of this problem, one can simulate the detection of a borehole target using a source-receiver system in a remote borehole. The analysis result shows that the wave signals from the target borehole are of sufficient amplitude even though the borehole size is small compared to wavelength. Consequently, the target borehole can be detected when the two boreholes are far away from each other. The result can be utilized to provide a method for testing downhole acoustic imaging tools. PMID:27586782

  16. Quantum bit string sealing

    OpenAIRE

    He, Guang-Ping

    2005-01-01

    Though it was proven that secure quantum sealing of a single classical bit is impossible in principle, here we propose an unconditionally secure quantum sealing protocol which seals a classical bit string. Any reader can obtain each bit of the sealed string with an arbitrarily small error rate, while reading the string is detectable. The protocol is simple and easy to be implemented. The possibility of using this protocol to seal a single bit in practical is also discussed.

  17. Rotary shaft sealing assembly

    Science.gov (United States)

    Dietle, Lannie L.; Schroeder, John E.; Kalsi, Manmohan S.; Alvarez, Patricio D.

    2010-09-21

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  18. Moisture content and recharge estimates at the Yakima Barricade borehole

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.M.; Szescody, J.E.; Phillips, S.J.

    1991-12-01

    The DOE Deep Microbiology Program recently drilled a borehole near the Yakima Barricade, west of the 200 Areas. The area is vegetated by mature sagebrush. The borehole was drilled by cable tool and approximately every 1.5 m, sediment samples were collected in a bucket by the drill site geologist. Sediment samples for moisture content were sealed quickly Samples of opportunity'' were collected for the HSPA program (Hanford Site Performance Assessment), Isotope Recharge task. It should be noted that, although many QA Level II procedures were incorporated into the dulling and sampling, the Deep Microbiology Program is officially designated QA Level III, and therefore, the recharge values that we report here should only be usedfor planning purposes. A series of graphs illustrate the moisture content and chloride profiles in the Hanford Forrmtion at the Yakima Barricade Borehole. The gravimetric moisture content generally ranges between 0.01 and 0.08 in the first 70 m of sediment (only the first 30 m are shown in the figure), values that are typically found at the Hanford Site. The stratigraphy of this borehole is also attached. The first 1.5 m of the soil profile is Warden silt loam (designated eolian), followed by over 50 m of Hanford Formation. The Hanford Formation is composed of unconsolidated sands, silts, and gravels that were carried into the area by glacial flood waters during the close of the last Ice Age. Below the Hanford Formation is the Ringold Formation composed of semiconsolidated sediments. The water table is located at a depth of approximately 100 m.

  19. Moisture content and recharge estimates at the Yakima Barricade borehole

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.M.; Szescody, J.E.; Phillips, S.J.

    1991-12-01

    The DOE Deep Microbiology Program recently drilled a borehole near the Yakima Barricade, west of the 200 Areas. The area is vegetated by mature sagebrush. The borehole was drilled by cable tool and approximately every 1.5 m, sediment samples were collected in a bucket by the drill site geologist. Sediment samples for moisture content were sealed quickly ``Samples of opportunity`` were collected for the HSPA program (Hanford Site Performance Assessment), Isotope Recharge task. It should be noted that, although many QA Level II procedures were incorporated into the dulling and sampling, the Deep Microbiology Program is officially designated QA Level III, and therefore, the recharge values that we report here should only be usedfor planning purposes. A series of graphs illustrate the moisture content and chloride profiles in the Hanford Forrmtion at the Yakima Barricade Borehole. The gravimetric moisture content generally ranges between 0.01 and 0.08 in the first 70 m of sediment (only the first 30 m are shown in the figure), values that are typically found at the Hanford Site. The stratigraphy of this borehole is also attached. The first 1.5 m of the soil profile is Warden silt loam (designated eolian), followed by over 50 m of Hanford Formation. The Hanford Formation is composed of unconsolidated sands, silts, and gravels that were carried into the area by glacial flood waters during the close of the last Ice Age. Below the Hanford Formation is the Ringold Formation composed of semiconsolidated sediments. The water table is located at a depth of approximately 100 m.

  20. Demonstrating the sealing of a deep geologic repository: the RECAP project

    International Nuclear Information System (INIS)

    Atomic Energy of Canada Limited (AECL) has operated an Underground Research Laboratory (URL) for twenty-three years (1982-2005). The URL was designed and constructed to carry out in situ geotechnical R and D needed for the Canadian Nuclear Fuel Waste Management program. The facility is now being closed, the final of several phases that have included siting, site evaluation, construction and operation. The closure phase presents a unique opportunity to develop and demonstrate the methodologies needed for closure and site restoration of a deep geologic repository for used nuclear fuel. A wealth of technical background and characterization data, dating back to before the first excavation work was carried out, are available to support closure activities. A number of closure-related activities are being proposed as part of a REpository Closure And Post-closure (RECAP) project. The RECAP project is proposed to include demonstrations of shaft and borehole sealing and monitoring as well as fracture sealing (grouting), room closure and monitoring system decommissioning, all activities that would occur when closing an actual repository. In addition to the closure-related activities, the RECAP project could provide a unique opportunity to conduct intrusion-monitoring demonstrations as part of a repository safeguards demonstration. (author)

  1. Reactive transport modeling of concrete-clay interaction: The DM borehole at Tournemire.

    Science.gov (United States)

    Soler, J. M.

    2012-04-01

    Concrete and cement paste were in contact with a clay-rich rock during 15 years in a borehole at the Tournemire Underground Rock Laboratory in France. Overcoring of the borehole and mineralogical analyses have shown a reduction of porosity at the interface due to the precipitation of ettringite, C-S-H/C-A-S-H and calcium carbonate, together with dissolution of portlandite in the cement (De Windt et al., 2008; Gaboreau et al., 2011). In the framework of the GTS-LCS project (POSIVA, Finland; JAEA, Japan; NDA, UK; SKB, Sweden; NAGRA, Switzerland), new reactive transport modeling (solute diffusion + mineral reaction) has been performed. Results using the CrunchFlow code (Steefel, 2008) show sealing of porosity at the rock side of the interface (mm scale) due to the precipitation of C-A-S-H (calcium aluminum silicate hydrate), calcite and ettringite, together with some clay dissolution. The location of sealing is influenced by cation exchange. Inclusion of cation exchange results in sealing at the rock side of the interface. Without cation exchange, sealing is at the concrete side of the interface. Recent results (Gaboreau et al., 2011) confirm the sealing on the rock side of the interface and the increase in porosity on the concrete side (portlandite dissolution).

  2. Thermal-mechanical modeling of deep borehole disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 C and 180 C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient

  3. Site investigation SFR. Boremap mapping of percussion drilled borehole HFR106

    Energy Technology Data Exchange (ETDEWEB)

    Winell, Sofia (Geosigma AB (Sweden))

    2010-06-15

    This report presents the result from the Boremap mapping of the percussion drilled borehole HFR106, which is drilled from an islet located ca 220 m southeast of the pier above SFR. The purpose of the location and orientation of the borehole is to investigate the possible occurrence of gently dipping, water-bearing structures in the area. HFR106 has a length of 190.4 m and oriented 269.4 deg/-60.9 deg. The mapping is based on the borehole image (BIPS), investigation of drill cuttings and generalized, as well as more detailed geophysical logs. The dominating rock type, which occupies 68% of HFR106, is fine- to medium-grained, pinkish grey metagranite-granodiorite (rock code 101057) mapped as foliated with a medium to strong intensity. Pegmatite to pegmatitic granite (rock code 101061) occupies 29% of the borehole. Subordinate rock types are felsic to intermediate meta volcanic rock (rock code 103076) and fine- to medium-grained granite (rock code 111058). Rock occurrences (rock types < 1 m in length) occupy about 16% of the mapped interval, of which half is veins, dykes and unspecified occurrences of pegmatite and pegmatitic granite. Only 5.5% of HFR106 is inferred to be altered, mainly oxidation in two intervals with an increased fracture frequency. A total number of 845 fractures are registered in HFR106. Of these are 64 interpreted as open with a certain aperture, 230 open with a possible aperture, and 551 sealed. This result in the following fracture frequencies: 1.6 open fractures/m and 3.0 sealed fractures/m. Three fracture sets of open and sealed fractures with the orientations 290 deg/70 deg, 150 deg/85 deg and 200 deg/85 deg can be distinguished in HFR106. The fracture frequency is generally higher in the second half of the borehole, and particularly in the interval 176-187.4 m.

  4. Borehole disposal of spent radiation sources: 2. initial safety assessment

    International Nuclear Information System (INIS)

    Large numbers of spent radiation sources from the medical and other technical professions exist in many countries, even countries that do not possess facilities related to the nuclear fuel cycle, that have to be disposed. This is particularly the case in Africa, South America and some members of the Russian Federation. Since these sources need to be handled separately from the other types of radioactive waste, mainly because of their activity to volume ratio, countries (even those with access to operational repositories) find it difficult to manage and dispose this waste. This has led to the use of boreholes as disposal units for these spent sources by some members of the Russian Federation and in South Africa. However, the relatively shallow boreholes used by these countries are not suitable for the disposal of isotopes with long half-lifes, such as 226Ra and 241Am. With this in mind the Atomic Energy Corporation of South Africa initiated the development of the BOSS disposal concept n-tilde an acronym for Borehole disposal Of Spent Sources n-tilde as part of an International Atomic Energy Agency (IAEA) AFRA 1-14 Technical Corporation (TC) project. In this paper, an initial assessment of long-term postclosure safety of the concept is discussed. (author)

  5. Durability of cement paste as engineered barrier in borehole waste repository

    International Nuclear Information System (INIS)

    The Radioactive Waste Management Laboratory of the Nuclear and Energy Research Institute, in Sao Paulo, Brazil, is developing the concept of a repository for disposal of sealed radioactive sources. The concept is a deep borehole drilled a few hundred meters below surface in a granite batholith. Portland cement paste is the material intended to backfill the annular space between the steel casing and the geological formation around the borehole. The hardened cement paste is intended to function as barrier against water flow between the different strata of the geological setting crossed by the borehole and also as an additional barrier against inflow of water and migration of the radionuclides present in the sealed sources. A service life of thousands of years is a necessary characteristic of the engineered barriers in this repository because many sealed sources are long-lived. The durability of cementitious materials is known only for short periods and must be evaluated for long periods. This research aims at evaluating the durability of Portland cement paste under the repository conditions foreseen in that disposal facility, by accelerated tests in laboratory. In this paper we present results of mechanical strength, mass, and volume variations of cement samples under irradiation, high temperature and immersion in saline solutions, as a function of time. (author)

  6. 2006 NASA Seal/Secondary Air System Workshop; Volume 1

    Science.gov (United States)

    Steinetz, Bruce, M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert (Editor)

    2007-01-01

    The 2006 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of NASA s new fundamental aeronautics technology project; (iii) Overview of NASA Glenn Research Center s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakages as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed seal technologies employed by the Apollo command module that serve as an excellent basis for seals for NASA s new Crew Exploration Vehicle (CEV).

  7. Magnetically Actuated Seal

    Science.gov (United States)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  8. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    This invention relates to an apparatus and method for sealing the cold leg nozzles of a nuclear reactor pressure vessel from a remote location during maintenance and inspection of associated steam generators and pumps while the pressure vessel and refueling canal are filled with water. The apparatus includes a sealing plug for mechanically sealing the cold leg nozzle from the inside of a reactor pressure vessel. The sealing plugs include a primary and a secondary O-ring. An installation tool is suspended within the reactor vessel and carries the sealing plug. The tool telescopes to insert the sealing plug within the cold leg nozzle, and to subsequently remove the plug. Hydraulic means are used to activate the sealing plug, and support means serve to suspend the installation tool within the reactor vessel during installation and removal of the sealing plug

  9. Magnetically Actuated Seal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  10. Conceptual waste packaging options for deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann -Cherng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low

  11. System for obtaining high-integrity borehole fluid samples. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    A high-integrity borehole fluid sampling system has been developed by Bendix Field Engineering Corporation, prime contractor for the US Department of Energy Grand Junction Area Office as a part of the National Uranium Resource Evaluation program. Through the use of a high-pressure positive-displacement pump of stainless steel coupled to a Teflon delivery line, the system is designed for delivery of an uncontaminated and unfractionated fluid sample to the surface from depths of up to 300 meters. Inflatable packers may be used to isolate a zone of interest from which the representative sample is subsequently pumped. Specially designed sample receivers are used for storage of the sample under conditions comparable to downhole pressure conditions. In contrast to systems using conventional packer systems developed primarily for the oil industry, this system is capable of sealing uncased boreholes having large borehole caliper variations without the necessity of withdrawing the tool to change the packers. In addition, this new system does not introduce foreign material into the borehole since the system uses only resident borehole fluids to effect packer inflation. Thus, long-term sampling programs may be accomplished without compromising the integrity of subsequent sample acquisition

  12. Site investigation SFR. Boremap mapping of core drilled borehole KFR106

    Energy Technology Data Exchange (ETDEWEB)

    Winell, Sofia (Geosigma AB (Sweden))

    2010-06-15

    This report presents the result from the Boremap mapping of the core drilled borehole KFR106, drilled from an islet ca 220 m southeast of the pier above SFR. The borehole has a length of 300.13 m, and a bearing and inclination of 195.1 deg and -69.9 deg, respectively. The purpose of the location and orientation of the borehole is to investigate the possible occurrence of gently dipping, water-bearing structures in the area. The geological mapping is based on simultaneous study of drill core and borehole image (BIPS). The two lowermost meters of the drill core was mapped in Boremap without access to complementary BIPS-image. The dominating rock type, which occupies 72% of KFR106, is fine- to medium-grained, metagranite granodiorite (rock code 101057), which is foliated with a medium to strong intensity. Pegmatite to pegmatitic granite (rock code 101061) is the second most common rock type and it occupies 16% of the mapped interval. It is also frequent as smaller rock occurrences (< 1 m) in other rock types throughout the borehole. Subordinate rock types are fine- to medium-grained granite (rock code 111058), felsic to intermediate meta volcanic rock (rock code 103076), fine- to medium-grained metagranitoid (rock code 101051) and amphibolite (rock code 102017). Totally 49% of the rock in KFR106 has been mapped as altered, where muscovitization and oxidation is the two most common. Additional shorter intervals of alterations are in decreasing order of abundance quartz dissolution, epidotization, argillization, albitization, chloritization, laumontization and carbonatization. A total number of 2801 fractures are registered in KFR106. Of these are 1059 open, 1742 sealed and 84 partly open. This result in the following fracture frequencies: 6.0 sealed fractures/m, 3.7 open fractures/m and 0.3 partly open fractures/m. In addition there are 5 narrow brecciated zones, and 20 sealed networks with a total length of 18 m. The most frequent fracture fillings in KFR106 are

  13. Exploratory borehole Weiach. Working programme

    International Nuclear Information System (INIS)

    An extensive geophysical borehole logging programme will serve to verify the results of the core analysis and comlement the core data. Numerous borehole logs are to be registered with different types of tools. These allow one to determine various parameters essential for the full description of the rock sequences penetrated. A first category of logs enables the petrographical identification of the different rock types and indicates porous zones that are either water- or hydrocarbon bearing. A second category provides data e.g. on the degree of pore and fracture fill, rock density and rock temperature, natural gamma radiation and rock-mechanical properties. Other logs measure strike and dip of the sedimentary layers and the position of rock fractures. A fourth category provides information on the diameter and the deviation of the borehole, the quality of casing cementations and the position of casing joints. In addition, well shooting surveys will supply exact values of seismic velocities for the various rock units; data that are needed for the depth correction of the reflection profiles from Nagra's regional seismic network. With numerous hydrological tests ranging from an open-hole production test of the Muschelkalk aquifer to labelled slug tests in low-permeability crystalline sections, the hydraulic conditions of deep groundwater flow will be investigated. The recovered water samples will undergo full physical and geochemical analysis. Furthermore, their isotope content is to be measured in order to estimate the age of the various formation waters. To round off the scientific investigations, a series of rock-mechanical and geotechnical laboratory tests will provide characteristic values to be applied eventually in the design and construction of shafts and caverns for an underground repository

  14. Exploratory borehole Riniken. Working programme

    International Nuclear Information System (INIS)

    An extensive geophysical borehole logging programme will serve to verify the results of the core analysis and comlement the core data. Numerous borehole logs are to be registered with different types of tools. These allow one to determine various parameters essential for the full description of the rock sequences penetrated. A first category of logs enables the petrographical identification of the different rock types and indicates porous zones that are either water- or hydrocarbon-bearing. A second category provides data e.g. on the degree of pore and fracture fill, rock density and rock temperature, natural gamma radiation and rock-mechanical properties. Other logs measure strike and dip of the sedimentary layers and the position of rock fractures. A forth category provides information on the diameter and the deviation of the borehole, the quality of casing cementations and the position of casing joints. In addition, well shooting surveys will supply exact values of seismic velocities for the various rock units; data that are needed for the depth correction of the reflection profiles from Nagra's regional seismic network. With numerous hydrological tests ranging from a production test of the Muschelkalk aquifer to labelled slug tests in low-permeability crystalline sections, the hydraulic conditions of deep groundwater flow will be investigated. The recovered water samples will undergo full physical and geochemical analysis. Furthermore, their isotope content is to be measured in order to estimate the age of the various formation waters and their time of residence in the subsurface. To round off the scientific investigations, a series of rock-mechanical and geotechnical laboratory tests will provide characteristic values to be applied eventually in the design and construction of shafts and caverns for an underground repository

  15. Exploratory borehole Leuggern. Working program

    International Nuclear Information System (INIS)

    An extensive geophysical borehole logging programme will serve to verify the results of the core analysis and complement the core data. Numerous borehole logs are to be registered with different types of tools. These allow one to determine various parameters essential for the full description of the rock sequences penetrated. A first category of logs enables the petrographical identification of the different rock types and indicates porous zones that are either water- or hydrocarbon-bearing. A second category provides data e.g. on the degree of pore and fracture fill, rock density and rock temperature, natural gamma radiation and rock-mechanical properties. Other logs measure strike and dip of the sedimentary layers and the position of rock fractures. A fourth category provides information on the diameter and the deviation of the borehole, the quality of casing cementations and the position of casing joints. In addition, well shooting surveys will supply exact values of seismic velocities for the various rock units; data that are needed for the depth correction of the reflection profiles from Nagra's regional seismic network. With numerous hydrological tests ranging from a production tests of the Muschelkalk and Buntsandstein aquifers to labelled slug-tests in low-permeability crystalline sections, the hydraulic conditions of deep groundwater flow will be investigated. The recovered water samples will undergo full physical and geochemical analysis. Furthermore, their isotope content is to be measured in order to estimate the age of the various formation waters and their time of residence in the subsurface. To round off the scientific investigations, a series of rock-mechanical and geotechnical laboratory tests will provide characteristic values to be applied eventually in the design and construction of shafts and caverns for an underground repository

  16. Exploratory borehole Kaisten. Working program

    International Nuclear Information System (INIS)

    The next well on the Nagra drilling programme, Kaisten, lies at the southern border of the Rhine valley. An extensive geophysical borehole logging programme will serve to verify the results of the core analysis and complement the core data. Numerous borehole logs are to be registered with different types of tools. These allow one to determine various parameters essential for the full description of the rock sequences penetrated. A first category of logs enables the petrographical identification of the different rock types and indicates porous zones that are either water- or hydrocarbon-bearing. A second category provides data e.g. on the degree of pore and fracture fill, rock density and rock temperature, natural gamma radiation and rock-mechanical properties. Other logs measure strike and dip of the sedimentary layers and the position of rock fractures. A fourth category provides information on the diameter and the deviation of the borehole, the quality of casing cementations and the position of casing joints. In addition, well shooting surveys will supply exact values of seismic velocities for the various rock units; data that are needed for the depth correction of the reflection profiles from Nagra's regional seismic network. With numerous hydrological tests ranging from production tests of the Buntsandstein aquifer to labelled slug-tests in low-permeability crystalline sections, the hydraulic conditions of deep groundwater flow will be investigated. The recovered water samples will undergo full physical and geochemical analysis. Furthermore, their isotope content is to be measured in order to estimate the age of the various formation waters and their time of residence in the subsurface

  17. Device for geophysical borehole investigations

    International Nuclear Information System (INIS)

    Electronic circuits for an improved system for the determination of uranium, thorium and potassium in geological structures penetrated by a borehole are described. Previous methods have only considered the main characteristic gamma peaks for these elements and have given poor statistical accuracy. The system described covers the whole energy range from 0.15 to 3 MeV using a sodium iodide scintillator counter, with the energy range divided into five windows. The spectra are analysed by an analogue computer which has previously been calibrated against samples of known concentration. (JIW)

  18. The IRES electronic seal

    International Nuclear Information System (INIS)

    In the framework of the French Support Program for the IAEA Safeguards, the 'Institut de Protection et de Surete Nucleaire' (IPSN), developed an electronic seal called Integrated and Reusable Electronic Seal (IRES) that enables independent verification by different inspectorates (IAEA, Euratom, and National Inspectorate). The seal can be remotely interrogated by radio frequency and integrated to other Containment/surveillance systems by serial line RS 485. Data are authenticated and the IRESMAG software manages in the seal reader all functionalities of the seal and records inspection data compatible with the IAEA's Seal Database. To perform this development, IPSN relies on industrial partners: SAPHYMO for the general architecture of the seal and the electronics, THALES for the authentication of data and the security of transmission. The main features of the IRES seal are the following: Interrogation by different inspectorate, allowing independent conclusions; Recording of events, including tampering, in a non-volatile memory; Authentication of data and enhanced security of the communication between the seal and the seal reader; Remote interrogation by an inspector or/and automatic for unattended systems or remote monitoring; Reusable after erasing the seal memory and replacement of the batteries

  19. Severe service sealing solutions

    International Nuclear Information System (INIS)

    Successful sealing usually requires much more than initial leak-tightness. Friction and wear must also be acceptable, requiring a good understanding of tribology at the sealing interface. This paper describes various sealing solutions for severe service conditions. The CAN2A and CAN8 rotary face seals use tungsten carbide against carbon-graphite to achieve low leakage and long lifetime in nuclear main coolant pumps. The smaller CAN6 seal successfully uses tungsten carbide against silicon carbide in reactor water cleanup pump service. Where friction in CANDU fuelling machine rams must be essentially zero, a hydrostatic seal using two silicon carbide faces is the solution. In the NRU reactor moderator pumps, where pressure is much lower, eccentric seals that prevent boiling at the seal faces are giving excellent service. All these rotary face seals rely on supplementary elastomer seals between their parts. An integrated engineering approach to high performance sealing with O-rings is described. This is epitomized in critical Space Shuttle applications, but is increasingly being applied in CANDU plants. It includes gland design, selection and qualification of material, quality assurance, detection of defects and the effects of lubrication, surface finish, squeeze, stretch and volume constraints. In conclusion, for the severe service applications described, customized solutions have more than paid for themselves by higher reliability, lower maintenance requirements and reduced outage time. (author)

  20. Zero leakage sealings

    Science.gov (United States)

    Kotesovec, Bernhard; Steinrück, Herbert

    2010-11-01

    The piston rod of a reciprocating compressor is sealed with elastic cylindrical sealing elements. Across the sealings the pressure drops from the operating pressure to the ambient pressure. The lubrication gap between the elastic sealing and reciprocating piston rod is studied with the aim to find conditions of a leakage free sealing. The flow in the lubrication gap and the elastic deformation of the sealing are determined simultaneously. The net-flow during one cycle of the reciprocating piston rod is calculated. It turns out that maintaining zero leakage is very sensible. Indeed the outbound flow during out-stroke has to be equal the inbound flow during the in-stroke. By prescribing a special shape of the undeformed sealing zero leakage can be attained - at least theoretically for certain operating conditions. It turns out that temperature dependent material data and a model for cavitation is necessary. The model, its numerical implementation and results will be discussed.

  1. High pressure shaft seal

    International Nuclear Information System (INIS)

    In relation to reactor primary coolant pumps, mechanical seal assembly for a pump shaft is disclosed which features a rotating seal ring mounting system which utilizes a rigid support ring loaded through narrow annular projections in combination with centering non-sealing O-rings which effectively isolate the rotating seal ring from temperature and pressure transients while securely positioning the ring to adjacent parts. A stationary seal ring mounting configuration allows the stationary seal ring freedom of motion to follow shaft axial movement up to 3/4 of an inch and shaft tilt about the pump axis without any change in the hydraulic or pressure loading on the stationary seal ring or its carrier. (author)

  2. The IRES electronic seal

    International Nuclear Information System (INIS)

    In the framework of the French Support Program for the IAEA Safeguards, the 'Institut de Protection et de Surete Nucleaire' (IPSN), developed an electronic seal called Integrated and Reusable Electronic Seal (IRES) that enables independent verification by different inspectorates (IAEA, Euratom, and National Inspectorate) Furthermore, a bilateral co-ordination between Euratom and French domestic safeguards takes place in some French facilities regarding a common approach concerning the seals especially in case of crisis situation. The seal can be remotely interrogated by radio frequency and integrated to other Containment/surveillance systems by serial line RS 485. Data are authenticated and the IRESMAG software manages in the seal reader all functionalities of the seal and records inspection data compatible with the IAEA's Seal Database

  3. Borehole plugging test activities in southeastern New Mexico

    International Nuclear Information System (INIS)

    Conclusions from these studies indicated that borehole seals with effective permeabilities on the order of tens of darcies would result in doses to maximally exposed individuals of less than 0.01% of natural background. In addition to overall assessments, techniques have been developed to evaluate the effectiveness of a plug/formation system to block fluid flow along the axis of the borehole. These techniques allow the characterization of the flow region within or surrounding a plug. They have been applied to results from tests in which flow was measured around an in situ plug. Current emphasis has been on evaluation of cementitious grouts. Grout mixes with expansive cement have been developed using various additives and both brines and fresh water. These mixes have been tailored to specific rocks for use in field tests. The characteristics (e.g., permeability bond strength) of these mixes and associated rocks have been determined in the laboratory and then compared with in situ performance. Studies of grout feasibility have been coupled with strategies for assessing long-term stability

  4. Data Qualification Report: Borehole Straigraphic Contacts

    Energy Technology Data Exchange (ETDEWEB)

    R.W. Clayton; C. Lum

    2000-04-18

    The data set considered here is the borehole stratigraphic contacts data (DTN: M09811MWDGFM03.000) used as input to the Geologic Framework Model. A Technical Assessment method used to evaluate these data with a two-fold approach: (1) comparison to the geophysical logs on which the contacts were, in part, based; and (2) evaluation of the data by mapping individual units using the entire data set. Qualification of the geophysical logs is being performed in a separate activity. A representative subset of the contacts data was chosen based on importance of the contact and representativeness of that contact in the total data set. An acceptance window was established for each contact based on the needs of the data users. Data determined to be within the acceptance window were determined to be adequate for their intended use in three-dimensional spatial modeling and were recommended to be Qualified. These methods were chosen to provide a two-pronged evaluation that examines both the origin and results of the data. The result of this evaluation is a recommendation to qualify all contacts. No data were found to lie outside the pre-determined acceptance window. Where no geophysical logs are available, data were evaluated in relation to surrounding data and by impact assessment. These data are also recommended to be qualified. The stratigraphic contact data contained in this report (Attachment VII; DTN: M00004QGFMPICK.000) are intended to replace the source data, which will remain unqualified.

  5. Current trends in nuclear borehole logging techniques for elemental analysis

    International Nuclear Information System (INIS)

    This report is the result of a consultants' meeting organized by the IAEA and held in Ottawa, Canada, 2-6 November 1987 in order to assess the present technical status of nuclear borehole logging techniques, to find out the well established applications and the development trends. It contains a summary report giving a comprehensive overview of the techniques and applications and a collection of research papers describing work done in industrial institutes. A separate abstract was prepared for each of these 9 papers. Refs, figs and tabs

  6. Regulatory analysis for Generic Issue 23: Reactor coolant pump seal failure. Draft report for comment

    International Nuclear Information System (INIS)

    This report presents the regulatory/backfit analysis for Generic Issue 23 (GI-23), 'Reactor Coolant Pump Seal Failure'. A backfit analysis in accordance with 10 CFR 50.109 is presented in Appendix E. The proposed resolution includes quality assurance provisions for reactor coolant pump seals, instrumentation and procedures for monitoring seal performance, and provisions for seal cooling during off-normal plant conditions involving loss of all seal cooling such as station blackout. Research, technical data, and other analyses supporting the resolution of this issue are summarized in the technical findings report (NUREG/CR-4948) and cost/benefit report (NUREG/CR-5167). (author)

  7. The ultimate solution. Disposal of disused sealed radioactive sources (DSRS)

    International Nuclear Information System (INIS)

    The borehole disposal concept (BDC) was first presented to ICEM by Potier, J-M in 2005. This paper repeats the basics introduced by Potier and relates further developments. It also documents the history of the development of the BDC. For countries with no access to existing or planned geological disposal facilities for radioactive wastes, the only options for managing high activity or long-lived disused radioactive sources are to store them indefinitely, return them to the supplier or find an alternative method of disposal. Disused sealed radioactive sources (DSRS) pose an unacceptable radiological and security risk if not properly managed. Out of control sources have already led to many high-profile incidents or accidents. One needs only to remember the recent accident in India that occurred earlier this year. Countries without solutions in place need to consider the future management of DSRSs urgently. An on-going problem in developing countries is what to do with sources that cannot be returned to the suppliers, sources for which there is no further use, sources that have not been maintained in a working condition and sources that are no longer suitable for their intended purpose. Disposal in boreholes is intended to be simple and effective, meeting the same high standards of long-term radiological safety as any other type of radioactive waste disposal. It is believed that the BDC can be readily deployed with simple, cost-effective technologies. These are appropriate both to the relatively small amounts and activities of the wastes and the resources that can realistically be found in developing countries. The South African Nuclear Energy Corporation Ltd (Necsa) has carried out project development and demonstration activities since 1996. The project looked into the technical feasibility, safety and economic viability of BDC under the social, economic, environmental and infrastructural conditions currently prevalent in Africa. Implementation is near at hand with

  8. Contracting/expanding self-sealing cryogenic tube seals

    Science.gov (United States)

    Jia, Lin X. (Inventor)

    1997-01-01

    Contracting/expanding self-sealing cryogenic tube seals are disclosed which use the different properties of thermal contraction and expansion of selected dissimilar materials in accord with certain design criteria to yield self-tightening seals via sloped-surface sealing. The seals of the subject invention are reusable, simple to assemble, and adaptable to a wide variety of cryogenic applications.

  9. Layered seal for turbomachinery

    Science.gov (United States)

    Sarawate, Neelesh Nandkumar; Morgan, Victor John; Weber, David Wayne

    2015-11-20

    The present application provides seal assemblies for reducing leakages between adjacent components of turbomachinery. The seal assemblies may include outer shims, and at least a portion of the outer shims may be substantially impervious. At least one of the outer shims may be configured for sealing engagement with seal slots of the adjacent components. The seal assemblies may also include at least one of an inner shim and a filler layer positioned between the outer shims. The at least one inner shim may be substantially solid and the at least one filler layer may be relatively porous. The seal assemblies may be sufficiently flexible to account for misalignment between the adjacent components, sufficiently stiff to meet assembly requirements, and sufficiently robust to operating meet requirements associated with turbomachinery.

  10. Compliant Turbomachine Sealing

    Science.gov (United States)

    Hendricks, R. C.; Braun, M. J.; Deng, D.; Hendricks, J. A.

    2011-01-01

    Sealing interface materials and coatings are sacrificial, giving up their integrity for the benefit of the component. Seals that are compliant while still controlling leakage, dynamics, and coolant flows are sought to enhance turbomachine performance. Herein we investigate the leaf-seal configuration. While the leaf seal is classified as contacting, a ready modification using the leaf-housing arrangement in conjunction with an interface film rider (a bore seal, for example) provides for a film-riding noncontact seal. The leaf housing and leaf elements can be made from a variety of materials from plastic to ceramic. Four simplistic models are used to identify the physics essential to controlling leakage. Corroborated by CFD, these results provide design parameters for applications to within reasonable engineering certainty. Some potential improvements are proposed.

  11. Thermal Performance Analysis of a Geologic Borehole Repository

    Energy Technology Data Exchange (ETDEWEB)

    Reagin, Lauren [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-16

    The Brazilian Nuclear Research Institute (IPEN) proposed a design for the disposal of Disused Sealed Radioactive Sources (DSRS) based on the IAEA Borehole Disposal of Sealed Radioactive Sources (BOSS) design that would allow the entirety of Brazil’s inventory of DSRS to be disposed in a single borehole. The proposed IPEN design allows for 170 waste packages (WPs) containing DSRS (such as Co-60 and Cs-137) to be stacked on top of each other inside the borehole. The primary objective of this work was to evaluate the thermal performance of a conservative approach to the IPEN proposal with the equivalent of two WPs and two different inside configurations using Co-60 as the radioactive heat source. The current WP configuration (heterogeneous) for the IPEN proposal has 60% of the WP volume being occupied by a nuclear radioactive heat source and the remaining 40% as vacant space. The second configuration (homogeneous) considered for this project was a homogeneous case where 100% of the WP volume was occupied by a nuclear radioactive heat source. The computational models for the thermal analyses of the WP configurations with the Co-60 heat source considered three different cooling mechanisms (conduction, radiation, and convection) and the effect of mesh size on the results from the thermal analysis. The results of the analyses yielded maximum temperatures inside the WPs for both of the WP configurations and various mesh sizes. The heterogeneous WP considered the cooling mechanisms of conduction, convection, and radiation. The temperature results from the heterogeneous WP analysis suggest that the model is cooled predominantly by conduction with effect of radiation and natural convection on cooling being negligible. From the thermal analysis comparing the two WP configurations, the results suggest that either WP configuration could be used for the design. The mesh sensitivity results verify the meshes used and results obtained from the thermal analyses were close to being

  12. Main-coolant-pump shaft-seal guidelines. Volume 2. Operational guidelines. Final report

    International Nuclear Information System (INIS)

    This report presents a set of guidelines and criteria for improving main coolant pump shaft seal operational reliability. The noted guidelines are developed from EPRI sponsored nuclear power plant seal operating experience studies. Usage procedures/practices and operational environment influence on seal life and reliability from the most recent such survey are summarized. The shaft seal and its auxiliary supporting systems are discussed both from technical and operational related viewpoints

  13. Long-term sealing of openings in salt formations

    International Nuclear Information System (INIS)

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in those potential pathways to prevent radioactive release to the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made of compressed salt-powder are understood to be the first choice long-term sealing material. Seals built from salt bricks will be ductile. The permeability of the salt bricks is assumed to be in the order of 2*10-15 m2. Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. The permeability of the mortar decreases with its salt content to approx. 2*10-14 m2. Moistened saliferous clay may show temporary swelling. Sealing experiments will be carried out in the Asse salt mine. Long-term seals will be built into holes of 1 m diameter. The contact and merging of the brick-wall with the surrounding rock salt will be investigated in long-term tests. Within the in situ sealing program a number of geophysical methods are applied. Acoustic emission measurements are used to study the effects of high pressure gas injection and a geoelectrical observation program is aiming to estimate the permeability in and around the long-term seal. High frequency electromagnetic methods contribute to the knowledge of the petrophysical rock properties. 11 refs., 12 figs

  14. Foil Face Seal Testing

    Science.gov (United States)

    Munson, John

    2009-01-01

    In the seal literature you can find many attempts by various researchers to adapt film riding seals to the gas turbine engine. None have been successful, potential distortion of the sealing faces is the primary reason. There is a film riding device that does accommodate distortion and is in service in aircraft applications, namely the foil bearing. More specifically a foil thrust bearing. These are not intended to be seals, and they do not accommodate large axial movement between shaft & static structure. By combining the 2 a unique type of face seal has been created. It functions like a normal face seal. The foil thrust bearing replaces the normal primary sealing surface. The compliance of the foil bearing allows the foils to track distortion of the mating seal ring. The foil seal has several perceived advantages over existing hydrodynamic designs, enumerated in the chart. Materials and design methodology needed for this application already exist. Also the load capacity requirements for the foil bearing are low since it only needs to support itself and overcome friction forces at the antirotation keys.

  15. Rotating Brush Seal

    Science.gov (United States)

    Lattime, S. B.; Braun, M. J.; Choy. F. K.; Hendricks, R. C.; Steinetz, B. M.

    2006-01-01

    The proven technology of brush seals has been extended to the mitigation of problems arising from friction and wear at the bristle-rotor interface at high surface speeds. In prototype testing, the brush is mounted on, and free to rotate with the shaft, thus providing a complaint primary seal. A face seal positioned between the backing plate of the brush seal and the housing provides a secondary seal. The purpose of this paper is to demonstrate the interaction between the brush bristles and the shaft at high surface speeds as well as introduce a numerical model to simulate the bristle behavior. A test facility was constructed to study the effects of centrifugal forces on bristle deflection in a single rotating brush seal. The bristle-rotor interface was observed through a video camera, which utilized a high magnification borescope and a high frequency strobe light source. Rotational speeds of the rotor and the brush seal were measured by a magnetic and optical speed sensor, respectively. Preliminary results with speeds up to 11,000 rpm show no speed differential between the brush seal and rotor, or any instability problems associated with the brush seal. Bristle liftoff from the rotor is successfully captured on video.

  16. Role of borehole plugging in the evaluation of the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Research on borehole plugging (BHP) is part of an integrated strategy to develop technology that can assure successful nuclear waste isolation. The application of this strategy to the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico has included an assessment of the role BHP plays in the development of a repository at that site. This paper presents a description of the WIPP site, repository design, and the current research and development program. The status of drill holes -those drilled for petroleum and potash exploration and those drilled for site characterization- within the proposed site boundaries is presented. Sixty-six holes are present on the 7700 hectare (19,000 acre) site, yet only 8 penetrate as deep as the proposed repository location. The assumptions made about shaft and borehole sealing in consequence assessment studies are presented. The results of these studies indicate that borehole seals with effective permeabilities greater than tens of darcies would result in doses to maximally exposed individuals of less than 0.01% of natural background

  17. Radiological consequences of accidents during disposal of spent nuclear fuel in a deep borehole

    Energy Technology Data Exchange (ETDEWEB)

    Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-07-15

    In this report, an analysis of the radiological consequences of potential accidents during disposal of spent nuclear fuel in deep boreholes is presented. The results presented should be seen as coarse estimates of possible radiological consequences of a canister being stuck in a borehole during disposal rather than being the results of a full safety analysis. In the concept for deep borehole disposal of spent nuclear fuel developed by Sandia National Laboratories, the fuel is assumed to be encapsulated in mild steel canisters and stacked between 3 and 5 km depth in boreholes that are cased with perforated mild steel casing tubes. The canisters are joined together by couplings to form strings of 40 canisters and lowered into the borehole. When a canister string has been emplaced in the borehole, a bridge plug is installed above the string and a 10 metres long concrete plug is cast on top of the bridge plug creating a floor for the disposal of the next sting. In total 10 canister strings, in all 400 canisters, are assumed to be disposed of at between 3 and 5 kilometres depth in one borehole. An analysis of potential accidents during the disposal operations shows that the potentially worst accident would be that a canister string is stuck above the disposal zone of a borehole and cannot be retrieved. In such a case, the borehole may have to be sealed in the best possible way and abandoned. The consequences of this could be that one or more leaking canisters are stuck in a borehole section with mobile groundwater. In the case of a leaking canister being stuck in a borehole section with mobile groundwater, the potential radiological consequences are likely to be dominated by the release of the so-called Instant Release Fraction (IRF) of the radionuclide inventory, i.e. the fraction of the radionuclides that as a consequence of the in-core conditions are present in the annulus between the fuel pellets and the cladding or on the grain boundaries of the UO{sub 2} matrix

  18. Key Technologies Analyses to Develop a Deep Borehole disposal Concept for HLW

    International Nuclear Information System (INIS)

    A deep geological disposal system, the disposal depth is about 500 m below ground, is considered as the safest method to isolate the spent fuels(SF) or high-level radioactive waste(HLW) from the human environment with the best available technology at present time. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if these high-level radioactive wastes can be disposed of in deeper and more stable rock formation than deep geological disposal depth, it has several advantages. Therefore, as an alternative disposal concept, i. e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept for deep borehole disposal of spent fuels or high level radioactive wastes which has been developed by some countries according to the rapid advance in the development of drilling technology, as an alternative method to the deep geological disposal method, was reviewed. And the key technologies and challenges in development of this disposal method with the nuclear environment were analyzed. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes which has been developed by some countries according to the rapid advance in the development of borehole drilling technology, as an alternative method to the deep geological disposal method, was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed

  19. High Test Peroxide High Sealing Conical Seal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High Test Peroxide (HTP) Highly Compatible High Sealing Conical Seals are necessary for ground test operations and space based applications. Current conical seals...

  20. Structural Design and Sealing Performance Analysis of Biomimetic Sealing Ring

    OpenAIRE

    Chuanjun Han; Han Zhang; Jie Zhang

    2015-01-01

    In order to reduce the failure probability of rubber sealing rings in reciprocating dynamic seal, a new structure of sealing ring based on bionics was designed. The biomimetic ring has three concave ridges and convex bulges on each side which are very similar to earthworms. Bulges were circularly designed and sealing performances of the biomimetic ring in both static seal and dynamic seal were simulated by FEM. In addition, effects of precompression, medium pressure, speed, friction coefficie...

  1. "Plug" ósseo autógeno para orifícios de trepanação: nota técnica Autogenic bone plug to seal burr holes: technical note

    Directory of Open Access Journals (Sweden)

    JOSUÉ GUIMARÃES GRANHA VIALOGO

    1999-12-01

    Full Text Available Vários materiais são utilizados para ocluir os orifícios de trepanação em neurocirurgia, por motivos variados: para evitar fístula liquórica após trepanações, para auxiliar a fixação do "flap" ósseo e por motivos estéticos, na região frontal. Dentre estes materiais citamos os heterólogos (botões de silicone, miniplacas de metal, cera de osso, metilmetacrilato, gelfoam, cimento de polímero vegetal, cerâmica de hidroxiapatita, e os autólogos (pó de osso originado da trepanação, gordura, músculo, aponeurose. Os materiais heterólogos ou sintéticos podem provocar reação de corpo estranho com erosão da pele e exposição do material, tornando necessária sua retirada, em tempo variável no pós-operatório. Há cerca de três anos, o autor vem utilizando um botão ou "plug" ósseo autólogo, feito com surgicel e o pó de osso proveniente da trepanação, com bom resultado estético eliminando as desconfortáveis depressões cranianas pós-trepanação. Apresentamos a técnica de confecção deste prático `plug ósseo autólogo'. Nas neuroendoscopias, praticamente sanou-se o problema da fístula liquórica e reação de corpo estranho. Encorajamos a utilização deste botão ósseo autólogo em nosso meio, como método eficiente, econômico e biologicamente aceitável para ocluir orifícios cranianos de trepanação.Many neurosurgical procedures can be performed by a single burr hole: neuroendoscopy, microvascular decompression, stereotactic procedures, chronic subdural haematomas. It is technically difficult to suture and close the dura, located at the bottom of such holes, which can lately lead to CSF leakage. On the other hand, the surgical material used to seal the burr holes can be divided in heterogenic (metal screws, silicon plugs, gelfoam, bone wax, metilmetacrilate, hidroxiapatite, and autogenic (fat, aponeurosis, muscle, and bone dust from trephination. The heterogenic group always brings the possibility of

  2. Ultimate disposal of HTR spent fuel elements in a borehole-prepared site

    International Nuclear Information System (INIS)

    The concept of the Federal Republic of Germany for disposal of radioactive waste that considerably develops heat is to place them in vertical boreholes in salt rock. Among the wastes to be placed there is MAW from the LWR spent fuel reprocessing, and spent fuel from HTR. The technical know-how required for this method is acquired within the project 'MAW and HTR spent fuel test storage in boreholes', under KFA project leadership. Goals and organisation of the project are explained, and the status of work performed with particular regard to HTR spent fuel management is reported. (orig.)

  3. Geophysical borehole logging test procedure: Final draft

    International Nuclear Information System (INIS)

    The purpose of geophysical borehole logging from the At-Depth Facility (ADF) is to provide information which will assist in characterizing the site geologic conditions and in classifying the engineering characteristics of the rock mass in the vicinity of the ADF. The direct goals of borehole logging include identification of lithologic units and their correlation from hole to hole, identification of fractured or otherwise porous or permeable zones, quantitative or semi-quantitative estimation of various formation properties, and evaluation of factors such as the borehole diameter and orientation. 11 figs., 4 tabs

  4. A directional antenna for borehole radar

    International Nuclear Information System (INIS)

    The borehole radar system developed during phase II of the International Stripa Project has been successfully applied to mapping fracture zones up to 100 meters from the borehole in granite. The techniques previously used to determine the orientation of fracture zones (single hole reflection, crosshole reflection, crosshole tomography) have been supplemented with a directional antenna, which makes it possible to determine the orientation from measurements in a single borehole. The antenna works by synthesizing four signals to produce directional information. Tests performed in Stripa show that the resolution of the antenna is about 50

  5. Seal Wire Integrity Verification Instrument: Evaluation of Laboratory Prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Good, Morris S.; Skorpik, James R.; Kravtchenko, Victor; Wishard, Bernard; Prince, James M.; Pardini, Allan F.; Heasler, Patrick G.; Santiago-Rojas, Emiliano; Mathews, Royce; Khayyat, Sakher; Tanner, Jennifer E.; Undem, Halvor A.

    2009-10-07

    Tamper indicating devices (TIDs) provide evidence that sensitive items, to which they have been applied, have been tampered with or not. Passive wire-loop seals, a class of TIDs, are generally comprised of a multi-strand seal wire that is threaded through or around key features and a unique seal body that captures and restrains the seal wire. Seal integrity resides with unique identification of the seal and the integrity of the seal body and the seal wire. Upon inspection, the seal wire may be cut and the full length inspected. A new seal may be applied in the field as a replacement, if desired. Seal wire inspection typically requires visual and tactile examinations, which are both subjective. A need therefore exists to develop seal wire inspection technology that is easy to use in the field, is objective, provides an auditable data trail, and has low error rates. Expected benefits, if successfully implemented, are improved on-site inspection reliability and security. The work scope for this effort was restricted to integrity of seal wire used by the International Atomic Energy Agency (IAEA) and resulted in development of a wire integrity verification instrument (WIVI) laboratory prototype. Work included a performance evaluation of a laboratory-bench-top system, and design and delivery of two WIVI laboratory prototypes. The paper describes the basic physics of the eddy current measurement, a description of the WIVI laboratory prototype, and an initial evaluation performed by IAEA personnel. --- Funding was provided by the U.S. Program for Technical Assistance to IAEA Safeguards (POTAS).

  6. Saving Seal Cutting

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    On April 20, the graduation ceremony of China’s seal-cutting art postgraduates and visiting experts from the Institute of Seal Cutting Art under the China Art Academy was held in Beijing. On the same day, the exhibition of the works of the teachers and graduates of the institute was also held.

  7. Cement technology for plugging boreholes in radioactive-waste-repository sites. Progress report, October 1, 1978-September 30, 1979

    International Nuclear Information System (INIS)

    Laboratory evaluations were made of several borehole plug formulations proposed for the Bell Canyon field test. Measurements included compressive strength, permeability, density, and thermal conductivity. A few preliminary tests with saltcrete formulations showed no significant difference in physical properties of the solid as a function of fly ash or cement composition. The saltcrete proposed for the field test gave acceptable pushout strength and permeability values using miniature borehole plugs in anhydrite. Similar laboratory tests made with a freshwater formulation indicated high permeability. Electron micrographs showed dissolution cavities or cracks at the plug-wall interface. These studies showed that the reactions occurring between the borehole plug and the adjacent rock wall are an important factor in obtaining a good seal and that laboratory tests are useful to indicate the possibility of success or failure of field tests

  8. Flexible Seal Accommodates Part Mismatch

    Science.gov (United States)

    Bobb, I.

    1983-01-01

    Chain of plates embedded in flexible seal enables it to withstand side loading of 2,300 psi (116MPa) while sealing gap of up to 0.5 inch (13 mm) between cylindrical chamber wall and test fixture. Pressure-actuated seal along inner edge forces seal into contact even though cylinder wall becomes eccentric as cylinder pressure increases. Seal has many industrial applications, particularly where heat or pressure causes distortion of chamber being sealed.

  9. High temperature hydraulic seals

    Science.gov (United States)

    Williams, K. R.

    1993-05-01

    This program investigated and evaluated high temperature hydraulic sealing technology, including seals, fluids, and actuator materials. Test limits for fluid pressure and temperature were 8000 psi and 700 F respectively. The original plan to investigate CTFE fluid at 350 F as well as other fluids at higher temperatures was reduced in scope to include only the higher temperature investigation. Seals were obtained from 11 manufacturers. Design requirements including materials, dimensions, clearances, and tolerances were established and test modules were constructed from the detail designs which were produced. Nine piston seals and one rod seal were tested at temperatures ranging from -65 to +600 F and pressures to 6000 psi. Fluid performance under these conditions was evaluated. Details of this activity and results of the effort are summarized in this report.

  10. Expansive stresses of a grout plug on the walls of borehole

    International Nuclear Information System (INIS)

    The primary function of a concrete plug in a repository seal system is to provide a viable seal at the interface with the host rock by developing and maintaining a positive normal stress across the interface. While standards do exist for unrestrained and restrained expansion of mortar and concrete there are few systems that permit calculation of stress for a stimulated borehole geometry. A system was designed to determine the radial stresses introduced by expansive, cementitious grout on the borehole. It consists of a strain gage instrumented cell and its associated signal conditioner/amplifier. Cell material and thickness can be varied to simulate restraining conditions at given depths. Prior to sample emplacement the cell/system is calibrated by fluid pressurization. Special cell design eliminates the effects of longitudinal stresses during calibration. An analog output as a function of time is recorded, in conjunction with surface temperature of the cylinder. The cell containing grout is maintained under controlled temperature conditions which can be varied from 250C to 900C. Pressure can be applied to the grout column to simulate hydrostatic/geostatic load conditions. Using the equipment described, several expansive grout formulations were studied at 380C. Results obtained for expansive stresses as a function of time are presented together with implications on repository-seal durability

  11. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993

    Energy Technology Data Exchange (ETDEWEB)

    Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

    2007-02-28

    A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measure¬ment. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

  12. Which boreholes do we need to resolve the Common Era in borehole paleoclimatology?

    Science.gov (United States)

    Rath, V.; Smerdon, J. E.; González-Rouco, J. F.; Beltrami, H.

    2012-04-01

    The global database of borehole temperature profiles used to estimate paleoclimatic ground surface temperature histories (GSTHs) has typically focused on the last 500 years. his is mainly due to the fact that the borehole database is dominated by shallow boreholes (~200-300 m). Nevertheless, it has been shown that these boreholes may be too shallow for proper separation of the downwelling climatic transient and the long-term background steady-state signal associated with heat loss from the earth's interior. The mere inclusion of deeper boreholes, however, does not necessarily mitigate the problem. Borehole temperature profiles of any depth show the signatures of earlier climatic changes, including the strong warming following the last glacial maximum (LGM). In shallow boreholes this effect is very similar to a linear trend, usually cannot be discriminated from a steady-state geotherm, and is unlikely to strongly impact estimates of GSTHs spanning common-era timescales. In deeper boreholes, however, the signature of the LGM cannot be approximated linearly, and biases associated with the LGM may impact GSTH reconstructions during the Common Era. The combined incentive to employ deep boreholes for reliable estimation of the background steady-state signal, while limiting the LGM impacts on reconstructions of Common-Era GSTHs thus leads to an multi-objective optimization problem seeking a trade-off between the impacts of the two effects. Such an optimization of the borehole maximum depth criterion is investigated in this study using numerical models. A Monte Carlo ensemble approach is used to quantify the impact of various reconstruction decisions as temperature histories, error characteristics, thermophysical properties, and maximum borehole depths. The findings have implications for interpretations of current global reconstruction products and future efforts to analyze the global borehole database for Common-Era GSTH reconstructions. (http://palma.fis.ucm.es/~volker/)

  13. Preliminary Borehole Disposal In Medium Flow Hydrogeological Condition Using IAEA Screening Tools

    International Nuclear Information System (INIS)

    A screening tool developed by International Atomic Energy Agency (IAEA) has been used to provide means of improving the capacity of Malaysian Nuclear Agency (Nuclear Malaysia) in assessing the potential sites for Borehole Disposal for Disused Sealed Radioactive Sources. It allows the isolation provided by the capsule and disposal container to be evaluated. In addition, it has a conservative model of radionuclide transport with no retardation of radionuclide. Hence, rapid decisions can be made by providing an early indication of the potential suitability of sites based on their hydro-chemical characteristics. The objective of this paper is to identify and determine the types and radionuclide activities of inventory that can be disposed in the borehole. The results of the analysis show the volume of gas doses occur from the disposal and time taken for the cement to be corroded. (author)

  14. Crosshole investigations - results from borehole radar investigations

    International Nuclear Information System (INIS)

    A new borehole radar system has been designed, built and tested. The system consists of borehole transmitter and receiver probes, a signal control unit for communication with the borehole probes, and a computer unit for storage and display of data. The system can be used both in singlehole and crosshole modes and probing ranges of 115 m and 300 m, respectively, have been obtained at Stripa. The borehole radar is a short pulse system which uses center frequencies in the range 20 to 60 MHz. Single hole reflection measurements have been used to identify fracture zones and to determine their position and orientation. The travel time and amplitude of the first arrival measured in a crosshole experiment can be used as input data in a tomographic analysis. (orig./DG)

  15. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996

    Energy Technology Data Exchange (ETDEWEB)

    Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben; Rust, Colleen F.

    2007-01-28

    This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.

  16. Using boreholes as windows into groundwater ecosystems.

    Directory of Open Access Journals (Sweden)

    James P R Sorensen

    Full Text Available Groundwater ecosystems remain poorly understood yet may provide ecosystem services, make a unique contribution to biodiversity and contain useful bio-indicators of water quality. Little is known about ecosystem variability, the distribution of invertebrates within aquifers, or how representative boreholes are of aquifers. We addressed these issues using borehole imaging and single borehole dilution tests to identify three potential aquifer habitats (fractures, fissures or conduits intercepted by two Chalk boreholes at different depths beneath the surface (34 to 98 m. These habitats were characterised by sampling the invertebrates, microbiology and hydrochemistry using a packer system to isolate them. Samples were taken with progressively increasing pumped volume to assess differences between borehole and aquifer communities. The study provides a new conceptual framework to infer the origin of water, invertebrates and microbes sampled from boreholes. It demonstrates that pumping 5 m(3 at 0.4-1.8 l/sec was sufficient to entrain invertebrates from five to tens of metres into the aquifer during these packer tests. Invertebrates and bacteria were more abundant in the boreholes than in the aquifer, with associated water chemistry variations indicating that boreholes act as sites of enhanced biogeochemical cycling. There was some variability in invertebrate abundance and bacterial community structure between habitats, indicating ecological heterogeneity within the aquifer. However, invertebrates were captured in all aquifer samples, and bacterial abundance, major ion chemistry and dissolved oxygen remained similar. Therefore the study demonstrates that in the Chalk, ecosystems comprising bacteria and invertebrates extend from around the water table to 70 m below it. Hydrogeological techniques provide excellent scope for tackling outstanding questions in groundwater ecology, provided an appropriate conceptual hydrogeological understanding is applied.

  17. Working programme for MIU-4 borehole investigations

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Kunio; Nakano, Katsushi; Metcalfe, R.; Ikeda, Koki; Goto, Jun-ichi; Amano, Kenji; Takeuchi, Shinji; Hama, Katsuhiro; Matsui, Hiroya [Japan Nuclear Cycle Development Inst., Toki, Gifu (Japan). Tono Geoscience Center

    1999-08-01

    Surface-based investigations have now been carried out since 1997 according to the Master Plan of the Mizunami Underground Research Laboratory (MIU) (PNC, 1996). The specific goals of the surface-based investigations are: To acquire information necessary for understanding the undisturbed deep geological environment as a background of the MIU and for predicting the effects of the construction of underground facilities. To establish methodologies for evaluating predictions. To formulate detailed design concepts for underground facilities and to plan scientific investigations during the construction of the MIU. In addition, appropriate, systematic methodologies for investigating the deep subsurface should be developed through the surface-based investigations. It is expected that the surface-based investigations with further borehole investigations will last until March 2002. However, the construction of the MIU was provisionally planned to commence in the 2000 financial year. JNC has drilled four 1,000m-deep boreholes and one 400m-deep borehole at the MIU site (JNC's land of about 140,000m{sup 2}) in Akeyo-cho, Mizunami City, Gifu Prefecture. In the surface-based investigations, specifically three 1,000m-deep boreholes, MIU-1, MIU-2 and MIU-3, have been drilled. Investigations in these boreholes have characterised mainly the geological structure and hydrogeological features of the deep geological environment. In addition, JNC has been developing investigation techniques and improving equipment for these investigations. At the time of writing, a series of borehole investigations are being carried out in the MIU-3 borehole. The MIU-3 borehole investigations aim mainly at characterising the Tsukiyoshi fault that intersects the crystalline basement in the site. (J.P.N.)

  18. Working programme for MIU-4 borehole investigations

    International Nuclear Information System (INIS)

    Surface-based investigations have now been carried out since 1997 according to the Master Plan of the Mizunami Underground Research Laboratory (MIU) (PNC, 1996). The specific goals of the surface-based investigations are: To acquire information necessary for understanding the undisturbed deep geological environment as a background of the MIU and for predicting the effects of the construction of underground facilities. To establish methodologies for evaluating predictions. To formulate detailed design concepts for underground facilities and to plan scientific investigations during the construction of the MIU. In addition, appropriate, systematic methodologies for investigating the deep subsurface should be developed through the surface-based investigations. It is expected that the surface-based investigations with further borehole investigations will last until March 2002. However, the construction of the MIU was provisionally planned to commence in the 2000 financial year. JNC has drilled four 1,000m-deep boreholes and one 400m-deep borehole at the MIU site (JNC's land of about 140,000m2) in Akeyo-cho, Mizunami City, Gifu Prefecture. In the surface-based investigations, specifically three 1,000m-deep boreholes, MIU-1, MIU-2 and MIU-3, have been drilled. Investigations in these boreholes have characterised mainly the geological structure and hydrogeological features of the deep geological environment. In addition, JNC has been developing investigation techniques and improving equipment for these investigations. At the time of writing, a series of borehole investigations are being carried out in the MIU-3 borehole. The MIU-3 borehole investigations aim mainly at characterising the Tsukiyoshi fault that intersects the crystalline basement in the site. (J.P.N.)

  19. Geophysical logging of the Harwell boreholes

    International Nuclear Information System (INIS)

    A comprehensive geophysical borehole logging survey was carried out on each of three deep boreholes drilled at the Harwell research site. KOALA and PETRA computer programs were used to analyse and interpret the logs to obtain continuous quantitative estimates of the geological and hydrogeological properties of the sequences penetrated at the Harwell site. Quantitative estimates of the mineral composition and porosity of the cores samples were made. (UK)

  20. Horonobe URL project. Experience on borehole investigations in surface-based investigation phase

    International Nuclear Information System (INIS)

    JAEA (Japan Atomic Energy Agency) has been conducting the project which is combined with construction of URL (Underground Research Laboratory) on Neogene sedimentary rock in Horonobe-cho, Hokkaido, JAPAN. This project conjugates with the MIU project on crystalline rock in Mizunami-shi, Gifu-prefecture, JAPAN, was started FY1999/2000. The total duration of the project is about twenty years. The project consists of the following three phases; 1) Surface-based investigation phase. 2) Construction phase. 3) Operation phase. This report summarizes the experience for deep borehole investigation in surface based investigation phase, which is the most important investigation in the phase. All the deep borehole investigations had been planed and carried out in taking account of not only technical consideration but also practical and social aspects. Specifically, the report describes the important suggestions derived from the work of the deep borehole investigations. (author)

  1. Order of the 13. of October 2009 approving the decision no 2009-DC-0150 of the Nuclear Safety Authority on the 16. of July 2009 defining the technical criteria on which relies the prolongation of the use duration of sealed radioactive sources awarded according to the R. 1333-52 article of the Public Health Code

    International Nuclear Information System (INIS)

    This legal publication defines the technical framework for the prolongation of the use of sealed radioactive sources beyond the ten-year period which had been initially defined. It defines the sources which are concerned, those which are not, or need a specific request. It defines the required controls and verifications, the usage conditions for species used in different systems present in electronuclear reactors. It describes the content and the associated administrative procedure of a prolongation request, as well as the consequences of a loss of integrity of a source

  2. Sealing device for providing a seal in a turbomachine

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Porter, Christopher Donald; Schick, David Edward; Weber, David Wayne

    2016-08-16

    Sealing device for providing seals between adjacent components, and turbomachines utilizing such sealing devices, are provided. A sealing device includes a seal plate insertable between the adjacent components, the seal plate comprising a first face and an opposing second face. The sealing device further includes a plurality of pins extending from one of the first face or the second face, the plurality of pins configured to space the one of the first face or the second face from contact surfaces of the adjacent components.

  3. Multilayer compressive seal for sealing in high temperature devices

    Science.gov (United States)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.

    2007-08-21

    A mica based compressive seal has been developed exhibiting superior thermal cycle stability when compared to other compressive seals known in the art. The seal is composed of compliant glass or metal interlayers and a sealing (gasket) member layer composed of mica that is infiltrated with a glass forming material, which effectively reduces leaks within the seal. The compressive seal shows approximately a 100-fold reduction in leak rates compared with previously developed hybrid seals after from 10 to about 40 thermal cycles under a compressive stress of from 50 psi to 100 psi at temperatures in the range from 600.degree. C. to about 850.degree. C.

  4. Safety assessment of a borehole type disposal facility using the ISAM methodology

    International Nuclear Information System (INIS)

    As part of the IAEA's Co-ordinated Research Project (CRP) on Improving Long-term of Safety Assessment Methodologies for Near Surface Waste Disposal Facilities (ISAM), three example cases were developed. The aim was to test the ISAM safety assessment methodology using as realistic as possible data. One of the Test Cases, the Borehole Test Case (BTC), related to a proposed future disposal option for disused sealed radioactive sources. This paper uses the various steps of the ISAM safety assessment methodology to describe the work undertaken by ISAM participants in developing the BTC and provides some general conclusions that can be drawn from the findings of their work. (author)

  5. Evaluation of brush seals for oil sealing applications

    OpenAIRE

    Akşit, Mahmut Faruk; Aksit, Mahmut Faruk

    2012-01-01

    After proven performance in gas turbine secondary flow and hot gas path sealing applications, brush seals are being considered for oil and oil mist applications in aero-engines and industrial turbines. In oil sealing applications shear heating and oil coking are major concerns. The field experience indicates that shear heating and oil coking issues can be managed if seal is designed properly. When seal stiffness is well controlled, combined with proper fiber material selection and leakage coo...

  6. Ribbon Seal Distribution Map

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains GIS layers that depict the known spatial distributions (i.e., ranges) and reported breeding areas of ribbon seals (Histriophoca fasciata). It...

  7. Bearded Seal Distribution Map

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains GIS layers that depict the known spatial distributions (i.e., ranges) of the two subspecies of bearded seals (Erignathus barbatus). It was...

  8. Ringed Seal Distribution Map

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains GIS layers that depict the known spatial distributions (i.e., ranges) of the five subspecies of ringed seals (Phoca hispida). It was produced...

  9. Spotted Seal Distribution Map

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains GIS layers that depict the known spatial distributions (i.e., ranges) and reported breeding areas of spotted seals (Phoca largha). It was...

  10. Ingestion resistant seal assembly

    Science.gov (United States)

    Little, David A.

    2011-12-13

    A seal assembly limits gas leakage from a hot gas path to one or more disc cavities in a gas turbine engine. The seal assembly includes a seal apparatus associated with a blade structure including a row of airfoils. The seal apparatus includes an annular inner shroud associated with adjacent stationary components, a wing member, and a first wing flange. The wing member extends axially from the blade structure toward the annular inner shroud. The first wing flange extends radially outwardly from the wing member toward the annular inner shroud. A plurality of regions including one or more recirculation zones are defined between the blade structure and the annular inner shroud that recirculate working gas therein back toward the hot gas path.

  11. Turbine seal assembly

    Science.gov (United States)

    Little, David A.

    2013-04-16

    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  12. Fur seal investigations, 1966

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Annually a report is made on the fur seal investigations carried on by the Bureau of Commercial Fisheries on the Pribilof Islands and at sea. Investigations on the...

  13. A sealing device for shafts

    International Nuclear Information System (INIS)

    The invention relates to a sealing device for a rotary shaft submitted to variable forces able to bend said shaft. The shaft extends through an opening in a casing and carries a ring comprising radial sealing surfaces adapted to engage axially moving sealing members, the latter being in sealed engagement with the casing and defining a sealing chamber to which is fed a pressurized sealing fluid. In that device, the shaft can be submitted to an important bending without inducing any axial movement, or with a small axial movement of the sealing members. This can be applied to butterfly-valves used in nuclear power stations

  14. Enhanced sealing project (ESP): design, construction and monitoring of a full-scale shaft seal

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The Enhanced Sealing Project (ESP) consists of instrumenting and monitoring a full-scale shaft seal installed to permanently close the access shaft for Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory (URL) at the intersection of an ancient low dipping thrust fault. The URL was built to provide a facility where concepts for long-term management of Canada's nuclear fuel waste in a deep geological repository could be studied. Operated since the early 1980's, this facility provided much of the technical information used in developing the deep geological repository concept submitted by AECL to the Government of Canada in 1994 and continued to provide valuable technical data after that submission. In 2003, a decision was made to discontinue operation of the URL and ultimately decommission and permanently close the underground portion of this facility. As part of the Nuclear Legacy Liability Program (NLLP) being funded by Natural Resources Canada (NRCan), facilities including the URL that are no longer part of AECL's mandate or operations are being decommissioned. Included in this work is the installation of seals at the intersection of the access shaft and ventilation raise with a deep fracture zone in order to limit the potential for mixing of deeper saline and shallower less saline groundwater. The funding available from NRCan was limited to the seal installation, with no mandate to provide any more than basic hydrological monitoring of the rock mass at a considerable distance from these seals, and so the opportunity to monitor a full-scale shaft seal similar to one for a deep geological repository would have been lost. The ESP arose from the recognition by a number of organizations that the URL closure presented a unique opportunity to monitor the evolution of a full-scale repository-type shaft seal in a very well-characterized and otherwise undisturbed rock mass. As

  15. Nuclear borehole logging techniques for coal quality

    International Nuclear Information System (INIS)

    The progress achieved by nuclear logging in the coal industry has been significant. The 'in-situ' information about coal seams provided by borehole logging can significantly reduce exploration and development costs. Nuclear borehole logging is used routinely in the exploration for coal and is getting more acceptance in the mining stage for quality control. Nuclear borehole logging is used to delineate the coal strata and to determine their thickness, depth, ash content, calorific value and Fe and Si content of ash. Two techniques have been developed in the last 7 years for coal logging in boreholes: (i) The spectrometric gamma-gamma for the determination of ash content in coal; and (ii) the prompt neutron-gamma method for the determination of ash, calorific value, Si and Fe in coal. In this paper both gamma-gamma and neutron-gamma techniques were developed for delineating the coal seams and predicting the ash content in coal. The neutron-gamma technique is superior because it can also determine the Si and Fe content of coal and it can sample a larger volume of coal. The neutron-gamma technique is less affected by the rugosity and condition of the borehole. (author). 6 refs, 5 figs, 2 tabs

  16. Self-sealing barriers of clay/sand mixtures - lessons learnt from in-situ experiment and retrospective modelling

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. With respect to the international experience gained in the field of geological radioactive waste disposal it is widely agreed that the overall detection of the geo-hydraulic conditions and their changes due to geo-mechanical disturbances via in-situ measurements is one of the most relevant prerequisites for sound understanding of host rock behaviour. An adequate understanding of related coupled processes is needed for the development of reliable physical models needed for numerical simulation repository performance. With respect to disposal in clay formations, GRS therefore performs experiments at Mont Terri underground research laboratory. The main objective of the SB-Experiment presented in this paper is to test and demonstrate that the advantageous sealing properties of clay/sand mixtures determined preliminarily in the laboratory can technically be realized and maintained under repository relevant in-situ conditions, such as a high installation density of about 1.9 g/cm3 and low swelling pressures of about 0.3 - 0.5 MPa. Clay/sand-mixtures exhibit a high permeability to gas between 1E-13 and 1E-15 m2 in the dry state and a low gas entry pressure and a moderate permeability to gas between 1E-16 and 1E-17 m2 in the saturated state while the permeability to water of about 1E-18 m2 is comparable to that of the undisturbed host rock. Therefore gaseous corrosion products will be preferentially conducted by the backfilling and will thus not lead to the opening of new pathways in the host rock. In the framework of the SB experiment (Self-sealing Barriers of clay/sand mixtures) a series of small in-situ tests in several vertical boreholes with a diameter of 0.31 m and depth of 3.0 m have been installed in October 2005 at the underground laboratory at Mont Terri. The boreholes have been backfilled with clay/sand-mixtures of different mixture ratios as well as pure MX-80 bentonite. The sealing properties such as

  17. Pressure Actuated Leaf Seals for Improved Turbine Shaft Sealing

    Science.gov (United States)

    Grondahl, Clayton

    2006-01-01

    This presentation introduces a shaft seal in which leaf seal elements are constructed from slotted shim material formed and layered into a frusto-conical assembly. Limited elastic deflection of seal leaves with increasing system pressure close large startup clearance to a small, non-contacting, steady state running clearance. At shutdown seal elements resiliently retract as differential seal pressure diminishes. Large seal clearance during startup and shutdown provides a mechanism for rub avoidance. Minimum operating clearance improves performance and non-contacting operation promises long seal life. Design features of this seal, sample calculations at differential pressures up to 2400 psid and benefit comparison with brush and labyrinth seals is documented in paper, AIAA 2005 3985, presented at the Advanced Seal Technology session of the Joint Propulsion Conference in Tucson this past July. In this presentation use of bimetallic leaf material will be discussed. Frictional heating of bimetallic leaf seals during a seal rub can relieve the rub condition to some extent with a change in seal shape. Improved leaf seal rub tolerance is expected with bimetallic material.

  18. Upgrading inflatable door seals

    International Nuclear Information System (INIS)

    Inflatable door seals are used for airlocks in CANDU stations. They have been a significant source of unreliability and maintenance cost. A program is underway to improve their performance and reliability, backed by environmental qualification testing. Only commercial products and suppliers existed in 1993. For historical reasons, these 'existing products' did not use the most durable material then available. In hindsight, neither had they been adapted nor optimized to combat conditions often experienced in the plants-sagging doors, damaged sealing surfaces, and many thousands of openings and closings per year. Initial attempts to involve the two existing suppliers in efforts to upgrade these seals were unsuccessful. Another suitable supplier had therefore to be found, and a 'new,' COG-owned seal developed; this was completed in 1997. This paper summarizes its testing, along with that of the two existing products. Resistance to aging has been improved significantly. Testing has shown that an accident can be safely withstood after 10 years of service or 40,000 openings-closings, whichever comes first. AECL's Fluid Sealing Technology Unit (FSTU) has invested in the special moulds, test fixtures and other necessary tooling and documentation required to begin commercial manufacture of this new quality product. Accordingly, as with FSTU's other nuclear products such as pump seals, the long-term supply of door seals to CANDU plants is now protected from many external uncertainties-e.g., commercial products being discontinued, materials being changed, companies going out of business. Manufacturing to AECL's detailed specifications is being subcontracted to the new supplier. FSTU is performing the quality surveillance, inspection, testing, and customer service activities concomitant with direct responsibility for supply to the plants. (author)

  19. Developments of borehole strain observation outside China

    Institute of Scientific and Technical Information of China (English)

    邱泽华; 石耀霖

    2004-01-01

    Borehole strain observation is playing an increasingly important role in the study on the crustal movements. It hasbeen used by many countries such as China, USA, Japan, Peru, Australia, South Africa, Iceland and Italy, in research fields of plate tectonics, earthquake, volcanic eruption, dam safety, oil field subsidence, mining collapse andso on. Borehole strainmeter has been improved rapidly and tends to get more and more components included inone probe. Based on observations by this kind of instruments, studies on seismic strain step, slow earthquake,earthquake precursor and volcanic eruption forecasting have made remarkable achievements. In the coming years,borehole strain observation is going to become one major geodetic means, together with GPS and InSAR.

  20. Safe and Secure Management of Sealed Radioactive Sources in Ghana

    International Nuclear Information System (INIS)

    Radioactive sources have been in use in Ghana over the last six decades in various applications in different sectors — namely medicine, agriculture, industry, research and teaching. The Radiation Protection Board is the national regulatory authority in Ghana on radiation issues. The National Radioactive Management Centre is the only centre authorized to carry out safe management of all radioactive waste materials generated in the country. It operates a centralized radioactive waste processing and storage facility. The inventory of radioactive waste materials in storage is made up of mainly Category 3–5 disused sealed sources, which consist of density and thickness gauges, conditioned radium sources as well as smoke detectors. There are a few high activity sources also in storage. As part of long term management plan for these sources, the Government of Ghana has opted for the borehole disposal concept developed in South Africa as an end point for the disused sealed radioactive sources. (author)

  1. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  2. Borehole radar and BIPS investigations in boreholes at the Boda area

    Energy Technology Data Exchange (ETDEWEB)

    Carlsten, S.; Straahle, A. [GEOSIGMA AB, Uppsala (Sweden)

    2000-12-01

    As part of the studies conducted in the Boda area, measurements with borehole radar, borehole TV (BIPS) and deviation measurements were performed during May 2000. The investigations were carried out in four percussion-drilled boreholes with a total length of 514 m. Two boreholes are vertical and two are directed into and below the cave area. The BIPS measurement showed the presence of 14 open fractures. Largest apparent aperture width of open fractures was 133 mm. In the lowest part in boreholes 2, 3, and 4, particles in suspension deteriorated the visibility. BIPS has revealed a dominating subhorizontal fracture set and another striking NW to N-S with a dip close to vertical. Possible but very uncertain is a third fracture set striking NE and dipping steeply towards S. The open and partly open fractures forms an average block size 11 m wide and 6 m high, while the length of the block is uncertain. Of 98 borehole radar reflectors interpreted to intersect within BIPS-mapped sections, 90 were possible to combine with BIPS-mapped structures, i.e. 92% of the radar reflectors. The fractured rock around Boda is a shallow feature, since borehole radar and BIPS measurements shows no evidence of increased fracturing or the presence of caves at larger depth in the Boda area. The result indicates that the formation of the superficial fracture system (with caves included) at Boda in all probability is connected to glacial action, such as banking.

  3. Characterization of crystalline rocks in deep boreholes. The Kola, Krivoy Rog and Tyrnauz boreholes

    International Nuclear Information System (INIS)

    SKB studies, as one alternative, the feasibility of disposing of spent nuclear fuel in very deep boreholes. As a part of this work NEDRA has compiled geoscientific data from three superdeep boreholes within the former Soviet Union. The holes considered were: the Kola borehole, 12261 m deep and located on the Kola Peninsula, the Krivoy Rog borehole, 5000 m deep and located in Ukraine, and the Tyrnauz borehole, 4001 m deep and located between the Black Sea and the Caspian Sea. These boreholes all penetrate crystalline formations, but major differences are found when their tectonic environments are compared. Excluding the uppermost horizon affected by surface phenomena, data do not indicate any general correlation between depth and the state of rock fracturing, which is instead governed by site specific, lithological and tectonical factors. This applies also to fracture zones, which are found at similar frequencies at all depths. As opposed to the structural data, the hydrogeological and hydrochemical information reveals a vertical zonation, with clear similarities between the three boreholes. An upper zone with active circulation and fresh or slightly mineralized groundwaters reaches down 1000-2000 m. The interval from 1000-2000 m down to 4000-5000 m can be characterized as a transition zone with lower circulation rates and gradually increasing mineralisation. Below 4000-5000 m, strongly mineralized, stagnant, juvenile or metamorphogenic waters are found. Geothermal data verify the existence of this zonation. 28 figs, 30 tabs

  4. Borehole radar and BIPS investigations in boreholes at the Boda area

    International Nuclear Information System (INIS)

    As part of the studies conducted in the Boda area, measurements with borehole radar, borehole TV (BIPS) and deviation measurements were performed during May 2000. The investigations were carried out in four percussion-drilled boreholes with a total length of 514 m. Two boreholes are vertical and two are directed into and below the cave area. The BIPS measurement showed the presence of 14 open fractures. Largest apparent aperture width of open fractures was 133 mm. In the lowest part in boreholes 2, 3, and 4, particles in suspension deteriorated the visibility. BIPS has revealed a dominating subhorizontal fracture set and another striking NW to N-S with a dip close to vertical. Possible but very uncertain is a third fracture set striking NE and dipping steeply towards S. The open and partly open fractures forms an average block size 11 m wide and 6 m high, while the length of the block is uncertain. Of 98 borehole radar reflectors interpreted to intersect within BIPS-mapped sections, 90 were possible to combine with BIPS-mapped structures, i.e. 92% of the radar reflectors. The fractured rock around Boda is a shallow feature, since borehole radar and BIPS measurements shows no evidence of increased fracturing or the presence of caves at larger depth in the Boda area. The result indicates that the formation of the superficial fracture system (with caves included) at Boda in all probability is connected to glacial action, such as banking

  5. Gas sealed assembly

    International Nuclear Information System (INIS)

    A gas sealed assembly is disposed to a reactor core of an LMFBR type reactor. The gas sealed assembly has a cylindrical duct, and an entrance nozzle having a coolant flowing hole is connected to the lower portion of the duct. Sodium coolants and a sealed gas comprising inert gases such as argon are contained in the duct. A black material is disposed on the inner surface of the duct. Chromium carbide, for example, is used as the black material. Since the black material is disposed to the inner surface of the duct, heat from sodium at the circumference is transferred to the sealed gas by radiation by way of the duct, the gas expands sufficiently. Therefore, when the pressure of coolants is lowered and the temperature of coolants is elevated upon occurrence of an accident such as of stoppage of pumps, the liquid level of the coolants in the gas sealed assembly can be lowered reliably. Accordingly, the reactor shut down can be conducted safely. (I.N.)

  6. In-situ tritium borehole probe for measurement of tritium

    International Nuclear Information System (INIS)

    An apparatus for measuring the in situ levels of tritium in ground water at depth in the earth. A tritium analyzer is made to fit in a sonde or probe which is placed in a borehole. This analyzer can perform a programmed cycle and has a sample intake to allow ambient water to enter; a reaction chamber; a drying chamber; an ion chamber; a cryogenic gas pump, and a spent capsule collection chamber. After the water sample is brought into the unit, it rises into the reaction chamber where it reacts with a preweighed quantity of calcium carbide in a capsule to yield acetylene. Next the acetylene vapor passes through the drying chamber to remove excess water and then flows into the evacuated ion chamber. Following this, the ion chamber is sealed off and a count of tritium beta decay events is started. Following the completion of the count, a valve is opened to remove the acetylene from the ion chamber with the cryogenic gas pump. The spent capsule containing the residue from the reaction is ejected into a collection chamber. Last, the holder for the preweighed calcium carbide capsule is refilled from a stock of such capsules in preparation for a new measurement cycle

  7. Characterization of cement paste as engineered barrier of borehole repository

    International Nuclear Information System (INIS)

    Results of axial rupture by compression of cylindrical cement paste samples are presented. This is part of a research on cement paste behavior aiming at investigating the durability of cementitious materials in the environment of repositories for radioactive waste. Portland cement paste is intended to be used as a backfill in a deep borehole for disposal of sealed radiation sources which concept is under development. The service life of the engineered barrier materials plays an important role in the long term safety of such facilities. Accelerated tests in laboratory are being used to evaluate the performance of cement paste under the temperature expected at some hundred meters below grade, under exposure to the radiation emitted by the sources, and under the attack of aggressive chemicals dissolved in the groundwater, during the millennia necessary for the decay of the most active and long-lived radionuclides present in the waste. The large variability in results of mechanical strength as measured by axial compression of cylindrical samples is the subject of this short communication. (author)

  8. Morbilliviral dermatitis in seals.

    Science.gov (United States)

    Lipscomb, T P; Mense, M G; Habecker, P L; Taubenberger, J K; Schoelkopf, R

    2001-11-01

    A juvenile female hooded seal (Cystophora cristata) and a juvenile male harp seal (Phoca groenlandica) stranded separately on the New Jersey (USA) coast and were taken to a marine mammal rehabilitation center. Both were lethargic and emaciated, had dermatitis, and died. Histologic skin lesions in the seals were similar and consisted of epidermal and follicular epithelial hyperplasia, hyperkeratosis, degeneration, and necrosis. The most distinctive finding was extensive syncytial zones bounded superficially by hyperkeratosis and deeply by hyperplastic basal cells. Eosinophilic intracytoplasmic inclusion bodies were present in epithelial cells. Morbilliviral antigen was demonstrated in the skin lesions by immunohistochemistry. Phocine distemper virus was detected in the skin by reverse transcription polymerase chain reaction and a phocine distemper virus-specific probe using the Southern blot technique. This is the first report of morbilliviral dermatitis in marine mammals. PMID:11732810

  9. Drilling of deep large boreholes for ultimate storage of waste materials dangerous to the environment in salt

    International Nuclear Information System (INIS)

    The new EH 1202 drilling machine was developed in the specially financed project 'Further development and testing of dry drilling technology' and the SBK 600 drilling head modified and put into service as SBK 602. The results of the entire technical development and testing of dry drilling technology are not only important for the drilling of boreholes for heat-generating radioactive waste. (orig.)

  10. Radioactive sealed sources inventory and management

    International Nuclear Information System (INIS)

    This report is related to the management of radioactive wastes, that is to say, related to the sealed sources utilized in industry, medicine and research jobs, that can not be used anymore, because of their life time termination or their activity decay to useless limits. Owing to this fact, it is necessary to take them to the Management Plant of Radioactive waste in the 'RACSO' Nuclear Center, as it is specified by the National Authority Technical Office (OTAN) regulations in Peru. The experience gained by IPEN in the sealed source management is shown in the table which informs about the radionuclide types, activity and volume amount for years. In the 'RACSO' Nuclear Center, 63 sealed sources are stored and right measures are being adopted in order to be conditioned by cementation in 200 lt steel reinforced cylinders, which are proper to their transportation and storage. A flow-chart shows the steps that the national users should follow in order to manage radioactive sealed sources and so that minimize the risks. Resulting from the agreement between the users and managers, a systematic coordination is developed, verifying the information related to the source characterization, the way of transportation and the future conditioning. It also involves the cost aspects, which in some cases, represent a big problem in the management. (authors). 3 refs., 3 figs., 1 tab

  11. Deposition of high-level radioactive waste products in bore-holes with buffer substance

    International Nuclear Information System (INIS)

    The present investigation comprised a compilation of available literature data concerning the possible use of clayey masses as buffer substances in bore-holes (in rock) with canisters containing radioactive waste products. The aim was to find a suitable composition of the buffer mass and to recommend a suitable storing technique. The criteria concerning the function of the buffer substance were: Sufficient mechanical supporting power, suitable mechanical properties, prevention of free circulation of ground water, ion-adsorption ability, sufficiently good heat conduction properties. These criteria suggest that a buffer substance containing Na-montmorillonite would be suitable. Literature studies and own experience show that montmorillonite is permanently stable at 100 degrees C temperature and 5 MPa pressure when pH is within the range of 6.5-10 while quartz is stable at pH <9. The authors conclude that the suggested principle of storing the canisters in sealed bore-holes filled with a 10 percent bentonite/90 percent quartz (silt, sand) mass is suitable provided that the tunnel system, from which the holes are bored, is sealed with a dense buffer mass consisting of quartz (silt, sand) and 20-50 percent bentonite powder. (author)

  12. HMSRP Hawaiian Monk Seal Master Identification Records (seal)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains records of all individually identified Hawaiian monk seals since 1981. These seals were identified by PSD personnel and cooperating...

  13. Non-linear degradation model of cement barriers in a borehole repository for disused radioactive sources

    International Nuclear Information System (INIS)

    Narrow diameter borehole facilities (a few tens of centimeters), like the BOSS concept developed by the IAEA, provide a safe and cost effective disposal option for radioactive waste and particularly disused sources. The BOSS concept (borehole disposal of sealed radioactive sources) comprises a multi-barrier system of cement grout and stainless steel components. In order to predict the long-time performance of the cement barriers as an input of a future safety assessment under the specific hydrochemical and hydrological conditions, a non-linear degradation model was developed in this work. With the assistance of the program 'PHREEQC' it describes the change of the porosity and the hydraulic conductivity with time, which also let to conclusions concerning the change of the sorption capacity of the cement grout. This work includes the theoretical approach and illustrates the non-liner degradation by means of an exemplary water composition found in the saturated zone and the dimensions of the backfill made of cement grout representing a barrier of the BOSS borehole facility. (author)

  14. Non-linear degradation model of cement barriers in a borehole repository for disused radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Gharbieh, Heidar K., E-mail: heidar.gharbieh@tu-clausthal.de [Institute of Disposal Research, Clausthal University of Technology, Clausthal-Zellerfeld (Germany); Cota, Stela, E-mail: sdsc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Narrow diameter borehole facilities (a few tens of centimeters), like the BOSS concept developed by the IAEA, provide a safe and cost effective disposal option for radioactive waste and particularly disused sources. The BOSS concept (borehole disposal of sealed radioactive sources) comprises a multi-barrier system of cement grout and stainless steel components. In order to predict the long-time performance of the cement barriers as an input of a future safety assessment under the specific hydrochemical and hydrological conditions, a non-linear degradation model was developed in this work. With the assistance of the program 'PHREEQC' it describes the change of the porosity and the hydraulic conductivity with time, which also let to conclusions concerning the change of the sorption capacity of the cement grout. This work includes the theoretical approach and illustrates the non-liner degradation by means of an exemplary water composition found in the saturated zone and the dimensions of the backfill made of cement grout representing a barrier of the BOSS borehole facility. (author)

  15. International Initiatives Addressing the Safety and Security of Disused Sealed Radioactive Sources

    International Nuclear Information System (INIS)

    International initiatives, aimed at improving the safety and security of disused sealed radioactive sources (DSRSs), that have been carried out during the last number of years are described in the paper. Issues to be addressed will include sustainability of current efforts, accidents and incidents, international standards and guidance, assistance provided to IAEA Member States, technologies developed for disused sealed source management and a description the development of the borehole disposal concept is given. New initiatives with regard to disposing of high activity DSRSs are elaborated. (author)

  16. Sealing of fractured rock

    International Nuclear Information System (INIS)

    This paper consists of a presentation of the third phase of the Stripa Project. This phase was dedicated to fracture sealing. First of all it has been necessary to show that fine-grained grouts could effectively be injected in relatively fine cracks, and that the fluidity of bentonite could also be enhanced. The field tests comprised investigation of excavation-induced disturbance and attempts to seal disturbed rock, and, in separate tests, grouting of deposition holes and a natural fine-fracture zone. (TEC). 12 figs., 1 tab., 6 refs

  17. Application of integrated magnetic resonance sounding and resistivity methods for borehole implementation. A case study in Cambodia

    Science.gov (United States)

    Vouillamoz, Jean-Michel; Descloitres, Marc; Bernard, Jean; Fourcassier, Pierre; Romagny, Laurent

    2002-05-01

    A geophysical survey was conducted in Cambodia to measure the contribution of geophysics to a running drilling programme. The geology of the area (the province of Siem Reap) mainly consists of recent heterogeneous sediments of sand, silt and clay. The thickness of this formation ranges from 20 to 100 m and lies on Jurassic to Tertiary rocks. Surveys were done with direct current methods [one-dimensional vertical electrical sounding (1D VES), and two-dimensional (2D) electrical imaging], time domain electromagnetic (TDEM) sounding and proton magnetic resonance sounding (MRS). To validate the geophysical results, boreholes were drilled and tested with electrical logs and pumping tests. We found that: (1) The resistivity methods (VES, 2D electrical imaging and TDEM) are very sensitive to the groundwater electrical conductivity which is highly heterogeneous within the province. A preliminary relationship between measured groundwater conductivity and aquifer resistivity is proposed. (2) The MRS gives accurate information on groundwater occurrence for the 5- to 60-m-deep layers. A preliminary relationship between MRS data (aquifer transmissivity estimated from MRS field measurements) and hydrodynamic parameters (aquifer local transmissivity and borehole relative specific capacity estimated from borehole pumping tests) is proposed. (3) The resistivity methods and MRS are complementary, and a joint use is recommended. (4) At the survey scale, the borehole success rate was improved from 56% to 90% by the use of geophysics. Crossing the technical and cost analyses, we propose a geophysical methodology to implement boreholes in the province of Siem Reap. This methodology could both increase the borehole success rate and save money at the programme scale. It consists of the use of: MRS, TDEM and electrical methods jointly where the borehole success rate is less than 30%. MRS and TDEM jointly where the borehole success rate ranges from 30% to 50%. Electrical methods (VES and 2D

  18. Main-coolant-pump shaft-seal guidelines. Volume 1. Maintenance-manual guidelines. Final report

    International Nuclear Information System (INIS)

    This report presents a set of guidelines and a listing of information and data which should be included in maintenance manuals and procedures for Main Coolant Pump Shaft Seals. The noted guidelines and data listing are developed from EPRI sponsored nuclear plant seal operating experience studies. The maintenance oriented results of the most recent such study is summarized. The shaft seal and its auxiliary supporting systems are discussed from both technical and maintenance related viewpoints

  19. Structural Design and Sealing Performance Analysis of Biomimetic Sealing Ring.

    Science.gov (United States)

    Han, Chuanjun; Zhang, Han; Zhang, Jie

    2015-01-01

    In order to reduce the failure probability of rubber sealing rings in reciprocating dynamic seal, a new structure of sealing ring based on bionics was designed. The biomimetic ring has three concave ridges and convex bulges on each side which are very similar to earthworms. Bulges were circularly designed and sealing performances of the biomimetic ring in both static seal and dynamic seal were simulated by FEM. In addition, effects of precompression, medium pressure, speed, friction coefficient, and material parameters on sealing performances were discussed. The results show that von Mises stress of the biomimetic sealing ring distributed symmetrically in no-pressure static sealing. The maximum von Mises stress appears on the second bulge of the inner side. High contact stress concentrates on left bulges. Von Mises stress distribution becomes uneven under medium pressure. Both von Mises stress and contact stress increase when precompression, medium pressure, and rubber hardness increase in static sealing. Biomimetic ring can avoid rolling and distortion in reciprocating dynamic seal, and its working life is much longer than O-ring and rectangular ring. The maximum von Mises stress and contact stress increase with the precompression, medium pressure, rubber hardness, and friction coefficient in reciprocating dynamic seal. PMID:27019582

  20. Structural Design and Sealing Performance Analysis of Biomimetic Sealing Ring

    Directory of Open Access Journals (Sweden)

    Chuanjun Han

    2015-01-01

    Full Text Available In order to reduce the failure probability of rubber sealing rings in reciprocating dynamic seal, a new structure of sealing ring based on bionics was designed. The biomimetic ring has three concave ridges and convex bulges on each side which are very similar to earthworms. Bulges were circularly designed and sealing performances of the biomimetic ring in both static seal and dynamic seal were simulated by FEM. In addition, effects of precompression, medium pressure, speed, friction coefficient, and material parameters on sealing performances were discussed. The results show that von Mises stress of the biomimetic sealing ring distributed symmetrically in no-pressure static sealing. The maximum von Mises stress appears on the second bulge of the inner side. High contact stress concentrates on left bulges. Von Mises stress distribution becomes uneven under medium pressure. Both von Mises stress and contact stress increase when precompression, medium pressure, and rubber hardness increase in static sealing. Biomimetic ring can avoid rolling and distortion in reciprocating dynamic seal, and its working life is much longer than O-ring and rectangular ring. The maximum von Mises stress and contact stress increase with the precompression, medium pressure, rubber hardness, and friction coefficient in reciprocating dynamic seal.

  1. Structural Design and Sealing Performance Analysis of Biomimetic Sealing Ring

    Science.gov (United States)

    Han, Chuanjun

    2015-01-01

    In order to reduce the failure probability of rubber sealing rings in reciprocating dynamic seal, a new structure of sealing ring based on bionics was designed. The biomimetic ring has three concave ridges and convex bulges on each side which are very similar to earthworms. Bulges were circularly designed and sealing performances of the biomimetic ring in both static seal and dynamic seal were simulated by FEM. In addition, effects of precompression, medium pressure, speed, friction coefficient, and material parameters on sealing performances were discussed. The results show that von Mises stress of the biomimetic sealing ring distributed symmetrically in no-pressure static sealing. The maximum von Mises stress appears on the second bulge of the inner side. High contact stress concentrates on left bulges. Von Mises stress distribution becomes uneven under medium pressure. Both von Mises stress and contact stress increase when precompression, medium pressure, and rubber hardness increase in static sealing. Biomimetic ring can avoid rolling and distortion in reciprocating dynamic seal, and its working life is much longer than O-ring and rectangular ring. The maximum von Mises stress and contact stress increase with the precompression, medium pressure, rubber hardness, and friction coefficient in reciprocating dynamic seal. PMID:27019582

  2. Borehole radar modeling for reservoir monitoring applications

    NARCIS (Netherlands)

    Miorali, M.; Slob, E.C.; Arts, R.J.

    2010-01-01

    The use of down-hole sensors and remotely controlled valves in wells provide enormous benefits to reservoir management and oil production. We suggest borehole radar measurements as a promising technique capable of monitoring the arrival of undesired fluids in the proximity of production wells. The h

  3. Groundwater flow dynamic investigation without drilling boreholes

    Science.gov (United States)

    Moustafa, Mahmoud

    2015-02-01

    The flow net map is a basic tool for groundwater flow dynamics investigation. In areas where there are no boreholes or piezometers are not available, constructing flow net map may be difficult. This work proposes a simple methodology to construct flow net map without drilling boreholes. The flow net map constructed using the proposed approach represents an expected flow net map, which can draw conceptual flow model of the site. The major benefit from constructing the expected flow net map is it gives guidance for locating new boreholes for site investigation, carrying out investigation of the groundwater flow directions and estimating recharge/discharge from the site boundary. An illustrative example for the proposed approach was presented to show how the data required to construct the expected flow net map can be collected. The constructed, expected flow net map using the proposed methodology was compared with actual flow net map constructed from measured water levels. Both maps give consistent hydrological information about the site. The suggested approach represents a simple and cheap way to carry out investigation of groundwater flow dynamics in areas where there are no boreholes are available.

  4. Exploratory borehole Kaisten. Geology - text volume

    International Nuclear Information System (INIS)

    The Kaisten borehole was the fifth (after Boettstein, Weiach, Riniken and Schafisheim) in Nagra's deep drilling programme in Northern Switzerland. It is located within the community of Kaisten, Canton Aargau, approximately 3 km south-west of Laufenburg railway station. The final depth of the borehole was 1306 m. Drilling began on 13th February 1984, continued up to 27th June 1984 and was carried out almost exclusively using the conventional rotary drilling method. With the exception of a 5.5 m-long section in the Muschelkalk and two shallow centering boreholes, the whole drilled section was cored. From a depth of 321.5 m in the Crystalline, removal of cores was done by wire core drilling. The wide range of field and laboratory investigations carried out included stratigraphic-sedimentological and mineralogical-petrographic programmes, as well as different petrophysical, geochemical and isotope geochemistry investigation. This report is a summary of all data acquired up to the end of December 1986. Beneath a sedimentary cover just 300 m thick, with Muschelkalk at the top and Permian at the base, the Kaisten borehole entered the crystalline basement at a depth of 296.5 m; investigations were carried out down to a depth of 1306 m. (author) 6 tabs., 122 refs

  5. Method for orienting a borehole core

    International Nuclear Information System (INIS)

    A method is described for longitudinally orienting a borehold core with respect to the longitudinal axis of the drill string which drilled said borehold core in such a manner that the original longitudinal attitude of said borehold core within the earth may be determined. At least a portion of said borehold core is partialy demagnetized in steps to thereby at least partially remove in steps the artificial remanent magnetism imparted to said borehole core by said drill string. The artifical remanent magnetism is oriented substantially parallel to the longitudinal axis of said drill string. The direction and intensity of the total magnetism of said borehold core is measured at desired intervals during the partial demagnetizing procedure. An artificial remanent magnetism vector is established which extends from the final measurement of the direction and intensity of the total magnetism of said borehole core taken during said partial demagnetizing procedure towards the initial measurement of the direction and intensity of the total magnetism of said borehold core taken during said partial demagnetizing procedure. The borehold core is oriented in such a manner that said artificial remanent magnetism vector points at least substantially downwardly towards the bottom of said borehold core for a borehold in the northern hemisphere and points at least substantailly upwardly towards the top of said borehole core for a borehole in the southern hemisphere

  6. Hydrological and hydrogeochemical investigations in boreholes

    International Nuclear Information System (INIS)

    Underground investigations in boreholes are presumed to be an important investigation technique for the detailed design of a final repository for nuclear waste. The siting of the repository will be based on surface investigations, but for detailed investigations when the access shafts are sunk, investigations in underground boreholes from the initial shafts and tunnels will be of importance. The hydrogeological investigations in boreholes aimed at testing and developing of hydrogeological techniques and instruments for use in an underground environment in order to reflect actual working and testing conditions. This report is the final report from the hydrogeological investigations in boreholes, and it summarizes the different activities carried out during the course of the program. Most of the included activities are reported in separate internal reports, and therefore only the most important results are included, together with the experiences and conclusions gained during the investigations. The hydrogeochemical part of the program is in a separate final report, consequently no hydrogeochemical information is in the current report. (Author)

  7. Borehole data and climate reconstruction in Korea

    Czech Academy of Sciences Publication Activity Database

    Okubo, Y.; Kim, H.CH.; Uchida, Y.; Šafanda, Jan

    Matsuyama, 2003 - (Yamano, M.; Nagao, T.; Sweda, T.), s. 126-135 [ Geothermal /dendrochronological paleoclimate reconstruction across eastern margin of Eurasia. Matsuyama (JP), 28.11.2002-30.11.2002] Institutional research plan: CEZ:AV0Z3012916 Keywords : borehole data * climate change * Korea Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  8. Seal For Precooling A Turbopump

    Science.gov (United States)

    Owen, Samuel S.; Mulready, R.C.

    1988-01-01

    Diaphragm reduces misalignment. Rotary seal retains precooling fluid in pump section of cryogenic turbopump, preventing fluid from entering turbine section. Precooling fluid held in pump section of turbopump by knife-edge labyrinth seal on diaphragm.

  9. Continuous improvement of pump seals

    International Nuclear Information System (INIS)

    Pump seal reliability continues to be an area needing improvement and ongoing vigilance. Methods have been developed for identifying and assessing factors relating to seal performance, selecting the most relevant ones for a specific station, and then focusing on the most significant aspects and how to improve. Discussion invariably addresses maintenance practices, seal design, monitoring capabilities, operating conditions, transients, and pump and motor design. Success in reliability improvement requires ongoing dialogue among the station operators, pump manufacturers and seal designers. AECL CAN-seals lead the nuclear industry in reliability and seal life. They effectively save operators millions of dollars in outage time and person-rem. This paper describes some of the significant developments in AECL's ongoing program in seal R and D, as well as recent new installations following the most demanding seal qualification programs to date. (author)

  10. Static seal for turbine engine

    Science.gov (United States)

    Salazar, Santiago; Gisch, Andrew

    2014-04-01

    A seal structure for a gas turbine engine, the seal structure including first and second components located adjacent to each other and forming a barrier between high and low pressure zones. A seal cavity is defined in the first and second components, the seal cavity extending to either side of an elongated gap extending generally in a first direction between the first and second components. A seal member is positioned within the seal cavity and spans across the elongated gap. The seal member includes first and second side edges extending into each of the components in a second direction transverse to the first direction, and opposing longitudinal edges extending between the side edges generally parallel to the first direction. The side edges include a groove formed therein for effecting a reduction of gas flow around the seal member at the side edges.

  11. An optimization procedure for borehole emplacement in fractured media

    International Nuclear Information System (INIS)

    Specifying the position and orientation of the 'next borehole(s)' in a fractured medium, from prior incomplete knowledge of the fracture field and depending on the objectives assigned to this new borehole(s), is a crucial point in the iterative process of site characterization. The work described here explicitly includes site knowledge and specific objectives in a tractable procedure that checks possible borehole characteristics, and rates all trial boreholes according to their compliance with objectives. The procedure is based on the following ideas : Firstly, the optimization problem is strongly constrained, since feasible borehole head locations and borehole dips are generally limited. Secondly, a borehole is an 'access point' to the fracture network. Finally, when performing a flow or tracer test, the information obtained through the monitoring system will be best if this system detects the largest possible share of the flow induced by the test, and if it cuts the most 'interesting' flow paths. The optimization is carried out in four steps. 1) All possible borehole configurations are defined and stored. Typically, several hundred possible boreholes are created. Existing boreholes are also specified. 2) Stochastic fracture networks reproducing known site characteristics are generated. 3) A purely geometrical rating of all boreholes is used to select the 'geometrically best' boreholes or groups of boreholes. 4) Among the boreholes selected by the geometrical rating, the best one(s) is chosen by simulating the experiment for which it will be used and checking flowrates through possible boreholes. This method is applied to study the emplacement of a set of five monitoring boreholes prior to the sinking of a shaft for a planned underground laboratory in a granite massif in France (Vienne site). Twelve geometrical parameters are considered for each possible borehole. A detailed statistical study helps decide on the shape of a minimization function. This is then used

  12. Finger Seal: A Novel Approach to Air to Air Sealing

    Science.gov (United States)

    Arora, Gul; Steinetz, Bruce; Proctor, Margaret

    2006-01-01

    The gas turbine industry used a variety of sealing mechanisms to contain and direct secondary flows into and around components for cooling, and to limit leakage into and from bearing and disk cavities. The function of these seals is very important to the component efficiencies and attendant engine performance. Most of these seals are labyrinth seals, which are high-leakage seals that are costly to manufacture. In recent years, brush seals have been introduced which have demonstrated significantly reduced leakage, although they are still expensive and have exhibited wear and hysteresis difficulties. A new innovative concept called finger seal, patented by AlliedSignal, has demonstrated leakage similar to brush seals and is cheaper. The finger seal is comprised of a stack of precision photo-etched sheet metal elements, which allows intricate features to be made at very low cost and with the potential to resist wear and provide the compliance necessary to accomodate rotor excursions. Initial testing in the high-speed/high-temperature seal test facility, at the NASA Lewis Research Center, has corroborated the finger seal performance. The testing also revealed hysteresis problems with the current design. A NASA funded research project is in progress to correct the functional deficiencies of the finger seal and to refine its features to provide sufficient seal life for commercial transport engines and other long-life applications. This research will benefit the aeronautical gas turbine industry as a whole in terms of fuel consumption, operational characteristics, and cost. The first phase of this research to reduce finger seal hysteresis has been in progress for the last one year. This paper presents the results of this research to date. In future the research program will address seal performance, manufacturing, cost and life issues. The research program is expected to be completed by December 1998.

  13. Piston rod seal

    Energy Technology Data Exchange (ETDEWEB)

    Lindskoug, S.

    1984-06-05

    In a piston rod seal of the type comprising a gland through which the piston rod is passed the piston is provided with a sleeve surrounding the piston rod and extending axially so as to axially partly overlap the gland when the piston is in its bottom dead center position. 4 figs.

  14. Piston rod seal

    Energy Technology Data Exchange (ETDEWEB)

    Lindskoug, Stefan (Malmo, SE)

    1984-01-01

    In a piston rod seal of the type comprising a gland through which the piston rod is passed the piston is provided with a sleeve surrounding the piston rod and extending axially so as to axially partly overlap the gland when the piston is in its bottom dead center position.

  15. Key Factors to Determine the Borehole Spacing in a Deep Borehole Disposal for HLW

    International Nuclear Information System (INIS)

    Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose critical radionuclides at the depth. Finally, high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept, i.e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept for deep borehole disposal of spent fuels or high level radioactive wastes which has been developed by some countries according to the rapid advance in the development of drilling technology, as an alternative method to the deep geological disposal method, was reviewed. After then an analysis on key factors for the distance between boreholes for the disposal of HLW was carried out. In this paper, the general concept for deep borehole disposal of spent fuels or HLW wastes, as an alternative method to the deep geological disposal method, were reviewed. After then an analysis on key factors for the determining the distance between boreholes for the disposal of HLW was carried out. These results can be used for the development of the HLW deep borehole disposal system

  16. Simulation of the thermal borehole resistance in groundwater filled borehole heat exchanger using CFD technique

    Directory of Open Access Journals (Sweden)

    A-M. Gustafsson, L. Westerlund

    2010-05-01

    Full Text Available The thermal borehole resistance in a groundwater-filled borehole heat exchanger (BHE is affected of both conductive and convective heat transfer through the borehole water. To calculate this heat transport, different models are required compared to calculation of only conductive heat transfer in a back-filled BHE. In this paper some modelling approximations for groundwater-filled, single U-pipe BHEs were investigated using a 3D CFD model. The purpose is to find approximations that enable to construct a fast, simple model including the convective heat transfer that may be used in thermal response test analyses and BHE design programs. Both total heat transfer calculations (including convective and conductive heat transport and only conductive heat transfer calculations were performed for comparison purposes. The approximations that are investigated are the choice of boundary condition at the U-pipe wall and using a single pipe in the middle of the borehole instead of the U-pipe. For the total heat transfer case, it is shown that the choice of boundary condition hardly affects the calculated borehole thermal resistance. For the only conductive heat transfer case, the choice of boundary condition at the pipe wall gives large differences in the result. It is also shown that using an annulus model (single pipe in the middle of the borehole results in similar heat transfer as the U-pipe model provided that the equivalent radius is chosen appropriately. This approximation can radically decrease the number of calculation cells needed.

  17. Simulation of the thermal borehole resistance in groundwater filled borehole heat exchanger using CFD technique

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, A-M. [Department of Civil, Mining and Environmental Engineering, Lulea University of Technology, SE-971 87 Lulea (Sweden); Westerlund, L. [Department of Applied Physics and Mechanical Engineering, Lulea University of Technology, SE-971 87 Lulea (Sweden)

    2010-07-01

    The thermal borehole resistance in a groundwater-filled borehole heat exchanger (BHE) is affected of both conductive and convective heat transfer through the borehole water. To calculate this heat transport, different models are required compared to calculation of only conductive heat transfer in a back-filled BHE. In this paper some modelling approximations for groundwater-filled, single U-pipe BHEs were investigated using a 3D CFD model. The purpose is to find approximations that enable to construct a fast, simple model including the convective heat transfer that may be used in thermal response test analyses and BHE design programs. Both total heat transfer calculations (including convective and conductive heat transport) and only conductive heat transfer calculations were performed for comparison purposes. The approximations that are investigated are the choice of boundary condition at the U-pipe wall and using a single pipe in the middle of the borehole instead of the U-pipe. For the total heat transfer case, it is shown that the choice of boundary condition hardly affects the calculated borehole thermal resistance. For the only conductive heat transfer case, the choice of boundary condition at the pipe wall gives large differences in the result. It is also shown that using an annulus model (single pipe in the middle of the borehole) results in similar heat transfer as the U-pipe model provided that the equivalent radius is chosen appropriately. This approximation can radically decrease the number of calculation cells needed.

  18. Cover gas seals: FFTF-LMFBR seal test program

    International Nuclear Information System (INIS)

    The objectives of this program are to: (1) conduct static and dynamic tests to demonstrate or determine the mechanical performance of full-size (cross section) FFTF fuel transfer machine and reactor vessel head seals intended for use in a sodium vapor-inert gas environment, (2) demonstrate that these FFTF seals or new seal configurations provide acceptable fission product and cover gas retention capabilities at Clinch River Breeder Reactor Plant (CRBRP) operating environmental conditions other than radiation, and (3) develop improved seals and seal technology for the CRBRP to support the national objective to reduce all atmospheric contaminations to low levels

  19. Drilling and the associated borehole measurements of the pilot hole ONK-PH3

    International Nuclear Information System (INIS)

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are boreholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes will mostly aim to confirm the quality of the rock mass for tunnel construction, and in particular at identifying water conductive fractured zones and at providing information that could result in modifications of the existing construction plans. The pilot hole ONK-PH3 was drilled in September 2005. The length of the borehole is 145.04 metres. The aim during the drilling work was to orientate core samples as much as possible. The deviation of the borehole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Difference Flow method was used for the determination of hydraulic conductivity in fractures and fractured zones in the borehole. The overlapping i.e. the detailed flow logging mode was used. The flow logging was performed with 0.5 m section length and with 0.1 m depth increments. Water loss tests (Lugeon tests) and a pressure build-up test were used to give background information for the grouting design. Geophysical borehole logging and optical imaging surveys of the pilot hole PH3 included the field work of all the surveys, the integration of the data as well as interpretation of the acoustic and borehole radar data. One of the objectives of the

  20. Vault sealing research and development for the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    The major research and development activities in the disposal vault sealing program are buffer development, backfill development, grouting, tunnel and shaft sealing development, and borehole sealing development. The buffer is likely to be a mixture of clay and sand surrounding the waste package and is intended, primarily, to minimize near-field mass transport. The backfill would fill the remainder of the underground workings and most of the volume of the access shafts. Its major component would be crushed rock or sand, or both, with sufficient clay added to achieve the required permeability specification. Boreholes would be sealed throughout their length with low-permeability materials. These may be cements or clays. Shaft seals would be emplaced at specific locations and, probably, would be composed of a low-permeability clay or concrete plug, together with grouting of the rock surrounding the plug. Progress to date and planned future activities for each major part of the program are described. The principal foci of the program are the research and development activities required to assess the concept of underground disposal in plutonic rock and the design and implementation of vault sealing experiments in the Underground Research Laboratory. Program plans are presented that describe the logical progression of each major component of the program, and that indicate the timing of major events that contribute to the final objective of the program, which is to develop engineering specifications for the buffer, backfill and seals, and to justify these specifications in terms of the performance of the waste disposal system. 131 refs

  1. Hermetic Seal Leak Detection Apparatus

    Science.gov (United States)

    Kelley, Anthony R. (Inventor)

    2013-01-01

    The present invention is a hermetic seal leak detection apparatus, which can be used to test for hermetic seal leaks in instruments and containers. A vacuum tight chamber is created around the unit being tested to minimize gas space outside of the hermetic seal. A vacuum inducing device is then used to increase the gas chamber volume inside the device, so that a slight vacuum is pulled on the unit being tested. The pressure in the unit being tested will stabilize. If the stabilized pressure reads close to a known good seal calibration, there is not a leak in the seal. If the stabilized pressure reads closer to a known bad seal calibration value, there is a leak in the seal. The speed of the plunger can be varied and by evaluating the resulting pressure change rates and final values, the leak rate/size can be accurately calculated.

  2. Development and evaluation of new electronic seals at the IAEA

    International Nuclear Information System (INIS)

    transfer (TRFS) developed by Sandia National Lab, etc. A table compares the main technical data of the presented electronic seals. A short description of the necessary steps for the IAEA acceptance testing and authorization procedure for new electronic seals including lab functional tests, usability check, environmental and EMC qualification tests, safety and vulnerability assessments as well as field tests completes the presentation. (author)

  3. Seals Having Textured Portions for Protection in Space Environments

    Science.gov (United States)

    Daniels, Christopher (Inventor); Garafolo, Nicholas (Inventor)

    2016-01-01

    A sealing construct for a space environment includes a seal-bearing object, a seal on the seal-bearing object, and a seal-engaging object. The seal includes a seal body having a sealing surface, and a textured pattern at the sealing surface, the textured pattern defining at least one shaded channel surface. The seal-engaging object is selectively engaged with the seal-bearing object through the seal. The seal-engaging object has a sealing surface, wherein, when the seal-engaging object is selectively engaged with the seal-bearing object, the sealing surface of the seal-engaging object engages the sealing surface of the seal, and the seal is compressed between the seal-bearing object and the seal-engaging object such that at least one shaded channel surface engages the sealing surface of the seal-engaging object.

  4. Design parameters for borehole strain instrumentation

    Science.gov (United States)

    Gladwin, Michael T.; Hart, Rhodes

    1985-01-01

    The response of a borehole strain meter to hydrostatic and shear deformations in an isotropic medium is calculated to facilitate optimum instrument design and produce instrument response factors for parameters typically encountered in installed instruments. Results for an empty borehole are first compared with results for an instrument in intimate contact with the surrounding rock. The effects of the grout used to install the instrument are then examined. Where possible, analytic forms for the response factors are given. Results for typical installations are then presented in graphical form for optimizing instrument design in an environment of known elastic parameters. Alternatively, the results may be applied in the measurement of unknown strain signals, to correct for instrument response or to provide in-situ estimates of the elastic properties of the environment by examination of observed strain response to known strain signals.

  5. High-precision multicomponent borehole deformation monitoring

    Science.gov (United States)

    Gladwin, Michael T.

    1984-12-01

    An instrument capable of deep borehole measurement of vector plane strain to 0.3 nstrain and tilt to 1.0 nrad has been developed for deployment in crustal deformation and earthquake prediction studies. The instrument has been deployed in California where shear strains dominate the deformation. The 125-mm-diam package is grouted in 175-mm boreholes at depths of approximately 200 m. The wall thickness and the grout thickness are chosen to match instrument strength to expected rock parameters. The instrument is capable of flat response from dc to 10 Hz on any single channel. The electronics package is stable to three parts in 108 over the temperature range 10 to 45° C. Reliable shear strain data is available immediately on installation when simple volume strain meters show only bond curing effects or thermal recovery signals.

  6. Gas turbine sealing apparatus

    Science.gov (United States)

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  7. Damping seal verification setup

    Science.gov (United States)

    Cappel, K. L.

    1985-01-01

    The heart of the Space Shuttle Main Engine (SSME) is a set of turbopumps that propel cryogenic fluids at very high pressures and flow rates, at rotor speeds up to 37,000 rpm. Bushing seals that cause the flow in the fluid film to become turbulent, by means of a multiplicity of pockets, were shown theoretically not only to inhibit subsynchronous whirl, but to reduce leakage as well. However, experimental data that relate these two desirable characteristics to such parameters as pocket depth, Reynolds number (based on clearance and axial flow rate), and rotating speed are limited. To obtain the required data, NASA's Marshall Space Flight Center (MSFC) commissioned Wyle Laboratories to design, build and operate a test rig in which the damping efficacy and leakage reduction of typical candidate seals are to be evaluated.

  8. Nitrate concentrations in the Morestead borehole, Twyford

    OpenAIRE

    Stuart, M.E.; Chilton, P J; Newell, A. J.; Butcher, A.S.

    2008-01-01

    This report describes work carried out at Morestead, Twyford as part of a BGS research project “Nitrate Mass Balance in the Saturated Zone”. The project aimed to evaluate the role of the diffusive exchange of nitrate between fracture water and porewater in the saturated zone of the aquifer. The approach adopted attempted to obtain a mass balance for the catchment to a public supply borehole by comparing nitrogen released from the soil with nitrogen held in the aquifer and nitro...

  9. Near Field Investigation of Borehole Heat Exchangers

    OpenAIRE

    Erol, Selcuk

    2015-01-01

    As an alternative and renewable energy source, the shallow geothermal energy evolving as one of the most popular energy source due to its easy accessibility and availability worldwide, and the ground source heat pump (GSHP) systems are the most frequent applications for extracting the energy from the shallow subsurface. As the heat extraction capacity of the GSHP system applications arises, the design of the borehole heat exchangers (BHE), which is the connected part of the system in the grou...

  10. Strategic decision analysis applied to borehole seismology

    International Nuclear Information System (INIS)

    Strategic Decision Analysis (SDA) is the evolving body of knowledge on how to achieve high quality in the decision that shapes an organization's future. SDA comprises philosophy, process concepts, methodology, and tools for making good decisions. It specifically incorporates many concepts and tools from economic evaluation and risk analysis. Chevron Petroleum Technology Company (CPTC) has applied SDA to evaluate and prioritize a number of its most important and most uncertain R and D projects, including borehole seismology. Before SDA, there were significant issues and concerns about the value to CPTC of continuing to work on borehole seismology. The SDA process created a cross-functional team of experts to structure and evaluate this project. A credible economic model was developed, discrete risks and continuous uncertainties were assessed, and an extensive sensitivity analysis was performed. The results, even applied to a very restricted drilling program for a few years, were good enough to demonstrate the value of continuing the project. This paper explains the SDA philosophy concepts, and process and demonstrates the methodology and tools using the borehole seismology project example. SDA is useful in the upstream industry not just in the R and D/technology decisions, but also in major exploration and production decisions. Since a major challenge for upstream companies today is to create and realize value, the SDA approach should have a very broad applicability

  11. Multifold borehole radar acquisition and processing

    International Nuclear Information System (INIS)

    The multifold acquisition principle was applied to a borehole radar survey, performed in a granitic site (Grimsel Test Site, Switzerland). Two multifold coverage acquisitions (40-fold and 20-fold) were carried out in a subhorizontal borehole. Instrumental drifts (transmission time and sampling frequency fluctuations) were corrected in order to remove shifts observed on CMP gathers and to optimize velocity analysis and trace stacking. Computation of velocity spectra was adapted in order to take into account the features of the medium investigated (homogeneous velocity, various reflector orientations). The NMO velocities were then interpreted as angles between reflectors and the survey line. The processing, based on the computation of several constant velocity stacked sections performed with different NMO velocities, leads to better results than the standard DMO + NMO processing. The signal-to-noise ratio of the stacked profile is improved in comparison with the single-fold section, which results from a standard acquisition. From a practical pint of view, the implementation of a multifold radar survey within a borehole is difficult but a greater investigation range is obtained, more reflectors are detected and the mapping of geological discontinuities is improved

  12. TECHNOLOGY ROADMAPPING FOR IAEA SEALS.

    Energy Technology Data Exchange (ETDEWEB)

    HOFFHEINS,B.; ANNESE,C.; GOODMAN,M.; OCONNOR,W.; GUSHUE,S.; PEPPER,S.

    2003-07-13

    In the fall of 2002, the U.S. Support Program (USSP) initiated an effort to define a strategy or ''roadmap'' for future seals technologies and to develop a generalized process for planning safeguards equipment development, which includes seals and other safeguards equipment. The underlying objectives of the USSP include becoming more proactive than reactive in addressing safeguards equipment needs, helping the IAEA to maintain an inventory of cost-effective, reliable, and effective safeguards equipment, establishing a long-term planning horizon, and securing IAEA ownership in the process of effective requirements definition and timely transitioning of new or improved systems for IAEA use. At an initial workshop, seals, their functions, performance issues, and future embodiments were discussed in the following order: adhesive seals, metal seals, passive and active loop seals, ultrasonic seals, tamper indicating enclosures (including sample containers, equipment enclosures, and conduits). Suggested improvements to these technologies focused largely on a few themes: (1) The seals must be applied quickly, easily, and correctly; (2) Seals and their associated equipment should not unduly add bulk or weight to the inspectors load; (3) Rapid, in-situ verifiability of seals is desirable; and (4) Seal systems for high risk or high value applications should have two-way, remote communications. Based upon these observations and other insights, the participants constructed a skeletal approach for seals technology planning. The process begins with a top-level review of the fundamental safeguards requirements and extraction of required system features, which is followed by analysis of suitable technologies and identification of technology gaps, and finally by development of a planning schedule for system improvements and new technology integration. Development of a comprehensive procedure will require the partnership and participation of the IAEA. The

  13. TECHNOLOGY ROADMAPPING FOR IAEA SEALS

    International Nuclear Information System (INIS)

    In the fall of 2002, the U.S. Support Program (USSP) initiated an effort to define a strategy or ''roadmap'' for future seals technologies and to develop a generalized process for planning safeguards equipment development, which includes seals and other safeguards equipment. The underlying objectives of the USSP include becoming more proactive than reactive in addressing safeguards equipment needs, helping the IAEA to maintain an inventory of cost-effective, reliable, and effective safeguards equipment, establishing a long-term planning horizon, and securing IAEA ownership in the process of effective requirements definition and timely transitioning of new or improved systems for IAEA use. At an initial workshop, seals, their functions, performance issues, and future embodiments were discussed in the following order: adhesive seals, metal seals, passive and active loop seals, ultrasonic seals, tamper indicating enclosures (including sample containers, equipment enclosures, and conduits). Suggested improvements to these technologies focused largely on a few themes: (1) The seals must be applied quickly, easily, and correctly; (2) Seals and their associated equipment should not unduly add bulk or weight to the inspectors' load; (3) Rapid, in-situ verifiability of seals is desirable; and (4) Seal systems for high risk or high value applications should have two-way, remote communications. Based upon these observations and other insights, the participants constructed a skeletal approach for seals technology planning. The process begins with a top-level review of the fundamental safeguards requirements and extraction of required system features, which is followed by analysis of suitable technologies and identification of technology gaps, and finally by development of a planning schedule for system improvements and new technology integration. Development of a comprehensive procedure will require the partnership and participation of the IAEA. The presentation will include a

  14. A successful borehole drilled by cryogenic drilling in an arid, unconsolidated soil with boulders

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, P.; Simon, R.D.; Cooper, G.A. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-07-01

    An 80 foot deep borehole was drilled using a novel cryogenic drilling method. The freeze while drilling technique stabilizes the borehole wall while drilling by using conventional air rotary methods but with low temperature nitrogen gas (as cold as {minus}196 C) as the drilling fluid. The location of the field test was a semi-arid alluvial unconsolidated sedimentary formation at the Aerojet, Inc. site in Rancho Cordova, California. The geology was a sandy soil matrix containing cobbles and boulders. The test goal was to drill to 100 feet (30 m), but the test was terminated at 80 feet due to a failure of the swivel shaft and drill bit resulting from the very rough drilling conditions. No safety, technical, or operational problems were encountered that could prevent cryogenic drilling from becoming a standard technique for drilling in unstable near-surface formations.

  15. Full 3-D numerical modeling of borehole electric image logging and the evaluation model of fracture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A full 3-D finite element method numerical modeling program is written based on the principle and technical specification of borehole electric image well logging tool. The response of well logging is computed in the formation media model with a single fracture. The effect of changing fracture aperture and resistivity ratio to the logging response is discussed. The identification ability for two parallel fractures is also present. A quantitative evaluation formula of fracture aperture from borehole electric image logging data is set up. A case study of the model well is done to verify the accuracy of the for-mula. The result indicates that the formula is more accurate than the foreign one.

  16. The disposal alternative deep boreholes. Content and scope of R and D programme necessary for comparison with the KBS-3 method

    International Nuclear Information System (INIS)

    Deposition of spent fuel elements in ≥ 2000 m deep boreholes is an alternative to the KBS-3 method that has been developed in Sweden for more than 20 years. This report gives an account of the research and development needed in order to bring the deep borehole method to the same level of development as the KBS-3 method. Five majors areas are discussed: Geoscience, Technical issues, Technical barriers, Safety assessment and Time-plans and costs. It is estimated that a full R,D and D programme would need about 30 years to be completed, and the costs would amount to around 4 billion SEK (over 400 million USD)

  17. Effect of borehole design on electrical impedance tomography measurements

    Science.gov (United States)

    Mozaffari, Amirpasha; Huisman, Johan Alexander; Treichel, Andrea; Zimmermann, Egon; Kelter, Matthias; Vereecken, Harry

    2015-04-01

    Electrical Impedance Tomography (EIT) is a sophisticated non-invasive tool to investigate the subsurface in engineering and environmental studies. To increase the depth of investigation, EIT measurements can be made in boreholes. However, the presence of the borehole may affect EIT measurements. Here, we aim to investigate the effect of different borehole components on EIT measurements using 2,5-D and 3D finite element modeling and unstructured meshes. To investigate the effect of different borehole components on EIT measurements, a variety of scenarios were designed. In particular, the effect of the water-filled borehole, the PVC casing, and the gravel filter were investigated relative to complex resistivity simulations for a homogenous medium with chain and electrode modules. It was found that the results of the complex resistivity simulations were best understood using the sensitivity distribution of the electrode configuration under consideration. In all simulations, the sensitivity in the vicinity of the borehole was predominantly negative. Therefore, the introduction of the water-filled borehole caused an increase in the real part of the impedance, and a decrease (more negative) in the imaginary part of the simulated impedance. The PVC casing mostly enhanced the effect of the water-filled borehole described above, although this effect was less clear for some electrode configuration. The effect of the gravel filter mostly reduced the effect of the water-filled borehole with PVC casing. For EIT measurements in a single borehole, the highest simulated phase error was 12% for a Wenner configuration with electrode spacing of 0.33 m. This error decreased with increasing electrode spacing. In the case of cross-well configurations, the error in the phase shit was as high as 6%. Here, it was found that the highest errors occur when both current electrodes are located in the same borehole. These results indicated that cross-well measurements are less affected by the

  18. Brush seals and common issues in brush seal applications

    OpenAIRE

    Akşit, Mahmut Faruk; Aksit, Mahmut Faruk

    2012-01-01

    Brush seals are receiving wider acceptance with growing number of successful turbomachinery sealing applications over the past couple of decades. Due to their complaint nature these seals can recover from large transient rotor interference occurrences without any appreciable sustained damage or permanent performance loss. They are formed by a multitude of flexible fine bristles tightly clamped between two metal plates. When subjected to operating pressures and rotor interference, the friction...

  19. Simple, affordable, and sustainable borehole observatories for complex monitoring objectives

    Science.gov (United States)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Lange, M.; Fleischmann, T.; Hammerschmidt, S.; Seiter, C.; Wefer, G.

    2015-05-01

    Seafloor drill rigs are remotely operated systems that provide a cost-effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. Here we report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo (Meeresboden-Bohrgerat) seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK (Circulation Obviation Retrofit Kit), is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. In these MeBoCORKs, two systems have to be distinguished: the CORK-A (A stands for autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference); the CORK-B (B stands for bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by a remotely operated underwater vehicle (ROV) and utilises a hot-stab connection in the upper portion of the drill string. Either design relies on a hot-stab connection from beneath in which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect porewater in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner

  20. Simple, affordable and sustainable borehole observatories for complex monitoring objectives

    Science.gov (United States)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Lange, M.; Fleischmann, T.; Hammerschmidt, S.; Seiter, C.; Wefer, G.

    2014-12-01

    Seafloor drill rigs are remotely operated systems that provide a cost effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. We here report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK, is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. Of these MeBoCORKs, two systems have to be distinguished: the CORK-A (A = autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference). The CORK-B (B = bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by ROV and utilises a hotstab connection in the upper portion of the drill string. Either design relies on a hotstab connection from beneath which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect pore water in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data upon command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with Iridium link

  1. High temperature braided rope seals for static sealing applications

    Science.gov (United States)

    Adams, Michael L.; Olsen, Andrew; Darolia, Ram; Steinetz, Bruce M.; Bartolotta, Paul A.

    1996-01-01

    Achieving efficiency and performance goals of advanced aircraft and industrial systems are leading designers to implement high temperature materials such as ceramics and intermetallics. Generally these advanced materials are applied selectively in the highest temperature sections of the engine system including the combustor and high pressure turbine, amongst others. Thermal strains that result in attaching the low expansion-rate components to high expansion rate superalloy structures can cause significant life reduction in the components. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Designers require high temperature, low-leakage, compliant seals to mitigate thermal stresses and control parasitic and cooling airflow between structures. NASA is developing high temperature braided rope seals in a variety of configurations to help solve these problems. This paper will describe the types of seals being developed, describe unique test techniques used to assess seal performance, and present leakage flow data under representative pressure, temperature and scrubbing conditions. Feasibility of the braided rope seals for both an industrial tube seal and a turbine vane seal application is also demonstrated.

  2. Behavior of the DataSeal in mixed radiation fields

    International Nuclear Information System (INIS)

    Tamper-indicating seals have important application in many areas of the nuclear non-proliferation regime established by the Nuclear non-Proliferation Treaty (NPT). These seals must operate reliably in extremely harsh environmental conditions including high radiation fields. Due to experience with inadequately tested equipment, the International Atomic Energy Agency (IAEA) has established an extensive test regime for all equipment used for nuclear safeguards purposes, which includes testing in strong ionizing radiation fields. Therefore, the Atominstitute of the Austrian Universities (ATI) in cooperation with the IAEA (Section of NDA and Seals) has completed a series of irradiation tests (based on Safeguards test procedure) on a new seal product (an active radio frequency tamper indicating seal) that was designed for use in the trucking industry. These irradiation tests were: thermal neutron irradiation test at thermal column, fast neutron irradiation test in elevator and gamma irradiation test in the spent fuel storage. The tests results indicate that these seals may be used in high-class radiation fields. However, they will not survive in radiations fields that are present in some special applications. In strong gamma radiation fields, it was found that the instruments emit spurious signals and fail after a cumulative dose of about 350 gy. Similarly, the seals failed after an average thermal neutron fluence of 4,968 x 1013 n/cm2 . No fast neutrons are present at the thermal column, therefore, only the thermal neutron dose was calculated there; only a fast neutron spectrum with a negligible thermal contribution is present in the elevator; no major technical problems were observed with the data reader; the connectors used for the seal wire are not stable/secure enough; vibration in the reactor hall caused the seal to record tampering events; the seals, the program and the results were checked every day during and after irradiation; activation analysis shows that 82

  3. Borehole Paleoclimatology: In search of a minimum depth criterion for terrestrial borehole temperature profiles

    Science.gov (United States)

    Beltrami, H.; Smerdon, J. E.; Matharoo, G.; Nickerson, N. R.

    2010-12-01

    One important uncertainty in borehole paleoclimatology that has been overlooked is the degree to which ground surface temperature (GST) reconstructions depend on the maximum depth of the profile. Because the vast majority of measured borehole temperature profiles are acquired from boreholes of opportunity, the maximum measurement depth in data used for paleoclimatic studies varies considerably (beginning at depths as shallow as 100-150 m and extending to depths of more than 1 km). The depth of the borehole is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. Here we illustrate how the minimum depth of a temperature-depth profile impacts the estimation of the climatic transient and the resultant GST reconstruction. In particular, we attempt to quantitatively illustrate the effects and uncertainties that arise from the analysis of borehole temperature logs of different depths. Our results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. We show that borehole temperature measurements approaching 500-600 m depths provide the most robust GST reconstructions and are preferable for inferring past climatic variations at the ground surface. Furthermore, we find that the bias introduced by a temperature profile of depths

  4. Sealed Source Security and Disposition: Progress and Prospects - 13515

    International Nuclear Information System (INIS)

    Due to their high activity and portability, unsecured or abandoned sealed sources could cause significant health or environmental damage. Further, some of these sources could be used either individually or in aggregate in radiological dispersal devices commonly referred to as 'dirty bombs', resulting in significant social disruption and economic impacts in the billions of dollars. Disposal access for disused sealed sources, however, has been a serious challenge. From 2008 to 2012, sealed source disposal was available to only 14 states; additionally, waste acceptance criteria for sealed sources at the low-level waste disposal facilities in operation both prior to and after 2012 exclude some common yet potentially dangerous sealed sources. Recent developments, however, suggest that significant improvement in addressing this challenge is possible, although challenges remain. These developments include 1) the initiation of operations at the Waste Control Specialists (WCS) commercial low-level radioactive waste (LLRW) disposal facility in Andrews County, Texas; 2) the potential for significant revisions of the U.S. Nuclear Regulatory Commission's (NRC) 1995 'Final Branch Technical Position on Concentration Averaging and Encapsulation' (1995 BTP); and 3) the Utah Department of Environmental Quality's (UDEQ) approval of a license variance for sealed source disposal at the EnergySolutions LLRW disposal facility near Clive, Utah. (authors)

  5. Development and evaluation of new electronic seals at the IAEA

    International Nuclear Information System (INIS)

    During the recent 5 years a wide program for evaluation of existing and development of new tamper-indicating devices was started at the IAEA. The purpose of this program is to assess functionality, usability and possible vulnerabilities of seals already in use, to define the requirements and enhanced features of new devices and systems and to test them appropriately. Emphasis was given to the development and assessment of electronic seals, which represent the family of multiple use, multiple verification tamper-indicating devices with the capability to store internally substantial information about the history of their handling. This information can be retrieved, transferred, processed and evaluated later allowing to establish conclusions about possible tampering of the protected object as well as assurance about the 'state of health' of the tamper-indicating device and its components. The present paper describes the main features of the currently used VACOSS-S seal as well as the needs for its replacement, and the most important Agency's requirements for the newly developed electronic seals. The implementation of these requirements is being shown on the examples of new developments mainly supported by the Member States Support Programmes for the IAEA Safeguards. The main technical data of the presented electronic seals are compared. Short description of the necessary steps for the IAEA acceptance testing and authorization procedure for new electronic seals including lab functional tests, usability check, environmental and EMC qualification tests, radiation tests, safety and vulnerability assessments as well as field tests completes the presentation. (author)

  6. Sealing of radioactive waste repositories in crystalline rock

    International Nuclear Information System (INIS)

    The natural barrier of the crystalline rock surrounding repositories will be supplemented by engineered barriers and seals in all the repository systems that have been proposed by OECD/NEA member countries. The two buffer materials that are being considered in most countries are Portland cement-based, and bentonite-based materials. The Buffer Mass Test of the OECD/NEA International Stripa Project has demonstrated that highly compacted Na bentonite is well suited as canister embedment and that it effectively seals off boreholes, shafts and tunnels. Bentonite in the form of soft gels that block water flow can be formed in rock by grouting as demonstrated by the current Stripa field work. Cement-based materials, which form nonplastic seals, appear to be useful for certain purposes like rock grouting where very high pressure gradients prevail at the rock construction stage. Longevity is a particularly important matter and current research tends to show that physical and chemical stability will be offered by suitably composed cement and clay-based materials

  7. Low-Torque Seal Development

    Science.gov (United States)

    Lattime, Scott B.; Borowski, Richard

    2009-01-01

    The EcoTurn Class K production prototypes have passed all AAR qualification tests and received conditional approval. The accelerated life test on the second set of seals is in progress. Due to the performance of the first set, no problems are expected.The seal has demonstrated superior performance over the HDL seal in the test lab with virtually zero torque and excellent contamination exclusion and grease retention.

  8. Establishment and application of drilling sealing model in the spherical grouting mode based on the loosing-circle theory

    Institute of Scientific and Technical Information of China (English)

    Hao Zhiyong; Lin Baiquan; Gao Yabin; Cheng Yanying

    2012-01-01

    There are quite a few studies that have been done on borehole sealing theory both domestically and internationally.The existing researches usually consider drilling of the surroundings as a dense homogeneous elastic body which does not meet the characteristics of real drilling of the fractured body.Based on the loosing-circle theory and analyses of the surrounding rock stress field,cracks and seepage fields,combined with Newtonian fluid spherical grouting model,we deduced the dynamic relationship between the seepage coefficient and rock or grouting parameters of the drilling sealing fluid mode of spherical fissure grouting.In this experiment,mucus was injected in the simulated coal seam and the permeability coefficient of the sealing body was calculated by using the model.To verify the validity of the model,the calculated sealing body number was compared with the extreme negative pressure that the sealing body could withstand.The theoretical model revealed the drilling sealing fluid mechanism,provided a method for the quantitative calculation of the drilling sealing fluid effect by grouting mode and a reference for the subsequent research of sealing mechanism.

  9. Sealing of rock fractures

    International Nuclear Information System (INIS)

    The major water-bearing fractures in granite usually from fairly regular sets but the extension and degree of connectivity is varying. This means that only a few fractures that are interconnected with the deposition holes and larger water-bearing structures in a HLW repository are expected and if they can be identified and cut off through sealing it would be possible to improve the isolation of waste packages very effectively. Nature's own fracture sealing mechanisms may be simulated and a survey of the involved processes actually suggests a number of possible filling methods and substances. Most of them require high temperature and pressure and correspondingly sophisticated techniques, but some are of potential interest for immediate application with rather moderate effort. Such a technique is to fill the fractures with clayey substances which stay flexible and low-permeable provided that they remain physically and chemically intact. It is demonstrated in the report that effective grouting requires a very low viscosity and shear strength of the substance and this can be achieved by mechanical agitation as demonstrated in this report. Thus, by superimposing static pressure and shear waves induced by percussion hammering at a suitable frequency, clays and fine-grained silts as well as cement can be driven into fractures with an average aperture as small as 0.1 mm. Experiments were made in the laboratory using concrete and steel plates, and a field pilot test was also conducted under realistic conditions on site in Stripa. They all demonstrated the practicality of the 'dynamic injection technique' and that the fluid condition of the grouts yielded complete filling of the injected space to a considerable distance from the injection point. The field test indicated a good sealing ability as well as a surprisingly high resistance to erosion and piping. (author)

  10. Gulf and Dilmun Type seals

    DEFF Research Database (Denmark)

    Laursen, Steffen

    2011-01-01

    From around 2100 BC a glyptic tradition emerges in the Arabian Gulf, which is dependant on the well-established schools of the Indus Valley seal cutters. These circular hybrids of classic Harappan seals rapidly became popular amongst the merchants of Dilmun, centered on Bahrain Island. At first...... these Gulf Type‘ seals drew heavily on Indus Valley iconography and Indus script was occasionally employed in a pidgin-like manner. While the earliest circular seals incorporate features from Mesopotamian glyptic only to a lesser extent, this becomes a more important source of inspiration for later...

  11. Pressure sensor for sealed containers

    Science.gov (United States)

    Hodges, Franklin R.

    2001-01-01

    A magnetic pressure sensor for sensing a pressure change inside a sealed container. The sensor includes a sealed deformable vessel having a first end attachable to an interior surface of the sealed container, and a second end. A magnet mounted to the vessel second end defining a distance away from the container surface provides an externally detectable magnetic field. A pressure change inside the sealed container causes deformation of the vessel changing the distance of the magnet away from the container surface, and thus the detectable intensity of the magnetic field.

  12. Internal coaxial cable seal system

    Science.gov (United States)

    Hall, David R.; Sneddon, Cameron; Dahlgren, Scott Steven; Briscoe, Michael A.

    2006-07-25

    The invention is a seal system for a coaxial cable and is placed within the coaxial cable and its constituent components. A series of seal stacks including load ring components and elastomeric rings are placed on load bearing members within the coaxial cable sealing the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. The seal system can be used in a variety of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  13. Schematic designs for penetration seals for a repository in the Permian Basin. [Deaf Smith County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, P.C.; Case, J.B.; Coons, W.E.; Franzone, J.G.; Meyer, D.

    1985-12-01

    The isolation of radioactive wastes in geologic repositories requires that human-made penetrations such as shafts, tunnels, or boreholes are adequately sealed. This report describes schematic seal designs for a repository in bedded salt referenced to the stratigraphy of the Permian Basin. The designs are presented for extensive peer review and will be updated as conceptual designs if the Permian Basin is selected as a candidate repository site. The principal material used in the seal system in the repository-level rooms and tunnels is crushed salt obtained from excavating the repository. It is anticipated that crushed salt will consolidate in response to closure of the repository rooms, to the degree that mechanical and hydrologic properties will eventually match those of undisturbed, intact salt. For Permian Basin Unit 4 salt, analyses indicate that this process will require approximately 700 years for a seal located at the base of one of the repository shafts (where there is little increase in temperature due to waste emplacement) and approximately 200 years for a seal located in a main passageway within the repository. These analyses are based on uncertain laboratory data regarding intact salt creep rates and crushed salt consolidation characteristics, and must be regarded as preliminary. Bulkheads composed of concrete, as well as bentonite-rich earth fill, are also included in the seal system as components which will have low permeability during the period required for salt consolidation.

  14. Schematic designs for penetration seals for a reference repository in bedded salt

    International Nuclear Information System (INIS)

    The isolation of radioactive wastes in geologic repositories requires that man-made penetrations such as shafts, tunnels, or boreholes are adequately sealed. This report describes schematic seal designs for a repository in bedded salt referenced to the straitigraphy of southeastern New Mexico. The designs are presented for extensive peer review and will be updated as site-specific conceptual designs when a site for a repository in salt has been selected. The principal material used in the seal system is crushed salt obtained from excavating the repository. It is anticipated that crushed salt will consolidate as the repository rooms creep close to the degree that mechanical and hydrologic properties will eventually match those of undisturbed, intact salt. For southeastern New Mexico salt, analyses indicate that this process will require approximately 1000 years for a seal located at the base of one of the repository shafts (where there is little increase in temperature due to waste emplacement) and approximately 400 years for a seal located in an access tunnel within the repository. Bulkheads composed of contrete or salt bricks are also included in the seal system as components which will have low permeability during the period required for salt consolidation

  15. Results of brine flow testing and disassembly of a crushed salt/bentonite block seal at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    The Small-Scale Seal Performance Tests, Series C, a set of in situ experiments conducted at the Waste Isolation Pilot Plant, are designed to evaluate the performance of various seal materials emplaced in large (0.9-m-diameter) boreholes. This report documents the results of fluid (brine) flow testing and water and clay content analyses performed on one emplaced seal comprised of 100% salt blocks and 50%/50% crushed salt/bentonite blocks and disassembled after nearly three years of brine injection testing. Results from the water content analyses of 212 samples taken from within this seal show uniform water content throughout the 50%/50% salt/bentonite blocks with saturations about 100%. Clay content analyses from the 100% salt endcaps of the seal show a background clay content of about 1% by weight uniformly distributed, with the exception of samples taken at the base of the seal at the borehole wall interface. These samples show clay contents up to 3% by weight, which suggests some bentonite may have migrated under pressure to that interface. Results of the brine-flow testing show that the permeability to brine for this seal was about 2 to 3 x 10-4 darcy (2 to 3 x 10-16 m2)

  16. Borehole permeability damage and its impacts on gas drainage

    Energy Technology Data Exchange (ETDEWEB)

    Luke Connell; Rob Jeffrey; Budi Suharto [CSIRO Petroleum (Australia)

    2008-10-15

    For drilling fines and fluid migration to significantly impact the near borehole permeability overbalanced conditions are required within the borehole during drilling. This is less likely to occur with underground in-seam boreholes since these are drilled with the collar of the borehole open or subject to only low pressure. Mineral precipitation can occur when certain combinations of solutes are supersaturated. Calcium carbonate precipitation could occur as groundwater flows towards a borehole where the pressure drops and CO{sub 2} comes out of solution, resulting in precipitation. Gas and water blocking is a result of the presence of free gas within the cleats acting to impede the flow of water into the borehole, or vice versa, water impeding the flow of gas. Initial drilling of the borehole results in a redistribution of stress around it, generally leading to higher compressive stresses in a zone extending out to about two borehole diameters. During drainage, drawdown of the pressure will act to further increase the effective stress in the vicinity of the borehole. However gas desorption also occurs which counteracts this effect through matrix shrinkage. It was found that the permeability decline will be greatest in deeper coal seams where initial pore pressures are higher, where the beneficial effect of gas desorption is outweighed by the effects of pressure.

  17. Exploratory borehole Schafisheim. Programme of work

    International Nuclear Information System (INIS)

    An extensive geophysical borehole logging programme will serve to verify the results of the core analysis and complement the core data. Numerous borehole logs are to be registered with different types of tools. These allow one to determine various parameters essential for the full description of the rock sequences penetrated. A first category of logs enables the petrographical identification of the different rock types and indicates porous zones that are either water- or hydrocarbon-bearing. A second category provides data e.g. on the degree of pore and fracture fill, rock density and rock temperature, natural gamma radiation and rock-mechanical properties. Other logs measure strike and dip of the sedimentary layers and the position of rock fractures. A fourth category provides information on the diameter and the deviation of the borehole, the quality of casing cementations and the position of casing joints. In addition, well shooting surveys will supply exact values of seismic velocities for the various rock units; data that are needed for the depth correction of the reflection profiles from Nagra's regional seismic network. With numerous hydrological tests ranging from a production tests of the triassic Muschelkalk aquifer to labelled slug tests in low-permeability crystalline sections, the hydraulic conditions of deep groundwater flow will be investigated. The recovered water samples will undergo full physical and geochemical analysis. Furthermore, their isotope content is to be measured in order to estimate the age of the various formation waters and their time of residence in the various aquifers. To round off the scientific investigations, a series of rock-mechanical and geotechnical laboratory tests will provide characteristic values to be applied eventually in the design and construction of shafts and caverns for an underground repository

  18. Self sealing disconnect for tubing forms metal seal after breakaway

    Science.gov (United States)

    Gernandt, H. H.

    1964-01-01

    Disconnect fittings form a positive metal seal when the fill tube pulls against a metal sleeve when disconnected by force. A specially designed sleeve surrounds the fill tube. O-rings in the shoulder of the sleeve and near the outer end of the fill tube seal against leakage.

  19. Management of Disused Sealed Sources in Hungary - 13077

    International Nuclear Information System (INIS)

    Since 1976 the spent and disused radioactive sources arisen in Hungary are stored in a central storage facility called Radioactive Waste Treatment and Disposal Facility operated by Public Limited Company for Radioactive Waste Management. The Facility is responsible for the record keeping, the waste acceptance procedure, the shipment and the storage or disposal (whether a certain source meets the waste acceptance criteria for disposal or not) of sources. Based on the more than 35 year old operation of the facility many experiences have been gathered regarding the technology for long-term storage of sources, the attitude of the users of sources, the evolution of the legislation and the national record keeping system. Recently a new legislation for the security of radioactive materials (including sources) was introduced, first in Central-Europe. It requires special security arrangements from the facility for transport and for storage. Due to the ongoing retrieval of radioactive waste formerly disposed of, partly containing sealed sources, there is a new challenge in the physical inventory control of historical waste. The paper would show the effect of the changes in the legislation system of record keeping or security on the users' attitude for discard of sources and on the management of the sources in the facility. The facility has a unique storage technology (shallow boreholes) in the narrow region. The sealed sources are placed into vertical pipes sunk into the surface. In the beginning, each of the sources were dropped into the pipe directly, recently they are placed in a metal tube first ensuring the retrieval. The lessons learned will be presented. There were several issues to introduce the new security arrangements (partly financially supported by US DOE) for storage and for transportation of sealed sources. These issues are addressed. In the past part of the sealed sources were disposed together with solid radioactive waste packaged in plastic bags. A waste

  20. Joint seal in tank

    International Nuclear Information System (INIS)

    A seal for a joint or gap between edges of adjacent wall sections (e.g. of concrete) of a liquid-containing vessel, such as a nuclear reactor cooling pond, comprises a sheet metal strip having longitudinally-extending edge parts, secured to the respective vessel-section edges, and a central part which is longitudinally corrugated to provide sufficient flexibility to accommodate slight relative movements between the vessel-section edges (e.g. due to thermal expansions). The edges of the sheet metal of the strip are turned in so that the edge parts of the strip are formed as generally U-section channels. These accommodate longitudinally extending securing bars which are bolted to the vessel wall sections by bolts which pass through the bars, through the free-edged wall of the channel section and through a longitudinally extending resilient seal pad compressed between that wall of the channel section and the vessel wall section to which it is secured. The other wall of the channel section (integral with the corrugated central part of the strip) has access windows through which the bolts are inserted and tightened, the windows being then closed off in liquid-tight manner by welding closure caps over them. (author)

  1. Repository Closure and Sealing Approach

    International Nuclear Information System (INIS)

    The scope of this analysis will be to develop the conceptual design of the closure seals and their locations in the Subsurface Facilities. The design will be based on the recently established program requirements for transitioning to the Site Recommendation (SR) design as outlined by ''Approach to Implementing the Site Recommendation Baseline'' (Stroupe 2000) and the ''Monitored Geologic Repository Project Description Document'' (CRWMS M andO 1999b). The objective of this analysis will be to assist in providing a description for the Subsurface Facilities System Description Document, Section 2 and finally to document any conclusions reached in order to contribute and provide support to the SR. This analysis is at a conceptual level and is considered adequate to support the SR design. The final closure barriers and seals for the ventilation shafts, and the north and south ramps will require these openings to be permanently sealed to limit excessive air and water inflows and prevent human intrusion. The major tasks identified with closure in this analysis are: (1) Developing the overall subsurface seal layout and identifying design and operational interfaces for the Subsurface Facilities. (2) Summarizing the general site conditions and general rock characteristic with respect to seal location and describing the seal selected. (3) Identify seal construction materials, methodology of construction and strategic locations including design of the seal and plugs. (4) Discussing methods to prevent human intrusion

  2. Rotating plug bearing and seal

    Science.gov (United States)

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  3. Rotating plug bearing and seal

    International Nuclear Information System (INIS)

    Disclosed is a bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing. 19 claims, 3 figures

  4. Borehole plugging of man-made accesses to a basalt repository: a preliminary study

    International Nuclear Information System (INIS)

    This report describes the status of work currently in progress for the Basalt Borehole Plugging Program (BBPP). The primary objectives of the BBPP outlined in this report have been met during this first phase of work. These objectives included: (1) the preparation of a preliminary list of candidate plug materials; (2) a description of available machinery capable of placing candidate plug materials; and (3) the development of physical and geochemical testing programs to help evaluate the chemical stability and physical properties of candidate plug materials. The most significant finding from work to date is that given reasonable regulatory criteria, nothing has been identified which would prevent design of a plug system to seal manmade openings leading to a nuclear waste repository in Columbia River basalt for significantly long periods of time (on the order of thousands of years). Work accomplished to date indicates that this plug system can be designed using both natural and manufactured materials and can be emplaced with existing placement machinery and modifications of that machinery. The objectives of Task II are to conduct laboratory tests to evaluate the suitability of preferred candidate materials for plugging boreholes in the proposed repository, select plug system(s), initiate preconceptual machinery design for the placement of materials in plug system(s), and prepare a preliminary Task II report. As with Task I project organization, Task II is divided into subtasks that are identified by written subtask work summaries

  5. The Role of Active Fractures on Borehole Breakout Development

    Science.gov (United States)

    Sahara, D.; Kohl, T.; Schoenball, M.; Müller, B.

    2013-12-01

    The properties of georeservoirs are strongly related to the stress field and their interpretation is a major target in geotechnical management. Borehole breakouts are direct indicators of the stress field as they develop due to the concentration of the highest compressional stress toward the minimum horizontal stress direction. However, the interaction with fractures might create local perturbations. Such weakened zones are often observed by localized anomalies of the borehole breakout orientation. We examined high-quality acoustic borehole televiewer (UBI) logs run in the entire granite sections at the deep well GPK4 at Soultz-sous-Forêts, France. The borehole is moderately inclined (15° - 35°) in its middle section. Detailed analysis of 1221 borehole elongation pairs in the vicinity of 1871 natural fractures observed in GPK4 well is used to infer the role of fractures on the borehole breakouts shape and orientation. Patterns of borehole breakout orientation in the vicinity of active fractures suggest that the wavelength of the borehole breakout orientation anomalies in this granite rock depend on the scale of the fracture while the rotation amplitude and direction is strongly influenced by the fracture orientation. In the upper and middle part of the well even a linear trend between fracture and breakout orientations could be established. In addition to the rotation, breakouts typically are found to be asymmetrically formed in zones of high fracture density. We find that major faults tend to create a systematic rotation of borehole breakout orientation with long spatial wavelength while abrupt changes are often observed around small fractures. The finding suggest that the borehole breakout heterogeneities are not merely governed by the principal stress heterogeneities, but that the effect of mechanical heterogeneities like elastic moduli changes, rock strength anisotropy and fracturing must be taken into account. Thus, one has to be careful to infer the

  6. Borehole locations on seven interior salt domes

    International Nuclear Information System (INIS)

    This report is designed as an inventory of all wells known to have been drilled within a five-mile radius of each of seven salt domes within the Interior Salt Basin in east Texas, northern Louisiana and Mississippi. There are 72 boreholes that entered salt above an elevation of -3000 feet mean sea level. For these, details of location, drilling dates, depth of casing and cement, elevation of top of caprock and salt, etc., are given on tables in the appendix. Of the seven domes, Oakwood has the largest number of boreholes, thirty-eight (including two sidetracked wells) that enter the salt stock above -3000 feet mean sea level; another dome in northeast Texas, Keechi, has eight; in northern Louisiana, Rayburn's has four and Vacherie has five; in southern Mississippi, Cypress Creek has seven, Lampton has one, and Richton has nine. In addition, all wells known outside the supra-domal area, but within a five-mile radius of the center of the 7 domes are separately catalogued

  7. Second ILAW Site Borehole Characterization Plan

    Energy Technology Data Exchange (ETDEWEB)

    SP Reidel

    2000-08-10

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment.

  8. Borehole geophysics in nuclear power plant siting

    International Nuclear Information System (INIS)

    Miniaturized borehole geophysical equipment designed for use in ground-water investigations can be adapted to investigations of nuclear power plant sites. This equipment has proved to be of value in preliminary and comprehensive studies of interior basins where thick sequences of Quaternary clastic sediment, occasionally with associated volcanic rocks, pose problems of stratigraphic correlation. The unconsolidated nature of the deposits generally requires that exploratory holes be cased, which ordinarily restricts the borehole geophysical studies to the radiation functions--natural gamma, gamma-gamma, neutron-gamma, and neutron-epithermal neutron logs. Although a single log response may be dominant in a given area, correlations derive from consideration of all log responses as a composite group. Because major correlations usually are based upon subtle differences in the physical properties of the penetrated sediment, high-resolution logging procedures are employed with some sacrifice of the quantitative parameters important to petroleum technology. All geophysical field data are recorded as hard copy and as digital information on punched paper tape. Digital data are subsequently computer processed and plotted to scales that enhance the stratigraphic data being correlated. Retention of the data in analog format permits rapid review, whereas computer plotting allows playback and detailed examination of log sections and sequences that may be attenuated on hard copy because of the logarithmic nature of the response to the physical property being examined

  9. Natural gamma radiation borehole logging system

    International Nuclear Information System (INIS)

    A borehole logging system employs a gamma-ray detector for measuring the natural gamma radiation of the earth formations surrounding a borehole. Three energy band selectors, each employing a discriminator and count rate meter, separate the output of the gamma-ray detector into potassium, uranium, and thorium energy band signals. A first operational amplifier determines the difference between the potassium energy band signal and those portions of the uranium and thorium energy band signals which represent the influence of uranium and thorium gamma radiation within the potassium energy band, this difference representing the correct potassium gamma radiation. A second operational amplifier determines the difference between the uranium energy band signal and that portion of the thorium energy band signal which represents the influence of the thorium gamma radiation within the uranium energy band, this difference representing the correct uranium gamma radiation. A third operational amplifier determines the difference between the thorium energy band signal and that portion of the uranium energy band signal which represents the influence of the uranium gamma radiation within the thorium energy band, this difference representing the correct thorium gamma radiation

  10. Second ILAW Site Borehole Characterization Plan

    International Nuclear Information System (INIS)

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m3 (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment

  11. Airfoil seal system for gas turbine engine

    Science.gov (United States)

    Diakunchak, Ihor S.

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  12. Improvements in electric cable gland seals

    International Nuclear Information System (INIS)

    An electric cable gland seal has a deformable sealing member which is penetrated by cables arranged in annular spaced array, the sealing member being disposed between two spreader plates which when urged together by springs compress and deform the sealing member into sealing contact with the cables, a distributor which holds the cables in the spaced array, and a cylindrical body adapted for sealing about an opening in the wall of a vessel. (UK)

  13. Aerodynamic seals for rotary machine

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  14. Site study plan for borehole search and characterization, Deaf Smith County Site, Texas: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-22

    This site study plan describes the Borehole Search and Characterization field activities to be conducted during the early stages of Site Characterization at the Deaf Smith County site, Texas. The field program has been designed to provide data useful in addressing information/data needs resulting from Federal/State/Local regulatory requirements and repository program requirements. Air and ground surveys, an extensive literature search, and landowner interviews will be conducted to locate wells within and adjacent to the proposed nuclear waste repository site in Deaf Smith County. Initially, the study will center around the planned Exploratory Shaft Facilities location and will expand outward from that location. Findings from this study may lead to preparation of a new site study plan to search suspected borehole locations, and excavate or reenter known boreholes for additional characterization or remedial action. The Salt Repository Project (SRP) Networks specify the schedule under which the program will operate. The Technical Field Services Contractor (TFSC) is responsible for conducting the field program. Data will be handled and reported in accordance with established SRP procedures. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that appropriate documentation is maintained. 13 refs., 6 figs., 3 tabs.

  15. Site study plan for borehole search and characterization, Deaf Smith County Site, Texas: Revision 1

    International Nuclear Information System (INIS)

    This site study plan describes the Borehole Search and Characterization field activities to be conducted during the early stages of Site Characterization at the Deaf Smith County site, Texas. The field program has been designed to provide data useful in addressing information/data needs resulting from Federal/State/Local regulatory requirements and repository program requirements. Air and ground surveys, an extensive literature search, and landowner interviews will be conducted to locate wells within and adjacent to the proposed nuclear waste repository site in Deaf Smith County. Initially, the study will center around the planned Exploratory Shaft Facilities location and will expand outward from that location. Findings from this study may lead to preparation of a new site study plan to search suspected borehole locations, and excavate or reenter known boreholes for additional characterization or remedial action. The Salt Repository Project (SRP) Networks specify the schedule under which the program will operate. The Technical Field Services Contractor (TFSC) is responsible for conducting the field program. Data will be handled and reported in accordance with established SRP procedures. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that appropriate documentation is maintained. 13 refs., 6 figs., 3 tabs

  16. Permanent installation of fibre-optic DTS cables in boreholes for temperature monitoring

    Science.gov (United States)

    Henninges, J.; Schrötter, J.; Erbas, K.; Böde, S.; Huenges, E.

    2003-04-01

    Temperature measurements have become an important tool for the monitoring of dynamic processes in the subsurface both in academia and industry. An innovative experimental design for the monitoring of spatial and temporal variations of temperature along boreholes was developed and successfully applied under extreme arctic conditions during a field experiment, which was carried out within the framework of the Mallik 2002 Production Research Well Program*. Three 40 m spaced, 1200 m deep wells were equipped with permanent fibre-optic sensor cables and the variation of temperature was measured deploying the Distributed Temperature Sensing (DTS) technology. The used DTS system enables the simultaneous online registration of temperature profiles along the three boreholes with a maximum spatial resolution of 0.25 m and a minimum sampling interval of 7 sec. After an individual calibration of the fibre-optic sensor cables a resolution of 0.3 °C of the measured temperature data could be achieved. A special feature of the experiment design is the installation of the sensor cables outside the borehole casing. The fibre-optic cables were attached to the outer side of the casing at every connector within intervals of approx. 12 m with cable clamps. The clamps enable a defined positioning of the cable around the perimeter of the casing and are protecting the cable from mechanical damage during installation. After completion the sensor cables are located in the cement annulus between casing and borehole wall. As an example of the performance of the described temperature logging technology data from the reaming of a 300 m thick cement plug inside the borehole is displayed, offering a unique opportunity to explore thermal processes in the near vicinity of a borehole during drilling. The temperature changes image the progress of the drill bit as well as changes in the mud circulation. Furthermore, local effects can be observed that relate to local thermal properties and technical

  17. Turbine and Structural Seals Team Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Seals Team Facilities conceive, develop, and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. Current projects include...

  18. A combined surface and borehole seismic survey at the COSC-1 borehole

    Science.gov (United States)

    Simon, Helge; Krauß, Felix; Hedin, Peter; Buske, Stefan; Giese, Rüdiger; Juhlin, Christopher

    2015-04-01

    The ICDP project COSC (Collisional Orogeny in the Scandinavian Caledonides) focuses on the mid Paleozoic Caledonide Orogen in Scandinavia in order to better understand orogenic processes, from the past and in recent active mountain belts. The Scandinavian Caledonides provide a well preserved example of a Paleozoic continent-continent collision. Surface geology in combination with geophysical data provide control of the geometry of the Caledonian structure, including the allochthon and the underlying autochthon, as well as the shallow W-dipping décollement surface that separates the two and consist of a thin skin of Cambrian black shales. During spring/summer 2014 the COSC-1 borehole was drilled to approx. 2.5 km depth near the town of Åre (western Jämtland/Sweden) with nearly 100 % of core recovery and cores in best quality. After the drilling was finished, a major seismic survey was conducted in and around the COSC-1 borehole which comprised both seismic reflection and transmission experiments. Besides a high resolution zero-offset VSP (Vertical Seismic Profiling) experiment also a multi-azimuthal walkaway VSP survey took place. For the latter the source points were distributed along three profile lines centered radially around the borehole. For the central part up to 2.5 km away from the borehole, a hydraulic hammer source was used, which hits the ground for about 20 s with an linear increasing hit rate. For the far offset shots up to 5 km, explosive sources were used. The wavefield of both source types was recorded in the borehole using an array of 15 three-component receivers with a geophone spacing of 10 m. This array was deployed at 7 different depth levels during the survey. At the same time the wavefield was also recorded at the surface by 180 standalone three-component receivers placed along each of the three up to 10 km long lines, as well as with a 3D array of single-component receivers in the central part of the survey area around the borehole. Here

  19. Tamper tape seals

    International Nuclear Information System (INIS)

    Tamper tapes are appealing for many applications due to their ease of use and relative robustness. Applications include seals for temporary area denial, protection of sensitive equipment, chain-of-custody audit trails, and inventory control practices. A next generation of adhesive tamper tapes is being developed that combines the best features of commercially available devices with additional state-of-the-art features in tamper indication, tamper-resistance, and counterfeit-resistance. The additional features are based on U.S. Department of Energy (DOE) research and development (R ampersand D) activities that were originally associated with preparations for the Strategic Arms Reduction Treaty (START). New features include rapid-set, chemical-cure adhesive systems that allow user-friendly application and layered levels of counterfeit-resistance based on unique open-quotes fingerprintclose quotes characteristics that can be accessed as desired

  20. 30 CFR 75.388 - Boreholes in advance of mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boreholes in advance of mining. 75.388 Section... of mining. (a) Boreholes shall be drilled in each advancing working place when the working place... cannot be examined, and before mining continues, a certified person shall, if possible, determine—...

  1. Borehole survey system using fiber optic gyroscopes strapdown inertial navigation

    Science.gov (United States)

    Gao, Shuang; Zhang, Chunxi; Yan, Tingyang; Li, Chen

    2006-11-01

    This paper will present a Fiber Optic Gyroscopes Strap down Inertial Navigation System (SINS) used in borehole survey systems. This system can be used for Wire-Line logging operations because of Fiber Optic Gyroscope's excellent capabilities of long life time, ruggedness, compactness, low cost and high environmental insensitivity. This borehole survey system utilizes the cable length signal aiding Fiber Optic Gyroscopes Strapdown Inertial Navigation System. Furthermore, this system utilizes an optimal estimation procedure based on Kalman filtering method to estimate and compensate the system errors on-line. This paper also presents a cable length model to correct the cable length signal. Simulation results show that the methods can effectively enhance the precision of the borehole survey system. In this system, the borehole survey system can fleetly and continuously survey the borehole during Wire-Line logging operations for determining the precise path of the borehole. Moreover, due to the compact frame of IMU, the borehole surveying system can be used for determining the small diameter boreholes.

  2. Causes of Borehole Failure in Complex Basement Terrains: ABUAD Case Study, Southwestern Nigeria

    OpenAIRE

    1 Ogundana, A.K , 2 Aladesanmi A. O., 3 Okunade A., 4Olutomilola O.O

    2015-01-01

    A preliminary assessment of primary causes of borehole failure has being conducted using Afe Babalola University as a case study. A total of fourteen boreholes (namely borehole 1-14) were studied, vertical electrical soundings, depth sounding, flushing and pump testing were conducted on each of the boreholes to establish their status at the time of the study and possible evaluation of the groundwater potential of the wells. Four out of the fourteen boreholes (borehole 1-4) are pro...

  3. Borehole fluid dynamic temperature logging to evaluate fracture hydraulic properties

    International Nuclear Information System (INIS)

    A borehole fluid dynamic temperature logging method was developed to evaluate the hydraulic conductivity of fractures intercepted by a borehole. This is different from conventional temperature logs that are measured in a non-flowing borehole, in that in our case the borehole is pumped at a constant flow rate. Thus we call it dynamic temperature logging method. The method involves the flushing of the wellbore with water of a known temperature (different from that of fracture fluids) and then pumping the well at a small flow rate Q. Under this constant flow rate, a sequence of temperature logs is measured at specified time intervals. Distinctive features in the logs develop as fluid from each fracture inflow point enters the borehole. This methodology is being developed to evaluate fracture flow properties at potential nuclear waste repositories

  4. Direction of improvement of the radial-face seals of rotor supports of the aircraft engines

    Directory of Open Access Journals (Sweden)

    Petr Bondarchuk

    2014-10-01

    Full Text Available Today the radial-face contacts seals are the most wide-spread type of sealers of the aircraft engine rotor supports. In the paper the main shortcomings of the radial-face contact seals are specified the removal of which will result in increase in the operating range in terms of the pressure and temperature of the sealing air, reduction of leakages and extension of life-time. On the basis of the literature, patents and catalogues of the manufacturing companies the modern trends of improvement of the sealing structure are considered. The innovative technical solution for the radial-face contact seal with oil lubrication has been developed allowing increasing its efficiency. In order to increase the sealing reliability the hydrodynamic grooves of unique form made with the use of a laser are used. High sealing efficiency is ensured due to the simultaneous application of principles of hydrostatic and hydrodynamic lubrication. The method of calculation of seal properties has been suggested. The results of testing the new type of sealing for the engine rotor support as part of a moving-base simulator and aircraft gas-turbine engine have been presented.

  5. Deep boreholes - Status and analysis of consequences of application in Sweden

    International Nuclear Information System (INIS)

    and deep holes. The investigation also concludes that traditional drilling fluids probably cannot be used. It is recommended that stiff foam that binds the cuttings should be used instead. The bottom line of the study is that it is probable that existing technology can be used to produce the deposition holes but that this will be the greatest challenge the drilling industry has been exposed to. Based on the design solution proposed in the Pass study, 45 holes are required for the disposal of the spent fuel from 40 years operation of the Swedish nuclear reactors. Each borehole will require a surface facility of about 1 ha. This area would host a 60-80 metres tall drilling rig together with the buildings and facilities needed for drilling, handling and dewatering of dill cuttings, casing of the hole, disposal of the spent fuel and sealing the hole after the disposal. The distance between the holes has been set to 500 metres, in order to avoid that holes deviating from the vertical direction come too close to each other. If the conditions on the ground and geological conditions allow, the repository can be hosted within a surface area of about 10 km2. Within the present study, it has been estimated that 5-10 drilling sites need to be in operation for disposal or under construction simultaneously, in order to achieve a disposal time that is adapted to the Swedish nuclear programme. The available information about the geoscientific conditions at great depths in crystalline rock is based on only few boreholes, none of which are located in an area that would be a candidate repository site. The water turnover at these great depths is generally assumed to be low whereas the groundwater salinity, temperatures and rock stresses are expected to increase with an increasing depth. Today there is no established or even well thought-out technology for disposal of canisters with spent nuclear fuel in deep boreholes. In the proposed possible solutions the disposal is carried out with a

  6. Do crabeater seals forage cooperatively?

    Science.gov (United States)

    Gales, Nicholas J.; Fraser, William R.; Costa, Daniel P.; Southwell, Colin

    2004-08-01

    Crabeater seals are abundant pack-ice predators that feed almost exclusively on krill. They have a circumpolar distribution and are generally sighted hauled out on ice floes alone or in pairs. Here we report our observations of a sighting of 150-200 crabeater seals, which were synchronised in their diving and surfacing behaviour, along with a summary of similar observations from western Antarctica of large groups of crabeater seals in synchronous dive cycles. We report on the low frequency of sightings of such groups during Antarctic pack-ice seal surveys in eastern (Greater) Antarctica. We examine plausible hypotheses to explain these observations, and suggest this behaviour is likely to represent some form of cooperative foraging behaviour, whereby a net advantage in individual energy intake rates is conferred to each seal. Current research on crabeater seal foraging using satellite-linked dive recorders is unlikely to provide sufficiently fine-scale data to examine this hypothesis. Nor will this approach indicate if a seal is foraging with conspecifics. The use of remote or animal-borne camera systems is more likely to provide an insight into fine-scale foraging tactics, as well as the possible, occasional use of cooperative foraging strategies.

  7. Seal device for shield plug

    International Nuclear Information System (INIS)

    Purpose: To surely seal cover gases at a position nearer to the reactor core of a shield plug in LMFBR type reactors. Constitution: A shield plug is formed with through holes for insertion of a stopper or a through-cylinder. A step is provided to the through hole at the interium of the thickness of the shield plug and a seal ring is disposed on the step. The seal ring is retained on the side of the stopper or the through-cylinder by means of a holding member. The seal ring is urged to the step of the stopper by the own weight of the stopper or the through-cylinder to thereby seal the cover gases. Since the seal ring is retained on the side of the stopper or the through-cylinder, the seal ring is pulled up together with the extraction of the stopper or the through-cylinder and can be maintained or repaired with ease. (Ikeda, J.)

  8. Development of inspection technique for CRDM housing canopy seals

    International Nuclear Information System (INIS)

    Canopy seals in CRDM (Control Rod Drive Mechanism) housing are welded seals joining stainless steel material in approximately 2 mm thickness and play an important role in leakproof for CRDM Housing. In the past, a leakage phenomenon from lower canopy seal occurred in 1984, and those from middle occurred in 1995 and 1996 respectively at domestic power plants. The cause was the stress corrosion cracking (hereafter we call it SCC) generated in the adjoining base metal of the canopy seal weld (heat affected zone). Taking the opportunity of this phenomenon, in order to detect SCC in the earlier stage and to protect leakage occurrence in advance, the technical development of the surface and volumetric inspection for the canopy seals has become an urgent task. Development and improvement for the eddy current flaw detection testing (hereafter we call it ECT) and ultrasonic flaw detection testing (hereafter we call it UT) have been conducted from 1984 up to now. This paper summarizes changes of the development of these inspection techniques and the outlines of the developed inspection techniques. (author)

  9. Fire barrier penetration seals in nuclear power plants

    International Nuclear Information System (INIS)

    NNPs are divided into separated fire areas by fire-rated structural barriers. Fire-rated penetration seals are installed to seal certain openings in these barriers, in order to provide reasonable assurance that a fire will be confined to the area where it started. The staff of the Fire Protection Engineering Section, Office of Nuclear Reactor Regulation, US NRC, conducted a comprehensive technical assessment of penetration seals to address reports of potential problems, to determine if there were any problems of safety significance, and to determine if NRC requirements, review guidance, and inspection procedures are adequate. It was concluded that the general condition of penetration seal programs in industry is satisfactory, and that the actions taken in 1988 and 1994 had increased industry awareness of potential problems and resulted in more thorough surveillances, maintenance, and corrective actions. These previous staff actions, together with continued licensee upkeep of existing penetration seal programs and continued NRC inspections, are adequate to maintain public health and safety. Several minor revisions to the NRC fire protection regulation and review guidance are recommended

  10. Borehole gamma-ray spectrum logging in borehole OL-KR4 at Olkiluoto, in Eurajoki, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Julkunen, A.; Kallio, L. [Astrock OY, Sodankylae (Finland)

    2005-12-15

    The aim of the detailed borehole surveys is to increase the knowledge of the bedrock on the study area and to supplement the investigations made earlier. As a part of the detailed investigations Astrock Oy carried out borehole spectrometer logging in KR4 at Olkiluoto site in Eurajoki during autumn 2005. This report describes the logging, data processing and the results. (orig.)

  11. Borehole gamma-ray spectrum logging in borehole OL-KR4 at Olkiluoto, in Eurajoki, 2005

    International Nuclear Information System (INIS)

    The aim of the detailed borehole surveys is to increase the knowledge of the bedrock on the study area and to supplement the investigations made earlier. As a part of the detailed investigations Astrock Oy carried out borehole spectrometer logging in KR4 at Olkiluoto site in Eurajoki during autumn 2005. This report describes the logging, data processing and the results. (orig.)

  12. Injection sealing of the TASS tunnel. Progress report

    International Nuclear Information System (INIS)

    SKB's disposal facility is planned to be located approx. 400-500 m deep and the demands of its water tightness will be very high. The plant will be located in relatively fault-free rock with limited discharge and sealing will be carried out by injection. Given the very fine cracks that need to be sealed and the strong desire to use an injection material which generate a leachate with a pH lower than 11, SKB performs studies of silica sol and cement-based mortar with low pH in order to be able to use these in the sealing works. In the sealing project a 100 m long tunnel is constructed, the TASS tunnel at a depth of 450 min at SKB's rock laboratory on Aespoe. This report includes the results obtained until September 2008. At this date the injection stages 1, 2, and half of stage 3 have been done and preparation for Stage 3 is ongoing. The tunnel has reached a length of 55.5 m and the results from leaching measurements exist for stage 2 (Section 10-34 m). Both cement-based mortar with low pH and silica sol has been used, but cement-based mortar has been used only in relatively small scale. The cement-based mortar is developed especially for the repository. Silica sol used a particle size of about 25 nm and accelerator in the form of sodium chloride. The limit for inward leakage in the tunnel is 1 l/min and 60 m tunnel. Groundwater pressure was found to be 3.0-3.5 MPa. Past results obtained from Stage 2 indicate that injection shields fulfil the rate requirement over a 23 meter distance. The control holes drilled in the screens have been used to gradually steer the injection and to demonstrate a direct sealing effect of the screens. A controllable gelation time is necessary for efficient and controllable injection. Used mixing procedure has been proven to work and intended gelation times have been achieved. The two cement-based mortar mixtures for crack injection used in the project are robust and have desirable properties. Design methodology linking borehole distance

  13. Borehole-to-borehole geophysical methods applied to investigations of high level waste repository sites

    International Nuclear Information System (INIS)

    This discussion focuses on the use of borehole to borehole geophysical measurements to detect geological discontinuities in High Level Waste (HLW) repository sites. The need for these techniques arises from: (a) the requirement that a HLW repository's characteristics and projected performance be known with a high degree of confidence; and (b) the inadequacy of other geophysical methods in mapping fractures. Probing configurations which can be used to characterize HLW sites are described. Results from experiments in which these techniques were applied to problems similar to those expected at repository sites are briefly discussed. The use of a procedure designed to reduce uncertainty associated with all geophysical exploration techniques is proposed; key components of the procedure are defined

  14. Multiple position borehole extensometer procedure: Final draft

    International Nuclear Information System (INIS)

    The purpose of the Multiple Position Borehole Extensometer Procedure is to provide detailed information for MPBXs installed at the salt Deaf Smith County ESF. This procedure includes design of equipment, installation, instructions, instrument locations, measurement requirements, support requirements, quality assurance procedures, and data acquisition requirements. Data reduction procedures are also discussed; however, the relevance of the data is discussed elsewhere in the appropriate test plans. Sufficient detail is provided in this procedure to allow for integrating the requirements of this procedure into both the facility construction and overall underground testing programs; identifying necessary equipment for procurement; determining data acquisition requirements as input to Automatic Data Acquisition System (ADAS) design; providing step-by-step procedures for training personnel as well as for directing field operations; establishing quality assurance (QA) checkpoints and implementation methods; and defining data reduction methods and providing the anticipated accuracy of the system. 11 refs., 14 figs

  15. Head assembly for multiposition borehole extensometer

    International Nuclear Information System (INIS)

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output

  16. Multiple position borehole extensometer baseline algorithm

    International Nuclear Information System (INIS)

    This document provides the baseline algorithm for the Multiple Position Borehole Extensometers (MPBX's) used at the Near-Surface Test Facility (NSTF) as a part of the Rock Instrumentation System (RIS) for Full Scale Heater Tests (FS) number-sign 1 and number-sign 2. It represents the baseline information available at the time of publication. The purpose of this document is to state the algorithm to be used for the MPBX's at the NSTF, the basis for the equations, the method used to arrive at the constants in the equations, and to identify further instrument testing necessary to improve the understanding of the instrument's purpose in this high temperature, hard rock environment. 5 refs., 5 figs

  17. Head assembly for multiposition borehole extensometer

    Science.gov (United States)

    Frank, Donald N.

    1983-01-01

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  18. Temperature profiles in the Harwell boreholes

    International Nuclear Information System (INIS)

    Heat flow at Harwell is estimated at 45 mWm-2 (milli Watt per metre squared is the unit of heat flow). Thermal conductivity values for the formations penetrated range from 1.0 to 4.6 Wm-1 K-1. The temperature profiles recorded in the boreholes enable the vertical groundwater flow patterns within two poorly permeable mudrock units to be evaluated. The two mudrock units act as leaky barriers each separating a pair of aquifer units which induce a vertical hydraulic gradient across the mudrocks. The flow velocity results for the upper mudrock units derived from the temperature profile are compatible with values for groundwater potential derived from hydraulic data (10-9 ms-1 from the temperature profile and 10-12 ms-1 from the hydraulic observations). The results from the lower mudrock sequence are incompatible and this may be due to some other overiding influence upon the temperature profile. (author)

  19. Investigations of the Stenlille-4 borehole logs

    International Nuclear Information System (INIS)

    The report contains analyses of the Stenlille-4 borehole logs. They include an interpretation of nuclear logs by use of the NULIP-5 programme. Furhter a number of possible clay indicators has been investigated. The TDT-logs have been analysed to obtain Σa for pure clay and sand. The relation between the natural gamma count rate and the volume percent of clay has been investigated. Finally a number of cross plots has been made. From these the density of pure sand and clay and the absorption cross section of sand, clay, and salt water has been obtained. The analyses seem to confirm that the interpretation programme NULIP-5 yields consistent results. (author)

  20. Leak detection of KNI seals

    International Nuclear Information System (INIS)

    In Unit 3 and 4 of the Paks Nuclear Power Plant, Hungary, KNI type seals are used as lead-throughs with conical nickel sealing rings. Their failure can be critical for the operation of the reactor. An Acoustical Leak Detection System (ALDS) was constructed and tested for the operational testing of the seals. Some individual papers are presented in this collection on the calibration and testing of the ALDS intended to be placed on the top of the reactor vessels. The papers include simulation measurements of Unit 3 of NPP, laboratory experiments, evaluation of measurements, and further development needs with the ALDS. (R.P.) 50 figs.; 19 tabs

  1. Destabilizing force of labyrinth seal

    Science.gov (United States)

    Kanki, Hiroshi; Morit, Shigeki

    1987-01-01

    A great deal of research has recently been conducted to solve the subsynchronous rotor vibration problems in high-performance turbomachinery. Particularly, the destabilizing effect of the labyrinth seal on compressors or turbines has been investigated for many years. In spite of many efforts the dynamic effect of the labyrinth seal had not been fully determined from qualitative and quantitative points of view. But from theoretical and experimental work, the dynamic characteristics of the labyrinth seal have been established. The results of recent theoretical and experimental works are presented.

  2. Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology

    OpenAIRE

    H. Beltrami; J. E. Smerdon; G. S. Matharoo; N. Nickerson

    2011-01-01

    A quantitative assessment is presented for the impact of the maximum depth of a temperature-depth profile on the estimate of the climatic transient and the resultant ground surface temperature (GST) reconstruction used in borehole paleoclimatology. The depth of the profile is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear incr...

  3. Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology

    OpenAIRE

    H. Beltrami; J. E. Smerdon; G. S. Matharoo; N. Nickerson

    2011-01-01

    A quantitative assessment is presented for the impact of the maximum depth of a temperature-depth profile on the estimate of the climatic transient and the resultant ground surface temperature (GST) reconstruction used in borehole paleoclimatology. The depth of the profile is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a line...

  4. Development of a hydraulic borehole seismic source

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, R.P.

    1998-04-01

    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  5. Conditioning of disused sealed sources in countries without disposal facility: Short term gain - long term pain

    International Nuclear Information System (INIS)

    Owing to the considerable development in managing disused sealed radioactive sources (DSRS), the limited availability of disposal practices for them, and the new recommendations for the use of borehole disposal concept, it was felt that a paper reviewing the existing recommendations could be a starting point of discussion on the retrievability of the sources. Even when no international consensus exists as to an acceptable solution for the challenge of disposal of disused sealed sources, the 'Best Available Technology' for managing most of them, recommended for developing countries, included the cementation of the sources. The waste packages prepared in such a way do not allow any flexibility to accommodate possible future disposal requirements. Therefore, the 'Wait and See' approach could be also recommended for managing not only the sources with long-live radionuclides and high activity, but probably for all kind of existing disused sealed sources. The general aim of the current paper is to identify and review the current recommendations for managing disused sealed sources and to meditate on the most convenient management schemes for disused sealed radioactive sources in Member States without disposal capacities (Latin America, Africa). The risk that cemented DSRS could be incompatible with future disposal requirements was taken into account. (author)

  6. Federal Republic of Germany/backfilling and sealing program - outline

    International Nuclear Information System (INIS)

    After 1978 the Asse salt mine was used exclusively for research work which serves to make available scientific and technical data for the planning, construction and operation of repositories for radioactive wastes. This presentation delineates the advantages of the geological formation rock salt with a view to the final disposal of radioactive wastes subsequent to a short description of the 'Waste Management Concept' of the Federal Republic of Germany. The individual components of the internationally accepted 'Multiple Barrier System' are described, while the technical barriers 'backfilling and sealing' are subject of special consideration. A general formulation of the requirements and objectives of each specific component in the backfilling and sealing system is presented. (orig./DG)

  7. Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology

    Directory of Open Access Journals (Sweden)

    H. Beltrami

    2011-07-01

    Full Text Available A quantitative assessment is presented for the impact of the maximum depth of a temperature-depth profile on the estimate of the climatic transient and the resultant ground surface temperature (GST reconstruction used in borehole paleoclimatology. The depth of the profile is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. The quantitative effects and uncertainties that arise from the analysis of temperature-depth profiles of different depths are presented. Results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. Borehole temperature measurements approaching 500–600 m depths are shown to provide the most robust GST reconstructions spanning 500 to 1000 yr BP. It is further shown that the bias introduced by a temperature profile of depths shallower than 500–600 m remains even if the time span of the reconstruction target is shortened.

  8. Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology

    Science.gov (United States)

    Beltrami, H.; Smerdon, J. E.; Matharoo, G. S.; Nickerson, N.

    2011-07-01

    A quantitative assessment is presented for the impact of the maximum depth of a temperature-depth profile on the estimate of the climatic transient and the resultant ground surface temperature (GST) reconstruction used in borehole paleoclimatology. The depth of the profile is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. The quantitative effects and uncertainties that arise from the analysis of temperature-depth profiles of different depths are presented. Results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. Borehole temperature measurements approaching 500-600 m depths are shown to provide the most robust GST reconstructions spanning 500 to 1000 yr BP. It is further shown that the bias introduced by a temperature profile of depths shallower than 500-600 m remains even if the time span of the reconstruction target is shortened.

  9. Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology

    Directory of Open Access Journals (Sweden)

    H. Beltrami

    2011-02-01

    Full Text Available A quantitative assessment is presented for the impact of the maximum depth of a temperature-depth profile on the estimate of the climatic transient and the resultant ground surface temperature (GST reconstruction used in borehole paleoclimatology. The depth of the profile is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. The quantitative effects and uncertainties that arise from the analysis of temperature-depth profiles of different depths are presented. Results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. Borehole temperature measurements approaching 500–600 m depths are shown to provide the most robust GST reconstructions spanning 500 to 1000 ybp. It is further shown that the bias introduced by a temperature profile of depths shallower than 500–600 m remains even if the time span of the reconstruction target is shortened.

  10. Modelling of thermally driven groundwater flow in a facility for disposal of spent nuclear fuel in deep boreholes

    International Nuclear Information System (INIS)

    In this report calculations are presented of buoyancy driven groundwater flow caused by the emission of residual heat from spent nuclear fuel deposited in deep boreholes from the ground surface in combination with the natural geothermal gradient. This work has been conducted within SKB's programme for evaluation of alternative methods for final disposal of spent nuclear fuel. The basic safety feature of disposal of spent nuclear fuel in deep boreholes is that the groundwater at great depth has a higher salinity, and hence a higher density, than more superficial groundwater. The result of this is that the deep groundwater becomes virtually stagnant. The study comprises analyses of the effects of different inter-borehole distances as well as the effect of different permeabilities in the backfill and sealing materials in the borehole and of different shapes of the interface between fresh and saline groundwater. The study is an update of a previous study published in 2006. In the present study, the facility design proposed by Sandia National Laboratories has been studied. In this design, steel canisters containing two BWR elements or one PWR element are stacked on top of each other between 3 and 5 kilometres depth. In order to host all spent fuel from the current Swedish nuclear programme, about 80 such holes are needed. The model used in this study comprises nine boreholes spaced 100 metres alternatively 50 metres apart in a 3Χ3 matrix. In one set of calculations the salinity in the groundwater was assumed to increase from zero above 700 metres depth to 10% by weight at 1500 metres depth and below. In another set, a sharper salinity gradient was applied in which the salinity increased from 0 to 10% between 1400 and 1500 metres depth. A geothermal gradient of 16 deg C/km was applied. The heat output from the spent fuel was assumed to decrease by time in manner consistent with the radioactive decay in the fuel. When the inter-borehole distance decreased from 100 to 50

  11. Modelling of thermally driven groundwater flow in a facility for disposal of spent nuclear fuel in deep boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, Nico; Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-09-15

    In this report calculations are presented of buoyancy driven groundwater flow caused by the emission of residual heat from spent nuclear fuel deposited in deep boreholes from the ground surface in combination with the natural geothermal gradient. This work has been conducted within SKB's programme for evaluation of alternative methods for final disposal of spent nuclear fuel. The basic safety feature of disposal of spent nuclear fuel in deep boreholes is that the groundwater at great depth has a higher salinity, and hence a higher density, than more superficial groundwater. The result of this is that the deep groundwater becomes virtually stagnant. The study comprises analyses of the effects of different inter-borehole distances as well as the effect of different permeabilities in the backfill and sealing materials in the borehole and of different shapes of the interface between fresh and saline groundwater. The study is an update of a previous study published in 2006. In the present study, the facility design proposed by Sandia National Laboratories has been studied. In this design, steel canisters containing two BWR elements or one PWR element are stacked on top of each other between 3 and 5 kilometres depth. In order to host all spent fuel from the current Swedish nuclear programme, about 80 such holes are needed. The model used in this study comprises nine boreholes spaced 100 metres alternatively 50 metres apart in a 3{Chi}3 matrix. In one set of calculations the salinity in the groundwater was assumed to increase from zero above 700 metres depth to 10% by weight at 1500 metres depth and below. In another set, a sharper salinity gradient was applied in which the salinity increased from 0 to 10% between 1400 and 1500 metres depth. A geothermal gradient of 16 deg C/km was applied. The heat output from the spent fuel was assumed to decrease by time in manner consistent with the radioactive decay in the fuel. When the inter-borehole distance decreased from

  12. Enhanced detection of hydraulically active fractures by temperature profiling in lined heated bedrock boreholes

    Science.gov (United States)

    Pehme, P. E.; Parker, B. L.; Cherry, J. A.; Molson, J. W.; Greenhouse, J. P.

    2013-03-01

    SummaryThe effectiveness of borehole profiling using a temperature probe for identifying hydraulically active fractures in rock has improved due to the combination of two advances: improved temperature sensors, with resolution on the order of 0.001 °C, and temperature profiling within water inflated flexible impermeable liners used to temporarily seal boreholes from hydraulic cross-connection. The open-hole cross-connection effects dissipate after inflation, so that both the groundwater flow regime and the temperature distribution return to the ambient (background) condition. This paper introduces a third advancement: the use of an electrical heating cable that quickly increases the temperature of the entire static water column within the lined hole and thus places the entire borehole and its immediate vicinity into thermal disequilibrium with the broader rock mass. After heating for 4-6 h, profiling is conducted several times over a 24 h period as the temperature returns to background conditions. This procedure, referred to as the Active Line Source (ALS) method, offers two key improvements over prior methods. First, there is no depth limit for detection of fractures with flow. Second, both identification and qualitative comparison of evidence for ambient groundwater flow in fractures is improved throughout the entire test interval. The benefits of the ALS method are demonstrated by comparing results from two boreholes tested to depths of 90 and 120 m in a dolostone aquifer used for municipal water supply and in which most groundwater flow occurs in fractures. Temperature logging in the lined holes shows many fractures in the heterothermic zone both with and without heating, but only the ALS method shows many hydraulically active fractures in the deeper homothermic portion of the hole. The identification of discrete groundwater flow at many depths is supported by additional evidence concerning fracture occurrence, including continuous core visual inspection

  13. Borehole logging at the COSC-1 drill hole: a new dataset of in-situ geophysical properties through the lower Seve Nappe Complex

    Science.gov (United States)

    Berthet, Théo; Alm, Per-Gunnar; Wenning, Quinn; Almqvist, Bjarne; Kück, Jochem; Hedin, Peter

    2015-04-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) drilling project supported by the International Continental Drilling Program was designed to study mountain building processes in a deeply eroded Paleozoic orogen. The first half of this project, COSC-1, targeted the lower part of the high grade Seve Nappe Complex and its basal thrust zone near Åre in the Jämtland county, Sweden. From May to August 2014, the COSC drilling crew drilled to a depth of 2496 m from the surface with an almost fully recovered core sample. During this drilling period, four borehole-logging runs have been conducted by Lund University with a low impact on drilling schedule and two supplementary ones once the drilling was completed. Three-Arm Caliper, Electrical Logging, Sidewall Density, Flowing Fluid Electric Conductivity, High Resolution Acoustic Televiewer and Full Waveform Sonic sondes have been used to investigate in-situ physical properties of the borehole. In addition, the ICDP operational support group has conducted two continuous borehole-logging runs from the surface to the bottom of the COSC-1 borehole in September and October. Due to technical problems, some of the planned logging have not been completed, however natural gamma, rock resistivity, magnetic susceptibility, K/Th/U concentration, temperature and fluid conductivity have been measured all along the borehole. We used the continuous natural gamma log from the ICDP logging group as the depth reference to depth-match and stack the composite borehole logging done during the drilling. These borehole logging operations result in reliable continuous data of resistivity, density, velocity, magnetic susceptibility, K/Th/U concentration, temperature, fluid conductivity, pressure, diameter as well as an image (amplitude and travel time of reflected ultrasounds) of the borehole till its bottom. Only the density, velocity and image datasets stop at 1600 m depth due to instrumentation limits. Preliminary conclusions from

  14. 9 CFR 381.98 - Official seal.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Official seal. 381.98 Section 381.98... Certificates; Certification Procedures § 381.98 Official seal. The official mark for use in sealing means of... and a serial number as shown below, and any seals approved by the Administrator for applying such...

  15. 7 CFR 29.35 - Lot seal.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Lot seal. 29.35 Section 29.35 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Regulations Definitions § 29.35 Lot seal. A seal approved by the Director for sealing lots...

  16. 46 CFR 501.11 - Official seal.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Official seal. 501.11 Section 501.11 Shipping FEDERAL... Seal § 501.11 Official seal. (a) Description. Pursuant to section 201(c) of the Merchant Marine Act, 1936, as amended (46 U.S.C. 301(d)), the Commission prescribes its official seal, as adopted by...

  17. 7 CFR 29.34 - Sample seal.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sample seal. 29.34 Section 29.34 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Regulations Definitions § 29.34 Sample seal. A seal approved by the Director for sealing...

  18. 36 CFR 901.6 - Seal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Seal. 901.6 Section 901.6... CORPORATION § 901.6 Seal. The Corporation may adopt a corporate seal which shall have the name of the Corporation and year of incorporation printed upon it. The seal may be used by causing it or a...

  19. 14 CFR 65.133 - Seal.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Seal. 65.133 Section 65.133 Aeronautics and...: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Parachute Riggers § 65.133 Seal. Each certificated parachute rigger must have a seal with an identifying mark prescribed by the Administrator, and a seal press....

  20. 39 CFR 3002.3 - Official seal.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Official seal. 3002.3 Section 3002.3 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL ORGANIZATION § 3002.3 Official seal. (a) Authority. The Seal described in this section is hereby established as the official seal of the Postal Rate...

  1. Selection of labyrinth seals in steam turbines

    Science.gov (United States)

    Kostyuk, A. G.

    2015-01-01

    The efficiency, vibration stability, operational durability, and cost of the main types of peripheral seals used in steam turbines are considered. A comparison between the conventional and honeycomb seals is given. Conditions subject to which replacement of conventional seals by honeycomb ones can be justified are pointed out. The use of variable-pitch multicomb seals as the most promising ones is recommended.

  2. Design considerations for mechanical face seals

    Science.gov (United States)

    Ludwig, L. P.; Greiner, H. F.

    1980-01-01

    Two companion reports deal with design considerations for improving performance of mechanical face seals, one of family of devices used in general area of fluid sealing of rotating shafts. One report deals with basic seal configuration and other with lubrication of seal.

  3. Northern Fur Seal Food Habits

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains food habits samples, usually scats, collected opportunistically on northern fur seal rookeries and haulouts in Alaska from 1987 to present....

  4. Alaska Harbor Seal Glacial Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Floating glacial ice serves as a haul-out substrate for a significant number (10-15%) of Alaskan harbor seals, and thus surveying tidewater glacial fjords is an...

  5. Coupled processes in repository sealing

    International Nuclear Information System (INIS)

    The significance of coupled processes in repository sealing is evaluated. In most repository designs, shaft seals will be located in areas of relatively low temperature perturbation, in which case the coupling of temperature with stress and permeability may be less significant than the coupling between stress and permeability that occurs during excavation. Constitutive relationships between stress and permeability are reviewed for crystal-line rock and rocksalt. These provide a basis for predicting the development of disturbed zones near excavations. Field case histories of the degree of disturbance are presented for two contrasting types-Stripa granite and Southeastern New Mexico rocksalt. The results of field investigations in both rock types confirm that hydraulic conductivity or permeability is stress dependent, and that shaft seal performance may be related to the degree that stresses are perturbed and restored near the seal

  6. Vibration damping of mechanical seals

    Science.gov (United States)

    Hammond, R. R.

    1970-01-01

    Bellows seal filled with spherical powder reacts to vibration inputs by absorbing displacement energy through inertia and friction of the particle masses acting on the inside surface of the cylinders.

  7. Seal device for ferromagnetic containers

    Science.gov (United States)

    Meyer, Ross E.; Jason, Andrew J.

    1994-01-01

    A temporary seal or patch assembly prevents the escape of contents, e.g., fluids and the like, from within a container having a breach therethrough until the contents can be removed and/or a repair effected. A frame that supports a sealing bladder can be positioned over the breach and the frame is then attached to the container surface, which must be of a ferromagnet material, by using switchable permanent magnets. The permanent magnets are designed to have a first condition that is not attracted to the ferromagnetic surface and a second conditions whereby the magnets are attracted to the surface with sufficient force to support the seal assembly on the surface. Latching devices may be attached to the frame and engage the container surface with hardened pins to prevent the lateral movement of the seal assembly along the container surface from external forces such as fluid drag or gravity.

  8. Difference flow measurements in borehole KOV01 at Oskarshamn

    International Nuclear Information System (INIS)

    Posiva Flow Log/Difference Flow method can be used for relatively fast determination of hydraulic conductivity and hydraulic head in fractures or fractured zones in cored boreholes. This report presents the principles of the method as well as the results of the measurements carried out in borehole KOV01 at Oskarshamn in February and March 2001. The aim of the measurements presented in this report was to determine the depth and flow rate of flowing fractures in borehole KOV01 prior to groundwater sampling. The measurements in borehole KOV01 were carried out between 100-1000 m depth using the so called detailed flow logging mode; the flow rate into a 5 m long test section was measured. Detailed flow logging was repeated at the location of the detected flow anomalies using 0.5 m section length and 0.1 m point intervals. The borehole was pumped during these measurements. The occurrence of saline water in the borehole was studied by electric conductivity measurements. The flow guide encloses also an electrode for measuring of single point resistance of the bedrock. It was measured with 0.01 m point intervals during the detailed flow logging. Depth calibration was made on the basis of the known depth marks in the borehole. The depth marks were detected by caliper measurements and by single point resistance measurements

  9. Design of technique for foliation measurements from borehole images, borehole OL-KR12

    International Nuclear Information System (INIS)

    Posiva carries out investigations and preparations for spent nuclear fuel disposal in Finnish bedrock in Olkiluoto. The orientation and location of the bedrock foliation, its relation to brokenness and other foliation-related bedrock properties are important factors in planning the facilities for final disposal of the spent nuclear fuel, and in assessing the functionality and safety of the facilities. The borehole optical imaging (BIP, OPTV) has become one of the central data sets of site investigations available from several Olkiluoto deep boreholes. The data was assessed to be suitable for detailed foliation mapping. This work aimed at development of foliation observations and classifications, and verified the observations from core. The report will describe the work and give recommendations for similar later approach. OL- KR12 was selected due to its central location, favourable near- perpendicular orientation with respect to known site-scale foliation (160/45), reasonable length (795.34 m, covering the depth level of the planned depository facilities), and abundant fractures (to compare with orientation of the foliation), as well as because a higher resolution OPTV image was available from it. The type, intensity, location and local orientation of foliation and the rock type containing the foliation were acquired. The concordance between the foliation and rock banding was also collected as a separate parameter. The acquisition of parameters was performed with several parallel methods to find out the best possible working procedure. In the main results of comparison, three different principles were found: 1. the initially 10 meter long borehole TV images were appended to form images of longer depth intervals (30-100 meters) before the foliation measurements. 2. The person performing measurements should be concentrating on one parameter at a time, each phase performed in defined sequence, 3. After measurements, the data must be carefully revised from the drill

  10. Site investigation SFR. Fracture mineralogy including identification of uranium phases and hydrochemical characterisation of groundwater in borehole KFR106

    International Nuclear Information System (INIS)

    This report presents the fracture mineralogy and hydrochemistry of borehole KFR106. The most abundant fracture minerals in the examined drill core samples are clay minerals, calcite, quartz and adularia; chlorite is also common but is mostly altered and found interlayered with corrensite. The most common clay mineral is a mixed layer clay consisting of illite-smectite. Pyrite, galena, chalcopyrite, barite (-celestine) and hematite are also commonly found in the fractures, but usually in trace amounts. Other minerals identified in the examined fractures are U-phosphate, pitchblende, U(Ca)-silicate, asphaltite, biotite, monazite, fluorite, titanite, sericite, xenotime, rutile and (Ca, REEs)-carbonate. Uranium has been introduced, mobilised and reprecipitated during at least four different episodes: 1) Originally, during emplacement of U-rich pegmatites, probably as uraninite. 2) At a second event, uranium was mobilised under brittle conditions during formation of breccia/cataclasite. Uraninite was altered to pitchblende and partly coffinitised. Mobilised uranium precipitated as pitchblende closely associated with hematite and chlorite in cataclasite and fracture sealings prior to 1,000 Ma. 3) During the Palaeozoic U was remobilised and precipitated as U-phosphate on open fracture surfaces. 4) An amorphous U-silicate has also been found in open fractures; the age of this precipitation is not known but it is inferred to be Palaeozoic or younger. Groundwater was sampled in two sections in borehole KFR106 with pumping sequences of about 6 days for each section. The samples from sections KFR106:1 and KFR106:2 (260-300 m and 143-259 m borehole length, i.e. -261 and -187 m.a.s.l. mid elevation of the section, respectively) were taken in November 2009 and yielded groundwater chemistry data in accordance with SKB chemistry class 3 and 5. In section KFR106:1 and KFR106:2, the chloride contents were 850 and 1,150 mg/L and the drilling water content 6 and 4%, respectively

  11. Site investigation SFR. Fracture mineralogy including identification of uranium phases and hydrochemical characterisation of groundwater in borehole KFR106

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Bjoern [WSP Sverige AB, Goeteborg (Sweden); Nilsson, Kersti [Geosigma AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden)

    2011-12-15

    This report presents the fracture mineralogy and hydrochemistry of borehole KFR106. The most abundant fracture minerals in the examined drill core samples are clay minerals, calcite, quartz and adularia; chlorite is also common but is mostly altered and found interlayered with corrensite. The most common clay mineral is a mixed layer clay consisting of illite-smectite. Pyrite, galena, chalcopyrite, barite (-celestine) and hematite are also commonly found in the fractures, but usually in trace amounts. Other minerals identified in the examined fractures are U-phosphate, pitchblende, U(Ca)-silicate, asphaltite, biotite, monazite, fluorite, titanite, sericite, xenotime, rutile and (Ca, REEs)-carbonate. Uranium has been introduced, mobilised and reprecipitated during at least four different episodes: 1) Originally, during emplacement of U-rich pegmatites, probably as uraninite. 2) At a second event, uranium was mobilised under brittle conditions during formation of breccia/cataclasite. Uraninite was altered to pitchblende and partly coffinitised. Mobilised uranium precipitated as pitchblende closely associated with hematite and chlorite in cataclasite and fracture sealings prior to 1,000 Ma. 3) During the Palaeozoic U was remobilised and precipitated as U-phosphate on open fracture surfaces. 4) An amorphous U-silicate has also been found in open fractures; the age of this precipitation is not known but it is inferred to be Palaeozoic or younger. Groundwater was sampled in two sections in borehole KFR106 with pumping sequences of about 6 days for each section. The samples from sections KFR106:1 and KFR106:2 (260-300 m and 143-259 m borehole length, i.e. -261 and -187 m.a.s.l. mid elevation of the section, respectively) were taken in November 2009 and yielded groundwater chemistry data in accordance with SKB chemistry class 3 and 5. In section KFR106:1 and KFR106:2, the chloride contents were 850 and 1,150 mg/L and the drilling water content 6 and 4%, respectively

  12. Sealed can of spent fuel

    International Nuclear Information System (INIS)

    Object: To provide a seal plug cover with a gripping portion fitted to a canning machine and a gripping portion fitted to a gripper of the same configuration as a fuel body for handling the fuel body so as to facilitate the handling work. Structure: A sealed can comprises a vessel and a seal plug cover, said cover being substantially in the form of a bottomed cylinder, which is slipped on the vessel and air-tightly secured by a fastening bolt between it and a flange. The spent fuel body is received into the vessel together with coolant during the step of canning operation. Said seal plug cover has two gripping portions, one for opening and closing the plug cover of the canning machine as an exclusive use member, the other being in the form of a hook-shaped peripheral groove, whereby the gripping portions may be effectively used using the same gripper when the spent fuel body is transported while being received in the sealed can or when the fuel body is removed from the sealed can. (Kawakami, Y.)

  13. Promising new cryogenic seal candidate

    International Nuclear Information System (INIS)

    Of the five seal candidates considered for the main propellant system of the Space Shuttle, only one candidate, the fluoroplastic Halar, satisfied all tests including the critical LO2 impact test and the cryogenic compression sealability test. Radiation-cross-linked Halar is a tough, strong thermoplastic that not only endured one hundred 2200 N compression cycles at 83 K while mounted in a standard military O-ring gland without cracking or deforming, but improved in sealability as a result of this cycling. Although these Halar O-rings require much higher sealing forces (approximately 500 N) at room temperature than rubber O-rings, on cooling to cryogenic temperatures the required sealing force only doubles, whereas the sealing force for rubber O-rings increases eightfold. Although these Halar O-rings were inadequately cross-linked, they still exhibited promise as LO2-compatible cryogenic seals. It is expected that their high-temperature properties can be greatly improved by higher degrees of cross-linking (e.g., by 20 mrad of radiation) without compromising their already excellent low-temperature properties. A direct comparison should then be obtained between the best of the cross-linked Halar compounds and the current commercial cryogenic seal materials, filled Teflon and Kel-F

  14. Metal seal with soft inlays

    Energy Technology Data Exchange (ETDEWEB)

    Adamek, F.C.; Bridges, C.D.; Dach, A.J.

    1990-03-27

    This patent describes, in a well assembly having a wellhead containing a string of casing supported in the bore, an improved means for sealing against the casing. It comprises: a metal ring having an inner sealing side facing the casing; circumferential axially spaced metal bands protruding radially inward from the inner sealing side, defining cavities between the bands, each of the bands having a cylindrical sealing surface; the bands having a hardness that is less than the hardness of the casing; an inlay material of metal softer than the bands located in and initially partially filling the cavities, the sealing surfaces of the bands initially located a selected distance radially inward from the exterior surfaces of the inlay material; means for moving the inner sealing side into contact with the casing with a force sufficient to cause the bands to deform to a position substantially flush with the exterior surfaces of the inlay material when the ring is forced into contact with the casing; and the casing being movable relative to the ring is slight axial directions with the inlay material wiping onto the bands during the axial movement.

  15. Repatriation of disused sealed sources in Peru

    International Nuclear Information System (INIS)

    Sealed radioactive sources are used around the world in medicine, industry and research within a wide range of applications. Sources may contain a large spectrum of radionuclides, which can have different levels of activity as well as different periods of half-life. At the end of their useful life, they are considered as worn-out or obsolete. However, the residual levels of radioactivity, which have those sources, can be high, representing a high radiation risk. This publication describes the technical actions carried out by the specialized group of the Peruvian Institute of Nuclear energy (IPEN) and Los Alamos National Laboratory which supports the program of 'Global Threat Reduction Initiative's' (GTRI) within the implementation of 'Offsite Source Recovery Program' (OSRP)

  16. Establishment of a production line for the fabrication of mega-curie sealed 60Co sources

    International Nuclear Information System (INIS)

    In order to change the status that highly radioactive 60Co sources in China are de- pendent on imports, the fabrication technology of sealed 60Co sources was successfully developed and a mega Curie production line was established. This paper describes the hot cell facilities for the 60Co source encapsulation and quality control, the model and main technical parameters of the sealed 60Co source, the fabrication process, some key techniques in the re- search and development of the sealed 60Co source, etc. (authors)

  17. Borehole Logging for Uranium by Gamma-Ray Spectrometry

    DEFF Research Database (Denmark)

    Løvborg, Leif; Nyegaard, P.; Christiansen, E. M.;

    1980-01-01

    The resources in a large syngenetic deposit of low-grade uranium (U) ore with thorium at Kvanefjeld, South Greenland, were evaluated by spectrometric gamma-ray logging of 23 boreholes, 46 mm in diameter and 200 m deep. The borehole probe's detector contained 22 cm3 of sodium-iodide, and the...... photomultiplier gain was stabilized electronically using barium-133 (133 Ba) reference gamma rays. The downhole measurements were carried out at depth intervals of 25 cm, and for each stationary position of the borehole probe, counts were accumulated for 100 sec in four energy windows. The calibration constants...

  18. Prediction of multi-borehole undermine coalbed gas drainage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-gang

    2009-01-01

    By analyzing the flow character of a single drainage borehole in its effecting time and the correlative theory introduced, the reason for "inflexion" appearance in the flow character curve of the single draining borehole in a multi-borehole was studied. Tak-ing the theory of permeation fluid mechanics and so on as basis, the coalbed gas flow model was set up, and the numerical simulation analyzer was built for undermine gas products. With the results from the analyzer, the gas capacity could be calculated under different conditions and comparisons made with the site measurement data.

  19. Ergonomics and safety of manual bag sealing.

    OpenAIRE

    Groot, M.D. de; T. Bosch; Eikhout, S.M.; Vink, P.

    2005-01-01

    A variety of seals is used to close bags. Each seal has advantages and disadvantages. For shop assistants sealing bags could be a repetitive physically demanding action. Opening and closing the bags again can cause some discomfort or annoyance for consumers. Besides, it is an activity which can endanger safety, i.e., knives being used in opening, children swallowing the systems of sealing. To prevent these problems a new sealing system was developed. In this paper the opinion of shop assistan...

  20. Estimated longevity of performance of Portland cement grout seal materials

    International Nuclear Information System (INIS)

    The sealing of boreholes, fractures and underground workings of repositories is a common concern for all programs investigating the deep burial of nuclear waste as a disposal mechanism. Two grouting materials, bentonite and portland cement, have been identified by many programs as likely candidate seal materials. The longevity of performance of both of these materials is currently being investigated under the auspices of the Stripa Project. These investigations comprise coordinated laboratory, field and modeling studies to produce fundamental data, practical experience and estimates of long-range performance, respectively. Long-term performance is an especially sensitive issue for cement because the phases that comprise cement are metastable. Accordingly, it may be assumed that cement grout performance will degrade with time. For a simplified cement system, two mechanisms for chemical degradation have been considered: phase change and dissolution. When considering dissolution, both equilibrium (slow flow) and open (fast flow) systems have been analyzed to establish bounds. Granitic terrain groundwaters ranging from fresh to saline have been taken as solvents. To assess the consequences in terms of flow, an empirical relation between cement permeability and porosity has been developed. Predictions of performance changes with time have been produced by making conservative estimates of local hydraulic head conditions for various periods of repository history. For the crystalline rock environments considered, preliminary results indicate that cement grout performance may be acceptable for tens of thousands to millions of years providing its initial hydraulic conductivity is on the order of 10-12 m/s

  1. 松软突出煤层钻孔护壁力学作用机理分析%Analysis of Mechanism of Borehole Wall Protection in Soft Coal Seams with Outburst Threat

    Institute of Scientific and Technical Information of China (English)

    王永龙; 翟新献; 孙玉宁

    2012-01-01

    Borehole wall protection technology is an effective tool to prevent the soft coal seam borehole collapse. Based on discusses of technical principles of borehole wall protection methods, combined with elasto - plastic surrounding rock and support theory, borehole wall protection mechanics model was created, by using numerical analysis method, under different internal stress the parameters were analyzed, such as stress in coal body around borehole, and deformation changes regulation. The research results showed that with the internal stress increase within the borehole wall, borehole deformation shows decreasing trend, the peak position of maximum principal stress σ1 moves to the left, plastic loosen area shows shrinking trend; curve corresponding to the secondary principal stress σ3 moves up; stress concentration phenomenon surrounding the borehole shows growth trend. Based on the analysis of mechanical effect mechanism of borehole wall protection, application of borehole wall protection technology can effectively reduce or prevent borehole from deformation, and borehole collapse, so as to ensure the maximum slagging space in borehole, which is conducive to construction of deeper gas drainage borehole.%为了解决松软突出煤层钻进问题,提高钻进深度,为了有效阻止松软煤层抽采钻孔塌孔的情况,在讨论了不同钻孔护壁方法的技术原理的基础上,结合弹塑性“围岩-支护”理论,建立钻孔护壁力学模型,采用数值分析的方法,分析钻孔在不同内压条件下,钻孔周围煤体应力、变形量变化规律.研究结果表明,伴随孔壁内压增大,钻孔变形量呈减小趋势,最大主应力σ1峰值位置左移,塑性松动区呈缩小趋势;次主应力σ3对应曲线整体上移,钻孔周边的应力集中现象有增长趋势.通过钻孔护壁力学作用机理分析,应用钻孔护壁技术,可有效减小或阻止钻孔变形,预防塌孔,保证钻孔的最大排渣空间,有利于施工较深的瓦斯抽采钻孔.

  2. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology

    Science.gov (United States)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong

    2015-03-01

    Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.

  3. Engineering solution for the backfilling and sealing of radioactive waste repositories

    International Nuclear Information System (INIS)

    To ensure the safety of radioactive waste deep disposal, backfilling and sealing materials (engineered barriers) have to be used to fill residual voids. For granite medium, stress is put on emplacement techniques for cement- and clay-based materials, including in-situ validation. For clay medium, mined repository and deep boreholes drilled from the surface are considered. In the case of the first solution, the thermomechanical behaviour of a clay backfill is studied. In the same way, backfill made of excavated crushed salt is considered and thermomechanical properties evaluated by means of laboratory tests and in-situ experiments. Finally, basic works on quality assurance procedures and historic concretes behaviour are reported

  4. Completion summary for boreholes USGS 140 and USGS 141 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2014-01-01

    with gravel was described. Basalt flows generally ranged in thickness from 3 to 76 ft (average of 14 ft) and varied from highly fractured to dense with high to low vesiculation. Geophysical and borehole video logs were collected during certain stages of the drilling and construction process at boreholes USGS 140 and USGS 141. Geophysical logs were examined synergistically with the core material for borehole USGS 140; additionally, geophysical data were examined to confirm geologic and hydrologic similarities between boreholes USGS 140 and USGS 141 because core was not collected for borehole USGS 141. Geophysical data suggest the occurrence of fractured and (or) vesiculated basalt, dense basalt, and sediment layering in both the saturated and unsaturated zones in borehole USGS 141. Omni-directional density measurements were used to assess the completeness of the grout annular seal behind 6-in. diameter well casing. Furthermore, gyroscopic deviation measurements were used to measure horizontal and vertical displacement at all depths in boreholes USGS 140 and USGS 141. Single-well aquifer tests were done following construction at wells USGS 140 and USGS 141 and data examined after the tests were used to provide estimates of specific-capacity, transmissivity, and hydraulic conductivity. The specific capacity, transmissivity, and hydraulic conductivity for well USGS 140 were estimated at 2,370 gallons per minute per foot [(gal/min)/ft)], 4.06 × 105 feet squared per day (ft2/d), and 740 feet per day (ft/d), respectively. The specific capacity, transmissivity, and hydraulic conductivity for well USGS 141 were estimated at 470 (gal/min)/ft, 5.95 × 104 ft2/d, and 110 ft/d, respectively. Measured flow rates remained relatively constant in well USGS 140 with averages of 23.9 and 23.7 gal/min during the first and second aquifer tests, respectively, and in well USGS 141 with an average of 23.4 gal/min. Water samples were analyzed for cations, anions, metals, nutrients, volatile

  5. Cover gas seals: 26-cover gas seal components. Quarterly progress report, October-December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Steele, O.P. III; Horton, P.H.

    1977-01-01

    Progress in FY 1977 on the Cover Gas Seal Components and Fuel Handling Subcomponent Development programs included: CRBRP inflatable seal vendor qualification, static inflatable seal development, sodium wetting tests, and sodium carry over tests of hoist chain. (DLC)

  6. Detection of contaminants along boreholes with prompt gamma spectroscopy

    International Nuclear Information System (INIS)

    Geophysical borehole logging techniques are used for estimating subsurface physical, chemical, geologic, and hydrologic parameters. Nuclear borehole logging techniques have advantages and disadvantages that tend to be complementary to those of physical sampling, and these in situ measurements can help address the drawbacks of physical sampling, including high costs, lengthy delays in obtaining results of analyses from laboratories, undersampling, sample-handling problems, and ambiguity in long-term monitoring. As part of an effort to reduce environmental restoration costs, we are evaluating in situ neutron-induced gamma-ray spectroscopy (multispectral) measurements in boreholes to map environmental contaminants. It has been known for some time that this technology is capable of identifying many elements, but earlier borehole equipment was not very sensitive

  7. Detection of contaminants along boreholes with prompt gamma spectroscopy

    International Nuclear Information System (INIS)

    Geophysical borehole logging techniques are used for estimating subsurface physical, chemical, geological, and hydrological parameters. Nuclear borehole logging techniques have advantages and disadvantages that tend to be complementary to those of physical sampling and these in situ measurements can help address the drawbacks of physical sampling, including high costs, lengthy delays in obtaining results of analyses from laboratories/under sampling, sample handling problems, and ambiguity in long-term monitoring. As part of an effort to reduce environmental restoration costs, we are evaluating in-situ neutron-induced gamma-ray spectroscopy (multispectral) measurements in boreholes to map environmental contaminants. It has been known for some time that this technology is capable of identifying many elements, but earlier borehole equipment was not very sensitive

  8. Methods for use in detecting seismic waves in a borehole

    Science.gov (United States)

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  9. Core-logs of borehole VI down to 505 m

    International Nuclear Information System (INIS)

    In the hydrogeological program of the Stripa project the vertical borehole V1 has been drilled 505.5 m. The drillcore has been logged with regard to rock characteristic, fracture frequency, dipping and filling. The results presented as cumulative fracture diagram have formed the base for subdivision of the borehole according to fracture frequency. The variation in the fracture dipping was also taken into account. Chlorite is the most common of the infilling material in the fractures. For the borehole 0-466 m the average fracture frequency is 1.46 fractures/m. Below 466 m the core is highly fractured and crushed indicating that the borehole has entered a crushed zone. Because of this the drilling is temporarily stopped. (Auth.)

  10. SURFACE AND BOREHOLE ELECTROMAGNETIC IMAGING OF CONDUCTING CONTAMINANT PLUMES

    Science.gov (United States)

    Electromagnetic induction tomography is a promising new tool for imaging electrical conductivity variations in the earth. The EM source field is produced by induction coil (magnetic dipole) transmitters deployed at the surface or in boreholes. Vertical and horizontal component ma...

  11. Piceance Basin Oil Shale Data: Assays, Boreholes and Formation Tops

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This database contains Oil Shale Assays, Borehole Locations and Formation Tops that were used in support of the 2009 Oil Shale Assessment (Survey Fact Sheet...

  12. Borehole radar surveying for orebody delineation

    Science.gov (United States)

    Turner, G.; Mason, I. M.; Hargreaves, J. E.; Wellington, A.

    2000-04-01

    The Arcolabs borehole radar system was developed to assist detailed orebody delineation particularly for mines extracting thin vein ore deposits. The probes are 32 mm and therefore fit in most common exploration and mining drillholes. The system has been successfully used at a number of mine sites to assist with ore delineation at a range of scales. Images from holes drilled alongside the extension of a massive sulphide orebody downdip from current development clearly showed the extent of the orebody and changes in thickness and dip of the orebody. The costs of these surveys were considerably less than the cost of delineation by drilling alone and the resulting image provided more detailed data which could be used to optimize the position of development. Estimates of potential savings from using the system to define the bottom of the orebody were of the order of hundreds of thousands of dollars. Images from short holes drilled at short intervals beneath the footwall of another orebody enabled a detailed wireframe of the orebody contact to be constructed. Better knowledge of the contact location helped to maximize ore extraction and minimize dilution.

  13. Optical instruments for a combined seismic and geodetic borehole observatory

    Science.gov (United States)

    Zumberge, Mark; Agnew, Duncan; Berger, Jonathan; Hatfield, William; Wyatt, Frank

    2016-04-01

    Optical interferometry offers displacement sensing with the unusual combination of high sensitivity, linearity, and wide dynamic range, and it can be adapted to high temperature environments. We have applied interferometric technology to inertial seismic instruments and to optical fibers for strain measurements. When combining these methods into a single borehole package the result is a system that provides three components of observatory quality seismic recordings, two components of tilt, gravity, and vertical strain. The borehole package is entirely passive with the need for only optical fibers to connect the sensor sonde with surface electronics. One of the sensors in the system is an optical fiber strainmeter, which consists of an optical fiber cable elastically stretched between two borehole anchor points separated by 100 m or more. The fiber's length is recorded optically, enabling sub-nanostrain detection of crustal deformations. A second sensor system uses laser interferometry to record the displacements of inertial mechanical suspensions - spring-mass for the vertical component and pendulums for the horizontal components - housed in a borehole sonde. The combined system is able to measure vertical and horizontal ground velocities, gravity, and tilt with sensitivities that compare favorably with any existing borehole system over time scales from 10 Hz to many days; because the downhole components are entirely passive, the instrument will have a long lifetime and could be made usable at high downhole temperatures. The simplicity and longevity of the metal and glass borehole sonde make it suitable for permanent cementation into a borehole to achieve good coupling and stability. Several versions of the borehole inertial system have been deployed on land with excellent results, and a number of our optical fiber strainmeters have been deployed - both onshore and offshore. The combined system is currently under development.

  14. Experimental and Numerical Comparison of Two Borehole Heat Exchangers

    DEFF Research Database (Denmark)

    Alberdi Pagola, Maria; Poulsen, Søren Erbs

    2014-01-01

    This report outlines key results from a comparative study of two different pipe borehole heat exchanger (BHE) configurations. The work was carried out by VIA University College and in collaboration with GM Plast A/S.......This report outlines key results from a comparative study of two different pipe borehole heat exchanger (BHE) configurations. The work was carried out by VIA University College and in collaboration with GM Plast A/S....

  15. Application of Borehole SIP Technique to Sulfide Mineral Exploration

    Science.gov (United States)

    Kim, Changryol; Park, Mi Kyung; Park, Samgyu; Sung, Nak Hoon; Shin, Seung Wook

    2016-04-01

    In the study, SIP (Spectral Induced Polarization) well logging probe system was developed to rapidly locate the metal ore bodies with sulfide minerals in the boreholes. The newly developed SIP logging probe employed the non-polarizable electrodes, consisting of zinc chloride (ZnCl2), sodium chloride (NaCl), gypsum (CaSO4·2H2O), and water (H2O), instead of existing copper electrodes, leading to eliminating the EM coupling effect in the IP surveys as much as possible. In addition, the SIP logging system is designed to make measurements down to maximum 500 meters in depth in the boreholes. The SIP well logging was conducted to examine the applicability of the SIP probe system to the boreholes at the ore mine in Jecheon area, Korea. The boreholes used in the SIP logging are known to have penetrated the metal ore bodies with sulfide minerals from the drilling investigations. The ore mine of the study area is the scarn deposits surrounded by the limestone or lime-silicate rocks in Ordovician period. The results of the SIP well logging have shown that the borehole segments with limestone or lime-silicate rocks yielded the insignificant SIP responses while the borehole segments with sulfide minerals (e.g. pyrite) provided the significant phase shifts of the SIP responses. The borehole segments penetrating the metal ore body, so-called cupola, have shown very high response of the phase shift, due to the high contents of the sulfide mineral pyrite. The phase shifts of the SIP response could be used to estimate the grade of the ore bodies since the higher contents of the sulfide minerals, the higher magnitudes of the phase shifts in the SIP responses. It is, therefore, believed that the borehole SIP technique can be applied to investigate the metal ore bodies with sulfide minerals, and that could be used to estimate the ore grades as a supplementary tool in the future.

  16. Thermal response testing of compromised borehole heat exchangers

    OpenAIRE

    Hemmingway, Phil; Long, Michael

    2012-01-01

    The results of five thermal response tests (TRTs) are presented. Three of the tests were carried out consecutively on the same borehole to illustrate the importance of allowing artificially imposed thermal gradients to dissipate prior to commencement or re-commencement of a test following testing issues. The two remaining tests carried out on separate boreholes confirm the results obtained by the first(uncompromised) of the initial three tests. The testing regime demonstrates the necessity of...

  17. Harbour seals (Phoca vitulina and rehabilitation

    Directory of Open Access Journals (Sweden)

    Nynke Osinga

    2010-09-01

    Full Text Available Throughout the past few decades, rehabilitation of seals has become an activity that is anchored in the present day society of many countries. Seals are primarily rehabilitated to help individual animals in distress. At the same time, the release of seals which would have otherwise died can be considered as a contribution to the population. Most rehabilitated seals are animals under one year of age. They are mainly orphans, weaned seals with complications and seals with a parasiticbronchopneumonia. For the optimal handling of seals and their diseases, centralised operations with quality standards are essential. Rehabilitation provides an instrument to monitor the health of the seal population and its ecosystem. Changes in stranding trends or the appearance of new diseases can be monitored. Moreover, rehabilitation is important to show the general public thestate of the marine environment. In the Netherlands there is significant social support for the rehabilitation of seals. Experience obtained with seal care is of importance in countries where urgent help of threatened seal species is required. Here individual seals are also ambassadors to raise support for the protection of this species in general. Given that the anthropogenic impact on the seals and their environment is extensive in the Wadden Sea, rehabilitation centres can compensate the consequences of this impact on individual seals as well as the population as a whole.

  18. The experimental results and analysis of a borehole radar prototype

    International Nuclear Information System (INIS)

    A prototype of borehole radar has been successfully tested in three sites for different purposes under a field condition. The objective of the prototype is providing an effective down-hole tool for detecting targets in deep boreholes situated in a relatively high conductivity area such as the metal ores. The first testing site is at a geothermal field. The fractures extending more than 20 m from the borehole are delineated by the borehole radar in the single-hole reflection mode. The second testing site is located in a jade mine for basement evaluation. The cross-hole measurement mode was used to detect the cavities made by previous unorganized mining activities. Several high-velocity anomalies were found in the velocity profile and presumably the targets of the mine shafts and tunnels. The third test site is located in a mineralized belt characterized by low resistivity less than 1000 Ohm m, the surface-borehole measurement was carried out and the data were processed with velocity tomography. The low-velocity zone corresponds to a mineralized zone from geological records. The three testing results proved the readiness of this borehole radar prototype for further deployment in more complicated and realistic field situations. (paper)

  19. Exploratory boreholes Boettstein, Weiach, Riniken, Schafisheim, Kaisten, Leuggern: gas measurements

    International Nuclear Information System (INIS)

    The concentrations of hydrocarbon gas, carbon dioxide and hydrogen sulphide measured during the drilling of the Nagra boreholes are correlated with various drilling and drilling fluid parameters and presented in both graphic and tabular form. The Permocarboniferous in the Weiach borehole and the Muschelkalk in the Schafisheim borehole show clear positive gas anomalies. The hydrocarbon gas concentrations in the Crystalline were many times higher than those in the overlying sediments. Based on gas measurements (gas content and composition) for deep groundwaters and rock samples, it can be concluded for the Crystalline that gases penetrated from the rock formation through the borehole wall and into the drilling fluid and are also released from the crushed rock during the drilling process. Measurements of hydrogen and carbon isotopes on the gases from the Crystalline of the Weiach and Schafisheim boreholes indicate that the gases originated thermocatalytically from organic fossil material; their presence could therefore be explained by, e.g., migration from the Permocarboniferous. On the other hand, the higher deuterium and C-13 values in the Crystalline zone of Boettstein and Leuggern boreholes indicate rather that the hydrocarbon gases have an abiotic origin. (author) 3 figs., 2 tabs., 26 refs

  20. Long term monitoring of water production flow rates in boreholes in the Callovo-Oxfordian argillaceous rock

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Water production was observed in several boreholes in the Callovo-Oxfordian argillaceous rock (COx). These boreholes were implemented in 2005 in the Andra's Underground Research Laboratory (URL) at more than 400 m in depth. Despite the low COx permeability: close to 10-13 m/s, two original experimental setups made it possible to monitor water production flow rates ranging from 0.5 to 50 mL/day during 3 to 4 years in 4 boreholes. This contribution describes the water flow rate evaluation methods and the results obtained from several experimental phases which may be considered as a series of constant pressure production tests. The first experimental concept was based on seepage water collection. It consisted in filling with gas the interval of an ascending borehole at a pressure close to 1 bar and closing it. The hydraulic pressure in the rock surrounding the sealed interval was higher than 30 bars. Due to the hydraulic pressure difference between the interval and the surrounding rock, the interstitial water of the formation flowed into the interval, accumulated at its base by gravity and was pumped out at a controlled flow rate. The pumping rate was adjusted so that the water level would not exceed 40 cm inside the 5-meter-long interval. The water level was deduced from the difference between two absolute pressure measurements: one above the water surface in the gas phase and the other at the bottom of the water column. The total volume of the daily produced formation water was obtained by adding the water volume pumped out during the day and the water volume difference inside the interval between the beginning and the end of the day. This kind of experiment was performed in two boreholes. The second experimental concept was based on water circulation. It consisted in filling with water the interval of a descending borehole. Two water circulation lines and one pressure control line linked the test interval to

  1. Geophysical borehole logging and optical imaging of the boreholes KR34, KR35 and KR36, at Olkiluoto 2005

    Energy Technology Data Exchange (ETDEWEB)

    Majapuro, J. [Suomen Malmi Oy, Espoo (Finland)

    2005-09-15

    Suomen Malmi Oy conducted geophysical borehole logging and optical imaging surveys of the boreholes KR34, KR35 and KR36 at the Olkiluoto site in Eurajoki during May - June 2005. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are magnetic susceptibility, natural gamma radiation, gamma-gamma density, single point resistance, Wenner-resistivity, borehole radar, full waveform sonic and optical imaging. The assignment included the field work of all surveys, interpretation and processing of the acoustic and borehole radar data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  2. Geophysical borehole logging and optical imaging of the boreholes KR34, KR35 and KR36, at Olkiluoto 2005

    International Nuclear Information System (INIS)

    Suomen Malmi Oy conducted geophysical borehole logging and optical imaging surveys of the boreholes KR34, KR35 and KR36 at the Olkiluoto site in Eurajoki during May - June 2005. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are magnetic susceptibility, natural gamma radiation, gamma-gamma density, single point resistance, Wenner-resistivity, borehole radar, full waveform sonic and optical imaging. The assignment included the field work of all surveys, interpretation and processing of the acoustic and borehole radar data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  3. The disposal alternative deep boreholes. Content and scope of R and D programme necessary for comparison with the KBS-3 method; Foervarsalternativet djupa borrhaal. Innehaall och omfattning av FUD-program som kraevs foer jaemfoerelse med KBS-3-metoden

    Energy Technology Data Exchange (ETDEWEB)

    Wikberg, P. [and others

    2000-08-01

    Deposition of spent fuel elements in {>=} 2000 m deep boreholes is an alternative to the KBS-3 method that has been developed in Sweden for more than 20 years. This report gives an account of the research and development needed in order to bring the deep borehole method to the same level of development as the KBS-3 method. Five majors areas are discussed: Geoscience, Technical issues, Technical barriers, Safety assessment and Time-plans and costs. It is estimated that a full R,D and D programme would need about 30 years to be completed, and the costs would amount to around 4 billion SEK (over 400 million USD)

  4. Industrial applications of radiotracer and sealed source technology promoted by IAEA

    International Nuclear Information System (INIS)

    Great technical and economical benefits can be obtained by applying radioisotope technologies to various industries. The International Atomic Energy Agency (IAEA) has contributed to the development of radiotracer and sealed source technology as applied to industry and environment through coordinated research projects (CRPs). The mature and competitive techniques have been transferred and implemented to developing countries through the Agency's technical co-operation (TC) projects. The paper presents the main achievements in radiotracer and sealed source technology promoted by IAEA as well as the perspective of the technology transfer to developing countries. (author)

  5. Monolithic LTCC seal frame and lid

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen

    2016-06-21

    A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.

  6. Nonelastomeric Rod Seals for Advanced Hydraulic Systems

    Science.gov (United States)

    Hady, W. F.; Waterman, A. W.

    1976-01-01

    Advanced high temperature hydraulic system rod sealing requirements can be met by using seals made of nonelastomeric (plastic) materials in applications where elastomers do not have adequate life. Exploratory seal designs were optimized for advanced applications using machinable polyimide materials. These seals demonstrated equivalent flight hour lives of 12,500 at 350 F and 9,875 at 400 F in advanced hydraulic system simulation. Successful operation was also attained under simulated space shuttle applications; 96 reentry thermal cycles and 1,438 hours of vacuum storage. Tests of less expensive molded plastic seals indicated a need for improved materials to provide equivalent performance to the machined seals.

  7. Know your Risks. Cataloguing Sealed Sources and Devices

    International Nuclear Information System (INIS)

    In a partially demolished hospital facility, a forgotten teletherapy unit, once used to provide cancer treatment, is left unguarded and is stolen. Trying to extract valuable scrap metal, scavengers inadvertently puncture the capsule in which a highly active radioactive source is sealed. The scrap handlers, the scrap dealers, and the neighbourhood surrounding the scrap yard are exposed to dangerous levels of radioactivity. Eventually, the incident leads to fatalities, injuries, and contamination of the area, illustrating the risks arising from so-called sealed radioactive sources (SRSs) that leave regulatory control. Any malicious use of such sources could have much more damaging consequences. National regulatory authorities are tasked to establish the means to ensure that SRSs are kept under constant control by authorized users. When a suspected 'orphan source'- an SRS that was lost, forgotten, or stolen- is discovered, the authorities must be able to identify the type of sources within the device in order to respond and prevent any harm to people and the environment. The IAEA's online International Catalogue of Sealed Radioactive Sources and Devices (ICSRS) provides a searchable database of these vital technical details about sealed sources and devices. 'The ICSRS assists responsible authorities in acquiring the information that would enable them to manage these sources and devices safely once no longer in use,' said Julia Whitworth, Source Management Expert in the IAEA Waste Technology Section

  8. Thermal modelling of borehole heat exchangers and borehole thermal energy stores; Zur thermischen Modellierung von Erdwaermesonden und Erdsonden-Waermespeichern

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dan

    2011-07-15

    The thermal use of the underground for heating and cooling applications can be done with borehole heat exchangers. This work deals with the further development of the modelling of thermal transport processes inside and outside the borehole as well as with the application of the further developed models. The combination of high accuracy and short computation time is achieved by the development of three-dimensional thermal resistance and capacity models for borehole heat exchangers. Short transient transport processes can be calculated by the developed model with a considerable higher dynamic and accuracy than with known models from literature. The model is used to evaluate measurement data of a thermal response test by parameter estimation technique with a transient three-dimensional model for the first time. Clear advantages like shortening of the test duration are shown. The developed borehole heat exchanger model is combined with a three-dimensional description of the underground in the Finite-Element-Program FEFLOW. The influence of moving groundwater on borehole heat exchangers and borehole thermal energy stores is then quantified.

  9. Management of disused long lived sealed radioactive sources (LLSRS)

    International Nuclear Information System (INIS)

    The document provides advice the sealed source users and the national waste management organizations with the technical know-how on the management of disused and spent long lived sealed radioactive sources (LLSRS) and with the particular guidelines required for handling, conditioning for storage, and storage of these sources. The guidance is intended to assist in establishing compliance with the present standards, requirements, and adopted practices. It also provides background material for any possible technical assistance to developing countries and serves as a reference for technical staff involved with IAEA programmes on the subject. Because of the historic nature of many of the sources under this category and the lack of well developed technical procedures recognized on the international level, this publication can serve as a basis for establishing future handling and conditioning procedures. The LLSRS addressed in this publication are primarily those containing radionuclides having half-lives greater than 30 years. These sources may contain long lived alpha-emitters, mainly 238Pu, 239Pu, 237Np, 241Am, 226Ra; beta-emitters: 14C, and 63Ni and could be neutron sources such as PuBe, RaBe and AmBe

  10. Status of the SEAL project

    International Nuclear Information System (INIS)

    SEAL is a subproject in the context of the Application Area of the LHC computing grid (LCG) project. The mandate of the SEAL subproject is to provide common foundation, utilities, services and mathematical libraries for the participating experiments. We present the status of the project describing in some detail the underlying foundation and mathematical libraries. We also describe the set of basic components sufficient for development of higher level framework components and specialisations. Such components are a plug-in manager, an object dictionary, basic framework services and scripting services which provide bindings for scripting languages such as Python

  11. Borehole plugging by hydrothermal transport. Final report

    International Nuclear Information System (INIS)

    Calcium silicate--and aluminosilicate--compositions based on mixtures of fine grained quartz with various cements or calcium silicate compounds have been investigated under hydrothermal conditions in the temperature range 110-2500C and pressure range 1,000-10,000 psi, pressures which are always in excess of that required to maintain liquid H2O, and approximate the confining pressures which might be anticipated in deep boreholes. All silicate cement combinations investigated produce materials having adequate strength after reaction times of 1 day or longer. The calcium aluminate cement was also adequate with respect to strength but would need to be investigated more extensively for overall properties because of its highly reactive chemistry. The mini-rock cylinder-cement plug hydrothermal experiments in both limestone and sandstone resulted in reasonable magnitudes of bonding strength. The typical shear strength of a hydrothermally treated cement-sandstone plug is 1030 psi, and the compressive strength of the extruded cement plug is 9550 psi. Reactions having a potential for producing calcium carbonate plugs in holes drilled in carbonate rocks were studied. It should be noted that most cements are calcium silicate systems and are chemically compatible with the CaCO3 and CaMg(CO3)2 in the rock walls of the hole. A side benefit from this research is some insight into the suitability of massive carbonate rocks as disposal sites. Carbonate rocks by themselves are highly impermeable, have low exchange capacity, and a low water content--all properties that are desirable in the storage medium. A major drawback is the presence of secondary permeability in the form of solutionally modified joints, fractures, and bedding planes

  12. The electrical resistivity method in cased boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, C.J.

    1991-05-01

    The use of downhole current sources in resistivity mapping can greatly enhance the detection and delineation of subsurface features. The purpose of this work is to examine the resistivity method for current sources in wells cased with steel. The resistivity method in cased boreholes with downhole current sources is investigated using the integral equation (IE) technique. The casing and other bodies are characterized as conductivity inhomogeneities in a half-space. For sources located along the casing axis, an axially symmetric Green's function is used to formulate the surface potential and electric field (E-field) volume integral equations. The situations involving off-axis current sources and three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solution of the 3-D Green's function is presented in cylindrical and Cartesian coordinate systems. The methods of moments is used to solve the Fredholm integral equation of the second kind for the response due to the casing and other bodies. The numerical analysis revealed that the current in the casing can be approximated by its vertical component except near the source and the axial symmetric approximation of the casing is valid even for the 3-D problem. The E-field volume IE method is an effective and efficient technique to simulate the response of the casing in a half-space, whereas the surface potential approach is computationally better when multiple bodies are involved. Analyzing several configurations of the current source indicated that the casing response is influenced by four characteristic factors: conduction length, current source depth,casing depth, and casing length. 85 refs., 133 figs., 11 tabs.

  13. Exploratory borehole Riniken. Geology. Text volume

    International Nuclear Information System (INIS)

    The Riniken well was the third borehole of the NAGRA deep drilling programme, drilled after the wells of Boettstein and Weiach. Located in the borough of Riniken (Canton Aargau) at an altitude of 385.07 m above sea level it lies approximately 3 km NNW of Brugg railway station. The well reached a total depth of 1800 m. Drilling at Riniken started on June 23, 1983 and continued until January 12, 1984. The comprehensive drillsite and laboratory studies included stratigraphic, sedimentological, mineralogical, petrographic and structural analyses in addition to a variety of petrophysical and geochemical investigations. This report presents all the data collected up until the end of September 1985. The Riniken well penetrated the ca. 800 m thick Mesozoic Tafeljura sedimentary cover, and then drilled through ca. 1000 m of the clastic fill of the N Swiss Permo-Carboniferous trough. The succession encountered extended from the Effinger Beds (Malm) down to the Upper Rotliegendes. The crystalline basement was not penetrated, but interpretation of the seismic data indicates its presence at depths between 3 and 7 km. The cored sediments display occasional fissures. Most of these fissures are filled with clay minerals, calcite and quartz. Open fissures were encountered only in the Buntsandstein and in the Rotliegendes, at a depth of around 1005 m. Water-saturated zones were recorded in the Schilfsandstein (Keuper), in the Trigonodus-Dolomit, in the Buntsandstein, and in the Rotliegendes between 950 and 1010 m. Water circulation is controlled partly by the presence of high porosity lithologies (e.g. Trigonodus-Dolomit, Buntsandstein) and partly by the occurrence of open fissures (e.g. in the Rotliegendes). However, most of the sedimentary sequence shows low permeabilities (K-10 m/s). 162 refs., 2 figs., 6 tabs

  14. Exploratory borehole Riniken. Geology. Supplement volume

    International Nuclear Information System (INIS)

    The Riniken well was the third borehole of the NAGRA deep drilling programme, drilled after the wells of Boettstein and Weiach. Located in the borough of Riniken (Canton Aargau) at an altitude of 385.07 m above sea level it lies approximately 3 km NNW of Brugg railway station. The well reached a total depth of 1800 m. Drilling at Riniken started on June 23, 1983 and continued until January 12, 1984. The comprehensive drillsite and laboratory studies included stratigraphic, sedimentological, mineralogical, petrographic and structural analyses in addition to a variety of petrophysical and geochemical investigations. This report presents all the data collected up until the end of September 1985. The Riniken well penetrated the ca. 800 m thick Mesozoic Tafeljura sedimentary cover, and then drilled through ca. 1000 m of the clastic fill of the N Swiss Permo-Carboniferous trough. The succession encountered extended from the Effinger Beds (Malm) down to the Upper Rotliegendes. The crystalline basement was not penetrated, but interpretation of the seismic data indicates its presence at depths between 3 and 7 km. The cored sediments display occasional fissures. Most of these fissures are filled with clay minerals, calcite and quartz. Open fissures were encountered only in the Buntsandstein and in the Rotliegendes, at a depth of around 1005 m. Water-saturated zones were recorded in the Schilfsandstein (Keuper), in the Trigonodus-Dolomit, in the Buntsandstein, and in the Rotliegendes between 950 and 1010 m. Water circulation is controlled partly by the presence of high porosity lithologies (e.g. Trigonodus-Dolomit, Buntsandstein) and partly by the occurrence of open fissures (e.g. in the Rotliegendes). However, most of the sedimentary sequence shows low permeabilities (K-10 m/s). 34 figs

  15. Effect of surface roughness on contact pressure of static seals (Sealing characteristics of knife-edge seals)

    Science.gov (United States)

    Matsuzaki, Yoshio; Hosokawa, Kazuo; Funabashi, Koichi

    1992-09-01

    The sealing mechanism of knife-edge seals was investigated experimentally by varying the width of the flat area on the apex of the knife edge. The most suitable shape of the knife edge with the lowest compressive force for sealing was determined, and a new type of knife edge was developed.

  16. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  17. Experimental Investigation of Near-Borehole Crack Plugging with Bentonite

    Science.gov (United States)

    Upadhyay, R. A.; Islam, M. N.; Bunger, A.

    2015-12-01

    The success of the disposal of nuclear waste in a deep borehole (DBH) is determined by the integrity of the components of the borehole plug. Bentonite clay has been proposed as a key plugging material, and its effectiveness depends upon its penetration into near-borehole cracks associated with the drilling process. Here we present research aimed at understanding and maximizing the ability of clay materials to plug near-borehole cracks. A device was constructed such that the borehole is represented by a cylindrical chamber, and a near-borehole crack is represented by a slot adjacent to the center chamber. The experiments consist of placing bentonite clay pellets into the center chamber and filling the entire cavity with distilled water so that the pellets hydrate and swell, intruding into the slot because the cell prohibits swelling in the vertical direction along the borehole. Results indicate that the bentonite clay pellets do not fully plug the slot. We propose a model where the penetration is limited by (1) the free swelling potential intrinsic to the system comprised of the bentonite pellets and the hydrating fluid and (2) resisting shear force along the walls of the slot. Narrow slots have a smaller volume for the clay to fill than wider slots, but wider slots present less resistive force to clay intrusion. These two limiting factors work against each other, leading to a non-monotonic relationship between slot width and intrusion length. Further experimental results indicate that the free swelling potential of bentonite clay pellets depends on pellet diameter, "container" geometry, and solution salinity. Smaller diameter pellets possess more relative volumetric expansion than larger diameter pellets. The relative expansion of the clay also appears to decrease with the container size, which we understand to be due to the increased resistive force provided by the container walls. Increasing the salinity of the solution leads to a dramatic decrease in the clay

  18. The identification of basalt flow features from borehole television logs

    International Nuclear Information System (INIS)

    This study investigated whether basalt features found in outcrops and cores could be identified in open borehole walls by the use of the borehole television camera. To answer this question detailed outcrop surveys were carried out in several locations in the Snake River Plain, Idaho. A similar type of survey was also done on several locations in the Snake River Plain, Idaho. A similar type of survey was also done on several cores from the Idaho National Engineering Laboratory, southeast Idaho. Borehole television logs were viewed to find similar basalt features that were noted in cores and outcrops. From these studies it was found that basalt features can be identified in open borehole walls by the borehole television camera. The basalt flows can be divided into four zones: an upper vesicular zone; a columnar zone; a central zone; and a lower vesicular zone. The upper vesicular zone can be further subdivided into four subzones: an upper vesicular subzone; a transitional subzone; a lower vesicular subzone; and a bubble train subzone. Some specific features found in the borehole TV logs were: bubble-trains, vesicle plumes, borehole extensions, and pipe vesicles. The overall distinctions for the zones were based on the vesicularity. An overall pattern of vesicles was found to be a progression of small numerous vesicles at the top of a flow which increase in size, but decrease in number, towards the center of the flow. The opposite is true starting at the bottom of the basalt flow where small vesicles are numerous, but increase in size while decreasing in number towards the center part of the flow. 14 refs., 3 figs

  19. Legacy HMSRP Hawaiian Monk Seals Observers

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set documents observers that have collected monk seal data as part of the ongoing monk seal population assessment efforts by PSD personnel and cooperating...

  20. HMSRP Hawaiian Monk Seal Argos Location Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project investigates foraging behavior of Hawaiian monk seals by conducting telemetry studies. During these studies, live seals are instrumented with satellite...

  1. Seal Apparatus and Methods to Manufacture Thereof

    Science.gov (United States)

    Richard, James A. (Inventor)

    2013-01-01

    In some implementations, apparatus and methods are provided through which a dynamic cryogenic seal is manufactured. In some implementations, the seal includes a retainer and a spring-seal assembly, the assembly being comprised of a main spring housing and fluorine-containing polymer seals. In some implementations, either a radial seal, or an axial (or "piston seal") is provided. In some implementations, methods of manufacturing the dynamic cryogenic seal are also provided. In some implementations, the methods include assembling the components while either heated or cooled, taking advantage of thermal expansion and contraction, such that there is a strong interference fit between the components at room temperature. In some implementations, this process ensures that the weaker fluorine-containing polymer seal is forced to expand and contract with the stronger retainer and spring and is under constant preload. In some implementations, the fluorine-containing polymer is therefore fluidized and retained, and can not lift off.

  2. A preliminary evaluation of various sealing configurations

    International Nuclear Information System (INIS)

    The overall design approach being established by ONWI for repository seals consists of sections of various materials placed in various seal geometries suitable for performing specific functions in the penetrations. One investigation is directed toward evaluating the sensitivity of the seal component behavior with respect to several seal configurations and material types. Numerical methods are being used to evaluate the influence of the seal system on fluid flow and nuclide migration through the sealed zone. This study was a preliminary investigation of the fluid flow through and around the seal. These preliminary results indicate that the hydraulic conductivity of the interface and disturbed zone appear to control the fluid flow through and around a sealed penetration; and hence, determination of hydraulic conductivities in these zones from laboratory and field investigation should be given a high priority

  3. Recent advances in magnetic liquid sealing

    Energy Technology Data Exchange (ETDEWEB)

    Raj, K.; Stahl, P.; Bottenberg, W.; True, D.; Martis, G.; Zook, C.

    1979-01-01

    In this paper recent work in design and testing of two special magnetic liquid seals extending the state-of-the-art of ferrofluidic sealing is discussed. These custom seals are a moving belt edge seal and an exclusion seal. The first seal provides a hermetic barrier to solid particulates expected to be present in enclosed nuclear environments. The second seal is used on a magnetic disk drive spindle and reduces the particulate contaminants in the memory disk pack area by up to three orders of magnitude. In addition, bearing life in the spindle is found to be doubled due to reduction of operating temperature. The fundamentals of magnetic fluid sealing are presented in terms of magnetic circuit design and physical properties of ferrofluids.

  4. HMSRP Hawaiian Monk Seal Entanglement data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains records of all entanglements of Hawaiian monk seals in marine debris. The data set comprises records of seals entangled by derelict fishing...

  5. Legacy HMSRP Hawaiian Monk Seal Ultrasound Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ultrasounds measuring the condition of juvenile seals at Laysan Island during 2009-2010, collected when seals were handled as part of the De-Worming Project

  6. HMSRP Hawaiian Monk Seal Handling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains records for all handling and measurement of Hawaiian monk seals since 1981. Live seals are handled and measured during a variety of events...

  7. Ergonomics and safety of manual bag sealing.

    Science.gov (United States)

    de Groot, Marinka D; Bosch, Tim; Eikhout, Sandra M; Vink, Peter

    2005-01-01

    A variety of seals is used to close bags. Each seal has advantages and disadvantages. For shop assistants sealing bags could be a repetitive physically demanding action. Opening and closing the bags again can cause some discomfort or annoyance for consumers. Besides, it is an activity which can endanger safety, i.e., knives being used in opening, children swallowing the systems of sealing. To prevent these problems a new sealing system was developed. In this paper the opinion of shop assistants, consumers and experts on several bag sealing systems was studied. It appeared that for sealing plastic bags, adhesive tape with paper is the best out of 4 systems, closely followed by adhesive tape. It is discussed that for the elderly, there is still room for improvement in opening bag seals. PMID:16219161

  8. On the feasibility of borehole-to-surface electromagnetics for monitoring CO2 sequestration

    Science.gov (United States)

    Wilson, G. A.; Zhdanov, M. S.; Hibbs, A. D.; Black, N.; Gribenko, A. V.; Cuma, M.; Agundes, A.; Eiskamp, G.

    2012-12-01

    Carbon capture and storage (CCS) projects rely on storing supercritical CO2 in deep saline reservoirs where buoyancy forces drive the injected CO2 upward into the aquifer until a seal is reached. The permanence of the sequestration depends entirely on the long-term geological integrity of the seal. Active geophysical monitoring of the sequestration is critical for informing CO2 monitoring, accounting and verification (MVA) decisions. During injection, there exists a correlation between the changes in CO2 and water saturations in a saline reservoir. Dissolved salts react with the CO2 to precipitate out as carbonates, thereby generally decreasing the electrical resistivity. As a result, there is a correlation between the change in fluid saturation and measured electromagnetic (EM) fields. The challenge is to design an EM survey appropriate for monitoring large, deep reservoirs. Borehole-to-surface electromagnetic (BSEM) surveys consist of borehole-deployed galvanic transmitters and a surface-based array of electric and magnetic field sensors. During a recent field trial, it was demonstrated that BSEM could successfully identify the oil-water contact in the water-injection zone of a carbonate reservoir. We review the BSEM methodology, and perform full-field BSEM modeling. The 3D resistivity models used in this study are based on dynamic reservoir simulations of CO2 injection into a saline reservoir. Although the electric field response at the earth's surface is low, we demonstrate that it can be accurately measured and processed with novel methods of noise cancellation and sufficient stacking over the period of monitoring to increase the signal-to-noise ratio for subsequent seismic- and well-constrained 3D inversion. For long-term or permanent monitoring, we discuss the deployment of novel electric field sensors with chemically inert electrodes that couple to earth in a capacitive manner. This capacitive coupling is a purely EM phenomenon, which, to first order, has

  9. Borehole disposal facilities for disposal of radiation sources. A generic post-closure safety assessment

    International Nuclear Information System (INIS)

    The use of radioactive sources in nuclear applications is a world-wide phenomenon. Consequently, many countries may have 'disused' sealed sources that need to be managed and disposed of in a safe and secure manner. Despite their predominately small physical size, radioactive sources can contain different radionuclides with activity levels in the MBq (106 Bq) to PBq (1015 Bq) range. Increasing attention has been given in recent years to the potential disposal of disused sources in narrow diameter (a few tens of centimetres) borehole facilities. The focus in this paper is the post-closure, generic radiological safety assessment (GSA) of the disposal of disused radioactive sources to such boreholes. The near field design evaluated in this GSA is based on the narrow diameter (0.26 m) design developed under the African Regional Cooperative Agreement for Research, Development and Training (AFRA IAEA Project), a design developed specifically for the disposal of disused radioactive sources, and using borehole drilling technology that is readily available in all countries. The design can accommodate disused sources of less than 110 mm in length and 15 mm in diameter. It is assumed that the sources are disposed at least 30 m from the ground surface thereby significantly reducing the probability of the waste being disturbed by human intrusion or other disruptive events and processes. The hydrogeolocial and geochemical conditions considered in the GSA and potentially influencing the near field have been selected to represent a broad spectrum of site conditions. Acceptance criteria established are applicable to situations in which the inventory, design and site conditions fall within the envelope of assumptions and data used in the GSA. In such cases, rather than developing a site-specific safety assessment, it could be sufficient to undertake site-specific investigations to confirm that the site conditions, design and inventories fall within the GSA's envelope of assumptions

  10. Electronic Seal Stamping Based on Group Signature

    OpenAIRE

    Girija Srikanth

    2011-01-01

    This paper describes a new electronic official seal stamping based on Group Signature, USB Key. Bill/Contract in E-commerce must be seal stamped to gain tamper proof and non-repudiation. The seal stamping control is designed based on the certificate-based public key. This technique is more efficient for generating and verifying individual/group signatures in terms of computational efforts and communication costs. Web page electronic seal-stamping system is implemented which has been adopted b...

  11. Reactor coolant pump seals: improving their performance

    International Nuclear Information System (INIS)

    Large CANDU plants are benefitting from transient-resistant four-year reliable reactor coolant pump seal lifetimes, a direct result of AECL's 20-year comprehensive seal improvement program involving R and D staff, manufacturers, and plant designers and operators. An overview of this program is presented, which covers seal modification design, testing, post-service examination, specialized maintenance and quality control. The relevancy of this technology to Light Water Reactor Coolant Pump Seals is also discussed

  12. Ultrasonic security seal with a cable

    International Nuclear Information System (INIS)

    The sonic delay line of the seal is prolongated by a truncated part and terminated by a spherical cap which can be marked. The sealing capsule has a bore adapted to the size of the truncated part of the identity module. The sealing cable is fastened between the sealing capsule and the module. Application is made to the monitoring of containers for dangerous or radioactive materials

  13. Studying the Flow in the Labyrinth Sealing

    OpenAIRE

    Бондаренко, Г. А.; Бага, В. Н.

    2015-01-01

    This scientific paper is devoted to the studies of labyrinth seals, because advanced system studies were not carried out to a sufficient extent. The efficiency of the centrifugal compressor can be increased by improving the impermeability of internal labyrinth seals. Today we have no rigorous theory of labyrinth seals and the system technique that takes into consideration constructive peculiarities and processes that occur in the labyrinth seals is also not available. The available conception...

  14. Acoustic resonance spectroscopy intrinsic seals

    International Nuclear Information System (INIS)

    We have begun to quantify the ability of acoustic resonance spectroscopy (ARS) to detect the removal and replacement of the lid of a simulated special nuclear materials drum. Conceptually, the acoustic spectrum of a container establishcs a baseline fingerprint, which we refer to as an intrinsic seal, for the container. Simply removing and replacing the lid changes some of the resonant frequencies because it is impossible to exactly duplicate all of the stress patterns between the lid and container. Preliminary qualitative results suggested that the ARS intrinsic seal could discriminate between cases where a lid has or has not been removed. The present work is directed at quantifying the utility of the ARS intrinsic seal technique, including the technique's sensitivity to ''nuisance'' effects, such as temperature swings, movement of the container, and placement of the transducers. These early quantitative tests support the potential of the ARS intrinsic seal application, but also reveal a possible sensitivity to nuisance effects that could limit environments or conditions under which the technique is effective

  15. Positive fast sealing union connections

    Science.gov (United States)

    Kleber, C. M.

    1972-01-01

    Union connections are designed for connecting high pressure flexible hoses from gas storage manifolds to gas transport trailers. Connection uses O ring seals which can be quickly assembled and disassembled without use of wrenches, and which do not twist hose. Worn or damaged O rings are easily replaced.

  16. Pre-sealing risk analysis

    International Nuclear Information System (INIS)

    This report describes studies of accidents involving high-level radioactive waste before sealing the waste into a repository. The report summarizes work done in this area during Fiscal Year 1978 and supplements previous work. Models of accident probability, severity, and consequences are refined and extended

  17. Pre-sealing risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ensminger, D.A.; Hough, M.E.; Oston, S.G.

    1980-01-07

    This report describes studies of accidents involving high-level radioactive waste before sealing the waste into a repository. The report summarizes work done in this area during Fiscal Year 1978 and supplements previous work. Models of accident probability, severity, and consequences are refined and extended.

  18. New hermetic sealing material for vacuum brazing of stainless steels

    Science.gov (United States)

    Hildebrandt, S.; Wiehl, G.; Silze, F.

    2016-03-01

    For vacuum brazing applications such as in vacuum interrupter industry Hermetic Sealing Materials (HSM) with low partial pressure are widely used. AgCu28 dominates the hermetic sealing market, as it has a very good wetting behavior on copper and metallized ceramics. Within recent decades wetting on stainless steel has become more and more important. However, today the silver content of HSMs is more in focus than in the past decades, because it has the biggest impact on the material prices. Umicore Technical Materials has developed a new copper based HSM, CuAg40Ga10. The wettability on stainless steel is significantly improved compared to AgCu28 and the total silver content is reduced by almost 44%. In this article the physical properties of the alloy and its brazed joints will be presented compared to AgCu28.

  19. Piston rod seal for a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, W.

    1984-01-31

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal. 3 figs.

  20. Piston rod seal for a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Wilbur (Schenectady, NY)

    1984-01-01

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.

  1. Aerodynamic seal assemblies for turbo-machinery

    Science.gov (United States)

    Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao

    2015-09-29

    The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.

  2. 18 CFR 375.103 - Official seal.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Official seal. 375.103... OF ENERGY REVISED GENERAL RULES THE COMMISSION General Provisions § 375.103 Official seal. The Commission hereby prescribes as its official seal, judicial notice of which shall be taken pursuant...

  3. 1 CFR 18.8 - Seal.

    Science.gov (United States)

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Seal. 18.8 Section 18.8 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER PREPARATION, TRANSMITTAL, AND PROCESSING OF DOCUMENTS PREPARATION AND TRANSMITTAL OF DOCUMENTS GENERALLY § 18.8 Seal. Use of a seal on an original document...

  4. 7 CFR 205.311 - USDA Seal.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false USDA Seal. 205.311 Section 205.311 Agriculture... PROVISIONS NATIONAL ORGANIC PROGRAM Labels, Labeling, and Market Information § 205.311 USDA Seal. (a) The USDA seal described in paragraphs (b) and (c) of this section may be used only for raw or...

  5. 19 CFR 201.0 - Seal.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Seal. 201.0 Section 201.0 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION GENERAL RULES OF GENERAL APPLICATION § 201.0 Seal. (a) Pursuant to... Trade Commission has adopted an official seal, the depiction of which follows: EC05OC91.026 (b)...

  6. 39 CFR 2.4 - Seal.

    Science.gov (United States)

    2010-07-01

    ... description of the Postal Service emblem is described at 39 CFR 221.7. ... 39 Postal Service 1 2010-07-01 2010-07-01 false Seal. 2.4 Section 2.4 Postal Service UNITED STATES... (ARTICLE II) § 2.4 Seal. (a) The Seal of the Postal Service is filed by the Board in the Office of...

  7. 29 CFR 4002.11 - Seal.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Seal. 4002.11 Section 4002.11 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION GENERAL BYLAWS OF THE PENSION BENEFIT GUARANTY CORPORATION § 4002.11 Seal. The seal of the Corporation shall be in such form as may be approved from time...

  8. Ergonomics and safety of manual bag sealing.

    NARCIS (Netherlands)

    Groot, M.D. de; Bosch, T.; Eikhout, S.M.; Vink, P.

    2005-01-01

    A variety of seals is used to close bags. Each seal has advantages and disadvantages. For shop assistants sealing bags could be a repetitive physically demanding action. Opening and closing the bags again can cause some discomfort or annoyance for consumers. Besides, it is an activity which can enda

  9. Infiltrating/sealing proximal caries lesions

    DEFF Research Database (Denmark)

    Martignon, S; Ekstrand, K R; Gomez, J;

    2012-01-01

    significant differences in lesion progression between infiltration and placebo (P = 0.0012) and between sealing and placebo (P = 0.0269). The study showed that infiltration and sealing are significantly better than placebo treatment for controlling caries progression on proximal lesions. No significant...... difference was seen between infiltration and sealing (ClinicalTrials.gov number NCT01417832)....

  10. Characteristics of a magnetic fluid seal and its motion in an axial variable seal gap

    Institute of Scientific and Technical Information of China (English)

    QIAN Ji-guo; YANG Zhi-yi

    2008-01-01

    With suitable assumptions a hydrodynamic model for the magnetic fluid motion in an axial variable gap seal was constructed, and the solution to the equations of the model was deduced. The characteristics of a magnetic fluid seal and its motion,including the speed and pressure distribution, and the seal capacity of a magnetic fluid rotating seal were systematically described.The factors affecting seal capacity and ways to improve seal capacity based on the hydrodynamic model are discussed. The basic condition for dynamic seal availability is presented. The rotating speed and radius of the shafts should be decreased. The work can provide proof of a seal design or suggest ways to improve the seal capacity of magnetic fluid seals.

  11. VHBORE: A code to compute borehole fluid conductivity profiles with pressure changes in the borehole

    International Nuclear Information System (INIS)

    This report describes the code VHBORE which can be used to model fluid electric conductivity profiles in a borehole intersecting fractured rock under conditions of changing pressure in the well bore. Pressure changes may be due to water level variations caused by pumping or fluid density effects as formation fluid is drawn into the borehole. Previous reports describe the method of estimating the hydrologic behavior of fractured rock using a time series of electric conductivity logs and an earlier code, BORE, to generate electric conductivity logs under constant pressure and flow rate conditions. The earlier model, BORE, assumed a constant flow rate, qi, for each inflow into the well bore. In the present code the user supplies the location, constant pressure, hi, transmissivity, Ti, and storativity, Si, for each fracture, as well as the initial water level in the well, hw(0), In addition, the input data contains changes in the water level at later times, Δhw(t), typically caused by turning a pump on or off. The variable density calculation also requires input of the density of each of the inflow fluids, ρi, and the initial uniform density of the well bore fluid, ρw(0). These parameters are used to compute the flow rate for each inflow point at each time step. The numerical method of Jacob and Lohman (1952) is used to compute the flow rate into or out of the fractures based on the changes in pressure in the wellbore. A dimensionless function relates flow rate as a function of time in response to an imposed pressure change. The principle of superposition is used to determine the net flow rate from a time series of pressure changes. Additional reading on the relationship between drawdown and flow rate can be found in Earlougher (1977), particularly his Section 4.6, open-quotes Constant-Pressure Flow Testingclose quotes

  12. Effect of shear heat on hydrodynamic lift of brush seals in oil sealing

    OpenAIRE

    Duran, Ertuğrul Tolga; Duran, Ertugrul Tolga; Akşit, Mahmut Faruk; Aksit, Mahmut Faruk; Doğu, Yahya; Dogu, Yahya

    2006-01-01

    Due to their superior performance and stable leakage characteristics, brush seals are one of the dynamic seals used in oil and oil mist applications in aero-engines and turbines. The viscous medium between the high speed rotor surface and bearing surfaces formed by brush seal bristles generates a hydrodynamic lifting force that determines seal clearance and leakage rate in oil sealing applications. The analytical solution to bristle lifting force can be found by using Reynolds formulation. Fo...

  13. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna. Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m. Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures. Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  14. Modelling leaktightness in a sealing system using elastomeric seal

    International Nuclear Information System (INIS)

    The container of radioactive gases in a transport cask is governed by the efficiency of the sealing system. The gas release of an elastomeric seal can have two causes: 1) the permeation through the elastomer which is an intrinsic characteristic for the material. 2) the leakage through geometrical defects (cracks, gaps, capillaries...) which are of a random nature. The purpose of this study is to develop representative models of these two leakage processes. In order to validate these models, experimental measurements were performed with a specific equipment ('LISE' test rig), to carry out tests with O-ring in a trapezoidal groove within a temperature range from -50degC to +300degC. The leakage rate was measured with a mass spectrometer using pure gases or gas mixtures. (J.P.N.)

  15. Geology and Geophysics of new boreholes at the FEBEX site

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, R.; Perez-Estaun, A. [Inst. Jaume Almera, CSIC (Spain); Missana, T.; Buil, B.; Garralon, A.; Gomez, J. [CIEMAT (Spain); Suso, J.; Carretero, G.; Bueno, J.; Martinez, L. [AITEMIN (Spain); Hernan, P. [ENRESA (Spain)

    2007-06-15

    Geophysical data has been acquired to characterized the fracture network of the surrounding volume within the FEBEX gallery. The geophysic data include new borehole logging such as Natural Gamma and Borehole Ground Penetrating radar and cross hole ultrasonic tomography. The preliminary processing and integration of these different data sets indicates that the GPR record can provide images of the fractures, specially if they are fluid filled. The GPR is specially sensitive to the water content as it directly affects the electrical conductivity and the dielectric permittivity Therefore it is adequate for mapping water conductive fractures of the crystalline rock. The correlation of the anomalies measured by the natural gamma can be correlated with the 'diffractions' in the GPR and the fractures imaged by the borehole televiewer. The cross hole ultrasonic tomography data is under processing and no interpretations have been attempted yet.

  16. Drilling surveillance and geomechanical experiments in deep boreholes in salt

    International Nuclear Information System (INIS)

    In the framework of the CEC Programme on Radioactive Waste Disposal (1985-1990), in situ experiments in the Asse II salt mine in Germany are conducted. This report describes the work of the 600 m borehole project performed during the contracting period August 1986 - December 1990. During this period measurement devices for measurement of rock mechanical parameters have been developed and were made operational. For the drilling of the boreholes a new technique has been developed. One main subject of investigation was to develop an on-line method to determine the gas content in the flushing air during drilling operation. The method used worked satisfactorily and the test showed that this surveillance method could be used during dry-drilling of deep emplacement boreholes in a future repository. For the second experiment the Variable Pressure Device (VPD) has been constructed to measure the elastic and time-dependent response of the salt on pressure changes. 37 refs., 49 figs., 5 tabs

  17. Consequence assessment of hydrological communications through borehole plugs

    International Nuclear Information System (INIS)

    This report describes the effect of borehole plug integrity on consequence assessments performed for the Waste Isolation Pilot Plant. The study is based on scenarios described in the Final Environmental Impact Statement, Appendix K, for the WIPP, US Department of Energy, October 1980. The flow rates through a borehole, assumed to penetrate the waste storage location and to connect underlying and overlying aquifers, are determined as a function of the hydraulic conductance of the plugs. Similar calculations are performed for multiple boreholes communicating with the aquifers. It is concluded that low permeability plugs (less than 1 md) are not essential to satisfy public health and safety requirements at the WIPP, but rather that such plugs act as a redundant barrier in the multiple barrier isolation concept

  18. Geophysical borehole logging. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 meters in the year 1984. The report deals with geophysical borehole logging methods, which could be used for the studies. The aim of geophysical borehole logging methods is to descripe specially hydrogeological and structural features. Only the most essential methods are dealt with in this report. Attention is paid to the information produced with the methods, derscription of the methods, interpretation and limitations. The feasibility and possibilities for the aims are evaluated. The evaluations are based mainly on the results from Sweden, England, Canada and USA as well as experiencies gained in Finland

  19. Symmetries in Images on Ancient Seals

    CERN Document Server

    Sparavigna, Amelia

    2008-01-01

    In this paper, we discuss the presence of symmetries in images engraved on ancient seals, in particular on stamp seals. Mainly used to secure the containers from tampering and for owner's identification, these objects appeared during the 5th millennium BC in Mesopotamia. Usually the seals were engraved with simple images, suitable to communicate an immediate information. Rotational symmetries are already displayed by the most ancient stamp seals, whose images reach a quasi-perfect symmetry in their small circular or ovoid spaces. Bilateral symmetries are quite common in Egyptian scarab seals.

  20. Seal for objects containing nuclear fuels

    International Nuclear Information System (INIS)

    In order to mark and check the identity of objects - in particular, nuclear fuel elements, these may be sealed. Sealing is required in the context of nuclear safeguards. In the seal proposed here, a multitude of randomly distributed particles with different electromagnetic properties is contained in a hollow space in a body, where they are held by a pin. When the seal is taken off, they enter another, larger hollow space, losing their given order. A seal of this type is easy to check in the undamaged state. (UWI)