WorldWideScience

Sample records for boreal forest soils

  1. Winter climate controls soil carbon dynamics during summer in boreal forests

    International Nuclear Information System (INIS)

    Haei, Mahsa; Öquist, Mats G; Ilstedt, Ulrik; Laudon, Hjalmar; Kreyling, Juergen

    2013-01-01

    Boreal forests, characterized by distinct winter seasons, store a large proportion of the global terrestrial carbon (C) pool. We studied summer soil C-dynamics in a boreal forest in northern Sweden using a seven-year experimental manipulation of soil frost. We found that winter soil climate conditions play a major role in controlling the dissolution/mineralization of soil organic-C in the following summer season. Intensified soil frost led to significantly higher concentrations of dissolved organic carbon (DOC). Intensified soil frost also led to higher rates of basal heterotrophic CO 2 production in surface soil samples. However, frost-induced decline in the in situ soil CO 2 concentrations in summer suggests a substantial decline in root and/or plant associated rhizosphere CO 2 production, which overrides the effects of increased heterotrophic CO 2 production. Thus, colder winter soils, as a result of reduced snow cover, can substantially alter C-dynamics in boreal forests by reducing summer soil CO 2 efflux, and increasing DOC losses. (letter)

  2. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C J; Ilvesniemi, H; Liski, J; Mecke, M [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H; Helmisaari, H S; Pietikaeinen, J; Smolander, A [Finnish Forest Research Inst., Vantaa (Finland)

    1997-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  3. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C.J.; Ilvesniemi, H.; Liski, J.; Mecke, M. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H.; Helmisaari, H.S.; Pietikaeinen, J.; Smolander, A. [Finnish Forest Research Inst., Vantaa (Finland)

    1996-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  4. Moss-nitrogen input to boreal forest soils

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Jones, Davey; DeLuca, Thomas

    2014-01-01

    Cyanobacteria living epiphytically on mosses in pristine, unpolluted areas fix substantial amounts of atmospheric nitrogen (N) and therefore represent a primary source of N in N-limited boreal forests. However, the fate of this N is unclear, in particular, how the fixed N2 enters the soil and bec...... and that transfer of N to the soil is not facilitated by fungal hyphae....

  5. The effect of fire intensity on soil respiration in Siberia boreal forest

    Science.gov (United States)

    S. Baker; A. V. Bogorodskaya

    2010-01-01

    Russian boreal forests have an annual wildfire activity averaging 10 to 20 million ha, which has increased in recent years. This wildfire activity, in response to changing climate has the potential to significantly affect the carbon storage capacity of Siberian forests. A better understanding of the effect of fire on soil respiration rates in the boreal forest of...

  6. Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.

    Science.gov (United States)

    Dunn, Allison L; Wofsy, Steven C; v H Bright, Alfram

    2009-03-01

    We measured soil climate and the turbulent fluxes of CO2, H2O, heat, and momentum on short towers (2 m) in a 160-yr-old boreal black spruce forest in Manitoba, Canada. Two distinct land cover types were studied: a Sphagnum-dominated wetland, and a feathermoss (Pleurozium and Hylocomium)-dominated upland, both lying within the footprint of a 30-m tower, which has measured whole-forest carbon exchange since 1994. Peak summertime uptake of CO2, was higher in the wetland than for the forest as a whole due to the influence of deciduous shrubs. Soil respiration rates in the wetland were approximately three times larger than in upland soils, and 30% greater than the mean of the whole forest, reflecting decomposition of soil organic matter. Soil respiration rates in the wetland were regulated by soil temperature, which was in turn influenced by water table depth through effects on soil heat capacity and conductivity. Warmer soil temperatures and deeper water tables favored increased heterotrophic respiration. Wetland drainage was limited by frost during the first half of the growing season, leading to high, perched water tables, cool soil temperatures, and much lower respiration rates than observed later in the growing season. Whole-forest evapotranspiration increased as water tables dropped, suggesting that photosynthesis in this forest was rarely subject to water stress. Our data indicate positive feedback between soil temperature, seasonal thawing, heterotrophic respiration, and evapotranspiration. As a result, climate warming could cause covariant changes in soil temperature and water table depths that may stimulate photosynthesis and strongly promote efflux of CO2 from peat soils in boreal wetlands.

  7. Global warming considerations in northern Boreal forest ecosystems

    International Nuclear Information System (INIS)

    Slaughter, C.W.

    1993-01-01

    The northern boreal forests of circumpolar lands are of special significance to questions of global climate change. Throughout its range, these forests are characterized by a relatively few tree species, although they may exhibit great spatial heterogeneity. Their ecosystems are simpler than temperate systems, and ecosystem processes are strongly affected by interactions between water, the landscape, and the biota. Northern boreal forest vegetation patterns are strongly influenced by forest fires, and distribution of forest generally coincides with occurrence of permafrost. Boreal forest landscapes are extremely sensitive to thermal disruption; global warming may result in lasting thermal and physical degradation of soils, altered rates and patterns of vegetation succession, and damage to engineered structures. A change in fire severity and frequency is also a significant concern. The total carbon pool of boreal forests and their associated peatlands is significant on a global scale; this carbon may amount to 10-20% of the global carbon pool. A change in latitudinal or elevational treeline has been suggested as a probable consequence of global warming. More subtle aspects of boreal forest ecosystems which may be affected by global warming include the depth of the active soil layer, the hydrologic cycle, and biological attributes of boreal stream systems. 48 refs., 2 figs

  8. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  9. The impact of clearcutting in boreal forests of Russia on soils: A review

    Science.gov (United States)

    Dymov, A. A.

    2017-07-01

    Data on the impact of tree logging in boreal forests of Russia on soils are systematized. Patterns of soil disturbances and transformation of microclimatic parameters within clearcutting areas are discussed. Changes in the conditions of pedogenesis in secondary forests are analyzed. It is suggested that the changes in forest soils upon reforestation of clearcutting areas might be considered as specific post-logging soil successions. Data characterizing changes in the thickness of litter horizons and in the intensity of elementary pedogenic processes, acidity, and the content of exchangeable bases in soils of clearcutting areas in the course of their natural reforestation are considered. The examples of human-disturbed (turbated) soil horizons and newly formed anthropogenic soils on clearcutting areas are described. It is suggested that the soils on mechanically disturbed parts of clearcutting areas can be separated as a specific group of detritus turbozems.

  10. n-Alkane distributions as indicators of novel ecosystem development in western boreal forest soils

    Science.gov (United States)

    Norris, Charlotte; Dungait, Jennifer; Quideau, Sylvie

    2013-04-01

    Novel ecosystem development is occurring within the western boreal forest of Canada due to land reclamation following surface mining in the Athabasca Oil Sands Region. Sphagnum peat is the primary organic matter amendment used to reconstruct soils in the novel ecosystems. We hypothesised that ecosystem recovery would be indicated by an increasing similarity in the biomolecular characteristics of novel reconstructed soil organic matter (SOM) derived from peat to those of natural boreal ecosystems. In this study, we evaluated the use of the homologous series of very long chain (>C20) n-alkanes with odd-over-even predominance as biomarker signatures to monitor the re-establishment of boreal forests on reconstructed soils. The lipids were extracted from dominant vegetation inputs and SOM from a series of natural and novel ecosystem reference plots. We observed unique very long n-alkane signatures of the source vegetation, e.g. Sphagnum sp. was dominated by C31 and aspen (Populus tremuloides Michx.) leaves by C25. Greater concentrations of very long chain n-alkanes were extracted from natural than novel ecosystem SOM (puse of n-alkanes as biomarkers of ecosystem development is a promising method.

  11. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Science.gov (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-07-01

    At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW) are spreading southward at the expense of more productive closed-canopy black spruce-moss forests (MF). The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer) showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg) than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart) than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation structure (stand density

  12. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Directory of Open Access Journals (Sweden)

    C. Bastianelli

    2017-07-01

    Full Text Available At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW are spreading southward at the expense of more productive closed-canopy black spruce–moss forests (MF. The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation

  13. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest

    Science.gov (United States)

    Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O.; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O.

    2016-01-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. PMID:26896139

  14. Seasonal dynamics of soil CO2 emission in the boreal forests in Central Siberia

    Science.gov (United States)

    Makhnykina, A. V.; Prokishkin, A. S.; Zyryanov, V.; Verkhovets, S. V.

    2016-12-01

    A large amount of carbon in soil is released to the atmosphere through soil respiration, which is the main pathway of transferring carbon from terrestrial ecosystems (Comstedt et al., 2011). Considering that boreal forests is a large terrestrial sink (Tans et al., 1990) and represent approximately 11 % of the Earth's total land area (Gower et al., 2001), even a small change in soil respiration could significantly intensify - or mitigate - current atmospheric increases of CO2, with potential feedbacks to climate change. The objectives of the present study are: (a) to study the dynamic of CO2emission from the soil surface during summer season (from May to October); (b) to identify the reaction of soil respiration to different amount of precipitation as the main limiting factor in the region. The research was carried out in the pine forests in Central Siberia (60°N, 90°E), Russia. Sample plots were represented by the lichen pine forest, moss pine forest, mixed forest and anthropogenic destroyed area. We used the automated soil CO2 flux system based on the infrared gas analyzer LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths 5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. The presence and type of ground cover substantially affects the value of soil respiration fluxes. The carbon dioxide emission from the soil surface averaged was 5.4 ±2.3 μmol CO2 m-2 s-1. The destroyed area without plant cover demonstrated the lowest soil respiration (0.1-5.6 μmol CO2 m-2 s-1). The lowest soil respiration among forested areas was observed in the feathermoss pine forest. The lichen pine forest soil respiration was characterized by averages values. The maximum soil respiration values and seasonal fluctuations were obtained in the mixed forest (2.3-29.3 μmol CO2 m-2 s-1). The analysis of relation between soil CO2 efflux and amount of precipitation showed that the site without any

  15. Characterizing Zinc Speciation in Soils from a Smelter-Affected Boreal Forest Ecosystem.

    Science.gov (United States)

    Hamilton, Jordan G; Farrell, Richard E; Chen, Ning; Feng, Renfei; Reid, Joel; Peak, Derek

    2016-03-01

    HudBay Minerals, Inc., has mined and/or processed Zn and Cu ore in Flin Flon, MB, Canada, since the 1930s. The boreal forest ecosystem and soil surrounding these facilities have been severely impacted by mixed metal contamination and HSO deposition. Zinc is one of the most prevalent smelter-derived contaminants and has been identified as a key factor that may be limiting revegetation. Metal toxicity is related to both total concentrations and speciation; therefore, X-ray absorption spectroscopy and X-ray fluorescence mapping were used to characterize Zn speciation in soils throughout the most heavily contaminated areas of the landscape. Zinc speciation was linked to two distinct soil types. Group I soils consist of exposed soils in weathered positions of bedrock outcrops with Zn present primarily as franklinite, a (ZnFeO) spinel mineral. Group II soils are stabilized by an invasive metal-tolerant grass species, with Zn found as a mixture of octahedral (Fe oxides) and tetrahedral Mn oxides) adsorption complexes with a franklinite component. Soil erosion influences Zn speciation through the redistribution of Zn and soil particulates from Group I landscape positions to Group II soils. Despite Group II soils having the highest concentrations of CaCl-extractable Zn, they support metal-tolerant plant growth. The metal-tolerant plants are probably preferentially colonizing these areas due to better soil and nutrient conditions as a result of soil deposition from upslope Group I areas. Zinc concentration and speciation appears to not influence the colonization by metal-tolerant grasses, but the overall soil properties and erosion effects prevent the revegetation by native boreal forest species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. The formation and fate of chlorinated organic substances in temperate and boreal forest soils.

    Science.gov (United States)

    Clarke, Nicholas; Fuksová, Kvetoslava; Gryndler, Milan; Lachmanová, Zora; Liste, Hans-Holger; Rohlenová, Jana; Schroll, Reiner; Schröder, Peter; Matucha, Miroslav

    2009-03-01

    Chlorine is an abundant element, commonly occurring in nature either as chloride ions or as chlorinated organic compounds (OCls). Chlorinated organic substances were long considered purely anthropogenic products; however, they are, in addition, a commonly occurring and important part of natural ecosystems. Formation of OCls may affect the degradation of soil organic matter (SOM) and thus the carbon cycle with implications for the ability of forest soils to sequester carbon, whilst the occurrence of potentially toxic OCls in groundwater aquifers is of concern with regard to water quality. It is thus important to understand the biogeochemical cycle of chlorine, both inorganic and organic, to get information about the relevant processes in the forest ecosystem and the effects on these from human activities, including forestry practices. A survey is given of processes in the soil of temperate and boreal forests, predominantly in Europe, including the participation of chlorine, and gaps in knowledge and the need for further work are discussed. Chlorine is present as chloride ion and/or OCls in all compartments of temperate and boreal forest ecosystems. It contributes to the degradation of SOM, thus also affecting carbon sequestration in the forest soil. The most important source of chloride to coastal forest ecosystems is sea salt deposition, and volcanoes and coal burning can also be important sources. Locally, de-icing salt can be an important chloride input near major roads. In addition, anthropogenic sources of OCls are manifold. However, results also indicate the formation of chlorinated organics by microorganisms as an important source, together with natural abiotic formation. In fact, the soil pool of OCls seems to be a result of the balance between chlorination and degradation processes. Ecologically, organochlorines may function as antibiotics, signal substances and energy equivalents, in descending order of significance. Forest management practices can affect

  17. Soil fluxes of carbonyl sulfide (COS), carbon monoxide, and carbon dioxide in a boreal forest in southern Finland

    Science.gov (United States)

    Sun, Wu; Kooijmans, Linda M. J.; Maseyk, Kadmiel; Chen, Huilin; Mammarella, Ivan; Vesala, Timo; Levula, Janne; Keskinen, Helmi; Seibt, Ulli

    2018-02-01

    Soil is a major contributor to the biosphere-atmosphere exchange of carbonyl sulfide (COS) and carbon monoxide (CO). COS is a tracer with which to quantify terrestrial photosynthesis based on the coupled leaf uptake of COS and CO2, but such use requires separating soil COS flux, which is unrelated to photosynthesis, from ecosystem COS uptake. For CO, soil is a significant natural sink that influences the tropospheric CO budget. In the boreal forest, magnitudes and variabilities of soil COS and CO fluxes remain poorly understood. We measured hourly soil fluxes of COS, CO, and CO2 over the 2015 late growing season (July to November) in a Scots pine forest in Hyytiälä, Finland. The soil acted as a net sink of COS and CO, with average uptake rates around 3 pmol m-2 s-1 for COS and 1 nmol m-2 s-1 for CO. Soil respiration showed seasonal dynamics controlled by soil temperature, peaking at around 4 µmol m-2 s-1 in late August and September and dropping to 1-2 µmol m-2 s-1 in October. In contrast, seasonal variations of COS and CO fluxes were weak and mainly driven by soil moisture changes through diffusion limitation. COS and CO fluxes did not appear to respond to temperature variation, although they both correlated well with soil respiration in specific temperature bins. However, COS : CO2 and CO : CO2 flux ratios increased with temperature, suggesting possible shifts in active COS- and CO-consuming microbial groups. Our results show that soil COS and CO fluxes do not have strong variations over the late growing season in this boreal forest and can be represented with the fluxes during the photosynthetically most active period. Well-characterized and relatively invariant soil COS fluxes strengthen the case for using COS as a photosynthetic tracer in boreal forests.

  18. Drivers of lignin composition in boreal forest organic soils across a climate gradient

    Science.gov (United States)

    Myers-Pigg, A.; Kaiser, K.; Benner, R. H.; Ziegler, S. E.

    2017-12-01

    Lignin diagenesis in soils, including the cumulative effects of degradation and leaching, increases with experimental warming, signifying a potentially important change relevant to soil organic matter accumulation and fate. However, decadal to centennial climatic effects including changes in precipitation, litterfall inputs, and understory sources, on lignin composition are poorly constrained. We examined the lignin content and composition, via cupric oxide oxidation (CuO), within the organic layers of podzolic soils under similar balsam fir forests across a latitudinal climate gradient in Atlantic Canada. By exploring variation in lignin by both soil depth and climate region, this study informs on the climate drivers of lignin stability within boreal forest soil. A two-way analysis of variance (ANOVA) revealed significant variations in common signatures of CuO by-products with depth and/or site, indicating source and/or diagenetic controllers. Importantly, none of these signatures, with the exception of p-hydroxyphenols, exhibited a site by depth interaction indicating a similar degree of diagenetic alternation with depth across climates. The site by depth interaction for p-hydroxyphenols is a result of greater moss input in the northernmost site. To better elucidate this climate-induced source variation on our interpretation of lignin diagenesis, a principle component (PCA) model was built using signatures varying by site (pforest soils. A lignin diagenesis PCA model was built using (1) all non-moss related signatures identified in the first PCA model, and (2) scores for additional sites within each region, calculated from modeled lignin composition based on 13C-NMR spectra. The combined results indicate that the lignin diagenetic states among soils is similar, despite the large increase in soil C turnover with climate warming across this transect. Thus our results indicate that shifts in moss contribution, and not increased diagenesis, controls CuO by

  19. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.

    Science.gov (United States)

    Angstmann, J L; Ewers, B E; Kwon, H

    2012-05-01

    Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had ∼ 50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.

  20. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Science.gov (United States)

    Jessica R. Miesel; William C. Hockaday; Randy Kolka; Philip A. Townsend

    2015-01-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition...

  1. Spatial Variability of Tree Transpiration Along a Soil Drainage Gradient of Boreal Black Spruce Forest

    Science.gov (United States)

    Angstmann, J. L.; Ewers, B. E.; Kwon, H.; Bond-Lamberty, B.; Amiro, B.; Gower, S. T.

    2008-12-01

    Boreal forests are an integral component in obtaining a predictive understanding of global climate change because they comprise 33% of the world's forests and store large amounts of carbon. Much of this carbon storage is a result of peat formation in cold, poorly-drained soils. Transpiration plays a crucial role in the interaction between carbon and water cycles due to stomatal control of these fluxes. The primary focus of this study is to quantify the spatial variability and drivers of tree transpiration in boreal forest stands across a well- to poorly-drained soil drainage gradient. Species composition of this region of boreal forest changes during succession in well-drained soils from being primarily dominated by Picea mariana with co-dominant Pinus banksiana and Populus tremuloides in younger stands to being dominated solely by Picea marianain older stands. Poorly-drained soils are dominated by Picea mariana and change little with succession. Previous work in well-drained stands showed that 1) tree transpiration changed substantially with stand age due to sapwood-to-leaf area ratio dynamics and 2) minimum leaf water potential (Ψ) was kept constant to prevent excessive cavitation. We hypothesized that 1) minimum Ψ would be constant, 2) transpiration would be proportional to the sapwood-to-leaf area ratio across a soil drainage gradient, and 3) spatial relationships between trees would vary depending on stomatal responses to vapor pressure deficit (D). We tested these hypotheses by measuring Ψ of 33 trees and sap flux from 204 trees utilizing cyclic sampling constructed to study spatial relationships. Measurements were conducted at a 42-year-old stand representing maximum tree diversity during succession. There were no significant differences between growing season averaged Ψ in well- (-0.35 and -1.37 for pre-dawn and mid-day respectively) and poorly- drained soil conditions (-0.38 and -1.41 for pre-dawn and mid-day respectively) for Picea mariana. Water use

  2. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.

    Science.gov (United States)

    Phillips, Lori A; Ward, Valerie; Jones, Melanie D

    2014-03-01

    Soils of northern temperate and boreal forests represent a large terrestrial carbon (C) sink. The fate of this C under elevated atmospheric CO2 and climate change is still uncertain. A fundamental knowledge gap is the extent to which ectomycorrhizal fungi (EMF) and saprotrophic fungi contribute to C cycling in the systems by soil organic matter (SOM) decomposition. In this study, we used a novel approach to generate and compare enzymatically active EMF hyphae-dominated and saprotrophic hyphae-enriched communities under field conditions. Fermentation-humus (FH)-filled mesh bags, surrounded by a sand barrier, effectively trapped EMF hyphae with a community structure comparable to that found in the surrounding FH layer, at both trophic and taxonomic levels. In contrast, over half the sequences from mesh bags with no sand barrier were identified as belonging to saprotrophic fungi. The EMF hyphae-dominated systems exhibited levels of hydrolytic and oxidative enzyme activities that were comparable to or higher than saprotroph-enriched systems. The enzymes assayed included those associated with both labile and recalcitrant SOM degradation. Our study shows that EMF hyphae are likely important contributors to current SOM turnover in sub-boreal systems. Our results also suggest that any increased EMF biomass that might result from higher below-ground C allocation by trees would not suppress C fluxes from sub-boreal soils.

  3. Priming effects in boreal black spruce forest soils: quantitative evaluation and sensitivity analysis.

    Directory of Open Access Journals (Sweden)

    Zhaosheng Fan

    Full Text Available Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC into soil-water systems can stimulate the decomposition of soil OC (SOC via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude in boreal ecosystems. In this study, a coupled dissolved OC (DOC transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration, highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.

  4. Priming effects in boreal black spruce forest soils: quantitative evaluation and sensitivity analysis.

    Science.gov (United States)

    Fan, Zhaosheng; Jastrow, Julie D; Liang, Chao; Matamala, Roser; Miller, Raymond Michael

    2013-01-01

    Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC) into soil-water systems can stimulate the decomposition of soil OC (SOC) via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude) in boreal ecosystems. In this study, a coupled dissolved OC (DOC) transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration), highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.

  5. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Lidman, Fredrik; Boily, Aasa; Laudon, Hjalmar [Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeaa (Sweden); Koehler, Stephan J. [Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. 7050, 750 07 Uppsala (Sweden)

    2014-07-01

    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  6. Boreal forests

    International Nuclear Information System (INIS)

    Essen, P.A.; Ericson, L.; Ehnstroem, B.; Sjoeberg, K.

    1997-01-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man's past and present impact and outline a strategy for conservation. Natural disturbances, particularly forest fire and gap formation, create much of the structural and functional diversity in forest ecosystems. Several boreal plants and animals are adapted to fire regimes. In contrast, many organisms (epiphytic lichens, fungi, invertebrates) require stable conditions with long continuity in canopy cover. The highly mechanized and efficient Fennoscandian forest industry has developed during the last century. The result is that most natural forest has been lost and that several hundreds of species, mainly cryptograms and invertebrates, are threatened. The forestry is now in a transition from exploitation to sustainable production and has recently incorporated some measures to protect the environment. Programmes for maintaining biodiversity in the boreal forest should include at least three parts. First, the system of forest reserves must be significantly improved through protection of large representative ecosystems and key biotopes that host threatened species. Second, we must restore ecosystem properties that have been lost or altered. Natural disturbance regimes must be allowed to operate or be imitated, for example by artificial fire management. Stand-level management should particularly increase the amount of coarse woody debris, the number of old deciduous trees and large, old conifers, by using partial cutting. Third, natural variation should also be mimicked at the landscape level, for example, by reducing fragmentation and increasing links between landscape elements. Long-term experiments are required to evaluate the success of different management methods in maintaining biodiversity in the boreal forest. (au) 260 refs

  7. Declining plant nitrogen supply and carbon accumulation in ageing primary boreal forest ecosystems

    Science.gov (United States)

    Högberg, Mona N.; Yarwood, Stephanie A.; Trumbore, Susan; Högberg, Peter

    2016-04-01

    Boreal forest soils are commonly characterized by a low plant nitrogen (N) supply. A high tree below-ground allocation of carbon (C) to roots and soil microorganisms in response to the shortage of N may lead to high microbial immobilisation of N, thus aggravating the N limitation. We studied the N supply at a Swedish boreal forest ecosystem chronosequence created by new land rising out of the sea due to iso-static rebound. The youngest soils develop with meadows by the coast, followed by a zone of dinitrogen fixing alder trees, and primary boreal conifer forest on ground up to 560 years old. With increasing ecosystem age, the proportion of microbial C out of the total soil C pool from the youngest to the oldest coniferous ecosystem was constant (c. 1-1.5%), whereas immobilised N (microbial N out of total soil N) increased and approached the levels commonly observed in similar boreal coniferous forests (c. 6-7 %), whereas gross N mineralization declined. Simultaneously, plant foliar N % decreased and the natural abundance of N-15 in the soil increased. More specifically, the difference in N-15 between plant foliage and soil increased, which is related to greater retention of N-15 relative to N-14 by ectomycorrhizal fungi as N is taken up from the soil and some N is transferred to the plant host. In the conifer forest, where these changes were greatest, we found increased fungal biomass in the F- and H-horizons of the mor-layer, in which ectomycorrhizal fungi are known to dominate (the uppermost horizon with litter and moss is dominated by saprotrophic fungi). Hence, we propose that the decreasing N supply to the plants and the subsequent decline in plant production in ageing boreal forests is linked to high tree belowground C allocation to C limited ectomycorrhizal fungi (and other soil microorganisms), a strong sink for available soil N. Data on organic matter C-14 suggested that the largest input of recently fixed plant C occurred in the younger coniferous forest

  8. Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China.

    Science.gov (United States)

    Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin

    2013-01-01

    The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and forests respectively, and thus play a minor role in total forest C storage in NE China.

  9. The effect to the water stress to soil CO2 efflux in the Siberian boreal forest

    Science.gov (United States)

    Makhnykina, A. V.; Prokishkin, A. S.; Verkhovets, S. V.; Koshurnikova, N. N.

    2017-12-01

    The boreal forests in Siberia covered more than 70% area of this region. Due to the climate change this ecosystems represent a very sensitive and significant source of carbon. In forests, total ecosystem respiration tends to be dominated by soil respiration, which accounts for approximately 69% of this large flux (Janssens et al., 2001). Dynamic global vegetation models predict that soil respiration will increase more than total net primary productivity in response to warmer temperatures and increase in precipitation, the terrestrial carbon sink is expected to decline significantly (Bonan et al., 2003). The aim of the present study was to identify the response of the soil CO2 efflux to the different amount of water input for two highly differentiated years by the precipitation conditions in the middle taiga forests in Central Siberia. The study was conducted in the pine forests in Central Siberia (60°N, 90°E), Russia. We used the automated soil CO2 flux system LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths 5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. We constructed the field experiment based on the addition of different amount of water (0%, 25%, 50% and 100% sites) after each rain event during the growing season. We found that the amount of precipitation have a huge impact to the value of soil CO2 efflux. For the more precipitated year (2015) the fluxes were almost twice higher compared to less precipitated year (2016). The max fluxes during the season in 2015 observed at the site without any water input there and the min one - for the 100% precipitation site (natural rain conditions). In 2016 we identified the opposite response: the max soil efflux demonstrated the site with 100% precipitation conditions (Fig. 1). We also detected the high dependence between the soil temperature and soil CO2 efflux for the site with 0% additional water input in more

  10. A Passive Microwave L-Band Boreal Forest Freeze/Thaw and Vegetation Phenology Study

    Science.gov (United States)

    Roy, A.; Sonnentag, O.; Pappas, C.; Mavrovic, A.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Lemay, J.; Helgason, W.; Barr, A.; Black, T. A.; Derksen, C.; Toose, P.

    2016-12-01

    The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitute an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. The effective retrieval of seasonal F/T state from L-Band radiometry was demonstrated using satellite mission. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the soil surface to the satellite signal remains challenging. Here we present initial results from a radiometer field campaign to improve our understanding of the L-Band derived boreal forest F/T signal and vegetation phenology. Two L-Band surface-based radiometers (SBR) are installed on a micrometeorological tower at the Southern Old Black Spruce site in central Saskatchewan over the 2016-2017 F/T season. One radiometer unit is installed on the flux tower so it views forest including all overstory and understory vegetation and the moss-covered ground surface. A second radiometer unit is installed within the boreal forest overstory, viewing the understory and the ground surface. The objectives of our study are (i) to disentangle the L-Band F/T signal contribution of boreal forest overstory from the understory and ground surface, (ii) to link the L-Band F/T signal to related boreal forest structural and functional characteristics, and (iii) to investigate the use of the L-Band signal to characterize boreal forest carbon, water and energy fluxes. The SBR observations above and within the forest canopy are used to retrieve the transmissivity (γ) and the scattering albedo (ω), two parameters that describe the emission of the forest canopy though the F/T season. These two forest parameters are compared with boreal forest structural and functional

  11. No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest

    International Nuclear Information System (INIS)

    Betson, N.R.; Gottlicher, S.G.; Hogberg, P.; Hall, M.; Wallin, G.; Richter, A.

    2007-01-01

    This study evaluated the diurnal variability in the rate and stable carbon isotope ratio ((delta) 13 C) of soil respiration in a northern boreal forest, measured with opaque chambers after the removal of understory vegetation. The experiment was conducted in June and August 2004 at the Picea abies L. Karst-dominated Flakaliden Research Forest in northern Sweden, using unfertilized girdled-tree plots and unfertilized non-girdled tree plots. Soil respiration and (delta) 13 C of soil-respired carbon dioxide (CO 2 ) were measured every 4 hours on 6 plots, with a total of 11 sampling times over each 48 hour period. The purpose was to clarify an earlier study regarding the origin of diurnal patterns of soil CO 2 flux. This study explored whether the diurnal patterns were the result of photosynthetic CO 2 uptake during the day by the understory or whether there were underlying trends in soil respiration driven by plant root allocation. The sampling campaigns undertaken in this study investigated whether diurnal variations in soil respiration rate and (delta) 13 C exist in this ecosystem when no understory vegetation is present. Shoot photosynthesis and environmental parameters were measured simultaneously. Despite significant variations in climatic conditions and shoot photosynthetic rates in non-girdled trees, no diurnal patterns in soil respiration rates and (delta) 13 C were noted in either treatment. The lack of detectable diurnal changes in both treatments indicates that modeling of daily boreal forest carbon balances based on single instantaneous measurements are unlikely to be misconstrued by substantial diurnal trends. However, it was suggested that spatial variable should be accounted for, given the large standard errors. The impact of tree girdling on soil respiration rates also emphasized the significance of canopy photosynthesis in driving soil processes. 37 refs., 2 figs

  12. Fire impacts on European Boreal soils: A review

    Science.gov (United States)

    Pereira, Paulo; Oliva, Marc; Cerda, Artemi

    2016-04-01

    Fire is an important natural disturbance in boreal ecosystems, fundamental to understand plant distribution (Ryan, 2002; Wallenius et al., 2004; Granstrom, 2001). Nevertheless, nowadays the intense and successful, fire suppression measures are changing their ecological role (Pereira et al., 2013a,b). This is consequence of the lack of understanding of stakeholders and decision makers about the role of the fire in the ecosystems (Mierasukas and Pereira, 2013; Pereira et al., 2016). This fire suppression measures are increasing the amount of fuel accumulation and the risk of severe wildfires, which can increase of frequency and severity in a context of climate change. Fire is a good tool for landscape management and restoration of degraded ecosystems (Toivanen and Kotiaho, 2007). Fire is considered a soil forming factor (Certini, 2014) and in boreal environments it has been observed that low fire severities, do not change importantly soil properties, mean fire severities induce positive impacts on soil, since add an important amounts of nutrients into soil profile and high severity fires had negative impacts due to the high consumption of organic matter (Vanha-Majamaa et al., 2007; Pereira et al., 2014). References Certini, G., 2014. Fire as a soil-forming factor. Ambio, 43, 191-195 Granstrom A. 2001. Fire management for biodiversity in the European Boreal forest. Scandinavian Journal of Forest Research 3: 62-69. Mierauskas, P., Pereira, P. (2013) Stakeholders perception about prescribed fire use in Lithuania. First results, Flamma, 4(3), 157-161. Pereira, P., Cerdà, A., Jordán, A., Bolutiene, V., Úbeda, X., Pranskevicius, M., Mataix-Solera, J. (2013) Spatio-temporal vegetation recuperation after a grassland fire in Lithuania, Procedia Environmental Sciences, 19:856-864 Pereira, P., Mierauskas, P., Ubeda, X., Mataix-Solera, J.,Cerda, A. (2012) Fire in protected areas - the effect of the protection and importance of fire management, Environmental Research

  13. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    Science.gov (United States)

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  14. Boreal Forests of Kamchatka: Structure and Composition

    Directory of Open Access Journals (Sweden)

    Markus P. Eichhorn

    2010-09-01

    Full Text Available Central Kamchatka abounds in virgin old-growth boreal forest, formed primarily by Larix cajanderi and Betula platyphylla in varying proportions. A series of eight 0.25–0.30 ha plots captured the range of forests present in this region and their structure is described. Overall trends in both uplands and lowlands are for higher sites to be dominated by L. cajanderi with an increasing component of B. platyphylla with decreasing altitude. The tree line on wet sites is commonly formed by mono-dominant B. ermanii forests. Basal area ranged from 7.8–38.1 m2/ha and average tree height from 8.3–24.7 m, both being greater in lowland forests. Size distributions varied considerably among plots, though they were consistently more even for L. cajanderi than B. platyphylla. Upland sites also contained a dense subcanopy of Pinus pumila averaging 38% of ground area. Soil characteristics differed among plots, with upland soils being of lower pH and containing more carbon. Comparisons are drawn with boreal forests elsewhere and the main current threats assessed. These forests provide a potential baseline to contrast with more disturbed regions elsewhere in the world and therefore may be used as a target for restoration efforts or to assess the effects of climate change independent of human impacts.

  15. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    Science.gov (United States)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  16. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    Directory of Open Access Journals (Sweden)

    Xiuchen Wu

    Full Text Available Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii, sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  17. Carbon input increases microbial nitrogen demand, but not microbial nitrogen mining in boreal forest soils

    Science.gov (United States)

    Wild, Birgit; Alaei, Saeed; Bengtson, Per; Bodé, Samuel; Boeckx, Pascal; Schnecker, Jörg; Mayerhofer, Werner; Rütting, Tobias

    2016-04-01

    Plant primary production at mid and high latitudes is often limited by low soil N availability. It has been hypothesized that plants can indirectly increase soil N availability via root exudation, i.e., via the release of easily degradable organic compounds such as sugars into the soil. These compounds can stimulate microbial activity and extracellular enzyme synthesis, and thus promote soil organic matter (SOM) decomposition ("priming effect"). Even more, increased C availability in the rhizosphere might specifically stimulate the synthesis of enzymes targeting N-rich polymers such as proteins that store most of the soil N, but are too large for immediate uptake ("N mining"). This effect might be particularly important in boreal forests, where plants often maintain high primary production in spite of low soil N availability. We here tested the hypothesis that increased C availability promotes protein depolymerization, and thus soil N availability. In a laboratory incubation experiment, we added 13C-labeled glucose to a range of soil samples derived from boreal forests across Sweden, and monitored the release of CO2 by C mineralization, distinguishing between CO2 from the added glucose and from the native, unlabeled soil organic C (SOC). Using a set of 15N pool dilution assays, we further measured gross rates of protein depolymerization (the breakdown of proteins into amino acids) and N mineralization (the microbial release of excess N as ammonium). Comparing unamended control samples, we found a high variability in C and N mineralization rates, even when normalized by SOC content. Both C and N mineralization were significantly correlated to SOM C/N ratios, with high C mineralization at high C/N and high N mineralization at low C/N, suggesting that microorganisms adjusted C and N mineralization rates to the C/N ratio of their substrate and released C or N that was in excess. The addition of glucose significantly stimulated the mineralization of native SOC in soils

  18. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils

    Science.gov (United States)

    Prescott, Cindy E.; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J.

    2017-01-01

    ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of

  19. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest.

    Science.gov (United States)

    Sun, Hui; Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O

    2016-05-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P< 0.001) and tree species (P< 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P< 0.04). The availability of soil nutrients (Ca [P= 0.002], Fe [P= 0.003], and P [P= 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P< 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Evaluation of a new battery of toxicity tests for boreal forest soils: assessment of the impact of hydrocarbons and salts.

    Science.gov (United States)

    Princz, Juliska I; Moody, Mary; Fraser, Christopher; Van der Vliet, Leana; Lemieux, Heather; Scroggins, Rick; Siciliano, Steven D

    2012-04-01

    The ability to assess the toxic potential of soil contamination within boreal regions is currently limited to test species representative of arable lands. This study evaluated the use of six boreal plant species (Pinus banksiana, Picea glauca, Picea mariana, Populus tremuloides, Calamagrostis Canadensis, and Solidago canadensis) and four invertebrate species (Dendrodrilus rubidus, Folsomia nivalis, Proisotoma minuta, and Oppia nitens) and compared their performance to a suite of standard agronomic soil test species using site soils impacted by petroleum hydrocarbon (PHC) and salt contamination. To maintain horizon-specific differences, individual soil horizons were collected from impacted sites and relayered within the test vessels. Use of the boreal species was directly applicable to the assessment of the contaminated forest soils and, in the case of the hydrocarbon-impacted soil, demonstrated greater overall sensitivity (25th percentile of estimated species sensitivity distribution [ESSD25] = 5.6% contamination: 10,600 mg/kg fraction 3 [F3; equivalent hydrocarbon range of >C16 to C34] Of/Oh horizon, and 270 mg/kg F3 Ahg horizon) relative to the standard test species (ESSD25 = 23% contamination: 44,000 mg/kg F3 Of/Oh horizon, and 1,100 mg/kg F3 Ahg horizon). For salinity, there was no difference between boreal and standard species with a combined ESSD25 = 2.3%, equating to 0.24 and 0.25 dS/m for the Ah and Ck horizons. The unequal distribution of soil invertebrates within the layered test vessels can confound test results and the interpretation of the toxic potential of a site. The use of test species relevant to boreal eco-zones strengthens the applicability of the data in support of realistic ecological risk assessments applicable to the boreal regions. Copyright © 2012 SETAC.

  1. The origin of soil organic matter controls its composition and bioreactivity across a mesic boreal forest latitudinal gradient

    Science.gov (United States)

    Kohl, L.; Philben, M. J.; Edwards, K. A.; Podrebarac, F. A.; Jamie, W.; Ziegler, S. E.

    2017-12-01

    Warmer climates have been associated with reduced soil organic matter (SOM) bioreactivity, lower respiration rates at a given temperature, which is typically attributed to the presence of more decomposed SOM. Cross site studies, however, indicate that ecosystem regime shifts associated with long-term climate warming can affect SOM properties through changes in vegetation and plant litter inputs to soils. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming remains poorly understood. To address this, we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids), and isotopic composition of plant litter and SOM across a well-constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. Climate effects on vascular plant litter chemistry explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer forests. These results indicate that a climate induced decrease in the proportion of moss inputs will not only impact SOM chemistry but also increase the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils.

  2. Ecological Sustainability of Birds in Boreal Forests

    Directory of Open Access Journals (Sweden)

    Gerald Niemi

    1998-12-01

    Full Text Available We review characteristics of birds in boreal forests in the context of their ecological sustainability under both natural and anthropogenic disturbances. We identify the underlying ecological factors associated with boreal bird populations and their variability, review the interactions between boreal bird populations and disturbance, and describe some tools on how boreal bird populations may be conserved in the future. The boreal system has historically been an area with extensive disturbance such as fire, insect outbreaks, and wind. In addition, the boreal system is vulnerable to global climate change as well as increasing pressure on forest and water resources. Current knowledge indicates that birds play an important role in boreal forests, and sustaining these populations affords many benefits to the health of boreal forests. Many issues must be approached with caution, including the lack of knowledge on our ability to mimic natural disturbance regimes with management, our lack of understanding on fragmentation due to logging activity, which is different from permanent conversion to other land uses such as agriculture or residential area, and our lack of knowledge on what controls variability in boreal bird populations or the linkage between bird population fluctuations and productivity. The essential role that birds can provide is to clarify important ecological concerns and variables that not only will help to sustain bird populations, but also will contribute to the long-term health of the boreal forest for all species, including humans.

  3. First Polarimetric GNSS-R Measurements from a Stratospheric Flight over Boreal Forests

    Directory of Open Access Journals (Sweden)

    Hugo Carreno-Luengo

    2015-10-01

    Full Text Available The first-ever dual-frequency multi-constellation Global Navigation Satellite Systems Reflectometry (GNSS-R polarimetric measurements over boreal forests and lakes from the stratosphere are presented. Data were collected during the European Space Agency (ESA sponsored Balloon Experiments for University Students (BEXUS 19 stratospheric balloon experiment using the P(Y and C/A Reflect Ometer (PYCARO instrument operated in closed-loop mode. Maps of the polarimetric ratio for L1 and L2 Global Positioning System (GPS and GLObal Navigation Satellite System (GLONASS, and for E1 Galileo signals are derived from the float phase at 27,000 m height, and the specular points are geolocalized on the Earth’s surface. Polarimetric ratio ( maps over boreal forests are shown to be in the range 2–16 dB for the different GNSS codes. This result suggests that the scattering is taking place not only over the soil, but over the different forests elements as well. Additionally to the interpretation of the experimental results a theoretical investigation of the different contributions to the total reflectivity over boreal forests is performed using a bistatic scattering model. The simulated cross- (reflected Left Hand Circular Polarization LHCP and co-polar (reflected Right Hand Circular Polarization RHCP reflectivities are evaluated for the soil, the canopy, and the canopy–soil interactions for three different biomass densities: 725 trees/ha, 150 trees/ha and 72 trees/ha. For elevation angles larger than the Brewster angle, it is found that the cross-polar signal is dominant when just single reflections over the forests are evaluated, while in the case of multiple reflections the co-polar signal becomes the largest one. The first-ever dual-frequency multi-constellation Global Navigation Satellite Systems Reflectometry (GNSS-R polarimetric measurements over boreal forests and lakes from the stratosphere are presented. Data were collected during the European Space

  4. Adaptive root foraging strategies along a boreal-temperate forest gradient.

    Science.gov (United States)

    Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak

    2017-08-01

    The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils.

    Science.gov (United States)

    Masse, Jacynthe; Prescott, Cindy E; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J

    2017-05-01

    The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km 2 , land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how

  6. The potentiation of zinc toxicity by soil moisture in a boreal forest ecosystem.

    Science.gov (United States)

    Owojori, Olugbenga J; Siciliano, Steven D

    2015-03-01

    Northern boreal forests often experience forest dieback as a result of metal ore mining and smelting. The common solution is to lime the soil, which increases pH, reducing metal toxicity and encouraging recovery. In certain situations, however, such as in Flin Flon, Manitoba, Canada, liming has yielded only moderate benefits, with some locations responding well to liming and other locations not at all. In an effort to increase the effectiveness of the ecorestoration strategy, the authors investigated if these differences in liming responsiveness were linked to differences in toxicity. Toxicity of metal-impacted Flin Flon soils on the oribatid mite Oppia nitens and the collembolan Folsomia candida was assessed, with a view toward identifying the metal of concern in the area. The effects of moisture content on metal sorption, uptake, and toxicity to the invertebrates were also investigated. Toxicity tests with the invertebrates were conducted using either Flin Flon soils or artificial soils with moisture content adjusted to 30%, 45%, 60%, or 75% of the maximum water-holding capacity of the soil samples. The Relative to Cd Toxicity Model identified Zn as the metal of concern in the area, and this was confirmed using validation tests with field contaminated soils. Furthermore, increasing the moisture content in soils increased the amount of mobile Zn available for uptake with the ion exchange resin. Survival and reproduction of both invertebrates were reduced under Zn exposure as moisture level increased. Thus, moisture-collecting landforms, which are often also associated with high Zn concentrations at Flin Flon, have, as a result, higher Zn toxicity to the soil ecosystem because of increases in soil moisture. © 2014 SETAC.

  7. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    Science.gov (United States)

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. © 2015 John Wiley & Sons Ltd.

  8. Nitrogen balance along a northern boreal forest fire chronosequence.

    Science.gov (United States)

    Palviainen, Marjo; Pumpanen, Jukka; Berninger, Frank; Ritala, Kaisa; Duan, Baoli; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2017-01-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests.

  9. Silviculture's role in managing boreal forests

    Science.gov (United States)

    Russell T. Graham; Theresa B. Jain

    1998-01-01

    Boreal forests, which are often undeveloped, are a major source of raw materials for many countries. They are circumpolar in extent and occupy a belt to a width of 1000 km in certain regions. Various conifer and hardwood species ranging from true firs to poplars grow in boreal forests. These species exhibit a wide range of shade tolerance and growth characteristics,...

  10. Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems

    DEFF Research Database (Denmark)

    Clarke, Nicholas; Gundersen, Per; Jönsson-Belyazid, Ulrika

    2015-01-01

    ) stocks. This paper reviews the findings in the scientific literature concerning the effects of harvesting of different intensities on SOC stocks and fluxes in boreal and northern temperate forest ecosystems to evaluate the evidence for significant SOC losses following biomass removal. An overview...... on SOC stocks in boreal and northern temperate forest ecosystems, which is in any case species-, site- and practice-specific. Properly conducted long-term experiments are therefore necessary to enable us to clarify the relative importance of different harvesting practices on the SOC stores, the key...

  11. Radiocarbon of Respired CO2 Following Fire in Alaskan Boreal Forest: Can Disturbance Release Old Soil Carbon to the Atmosphere?

    Science.gov (United States)

    Schuur, E. A.; Randerson, J. A.; Fessenden, J.; Trumbore, S. E.

    2002-12-01

    Fire in the boreal forest releases carbon stored in vegetation and soil to the atmosphere. Following fire, microbial decomposition is stimulated by inputs of plant detritus and changes in soil microclimate, which can result in large losses of carbon. Furthermore, warmer summer soil temperatures and deeper thaw depths in burned ecosystems may make carbon that was previously climatically protected by low soil temperatures susceptible to decomposition. We used radiocarbon measurements to estimate the age of carbon released by soil respiration following fire in two black spruce (Picea mariana) forests in interior Alaska that burned during the summer of 1999. To isolate soil respiration, we established manipulated plots where vegetation was prevented from recolonizing, and paired control plots in nearby unburned forest. Soil respiration radiocarbon signatures in the burned manipulation ranged from +112\\permil to +192\\permil and differed significantly from the unburned controls that ranged from +100\\permil to +130\\permil. Burned plots appear to respire older carbon than unburned forest, which could either be due to the stimulation of decomposition of intermediate age soil organic matter pools, to the lack of plant respiration that reflects the atmospheric radiocarbon signature of +92\\permil, or both. At least during the initial phase following fire, these data suggest that carbon fluxes from soil are dominated by soil organic matter pools with decadal scale turnover times.

  12. Boreal forest biomass classification with TanDEM-X

    OpenAIRE

    Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Hajnsek, Irena

    2013-01-01

    High spatial resolution X-band interferometric SAR data from the TanDEM-X, in the operational DEM generation mode, are sensitive to forest structure and can therefore be used for thematic boreal forest classification of forest environments. The interferometric coherence in absence of temporal decorrelation depends strongly on forest height and structure. Due to the rather homogenous structure of boreal forest, forest biomass can be derived from forest height, on the basis of allometric equati...

  13. The role of boreal forests and forestry in the global carbon budget : a synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Fyles, I.H.; Shaw, C.H.; Apps, M.J.; Karjalainen, T.; Stocks, B.J.; Running, S.W.; Kurz, W.A.; Weyerhaeuser, G.Jr.; Jarvis, P.G.

    2002-10-01

    This paper provides a synthesis of all papers presented at the conference on the role of boreal forests in the global carbon budget. The scientific community is recognizing the critical links between boreal forest ecosystems, carbon dynamics and global climate change. This paper addresses the five main topics discussed at the conference including: (1) carbon stocks and fluxes, (2) the effects of natural disturbances on carbon dynamics, (3) effects of management practices on carbon dynamics, (4) afforestation and carbon sequestration, and (5) effects of climate change and elevated carbon dioxide concentration on carbon dynamics. Large-scale model simulations suggest that increased global temperatures will result in increased net ecosystem productivity (NEP). Several model simulations also indicate that net primary productivity (NPP) will increase. While most forest stands are currently carbon sinks, disturbances such as fire, insects and tree harvesting make forests susceptible to becoming a source of carbon. In contrast, some studies suggest that climate change will cause shifting vegetation patterns, increased soil carbon and higher forest productivity that may result in higher sequestration of carbon in the boreal forest. 84 refs.

  14. Application of boreal forest toxicity data in the decision-making process for contaminated soil clean-up remediation at oil and gas fields in Western Canada

    International Nuclear Information System (INIS)

    Scroggins, R.; Princz, J.; Moody, M.; Olsgard-Dumanski, M.; Haderlein, L.; Moore, B.

    2010-01-01

    This presentation reported on a multi-year research project in which a broad range of boreal forest test methods for assessing petroleum hydrocarbon (PHC) toxicity in contaminated soil were used to show that clean-up decisions can be made on a field-wide basis through focused biological testing of typical drill sump and flare pit locations within an oil and gas field. Remediation at most sites will likely be limited to the Alberta soil eco-contact guidelines for PHC F2 and F3 fractions. Since Tier 1 eco-contact guidelines are derived using toxicity data from fresh crude and using agricultural plant species, it was more logical to follow a Tier 2 eco-contact pathway approach because most contamination was related to drilling sumps and flare pits containing highly weathered PHCs and species native to the boreal eco-zone of Canada. The site-specific remedial objective (SSRO) option within the Tier 2 guideline was used because of the large number of sites requiring remediation, and the similarity of sites within pre-determined Risk Assessment Zones. For representative contaminated soils, a SSRO was derived from the twenty-fifth percentile of the estimated species sensitivity distribution of all acceptable boreal plant, earthworm, springtail and mite test endpoints. The purpose of the project was to reduce soil volumes sent to landfill during site remediation by showing that residual impacts from weathered PHC in soil do not have damaging effects on boreal forest receptors following remediation. Data was included to show the value of this approach and the variability between sites and their effect on regionalizing a Tier 2 eco-contact guideline.

  15. Application of boreal forest toxicity data in the decision-making process for contaminated soil clean-up remediation at oil and gas fields in Western Canada

    Energy Technology Data Exchange (ETDEWEB)

    Scroggins, R.; Princz, J. [Environment Canada, Ottawa, ON (Canada); Moody, M. [Saskatchewan Research Council, Regina, SK (Canada); Olsgard-Dumanski, M.; Haderlein, L. [WorleyParsons Canada, Calgary, AB (Canada); Moore, B. [Devon Canada Corp., Calgary, AB (Canada)

    2010-07-01

    This presentation reported on a multi-year research project in which a broad range of boreal forest test methods for assessing petroleum hydrocarbon (PHC) toxicity in contaminated soil were used to show that clean-up decisions can be made on a field-wide basis through focused biological testing of typical drill sump and flare pit locations within an oil and gas field. Remediation at most sites will likely be limited to the Alberta soil eco-contact guidelines for PHC F2 and F3 fractions. Since Tier 1 eco-contact guidelines are derived using toxicity data from fresh crude and using agricultural plant species, it was more logical to follow a Tier 2 eco-contact pathway approach because most contamination was related to drilling sumps and flare pits containing highly weathered PHCs and species native to the boreal eco-zone of Canada. The site-specific remedial objective (SSRO) option within the Tier 2 guideline was used because of the large number of sites requiring remediation, and the similarity of sites within pre-determined Risk Assessment Zones. For representative contaminated soils, a SSRO was derived from the twenty-fifth percentile of the estimated species sensitivity distribution of all acceptable boreal plant, earthworm, springtail and mite test endpoints. The purpose of the project was to reduce soil volumes sent to landfill during site remediation by showing that residual impacts from weathered PHC in soil do not have damaging effects on boreal forest receptors following remediation. Data was included to show the value of this approach and the variability between sites and their effect on regionalizing a Tier 2 eco-contact guideline.

  16. Major losses of nutrients following a severe drought in a boreal forest.

    Science.gov (United States)

    Houle, Daniel; Lajoie, Geneviève; Duchesne, Louis

    2016-11-28

    Because of global warming, the frequency and severity of droughts are expected to increase, which will have an impact on forest ecosystem health worldwide 1 . Although the impact of drought on tree growth and mortality is being increasingly documented 2-4 , very little is known about the impact on nutrient cycling in forest ecosystems. Here, based on long-term monitoring data, we report nutrient fluxes in a boreal forest before, during and following a severe drought in July 2012. During and shortly after the drought, we observed high throughfall (rain collected below the canopy) concentrations of nutrient base cations (potassium, calcium and magnesium), chlorine, phosphorus and dissolved organic carbon (DOC), differing by one to two orders of magnitude relative to the long-term normal, and resulting in important canopy losses. The high throughfall fluxes had repercussions in the soil solution at a depth of 30 cm, leading to high DOC, chlorine and potassium concentrations. The net potassium losses (atmospheric deposition minus leaching losses) following the drought were especially important, being the equivalent of nearly 20 years of net losses under 'normal' conditions. Our data show that droughts have unexpected impacts on nutrient cycling through impacts on tree canopy and soils and may lead to important episodes of potassium losses from boreal forest ecosystems. The potassium losses associated with drought will add to those originating from tree harvesting and from forest fires and insect outbreaks 5-7 (with the last two being expected to increase in the future as a result of climate change), and may contribute to reduced potassium availability in boreal forests in a warming world.

  17. TALL-HERB BOREAL FORESTS ON NORTH URAL

    Directory of Open Access Journals (Sweden)

    A. A. Aleinikov

    2016-09-01

    Full Text Available Background. One of the pressing aims of today’s natural resource management is its re-orientation to preserving and restoring ecological functions of ecosystems, among which the function of biodiversity maintenance plays an indicator role. The majority of today’s forests have not retained their natural appearance as the result of long-standing human impact. In this connection, refugia studies are becoming particularly interesting, as they give us an insight into the natural appearance of forests. Materials and methods. Studies were performed in dark conifer forests of the Pechora–Ilych reserve, in the lower reaches of the Bol’shaya Porozhnyaya River in 2013 yr. Vegetation data sampling was done at 50 temporary square plots of a fixed size (100 m2 randomly placed within a forest type. A list of plant species with species abundance was made for each forest layer. The overstorey (or tree canopy layer was denoted by the Latin letter A. The understorey layer (indicated by the letter B included tree undergrowth and tall shrubs. Ground vegetation was subdivided into the layers C and D. Layer C (field layer comprised the herbaceous species (herbs, grasses, sedges and dwarf shrubs together with low shrubs, tree and shrub seedlings. The height of the field layer was defined by the maximal height of the herbaceous species, ferns, and dwarf shrubs; the height varied from several cm to more than 200 cm in the ‘tall-herb’ forest types. Layer D (bottom layer included cryptogamic species (bryophytes and lichens. Species abundance in the each layer was usually assessed using the Braun-Blanquet cover scale (Braun-Blanquet 1928. The nomenclature used follows Cherepanov’s (1995 for vascular plants, and Ignatov & Afonina’s (1992. Results. The present article contains descriptions of unique tall-herb boreal forests of European Russia preserved in certain refugia which did not experience prolonged anthropogenic impact or any other catastrophes

  18. Decomposition of soil organic matter from boreal black spruce forest: Environmental and chemical controls

    Science.gov (United States)

    Wickland, K.P.; Neff, J.C.

    2008-01-01

    Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how changes in environmental conditions influence decomposition in these systems, and if substrate controls of decomposition vary with hydrologic and thermal regime. We addressed these issues by investigating the effects of temperature, moisture, and organic matter chemical characteristics on decomposition of fibric soil horizons from three black spruce forest sites. The sites varied in drainage and permafrost, and included a "Well Drained" site where permafrost was absent, and "Moderately well Drained" and "Poorly Drained" sites where permafrost was present at about 0.5 m depth. Samples collected from each site were incubated at five different moisture contents (2, 25, 50, 75, and 100% saturation) and two different temperatures (10??C and 20??C) in a full factorial design for two months. Organic matter chemistry was analyzed using pyrolysis gas chromatography-mass spectrometry prior to incubation, and after incubation on soils held at 20??C, 50% saturation. Mean cumulative mineralization, normalized to initial carbon content, ranged from 0.2% to 4.7%, and was dependent on temperature, moisture, and site. The effect of temperature on mineralization was significantly influenced by moisture content, as mineralization was greatest at 20??C and 50-75% saturation. While the relative effects of temperature and moisture were similar for all soils, mineralization rates were significantly greater for samples from the "Well Drained" site compared to the other sites. Variations in the relative abundances of polysaccharide-derivatives and compounds of undetermined source (such as toluene, phenol, 4-methyl phenol, and

  19. Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest

    Directory of Open Access Journals (Sweden)

    H. Aaltonen

    2012-06-01

    Full Text Available Soil provides an important source of volatile organic compounds (VOCs to atmosphere, but in boreal forests these fluxes and their seasonal variations have not been characterized in detail. Especially wintertime fluxes are almost completely unstudied. In this study, we measured the VOC concentrations inside the snowpack in a boreal Scots pine (Pinus sylvestris L. forest in southern Finland, using adsorbent tubes and air samplers installed permanently in the snow profile. Based on the VOC concentrations at three heights inside the snowpack, we estimated the fluxes of these gases. We measured 20 VOCs from the snowpack, monoterpenes being the most abundant group with concentrations varying from 0.11 to 16 μg m−3. Sesquiterpenes and oxygen-containing monoterpenes were also detected. Inside the pristine snowpack, the concentrations of terpenoids decreased from soil surface towards the surface of the snow, suggesting soil as the source for terpenoids. Forest damages (i.e. broken treetops and branches, fallen trees resulting from heavy snow loading during the measurement period increased the terpenoid concentrations dramatically, especially in the upper part of the snowpack. The results show that soil processes are active and efficient VOC sources also during winter, and that natural or human disturbance can increase forest floor VOC concentrations substantially. Our results stress the importance of soil as a source of VOCs during the season when other biological sources, such as plants, have lower activity.

  20. Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada.

    Science.gov (United States)

    Köster, Egle; Köster, Kajar; Berninger, Frank; Aaltonen, Heidi; Zhou, Xuan; Pumpanen, Jukka

    2017-12-01

    Forest fires are one of the most important natural disturbances in boreal forests, and their occurrence and severity are expected to increase as a result of climate warming. A combination of factors induced by fire leads to a thawing of the near-surface permafrost layer in subarctic boreal forest. Earlier studies reported that an increase in the active layer thickness results in higher carbon dioxide (CO 2 ) and methane (CH 4 ) emissions. We studied changes in CO 2 , CH 4 and nitrous oxide (N 2 O) fluxes in this study, and the significance of several environmental factors that influence the greenhouse gas (GHG) fluxes at three forest sites that last had fires in 2012, 1990 and 1969, and we compared these to a control area that had no fire for at least 100years. The soils in our study acted as sources of CO 2 and N 2 O and sinks for CH 4 . The elapsed time since the last forest fire was the only factor that significantly influenced all studied GHG fluxes. Soil temperature affected the uptake of CH 4 , and the N 2 O fluxes were significantly influenced by nitrogen and carbon content of the soil, and by the active layer depth. Results of our study confirm that the impacts of a forest fire on GHGs last for a rather long period of time in boreal forests, and are influenced by the fire induced changes in the ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest

    Science.gov (United States)

    Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.

    2015-01-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.

  2. The changing effects of Alaska's boreal forest on the climate system

    Science.gov (United States)

    E.S. Euskirchen; A.D. McGuire; F.S. Chapin; T.S. Rupp

    2010-01-01

    In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. We examine the type and magnitude of the climate feedbacks from boreal forests in...

  3. Use of ground-based radiometers for L-Band Freeze/Thaw retrieval in a boreal forest site

    Science.gov (United States)

    Roy, A.; Sonnentag, O.; Derksen, C.; Toose, P.; Pappas, C.; Mavrovic, A.; El Amine, M.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Barr, A.; Black, T. A.

    2017-12-01

    The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of the seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitutes an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. Recently, new L-Band satellite-derived F/T information has become available. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the ground surface to the satellite signal remains challenging. Here we present results from an ongoing campaign with two L-Band surface-based radiometers (SBR) installed on a micrometeorological tower at the Southern Old Black Spruce site (53.99°N / 105.12°W) in central Saskatchewan. One radiometer unit is installed on top of the tower viewing the multi-layer vegetation canopy from above. A second radiometer unit is installed within the multi-layer canopy, viewing the understory and the ground surface only. The objectives of our study are to (i) disentangle the L-Band F/T signal contribution of boreal forest overstory from the combined understory and ground surface contribution, and (ii) link the L-Band F/T signal to related boreal forest structural and functional characteristics. Analysis of these radiometer measurements made from September to November 2016 shows that when the ground surface is thawed, the main contributor to both radiometer signals is soil moisture. The Pearson correlation coefficient between brightness temperature (TB) at vertical polarization (V-pol) and soil permittivity is 0.79 for the radiometer above the canopy and 0.74 for the radiometer below the canopy. Under cold conditions when the soil was thawed (snow insulation) and the trees were frozen (below 0°C), TB at V-pol is negatively correlated with tree permittivity. The freezing tree contribution to

  4. Total and methyl mercury concentrations and fluxes from small boreal forest catchments in Finland

    International Nuclear Information System (INIS)

    Porvari, Petri; Verta, Matti

    2003-01-01

    Peatlands have higher methyl mercury output than uplands. - Total mercury (TotHg) and methyl mercury (MeHg) concentrations were studied in runoff from eight small (0.02-1.3 km 2 ) boreal forest catchments (mineral soil and peatland) during 1990-1995. Runoff waters were extremely humic (TOC 7-70 mg l -1 ). TotHg concentrations varied between 0.84 and 24 ng l -1 and MeHg between 0.03 and 3.8 ng l -1 . TotHg fluxes from catchments ranged from 0.92 to 1.8 g km -2 a -1 , and MeHg fluxes from 0.03 to 0.33 g km -2 a -1 . TotHg concentrations and output fluxes measured in runoff water from small forest catchments in Finland were comparable with those measured in other boreal regions. By contrast, MeHg concentrations were generally higher. Estimates for MeHg output fluxes in this study were comparable at sites with forests and wetlands in Sweden and North America, but clearly higher than those measured at upland or agricultural sites in other studies. Peatland catchments released more MeHg than pure mineral soil or mineral soil catchments with minor area of peatland

  5. Soil biogeochemistry properties vary between two boreal forest ecosystems in Quebec: significant differences in soil carbon, available nutrients and iron and aluminium crystallinity

    Science.gov (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-04-01

    At the northernmost extent of the managed forest in Quebec, the boreal forest is currently undergoing an ecological transition from closed-canopy black spruce-moss forests towards open-canopy lichen woodlands, which spread southward. Our study aim was to determine whether this shift could impact soil properties on top of its repercussions on forest productivity or carbon storage. We studied the soil biogeochemical composition of three pedological layers in moss forests (MF) and lichen woodlands (LW) north of the Manicouagan crater in Quebec. The humus layer (FH horizons) was significantly thicker and held more carbon, nitrogen and exchangeable Ca and Mg in MF plots than in LW plots. When considering mineral horizons, we found that the deep C horizon had a very close composition in both ecosystem plots, suggesting that the parent material was of similar geochemical nature. This was expected as all selected sites developed from glacial deposit. Multivariate analysis of surficial mineral B horizon showed however that LW B horizon displayed higher concentrations of Al and Fe oxides than MF B horizon, particularly for inorganic amorphous forms. Conversely, main exchangeable base cations (Ca, Mg) were higher in B horizon of MF than that of LW. Ecosystem types explained much of the variations in the B horizon geochemical composition. We thus suggest that the differences observed in the geochemical composition of the B horizon have a biological origin rather than a mineralogical origin. We also showed that total net stocks of carbon stored in MF soils were three times higher than in LW soils (FH + B horizons, roots apart). Altogether, we suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the of vegetation structure (stand density) and composition (ground cover type) and their subsequent consequences on soil environmental

  6. Global climate change adaptation: examples from Russian boreal forests

    International Nuclear Information System (INIS)

    Krankina, O.N.; Dixon, R.K.; Kirilenko, A.P.; Kobak, K.I.

    1997-01-01

    The Russian Federation contains approximately 20% of the world's timber resources and more than half of all boreal forests. These forests play a prominent role in environmental protection and economic development at global, national, and local levels, as well as, provide commodities for indigenous people and habitat for a variety of plant and animal species. The response and feedbacks of Russian boreal forests to projected global climate change are expected to be profound. Current understanding of the vulnerability of Russian forest resources to projected climate change is discussed and examples of possible adaptation measures for Russian forests are presented including: (1) artificial forestation techniques that can be applied with the advent of failed natural regeneration and to facilitate forest migration northward; (2) silvicultural measures that can influence the species mix to maintain productivity under future climates; (3) identifying forests at risk and developing special management adaption measures for them: (4) alternative processing and uses of wood and non-wood products from future forests; and (5) potential future infrastructure and transport systems that can be employed as boreal forests shift northward into melting permafrost zones. Current infrastructure and technology can be employed to help Russian boreal forests adapt to projected global environmental change, however many current forest management practices may have to be modified. Application of this technical knowledge can help policymakers identify priorities for climate change adaptation

  7. Simulation of Forest Cover Dynamics for Eastern Eurasian Boreal Forests

    Science.gov (United States)

    Shugart, H. H.; Yan, X.; Zhang, N.; Isaev, A. S.; Shuman, J. K.

    2006-12-01

    We are developing and testing a boreal zone forest dynamics model capable of simulating the forest cover dynamics of the Eurasian boreal forest, a major biospheric ecosystem with potentially large roles in the planetary carbon cycle and in the feedback between terrestrial surface and the atmosphere. In appreciating the role of this region in the coupling between atmosphere and terrestrial surface, on must understand the interactions between CO2 source/sink relationships (associated with growing or clearing forests) and the albedo effects (from changes in terrestrial surface cover). There is some evidence that in the Eurasian Boreal zone, the Carbon budget effects from forest change may oppose the albedo changes. This creates complex feedbacks between surface and atmosphere and motivates the need for a forest dynamics model that simultaneous represents forest vegetation and carbon storage and release. A forest dynamics model applied to Eastern Eurasia, FAREAST, has been tested using three types of information: 1. Direct species composition comparisons between simulated and observed mature forests at the same locations; 2. Forest type comparisons between simulated and observed forests along altitudinal gradients of several different mountains; 3. Comparison with forest stands in different succession stages of simulated forests. Model comparisons with independent data indicate the FAREAST model is capable of representing many of the broad features of the forests of Northeastern China. After model validation in the Northeast China region, model applications were developed for the forests of the Russian Far East. Continental-scale forest cover can be simulated to a relatively realistic degree using a forest gap model with standard representations of individual-plant processes. It appears that such a model, validated relatively locally in this case, in Northeastern China, can then be applied over a much larger region and under conditions of climatic change.

  8. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    Science.gov (United States)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  9. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland

    Science.gov (United States)

    Lara, M.; Genet, Helene; McGuire, A. David; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.

    2016-01-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  10. Nitrogen alters carbon dynamics during early succession in boreal forest

    Science.gov (United States)

    Steven D. Allison; Tracy B. Gartner; Michelle C. Mack; Krista McGuire; Kathleen. Treseder

    2010-01-01

    Boreal forests are an important source of wood products, and fertilizers could be used to improve forest yields, especially in nutrient poor regions of the boreal zone. With climate change, fire frequencies may increase, resulting in a larger fraction of the boreal landscape present in early successional stages. Since most fertilization studies have focused on mature...

  11. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Science.gov (United States)

    Miesel, Jessica R.; Hockaday, William C.; Kolka, Randall K.; Townsend, Philip A.

    2015-06-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition of postfire SOM. We sampled the forest floor layer (i.e., full organic horizon) and 0-10 cm mineral soil from stands dominated by coniferous (Pinus banksiana Lamb.) or deciduous (Populus tremuloides Michx.) species 1-2 months after the 2011 Pagami Creek wildfire in northern Minnesota. We used solid-state 13C NMR to characterize SOM composition across a gradient of fire severity in both forest cover types. SOM composition was affected by fire, even when no statistically significant losses of total C stocks were evident. The most pronounced differences in SOM composition between burned and unburned reference areas occurred in the forest floor for both cover types. Carbohydrate stocks in forest floor and mineral horizons decreased with severity level in both cover types, whereas pyrogenic C stocks increased with severity in the coniferous forest floor and decreased in only the highest severity level in the deciduous forest floor. Loss of carbohydrate and lignin pools contributed to a decreased SOM stability index and increased decomposition index. Our results suggest that increases in fire severity expected to occur under future climate scenarios may lead to changes in SOM composition and dynamics with consequences for postfire forest recovery and C uptake.

  12. Controls on moss evaporation in a boreal black spruce forest

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    [1] Mosses are an important component of the boreal forest, but little is known about their contribution to ecosystem carbon, water, and energy exchange. We studied the role of mosses in boreal forest evapotranspiration by conducting two experiments in a black spruce forest in Fairbanks, Alaska.

  13. Shifts in microbial communities and soil nutrients along a fire chronosequence in Alaskan boreal forest

    Science.gov (United States)

    Treseder, K. K.; Mack, M. C.; Cross, A.

    2002-12-01

    Fires are important pathways of carbon loss from boreal forests, while microbial communities form equally important mechanisms for carbon accumulation between fires. We used a chronosequence in Alaska to examine shifts in microbial abundance and community composition in the several decades following severe fire, and then related these responses to soil characteristics in the same sites. The sites are located in upland forests near Delta Junction, Alaska, and represent stages at 3-, 15-, 45-, and over 100-yr following fire. Plant communities shift from herbaceous species in the youngest site, to deciduous shrubs and trees (e.g. Populus tremuloides and Salix) in the intermediate sites, to black spruce (Picea mariana) forest in the oldest site. Soil organic matter accumulated 2.8-fold over time. Potential mineralization was highest in the intermediate-aged sites, as was nitrification and standing pools of inorganic nitrogen. In contrast, inorganic phosphorus pools were highest immediately following fire, and then decreased nine-fold with age. As measured with BiologTM plates, bacterial diversity and abundance were greatest in the oldest sites. Plant roots in the intermediate-aged sites displayed higher colonization by ecto- and arbuscular mycorrhizal fungi than those in the youngest and oldest sites. Likewise, glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi, was most abundant in the 14-yr old site. Glomalin is believed to contribute to the formation of water-stable aggregates in the soil. However, water stable aggregates were most abundant in the younger sites and did not follow the pattern of glomalin or arbuscular mycorrhizal abundance. Our results indicate that fire may maintain landscape-level diversity of microbial functional groups, and that carbon sequestration in microbial tissues (e.g. glomalin and fungal biomass) may be greatest in areas that have burned several decades earlier. Changes in soil structure may not be directly attributable to

  14. Element interactions and soil properties affecting the soil-to-plant transfer of six elements relevant to radioactive waste in boreal forest

    International Nuclear Information System (INIS)

    Roivainen, Paeivi; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka

    2012-01-01

    Cobalt (Co), lead (Pb), molybdenum (Mo), nickel (Ni), uranium (U), and zinc (Zn) are among the elements that have radioactive isotopes in radioactive waste. Soil-to-plant transfer is a key process for possible adverse effects if these radionuclides are accidentally released into the environment. The present study aimed at investigating factors affecting such transfer in boreal forest. The plant species studied were blueberry (Vaccinium myrtillus), May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana), rowan (Sorbus aucuparia) and Norway spruce (Picea abies). Regression analyses were carried out to investigate the effects of the chemical composition and physical properties of soil on the soil-to-leaf/needle concentration ratios of Co, Mo, Ni, Pb, U and Zn. Soil potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P) and sulphur (S) concentrations were the most important factors affecting the soil-to-plant transfer of the elements studied. Soil clay and organic matter contents were found to significantly affect plant uptake of Mo, Pb and U. Knowledge of the effects of these factors is helpful for interpretation of the predictions of radioecological models describing soil-to-plant transfer and for improving such models. (orig.)

  15. Element interactions and soil properties affecting the soil-to-plant transfer of six elements relevant to radioactive waste in boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Roivainen, Paeivi; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka [University of Eastern Finland, Department of Environmental Science, Kuopio (Finland)

    2012-03-15

    Cobalt (Co), lead (Pb), molybdenum (Mo), nickel (Ni), uranium (U), and zinc (Zn) are among the elements that have radioactive isotopes in radioactive waste. Soil-to-plant transfer is a key process for possible adverse effects if these radionuclides are accidentally released into the environment. The present study aimed at investigating factors affecting such transfer in boreal forest. The plant species studied were blueberry (Vaccinium myrtillus), May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana), rowan (Sorbus aucuparia) and Norway spruce (Picea abies). Regression analyses were carried out to investigate the effects of the chemical composition and physical properties of soil on the soil-to-leaf/needle concentration ratios of Co, Mo, Ni, Pb, U and Zn. Soil potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P) and sulphur (S) concentrations were the most important factors affecting the soil-to-plant transfer of the elements studied. Soil clay and organic matter contents were found to significantly affect plant uptake of Mo, Pb and U. Knowledge of the effects of these factors is helpful for interpretation of the predictions of radioecological models describing soil-to-plant transfer and for improving such models. (orig.)

  16. Mosaic boreal landscapes with open and forested wetlands

    International Nuclear Information System (INIS)

    Sjoeberg, K.; Ericson, L.

    1997-01-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man's past and present impact and outline a strategy for conservation. The boreal landscape was earlier characterized by a mosaic of open and forested wetlands and forests. Drainage and felling operation have largely changed that pattern. Several organisms depend upon the landscape mosaic. Natural ecotones between mire and forest provide food resources predictable in space and time contrasting to unpredictable edges in the silvicultured landscape. The mosaic is also a prerequisite for organisms dependent on non-substitutable resources in the landscape. The importance of swamp forests has increased as they function as refugia for earlier more widespread old-growth species. Programmes for maintaining biodiversity in the boreal landscape should include the following points. First, the natural mosaic with open and forested wetlands must be maintained. Second, swamp forests must receive a general protection as they often constitute the only old-growth patches in the landscape. Third, we need to restore earlier disturbance regimes. Present strategy plans for conservation are insufficient, as they imply that a too large proportion of boreal organisms will not be able to survive outside protected areas. Instead, we need to focus more on how to preserve organisms in the man-influenced landscape. As a first step we need to understand how organisms are distributed in landscapes at various spatial scales. We need studies in landscapes where the original mosaic has faced various degrees of fragmentation. (au) 124 refs

  17. Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Tuovinen, Tiina S.; Roivainen, Paeivi, E-mail: paivi.roivainen@uef.fi; Makkonen, Sari; Kolehmainen, Mikko; Holopainen, Toini; Juutilainen, Jukka

    2011-12-01

    Element-specific concentration ratios (CRs) assuming that plant uptake of elements is linear are commonly used in radioecological modelling to describe the soil-to-plant transfer of elements. The goal of this study was to investigate the validity of the linearity assumption in boreal forest plants, for which only limited relevant data are available. The soil-to-plant transfer of three essential (Mo, Ni, Zn) and two non-essential (Pb, U) elements relevant to the safety of radioactive waste disposal was studied. Three understory species (blueberry, narrow buckler fern and May lily) and two tree species (Norway spruce and rowan) were included. Examining CRs as a function of soil concentration showed that CR was not constant but decreased with increasing soil concentrations for all elements and plant species. A non-linear equation fitted fairly well with the empirical data; the R{sup 2}-values for this equation were constantly higher than those for the linear fit. The difference between the two fits was most evident at low soil concentrations where the use of constant CRs underestimated transfer from soil to plants. Site-specific factors affected the transfer of Mo and Ni. The results suggested that systematic variation with soil concentrations explains a part of the large variation of empirically determined CRs, and the accuracy of modelling the soil-to-plant transfer might be improved by using non-linear methods. Non-linearity of soil-to-plant transfer has been previously reported for a few different species, elements and environments. The present study systematically tested the linearity assumption for five elements (both essential and non-essential) and in five boreal forest species representing different growth traits and phylogenies. The data supported non-linearity in all cases.

  18. Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species

    International Nuclear Information System (INIS)

    Tuovinen, Tiina S.; Roivainen, Päivi; Makkonen, Sari; Kolehmainen, Mikko; Holopainen, Toini; Juutilainen, Jukka

    2011-01-01

    Element-specific concentration ratios (CRs) assuming that plant uptake of elements is linear are commonly used in radioecological modelling to describe the soil-to-plant transfer of elements. The goal of this study was to investigate the validity of the linearity assumption in boreal forest plants, for which only limited relevant data are available. The soil-to-plant transfer of three essential (Mo, Ni, Zn) and two non-essential (Pb, U) elements relevant to the safety of radioactive waste disposal was studied. Three understory species (blueberry, narrow buckler fern and May lily) and two tree species (Norway spruce and rowan) were included. Examining CRs as a function of soil concentration showed that CR was not constant but decreased with increasing soil concentrations for all elements and plant species. A non-linear equation fitted fairly well with the empirical data; the R 2 -values for this equation were constantly higher than those for the linear fit. The difference between the two fits was most evident at low soil concentrations where the use of constant CRs underestimated transfer from soil to plants. Site-specific factors affected the transfer of Mo and Ni. The results suggested that systematic variation with soil concentrations explains a part of the large variation of empirically determined CRs, and the accuracy of modelling the soil-to-plant transfer might be improved by using non-linear methods. Non-linearity of soil-to-plant transfer has been previously reported for a few different species, elements and environments. The present study systematically tested the linearity assumption for five elements (both essential and non-essential) and in five boreal forest species representing different growth traits and phylogenies. The data supported non-linearity in all cases.

  19. Microbial transformations of C and N in a boreal forest floor as affected by temperature

    NARCIS (Netherlands)

    Verburg, P.S.J.; Dam, van D.; Hefting, M.M.; Tietema, A.

    1999-01-01

    The effects of temperature on N mineralization were studied in two organic surface horizons (LF and H) of soil from a boreal forest. The soil was incubated at 5 °C and 15 °C after adding 15 N and gross N fluxes were calculated using a numerical simulation model. The model was calibrated on microbial

  20. Newtonian boreal forest ecology

    OpenAIRE

    Hari, Pertti; Aakala, Tuomas; Aalto, Juho; Bäck, Jaana; Hollmén, Jaakko; Jõgiste, Kalev; Koupaei, Kourosh Kabiri; Kähkönen, Mika A.; Korpela, Mikko; Kulmala, Liisa; Nikinmaa, Eero; Pumpanen, Jukka; Salkinoja-Salonen, Mirja; Schiestl-Aalto, Pauliina; Simojoki, Asko

    2017-01-01

    Isaac Newton's approach to developing theories in his book Principia Mathematica proceeds in four steps. First, he defines various concepts, second, he formulates axioms utilising the concepts, third, he mathematically analyses the behaviour of the system defined by the concepts and axioms obtaining predictions and fourth, he tests the predictions with measurements. In this study, we formulated our theory of boreal forest ecosystems, called NewtonForest, following the four steps introduced by...

  1. Who is the new sheriff in town regulating boreal forest growth?

    Science.gov (United States)

    Park Williams, A.; Xu, Chonggang; McDowell, Nate G.

    2011-12-01

    -induced drought stress (Barber et al 2000). Notably, this response may be more complicated than simply a decline in soil moisture. Even when soil moisture is plentiful, warming can negatively impact plant growth and survival by causing increased respiratory consumption of stored carbohydrates (McDowell 2011) and decreased stomatal conductance due to hydraulic limitation (Flexas et al 2004). Some degree of acclimation may be occurring, as white spruce populations that experience moderate temperatures and precipitation have lower optimal growth temperatures than populations at warmer, drier sites do (figure 1(c)). Yet, populations at the warmest or driest sites show strong growth declines during warm periods, consistent with a decline in the viability of these populations in some regions (Goetz et al 2005, Beck and Goetz 2011, Beck et al 2011). Can interior boreal forests acclimate to the current era's rapid warming? Or will temperatures within interior boreal forests outpace or extend beyond the adaptive capabilities of boreal tree species? The answer remains a mystery, partly because important aspects of acclimation are still poorly understood, and partly because of other important processes such as wildfire and increases in CO2 concentration, nitrogen deposition, growing-season length, and tropospheric ozone concentration. Figure 1 Figure 1. Relationships between white spruce tree-ring widths and climate at 59 sites in Alaska. (a) Annual correlation between ring-width index and June-July average temperature during years when June--July temperature was colder (blue bars) and warmer (red bars) than average. Pairs of bars represent the coldest 20 sites (left), 19 sites with intermediate temperature (middle) and the warmest 20 sites (right). (b) Spline curves that represent the best-fit relationship between temperature (x-axis) and ring-width index variability (y-axis) at cold sites (blue line), intermediate sites (black line) and warm sites (orange line). (c) Same as (b) but for

  2. Rock, Paper, Protest: The Fight for the Boreal Forest

    Science.gov (United States)

    Gunz, Sally; Whittaker, Linda

    2016-01-01

    Canada's boreal forests are second only to the Amazon in producing life-giving oxygen and providing a habitat for thousands of species, from the large woodland caribou to the smallest organisms. The boreal forests are the lifeblood of many Aboriginal communities and the thousands of workers, Aboriginal and non-Aboriginal, who harvest and process…

  3. Plant hydraulic strategies and their variability at high latitudes: insights from a southern Canadian boreal forest site

    Science.gov (United States)

    Pappas, C.; Matheny, A. M.; Maillet, J.; Baltzer, J. L.; Stephens, J.; Barr, A.; Black, T. A.; Sonnentag, O.

    2016-12-01

    Boreal forests cover about one third of the world's forested area with a large part of the boreal zone located in Canada. These high-latitude ecosystems respond rapidly to environmental changes. Plant water stress and the resulting drought-induced mortality has been recently hypothesised as a major driver of forest changes in western Canada. Although boreal forests often exhibit low floristic complexity, local scale abiotic heterogeneities may lead to highly variable plant functional traits and thus to diverging plant responses to environmental changes. However, detailed measurements of plant hydraulic strategies and their inter- and intra-specific variability are still lacking for these ecosystems. Here, we quantify plant water use and hydraulic strategies of black spruce (Picea mariana) and larch (Larix laricina), that are widespread in the boreal zone, at a long-term monitoring site located in central Saskatchewan (53.99° N, 105.12° W; elevation 628.94 m a.s.l.). The site is characterized by a mature black spruce overstorey that dominates the landscape with few larch individuals. The ground cover consists mainly of mosses with some peat moss and lichens over a rich soil organic layer. Tree-level sap flux density, measured with Granier-style thermal dissipation probes (N=39), and concurrently recorded radial stem dynamics, measured with high frequency dendrometers (N=13), are used to quantify plant hydraulic functioning during the 2016 growing season. Hydrometeorological measurements, including soil moisture and micrometeorological data, are used to describe environmental constraints in plant water use. Tree-level dynamics are then integrated to the landscape and compared with ecosystem-level evapotranspiration measurements from an adjacent eddy-covariance flux tower. This experimental design allows us to quantify the main environmental drivers that shape plant hydraulic strategies in this southern boreal zone and to provide new insights into the inter- and

  4. Resilience of Alaska's Boreal Forest to Climatic Change

    Science.gov (United States)

    Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.; hide

    2010-01-01

    This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  5. Microbial activities in boreal soils: Biodegradation of organic contaminants at low temperature and ammonia oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kurola, J. (University of Helsinki, Faculty of Biosciences, Department of Ecological and Environmental Sciences, Lahti (FI))

    2006-07-01

    This thesis deals with the response of biodegradation of selected anthropogenic organic contaminants and natural autochthonous organic matter to low temperature in boreal surface soils. Furthermore, the thesis describes activity, diversity and population size of autotrophic ammonia-oxidizing bacteria (AOB) in a boreal soil used for landfarming of oil-refinery wastes, and presents a new approach, in which the particular AOB were enriched and cultivated in situ from the landfarming soil onto cation exchange membranes. This thesis demonstrates that rhizosphere fraction of natural forest humus soil and agricultural clay loam soil from Helsinki Metropolitan area were capable of degrading of low to moderate concentrations (0.2 - 50 mug cm-3) of PCP, phenanthrene and 2,4,5-TCP at temperatures realistic to boreal climate (-2.5 to +15 deg C). At the low temperatures, the biodegradation of PCP, phenanthrene and 2,4,5-TCP was more effective (Q10-values from 1.6 to 7.6) in the rhizosphere fraction of the forest soil than in the agricultural soil. Q10-values of endogenous soil respiration (carbon dioxide evolution) and selected hydrolytic enzyme activities (acetate-esterase, butyrate-esterase and beta-glucosidase) in acid coniferous forest soil were 1.6 to 2.8 at temperatures from -3 to +30 deg C. The results indicated that the temperature dependence of decomposition of natural autochthonous soil organic matter in the studied coniferous forest was only moderate. The numbers of AOB in the landfarming (sandy clay loam) soil were determined with quantitative polymerase chain reaction (real-time PCR) and with Most Probable Number (MPN) methods, and potential ammonium oxidation activity was measured with the chlorate inhibition technique. The results indicated presence of large and active AOB populations in the heavily oil-contaminated and urea-fertilised landfarming soil. Assessment of the populations of AOB with denaturing gradient gel electrophoresis (DGGE) profiling and sequence

  6. Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests

    OpenAIRE

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A.; Badmaeva, Natalya K.; Sandanov, Denis V.

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal fore...

  7. Resilience of Alaska's boreal forest to climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, F.S. III; Ruess, R.W.; Euskirchen, E.S.; Jones, J.B.; Kielland, K.; Taylor, D.L. [Alaska Univ., Fairbanks, AK (United States). Dept. of Biology, Inst. of Arctic Biology; McGuire, A.D. [United Sates Geological Survey, Fairbanks, AK (United States). Alaska Cooperative Fish and Wildlife Research Unit; Alaska Univ., Fairbanks, AK (United States); Hollingsworth, T.N. [United States Dept. of Agriculture, Portland, OR (United States). Forest Services, Pacific Northwest Research Station; Alaska Univ., Fairbanks, AK (United States); Mack, M.C. [Florida Univ., Gainesville, FL (United States). Dept. of Botany; Johnstone, J.F. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Biology; Kasischke, E.S. [Maryland Univ., College Park, MD (United States). Dept. of Geography; Jorgenson, M.T. [Alaska Ecoscience, Fairbanks, AK (United States); Kofinas, G.P. [Alaska Univ., Fairanks, AK (United States). School of Natural Resources and Agricultureal Sciences, Inst. of Arctic Biology; Turetsky, M.R. [Guelph Univ., Guelph, ON (Canada). Dept. of Integrative Biology; Yarie, J. [Alaska Univ., Fairbanks, AK (United States). Dept. of Forest Sciences, Forest Soils Laboratory; Lloyd, A.H. [Middlebury College, Middlebury, VT (United States). Dept. of Biology

    2010-07-15

    This paper reported on a study that evaluated the resilience of Alaska's boreal forest system to rapid climatic change. As the most northern and coldest forested biome, the boreal forest is underlain by discontinuous permafrost. High-latitude amplification of global warming has caused Alaska's boreal forest to warm twice as rapidly as the global average. Recent warming has resulted in reduced growth of dominant tree species, plant disease, insect outbreaks, thawing of permafrost, drying of lakes and increased wildfires. These changes have modified key structural features in the boreal forest, including long-term landscape-scale change in carbon stocks. This study reviewed the findings of the Bonanza Creek Long-Term Ecological Research program and determined that the Alaskan boreal system remains quite resilient but is undergoing changes in ecosystem and landscape structure, feedbacks, and interactions that, with continued warming, will likely cause reorganization or potentially transformation to a fundamentally different system. Permafrost will also remain relatively resilient to continued warming except in high-ice-content lowlands and in areas burned by severe wildfires. The greatest sources of uncertainty are changes in snow cover, which will influence the rate at which these changes occur. 71 refs., 2 figs.

  8. The effects of boreal forest expansion on the summer Arctic frontal zone

    Energy Technology Data Exchange (ETDEWEB)

    Liess, Stefan; Snyder, Peter K.; Harding, Keith J. [University of Minnesota, Department of Soil, Water, and Climate, Saint Paul, MN (United States)

    2012-05-15

    Over the last 100 years, Arctic warming has resulted in a longer growing season in boreal and tundra ecosystems. This has contributed to a slow northward expansion of the boreal forest and a decrease in the surface albedo. Corresponding changes to the surface and atmospheric energy budgets have contributed to a broad region of warming over areas of boreal forest expansion. In addition, mesoscale and synoptic scale patterns have changed as a result of the excess energy at and near the surface. Previous studies have identified a relationship between the positioning of the boreal forest-tundra ecotone and the Arctic frontal zone in summer. This study examines the climate response to hypothetical boreal forest expansion and its influence on the summer Arctic frontal zone. Using the Weather Research and Forecasting model over the Northern Hemisphere, an experiment was performed to evaluate the atmospheric response to expansion of evergreen and deciduous boreal needleleaf forests into open shrubland along the northern boundary of the existing forest. Results show that the lower surface albedo with forest expansion leads to a local increase in net radiation and an average hemispheric warming of 0.6 C at and near the surface during June with some locations warming by 1-2 C. This warming contributes to changes in the meridional temperature gradient that enhances the Arctic frontal zone and strengthens the summertime jet. This experiment suggests that continued Northern Hemisphere high-latitude warming and boreal forest expansion might contribute to additional climate changes during the summer. (orig.)

  9. Plant component features of forest-bog ecotones of eutrophic paludification in the south of boreal forest zone of West Siberia

    Science.gov (United States)

    Klimova, N. V.; Chernova, N. A.; Pologova, N. N.

    2018-03-01

    Paludified forests formed in transitional forest-bog zone aren’t studied enough, inspite of its high expected diversity and large areas in the south of boreal forest zone of West Siberia. In this article wet birch (Betula pubescens) forests of forest-bog ecotones of eutrophic paludification are investigated on Vasyugan plain with nutrient-rich calcareous clays as soil-forming rocks. Species diversity and ecocoenotic structure of these phytocoenoses are discussed. They correlated with wetness and nutrient-availability of habitats evaluated with indicator values of plants. The participation of hydrophylous species is increasing as wetness of habitats increasing in the forest-to-bog direction like in mesotrophic paludification series. However the number of species is higher in the phytocoenoses of eutrophic paludification. The share of species required to nutrient availability is also higher, both in number and in abundance. A lot of these species are usual for eutrophic boreal forested swamps with groundwater input and absent in forests of mesotrophic paludification. Accordingly the nutrient-availability of habitats is also higher. All these features we connect with birch to be a forest forming species instead of dark-coniferous and with the influence of nutrient-rich parent rocks, which is evident in forest-bog ecotones of Vasyugan plain gradually decreasing together with peat horizon thickening.

  10. Identifying forest patterns from space to explore dynamics across the circumpolar boreal

    Science.gov (United States)

    Montesano, P. M.; Neigh, C. S. R.; Feng, M.; Channan, S.; Sexton, J. O.; Wagner, W.; Wooten, M.; Poulter, B.; Wang, L.

    2017-12-01

    A variety of forest patterns are the result of interactions between broad-scale climate and local-scale site factors and history across the northernmost portion of the circumpolar boreal. Patterns of forest extent, height, and cover help describe forest structure transitions that influence future and reflect past dynamics. Coarse spaceborne observations lack structural detail at forest transitions, which inhibits understanding of these dynamics. We highlight: (1) the use of sub-meter spaceborne stereogrammetry for deriving structure estimates in boreal forests; (2) its potential to complement other spaceborne estimates of forest structure at critical scales; and (3) the potential of these sub-meter and other Landsat-derived structure estimates for improving understanding of broad-scale boreal dynamics such as carbon flux and albedo, capturing the spatial variability of the boreal-tundra biome boundary, and assessing its potential for change.

  11. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    Science.gov (United States)

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  12. Nitrous oxide fluxes from forest floor, tree stems and canopies of boreal tree species during spring

    Science.gov (United States)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2017-04-01

    Boreal forests are considered as small sources of atmospheric nitrous oxide (N2O) due to microbial N2O production in the soils. Recent evidence shows that trees may play an important role in N2O exchange of forest ecosystems by offering pathways for soil produced N2O to the atmosphere. To confirm magnitude, variability and the origin of the tree mediated N2O emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured forest floor, tree stem and shoot N2O exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in Southern Finland (61˚ 51´N, 24˚ 17´E, 181 a.s.l.). The fluxes were measured in silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation cover and forest structure. The aim was to study the vertical profile of N2O fluxes at stem level and to observe temporal changes in N2O fluxes over the beginning of the growing season. The N2O exchange was determined using the static chamber technique and gas chromatographic analyses. Scaffold towers were used for measurements at multiple stem heights and at the canopy level. Overall, the N2O fluxes from the forest floor and trees at both sites were very small and close to the detection limit. The measured trees mainly emitted N2O from their stems and shoots, while the forest floor acted as a sink of N2O at the paludified site and as a small source of N2O at the mineral soil site. Stem emissions from all the trees at both sites were on average below 0.5 μg N2O m-2 of stem area h-1, and the shoot emissions varied between 0.2 and 0.5 ng N2O m-2 g-1 dry biomass. When the N2O fluxes were scaled up to the whole forest ecosystem, based on the tree biomass and stand density, the N2O emissions from birch and spruce trees at the paludified site

  13. Experimental soil warming effects on C, N, and major element cycling in a low elevation spruce-fir forest soil

    Science.gov (United States)

    Lindsey E. Rustad; Ivan J. Fernandez; Stephanie Arnold

    1996-01-01

    The effect of global warming on north temperate and boreal forest soils has been the subject of much recent debate. These soils serve as major reservoirs for C, N, and other nutrients necessary for forest growth and productivity. Given the uncertainties in estimates of organic matter turnover rates and storage, it is unclear whether these soils will serve as short or...

  14. Effects of warming on the structure and function of a boreal black spruce forest

    Energy Technology Data Exchange (ETDEWEB)

    Stith T.Gower

    2010-03-03

    A strong argument can be made that there is a greater need to study the effect of warming on boreal forests more than on any other terrestrial biome. Boreal forests, the second largest forest biome, are predicted to experience the greatest warming of any forest biome in the world, but a process-based understanding of how warming will affect the structure and function of this economically and ecologically important forest biome is lacking. The effects of warming on species composition, canopy structure and biogeochemical cycles are likely to be complex; elucidating the underlying mechanisms will require long-term whole-ecosystem manipulation to capture all the complex feedbacks (Shaver et al. 2000, Rustad et al. 2001, Stromgren 2001). The DOE Program for Ecosystem Research funded a three year project (2002-2005) to use replicated heated chambers on soil warming plots in northern Manitoba to examine the direct effects of whole-ecosystem warming. We are nearing completion of our first growing season of measurements (fall 2004). In spite of the unforeseen difficulty of installing the heating cable, our heating and irrigation systems worked extremely well, maintaining environmental conditions within 5-10% of the specified design 99% of the time. Preliminary data from these systems, all designed and built by our laboratory at the University of Wisconsin, support our overall hypothesis that warming will increase the carbon sink strength of upland boreal black spruce forests. I request an additional three years of funding to continue addressing the original objectives: (1) Examine the effect of warming on phenology of overstory, understory and bryophyte strata. Sap flux systems and dendrometer bands, monitored by data loggers, will be used to quantify changes in phenology and water use. (2) Quantify the effects of warming on nitrogen and water use by overstory, understory and bryophytes. (3) Compare effects of warming on autotrophic respiration and above- and belowground

  15. Development of biogenic VOC emission inventories for the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, V.

    2008-07-01

    The volatile organic compounds (VOCs) emitted by vegetation, especially forests, can affect local and regional atmospheric photochemistry through their reactions with atmospheric oxidants. Their reaction products may also participate in the formation and growth of new particles which affect the radiation balance of the atmosphere, and thus climate, by scattering and absorbing shortwave and longwave radiation and by modifying the radiative properties, amount and lifetime of clouds. Globally, anthropogenic VOC emissions are far surpassed by the biogenic ones, making biogenic emission inventories an integral element in the development of efficient air quality and climate strategies. The inventories are typically constructed based on landcover information, measured emissions of different plants or vegetation types, and empirical dependencies of the emissions on environmental variables such as temperature and light. This thesis is focused on the VOC emissions from the boreal forest, the largest terrestrial biome with characteristic vegetation patterns and strong seasonality. The isoprene, monoterpene and sesquiterpene emissions of the most prevalent boreal tree species in Finland, Scots pine, have been measured and their seasonal variation and dependence on temperature and light have been studied. The measured emission data and other available observations of the emissions of the principal boreal trees have been used in a biogenic emission model developed for the boreal forests in Finland. The model utilizes satellite landcover information, Finnish forest classification and hourly meteorological data to calculate isoprene, monoterpene, sesquiterpene and other VOC emissions over the growing season. The principal compounds emitted by Scots pine are DELTA3-carene and alpha-pinene in the south boreal zone and alpha- and beta-pinene in the north boreal zone. The monoterpene emissions are dependent on temperature and have a clear seasonal cycle with high emissions in spring

  16. Main dynamics and drivers of boreal forests fire regimes during the Holocene

    Science.gov (United States)

    Molinari, Chiara; Lehsten, Veiko; Blarquez, Olivier; Clear, Jennifer; Carcaillet, Christopher; Bradshaw, Richard HW

    2015-04-01

    Forest fire is one of the most critical ecosystem processes in the boreal megabiome, and it is likely that its frequency, size and severity have had a primary role in vegetation dynamics since the Last Ice Age (Kasischke & Stocks 2000). Fire not only organizes the physical and biological attributes of boreal forests, but also affects biogeochemical cycling, particularly the carbon balance (Balshi et al. 2007). Due to their location at climatically sensitive northern latitudes, boreal forests are likely to be significantly affected by global warming with a consequent increase in biomass burning (Soja et al. 2007), a variation in vegetation structure and composition (Johnstone et al. 2004) and a rise in atmospheric carbon dioxide concentration (Bond-Lamberty et al. 2007). Even if the ecological role of wildfire in boreal forest is widely recognized, a clearer understanding of the environmental factors controlling fire dynamics and how variations in fire regimes impact forest ecosystems is essential in order to place modern fire processes in a meaningful context for projecting ecosystem behaviour in a changing environment (Kelly et al. 2013). Because fire return intervals and successional cycles in boreal forests occur over decadal to centennial timescales (Hu et al. 2006), palaeoecological research seems to be one of the most promising tool for elucidating ecosystem changes over a broad range of environmental conditions and temporal scales. Within this context, our first aim is to reconstruct spatial and temporal patterns of boreal forests fire dynamics during the Holocene based on sedimentary charcoal records. As a second step, trends in biomass burning will be statistically analysed in order to disentangle between regional and local drivers. The use of European and north-American sites will give us the unique possibility to perform a large scale analysis on one of the broadest biome in the world and to underline the different patterns of fire in these two

  17. Boreal forests and atmosphere - Biosphere exchange of carbon dioxide

    Science.gov (United States)

    D'Arrigo, Rosanne; Jacoby, Gordon C.; Fung, Inez Y.

    1987-01-01

    Two approaches to investigating the role of boreal forests in the global carbon cycle are presented. First, a tracer support model which incorporates the normalized-difference vegetation index obtained from advanced, very high resolution radiometer radiances was used to simulate the annual cycle of CO2 in the atmosphere. Results indicate that the seasonal growth of the combined boreal forests of North America and Eurasia accounts for about 50 percent of the mean seasonal CO2 amplitude recorded at Pt. Barrow, Alaska and about 30 percent of the more globally representative CO2 signal at Mauna Loa, Hawaii. Second, tree-ring width data from four boreal treeline sites in northern Canada were positively correlated with Pt. Barrow CO2 drawdown for the period 1971-1982. These results suggest that large-scale changes in the growth of boreal forests may be contributing to the observed increasing trend in CO2 amplitude. They further suggest that tree-ring data may be applicable as indices for CO2 uptake and remote sensing estimates of photosynthetic activity.

  18. Resilience of Alaska’s boreal forest to climatic change

    Science.gov (United States)

    Chapin, F.S.; McGuire, A. David; Ruess, Roger W.; Hollingsworth, Teresa N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; Kielland, K.; Kofinas, G.; Turetsky, M.R.; Yarie, J.; Lloyd, A.H.; Taylor, D.L.

    2010-01-01

    This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska’s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social–ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  19. Vulnerability to climate-induced changes in ecosystem services of boreal forests

    Science.gov (United States)

    Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko

    2016-04-01

    Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.

  20. Fuel-reduction management alters plant composition, carbon and nitrogen pools, and soil thaw in Alaskan boreal forest

    Science.gov (United States)

    Melvin, April M.; Celis, Gerardo; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.; Rupp, T. Scott; Mack, Michelle C.

    2018-01-01

    Increasing wildfire activity in Alaska's boreal forests has led to greater fuel-reduction management. Management has been implemented to reduce wildfire spread, but the ecological impacts of these practices are poorly known. We quantified the effects of hand-thinning and shearblading on above- and belowground stand characteristics, plant species composition, carbon (C) and nitrogen (N) pools, and soil thaw across 19 black spruce (Picea mariana) dominated sites in interior Alaska treated 2-12 years prior to sampling. The density of deciduous tree seedlings was significantly higher in shearbladed areas compared to unmanaged forest (6.4 vs. 0.1 stems m−2), and unmanaged stands exhibited the highest mean density of conifer seedlings and layers (1.4 stems m−2). Understory plant community composition was most similar between unmanaged and thinned stands. Shearblading resulted in a near complete loss of aboveground tree biomass C pools while thinning approximately halved the C pool size (1.2 kg C m−2 compared to 3.1 kg C m−2 in unmanaged forest). Significantly smaller soil organic layer (SOL) C and N pools were observed in shearbladed stands (3.2 kg C m−2 and 116.8 g N m−2) relative to thinned (6.0 kg C m−2 and 192.2 g N m−2) and unmanaged (5.9 kg C m−2 and 178.7 g N m−2) stands. No difference in C and N pool sizes in the uppermost 10 cm of mineral soil was observed among stand types. Total C stocks for measured pools was 2.6 kg C m−2 smaller in thinned stands and 5.8 kg C m−2smaller in shearbladed stands when compared to unmanaged forest. Soil thaw depth averaged 13 cm deeper in thinned areas and 46 cm deeper in shearbladed areas relative to adjacent unmanaged stands, although variability was high across sites. Deeper soil thaw was linked to shallower SOL depth for unmanaged stands and both management types, however for any given SOL depth, thaw tended to be deeper in shearbladed areas compared to unmanaged forest. These findings indicate

  1. Surface albedo in relation to disturbance and early stand dynamics in the boreal forest: Implications for climate models

    Science.gov (United States)

    Halim, M. A.; Thomas, S. C.

    2017-12-01

    Surface albedo is the most important biophysical radiative forcing in the boreal forest. General Circulation Model studies have suggested that harvesting of boreal forest has a net cooling effect, in contrast to other terrestrial biomes, by increasing surface albedo. However, albedo estimation in these models has been achieved by simplifying processes governing albedo at a coarse scale (both spatial and temporal). Biophysical processes that determine albedo likely operate on small spatial and temporal scales, requiring more direct estimates of effects of landcover change on net radiation. We established a chronosequence study in post-fire and post-clearcut sites (2013, 2006, 1998), logging data from July 2013 to July 2017 in boreal forest sites in northwestern Ontario, Canada. Each age-class X disturbance had 3 three replicates, matched to 18 permanent circular plots (10-m radius) each with an instrumented tower measuring surface albedo, air and soil temperature, and soil moisture. We also measured leaf area index, species composition and soil organic matter content at each site. BRDF-corrected surface albedo was calculated from daily 30m x 30m reflectance data fused from the MODIS MOD09GA product and Landsat 7 reflectance data. Calculated albedo was verified using ground-based measurements. Results show that fire sites generally had lower (15-25%) albedo than clearcut sites in all seasons. Because of rapid forest regrowth, large perturbations of clearcut harvests on forest albedo started to fade out within a year. Albedo differences between fire and clearcut sites also declined sharply with stand age. Younger stands generally had higher albedo than older stands mainly due to the presence of broadleaf species (for example, Populus tremuloides). In spring, snow melted 10-12 days earlier in recent (2013) clearcut sites compared to closed-canopy sites, causing a sharp reduction in surface albedo in comparison to old clearcut/fire sites (2006 and 1998). Snow melted

  2. Browning boreal forests of western North America

    Science.gov (United States)

    Verbyla, David

    2011-12-01

    The GIMMS NDVI dataset has been widely used to document a 'browning trend' in North American boreal forests (Goetz et al 2005, Bunn et al 2007, Beck and Goetz 2011). However, there has been speculation (Alcaraz-Segura et al 2010) that this trend may be an artifact due to processing algorithms rather than an actual decline in vegetation activity. This conclusion was based primarily on the fact that GIMMS NDVI did not capture NDVI recovery within most burned areas in boreal Canada, while another dataset consistently showed post-fire increasing NDVI. I believe that the results of Alcaraz-Segura et al (2010) were due simply to different pixel sizes of the two datasets (64 km2 versus 1 km2 pixels). Similar results have been obtained from tundra areas greening in Alaska, with the results simply due to these pixel size differences (Stow et al 2007). Furthermore, recent studies have documented boreal browning trends based on NDVI from other sensors. Beck and Goetz (2011) have shown the boreal browning trend derived from a different sensor (MODIS) to be very similar to the boreal browning trend derived from the GIMMS NDVI dataset for the circumpolar boreal region. Parent and Verbyla (2010) found similar declining NDVI patterns based on NDVI from Landsat sensors and GIMMS NDVI in boreal Alaska. Zhang et al (2008) found a similar 'browning trend' in boreal North America based on a production efficiency model using an integrated AVHRR and MODIS dataset. The declining NDVI trend in areas of boreal North America is consistent with tree-ring studies (D'Arrigo et al 2004, McGuire et al 2010, Beck et al 2011). The decline in tree growth may be due to temperature-induced drought stress (Barber et al 2000) caused by higher evaporative demands in a warming climate (Lloyd and Fastie 2002). In a circumpolar boreal study, Lloyd and Bunn (2007) found that a negative relationship between temperature and tree-ring growth occurred more frequently in warmer parts of species' ranges

  3. Carbon dynamics in lakes of the boreal forest under a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Benoy, G.; Wrona, F. [Environment Canada, Saskatoon, SK (Canada). National Water Research Inst.; Cash, K. [Environment Canada, Saskatoon, SK (Canada). Prairie and Northern Wildlife Research Centre; McCauley, E. [Calgary Univ., AB (Canada). Dept. of Biology

    2007-09-15

    This article reviewed factors influencing lake ecosystem carbon dynamics in boreal forest regions and identified research areas needed to accurately forecast the impacts of climate change on carbon pools and flux rates. The review suggested that carbon pools in profundal and littoral sediments across the boreal forest should be identified. Climate change experiments should be conducted to quantify ecosystem carbon dynamics as well as changes in aquatic food web structures. Whole system experiments are also needed to examine the hydrologic and bio-geochemical conditions in which allochthonous carbon is integrated into food webs in potentially drier climates. Results also indicated the need for a watershed-scale assessment of carbon budgets for lakes in transitional zones between boreal forests, prairies, parklands, forests, and tundra. It was concluded that studies are also needed to investigate the integration of lacustrine carbon pools and flux rates on carbon budgets at both the local watershed and boreal forest biome scale. 113 refs., 3 figs.

  4. The changing effects of Alaska’s boreal forests on the climate system

    Science.gov (United States)

    Euskirchen, E.S.; McGuire, A. David; Chapin, F.S.; Rupp, T.S.

    2010-01-01

    In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. In this manuscript, we examine the type and magnitude of the climate feedbacks from boreal forests in Alaska. Research generally suggests that the net effect of a warming climate is a positive regional feedback to warming. Currently, the primary positive climate feedbacks are likely related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most pronounced at the regional scale and reduce the resilience of the boreal vegetation – climate system by amplifying the rate of regional warming. Given the recent warming in this region, the large variety of associated mechanisms that can alter terrestrial ecosystems and influence the climate system, and a reduction in the boreal forest resilience, there is a strong need to continue to quantify and evaluate the feedback pathways.

  5. Preliminary Assessment of JERS-1 SAR to Discriminating Boreal Landscape Features for the Boreal Forest Mapping Project

    Science.gov (United States)

    McDonald, Kyle; Williams, Cynthia; Podest, Erika; Chapman, Bruce

    1999-01-01

    This paper presents an overview of the JERS-1 North American Boreal Forest Mapping Project and a preliminary assessment of JERS-1 SAR imagery for application to discriminating features applicable to boreal landscape processes. The present focus of the JERS-1 North American Boreal Forest Mapping Project is the production of continental scale wintertime and summertime SAR mosaics of the North American boreal forest for distribution to the science community. As part of this effort, JERS-1 imagery has been collected over much of Alaska and Canada during the 1997-98 winter and 1998 summer seasons. To complete the mosaics, these data will be augmented with data collected during previous years. These data will be made available to the scientific community via CD ROM containing these and similar data sets compiled from companion studies of Asia and Europe. Regional landscape classification with SAR is important for the baseline information it will provide about distribution of woodlands, positions of treeline, current forest biomass, distribution of wetlands, and extent of major rivercourses. As well as setting the stage for longer term change detection, comparisons across several years provides additional baseline information about short-term landscape change. Rapid changes, including those driven by fire, permafrost heat balance, flooding, and insect outbreaks can dominate boreal systems. We examine JERS-1 imagery covering selected sites in Alaska and Canada to assess quality and applicability to such relevant ecological and hydrological issues. The data are generally of high quality and illustrate many potential applications. A texture-based classification scheme is applied to selected regions to assess the applicability of these data for distinguishing distribution of such landcover types as wetland, tundra, woodland and forested landscapes.

  6. The origin of soil organic matter dictates its composition and bioreactivity across a mesic boreal forest latitudinal gradient

    Science.gov (United States)

    Kohl, Lukas; Philben, Michael; Edwards, Kate A.; Podrebarac, Frances A.; Warren, Jamie; Ziegler, Susan E.

    2017-04-01

    Climate transect studies and soil warming experiments have shown that soil organic matter (SOM) formed under a warmer climate is typically more resistant to microbial decomposition, as indicated by lower decomposition rates at a given temperature (bioreactivity). However, it remains unclear how climate impacts SOM via its effect on vegetation and thus litter inputs to soils, or on decomposition and thus how SOM changes over time (diagenesis). We addressed this question by studying how the chemical and biological properties of SOM vary with decomposition (depth) and climate history (latitude) in mesic boreal forests of Atlantic Canada. SOM bioreactivity, measured in a 15-months decomposition experiment, decreased from cold to warm regions, and from the topmost (L) to the deepest horizon studied (H). The variations in SOM bioreactivity with climate history and depth, however, were associated with distinct parameters of SOM chemistry. More decomposed SOM with depth was associated with lower proportions of %N as total hydrolysable amino acids (THAA), and a different THAA-based degradation index signifying a more degraded state. However, SOM from the warmer region exhibited higher lignin to carbohydrate ratios, as detected by NMR. None of the measured parameters associated with regional differences in SOM chemistry increased with depth. Together, these results indicate that the regional differences in SOM chemistry and bioreactivity in these soils did not result from significant differences in the degree of degradation, but rather resulted from chemically distinct litter inputs. The comparison of SOM and plant litter chemistry allowed us to identify how climate affects litter inputs in these forests. Vascular plant litter collected in litter traps, unlike SOM, exhibited largely similar chemical composition across all transect regions. Litter traps, however, do not collect moss litter, which is chemically distinct from vascular plant litter. We, therefore, assessed the

  7. Wetlands in Canada's western boreal forest: Agents of change

    Energy Technology Data Exchange (ETDEWEB)

    Foote, L.; Krogman, N. [University of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources

    2006-11-15

    Wetlands of the western boreal forest are poorly studied. In the last decade (1990-2000) there were approximately 1810 northern hemisphere scientific papers published addressing boreal wetlands, tundra, taiga, or bogs. We explore the extent of understanding and impacts of six major agents of change affecting forested wetlands of the boreal zone: (1) commercial forestry, (2) petroleum extraction, (3) mining (bitumen, coal, peat, ore, and diamonds), (4) agriculture, (5) climate change, and (6) hydrologic alteration. Finally, we address the social context, costs, and recommendations for wetland maintenance.

  8. Modelling the fate of hydrophobic organic contaminants in a boreal forest catchment: A cross disciplinary approach to assessing diffuse pollution to surface waters

    International Nuclear Information System (INIS)

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Agren, Anneli; Laudon, Hjalmar; Koehler, Stephan; Jones, Kevin C.; Tysklind, Mats; Wiberg, Karin

    2010-01-01

    The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day -1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons. - The fate of hydrophobic organic contaminants in a boreal forest catchment is connected to the flux of dissolved organic carbon and seasonal deposition.

  9. The changing effects of Alaska's boreal forests on the climate system

    Energy Technology Data Exchange (ETDEWEB)

    Euskirchen, E.S.; Chapin, F.S. III [Alaska Univ., Fairbanks, AK (United States). Dept. of Biology, Inst. of Arctic Biology; McGuire, A.D. [United Sates Geological Survey, Fairbanks, AK (United States). Alaska Cooperative Fish and Wildlife Research Unit; Alaska Univ., Fairbanks, AK (United States); Rupp, T.S. [Alaska Univ., Fairbanks, AK (United States). Dept. of Forest Sciences

    2010-07-15

    The boreal forest is the northernmost forested biome and is expected to be sensitive to global warming. Recent climate warming in the boreal forests of Alaska has influenced the exchange of trace gases, water, and energy between the forests and the atmosphere. In turn, these changes in the structure and function of boreal forests can influence regional and global climates. This study examined the type and magnitude of the climate feedbacks from boreal forests in Alaska. Biogeophysical and biogeochemical feedbacks were examined with particular reference to surface energy balance across boreal ecosystems and over the full annual cycle. The impact of ground heat exchange on permafrost was studied in terms of vegetation dynamics and disturbance regimes such as fires and insect outbreaks. In general, research has indicated that the net effect of a warming climate is a positive regional feedback to warming. The main positive climate feedbacks are currently related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most dominant at the regional scale and reduce the resilience of the boreal vegetation by amplifying the rate of regional warming. This paper also described carbon and methane release from permafrost degradation, changes in lake area, changes in land use and snow season changes. The role of earth system models in representing climate feedbacks from Alaskan boreal forests was discussed. It was concluded that although the boreal forest provides climate regulation as an ecosystem service, the net effect of the climate feedbacks to climate warming are not fully understood. As such, there is a need to continue to evaluate feedback pathways, given the recent warming in Alaska and the large variety of associated mechanisms that can change terrestrial ecosystems and affect the climate system. 59 refs

  10. Implications of floristic and environmental variation for carbon cycle dynamics in boreal forest ecosystems of central Canada

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zicheng; Apps, M.J.; Bhatti, J.S. [Canadan Forest Service, Edmonton (Canada). Northern Forestry Centre

    2002-06-01

    Species composition, detritus, and soil data from 97 boreal forest stands along a transect in central Canada were analysed using Correspondence Analysis to determine the dominant environmental/site variables that differentiate these forest stands. Picea mariana stands were densely clustered together on the understorey DCA plot, suggesting a consistent understorey species composition (feather mosses and Ericaceae), whereas Populus tremuloides stands had the most diverse understorey species composition (ca. 30 species, mostly shrubs and herbs). Pinus banksiana stands had several characteristic species of reindeer lichens (Cladina spp.), but saplings and Pinus seedlings were rare. Although climatic variables showed large variation along the transect, the CCA results indicated that site conditions are more important in determining species composition and differentiating the stand types. Forest floor characteristics (litter and humus layer, woody debris, and drainage) appear to be among the most important site variables. Stands of Picea had significantly higher average carbon (C) densities in the combined litter and humus layer (43,530 kg-C/ha) than either Populus (25,500 kg-C/ha) or Pinus (19,400 kg-C/ha). The thick surface organic layer in lowland Picea stands plays an important role in regulating soil temperature and moisture, and organic-matter decomposition, which in turn affect the ecosystem C-dynamics. During forest succession after a stand-replacing disturbance (e.g. fires), tree biomass and surface organic layer thickness increase in all stand types as forests recover; however, woody biomass detritus first decreases and then increases after ca. 80 yr. Soil C densities show slight decrease with ages in Populus stands, but increase in other stand types. These results indicate the complex C-transfer processes among different components (tree biomass, detritus, forest floor, and soil) of boreal ecosystems at various stages of succession.

  11. Forest fires may cause cooling in boreal Canada

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-08-01

    As climate in North America continues to become warmer and drier through the 21st century, a new study finds that fire may be playing an increasingly important role in shaping the climate of the boreal regions of Canada. Forest fires change the amount of shortwave radiation absorbed by Earth's surface by reducing vegetation cover and changing the composition of plant species, thereby changing the reflectivity of the surface (albedo). Fires also affect other ecosystem processes and increase aerosol (particularly soot) emission and deposition, all of which alter regional climate through a series of feedbacks mechanisms. Jin et al. used satellite observations of surface albedo from 2000 to 2011 and fire perimeter data since 1970 to study how forest fires affect surface albedo and associated shortwave radiation at the surface, across forests in boreal Canada.

  12. Concentrations and flux measurements of volatile organic compounds (VOC) in boreal forest soil

    Science.gov (United States)

    Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana

    2017-04-01

    Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been measured in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC fluxes and concentrations of different horizons from boreal forest soil. The VOC concentrations and fluxes were measured from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC fluxes were measured using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also measured in each location from four different soil horizons with the measurement depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and fluxes of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were measured. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC fluxes and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC fluxes on the soil surface were measured in October, whereas the monoterpene concentrations in organic soil were highest in July

  13. Tree and forest water use under elevated CO2 and temperature in Scandinavian boreal forest

    Science.gov (United States)

    Berg Hasper, Thomas; Wallin, Göran; Lamba, Shubhangi; Sigurdsson, Bjarni D.; Laudon, Hjalmar; Medhurst, Jane L.; Räntfors, Mats; Linder, Sune; Uddling, Johan

    2014-05-01

    According to experimental studies and models, rising atmospheric carbon dioxide concentration ([CO2]) and temperature have the potential to affect stomatal conductance and, consequently, tree and forest transpiration. This effect has in turn the capacity to influence the terrestrial energy and water balance, including affecting of the magnitude of river runoff. Furthermore, forest productivity is currently water-limited in southern Scandinavia and in a near future, under the projected climatic change, this limitation may become a reality in the central and northern parts of Scandinavia. In this study we examine the water-use responses in 12 40-year old native boreal Norway spruce (Picea abies (L.) Karst.) trees exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 °C in summer / +5.6 °C in winter), as well as of entire boreal forests to temporal variation in [CO2], temperature and precipitation over the past 50 years in central and northern Sweden. The controlled factorial CO2 and temperature whole-tree chamber experiment at Flakaliden study site demonstrated that Norway spruce trees lacked elevated [CO2]-induced water savings at guard cell, shoot, and tree levels in the years of measurements. Experimentally, elevated temperature did not result in increased shoot or tree water use as stomatal closure fully cancelled the effect of higher vapour pressure deficit in warmed air environment. Consistent with these results, large scale river runoff data and evapotranspiration estimates from large forested watersheds in central Sweden supported lack of elevated CO2-mediated water savings, and rather suggested that the increasing evapotranspiration trend found in this study was primarily linked to increasing precipitation, rising temperature and more efficient forest management. The results from the whole-tree chamber experiment and boreal forested watersheds have important implications for more accurate

  14. Methane production potential and microbial community structure for different forest soils

    Science.gov (United States)

    Matsumoto, Y.; Ueyama, M.; Kominami, Y.; Endo, R.; Tokumoto, H.; Hirano, T.; Takagi, K.; Takahashi, Y.; Iwata, H.; Harazono, Y.

    2017-12-01

    a larch forest on volcanic soils, a young larch forest on Gleyic Cambisol, and a boreal bog and a lowland forest on permafrost. Comparing various soils from temperate and boreal ecosystems, we will discuss differences of biogenic CH4 production potential among the soils with the microbial community analyses.

  15. Pennsylvania boreal conifer forests and their bird communities: past, present, and potential

    Science.gov (United States)

    Douglas A. Gross

    2010-01-01

    Pennsylvania spruce (Picea spp.)- and eastern hemlock (Tsuga canadensis)-dominated forests, found primarily on glaciated parts of the Allegheny Plateau, are relicts of boreal forest that covered the region following glacial retreat. The timber era of the late 1800s and early 1900s (as late as 1942) destroyed most of the boreal...

  16. Forest disturbance by an ecosystem engineer: beaver in boreal forest landscapes

    OpenAIRE

    Nummi, Petri; Kuuluvainen, Timo

    2013-01-01

    Natural disturbances are important for forest ecosystem dynamics and maintenance of biodiversity. In the boreal forest, large-scale disturbances such as wildfires and windstorms have been emphasized, while disturbance agents acting at smaller scales have received less attention. Especially in Europe beavers have long been neglected as forest disturbance agents because they were extirpated from most of their range centuries ago. However, now they are returning to many parts of their former dis...

  17. Traditional use of medicinal plants in the boreal forest of Canada: review and perspectives

    Directory of Open Access Journals (Sweden)

    Uprety Yadav

    2012-01-01

    Full Text Available Abstract Background The boreal forest of Canada is home to several hundred thousands Aboriginal people who have been using medicinal plants in traditional health care systems for thousands of years. This knowledge, transmitted by oral tradition from generation to generation, has been eroding in recent decades due to rapid cultural change. Until now, published reviews about traditional uses of medicinal plants in boreal Canada have focused either on particular Aboriginal groups or on restricted regions. Here, we present a review of traditional uses of medicinal plants by the Aboriginal people of the entire Canadian boreal forest in order to provide comprehensive documentation, identify research gaps, and suggest perspectives for future research. Methods A review of the literature published in scientific journals, books, theses and reports. Results A total of 546 medicinal plant taxa used by the Aboriginal people of the Canadian boreal forest were reported in the reviewed literature. These plants were used to treat 28 disease and disorder categories, with the highest number of species being used for gastro-intestinal disorders, followed by musculoskeletal disorders. Herbs were the primary source of medicinal plants, followed by shrubs. The medicinal knowledge of Aboriginal peoples of the western Canadian boreal forest has been given considerably less attention by researchers. Canada is lacking comprehensive policy on harvesting, conservation and use of medicinal plants. This could be explained by the illusion of an infinite boreal forest, or by the fact that many boreal medicinal plant species are widely distributed. Conclusion To our knowledge, this review is the most comprehensive to date to reveal the rich traditional medicinal knowledge of Aboriginal peoples of the Canadian boreal forest. Future ethnobotanical research endeavours should focus on documenting the knowledge held by Aboriginal groups that have so far received less attention

  18. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.

    Science.gov (United States)

    Helbig, Manuel; Chasmer, Laura E; Kljun, NatasCha; Quinton, William L; Treat, Claire C; Sonnentag, Oliver

    2017-06-01

    At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus ('forest') lead to expansion of permafrost-free wetlands ('wetland'). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH 4 ) emissions. Here, we quantify the thaw-induced increase in CH 4 emissions for a boreal forest-wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long-term net carbon dioxide (CO 2 ) exchange. Using nested wetland and landscape eddy covariance net CH 4 flux measurements in combination with flux footprint modeling, we find that landscape CH 4 emissions increase with increasing wetland-to-forest ratio. Landscape CH 4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May-October) wetland CH 4 emission of ~13 g CH 4  m -2 is the dominating contribution to the landscape CH 4 emission of ~7 g CH 4  m -2 . In contrast, forest contributions to landscape CH 4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr -1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH 4  m -2  yr -1 in landscape CH 4 emissions. A long-term net CO 2 uptake of >200 g CO 2  m -2  yr -1 is required to offset the positive radiative forcing of increasing CH 4 emissions until the end of the 21st century as indicated by an atmospheric CH 4 and CO 2 concentration model. However, long-term apparent carbon accumulation rates in similar boreal forest-wetland landscapes and eddy covariance landscape net CO 2 flux measurements suggest a long-term net CO 2 uptake between 49 and 157 g CO 2  m -2  yr -1 . Thus, thaw-induced CH 4 emission increases likely exert a positive net radiative greenhouse gas

  19. Disentangling Modern Fire-Climate-Vegetation Relationships across the Boreal Forest Biome

    Science.gov (United States)

    Young, A. M.; Boschetti, L.; Duffy, P.; Hu, F.; Higuera, P.

    2015-12-01

    Fire regimes differ between Eurasian and North American boreal forests, due in part to differences in climate and the dominant forest types. While North American boreal forests are dominated by stand-replacing fires, much of the Eurasian boreal forest is characterized by lower intensity surface fires. These different fire regimes have important consequences for continental-scale biogeochemical cycling and surface-energy fluxes1. Here, we use generalized linear models (GLM) and boosted regression trees (BRT) to explore the relative importance of vegetation, annual climatic factors, and their interactions in determining annual fire occurrence across Eurasian and North American boreal forests. We use remotely sensed burned area (MCD64A1), land cover (MCD12Q1), and observed climate data (CRU) from 2002-2012 at 0.25° spatial resolution to quantify these relationships at annual temporal scales and continental spatial scales. The spatial distribution of boreal fire occurrence was well explained with climate and vegetation variables, with similarities and differences in fire-climate-vegetation relationships between Eurasia and North America. For example, while GLMs indicate vegetation is a significant factor determining fire occurrence in both continents, the effect of climate differed. Spring temperature and precipitation are significant factors explaining fire occurrence in Eurasia, but no climate variables were significant for explaining fire occurrence in North America. BRTs complement this analysis, highlighting climatic thresholds to fire occurrence in both continents. The nature of these thresholds can vary among vegetation types, even within each continent, further implying regional sensitivity to climate-induced shifts in wildfire activity. To build on these results and better understand regional sensitivity of northern-high latitude fire regimes, future work will explore these relationships in forest-tundra and arctic tundra ecosystems, and apply historical

  20. Characteristics of soil-to-plant transfer of elements relevant to radioactive waste in boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Roivainen, P.

    2011-07-01

    The use of nuclear energy generates large amounts of different types of radioactive wastes that can be accidentally released into the environment. Soil-to-plant transfer is a key process for the dispersion of radionuclides in the biosphere and is usually described by a concentration ratio (CR) between plant and soil concentrations in radioecological models. Our knowledge of the soil-to-plant transfer of many radionuclides is currently limited and concerns mainly agricultural species and temperate environments. The validity of radioecological modelling is affected by the accuracy of the assumptions and parameters used to describe soil-to-plant transfer. This study investigated the soil-to-plant transfer of six elements (cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), uranium (U) and zinc (Zn)) relevant to radioactive waste at two boreal forest sites and assessed the factors affecting the CR values. May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana) and blueberry (Vaccinium myrtillus) were selected as representatives of understory species, while rowan (Sorbus aucuparia) and Norway spruce (Picea abies) represented trees in this study. All the elements studied were found to accumulate in plant roots, indicating that separate CR values for root and aboveground plant parts are needed. The between-species variation in CR values was not clearly higher than the within-species variation, suggesting that the use of generic CR values for understory species and trees is justified. No linear relationship was found between soil and plant concentrations for the elements studied and a non-linear equation was found to be the best for describing the dependence of CR values on soil concentration. Thus, the commonly used assumption of a linear relationship between plant and soil concentrations may lead to underestimation of plant root uptake at low soil concentrations. Plant nutrients potassium, magnesium, manganese, phosphorus and sulphur were found to

  1. Characteristics of soil-to-plant transfer of elements relevant to radioactive waste in boreal forest

    International Nuclear Information System (INIS)

    Roivainen, P.

    2011-01-01

    The use of nuclear energy generates large amounts of different types of radioactive wastes that can be accidentally released into the environment. Soil-to-plant transfer is a key process for the dispersion of radionuclides in the biosphere and is usually described by a concentration ratio (CR) between plant and soil concentrations in radioecological models. Our knowledge of the soil-to-plant transfer of many radionuclides is currently limited and concerns mainly agricultural species and temperate environments. The validity of radioecological modelling is affected by the accuracy of the assumptions and parameters used to describe soil-to-plant transfer. This study investigated the soil-to-plant transfer of six elements (cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), uranium (U) and zinc (Zn)) relevant to radioactive waste at two boreal forest sites and assessed the factors affecting the CR values. May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana) and blueberry (Vaccinium myrtillus) were selected as representatives of understory species, while rowan (Sorbus aucuparia) and Norway spruce (Picea abies) represented trees in this study. All the elements studied were found to accumulate in plant roots, indicating that separate CR values for root and aboveground plant parts are needed. The between-species variation in CR values was not clearly higher than the within-species variation, suggesting that the use of generic CR values for understory species and trees is justified. No linear relationship was found between soil and plant concentrations for the elements studied and a non-linear equation was found to be the best for describing the dependence of CR values on soil concentration. Thus, the commonly used assumption of a linear relationship between plant and soil concentrations may lead to underestimation of plant root uptake at low soil concentrations. Plant nutrients potassium, magnesium, manganese, phosphorus and sulphur were found to

  2. Effects of fire on regional evapotranspiration in the central Canadian boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Peckham, Scott D.; Gower, Stith T.; Ewers, Brent

    2009-04-08

    Changes in fire regimes are driving the carbon balance of much of the North American boreal forest, but few studies have examined fire-driven changes in evapotranspiration (ET) at a regional scale. This study used a version of the Biome-BGC process model with dynamic and competing vegetation types, and explicit spatial representation of a large (106 km2) region, to simulate the effects of wildfire on ET and its components from 1948 to 2005 by comparing the fire dynamics of the 1948-1967 period with those of 1968-2005. Simulated ET averaged, over the entire temporal and spatial modeling domain, 323 mm yr-1; simulation results indicated that changes in fire in recent decades decreased regional ET by 1.4% over the entire simulation, and by 3.9% in the last ten years (1996-2005). Conifers dominated the transpiration (EC) flux (120 mm yr-1) but decreased by 18% relative to deciduous broadleaf trees in the last part of the 20th century, when increased fire resulted in increased soil evaporation, lower canopy evaporation, lower EC and a younger and more deciduous forest. Well- and poorly-drained areas had similar rates of evaporation from the canopy and soil, but EC was twice as high in the well-drained areas. Mosses comprised a significant part of the evaporative flux to the atmosphere (22 mm yr-1). Modeled annual ET was correlated with net primary production, but not with temperature or precipitation; ET and its components were consistent with previous field and modeling studies. Wildfire is thus driving significant changes in hydrological processes, changes that may control the future carbon balance of the boreal forest.

  3. Effects of forest conversion on soil microbial communities depend on soil layer on the eastern Tibetan Plateau of China.

    Directory of Open Access Journals (Sweden)

    Ruoyang He

    Full Text Available Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT. Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA, respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus, microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.

  4. Proceedings of the 1999 Sustainable Forest Management Network conference: science and practice : sustaining the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Veeman, S.; Smith, D.W.; Purdy, B.G.; Salkie, F.J.; Larkin, G.A. [eds.

    1999-05-01

    The wide range and complex nature of research in sustainable forest management, supported cooperatively by the forest products industry, governments, the universities, First Nations and other groups, is reflected in the 128 papers presented at this conference. The range of topics discussed include historical perspectives of forest disturbances, including fires and harvesting, biological diversity, gaseous, liquid and solid wastes, community sustainability, public involvement, land aquatic interfaces, forest management planning tools, contaminant transfer, First Nations issues, certification, monitoring and resource trade-offs. The theme of the conference {sup S}cience and practice: sustaining the boreal forest` was selected to identify the key efforts of the Sustainable Forest Management (SFM) Network on boreal forest research. The objective of the conference was to exchange knowledge and integrate participants into a better working network for the improvement of forest management. refs., tabs., figs.

  5. Cross-scale controls on carbon emissions from boreal forest megafires.

    Science.gov (United States)

    Walker, Xanthe J; Rogers, Brendan M; Baltzer, Jennifer L; Cumming, Steven G; Day, Nicola J; Goetz, Scott J; Johnstone, Jill F; Schuur, Edward A G; Turetsky, Merritt R; Mack, Michelle C

    2018-04-26

    Climate warming and drying is associated with increased wildfire disturbance and the emergence of megafires in North American boreal forests. Changes to the fire regime are expected to strongly increase combustion emissions of carbon (C) which could alter regional C balance and positively feedback to climate warming. In order to accurately estimate C emissions and thereby better predict future climate feedbacks, there is a need to understand the major sources of heterogeneity that impact C emissions at different scales. Here, we examined 211 field plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories (NWT), Canada after an unprecedentedly large area burned in 2014. We assessed both aboveground and soil organic layer (SOL) combustion, with the goal of determining the major drivers in total C emissions, as well as to develop a high spatial resolution model to scale emissions in a relatively understudied region of the boreal forest. On average, 3.35 kg C m -2 was combusted and almost 90% of this was from SOL combustion. Our results indicate that black spruce stands located at landscape positions with intermediate drainage contribute the most to C emissions. Indices associated with fire weather and date of burn did not impact emissions, which we attribute to the extreme fire weather over a short period of time. Using these results, we estimated a total of 94.3 Tg C emitted from 2.85 Mha of burned area across the entire 2014 NWT fire complex, which offsets almost 50% of mean annual net ecosystem production in terrestrial ecosystems of Canada. Our study also highlights the need for fine-scale estimates of burned area that represent small water bodies and regionally specific calibrations of combustion that account for spatial heterogeneity in order to accurately model emissions at the continental scale. © 2018 John Wiley & Sons Ltd.

  6. Indirect effects of rodents on arthropods in a Scandinavian boreal forest

    OpenAIRE

    Malá, Barbora

    2016-01-01

    Rodents in boreal forest are an important component of food webs. Their role as drivers of the boreal forest ecosystem is debated. As herbivores they affect plant communities and alter qualities of plants. Consequently availability of food resources for other herbivorous species is altered. In my thesis I studied whether rodents indirectly influence communities of arthropods via plant resources. It is assumed that phytophagous arthropods respond to changes in plant resources by different feed...

  7. High Upward Fluxes of Formic Acid from a Boreal Forest Canopy

    Science.gov (United States)

    Schobesberger, Siegfried; Lopez-Hilifiker, Felipe D.; Taipale, Ditte; Millet, Dylan B.; D'Ambro, Emma L.; Rantala, Pekka; Mammarella, Ivan; Zhou, Putian; Wolfe, Glenn M.; Lee, Ben H.; hide

    2016-01-01

    Eddy covariance fluxes of formic acid, HCOOH, were measured over a boreal forest canopy in spring/summer 2014. The HCOOH fluxes were bidirectional but mostly upward during daytime, in contrast to studies elsewhere that reported mostly downward fluxes. Downward flux episodes were explained well by modeled dry deposition rates. The sum of net observed flux and modeled dry deposition yields an upward gross flux of HCOOH, which could not be quantitatively explained by literature estimates of direct vegetative soil emissions nor by efficient chemical production from other volatile organic compounds, suggesting missing or greatly underestimated HCOOH sources in the boreal ecosystem. We implemented a vegetative HCOOH source into the GEOS-Chem chemical transport model to match our derived gross flux and evaluated the updated model against airborne and spaceborne observations. Model biases in the boundary layer were substantially reduced based on this revised treatment, but biases in the free troposphere remain unexplained.

  8. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.

    Science.gov (United States)

    Martz, Françoise; Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity.

  9. Sorption of niobium on boreal forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, Mervi; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2015-07-01

    The sorption of niobium (Nb) was investigated on humus and mineral soil samples taken from various depths of a four-metre deep forest soil pit on Olkiluoto Island, southwestern Finland. Mass distribution coefficients, K{sub d}, were determined in batch sorption tests. The steady state of Nb sorption was observed in the mineral soil samples already after one week of equilibration, and sorption decreased with depth from a very high value of 185000 mL/g at 0.7 m to 54000 mL/g at 3.4 m. The reason behind this decrease is probably the tenfold reduction in the specific surface area of the soil at the same depth range. Distribution coefficients were clearly lower in the humus layer (1000 mL/g). The K{sub d} values determined in pure water at a pH range of 4.7-6.5 were at a high level (above 55000 mL/g), but decreased dramatically above pH 6.5, corresponding to the change in the major Nb species from the neutral Nb(OH){sub 5} to the low-sorbing anionic Nb(OH){sub 6}{sup -} and Nb(OH){sub 7}{sup 2-}. However, the K{sub d} values in the model soil solution were in the slightly alkaline range an order of magnitude higher than in pure water, which is probably caused by the formation of calcium niobate surface precipitate or electrostatic interaction between surface-sorbed calcium and solute Nb. Among nine soil constituent minerals kaolinite performed best in retaining Nb in both pure water and model soil solution at pH 8, whereas potassium feldspar showed the poorest sorption. The K{sub d} value for kaolinite was above 500000 mL/g in both solutions, while the respective potassium feldspar values were in the range of 120-220 mL/g.

  10. Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes.

    Science.gov (United States)

    Jiskra, Martin; Wiederhold, Jan G; Skyllberg, Ulf; Kronberg, Rose-Marie; Kretzschmar, Ruben

    2017-10-18

    Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion. We report that Hg associated with high molecular weight NOM in the boreal forest runoff has very similar Hg isotope signatures as compared to the organic soil horizons of the catchment area. The mass-independent fractionation (MIF) signatures (Δ 199 Hg and Δ 200 Hg) measured in soils and runoff were in agreement with typical values reported for atmospheric gaseous elemental mercury (Hg 0 ) and distinctly different from reported Hg isotope signatures in precipitation. We therefore suggest that most Hg in the boreal terrestrial ecosystem originated from the deposition of Hg 0 through foliar uptake rather than precipitation. Using a mixing model we calculated the contribution of soil horizons to the Hg in the runoff. At moderate to high flow runoff conditions, that prevailed during sampling, the uppermost part of the organic horizon (Oe/He) contributed 50-70% of the Hg in the runoff, while the underlying more humified organic Oa/Ha and the mineral soil horizons displayed a lower mobility of Hg. The good agreement of the Hg isotope results with other source tracing approaches using radiocarbon signatures and Hg : C ratios provides additional support for the strong coupling between Hg and NOM. The exploratory results from this study illustrate the potential of Hg stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the

  11. Timing of plant phenophases since 1752 in the boreal forest environment

    Science.gov (United States)

    Kubin, Eero; Tolvanen, Anne; Karhu, Jouni; Valkama, Jari

    2016-04-01

    Global warming and climate change will significantly affect on forest environment in northern latitudes. There is the strong evidence that increase of early spring and late autumn temperatures will have impacts on growth and growth cycles. In Finland the Finnish Forest Research Institute (Luke since 2015) established in 1996 National Phenological Network to study changes of phenophases all over the country representing southern, middle and northern boreal forest zones. Continuous detailed scientific monitoring includes eleven forest plant species and it forms an excellent basis to evaluate responses of forest vegetation in respect to climate change. Monitoring is done together with Universities and other Institutes. Prior to the establishment of the Finnish National Phenological Network observations has been made solely based on volunteers since 1752. This citizen-science data is very important to analyze phenophases together with the results of the National Network. The long-term data since 1752 shows e.g. an advancement in the onset of Prunus padus flowering by five days per 100 years and correspondingly three days in the rowan (Sorbus aucuparia). The latest results of the Finnish National Network (1996 - 2014) fits well to this long term trend. In the Finnish National Phenological Network we have monitored phenophases of forest spieces throughout the growth period, focusing on nine forest tree species and two dwarf shrubs. The results can be followed in real time at: http://www.metla.fi/metinfo/fenologia/index-en.htm. We have observed big differences in phenophases between southern and northern boreal zone. Onset of downy birch leafing happens one month later in the north compared with southern boreal zone. Coming into leaf has clearly occurred earlier during the research period since 1996 in the northern boreal zone compared with southern boreal zone. This indicates the response of climate change. The timing of leaf colouring and leaf fall was observed remained

  12. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    Directory of Open Access Journals (Sweden)

    Johanna B Boberg

    Full Text Available Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration, presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  13. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    Science.gov (United States)

    Boberg, Johanna B; Finlay, Roger D; Stenlid, Jan; Ekblad, Alf; Lindahl, Björn D

    2014-01-01

    Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine) needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration), presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  14. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review

    Directory of Open Access Journals (Sweden)

    Thuan Chu

    2013-12-01

    Full Text Available The frequency and severity of forest fires, coupled with changes in spatial and temporal precipitation and temperature patterns, are likely to severely affect the characteristics of forest and permafrost patterns in boreal eco-regions. Forest fires, however, are also an ecological factor in how forest ecosystems form and function, as they affect the rate and characteristics of tree recruitment. A better understanding of fire regimes and forest recovery patterns in different environmental and climatic conditions will improve the management of sustainable forests by facilitating the process of forest resilience. Remote sensing has been identified as an effective tool for preventing and monitoring forest fires, as well as being a potential tool for understanding how forest ecosystems respond to them. However, a number of challenges remain before remote sensing practitioners will be able to better understand the effects of forest fires and how vegetation responds afterward. This article attempts to provide a comprehensive review of current research with respect to remotely sensed data and methods used to model post-fire effects and forest recovery patterns in boreal forest regions. The review reveals that remote sensing-based monitoring of post-fire effects and forest recovery patterns in boreal forest regions is not only limited by the gaps in both field data and remotely sensed data, but also the complexity of far-northern fire regimes, climatic conditions and environmental conditions. We expect that the integration of different remotely sensed data coupled with field campaigns can provide an important data source to support the monitoring of post-fire effects and forest recovery patterns. Additionally, the variation and stratification of pre- and post-fire vegetation and environmental conditions should be considered to achieve a reasonable, operational model for monitoring post-fire effects and forest patterns in boreal regions.

  15. A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil environmental conditions and carbon dynamics of black spruce forests

    Science.gov (United States)

    Shuhua Yi; A. David McGuire; Eric Kasischke; Jennifer Harden; Kristen Manies; Michelle Mack; Merritt. Turetsky

    2010-01-01

    Ecosystem models have not comprehensively considered how interactions among fire disturbance, soil environmental conditions, and biogeochemical processes affect ecosystem dynamics in boreal forest ecosystems. In this study, we implemented a dynamic organic soil structure in the Terrestrial Ecosystem Model (DOS-TEM) to investigate the effects of fire on soil temperature...

  16. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Science.gov (United States)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation

  17. Use of middle infrared radiation to estimate the leaf area index of a boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, D.S. [Kingston Univ., Surrey (United Kingdom). Centre for Earth and Environmental Science Research, School of Geography; Wicks, T. E.; Curran, P.J. [Southampton Univ., Southampton, Hampshire (United Kingdom). Dept. of Geography

    2000-06-01

    Reflected radiation recorded by satellite sensors is a common procedure to estimate the leaf area index (LAI) of boreal forest. The normalized difference vegetation index (NDVI), derived from measurements of visible and near infrared radiation were commonly used to estimate LAI. But research in tropical forest has shown that LAI is more closely related to radiation of middle infrared wavelengths than that of visible wavelengths. This research calculated a vegetation index (VI3) using radiation from vegetation recorded at near and middle infrared wavelengths. In the case of boreal forest, VI3 and LAI displayed a closer relationship than NDVI and LAI. Also, the use of VI3 explained approximately 76 per cent of the variation in field estimates of LAI, versus approximately 46 per cent for NDVI. The authors concluded that consideration should be given to information provided by middle infrared radiation to estimate the leaf area index of boreal forest. The research area was located in the Southern Study Area (SSA) of the BOReal Ecosystem-Atmospher Study (BOREAS), situated on the southern edge of the Canadian boreal forest, 40 km north of Prince Albert, Saskatchewan. 1 tab., 4 figs., 46 refs.

  18. Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem

    Science.gov (United States)

    Wu, S. H.; Jansson, P.-E.

    2013-02-01

    Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta) and soil temperature (Ts) influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel) together with eddy covariance (EC) data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo-based uncertainty method (GLUE) provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described by the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.

  19. Humus layer is the main locus of secondary SO4 production in boreal forests

    Science.gov (United States)

    Houle, Daniel; Marty, Charles; Duchesne, Louis; Gagnon, Christian

    2014-02-01

    Identifying the sources of S exported from catchments and the reactivity of the large soil organic S pool is crucial to understand the mid- or long-term response of forested catchments to decreasing atmospheric S deposition and global warming. Sulfur fluxes as well as S and O isotopes of SO4 were measured in precipitation, throughfall, soil solutions and streams at two boreal forest catchments respectively dominated by black spruce (BS) and balsam fir (BF) in Quebec, Canada. Overall, δ34S-SO4 signature showed relatively small variations among various solution types. However, at both sites, δ18O-SO4 in precipitation (averages of 10.5-11.1‰) was decreased by 3.5-3.6‰ in throughfall because of the production of secondary SO4 through oxidation of SO2 deposited on the canopy. Throughfall δ18O-SO4 was decreased by a further 5.4-6.6‰ in the solution leaving the humus layer which was attributed to the production of secondary SO4 under the action of soil microorganisms through the oxidation of organic S during which the S atom acquired O from water and gaseous O2 present in the soil. A mixing equation based on known isotopic signature of each source suggested that ˜67-81% of the S-SO4 leaving the catchments had interacted with the canopy and the humus layer. The stability of δ18O-SO4 in the mineral soil solution and in the stream of both sites, suggests that SO4 does not undergo reduction-oxidation cycles after its passage through the humus layer. Despite its huge size, the organic S reservoir within the mineral soil would be largely inert. Given the chemical nature of SO4 transformation in the canopy, the humus layer would be responsible for nearly 100% of the biological production of secondary SO4 in the whole watershed at both sites. Taking into account the substantial production of dissolved organic S in the humus layer further emphasizes the crucial importance of the latter in the S cycling of boreal forests.

  20. Soil solution and extractable soil nitrogen response to climate change in two boreal forest ecosystems

    NARCIS (Netherlands)

    Verburg, P.H.

    2005-01-01

    Several studies show that increases in soil temperature result in higher N mineralization rates in soils. It is, however, unclear if additional N is taken up by the vegetation or accumulates in the soil. To address this question two small, forested catchments in southern Norway were experimentally

  1. Trophic position of soil nematodes in boreal forests as indicated by stable isotope analysis

    Science.gov (United States)

    Kudrin, Alexey; Tsurikov, Sergey

    2016-04-01

    Despite the well-developed trophic classification of soil nematodes, their position in soil food webs is still little understood. Observed deviations from the typical feeding strategy indicate that a simplified trophic classification probably does not fully reflect actual trophic interactions. Furthermore, the extent and functional significance of nematodes as prey for other soil animals remains unknown. Stable isotope analysis (SIA) is powerful tool for investigating the structure of soil food webs, but its application to the study of soil nematodes has been limited to only a few studies. We used stable isotope analysis to gain a better understanding of trophic links of several groups of soil nematodes in two boreal forests on albeluvisol. We investigated four taxonomic groups of nematodes: Mononchida, Dorylaimida, Plectidae and Tylenchidae (mostly from the genus Filenchus), that according to the conventional trophic classification represent predators, omnivores, bacterivores and root-fungal feeders, respectively. To assess the trophic position of nematodes, we used a comparison against a set of reference species including herbivorous, saprophagous and predatory macro-invertebrates, oribatid and mesostigmatid mites, and collembolans. Our results suggest that trophic position of the investigated groups of soil nematodes generally corresponds to the conventional classification. All nematodes were enriched in 13C relative to Picea abies roots and litter, and mycorrhizal fungal mycelium. Root-fungal feeders Tylenchidae had δ15N values similar to those of earthworms, enchytraeids and Entomobrya collembolans, but slightly lower δ13C values. Bacterivorous Plectidae were either equal or enriched in 15N compared with saprophagous macroinvertebrates and most mesofauna species. Omnivorous Dorylaimida and predatory Mononchida were further enriched in 15N and their isotopic signature was similar to that of predatory arthropods. These data confirm a clear separation of

  2. Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland

    Science.gov (United States)

    Gao, Yao; Markkanen, Tiina; Aurela, Mika; Mammarella, Ivan; Thum, Tea; Tsuruta, Aki; Yang, Huiyi; Aalto, Tuula

    2017-09-01

    The influence of drought on plant functioning has received considerable attention in recent years, however our understanding of the response of carbon and water coupling to drought in terrestrial ecosystems still needs to be improved. A severe soil moisture drought occurred in southern Finland in the late summer of 2006. In this study, we investigated the response of water use efficiency to summer drought in a boreal Scots pine forest (Pinus sylvestris) on the daily time scale mainly using eddy covariance flux data from the Hyytiälä (southern Finland) flux site. In addition, simulation results from the JSBACH land surface model were evaluated against the observed results. Based on observed data, the ecosystem level water use efficiency (EWUE; the ratio of gross primary production, GPP, to evapotranspiration, ET) showed a decrease during the severe soil moisture drought, while the inherent water use efficiency (IWUE; a quantity defined as EWUE multiplied with mean daytime vapour pressure deficit, VPD) increased and the underlying water use efficiency (uWUE, a metric based on IWUE and a simple stomatal model, is the ratio of GPP multiplied with a square root of VPD to ET) was unchanged during the drought. The decrease in EWUE was due to the stronger decline in GPP than in ET. The increase in IWUE was because of the decreased stomatal conductance under increased VPD. The unchanged uWUE indicates that the trade-off between carbon assimilation and transpiration of the boreal Scots pine forest was not disturbed by this drought event at the site. The JSBACH simulation showed declines of both GPP and ET under the severe soil moisture drought, but to a smaller extent compared to the observed GPP and ET. Simulated GPP and ET led to a smaller decrease in EWUE but a larger increase in IWUE because of the severe soil moisture drought in comparison to observations. As in the observations, the simulated uWUE showed no changes in the drought event. The model deficiencies exist

  3. Underestimation of soil carbon stocks by Yasso07, Q, and CENTURY models in boreal forest linked to overlooking site fertility

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-04-01

    The soil organic carbon stock (SOC) changes estimated by the most process based soil carbon models (e.g. Yasso07, Q and CENTURY), needed for reporting of changes in soil carbon amounts for the United Nations Framework Convention on Climate Change (UNFCCC) and for mitigation of anthropogenic CO2 emissions by soil carbon management, can be biased if in a large mosaic of environments the models are missing a key factor driving SOC sequestration. To our knowledge soil nutrient status as a missing driver of these models was not tested in previous studies. Although, it's known that models fail to reconstruct the spatial variation and that soil nutrient status drives the ecosystem carbon use efficiency and soil carbon sequestration. We evaluated SOC stock estimates of Yasso07, Q and CENTURY process based models against the field data from Swedish Forest Soil National Inventories (3230 samples) organized by recursive partitioning method (RPART) into distinct soil groups with underlying SOC stock development linked to physicochemical conditions. These models worked for most soils with approximately average SOC stocks, but could not reproduce higher measured SOC stocks in our application. The Yasso07 and Q models that used only climate and litterfall input data and ignored soil properties generally agreed with two third of measurements. However, in comparison with measurements grouped according to the gradient of soil nutrient status we found that the models underestimated for the Swedish boreal forest soils with higher site fertility. Accounting for soil texture (clay, silt, and sand content) and structure (bulk density) in CENTURY model showed no improvement on carbon stock estimates, as CENTURY deviated in similar manner. We highlighted the mechanisms why models deviate from the measurements and the ways of considering soil nutrient status in further model development. Our analysis suggested that the models indeed lack other predominat drivers of SOC stabilization

  4. NPP Boreal Forest: Kuusamo, Finland, 1967-1972, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three files (.txt format). One file provides stand characteristics, biomass, and production allocation data for an old-growth boreal forest...

  5. Simulating Changes in Fires and Ecology of the 21st Century Eurasian Boreal Forests of Siberia

    Directory of Open Access Journals (Sweden)

    Ksenia Brazhnik

    2017-02-01

    Full Text Available Wildfires release the greatest amount of carbon into the atmosphere compared to other forest disturbances. To understand how current and potential future fire regimes may affect the role of the Eurasian boreal forest in the global carbon cycle, we employed a new, spatially-explicit fire module DISTURB-F (DISTURBance-Fire in tandem with a spatially-explicit, individually-based gap dynamics model SIBBORK (SIBerian BOReal forest simulator calibrated to Krasnoyarsk Region. DISTURB-F simulates the effect of forest fire on the boreal ecosystem, namely the mortality of all or only the susceptible trees (loss of biomass, i.e., carbon within the forested landscape. The fire module captures some important feedbacks between climate, fire and vegetation structure. We investigated the potential climate-driven changes in the fire regime and vegetation in middle and south taiga in central Siberia, a region with extensive boreal forest and rapidly changing climate. The output from this coupled simulation can be used to estimate carbon losses from the ecosystem as a result of fires of different sizes and intensities over the course of secondary succession (decades to centuries. Furthermore, it may be used to assess the post-fire carbon storage capacity of potential future forests, the structure and composition of which may differ significantly from current Eurasian boreal forests due to regeneration under a different climate.

  6. Effect of inundation, oxygen and temperature on carbon mineralization in boreal ecosystems.

    Science.gov (United States)

    Kim, Youngil; Ullah, Sami; Roulet, Nigel T; Moore, Tim R

    2015-04-01

    The inundation of boreal forests and peatlands through the construction of hydroelectric reservoirs can increase carbon dioxide (CO2) and methane (CH4) emission. To establish controls on emission rates, we incubated samples of forest and peat soils, spruce litter, forest litter and peatland litter collected from boreal ecosystems in northern Quebec for 16 weeks and measured CO2 and CH4 production rates under flooded or non-flooded conditions and varying oxygen concentration and temperature. CO2 production under flooded conditions was less than under non-flooded conditions (5-71 vs. 5-85 mg Cg(-1) C), but CH4 production under flooded conditions was larger than under non-flooded conditions (1-8158 vs. 0-86 μg Cg(-1) C). The average CO2 and CH4 production rate factor for flooded:non-flooded conditions was 0.76 and 1.32, respectively. Under flooded conditions, high oxygen concentrations increased CO2 production in peat soils but decreased CH4 production in forest and peat soils and spruce litter. Warmer temperatures (from 4 to 22°C) raised both CO2 production in peat soils and peatland litter, and CH4 production in peat soils and spruce litter. This study shows that the direction and/or strength of CO2 and CH4 fluxes change once boreal forests and peatlands are inundated. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Cofer, W.R. III; Levine, J.S.

    1991-01-01

    Smoke aerosol and background aerosol particles were collected from the controlled burning of boreal forest where vegetation species and relative mass distributions are known. Chemical mass balances were constructed for the total mass of carbonaceous aerosol particles emitted during the prescribed burn. In addition, a carbonaceous species inventory was developed for aerosol particles presnt under background, smoldering, and full-fire conditions; the production of organic carbon and elemental carbon particles is noted for these two fire regimes. Distributions of the solvent-soluble organic components of the sampled aerosols were generated to identify molecular properties that can be traced to unburned and pyrolyzed materials present in the boreal forest fuels

  8. Assessment of winter fluxes of CO2 and CH4 in boreal forest soils of central Alaska estimated by the profile method and the chamber method: a diagnosis of methane emission and implications for the regional carbon budget

    International Nuclear Information System (INIS)

    Kim, Yongwon; Ueyama, Masahito; Harazono, Yoshinobu; Tanaka, Noriyuki; Nakagawa, Fumiko; Tsunogai, Urumu

    2007-01-01

    This research was carried out to estimate the winter fluxes of CO 2 and CH 4 using the concentration profile method and the chamber method in black spruce forest soils in central Alaska during the winter of 2004/5. The average winter fluxes of CO 2 and CH 4 by chamber and profile methods were 0.24 ± 0.06 (SE; standard error) and 0.21 ± 0.06 gCO 2 -C/m2/d, and 21.4 ± 5.6 and 21.4 ± 14 μgCH 4 -C/m2/hr. This suggests that the fluxes estimated by the two methods are not significantly different based on a one-way ANOVA with a 95% confidence level. The hypothesis on the processes of CH 4 transport/production/emission in underlying snow-covered boreal forest soils is proven by the pressure differences between air and in soil at 30 cm depth. The winter CO 2 emission corresponds to 23% of the annual CO 2 emitted from Alaska black spruce forest soils, which resulted in the sum of mainly root respiration and microbial respiration during the winter based on the (delta) 13 CO 2 of -2.25%. The average wintertime emissions of CO 2 and CH 4 were 49 ± 13 gCO 2 -C/m 2 /season and 0.11 ± 0.07 gCH 4 -C/m 2 /season, respectively. This implies that winter emissions of CO 2 and CH 4 are an important part of the annual carbon budget in seasonally snow-covered terrain of typical boreal forest soils

  9. Boreal Forests of Kamchatka: Structure and Composition

    OpenAIRE

    Eichhorn, Markus P.

    2010-01-01

    Central Kamchatka abounds in virgin old-growth boreal forest, formed primarily by Larix cajanderi and Betula platyphylla in varying proportions. A series of eight 0.25–0.30 ha plots captured the range of forests present in this region and their structure is described. Overall trends in both uplands and lowlands are for higher sites to be dominated by L. cajanderi with an increasing component of B. platyphylla with decreasing altitude. The tree line on wet sites is commonly formed by mono-domi...

  10. Uncovering the Minor Contribution of Land-Cover Change in Upland Forests to the Net Carbon Footprint of a Boreal Hydroelectric Reservoir.

    Science.gov (United States)

    Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude

    2015-07-01

    Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Tree density and permafrost thaw depth influence water limitations on stomatal conductance in Siberian Arctic boreal forests

    Science.gov (United States)

    Kropp, H.; Loranty, M. M.; Natali, S.; Kholodov, A. L.; Alexander, H. D.; Zimov, N.

    2017-12-01

    Boreal forests may experience increased water stress under global climate change as rising air temperatures increase evaporative demand and decrease soil moisture. Increases in plant water stress can decrease stomatal conductance, and ultimately, decrease primary productivity. A large portion of boreal forests are located in Siberia, and are dominated by deciduous needleleaf trees, Larix spp. We investigated the variability and drivers of canopy stomatal conductance in upland Larix stands with different stand density that arose from differing fire severity. Our measurements focus on an open canopy stand with low tree density and deep permafrost thaw depth, and a closed canopy stand with high tree density and shallow permafrost thaw depth. We measured canopy stomatal conductance, soil moisture, and micrometeorological variables. Our results demonstrate that canopy stomatal conductance was significantly lower in the closed canopy stand with a significantly higher sensitivity to increases in atmospheric evaporative demand. Canopy stomatal conductance in both stands was tightly coupled to precipitation that occurred over the previous week; however, the closed canopy stand showed a significantly greater sensitivity to increases in precipitation compared to the open canopy stand. Differences in access to deep versus shallow soil moisture and the physical characteristics of the soil profile likely contribute to differences in sensitivity to precipitation between the two stands. Our results indicate that Larix primary productivity may be highly sensitive to changes in evaporative demand and soil moisture that can result of global climate change. However, the effect of increasing air temperatures and changes in precipitation will differ significantly depending on stand density, thaw depth, and the hydraulic characteristics of the soil profile.

  12. Newtonian boreal forest ecology: The Scots pine ecosystem as an example.

    Directory of Open Access Journals (Sweden)

    Pertti Hari

    Full Text Available Isaac Newton's approach to developing theories in his book Principia Mathematica proceeds in four steps. First, he defines various concepts, second, he formulates axioms utilising the concepts, third, he mathematically analyses the behaviour of the system defined by the concepts and axioms obtaining predictions and fourth, he tests the predictions with measurements. In this study, we formulated our theory of boreal forest ecosystems, called NewtonForest, following the four steps introduced by Newton. The forest ecosystem is a complicated entity and hence we needed altogether 27 concepts to describe the material and energy flows in the metabolism of trees, ground vegetation and microbes in the soil, and to describe the regularities in tree structure. Thirtyfour axioms described the most important features in the behaviour of the forest ecosystem. We utilised numerical simulations in the analysis of the behaviour of the system resulting in clear predictions that could be tested with field data. We collected retrospective time series of diameters and heights for test material from 6 stands in southern Finland and five stands in Estonia. The numerical simulations succeeded to predict the measured diameters and heights, providing clear corroboration with our theory.

  13. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone.

    Science.gov (United States)

    Thakur, Madhav Prakash; Reich, Peter B; Fisichelli, Nicholas A; Stefanski, Artur; Cesarz, Simone; Dobies, Tomasz; Rich, Roy L; Hobbie, Sarah E; Eisenhauer, Nico

    2014-06-01

    Global climate warming is one of the key forces driving plant community shifts, such as range shifts of temperate species into boreal forests. As plant community shifts are slow to observe, ecotones, boundaries between two ecosystems, are target areas for providing early evidence of ecological responses to warming. The role of soil fauna is poorly explored in ecotones, although their positive and negative effects on plant species can influence plant community structure. We studied nematode communities in response to experimental warming (ambient, +1.7, +3.4 °C) in soils of closed and open canopy forest in the temperate-boreal ecotone of Minnesota, USA and calculated various established nematode indices. We estimated species-specific coverage of understory herbaceous and shrub plant species from the same experimental plots and tested if changes in the nematode community are associated with plant cover and composition. Individual nematode trophic groups did not differ among warming treatments, but the ratio between microbial-feeding and plant-feeding nematodes increased significantly and consistently with warming in both closed and open canopy areas and at both experimental field sites. The increase in this ratio was positively correlated with total cover of understory plant species, perhaps due to increased predation pressure on soil microorganisms causing higher nutrient availability for plants. Multivariate analyses revealed that temperature treatment, canopy conditions and nematode density consistently shaped understory plant communities across experimental sites. Our findings suggest that warming-induced changes in nematode community structure are associated with shifts in plant community composition and productivity in the temperate-boreal forest ecotones.

  14. Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.

    Science.gov (United States)

    Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie

    2008-12-01

    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.

  15. Remote Sensing of Forest Cover in Boreal Zones of the Earth

    Science.gov (United States)

    Sedykh, V. N.

    2011-12-01

    Ecological tension resulting from human activities generates a need for joint efforts of countries in the boreal zone aimed at sustainable forest development, including: conservation of forests binding carbon and ensuring stability of the atmosphere gas composition; preservation of purity and water content of forest areas as conditions ensuring sustainability of the historically formed structure of forest landscapes; and preservation of all flora and fauna species composition diversity as a condition for sustainable existence and functioning of forest ecosystems. We have to address these problems urgently due to climate warming which can interact with the forest cover. In particular, in the forest zone of Siberia, the climate aridization will inevitably result in periodic drying of shallow bogs and upland forests with thick forest litter. This will bring fires of unprecedented intensity which will lead to catastrophic atmospheric pollution. In this connection, the above problems can be solved only by the united efforts of boreal-zone countries, through establishing a uniform system for remote sensing of forests aimed at obtaining and periodic update of comprehensive information for rational decision-making in prevention of adverse human effect on the forest. A need to join efforts in this field of natural resource management is determined by disparate data which were created expressly for economic accounting units used mainly for the solution of economic timber resource problems. However, ecological tasks outlined above can be solved appropriately only by using uniform technologies that are registered within natural territorial complexes (landscapes) established throughout the entire boreal zone. Knowledge of forest state within natural territorial entities having specific physiographic conditions, with account for current and future anthropogenic load, allow one to define evidence-based forest growth potential at these landscapes to ensure development of

  16. Caesium-137 in a boreal forest ecosystem. Aspects on the long-term behaviour

    International Nuclear Information System (INIS)

    Bergman, R.; Nylen, T.; Nelin, P.; Palo, T.

    1993-11-01

    Cycling of radioactive caesium, particularly the isotope Cs-137, is studied in boreal forest biotopes mainly located at the Vindeln experimental forest, 60 km NW of Umeaa, Sweden, (64 degrees 16'N, 19 degrees 48'E). The distribution of radioactive caesium in this forest ecosystem, prior to and in different periods after the Chernobyl accident, reflects the existence of fast changes particularly at an early stage after the deposition, superimposed on slow redistribution over long time periods. The definite causes to this complex dynamic behaviour are not yet unambiguously established. In this work we use the specific results from local field studies as a basis to describe the general pattern and time dependence of Cs-137 redistribution in a boreal forest. We raise the hypothesis that: 'Cs-137 present in a boreal forest tends towards a homogenous distribution among the living cells of that system'. This hypothesis is based on physiological characteristics concerning transport over cell membranes and intracellular distribution in comparison to potassium, and the apparently conservative conditions prevailing for caesium in boreal ecosystems - e.g. the facts that very little of the radioactive caesium deposited over the forest area is lost from the system by run off, more than 90% of the total deposition of Cs-137 resides in the upper organic horizon in podzol areas, and that the availability in the ecosystem, as can be seen from the Cs-137 concentration in moose meat, is not significantly different in 1985 (i.e. prior to the Chernobyl accident) in comparison to the period 1986-1990. The aim of this work is to elucidate how predictions, based on our hypothesis about redistribution processes in the boreal forest, corroborates with the main features in the time-dependent change of Cs-137 activity, according to measurements on perennial vegetation from the local sites. In particular the implicit dependence of the dynamics of the redistribution processes on primary

  17. NPP Boreal Forest: Schefferville, Canada, 1974, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains two files (.txt format). One file provides above- and below-ground biomass, soil, and nutrient data for a mature boreal ecosystem (subarctic...

  18. NPP Boreal Forest: Schefferville, Canada, 1974, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains two files (.txt format). One file provides above- and below-ground biomass, soil, and nutrient data for a mature boreal ecosystem...

  19. Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska

    Science.gov (United States)

    Ji, Lei; Wylie, Bruce K.; Brown, Dana R. N.; Peterson, Birgit E.; Alexander, Heather D.; Mack, Michelle C.; Rover, Jennifer R.; Waldrop, Mark P.; McFarland, Jack W.; Chen, Xuexia; Pastick, Neal J.

    2015-01-01

    Quantification of aboveground biomass (AGB) in Alaska’s boreal forest is essential to the accurate evaluation of terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. Our goal was to map AGB at 30 m resolution for the boreal forest in the Yukon River Basin of Alaska using Landsat data and ground measurements. We acquired Landsat images to generate a 3-year (2008–2010) composite of top-of-atmosphere reflectance for six bands as well as the brightness temperature (BT). We constructed a multiple regression model using field-observed AGB and Landsat-derived reflectance, BT, and vegetation indices. A basin-wide boreal forest AGB map at 30 m resolution was generated by applying the regression model to the Landsat composite. The fivefold cross-validation with field measurements had a mean absolute error (MAE) of 25.7 Mg ha−1 (relative MAE 47.5%) and a mean bias error (MBE) of 4.3 Mg ha−1(relative MBE 7.9%). The boreal forest AGB product was compared with lidar-based vegetation height data; the comparison indicated that there was a significant correlation between the two data sets.

  20. Patchwork policy, fragmented forests: In-situ oil sands, industrial development, and the ecological integrity of Alberta's boreal forest

    International Nuclear Information System (INIS)

    MacCrimmon, G.; Marr-Laing, T.

    2000-05-01

    Environmental impacts of current oil sands industry activities and the potential cumulative impacts of new in-situ oil sands development on the boreal forest of northeastern Alberta are reviewed. The objective is to improve understanding of the impacts of existing industrial activity on the broader boreal forest ecosystem, and the environmental implications of further disturbance to this ecosystem from future development of heavy and conventional fossil fuel reserves in the province. The report also outlines elements of a boreal forest use framework that could assist in managing industrial activity within ecologically sustainable limits and makes recommendations for specific actions that need to be taken by government and industry to guide future development decisions. The top 50 key landscape areas of interest in the province, identified by the World Wildlife Federation, based primarily on a series of reports by Alberta Environmental Protection, are briefly described. Implications of failure to act are also outlined. 138 end-notes, 8 tabs., 16 figs

  1. Tree rings provide early warning signals of jack pine mortality across a moisture gradient in the southern boreal forest

    Science.gov (United States)

    Mamet, S. D.; Chun, K. P.; Metsaranta, J. M.; Barr, A. G.; Johnstone, J. F.

    2015-08-01

    Recent declines in productivity and tree survival have been widely observed in boreal forests. We used early warning signals (EWS) in tree ring data to anticipate premature mortality in jack pine (Pinus banksiana)—an extensive and dominant species occurring across the moisture-limited southern boreal forest in North America. We sampled tree rings from 113 living and 84 dead trees in three soil moisture regimes (subxeric, submesic, subhygric) in central Saskatchewan, Canada. We reconstructed annual increments of tree basal area to investigate (1) whether we could detect EWS related to mortality of individual trees, and (2) how water availability and tree growth history may explain the mortality warning signs. EWS were evident as punctuated changes in growth patterns prior to transition to an alternative state of reduced growth before dying. This transition was likely triggered by a combination of severe drought and insect outbreak. Higher moisture availability associated with a soil moisture gradient did not appear to reduce tree sensitivity to stress-induced mortality. Our results suggest tree rings offer considerable potential for detecting critical transitions in tree growth, which are linked to premature mortality.

  2. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    Science.gov (United States)

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass. © 2015 John Wiley & Sons Ltd.

  3. Patterns of Canopy and Surface Layer Consumption in a Boreal Forest Fire from Repeat Airborne Lidar

    Science.gov (United States)

    Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert

    2017-01-01

    Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaskas Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broad leaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from above ground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity

  4. Monitoring Forest Recovery Following Wildfire and Harvest in Boreal Forests Using Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Amar Madoui

    2015-11-01

    Full Text Available In the managed boreal forest, harvesting has become a disturbance as important as fire. To assess whether forest recovery following both types of disturbance is similar, we compared post-disturbance revegetation rates of forests in 22 fire events and 14 harvested agglomerations (harvested areas over 5–10 years in the same vicinity in the western boreal forest of Quebec. Pre-disturbance conditions were first compared in terms of vegetation cover types and surficial deposit types using an ordination technique. Post-disturbance changes over 30 years in land cover types were characterized by vectors of succession in an ordination. Four post-disturbance stages were identified from the 48 land thematic classes in the Landsat images: “S0” stand initiation phase; “S1” early regeneration phase; “S2” stem exclusion phase; and “S3” the coniferous forest. Analyses suggest that fire occurs in both productive and unproductive forests, which is not the case for harvesting. Revegetation rates (i.e., rapidity with which forest cover is re-established appeared to be more advanced in harvested agglomerations when compared with entire fire events. However, when considering only the productive forest fraction of each fire, the revegetation rates are comparable between the fire events and the harvested agglomerations. The S0 is practically absent from harvested agglomerations, which is not the case in the fire events. The difference in revegetation rates between the two disturbance types could therefore be attributed mostly to the fact that fire also occurs in unproductive forest, a factor that has to be taken into account in such comparisons.

  5. Simulating ectomycorrhiza in boreal forests: implementing ectomycorrhizal fungi model MYCOFON in CoupModel (v5)

    Science.gov (United States)

    He, Hongxing; Meyer, Astrid; Jansson, Per-Erik; Svensson, Magnus; Rütting, Tobias; Klemedtsson, Leif

    2018-02-01

    The symbiosis between plants and Ectomycorrhizal fungi (ECM) is shown to considerably influence the carbon (C) and nitrogen (N) fluxes between the soil, rhizosphere, and plants in boreal forest ecosystems. However, ECM are either neglected or presented as an implicit, undynamic term in most ecosystem models, which can potentially reduce the predictive power of models.In order to investigate the necessity of an explicit consideration of ECM in ecosystem models, we implement the previously developed MYCOFON model into a detailed process-based, soil-plant-atmosphere model, Coup-MYCOFON, which explicitly describes the C and N fluxes between ECM and roots. This new Coup-MYCOFON model approach (ECM explicit) is compared with two simpler model approaches: one containing ECM implicitly as a dynamic uptake of organic N considering the plant roots to represent the ECM (ECM implicit), and the other a static N approach in which plant growth is limited to a fixed N level (nonlim). Parameter uncertainties are quantified using Bayesian calibration in which the model outputs are constrained to current forest growth and soil C / N ratio for four forest sites along a climate and N deposition gradient in Sweden and simulated over a 100-year period.The nonlim approach could not describe the soil C / N ratio due to large overestimation of soil N sequestration but simulate the forest growth reasonably well. The ECM implicit and explicit approaches both describe the soil C / N ratio well but slightly underestimate the forest growth. The implicit approach simulated lower litter production and soil respiration than the explicit approach. The ECM explicit Coup-MYCOFON model provides a more detailed description of internal ecosystem fluxes and feedbacks of C and N between plants, soil, and ECM. Our modeling highlights the need to incorporate ECM and organic N uptake into ecosystem models, and the nonlim approach is not recommended for future long-term soil C and N predictions. We also

  6. The behaviour of radioactive caesium in a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Bergman, R.; Nylen, T.; Lidstroem, K.; Palo, T.

    1991-01-01

    The distribution of radioactive caesium (Cs-134 and Cs-137) in a boreal forest ecosystem is studied with focus in the dynamics of the turnover in, and loss from, the system. Measurements of the distribution in soil and vegetation, as well as the loss of radioactive caesium by run-off from a catchment, constitute the basis for an analysis of the caesium budget in the system. Comparisons of the distribution of 'old' Cs-137, i.e. originating from fallout due to the atmospheric nuclear weapons test, and that due to deposition after the accident in Chernobyl 1986 are used for extrapolations to future situations concerning transport of Cs-137 via the food chains over berries and moose to man. The exposure in a long term perspective due to the average intake of Cs-137 in the Swedish population by consumption of meat, milk, and milk products (i.e. of an agricultural origin) is compared to that due to ingestion of the forest products: berries (bilberry, lingonberries, and cloudberries) and moose meat. (au) (34 refs.)

  7. Wood strength loss as a measure of decomposition in northern forest mineral soil

    Science.gov (United States)

    Martin Jurgensen; David Reed; Deborah Page-Dumroese; Peter Laks; Anne Collins; Glenn Mroz; Marek Degorski

    2006-01-01

    Wood stake weight loss has been used as an index of wood decomposition in mineral soil, but it may not give a reliable estimate in cold boreal forests where decomposition is very slow.Various wood stake strength tests have been used as surrogates of weight loss, but little is known on which test would give the best estimate of decomposition over a variety of soil...

  8. The full annual carbon balance of Eurasian boreal forests is highly sensitive to precipitation

    Science.gov (United States)

    Öquist, Mats; Bishop, Kevin; Grelle, Achim; Klemedtsson, Leif; Köhler, Stephan; Laudon, Hjalmar; Lindroth, Anders; Ottosson Löfvenius, Mikaell; Wallin, Marcus; Nilsson, Mats

    2013-04-01

    Boreal forest biomes are identified as one of the major sinks for anthropogenic atmospheric CO2 and are also predicted to be particularly sensitive to climate change. Recent advances in understanding the carbon balance of these biomes stems mainly from eddy-covariance measurements of the net ecosystem exchange (NEE). However, NEE includes only the vertical CO2 exchange driven by photosynthesis and ecosystem respiration. A full net ecosystem carbon balance (NECB) also requires inclusion of lateral carbon export (LCE) through catchment discharge. Currently LCE is often regarded as negligible for the NECB of boreal forest ecosystems of the northern hemisphere, commonly corresponding to ~5% of annual NEE. Here we use long term (13 year) data showing that annual LCE and NEE are strongly correlated (p=0.003); years with low C sequestration by the forest coincide with years when lateral C loss is high. The fraction of NEE lost annually through LCE varied markedly from solar radiation caused by clouds. The dual effect of precipitation implies that both the observed and the predicted increases in annual precipitation at high latitudes may reduce NECB in boreal forest ecosystems. Based on regional scaling of hydrological discharge and observed spatio-temporal variations in forest NEE we conclude that our finding is relevant for large areas of the boreal Eurasian landscape.

  9. Fire, humans, and climate: modeling distribution dynamics of boreal forest waterbirds.

    Science.gov (United States)

    Börger, Luca; Nudds, Thomas D

    2014-01-01

    Understanding the effects of landscape change and environmental variability on ecological processes is important for evaluating resource management policies, such as the emulation of natural forest disturbances. We analyzed time series of detection/nondetection data using hierarchical models in a Bayesian multi-model inference framework to decompose the dynamics of species distributions into responses to environmental variability, spatial variation in habitat conditions, and population dynamics and interspecific interactions, while correcting for observation errors and variation in sampling regimes. We modeled distribution dynamics of 14 waterbird species (broadly defined, including wetland and riparian species) using data from two different breeding bird surveys collected in the Boreal Shield ecozone within Ontario, Canada. Temporal variation in species occupancy (2000-2006) was primarily driven by climatic variability. Only two species showed evidence of consistent temporal trends in distribution: Ring-necked Duck (Aythya collaris) decreased, and Red-winged Blackbird (Agelaius phoeniceus) increased. The models had good predictive ability on independent data over time (1997-1999). Spatial variation in species occupancy was strongly related to the distribution of specific land cover types and habitat disturbance: Fire and forest harvesting influenced occupancy more than did roads, settlements, or mines. Bioclimatic and habitat heterogeneity indices and geographic coordinates exerted negligible influence on most species distributions. Estimated habitat suitability indices had good predictive ability on spatially independent data (Hudson Bay Lowlands ecozone). Additionally, we detected effects of interspecific interactions. Species responses to fire and forest harvesting were similar for 13 of 14 species; thus, forest-harvesting practices in Ontario generally appeared to emulate the effects of fire for waterbirds over timescales of 10-20 years. Extrapolating to all

  10. Canopy interaction with precipitation and sulphur deposition in two boreal forests of Quebec, Canada

    International Nuclear Information System (INIS)

    Marty, C.; Houle, D.; Duchesne, L.; Gagnon, C.

    2012-01-01

    The interaction of atmospheric sulphur (S) was investigated within the canopies of two boreal forests in Québec, Canada. The net canopy exchange approach, i.e. the difference between S–SO 4 in throughfall and precipitation, suggests high proportion of dry deposition in winter (up to 53%) as compared to summer (1–9%). However, a 3.5‰ decrease in δ 18 O–SO 4 throughfall in summer compared to incident precipitation points towards a much larger proportion of dry deposition during the warm season. We suggest that a significant fraction of dry deposition (about 1.2 kg ha −1 yr −1 , representing 30–40% of annual wet S deposition) which contributed to the decreased δ 18 O–SO 4 in throughfall was taken up by the canopy. Overall, these results showed that, contrary to what is commonly considered, S interchanges in the canopy could be important in boreal forests with low absolute atmospheric S depositions. - Highlights: ► We investigated sulphur interactions with the canopy of two boreal forests, Québec. ► Sulphur interchanges within the canopy were large and vary with seasons. ► About 1.2 kg S–SO 4 ha −1 yr −1 was taken up by the canopy during warm seasons. ► This represents 30–40% of annual wet S–SO 4 deposition. ► Canopy uptake must be considered for sulphur budget estimations in boreal forests. - The equivalent of 30–40% of annual wet S–SO 4 deposition was taken up by the canopy of two boreal forests during warm seasons.

  11. Can Runoff Responses be Used to Predict Aquatic Biogeochemical Fluxes from Boreal Forest Ecosystems?

    Science.gov (United States)

    Prestegaard, K. L.; Ziegler, S. E.; Billings, S. A.; Edwards, K. A.

    2017-12-01

    Climate change has direct effects on precipitation and temperature, which contribute to indirect changes in ecosystem productivity, runoff, biogeochemical processes, and species composition. In this research, we examine water balances in boreal forest watersheds to determine spatial and inter-annual variations in their responses to changes in precipitation. Our research indicates that Central and Western N. American boreal watersheds with mean annual precipitation (MAP) of less than 1000 mm exhibit positive relationships between annual precipitation and annual evapotranspiration, suggesting an increase in forest productivity during wet years often without increased runoff. In Maritime boreal watersheds in Eastern N. America and N. Europe, runoff is a significantly larger portion of the water balance and runoff increases with precipitation This regionalism in the water balance may have significant consequences for biogeochemical fluxes; for example, where MAP >1000 mm, a future wetter climate may result in increases in the terrestrial-to-aquatic transport of solutes. To test this idea, we examined inter-annual variations in hydrologic and dissolved organic carbon fluxes in watersheds in Newfoundland and Labrador along a longitudinal transect. Mean annual temperature varies from 0-5.2oC along the transect, and MAP varies from 1050 to 1500 mm. Data indicate an increase in evapotranspiration, runoff, and soil DOC fluxes with the increasing mean annual precipitation among watersheds along the transect. During the 2011-2015 period of study there was significant overlap in annual precipitation among the sites. Although wet water years also produced higher amounts of runoff from most watersheds, the annual soil DOC flux within each region was not significantly affected by these inter-annual changes in precipitation. Stream and groundwater monitoring data from the catchments reveal seasonal variations in evapotranspiration and runoff and their role in solute fluxes, and

  12. Diverse growth trends and climate responses across Eurasia's boreal forest

    Czech Academy of Sciences Publication Activity Database

    Hellmann, L.; Agafonov, L.; Ljungqvist, F. C.; Churakova (Sidorova), O.; Duethorn, E.; Esper, J.; Hulsmann, L.; Kirdyanov, A. V.; Moiseev, P.; Myglan, V. S.; Nikolaev, A. N.; Reinig, F.; Schweingruber, F. H.; Solomina, O.; Tegel, W.; Büntgen, Ulf

    2016-01-01

    Roč. 11, č. 7 (2016), č. článku 074021. ISSN 1748-9326 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : 20th-century summer warmth * tree-ring chronology * scots pine * 2 millennia * temperature variability * northern-hemisphere * central siberia * worlds forests * white spruce * carbon-cycle * boreal forest * climate variability * dendroecology * Eurasia * forest productivity * global warming * high northern latitudes Subject RIV: EH - Ecology, Behaviour Impact factor: 4.404, year: 2016

  13. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...

  14. Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2017-09-01

    Full Text Available The influence of drought on plant functioning has received considerable attention in recent years, however our understanding of the response of carbon and water coupling to drought in terrestrial ecosystems still needs to be improved. A severe soil moisture drought occurred in southern Finland in the late summer of 2006. In this study, we investigated the response of water use efficiency to summer drought in a boreal Scots pine forest (Pinus sylvestris on the daily time scale mainly using eddy covariance flux data from the Hyytiälä (southern Finland flux site. In addition, simulation results from the JSBACH land surface model were evaluated against the observed results. Based on observed data, the ecosystem level water use efficiency (EWUE; the ratio of gross primary production, GPP, to evapotranspiration, ET showed a decrease during the severe soil moisture drought, while the inherent water use efficiency (IWUE; a quantity defined as EWUE multiplied with mean daytime vapour pressure deficit, VPD increased and the underlying water use efficiency (uWUE, a metric based on IWUE and a simple stomatal model, is the ratio of GPP multiplied with a square root of VPD to ET was unchanged during the drought. The decrease in EWUE was due to the stronger decline in GPP than in ET. The increase in IWUE was because of the decreased stomatal conductance under increased VPD. The unchanged uWUE indicates that the trade-off between carbon assimilation and transpiration of the boreal Scots pine forest was not disturbed by this drought event at the site. The JSBACH simulation showed declines of both GPP and ET under the severe soil moisture drought, but to a smaller extent compared to the observed GPP and ET. Simulated GPP and ET led to a smaller decrease in EWUE but a larger increase in IWUE because of the severe soil moisture drought in comparison to observations. As in the observations, the simulated uWUE showed no changes in the drought event. The

  15. Measurement and modeling of bryophyte evaporation in a boreal forest chronosequence

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Gower, Stith T.; Amiro, Brian; Ewers, Brent

    2011-01-19

    The effects of changing climate and disturbance on forest water cycling are not well understood. In particular bryophytes contribute significantly to forest evapotranspiration (ET) in poorly-drained boreal forests, but few studies have directly measured this flux and how it changes with stand age and soil drainage. We used large chambers to measure bryophyte evaporation (E) in Canadian Picea mariana forests of varying ages and soil drainages, as well under controlled laboratory conditions, and modeled daily E using site-specific meteorological data to drive a Penman-Monteith-based model. Field measurements of E averaged 0.37 mm day-1, and ranged from 0.03 (Pleurozium schreberii in a 77-year-old dry stand) to 1.43 mm day-1 (Sphagnum riparium in a 43-year-old bog). canopy resistance ranged from ~0 (at 25 °C, some values were <0) to ~1500 s m-1 for dry, cold (5 °C) mosses. In the laboratory, moss canopy resistance was constant until a moss water content of ~6 g g-1 and then climbed sharply with further drying; no difference was observed between the three moss groups (feather mosses, hollow mosses, and hummock mosses) tested. Modeled annual E fluxes from bryophytes ranged from 0.4 mm day-1, in the well-drained stands, to ~1 mm day-1 in the 43-year-old bog, during the growing season. Eddy covariance data imply that bryophytes contributed 18-31% and 49-69% to the total ET flux, at the well- and poorly-drained stands respectively. Bryophyte E was greater in bogs than in upland stands, was driven by low-lying mosses, and did not vary with stand age; this suggests that shifts in forest age due to increasing fire will have little effect on the bryophyte contribution to ET.

  16. Gamma-ray irradiation of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Dugle, J.R.

    1983-01-01

    A long-term radiation ecology research project called Field Irradiator - Gamma (FIG) began at the Whiteshell Nuclear Research Establishment in 1968. The experimental area is in southeastern Manitoba and is located on the western edge of the Precambrian shield. The project studies the ecological effects continuous exposure to a gradient of gamma radiation has on a mixed boreal forest ecosystem. The gradient ranges from 1 to 460,000 times the natural background radiation level. This paper describes the forest, the gamma irradiator and its radiation field, and the research program

  17. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    Science.gov (United States)

    Young, Jessica; Bolton, W. Robert; Bhatt, Uma; Cristobal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  18. Boreal Forests Sequester Large Amounts of Mercury over Millennial Time Scales in the Absence of Wildfire.

    Science.gov (United States)

    Giesler, Reiner; Clemmensen, Karina E; Wardle, David A; Klaminder, Jonatan; Bindler, Richard

    2017-03-07

    Alterations in fire activity due to climate change and fire suppression may have profound effects on the balance between storage and release of carbon (C) and associated volatile elements. Stored soil mercury (Hg) is known to volatilize due to wildfires and this could substantially affect the land-air exchange of Hg; conversely the absence of fires and human disturbance may increase the time period over which Hg is sequestered. Here we show for a wildfire chronosequence spanning over more than 5000 years in boreal forest in northern Sweden that belowground inventories of total Hg are strongly related to soil humus C accumulation (R 2 = 0.94, p millennial time scales in the prolonged absence of fire.

  19. Disturbance in boreal forest ecosystems: human impacts and natural processes. Proceedings of the International Boreal Forest Research Association 1997 annual meeting; 1997 August 4-7; Duluth, Minnesota.

    Science.gov (United States)

    2000-01-01

    The papers in these proceedings cover a wide range of topics related to human and natural disturbance processes in forests of the boreal zone in North America and Eurasia. Topics include historic and predicted landscape change; forest management; disturbance by insects, fire, air pollution, severe weather, and global climate change; and carbon cycling.

  20. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    Science.gov (United States)

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  1. Mirror image hydrocarbons from Tropical and Boreal forests

    Directory of Open Access Journals (Sweden)

    J. Williams

    2007-01-01

    Full Text Available Monoterpenes, emitted in large quantities by trees to attract pollinators and repel herbivores, can exist in mirror image forms called enantiomers. In this study such enantiomeric pairs have been measured in ambient air over extensive forest ecosystems in South America and northern Europe. For the dominant monoterpene, α-pinene, the (−-form was measured in large excess over the (+-form over the Tropical rainforest, whereas the reverse was observed over the Boreal forest. Interestingly, over the Tropical forest (−-α-pinene did not correlate with its own enantiomer, but correlated well with isoprene. The results indicate a remarkable ecosystem scale enantiomeric fingerprint and a nexus between the biosphere and atmosphere.

  2. Quantifying the missing link between forest albedo and productivity in the boreal zone

    Science.gov (United States)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-11-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest

  3. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo

    International Nuclear Information System (INIS)

    Betts, R.A.

    2000-01-01

    Carbon uptake by forestation is one method proposed to reduce net carbon dioxide emissions to the atmosphere and so limit the radiative forcing of climate change. But the overall impact of forestation on climate will also depend on other effects associated with the creation of new forests. In particular the albedo of a forested landscape is generally lower than that of cultivated land, especially when snow is lying, and decreasing albedo exerts a positive radiative forcing on climate. Here I simulate the radiative forcings associated with changes in surface albedo as a result of forestation in temperate and boreal forest areas, and translate these forcings into equivalent changes in local carbon stock for comparison with estimated carbon sequestration potentials. I suggest that in many boreal forest areas, the positive forcing induced by decreases in albedo can offset the negative forcing that is expected from carbon sequestration. Some high-latitude forestation activities may therefore increase climate change, rather that mitigating it as intended

  4. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    Science.gov (United States)

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  5. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China.

    Science.gov (United States)

    Hu, Tongxin; Sun, Long; Hu, Haiqing; Guo, Futao

    2017-01-01

    In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent) after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April) in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%-5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth) was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%-79% of the soil respiration variability in winter snow-covering period (November to March). Mean spring freeze-thaw cycle (FTC) period (April) soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.

  6. The impact of boreal forest fire on climate warming

    Science.gov (United States)

    Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; Chapin, F.S.; Harden, J.W.; Goulden, M.L.; Lyons, E.; Neff, J.C.; Schuur, E.A.G.; Zender, C.S.

    2006-01-01

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ?? 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 ?? 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  7. The impact of boreal forest fire on climate warming.

    Science.gov (United States)

    Randerson, J T; Liu, H; Flanner, M G; Chambers, S D; Jin, Y; Hess, P G; Pfister, G; Mack, M C; Treseder, K K; Welp, L R; Chapin, F S; Harden, J W; Goulden, M L; Lyons, E; Neff, J C; Schuur, E A G; Zender, C S

    2006-11-17

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  8. The effect of wood ash fertilization on soil respiration and tree stand growth in boreal peatland forests

    Science.gov (United States)

    Liimatainen, Maarit; Maljanen, Marja; Hytönen, Jyrki

    2017-04-01

    Out of Finland's original 10 million hectares of peatlands over half has been drained for forestry. Natural peatlands act as a sink for carbon but when peatland is drained, increased oxygen concentration in the peat accelerates the aerobic decomposition of the old organic matter of the peat leading to carbon dioxide (CO2) emissions to atmosphere. Increasing use of bioenergy increases also the amount of ash produced as a byproduct in power plants. Wood ash contains all essential nutrients for trees to grow except nitrogen. Therefore, wood ash is ideal fertilizer for nitrogen rich peatland forests where lack of phosphorus or potassium may restrict tree growth. At the moment, wood ash is the only available PK-fertilizer for peatland forests in Finland and areas of peatland forests fertilized with ash are increasing annually. The effects of wood ash on vegetation, soil properties and tree growth are rather well known although most of the studies have been made using fine ash whereas nowadays mostly stabilized ash (e.g. granulated) is used. Transporting and spreading of stabilized ash is easier than that of dusty fine ash. Also, slower leaching rate of nutrients is environmentally beneficial and prolongs the fertilizer effect. The knowledge on the impact of granulated wood ash on greenhouse gas emissions is still very limited. The aim of this study was to examine the effects of granulated wood ash on CO2 emissions from peat and tree stand growth. Field measurements were done in two boreal peatland forests in 2011 and 2012. One of the sites is more nutrient rich with soil carbon to nitrogen ratio (C/N) of 18 whereas the other site is nutrient poor with C/N ratio of 82. Both sites were fertilized with granulated wood ash in 2003 (5000 kg ha-1). The effect of fertilization was followed with tree stand measurements conducted 0, 5 and 10 years after the fertilization. The CO2 emissions of the decomposing peat (heterotrophic respiration) were measured from study plots where

  9. Structure and resilience of fungal communities in Alaskan boreal forest soils

    Science.gov (United States)

    D. Lee Taylor; Ian C. Herriott; Kelsie E. Stone; Jack W. McFarland; Michael G. Booth; Mary Beth Leigh

    2010-01-01

    This paper outlines molecular analyses of soil fungi within the Bonanza Creek Long Term Ecological Research program. We examined community structure in three studies in mixed upland, black spruce (Picea mariana (Mill.) BSP), and white spruce (Picea glauca (Moench) Voss) forests and examined taxa involved in cellulose...

  10. Development of a spatial forest data base for the eastern boreal forest region of Ontario. Forest fragmentation and biodiversity project technical report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    In 1991, a spatial forest database over large regions of Ontario was initiated as the basis for research into forest fragmentation and biodiversity using data generated from the digital analysis of LANDSAT thematic mapper satellite data integrated into a geographic information system (GIS). The project was later extended into the eastern segment of the Boreal forest system. This report describes preparation of the spatial forest data base over the eastern Boreal Forest Region that extends from the northern boundary of the Great Lakes-St. Lawrence Forest Region and the southern margin of the James Bay Lowland, between the Ontario-Quebec border and a point west of Michipicoten on Lake Superior. The report describes the methodology used to produce the data base and results, including mapping of water, dense and sparse conifer forest, mixed forest, dense and sparse deciduous forest, poorly vegetated areas, recent cutovers of less than 10 years, old cutovers and burns, recent burns of less than 10 years, wetlands, bedrock outcrops, agriculture, built-up areas, and mine tailings.

  11. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  12. Decadal and long-term boreal soil carbon and nitrogen sequestration rates across a variety of ecosystems

    Science.gov (United States)

    Manies, Kristen L.; Harden, Jennifer W.; Fuller, Christopher C.; Turetsky, Merritt

    2016-01-01

    Boreal soils play a critical role in the global carbon (C) cycle; therefore, it is important to understand the mechanisms that control soil C accumulation and loss for this region. Examining C & nitrogen (N) accumulation rates over decades to centuries may provide additional understanding of the dominant mechanisms for their storage, which can be masked by seasonal and interannual variability when investigated over the short term. We examined longer-term accumulation rates, using 210Pb and 14C to date soil layers, for a wide variety of boreal ecosystems: a black spruce forest, a shrub ecosystem, a tussock grass ecosystem, a sedge-dominated ecosystem, and a rich fen. All ecosystems had similar decadal C accumulation rates, averaging 84 ± 42 gC m−2 yr−1. Long-term (century) C accumulation rates were slower than decadal rates, averaging 14 ± 5 gC m−2 yr−1 for all ecosystems except the rich fen, for which the long-term C accumulation rates was more similar to decadal rates (44 ± 5 and 76 ± 9 gC m−2 yr−1, respectively). The rich fen also had the highest long-term N accumulation rates (2.7 gN m−2 yr−1). The lowest N accumulation rate, on both a decadal and long-term basis, was found in the black spruce forest (0.2 and 1.4 gN m−2 yr−1, respectively). Our results suggest that the controls on long-term C and N cycling at the rich fen is fundamentally different from the other ecosystems, likely due to differences in the predominant drivers of nutrient cycling (oxygen availability, for C) and reduced amounts of disturbance by fire (for C and N). This result implies that most shifts in ecosystem vegetation across the boreal region, driven by either climate or succession, will not significantly impact regional C or N dynamics over years to decades. However, ecosystem transitions to or from a rich fen will promote significant shifts in soil C and N storage.

  13. Carbon dioxide and water vapour exchange from understory species in boreal forest.

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    Although recent eddy covariance measurements in boreal forests provide CO2 and energy exchange data for the whole ecosystem, very little is known about the role of the understory vegetation. We conducted chamber flux measurements in an Alaskan black spruce forest in order to compare CO2 and water

  14. Storm Effects on Net Ecosystem Productivity in Boreal Forests

    Science.gov (United States)

    Vestin, Patrik; Grelle, Achim; Lagergren, Fredrik; Hellström, Margareta; Langvall, Ola; Lindroth, Anders

    2010-05-01

    Regional carbon budgets are to some extent determined by disturbance in ecosystems. Disturbance is believed to be partly responsible for the large inter-annual variability of the terrestrial carbon balance. When neglecting anthropogenic disturbance, forest fires have been considered the most important kind of disturbance. However, also insect outbreaks and wind-throw may be major factors in regional carbon budgets. The effects of wind-throw on CO2 fluxes in boreal forests are not well known due to lack of data. Principally, the reduced carbon sequestration capacity, increased substrate availability and severe soil perturbation following wind-throw are expected to result in increased CO2 fluxes from the forest to the atmosphere. In January 2005, the storm Gudrun hit Sweden, which resulted in approx. 66 × 106m3storm-felled stem wood distributed over an area of approx. 272 000 ha. Eddy covariance flux measurements started at storm-felled areas in Asa and Toftaholm in central Sweden during summer 2005. Data from the first months suggests increased CO2 fluxes by a factor of 2.5-10, as compared to normal silviculture (clear-cutting). An important question is how long such enhanced CO2 fluxes persist. The BIOME-BGC model will be calibrated against measured CO2 fluxes from both sites for 2005 through 2009. Modeled data will be used to fill gaps in the data sets and annual carbon balances will be calculated. Data from Asa and Toftaholm will be presented at the conference.

  15. Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia

    Science.gov (United States)

    Klinge, Michael; Dulamsuren, Choimaa; Erasmi, Stefan; Nikolaus Karger, Dirk; Hauck, Markus

    2018-03-01

    In northern Mongolia, at the southern boundary of the Siberian boreal forest belt, the distribution of steppe and forest is generally linked to climate and topography, making this region highly sensitive to climate change and human impact. Detailed investigations on the limiting parameters of forest and steppe in different biomes provide necessary information for paleoenvironmental reconstruction and prognosis of potential landscape change. In this study, remote sensing data and gridded climate data were analyzed in order to identify main distribution patterns of forest and steppe in Mongolia and to detect environmental factors driving forest development. Forest distribution and vegetation vitality derived from the normalized differentiated vegetation index (NDVI) were investigated for the three types of boreal forest present in Mongolia (taiga, subtaiga and forest-steppe), which cover a total area of 73 818 km2. In addition to the forest type areas, the analysis focused on subunits of forest and nonforested areas at the upper and lower treeline, which represent ecological borders between vegetation types. Climate and NDVI data were analyzed for a reference period of 15 years from 1999 to 2013. The presented approach for treeline delineation by identifying representative sites mostly bridges local forest disturbances like fire or tree cutting. Moreover, this procedure provides a valuable tool to distinguish the potential forested area. The upper treeline generally rises from 1800 m above sea level (a.s.l.) in the northeast to 2700 m a.s.l. in the south. The lower treeline locally emerges at 1000 m a.s.l. in the northern taiga and rises southward to 2500 m a.s.l. The latitudinal gradient of both treelines turns into a longitudinal one on the eastern flank of mountain ranges due to higher aridity caused by rain-shadow effects. Less productive trees in terms of NDVI were identified at both the upper and lower treeline in relation to the respective total boreal forest

  16. Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps.

    Science.gov (United States)

    Kimball, J. S.; Keyser, A. R.; Running, S. W.; Saatchi, S. S.

    2000-06-01

    An ecological process model (BIOME-BGC) was used to assess boreal forest regional net primary production (NPP) and response to short-term, year-to-year weather fluctuations based on spatially explicit, land cover and biomass maps derived by radar remote sensing, as well as soil, terrain and daily weather information. Simulations were conducted at a 30-m spatial resolution, over a 1205 km(2) portion of the BOREAS Southern Study Area of central Saskatchewan, Canada, over a 3-year period (1994-1996). Simulations of NPP for the study region were spatially and temporally complex, averaging 2.2 (+/- 0.6), 1.8 (+/- 0.5) and 1.7 (+/- 0.5) Mg C ha(-1) year(-1) for 1994, 1995 and 1996, respectively. Spatial variability of NPP was strongly controlled by the amount of aboveground biomass, particularly photosynthetic leaf area, whereas biophysical differences between broadleaf deciduous and evergreen coniferous vegetation were of secondary importance. Simulations of NPP were strongly sensitive to year-to-year variations in seasonal weather patterns, which influenced the timing of spring thaw and deciduous bud-burst. Reductions in annual NPP of approximately 17 and 22% for 1995 and 1996, respectively, were attributed to 3- and 5-week delays in spring thaw relative to 1994. Boreal forest stands with greater proportions of deciduous vegetation were more sensitive to the timing of spring thaw than evergreen coniferous stands. Similar relationships were found by comparing simulated snow depth records with 10-year records of aboveground NPP measurements obtained from biomass harvest plots within the BOREAS region. These results highlight the importance of sub-grid scale land cover complexity in controlling boreal forest regional productivity, the dynamic response of the biome to short-term interannual climate variations, and the potential implications of climate change and other large-scale disturbances.

  17. Increased nitrogen availability counteracts climatic change feedback from increased temperature on boreal forest soil organic matter degradation

    Science.gov (United States)

    Erhagen, Bjorn; Nilsson, Mats; Oquist, Mats; Ilstedt, Ulrik; Sparrman, Tobias; Schleucher, Jurgen

    2014-05-01

    Over the last century, the greenhouse gas concentrations in the atmosphere have increased dramatically, greatly exceeding pre-industrial levels that had prevailed for the preceding 420 000 years. At the same time the annual anthropogenic contribution to the global terrestrial nitrogen cycle has increased and currently exceeds natural inputs. Both temperature and nitrogen levels have profound effects on the global carbon cycle including the rate of organic matter decomposition, which is the most important biogeochemical process that returns CO2 to the atmosphere. Here we show for the first time that increasing the availability of nitrogen not only directly affects the rate of organic matter decomposition but also significantly affects its temperature dependence. We incubated litter and soil organic matter from a long-term (40 years) nitrogen fertilization experiment in a boreal Scots pine (Pinus silvestris L.) forest at different temperatures and determined the temperature dependence of the decomposition of the sample's organic matter in each case. Nitrogen fertilization did not affect the temperature sensitivity (Q10) of the decomposition of fresh plant litter but strongly reduced that for humus soil organic matter. The Q10 response of the 0-3 cm soil layer decreased from 2.5±0.35 to an average of 1.9±0.21 over all nitrogen treatments, and from 2.2±0.19 to 1.6±0.16 in response to the most intense nitrogen fertilization treatment in the 4-7 cm soil layer. Long-term nitrogen additions also significantly affected the organic chemical composition (as determined by 13C CP-MAS NMR spectroscopy) of the soil organic matter. These changes in chemical composition contributed significantly (p<0.05) to the reduced Q10 response. These new insights into the relationship between nitrogen availability and the temperature sensitivity of organic matter decomposition will be important for understanding and predicting how increases in global temperature and rising anthropogenic

  18. Multi-trophic resilience of boreal lake ecosystems to forest fires.

    Science.gov (United States)

    Lewis, Tyler L; Lindberg, Mark S; Schmutz, Joel A; Bertram, Mark R

    2014-05-01

    Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll a levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.

  19. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  20. Pushing Boreal Headwaters: Responses of Dissolved Organic Carbon to Increased Hydro-Meteorological Forcing by Forest Harvesting

    Science.gov (United States)

    Schelker, J.; Grabs, T. J.; Bishop, K. H.; Laudon, H.

    2012-12-01

    Concentrations of dissolved organic carbon (DOC) in stream water show large variations as a response to disturbances such as forestry operations. We used a paired catchment experiment in northern Sweden which shows well quantified increases of DOC concentrations and C-exports as a result of forest harvesting. To identify the drivers of these increases, a physically-based process model (Riparian Flow Integration Model, RIM) was used to inversely simulate the DOC availability in the peat-rich riparian soils of the catchments. DOC availability in soils followed a seasonal signal paralleling the seasonality of soil-temperatures (min: February; max: August) during 2005-2011. Further, high-frequency event sampling of DOC during spring and summer seasons of 2007, 2008 and 2009, respectively, revealed that event size acted as a secondary control of DOC in streams: Spring snowmelt events (as well as one major event in 2009) showed clockwise hysteresis, whereas minor runoff episodes during summer (when DOC availability in soils was highest) were characterized by a counterclockwise behavior. The higher hydro-meteorological forcing consisting of increases of soil temperature and soil moisture after the forest removal governed additional increases in DOC availability in soils. The higher DOC concentrations observed in streams after forest harvesting can therefore be ascribed to i) the increased climatic forcing comprising higher water flows through riparian soils, ii) increased soil temperatures and soil moisture, respectively, favoring an increased production of DOC, and iii) additional variation by event size. Overall these results underline the large impact of forestry operations on stream water quality as well as DOC exports leaving managed boreal forests. Simulated and measured soil water TOC concentration profiles within the three Balsjö catchments (CC-4 = clear-cut with 67% harvest; NO-5 = 35% harvest; NR-7 = northern reference). The simulated curves represent the

  1. Waterfowl populations are resilient to immediate and lagged impacts of wildfires in the boreal forest

    Science.gov (United States)

    Lewis, Tyler; Schmutz, Joel A.; Amundson, Courtney L.; Lindberg, Mark S.

    2016-01-01

    Summary 1. Wildfires are the principal disturbance in the boreal forest, and their size and frequency are increasing as the climate warms. Impacts of fires on boreal wildlife are largely unknown, especially for the tens of millions of waterfowl that breed in the region. This knowledge gap creates significant barriers to the integrative management of fires and waterfowl, leading to fire policies that largely disregard waterfowl. 2. Waterfowl populations across the western boreal forest of North America have been monitored annually since 1955 by the Waterfowl Breeding Population and Habitat Survey (BPOP), widely considered the most extensive wildlife survey in the world. Using these data, we examined impacts of forest fires on abundance of two waterfowl guilds – dabblers and divers. We modelled waterfowl abundance in relation to fire extent (i.e. amount of survey transect burned) and time since fire, examining both immediate and lagged fire impacts. 3. From 1955 to 2014, >1100 fires in the western boreal forest intersected BPOP survey transects, and many transects burned multiple times. Nonetheless, fires had no detectable impact on waterfowl abundance; annual transect counts of dabbler and diver pairs remained stable from the pre- to post-fire period. 4. The absence of fire impacts on waterfowl abundance extended from the years immediately following the fire to those more than a decade afterwards. Likewise, the amount of transect burned did not influence waterfowl abundance, with similar pair counts from the pre- to post-fire period for small (1–20% burned), medium (21–60%) and large (>60%) burns. 5. Policy implications. Waterfowl populations appear largely resilient to forest fires, providing initial evidence that current policies of limited fire suppression, which predominate throughout much of the boreal forest, have not been detrimental to waterfowl populations. Likewise, fire-related management actions, such as prescribed burning or targeted suppression

  2. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China.

    Directory of Open Access Journals (Sweden)

    Tongxin Hu

    Full Text Available In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%-5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%-79% of the soil respiration variability in winter snow-covering period (November to March. Mean spring freeze-thaw cycle (FTC period (April soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.

  3. Aboveground Biomass Monitoring over Siberian Boreal Forest Using Radar Remote Sensing Data

    Science.gov (United States)

    Stelmaszczuk-Gorska, M. A.; Thiel, C. J.; Schmullius, C.

    2014-12-01

    Aboveground biomass (AGB) plays an essential role in ecosystem research, global cycles, and is of vital importance in climate studies. AGB accumulated in the forests is of special monitoring interest as it contains the most of biomass comparing with other land biomes. The largest of the land biomes is boreal forest, which has a substantial carbon accumulation capability; carbon stock estimated to be 272 +/-23 Pg C (32%) [1]. Russian's forests are of particular concern, due to the largest source of uncertainty in global carbon stock calculations [1], and old inventory data that have not been updated in the last 25 years [2]. In this research new empirical models for AGB estimation are proposed. Using radar L-band data for AGB retrieval and optical data for an update of in situ data the processing scheme was developed. The approach was trained and validated in the Asian part of the boreal forest, in southern Russian Central Siberia; two Siberian Federal Districts: Krasnoyarsk Kray and Irkutsk Oblast. Together the training and testing forest territories cover an area of approximately 3,500 km2. ALOS PALSAR L-band single (HH - horizontal transmitted and received) and dual (HH and HV - horizontal transmitted, horizontal and vertical received) polarizations in Single Look Complex format (SLC) were used to calculate backscattering coefficient in gamma nought and coherence. In total more than 150 images acquired between 2006 and 2011 were available. The data were obtained through the ALOS Kyoto and Carbon Initiative Project (K&C). The data were used to calibrate a randomForest algorithm. Additionally, a simple linear and multiple-regression approach was used. The uncertainty of the AGB estimation at pixel and stand level were calculated approximately as 35% by validation against an independent dataset. The previous studies employing ALOS PALSAR data over boreal forests reported uncertainty of 39.4% using randomForest approach [2] or 42.8% using semi-empirical approach [3].

  4. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review

    Science.gov (United States)

    Riitta Hyvönen; Göran I. Ågren; Sune Linder; Tryggve Persson; M. Francesca Cotrufo; Alf Ekblad; Michael Freeman; Achim Grelle; Ivan A. Janssens; Paul G. Jarvis; Seppo Kellomäki; Anders Lindroth; Denis Loustau; Tomas Lundmark; Richard J. Norby; Ram Oren; Kim Pilegaard; Michael G. Ryan; Bjarni D. Sigurdsson; Monika Strömgren; Marcel van Oijen; Göran Wallin

    2007-01-01

    Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic...

  5. Measuring and Modeling the Effects of Alternate Post-Fire Successional Trajectories on Boreal Forest Carbon Dynamics

    Science.gov (United States)

    Loranty, M. M.; Goetz, S. J.; Mack, M. C.; Alexander, H. D.; Beck, P. S.

    2011-12-01

    High latitude ecosystems are experiencing amplified climate warming, and recent evidence suggests concurrent intensification of fire disturbance regimes. In central Alaskan boreal forests, severe burns consume more of the soil organic layer, resulting in increased establishment of deciduous seedlings and altered post-fire stand composition with increased deciduous dominance. Quantifying differences in ecosystem carbon (C) dynamics between forest successional trajectories in response to burn severity is essential for understanding potential changes in regional or global feedbacks between boreal forests and climate. We used the Biome BioGeochemical Cycling model (Biome-BGC) to quantify differences in C stocks and fluxes associated with alternate post-fire successional trajectories related to fire severity. A version of Biome-BGC that allows alternate competing vegetation types was calibrated against a series of aboveground biomass observations from chronosequences of stands with differing post-fire successional trajectories characterized by the proportion of deciduous biomass. The model was able to reproduce observed patterns of biomass accumulation after fire, with stands dominated by deciduous species sequestering more C at a faster rate than stands dominated by conifers. Modeled C fluxes suggest that stands dominated by deciduous species are a stronger sink of atmospheric C soon after disturbance than coniferous stands. These results agree with the few available C flux observations. We use a historic database in conjunction with a map of deciduous canopy cover to explore the consequences of ongoing and potential future changes in the fire regime on central Alaskan C balance.

  6. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes

    International Nuclear Information System (INIS)

    Torre Jorgenson, M; Harden, Jennifer; Manies, Kristen; Kanevskiy, Mikhail; Shur, Yuri; O’Donnell, Jonathan; Wickland, Kim; Striegl, Robert; Ewing, Stephanie; Zhuang Qianlai; Koch, Josh

    2013-01-01

    The diversity of ecosystems across boreal landscapes, successional changes after disturbance and complicated permafrost histories, present enormous challenges for assessing how vegetation, water and soil carbon may respond to climate change in boreal regions. To address this complexity, we used a chronosequence approach to assess changes in vegetation composition, water storage and soil organic carbon (SOC) stocks along successional gradients within four landscapes: (1) rocky uplands on ice-poor hillside colluvium, (2) silty uplands on extremely ice-rich loess, (3) gravelly–sandy lowlands on ice-poor eolian sand and (4) peaty–silty lowlands on thick ice-rich peat deposits over reworked lowland loess. In rocky uplands, after fire permafrost thawed rapidly due to low ice contents, soils became well drained and SOC stocks decreased slightly. In silty uplands, after fire permafrost persisted, soils remained saturated and SOC decreased slightly. In gravelly–sandy lowlands where permafrost persisted in drier forest soils, loss of deeper permafrost around lakes has allowed recent widespread drainage of lakes that has exposed limnic material with high SOC to aerobic decomposition. In peaty–silty lowlands, 2–4 m of thaw settlement led to fragmented drainage patterns in isolated thermokarst bogs and flooding of soils, and surface soils accumulated new bog peat. We were not able to detect SOC changes in deeper soils, however, due to high variability. Complicated soil stratigraphy revealed that permafrost has repeatedly aggraded and degraded in all landscapes during the Holocene, although in silty uplands only the upper permafrost was affected. Overall, permafrost thaw has led to the reorganization of vegetation, water storage and flow paths, and patterns of SOC accumulation. However, changes have occurred over different timescales among landscapes: over decades in rocky uplands and gravelly–sandy lowlands in response to fire and lake drainage, over decades to

  7. Forest wildfire increases soil microbial biomass C:N:P stoichiometry in long-term effects

    Science.gov (United States)

    Zhou, Xuan

    2017-04-01

    Boreal forest fire strongly influences carbon (C) stock in permafrost soil by thawing permafrost table which accelerated microbe decomposition process. We studied soil microbial biomass stoichiometry in a gradient of four (3 yr, 25 yr, 46 yr and more than 100 yr) ages since fire in Canada boreal forest. Soil microbial biomass (MB) in long-term after fire is significantly higher than in short-term. MB C and nitrogen (N) were mainly dominated by corresponding soil element concentration and inorganic P, while MB phosphorus (P) changes were fully explained by soil N. Fire ages and soil temperature positively increased MB N and P, indicating the negative impact by fire. Microbial C:N:P gradually increased with fire ages from 15:2:1 to 76:6:1 and then drop down to 17:2:1 in the oldest fire ages. The degree of homeostasis of microbial C, N and P are close to 1 indicates non-homoeostasis within microbial elements, while it of C:N:P is close to 8 shows a strong homeostasis within element ratios and proved microbial stoichiometric ratio is not driven by soil element ratios. In conclusion, i) microbial biomass elements highly depends on soil nutrient supply rather than fire ages; ii) wildfire decreased microbial stoichiometry immediate after fire but increased with years after fire (YF) which at least 3 times higher than > 100 fire ages; iii) microbial biomass C, N and P deviated from strict homeostasis but C:N:P ratio reflects stronger homeostasis.

  8. Drivers of increased organic carbon concentrations in stream water following forest disturbance: Separating effects of changes in flow pathways and soil warming

    Science.gov (United States)

    Schelker, J.; Grabs, T.; Bishop, K.; Laudon, H.

    2013-12-01

    disturbance such as clear-cutting has been identified as an important factor for increasing dissolved organic carbon (DOC) concentrations in boreal streams. We used a long-term data set of soil temperature, soil moisture, shallow groundwater (GW) levels, and stream DOC concentrations from three boreal first-order streams to investigate mechanisms causing these increases. Clear-cutting was found to alter soil conditions with warmer and wetter soils during summer. The application of a riparian flow concentration integration model (RIM) explained a major part of variation in stream [DOC] arising from changing flow pathways in riparian soils during the pretreatment period (r2 = 0.4-0.7), but less well after the harvest. Model residuals were sensitive to changes in soil temperature. The linear regression models for the temperature dependence of [DOC] in soils were not different in the disturbed and undisturbed catchments, whereas a nonlinear response to soil moisture was found. Overall these results suggest that the increased DOC mobilization after forest disturbance is caused by (i) increased GW levels leading to increased water fluxes in shallow flow path in riparian soils and (ii) increased soil temperature increasing the DOC availability in soils during summer. These relationships indicate that the mechanisms of DOC mobilization after forest disturbance are not different to those of undisturbed catchments, but that catchment soils respond to the higher hydro-climatic variation observed after clear-cutting. This highlights the sensitivity of boreal streams to changes in the energy and water balance, which may be altered as a result of both land management and climate change.

  9. Ecophysiological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest

    Science.gov (United States)

    Gennaretti, Fabio; Gea-Izquierdo, Guillermo; Boucher, Etienne; Berninger, Frank; Arseneault, Dominique; Guiot, Joel

    2017-11-01

    A better understanding of the coupling between photosynthesis and carbon allocation in the boreal forest, together with its associated environmental factors and mechanistic rules, is crucial to accurately predict boreal forest carbon stocks and fluxes, which are significant components of the global carbon budget. Here, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species, such as nonlinear acclimation of photosynthesis to temperature changes, canopy development as a function of previous-year climate variables influencing bud formation and the temperature dependence of carbon partition in summer. We tested these modifications in the eastern Canadian taiga using black spruce (Picea mariana (Mill.) B.S.P.) gross primary production and ring width data. MAIDEN explains 90 % of the observed daily gross primary production variability, 73 % of the annual ring width variability and 20-30 % of its high-frequency component (i.e., when decadal trends are removed). The positive effect on stem growth due to climate warming over the last several decades is well captured by the model. In addition, we illustrate how we improve the model with each introduced model adaptation and compare the model results with those of linear response functions. Our results demonstrate that MAIDEN simulates robust relationships with the most important climate variables (those detected by classical response-function analysis) and is a powerful tool for understanding how environmental factors interact with black spruce ecophysiology to influence present-day and future boreal forest carbon fluxes.

  10. Effects of harvesting on spatial and temporal diversity of carbon stocks in a boreal forest landscape.

    Science.gov (United States)

    Ter-Mikaelian, Michael T; Colombo, Stephen J; Chen, Jiaxin

    2013-10-01

    Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010-2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no-harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710-6742 Mt C. For the no-harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long-term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.

  11. Influence of Time since Fire and Micro-Habitat Availability on Terricolous Lichen Communities in Black Spruce (Picea mariana Boreal Forests

    Directory of Open Access Journals (Sweden)

    Saliha Zouaoui

    2014-11-01

    Full Text Available Terricolous lichens are an important component of boreal forest ecosystems, both in terms of function and diversity. In this study, we examined the relative contribution of microhabitat characteristics and time elapsed since the last fire in shaping terricolous lichen assemblages in boreal forests that are frequently affected by severe stand-replacing fires. We sampled 12 stands distributed across five age classes (from 43 to >200 years. In each stand, species cover (% of all terricolous lichen species and species richness were evaluated within 30 microplots of 1 m2. Our results show that time elapsed since the last fire was the factor that contributed the most to explaining terricolous lichen abundance and species composition, and that lichen cover showed a quadratic relationship with stand age. Habitat variables such as soil characteristics were also important in explaining lichen richness. These results suggest that the presence of suitable substrates is not sufficient for the conservation of late-successional terricolous lichen communities in this ecosystem, and that they also need relatively long periods of times for species dispersal and establishment.

  12. Radioactive caesium in Boreal forest landscapes - Dynamics and transport in food webs. Summary of research 1986-1996

    International Nuclear Information System (INIS)

    Bergman, R.; Nylen, T.; Palo, T.

    1998-12-01

    The need for - but also the paucity of - radioecological knowledge concerning the boreal forest became particularly apparent after the nuclear power plant accident in Chernobyl in April 1986. As a consequence several new projects were initiated in the Nordic countries with particular focus on the behaviour of radioactive caesium in terrestrial and aquatic systems characteristic for the Fenno-Scandinavian landscapes. Among these new projects a multi-disciplinary co-operation in Umeaa between scientists at the Swedish University of Agricultural Sciences, and the Defence Research Establishment emerged. Initially this joint work focused mainly on descriptions of the dynamic changes of the content of radioactive caesium in soil-plant and animal communities in the county of Vaesterbotten. Most of the studies have been performed at the Vindeln experimental forest, 60 km NW of Umeaa. Plants of key interest were: bilberry (Vaccinium myrtillus), birch (Betula spp.), and pine (Pinus sylvestris), and among the animals: the moose (Alces alces) and a small rodent, the forest vole (Clethrionomus glareolus). Gradually over the past ten years the research has entered the stage where the specific causes of the caesium behaviour have been addressed - partly by the help of models developed for simulating forest ecosystems, partly by complementary field experiments. This paper reviews our main findings on this theme concerning the behaviour of radioactive caesium in boreal landscapes and significant pathways to man, as has become apparent from the radioecological co-operation dating from about ten years back. A list of the publications arising from these studies since 1986 is also presented in this report

  13. Radioactive caesium in Boreal forest landscapes - Dynamics and transport in food webs. Summary of research 1986-1996

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, R.; Nylen, T.; Palo, T

    1998-12-01

    The need for - but also the paucity of - radioecological knowledge concerning the boreal forest became particularly apparent after the nuclear power plant accident in Chernobyl in April 1986. As a consequence several new projects were initiated in the Nordic countries with particular focus on the behaviour of radioactivecaesium in terrestrial and aquatic systems characteristic for the Fenno-Scandinavian landscapes. Among these new projects a multi-disciplinary co-operation in Umeaa between scientists at the Swedish University of Agricultural Sciences, and the Defence Research Establishment emerged. Initially this joint work focused mainly on descriptions of the dynamic changes of the content of radioactive caesium in soil-plant and animal communities in the county of Vaesterbotten. Most of the studies have been performed at the Vindeln experimental forest, 60 km NW of Umeaa. Plants of key interest were: bilberry (Vaccinium myrtillus), birch (Betula spp.), and pine (Pinus sylvestris), and among the animals: the moose (Alces alces) and a small rodent, the forest vole (Clethrionomus glareolus). Gradually over the past ten years the research has entered the stage where the specific causes of the caesium behaviour have been addressed - partly by the help of models developed for simulating forest ecosystems, partly by complementary field experiments. This paper reviews our main findings on this theme concerning the behaviour of radioactive caesium in boreal landscapes and significant pathways to man, as has become apparent from the radioecological co-operation dating from about ten years back. A list of the publications arising from these studies since 1986 is also presented in this report.

  14. Proceedings of a symposium on the reclamation and restoration of boreal peatland and forest ecosystems : towards a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, J. [Natural Resources Canada, Ottawa, ON (Canada); Foote, L.; Moran, S. [Alberta Univ., Edmonton, AB (Canada); Nadeau, L. [Northern Alberta Inst. of Technology, Edmonton, AB (Canada); Rochefort, L. [Laval Univ., Quebec City, PQ (Canada); Short, P. [Canadian Sphagnum Peat Moss Association, St. Albert, AB (Canada); Vitt, D.H. [Southern Illinois Univ., Carbondale, IL (United States); Wieder, K. [Villanova Univ., Villanova, PA (United States)] (comps.)

    2010-07-01

    Disturbances in Canada's boreal forest occur in both upland forests and in peatlands. These disturbances originate from both anthropogenic and natural causes, particularly fire. Techniques for the restoration, as well as the reclamation of peatlands and forests impacted by agriculture, urban development, or oil and gas activities, have made significant advancement over the last decade and these techniques need to be incorporated into the regulation and management of peatland and forest ecosystems. This symposium addressed the issue of how this research is affected by climate change. The sessions were entitled: (1) reclaiming forest and forest soils impacted by oil and gas production, (2) influence of oil sands development on forest communities, (3) understanding the importance of peatland and forest carbon in the twenty-first century, (4) reclaiming wetlands on mined oil sands tailing, (5) disturbance in peatlands and its relevance to minimizing disturbance footprints and informing reclamation efforts, and (6) restoration and management of harvested peatlands. The symposium featured 37 presentations, of which 6 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  15. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers

    Science.gov (United States)

    Sulla-Menashe, Damien; Woodcock, Curtis E.; Friedl, Mark A.

    2018-01-01

    Recent studies have used satellite-derived normalized difference vegetation index (NDVI) time series to explore geographic patterns in boreal forest greening and browning. A number of these studies indicate that boreal forests are experiencing widespread browning, and have suggested that these patterns reflect decreases in forest productivity induced by climate change. Here we use NDVI time series from Landsat, which has much higher quality and spatial resolution than imagery used in most previous studies, to characterize biogeographic patterns in greening and browning across Canada’s boreal forest and to explore the drivers behind observed trends. Our results show that the majority of NDVI changes in Canada’s boreal forest reflect disturbance-recovery dynamics not climate change impacts, that greening and browning trends outside of disturbed forests are consistent with expected ecological responses to regional changes in climate, and that observed NDVI changes are geographically limited and relatively small in magnitude. By examining covariance between changes in NDVI and temperature and precipitation in locations not affected by disturbance, our results isolate and characterize the nature and magnitude of greening and browning directly associated with climate change. Consistent with biogeographic theory, greening and browning unrelated to disturbance tended to be located in ecotones near boundaries of the boreal forest bioclimatic envelope. We observed greening to be most prevalent in Eastern Canada, which is more humid, and browning to be most prevalent in Western Canada, where forests are more prone to moisture stress. We conclude that continued long-term climate change has the potential to significantly alter the character and function of Canada’s boreal forest, but recent changes have been modest and near-term impacts are likely to be focused in or near ecotones.

  16. Temperate and boreal old-growth forests: how do their growth dynamics and biodiversity differ from young stands and managed forests?

    NARCIS (Netherlands)

    Schulze, E.D.; Hessenmoeller, D; Knohl, A.; Luyssaert, S; Boerner, A; Grace, J.

    2009-01-01

    This chapter investigates biomass, net primary productivity (NPP), and net ecosystem productivity (NEP) of boreal and temperate forest ecosystems in relation to stand density and age. Forests may accumulate woody biomass at constant rate for centuries and there is little evidence of an age-related

  17. Influence of the forest canopy on total and methyl mercury deposition in the boreal forest

    Science.gov (United States)

    E.L. Witt; R.K. Kolka; E.A. Nater; T.R. Wickman

    2009-01-01

    Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across...

  18. Soil respiration of the Dahurian Larch (Larix gmelinii) forest and the response to fire disturbance in Da Xing'an Mountains, China

    Science.gov (United States)

    Tongxin Hu; Long Sun; Haiqing Hu; David R. Weise; Futao Guo

    2017-01-01

    Despite the high frequency of wildfire disturbances in boreal forests in China, the effects of wildfires on soil respiration are not yet well understood. We examined the effects of fire severity on the soil respiration rate (Rs) and its component change in a Dahurian Larch (Larix gmelinii) in Northeast China. The results showed...

  19. Quantifying the effect of fuel reduction treatments on fire behavior in boreal forests

    Science.gov (United States)

    B.W. Butler; R.D. Ottmar; T.S. Rupp; R. Jandt; E. Miller; K. Howard; R. Schmoll; S. Theisen; R.E. Vihnanek; D. Jimenez

    2013-01-01

    Mechanical (e.g., shearblading) and manual (e.g., thinning) fuel treatments have become the preferred strategy of many fire managers and agencies for reducing fire hazard in boreal forests. This study attempts to characterize the effectiveness of four fuel treatments through direct measurement of fire intensity and forest floor consumption during a single prescribed...

  20. Modeling Alaska boreal forests with a controlled trend surface approach

    Science.gov (United States)

    Mo Zhou; Jingjing Liang

    2012-01-01

    An approach of Controlled Trend Surface was proposed to simultaneously take into consideration large-scale spatial trends and nonspatial effects. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of...

  1. Ecophysiological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest

    Directory of Open Access Journals (Sweden)

    F. Gennaretti

    2017-11-01

    Full Text Available A better understanding of the coupling between photosynthesis and carbon allocation in the boreal forest, together with its associated environmental factors and mechanistic rules, is crucial to accurately predict boreal forest carbon stocks and fluxes, which are significant components of the global carbon budget. Here, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species, such as nonlinear acclimation of photosynthesis to temperature changes, canopy development as a function of previous-year climate variables influencing bud formation and the temperature dependence of carbon partition in summer. We tested these modifications in the eastern Canadian taiga using black spruce (Picea mariana (Mill. B.S.P. gross primary production and ring width data. MAIDEN explains 90 % of the observed daily gross primary production variability, 73 % of the annual ring width variability and 20–30 % of its high-frequency component (i.e., when decadal trends are removed. The positive effect on stem growth due to climate warming over the last several decades is well captured by the model. In addition, we illustrate how we improve the model with each introduced model adaptation and compare the model results with those of linear response functions. Our results demonstrate that MAIDEN simulates robust relationships with the most important climate variables (those detected by classical response-function analysis and is a powerful tool for understanding how environmental factors interact with black spruce ecophysiology to influence present-day and future boreal forest carbon fluxes.

  2. From soil water to surface water – how the riparian zone controls element transport from a boreal forest to a stream

    Directory of Open Access Journals (Sweden)

    F. Lidman

    2017-06-01

    Full Text Available Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr and other parameters such as sulfate and total organic carbon (TOC. The results showed that the concentrations of most investigated elements increased substantially (up to 60 times as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the

  3. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway.

    Science.gov (United States)

    Bright, Ryan M; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Strømman, Anders H

    2014-02-01

    Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand-level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear-cut sites. Relative to a conifer site, a slight local cooling of −0.13 °C at a deciduous site and −0.25 °C at a clear-cut site were observed over a 6-year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes – despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business-as-usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned −8 to −159 Tg-CO2-eq., depending on whether near-term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately −20 to −300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon-only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive – and at best – suboptimal if boreal forests are to be used as a

  4. Effects of Conversion from Boreal Forest to Arctic Steppe on Soil Communities and Ecosystem Carbon Pools

    Science.gov (United States)

    Han, P. D.; Natali, S.; Schade, J. D.; Zimov, N.; Zimov, S. A.

    2014-12-01

    The end of the Pleistocene marked the extinction of a great variety of arctic megafauna, which, in part, led to the conversion of arctic grasslands to modern Siberian larch forest. This shift may have increased the vulnerability of permafrost to thawing because of changes driven by the vegetation shift; the higher albedo of grassland and low insulation of snow trampled by animals may have decreased soil temperatures and reduced ground thaw in the grassland ecosystem, resulting in protection of organic carbon in thawed soil and permafrost. To test these hypothesized impacts of arctic megafauna, we examined an experimental reintroduction of large mammals in northeast Siberia, initiated in 1988. Pleistocene Park now contains 23 horses, three musk ox, one bison, and several moose in addition to the native fauna. The park is 16 square km with a smaller enclosure (animals spend most of their time and our study was focused. We measured carbon-pools in forested sites (where scat surveys showed low animal use), and grassy sites (which showed higher use), within the park boundaries. We also measured thaw depth and documented the soil invertebrate communities in each ecosystem. There was a substantial difference in number of invertebrates per kg of organic soil between the forest (600 ± 250) and grassland (300 ± 250), though these differences were not statistically significant they suggest faster nutrient turnover in the forest or a greater proportion of decomposition by invertebrates than other decomposers. While thaw depth was deeper in the grassland (60 ± 4 cm) than in the forest (40 ± 6 cm), we did not detect differences in organic layer depth or percent organic matter between grassland and forest. However, soil in the grassland had higher bulk density, and higher carbon stocks in the organic and mineral soil layers. Although deeper thaw depth in the grassland suggests that more carbon is available to microbial decomposers, ongoing temperature monitoring will help

  5. The role of fire in the boreal carbon budget

    Science.gov (United States)

    Harden, J.W.; Trumbore, S.E.; Stocks, B.J.; Hirsch, A.; Gower, S.T.; O'Neill, K. P.; Kasischke, E.S.

    2000-01-01

    To reconcile observations of decomposition rates, carbon inventories, and net primary production (NPP), we estimated long-term averages for C exchange in boreal forests near Thompson, Manitoba. Soil drainage as defined by water table, moss cover, and permafrost dynamics, is the dominant control on direct fire emissions. In upland forests, an average of about 10-30% of annual NPP was likely consumed by fire over the past 6500 years since these landforms and ecosystems were established. This long-term, average fire emission is much larger than has been accounted for in global C cycle models and may forecast an increase in fire activity for this region. While over decadal to century times these boreal forests may be acting as slight net sinks for C from the atmosphere to land, periods of drought and severe fire activity may result in net sources of C from these systems.

  6. Photosynthesis and carbon isotope discrimination in boreal forest ecosystems: A comparison of functional characteristics in plants from three mature forest types

    Science.gov (United States)

    Flanagan, Lawrence B.; Brooks, J. Renee; Ehleringer, James R.

    1997-12-01

    In this paper we compare measurements of photosynthesis and carbon isotope discrimination characteristics among plants from three mature boreal forest types (Black spruce, Jack pine, and aspen) in order to help explain variation in ecosystem-level gas exchange processes. Measurements were made at the southern study area (SSA) and northern study area (NSA) of the boreal forest in central Canada as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). In both the NSA and the SSA there were significant differences in photosynthesis among the major tree species, with aspen having the highest CO2 assimilation rates and spruce the lowest. Within a species, photosynthetic rates in the SSA were approximately twice those measured in the NSA, and this was correlated with similar variations in stomatal conductance. Calculations of the ratio of leaf intercellular to ambient CO2 concentration (ci/ca) from leaf carbon isotope discrimination (Δ) values indicated a relatively low degree of stomatal limitation of photosynthesis, despite the low absolute values of stomatal conductance in these boreal tree species. Within each ecosystem, leaf Δ values were strongly correlated with life-form groups (trees, shrubs, forbs, and mosses), and these differences are maintained between years. Although we observed significant variation in the 13C content of tree rings at the old Jack pine site in the NSA during the past decade (indicating interannual variation in the degree of stomatal limitation), changes in summer precipitation and temperature accounted for only 44% of the isotopic variance. We scaled leaf-level processes to the ecosystem level through analyses of well-mixed canopy air. On average, all three forest types had similar ecosystem-level Δ values (average value ± standard deviation, 19.1‰±0.5‰), calculated from measurements of change in the concentration and carbon isotope ratio of atmospheric CO2 during a diurnal cycle within a forest canopy. However, there were

  7. Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia

    Directory of Open Access Journals (Sweden)

    M. Klinge

    2018-03-01

    Full Text Available In northern Mongolia, at the southern boundary of the Siberian boreal forest belt, the distribution of steppe and forest is generally linked to climate and topography, making this region highly sensitive to climate change and human impact. Detailed investigations on the limiting parameters of forest and steppe in different biomes provide necessary information for paleoenvironmental reconstruction and prognosis of potential landscape change. In this study, remote sensing data and gridded climate data were analyzed in order to identify main distribution patterns of forest and steppe in Mongolia and to detect environmental factors driving forest development. Forest distribution and vegetation vitality derived from the normalized differentiated vegetation index (NDVI were investigated for the three types of boreal forest present in Mongolia (taiga, subtaiga and forest–steppe, which cover a total area of 73 818 km2. In addition to the forest type areas, the analysis focused on subunits of forest and nonforested areas at the upper and lower treeline, which represent ecological borders between vegetation types. Climate and NDVI data were analyzed for a reference period of 15 years from 1999 to 2013. The presented approach for treeline delineation by identifying representative sites mostly bridges local forest disturbances like fire or tree cutting. Moreover, this procedure provides a valuable tool to distinguish the potential forested area. The upper treeline generally rises from 1800 m above sea level (a.s.l. in the northeast to 2700 m a.s.l. in the south. The lower treeline locally emerges at 1000 m a.s.l. in the northern taiga and rises southward to 2500 m a.s.l. The latitudinal gradient of both treelines turns into a longitudinal one on the eastern flank of mountain ranges due to higher aridity caused by rain-shadow effects. Less productive trees in terms of NDVI were identified at both the upper and lower treeline in relation

  8. Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests

    Science.gov (United States)

    Kelly, Ryan; Genet, Helene; McGuire, A. David; Hu, Feng Sheng

    2016-01-01

    Wildfires play a key role in the boreal forest carbon cycle1, 2, and models suggest that accelerated burning will increase boreal C emissions in the coming century3. However, these predictions may be compromised because brief observational records provide limited constraints to model initial conditions4. We confronted this limitation by using palaeoenvironmental data to drive simulations of long-term C dynamics in the Alaskan boreal forest. Results show that fire was the dominant control on C cycling over the past millennium, with changes in fire frequency accounting for 84% of C stock variability. A recent rise in fire frequency inferred from the palaeorecord5 led to simulated C losses of 1.4 kg C m−2 (12% of ecosystem C stocks) from 1950 to 2006. In stark contrast, a small net C sink of 0.3 kg C m−2 occurred if the past fire regime was assumed to be similar to the modern regime, as is common in models of C dynamics. Although boreal fire regimes are heterogeneous, recent trends6 and future projections7 point to increasing fire activity in response to climate warming throughout the biome. Thus, predictions8 that terrestrial C sinks of northern high latitudes will mitigate rising atmospheric CO2 may be over-optimistic.

  9. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest.

    Science.gov (United States)

    Mark P. Waldrop; Jennifer W. Harden

    2008-01-01

    Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or...

  10. Acidification-induced chemical changes in coniferous forest soils in southern Sweden 1988-1999

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, U.; Rosengren, U.; Thelin, G.; Nihlgaard, B

    2003-05-01

    Acidification of south-Swedish coniferous forest soils continues and soil nutrient status is no longer sustainable in a long-term perspective. - Thirty-two Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) stands in southern Sweden were studied for a period of 12 years to evaluate acidification-induced chemical changes in the soil. Soil, at 20-30 cm depth in the mineral layer, was sampled three times during this period (1988, 1993 and 1999). The results show that pH(BaCl{sub 2}) in mineral soil decreased by, on average, 0.17 units between 1988 and 1999, accompanied by an increase in aluminium (Al) concentration and a decrease in base saturation in the soil. In 1999, the base saturation was below 5% in 58% of the 32 sites compared with 16% in 1988 and 7% in 1993. Concentrations of calcium (Ca), potassium (K) and magnesium (Mg) are low and decreasing. Based on C/N ratios in humus, 45% of the sites may be subjected to leaching of considerable amounts of nitrate. The results show that the acidification of coniferous forest soils in southern Sweden is continuing, and that the negative effects on the nutrient status in soil are extensive. The results are compared with reference values for productive, long-term sustainably managed boreal coniferous or mixed forest soils and implications for long-term sustainability are discussed.

  11. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.

    Science.gov (United States)

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.

  12. Hydro-climatic forcing of dissolved organic carbon in two boreal lakes of Canada.

    Science.gov (United States)

    Diodato, Nazzareno; Higgins, Scott; Bellocchi, Gianni; Fiorillo, Francesco; Romano, Nunzio; Guadagno, Francesco M

    2016-11-15

    The boreal forest of the northern hemisphere represents one of the world's largest ecozones and contains nearly one third of the world's intact forests and terrestrially stored carbon. Long-term variations in temperature and precipitation have been implied in altering carbon cycling in forest soils, including increased fluxes to receiving waters. In this study, we use a simple hydrologic model and a 40-year dataset (1971-2010) of dissolved organic carbon (DOC) from two pristine boreal lakes (ELA, Canada) to examine the interactions between precipitation and landscape-scale controls of DOC production and export from forest catchments to surface waters. Our results indicate that a simplified hydrologically-based conceptual model can enable the long-term temporal patterns of DOC fluxes to be captured within boreal landscapes. Reconstructed DOC exports from forested catchments in the period 1901-2012 follow largely a sinusoidal pattern, with a period of about 37years and are tightly linked to multi-decadal patterns of precipitation. By combining our model with long-term precipitation estimates, we found no evidence of increasing DOC transport or in-lake concentrations through the 20th century. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Outbreaks of Tularemia in a Boreal Forest Region Depends on Mosquito Prevalence

    Science.gov (United States)

    Rydén, Patrik; Björk, Rafael; Schäfer, Martina L.; Lundström, Jan O.; Petersén, Bodil; Lindblom, Anders; Forsman, Mats; Sjöstedt, Anders

    2012-01-01

    Background. We aimed to evaluate the potential association of mosquito prevalence in a boreal forest area with transmission of the bacterial disease tularemia to humans, and model the annual variation of disease using local weather data. Methods. A prediction model for mosquito abundance was built using weather and mosquito catch data. Then a negative binomial regression model based on the predicted mosquito abundance and local weather data was built to predict annual numbers of humans contracting tularemia in Dalarna County, Sweden. Results. Three hundred seventy humans were diagnosed with tularemia between 1981 and 2007, 94% of them during 7 summer outbreaks. Disease transmission was concentrated along rivers in the area. The predicted mosquito abundance was correlated (0.41, P tularemia (temporal correlation, 0.76; P tularemia in a tularemia-endemic boreal forest area of Sweden and that environmental variables can be used as risk indicators. PMID:22124130

  14. APPLICATION OF REMOTE SENSING DATA FOR THE ASSESSMENT OF THE UJUK MOUNTAIN BOREAL FORESTS (THE TYVA REPUBLIC, RUSSIA

    Directory of Open Access Journals (Sweden)

    Khulermaa B. Kuular

    2016-01-01

    Full Text Available This paper discusses some issues related to assessment and monitoring of forests insouthern Siberia. This study aims to evaluate the response of southern boreal forests to climate warming at local scale. Estimating the impacts of climate change on mountain boreal forests requires a more complete accounting of tree growth/climate interaction. We used both remote sensing and field data. Field measurements were made from the upper to lower timberline of dark deciduous forest in 2005 and 2012. The remote sensing datasets were generated from LANDSAT scenes of different dates (19.08.1988, 25.06.1992 and 18.08.2011. For estimation of forests changes, we used values of NDVI (Normalized Difference Vegetation Index and NBR (Normalized Burn Ratio.

  15. Are Boreal Ovenbirds, Seiurus aurocapilla, More Prone to Move across Inhospitable Landscapes in Alberta's Boreal Mixedwood Forest than in Southern Québec's Temperate Deciduous Forest?

    Directory of Open Access Journals (Sweden)

    Marc Bélisle

    2007-12-01

    Full Text Available Population life-history traits such as the propensity to move across inhospitable landscapes should be shaped by exposure to landscape structure over evolutionary time. Thus, birds that recently evolved in landscapes fragmented by natural disturbances such as fire would be expected to show greater behavioral and morphological vagility relative to conspecifics that evolved under less patchy landscapes shaped by fewer and finer-scaled disturbances, i.e., the resilience hypothesis. These predictions are not new, but they remain largely untested, even for well-studied taxa such as neotropical migrant birds. We combined two experimental translocation, i.e., homing, studies to test whether Ovenbird, Seiurus aurocapilla, from the historically dynamic boreal mixedwood forest of north-central Alberta (n = 55 is more vagile than Ovenbird from historically less dynamic deciduous forest of southern Québec (n = 89. We found no regional difference in either wing loading or the response of homing Ovenbird to landscape structure. Nevertheless, this study presents a heuristic framework that can advance the understanding of boreal landscape dynamics as an evolutionary force.

  16. Decadal-scale ecosystem memory reveals interactive effects of drought and insect defoliation on boreal forest productivity

    Science.gov (United States)

    Itter, M.; D'Orangeville, L.; Dawson, A.; Kneeshaw, D.; Finley, A. O.

    2017-12-01

    Drought and insect defoliation have lasting impacts on the dynamics of the boreal forest. Impacts are expected to worsen under global climate change as hotter, drier conditions forecast for much of the boreal increase the frequency and severity of drought and defoliation events. Contemporary ecological theory predicts physiological feedbacks in tree responses to drought and defoliation amplify impacts potentially causing large-scale productivity losses and forest mortality. Quantifying the interactive impacts of drought and insect defoliation on regional forest health is difficult given delayed and persistent responses to disturbance events. We developed a Bayesian hierarchical model to estimate forest growth responses to interactions between drought and insect defoliation by species and size class. Delayed and persistent responses to past drought and defoliation were quantified using empirical memory functions allowing for improved detection of interactions. The model was applied to tree-ring data from stands in Western (Alberta) and Eastern (Québec) regions of the Canadian boreal forest with different species compositions, disturbance regimes, and regional climates. Western stands experience chronic water deficit and forest tent caterpillar (FTC) defoliation; Eastern stands experience irregular water deficit and spruce budworm (SBW) defoliation. Ecosystem memory to past water deficit peaked in the year previous to growth and decayed to zero within 5 (West) to 8 (East) years; memory to past defoliation ranged from 8 (West) to 12 (East) years. The drier regional climate and faster FTC defoliation dynamics (compared to SBW) likely contribute to shorter ecosystem memory in the West. Drought and defoliation had the largest negative impact on large-diameter, host tree growth. Surprisingly, a positive interaction was observed between drought and defoliation for large-diameter, non-host trees likely due to reduced stand-level competition for water. Results highlight the

  17. Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.

    Science.gov (United States)

    Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.

  18. Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests

    Science.gov (United States)

    Jill F. Johnstone; T. Scott Rupp; Mark Olson; David. Verbyla

    2011-01-01

    Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous...

  19. Influence of wildfires in the boreal forests of Eastern Siberia on atmospheric aerosol parameters

    Science.gov (United States)

    Tomshin, Oleg A.; Solovyev, Vladimir S.

    2017-11-01

    The results of studies of the dynamics of forest fires in the boreal forests of Yakutia (Eastern Siberia) for 2001-2016 are presented. Variations of aerosol optical thickness (AOT), aerosol index (AI) and total carbon monoxide content during May-September were studied depending on the different forest fire activity level. It is shown that the seasonal variations of AOT, AI and CO in the most fire-dangerous years differ significantly from the fire seasons when forest fire activity was medium or low.

  20. Cost-effective age structure and geographical distribution of boreal forest reserves.

    Science.gov (United States)

    Lundström, Johanna; Ohman, Karin; Perhans, Karin; Rönnqvist, Mikael; Gustafsson, Lena; Bugman, Harald

    2011-02-01

    1. Forest reserves are established to preserve biodiversity, and to maintain natural functions and processes. Today there is heightened focus on old-growth stages, with less attention given to early successional stages. The biodiversity potential of younger forests has been overlooked, and the cost-effectiveness of incorporating different age classes in reserve networks has not yet been studied.2. We performed a reserve selection analysis in boreal Sweden using the Swedish National Forest Inventory plots. Seventeen structural variables were used as biodiversity indicators, and the cost of protecting each plot as a reserve was assessed using the Heureka system. A goal programming approach was applied, which allowed inclusion of several objectives and avoided a situation in which common indicators affected the result more than rare ones. The model was limited either by budget or area.3. All biodiversity indicators were found in all age classes, with more than half having the highest values in ages ≥ 100 years. Several large-tree indicators and all deadwood indicators had higher values in forests 0-14 years than in forests 15-69 years.4. It was most cost-effective to protect a large proportion of young forests since they generally have a lower net present value compared to older forests, but still contain structures of importance for biodiversity. However, it was more area-effective to protect a large proportion of old forests since they have a higher biodiversity potential per area.5. The geographical distribution of reserves selected with the budget-constrained model was strongly biassed towards the north-western section of boreal Sweden, with a large proportion of young forest, whereas the area-constrained model focussed on the south-eastern section, with dominance by the oldest age class.6.Synthesis and applications. We show that young forests with large amounts of structures important to biodiversity such as dead wood and remnant trees are cheap and cost

  1. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.

    Science.gov (United States)

    Walker, Xanthe J; Mack, Michelle C; Johnstone, Jill F

    2015-08-01

    Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature-induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ∆(13)C responses on a subsample of trees as representative of the wider region. The negative ∆(13)C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ∆(13)C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought-induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions. © 2015 John Wiley & Sons Ltd.

  2. Management effects on carbon fluxes in boreal forests (Invited)

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.; Vestin, P.; Hellström, M.; Sundqvist, E.; Norunda Bgs Team

    2010-12-01

    Disturbance by management or natural causes such as wind throw or fire are believed to be one of the main factors that are controlling the carbon balance of vegetation. In Northern Europe a large fraction of the forest area is managed with clear cutting and thinning as the main silvicultural methods. The effect of clear-cutting on carbon dioxide exchanges were studied in different chrono-sequences located in Sweden, Finland, UK and France, respectively. The combined results from these studies showed that a simple model could be developed describing relative net ecosystem exchange as a function of relative rotation length (age). A stand with a rotation length of 100 years, typical for Swedish conditions, looses substantial amounts of carbon during the first 12-15 years and the time it takes to reach cumulative balance after clear-cut, is 25-30 years. The mean net ecosystem exchange over the whole rotation length equals 50% of the maximum uptake. An interesting question is if it is possible to harvest without the substantial carbon losses that take place after clear-cutting. Selective harvest by thinning could potentially be such a method. We therefore studied the effect of thinning on soil and ecosystem carbon fluxes in a mixed pine and spruce forest in Central Sweden, the Norunda forest, located in the semi-boreal zone at 60.08°N, 17.48 °E. The CO2 fluxes from the forest were measured by eddy covariance method and soil effluxes were measured by automatic chambers. Maximum canopy height of the ca. 100 years-old forest was 28 m. The stand was composed of ca 72% pine, 28% before the thinning while the composition after the thinning became 82% pine and 18% spruce. The thinning was made in November/December 2008 in a half- circle from the tower with a radius of 200 m. The LAI decreased from 4.5 to 2.8 after the thinning operation. Immediately after the thinning, we found significantly higher soil effluxes, probably due to increased decomposition of dead roots. The

  3. Vulnerability of the boreal forest to climate change: are managed forests more susceptible?

    International Nuclear Information System (INIS)

    Leduc, A.; Gauthier, S.

    2004-01-01

    This paper postulates that forests dominated by younger seral stages are less vulnerable to climate change that those composed of mature and overmature stands. To support this analysis, an overview of expected changes in climate conditions was provided. Expected changes include higher maximum temperatures, higher minimum temperatures and a decrease in periods of intense cold and fewer frost days; reduction in the diurnal temperature range; an increase in the apparent heat index; greater numbers of intense precipitation; and, increased risk of drought associated with air mass movements. A comparison between conditions in a managed forest mosaic and natural forests was made, with managed forests differing due to efforts to regulate the age structure. The inversion in the age structure of forest mosaics creates significant changes in structural characteristics and composition, including greater hardwood components and more even-aged stands. It was concluded that in Canada, managed boreal forests are younger and have less black spruce and more hardwoods and fir, making younger forests less vulnerable to fire and more amenable to fire control due to increased accessibility. It was also noted that because of their relative youth, managed forests are more vulnerable to regeneration failure and that managed forests with more balsam fir and trembling aspen are at greater risk for insect outbreaks. In addition, wind throw, a threat to older forests, is not significant in managed forests. 15 refs., 1 tab., 2 figs

  4. Alaska's Changing Fire Regime - Implications for the Vulnerability of Its Boreal Forests

    Science.gov (United States)

    Kasischke, E. S.; Hoy, E. E.; Verbyla, D. L.; Rupp, T. S.; Duffy, P. A.; McGuire, A. D.; Murphy, K. A.; Jandt, R.; Barnes, J. L.; Calef, M.; hide

    2010-01-01

    A synthesis was carried out to examine Alaska s boreal forest fire regime. During the 2000s, an average of 767 000 ha/year burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from humanignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska s boreal forests and land and fire management are discussed.

  5. Mechanisms for success after long-term nutrient enrichment in a boreal forest understory.

    Directory of Open Access Journals (Sweden)

    Tess Nahanni Grainger

    Full Text Available Global levels of reactive nitrogen are predicted to rise in the coming decades as a result of increased deposition from the burning of fossil fuels and the large-scale conversion of nitrogen into a useable form for agriculture. Many plant communities respond strongly to increases in soil nitrogen, particularly in northern ecosystems where nitrogen levels are naturally very low. An experiment in northern Canada that was initiated in 1990 has been investigating the effects of long-term nutrient enrichment (fertilizer added annually on a boreal forest understory community. We used this experiment to investigate why some species increase in abundance under nutrient enrichment whereas others decline. We focused on four species that differed in their responses to fertilization: Mertensia paniculata and Epilobium angustifolium increased in abundance, Achillea millefolium remained relatively constant and Festuca altaica declined. We hypothesized that the two species that were successful in the new high-nutrient, light-limited environment would be taller, have higher specific leaf area, change phenology by growing earlier in the season and be more morphologically plastic than their less successful counterparts. We compared plant height, specific leaf area, growth spurt date and allocation to leaves in plants grown in control and fertilized plots. We demonstrated that each of the two species that came to dominate fertilized plots has a different combination of traits and responses that likely gave them a competitive advantage; M. paniculata has the highest specific leaf area of the four species whereas E. angustifolium is tallest and exhibits morphological plasticity when fertilized by increasing biomass allocation to leaves. These results indicate that rather than one strategy determining success when nutrients become available, a variety of traits and responses may contribute to a species' ability to persist in a nutrient-enriched boreal forest

  6. Occurrence patterns of dead wood and wood-dependent lichens in managed boreal forest landscapes

    OpenAIRE

    Svensson, Måns

    2013-01-01

    Dead wood is a key resource for biodiversity, on which thousands of forest organisms are dependent. Because of current forest management, there has been a large-scale change in dead wood amounts and qualities, and consequently, many wood-dependent species are threatened. The general aim of this thesis is to increase our understanding of habitat requirements and occurrence patterns of wood-dependent lichens in managed, boreal forest landscapes. We surveyed dead wood and wood-dependent lichens ...

  7. High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska

    Science.gov (United States)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Wooller, Matthew J.; Finney, Bruce P.

    2016-01-01

    Stand-replacing wildfires are a keystone disturbance in the boreal forest, and they are becoming more common as the climate warms. Paleo-fire archives from the wildland–urban interface can quantify the prehistoric fire regime and assess how both human land-use and climate change impact ecosystem dynamics. Here, we use a combination of a sedimentary charcoal record preserved in varved lake sediments (annually layered) and fire scars in living trees to document changes in local fire return intervals (FRIs) and regional fire activity over the last 500 years. Ace Lake is within the boreal forest, located near the town of Fairbanks in interior Alaska, which was settled by gold miners in AD 1902. In the 400 years before settlement, fires occurred near the lake on average every 58 years. After settlement, fires became much more frequent (average every 18  years), and background charcoal flux rates rose to four times their preindustrial levels, indicating a region-wide increase in burning. Despite this surge in burning, the preindustrial boreal forest ecosystem and permafrost in the watershed have remained intact. Although fire suppression has reduced charcoal influx since the 1950s, an aging fuel load experiencing increasingly warm summers may pose management problems for this and other boreal sites that have similar land-use and fire histories. The large human-caused fire events that we identify can be used to test how increasingly common megafires may alter ecosystem dynamics in the future.

  8. The role of novel forest ecosystems in the conservation of wood-inhabiting fungi in boreal broadleaved forests.

    Science.gov (United States)

    Juutilainen, Katja; Mönkkönen, Mikko; Kotiranta, Heikki; Halme, Panu

    2016-10-01

    The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood-associated species. This is especially alarming given the important role wood-inhabiting fungi have in the natural decay processes. In the boreal zone, natural broad-leaved-dominated, herb-rich forests are threatened habitats which have high wood-inhabiting fungal species richness. Fungal diversity in other broadleaved forest habitat types is poorly known. Traditional wood pastures and man-made afforested fields are novel habitats that could potentially be important for wood-inhabiting fungi. This study compares species richness and fungal community composition across the aforementioned habitat types, based on data collected for wood-inhabiting fungi occupying all deadwood diameter fractions. Corticioid and polyporoid fungi were surveyed from 67 130 deadwood particles in four natural herb-rich forests, four birch-dominated wood pastures, and four birch-dominated afforested field sites in central Finland. As predicted, natural herb-rich forests were the most species-rich habitat. However, afforested fields also had considerably higher overall species richness than wood pastures. Many rare or rarely collected species were detected in each forest type. Finally, fungal community composition showed some divergence not only among the different habitat types, but also among deadwood diameter fractions. Synthesis and applications : In order to maintain biodiversity at both local and regional scales, conserving threatened natural habitat types and managing traditional landscapes is essential. Man-made secondary woody habitats could provide the necessary resources and serve as surrogate habitats for many broadleaved deadwood

  9. Shifting Patterns of Boreal Forest Succession and Browning Over the Last 30 Years

    Science.gov (United States)

    Goulden, M.; Czimczik, C. I.; Randerson, J. T.

    2017-12-01

    Climate and fire largely control the productivity ("greenness") and biodiversity of boreal forests in North America. Our research focuses on better understanding: 1) the patterns of, controls on, and recent changes in North American Boreal Forest "Browning" and the declining Normalized Difference Vegetation Index (NDVI) observed in satellite records, and 2) the patterns of, controls on, and recent changes in North American Boreal Forest fire recovery and succession. Much of our effort has used the Landsat archive to analyze the patterns of wildfire and forest recovery along a transect cutting across central Canada; this study areas covers 3 Landsat rows x 25 paths with 2500 summer images. Key findings include: 1) Most (80-90%) of the recent NDVI trends in our study area are attributable to wildfire (areas that burned after 1995 and also before 1975 show browning; areas that burned in 1975-1995 show greening). 2) There are a significant number of non-fire related patches that show either browning or greening; some of these patches are related to fires or human disturbances that aren't in our disturbance database, but others occur in wetter areas, where there is a general tendency toward browning with many specific cases of greening. 3) Various remote sensing metrics yield complementary information providing a clearer sense of the biophysical trends during succession. 4) We see evidence of accelerating succession from 1985-1995 to 2005-2015. This acceleration isn't dramatic, just 1-3 years during early recovery and more during later succession, but it is a consistent feature of the analysis. We are not seeing a systematic decline in old-stand LAI. While NDVI declines in old stands with the loss of deciduous trees, we are not seeing a systematic decrease in old stand LAI or wide spread mortality.

  10. High-latitude cooling associated with landscape changes from North American boreal forest fires

    Directory of Open Access Journals (Sweden)

    B. M. Rogers

    2013-02-01

    Full Text Available Fires in the boreal forests of North America are generally stand-replacing, killing the majority of trees and initiating succession that may last over a century. Functional variation during succession can affect local surface energy budgets and, potentially, regional climate. Burn area across Alaska and Canada has increased in the last few decades and is projected to be substantially higher by the end of the 21st century because of a warmer climate with longer growing seasons. Here we simulated changes in forest composition due to altered burn area using a stochastic model of fire occurrence, historical fire data from national inventories, and succession trajectories derived from remote sensing. When coupled to an Earth system model, younger vegetation from increased burning cooled the high-latitude atmosphere, primarily in the winter and spring, with noticeable feedbacks from the ocean and sea ice. Results from multiple scenarios suggest that a doubling of burn area would cool the surface by 0.23 ± 0.09 °C across boreal North America during winter and spring months (December through May. This could provide a negative feedback to winter warming on the order of 3–5% for a doubling, and 14–23% for a quadrupling, of burn area. Maximum cooling occurs in the areas of greatest burning, and between February and April when albedo changes are largest and solar insolation is moderate. Further work is needed to integrate all the climate drivers from boreal forest fires, including aerosols and greenhouse gasses.

  11. Interspecific variation in growth responses to tree size, competition and climate of western Canadian boreal mixed forests.

    Science.gov (United States)

    Jiang, Xinyu; Huang, Jian-Guo; Cheng, Jiong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G; Chen, Han Y H

    2018-08-01

    Tree growth of boreal forest plays an important role on global carbon (C) cycle, while tree growth in the western Canadian boreal mixed forests has been predicted to be negatively affected by regional drought. Individual tree growth can be controlled by many factors, such as competition, climate, tree size and age. However, information about contributions of different factors to tree growth is still limited in this region. In order to address this uncertainty, tree rings of two dominant tree species, trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench.) Voss), were sampled from boreal mixed forest stands distributed across Alberta, Canada. Tree growth rates over different time intervals (10years interval, 1998-2007; 20years interval, 1988-2007; 30years interval, 1978-2007) were calculated to study the effects of different factors (tree size, competition, climate, and age) on tree growth. Results indicated that tree growth of two species were both primarily affected by competition or tree size, while climatic indices showed less effects on tree growth. Growth of trembling aspen was significantly affected by inter- and intraspecific competition, while growth of white spruce was primarily influenced by tree size, followed by competition. Positive relationship was found between growth of white spruce and competition index of coniferous group, suggesting an intraspecific mutualism mechanism within coniferous group. Our results further suggested that competition driven succession was the primary process of forest composition shift in the western Canadian boreal mixed forest. Although drought stress increased tree mortality, decline of stem density under climate change released competition stress of surviving trees, which in turn sustained growth of surviving trees. Therefore, climatic indices showed fewer effects on growth of dominant tree species compared to other factors in our study. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Soil Carbon in North American, Arctic, and Boreal Regions

    Science.gov (United States)

    Lajtha, K.; Bailey, V. L.; Schuur, E.; McGuire, D.; Romanovsky, V. E.

    2017-12-01

    Globally, soils contain more than 3 times as much as C as the atmosphere and >4 times more C than the world's biota, therefore even small changes in soil C stocks could lead to large changes in the atmospheric concentration of CO2. Since SOCCR-1, improvements have been made in quantifying stocks and uncertainties in stocks of soil C to a depth of 1 m across North America. Estimates for soil carbon stocks in the US (CONUS + Alaska) range from 151 - 162 Pg C, based on extensive sampling and analysis. Estimates for Canada average about 262 Pg C, but sampling is not as extensive. Soil C for Mexico is calculated as 18 Pg C, but there is a great deal of uncertainty surrounding this value. These soil carbon stocks are sensitive to agricultural management, land use and land cover change, and development and loss of C-rich soils such as wetlands. Climate change is a significant threat although may be partially mitigated by increased plant production. Carbon stored in permafrost zone circumpolar soils is equal to 1330-1580 Pg C, almost twice that contained in the atmosphere and about order of magnitude greater than carbon contained in plant biomass, woody debris, and litter in the boreal and tundra biomes combined. Surface air temperature change is amplified in high latitude regions such that Arctic temperature rise is about 2.5 times faster than for the globe as a whole, and thus 5 - 15% of this carbon is considered vulnerable to release to the atmosphere by the year 2100 following the current trajectory of global and Arctic warming. This amount is likely to be up to an order of magnitude larger loss than the increase in carbon stored in plant biomass under the same changing conditions. Models of soil organic matter dynamics have been greatly improved in the last decade by including greater process-level understanding of factors that affect soil C stabilization and destabilization, yet structural features of many models are still limited in representing Arctic and boreal

  13. Mobility of radiocaesium in boreal forest ecosystems: Influence of precipitation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Steinnes, E. [Department of Chemistry, Norwegian University of Science and Technology (Norway); Gjelsvik, R.; Skuterud, L.; Thoerring, H. [Norwegian Radiation Protection Authority (Norway)

    2014-07-01

    Mobility and plant uptake of Cs in soils is generally limited by the presence of clay minerals in the soil. However, cations supplied by precipitation may substantially influence the mobility of radiocaesium in natural surface soil and subsequent transfer to food chains. The chemical composition of precipitation shows substantial variation among different areas in Norway for two main reasons. At sites close to the coast the atmospheric supply of marine cations and anions is many-fold greater than in regions shielded from marine influence by mountains. The southernmost part of the country has been, and still is, substantially affected by soil acidification due to long-range atmospheric transport of acidifying substances from areas elsewhere in Europe. This may explain a much higher greater uptake of {sup 137}Cs from the Chernobyl accident in moose in this region than elsewhere (Steinnes et al., 2009), in spite of the fact that some areas farther north received substantially greater fallout. Similarly a much greater transfer of {sup 137}Cs to natural birch forest vegetation is evident from the more acidified soils in the south than in comparable ecosystems elsewhere in the country (Thoerring et al., 2012). Repeated recordings of activity levels in natural surface soils showed faster leaching of Chernobyl {sup 137}Cs relative to inland areas not only in the south but also in coastal areas farther north (Gjelsvik and Steinnes, 2013), indicating that the amounts of marine cations in precipitation also has an appreciable effect on the Cs leaching. The geographical leaching differences still became less prominent with time. Recent lysimeter experiments with undisturbed soil columns obtained from an area receiving high radiocaesium deposition from the Chernobyl accident, applying precipitation with ionic composition characteristic of the different regions mentioned above, did not change the current depth distribution of {sup 137}Cs. However, acidic precipitation increased

  14. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    Science.gov (United States)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  15. The Impact of Boreal Forest Fire on Climate Warming

    OpenAIRE

    Randerson, J. T.; Liu, H.; Flanner, M. G.; Chambers, S. D.; Jin, Y.; Hess, P. G.; Pfister, G.; Mack, M. C.; Treseder, K. K.; Welp, L. R.; Chapin, F. S.; Harden, J. W.; Goulden, M. L.; Lyons, E.; Neff, J. C.

    2006-01-01

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ± 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (–2.3 ± 2.2 Watts per square meter) because multidecadal increases in surface albedo ha...

  16. Fire Regime along Latitudinal Gradients of Continuous to Discontinuous Coniferous Boreal Forests in Eastern Canada

    Directory of Open Access Journals (Sweden)

    Jeanne Portier

    2016-09-01

    Full Text Available Fire is the main disturbance in North American coniferous boreal forests. In Northern Quebec, Canada, where forest management is not allowed, the landscape is gradually constituted of more opened lichen woodlands. Those forests are discontinuous and show a low regeneration potential resulting from the cumulative effects of harsh climatic conditions and very short fire intervals. In a climate change context, and because the forest industry is interested in opening new territories to forest management in the north, it is crucial to better understand how and why fire risk varies from the north to the south at the transition between the discontinuous and continuous boreal forest. We used time-since-fire (TSF data from fire archives as well as a broad field campaign in Quebec’s coniferous boreal forests along four north-south transects in order to reconstruct the fire history of the past 150 to 300 years. We performed survival analyses in each transect in order to (1 determine if climate influences the fire risk along the latitudinal gradient; (2 fractionate the transects into different fire risk zones; and (3 quantify the fire cycle—defined as the time required to burn an area equivalent to the size of the study area—of each zone and compare its estimated value with current fire activity. Results suggest that drought conditions are moderately to highly responsible for the increasing fire risk from south to north in the three westernmost transects. No climate influence was observed in the last one, possibly because of its complex physical environment. Fire cycles are shortening from south to north, and from east to west. Limits between high and low fire risk zones are consistent with the limit between discontinuous and continuous forests, established based on recent fire activity. Compared to the last 40 years, fire cycles of the last 150–300 years are shorter. Our results suggest that as drought episodes are expected to become more frequent

  17. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance : Insights from a global process-based vegetation model

    NARCIS (Netherlands)

    Yue, Chao; Ciais, P.; Luyssaert, S.; Cadule, Patricia; Harden, J. L.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and

  18. Fire spread probabilities for experimental beds composed of mixedwood boreal forest fuels

    Science.gov (United States)

    M.B. Dickinson; E.A. Johnson; R. Artiaga

    2013-01-01

    Although fuel characteristics are assumed to have an important impact on fire regimes through their effects on extinction dynamics, limited capabilities exist for predicting whether a fire will spread in mixedwood boreal forest surface fuels. To improve predictive capabilities, we conducted 347 no-wind, laboratory test burns in surface fuels collected from the mixed-...

  19. Biased representation of disturbance rates in the roadside sampling frame in boreal forests: implications for monitoring design

    Directory of Open Access Journals (Sweden)

    Steven L. Van Wilgenburg

    2015-12-01

    Full Text Available The North American Breeding Bird Survey (BBS is the principal source of data to inform researchers about the status of and trend for boreal forest birds. Unfortunately, little BBS coverage is available in the boreal forest, where increasing concern over the status of species breeding there has increased interest in northward expansion of the BBS. However, high disturbance rates in the boreal forest may complicate roadside monitoring. If the roadside sampling frame does not capture variation in disturbance rates because of either road placement or the use of roads for resource extraction, biased trend estimates might result. In this study, we examined roadside bias in the proportional representation of habitat disturbance via spatial data on forest "loss," forest fires, and anthropogenic disturbance. In each of 455 BBS routes, the area disturbed within multiple buffers away from the road was calculated and compared against the area disturbed in degree blocks and BBS strata. We found a nonlinear relationship between bias and distance from the road, suggesting forest loss and forest fires were underrepresented below 75 and 100 m, respectively. In contrast, anthropogenic disturbance was overrepresented at distances below 500 m and underrepresented thereafter. After accounting for distance from road, BBS routes were reasonably representative of the degree blocks they were within, with only a few strata showing biased representation. In general, anthropogenic disturbance is overrepresented in southern strata, and forest fires are underrepresented in almost all strata. Similar biases exist when comparing the entire road network and the subset sampled by BBS routes against the amount of disturbance within BBS strata; however, the magnitude of biases differed. Based on our results, we recommend that spatial stratification and rotating panel designs be used to spread limited BBS and off-road sampling effort in an unbiased fashion and that new BBS routes

  20. Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest-steppe.

    Science.gov (United States)

    Dulamsuren, Choimaa; Klinge, Michael; Degener, Jan; Khishigjargal, Mookhor; Chenlemuge, Tselmeg; Bat-Enerel, Banzragch; Yeruult, Yolk; Saindovdon, Davaadorj; Ganbaatar, Kherlenchimeg; Tsogtbaatar, Jamsran; Leuschner, Christoph; Hauck, Markus

    2016-02-01

    The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest-steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha(-1) , which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha(-1) ) and total belowground carbon density (149 Mg C ha(-1) ) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha(-1) , compared with 215 Mg C ha(-1) in the forest interior. Carbon stock density in grasslands was 144 Mg C ha(-1) . Analysis of satellite imagery of the highly fragmented forest area in the forest-steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km(2) , and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5-1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming. © 2015 John Wiley & Sons Ltd.

  1. Spatiotemporal variability and modeling of the solar irradiance transmissivity through a boreal forest

    Science.gov (United States)

    Nadeau, D.; Isabelle, P. E.; Asselin, M. H.; Parent, A. C.; Jutras, S.; Anctil, F.

    2017-12-01

    Solar irradiance is the largest driver of land-surface exchanges of energy, water and trace gases. Its absorption by a forest canopy generates considerable sensible and latent heat fluxes as well as tree temperature changes. A fraction of the irradiance gets transmitted through the canopy and powers another layer of energy fluxes, which can reach substantial values. Transmitted radiation is also of particular relevance to understory vegetation photosynthesis, snowpack energetics and soil temperature dynamics. Boreal forest canopy transmissivity needs to be quantified to properly reproduce land-atmosphere interactions in the circumpolar boreal biome, but its high spatiotemporal variability makes it a challenging task. The objective of this study is to characterize the spatiotemporal variability in under-canopy radiation and to evaluate the performance of various models in representing plot-scale observations. The study site is located in Montmorency Forest (47°N, 71°W), in southern Quebec, Canada. The vegetation includes mostly juvenile balsam firs, up to 6 to 8 m tall. Since January 2016, a 15-m flux tower measures the four components of radiation, as well as other relevant fluxes and meteorological variables, on a ≈10° northeast-facing slope. In summer 2016, 20 portable weather stations were mounted in a 150 m x 200 m grid around the flux tower. These stations were equipped with silicon-cell pyranometers and provided measurements of downwelling irradiance at a height of 2 m. This setup allowed us to compute irradiance transmissivity and to assess its spatiotemporal variability at the site. First, we show that the average of daily incoming energy varies tremendously across the sites, from 1 MJ/m2 to nearly 9 MJ/m2, due to large variations in canopy structure over short distances. Using a regression tree analysis, we show that transmissivity mostly depends on sun elevation, diffuse fraction of radiation, sky and sun view fraction and wind speed above canopy. We

  2. Maintaining animal assemblages through single-species management: the case of threatened caribou in boreal forest.

    Science.gov (United States)

    Bichet, Orphé; Dupuch, Angélique; Hébert, Christian; Le Borgne, Hélène Le; Fortin, Daniel

    2016-03-01

    With the intensification of human activities, preserving animal populations is a contemporary challenge of critical importance. In this context, the umbrella species concept is appealing because preserving a single species should result in the protection of multiple co-occurring species. Practitioners, though, face the task of having to find suitable umbrellas to develop single-species management guidelines. In North America, boreal forests must be managed to facilitate the recovery of the threatened boreal caribou (Rangifer tarandus). Yet, the effect of caribou conservation on co-occurring animal species remains poorly documented. We tested if boreal caribou can constitute an effective umbrella for boreal fauna. Birds, small mammals, and insects were sampled along gradients of post-harvest and post-fire forest succession. Predictive models of occupancy were developed from the responses of 95 species to characteristics of forest stands and their surroundings. We then assessed the similarity of species occupancy expected between simulated harvested landscapes and a 90 000-km2 uncut landscape. Managed landscapes were simulated based on three levels of disturbance, two timber-harvest rotation cycles, and dispersed or aggregated cut-blocks. We found that management guidelines that were more likely to maintain caribou populations should also better preserve animal assemblages. Relative to fragmentation or harvest cycle, we detected a stronger effect of habitat loss on species assemblages. Disturbing 22%, 35%, and 45% of the landscape should result, respectively, in 80%, 60%, and 40% probability for caribou populations to be sustainable; in turn, this should result in regional species assemblages with Jaccard similarity indices of 0.86, 0.79, and 0.74, respectively, relative to the uncut landscape. Our study thus demonstrates the value of single-species management for animal conservation. Our quantitative approach allows for the evaluation of management guidelines prior

  3. Driving Factors of Understory Evapotranspiration within a Siberian Larch Forest

    Science.gov (United States)

    Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.; Spawn, S.; Farmer, S.

    2017-12-01

    Amplified rates of climate change are causing alterations in vegetation productivity, hydrologic cycling, and wildfire severity and intensity in arctic ecosystems. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem that are affected by these modifications. These forests cover 2.5 million km2 with densities ranging from spare to thick. The current average canopy cover is at around 17% and is expected to increase with the observed increases in vegetation productivity and wildfire. These projected changes in forest density can alter the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. Low density boreal forests have much higher rates of understory evapotranspiration and can contribute as much as 80% to total ecosystem evapotranspiration, while the understory in high density forests is responsible for only around 15% of total ecosystem evapotranspiration. The objective of this research is to understand why there are changes in understory evapotranspiration with varying overstory density by looking at light levels, biomass, vegetation, and air and soil differences. To better learn about these differences in understory evapotranspiration in boreal larch forests the driving factors of evapotranspiration were measured within a burn scar with varying densities of high, medium, and low. Water fluxes were conducted using the static chamber technique under different environmental conditions. Furthermore, controlling factors of evapotranspiration such as photosynethically active radiation, vapor pressure deficit, soil moisture, moss cover, biomass, and leaf area index were measured or derived. In general, we found that low density areas have highest rates of evapotranspiration due to larger amount of biomass, and increased access to light, despite low levels of soil moisture. These results can help us understand how and why total ecosystem water exchange will change in boreal larch forests

  4. Changes in plant water use efficiency over the recent past reconstructed using palaeo plant records from the boreal forest

    Science.gov (United States)

    Gagen, M.; Finsinger, W.; McCarroll, D.; Wagner, F.

    2009-04-01

    The Boreal forests contains 33% of the earth's forest cover and are located at the latitude where most of the estimated global warming is predicted to occur. Warming as a consequence of rising carbon dioxide will affect evapotranspiration within the biome, with significant consequences given that water vapour is an important greenhouse gas. However, there is also a physiological forcing associated with the effects of rising carbon dioxide on plants. Higher atmospheric carbon dioxide will reduce evapotraspiration because tree stomata tend to close under elevated carbon dioxide. The warming associated with reduced evapotranspiration is known as carbon dioxide physiological forcing and it is not well constrained. Here we suggest that future predictions of evapotranspiration flux within the Boreal forest zone might be more accurately gauged by taking account of palaeo evidence of changing plant water use efficiency and stomatal density in the two most important Boreal plant species: Pinus sylvestris and Betula nana. Stable carbon isotope ratios in tree ring cellulose and stomatal density measurements, from preserved leaves falling on the forest floor, hold a record of the plant physiological changes associated with adjustment to rising carbon dioxide. We present evidence that, rather than plants simply closing their stomatal apertures under recent elevated carbon dioxide, over the last 150 years reduced evapotranspiration in the northern Boreal forest has been associated with a powerful plastic response including reductions in stomatal conductance via changes in stomatal density and pore length. Furthermore we present evidence that trees may be reaching the limits of their ability to respond plastically to rising carbon dioxide by increasing their water use efficiency.

  5. Soil-surface CO2 flux and growth in a boreal Norway spruce stand: Effects of soil warming and nutrition

    International Nuclear Information System (INIS)

    Stroemgren, M.

    2001-01-01

    soil warming stimulated tree growth, but resulted in only a minor increase of annual R, suggesting an increased carbon sink for boreal forests in a warmer climate

  6. Effects of ionizing radiation on the boreal forest

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1995-08-01

    The Field-Irradiator-Gamma (FIG) project chronically exposed a section of the boreal forest to ionizing radiation by placing a 137 Cs source on tope of a 20-m tower at a forest site in southeastern Manitoba. The irradiation continued from 1973 to 1986 and the forest was exposed to radiological dose rates ranging from 65 mGy.h -1 to 0.005 mGy.h -1 along a gradient extending 500 m from the source. The irradiation killed the tree canopy close to the irradiator, resulting in the formation of a herbaceous zone of vegetation at high dose rates. After 14 years of irradiation, some tree species were still being affected at dose rates as low as about 1 mGy.h -1 . The data gathered at the FIG site can be used to identify radiological dose rates that forest communities can tolerate. This information allows decisions to be made concerning guidelines for protection of the general environment from radionuclide emissions from various anthropogenic sources, such as nuclear reactors and uranium tailings. This report reviews the previous data collected at the FIG site during the pre-irradiation and irradiation phases and the methodology used to establish a baseline for future comparisons. Permanently marked sampling plots are a particular strength to the study, whereby researchers can compare the present forest community with that measured during the past 25 years. (author). 53 refs., 6 tabs., 22 figs

  7. Effects of ionizing radiation on the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Amiro, B D [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1995-08-01

    The Field-Irradiator-Gamma (FIG) project chronically exposed a section of the boreal forest to ionizing radiation by placing a {sup 137}Cs source on tope of a 20-m tower at a forest site in southeastern Manitoba. The irradiation continued from 1973 to 1986 and the forest was exposed to radiological dose rates ranging from 65 mGy.h{sup -1} to 0.005 mGy.h{sup -1} along a gradient extending 500 m from the source. The irradiation killed the tree canopy close to the irradiator, resulting in the formation of a herbaceous zone of vegetation at high dose rates. After 14 years of irradiation, some tree species were still being affected at dose rates as low as about 1 mGy.h{sup -1}. The data gathered at the FIG site can be used to identify radiological dose rates that forest communities can tolerate. This information allows decisions to be made concerning guidelines for protection of the general environment from radionuclide emissions from various anthropogenic sources, such as nuclear reactors and uranium tailings. This report reviews the previous data collected at the FIG site during the pre-irradiation and irradiation phases and the methodology used to establish a baseline for future comparisons. Permanently marked sampling plots are a particular strength to the study, whereby researchers can compare the present forest community with that measured during the past 25 years. (author). 53 refs., 6 tabs., 22 figs.

  8. Energy, water and carbon exchange in a boreal forest landscape - NOPEX experiences

    DEFF Research Database (Denmark)

    Halldin, S.; Gryning, Sven-Erik; Gottschalk, L.

    1999-01-01

    The role of the land surface in controlling climate is still underestimated and access to information from the boreal-forest zone is instrumental to improve this situation. This motivated the organisation of NOPEX (Northern hemisphere climate-Processes land-surface Experiment) in the southern part...... as an integrated part of this Special Issue. (C) 1999 Elsevier Science B.V. All rights reserved....

  9. Habitat associations drive species vulnerability to climate change in boreal forests

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Triviño, María; Tikkanen, Olli-Pekka

    2016-01-01

    if species sensitivity, the species ability to tolerate climatic variations determined by traits, plays a key role in determining vulnerability. We analyse the role of species’ habitat associations, a proxy for sensitivity, in explaining vulnerability for two poorly-known but species-rich taxa in boreal...... forest, saproxylic beetles and fungi, using three IPCC emissions scenarios. Towards the end of the 21st century we projected an improvement in habitat quality associated with an increase of deadwood, an important resource for species, as a consequence of increased tree growth under high emissions...... scenarios. However, climate change will potentially reduce habitat suitability for ~9–43 % of the threatened deadwood-associated species. This loss is likely caused by future increase in timber extraction and decomposition rates causing higher deadwood turnover, which have a strong negative effect on boreal...

  10. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest

    Science.gov (United States)

    Leslie A. Boby; Edward A.G. Schuur; Michelle C. Mack; David Verbyla; Jill F. Johnstone

    2010-01-01

    The boreal region stores a large proportion of the world's terrestrial carbon (C) and is subject to high-intensity, stand-replacing wildfires that release C and nitrogen (N) stored in biomass and soils through combustion. While severity and extent of fires drives overall emissions, methods for accurately estimating fire severity are poorly tested in this unique...

  11. Evaluating hillslope and riparian contributions to dissolved nitrogen (N) export from a boreal forest catchment

    Science.gov (United States)

    Blackburn, M.; Ledesma, José L. J.; Näsholm, Torgny; Laudon, Hjalmar; Sponseller, Ryan A.

    2017-02-01

    Catchment science has long held that the chemistry of small streams reflects the landscapes they drain. However, understanding the contribution of different landscape units to stream chemistry remains a challenge which frequently limits our understanding of export dynamics. For limiting nutrients such as nitrogen (N), an implicit assumption is that the most spatially extensive landscape units (e.g., uplands) act as the primary sources to surface waters, while near-stream zones function more often as sinks. These assumptions, based largely on studies in high-gradient systems or in regions with elevated inputs of anthropogenic N, may not apply to low-gradient, nutrient-poor, and peat-rich catchments characteristic of many northern ecosystems. We quantified patterns of N mobilization along a hillslope transect in a northern boreal catchment to assess the extent to which organic matter-rich riparian soils regulate the flux of N to streams. Contrary to the prevailing view of riparian functioning, we found that near-stream, organic soils supported concentrations and fluxes of ammonium (NH4+) and dissolved organic nitrogen that were much higher than the contributing upslope forest soils. These results suggest that stream N chemistry is connected to N mobilization and mineralization within the riparian zone rather than the wider landscape. Results further suggest that water table fluctuation in near-surface riparian soils may promote elevated rates of net N mineralization in these landscapes.

  12. Landscape control of uranium and thorium in boreal streams – spatiotemporal variability and the role of wetlands

    Directory of Open Access Journals (Sweden)

    F. Lidman

    2012-11-01

    Full Text Available The concentrations of uranium and thorium in ten partly nested streams in the boreal forest region were monitored over a two-year period. The investigated catchments ranged from small headwaters (0.1 km2 up to a fourth-order stream (67 km2. Considerable spatiotemporal variations were observed, with little or no correlation between streams. The fluxes of both uranium and thorium varied substantially between the subcatchments, ranging from 1.7 to 30 g km−2 a−1 for uranium and from 3.2 to 24 g km−2 a−1 for thorium. Airborne gamma spectrometry was used to measure the concentrations of uranium and thorium in surface soils throughout the catchment, suggesting that the concentrations of uranium and thorium in mineral soils are similar throughout the catchment. The fluxes of uranium and thorium were compared to a wide range of parameters characterising the investigated catchments and the chemistry of the stream water, e.g. soil concentrations of these elements, pH, TOC (total organic carbon, Al, Si and hydrogen carbonate, but it was concluded that the spatial variabilities in the fluxes of both uranium and thorium mainly were controlled by wetlands. The results indicate that there is a predictable and systematic accumulation of both uranium and thorium in boreal wetlands that is large enough to control the transport of these elements. On the landscape scale approximately 65–80% of uranium and 55–65% of thorium entering a wetland were estimated to be retained in the peat. Overall, accumulation in mires and other types of wetlands was estimated to decrease the fluxes of uranium and thorium from the boreal forest landscape by 30–40%, indicating that wetlands play an important role for the biogeochemical cycling of uranium and thorium in the boreal forest landscape. The atmospheric deposition of uranium and thorium was also quantified, and its contribution to boreal streams was

  13. An Approach for Forest Inventory in Canada's Northern Boreal region, Northwest Territories

    Science.gov (United States)

    Mahoney, C.; Hopkinson, C.; Hall, R.; Filiatrault, M.

    2017-12-01

    The northern extent of Canada's northern boreal forest is largely inaccessible resulting in logistical, financial, and human challenges with respect to obtaining concise and accurate forest resource inventory (FRI) attributes such as stand height, aboveground biomass and forest carbon stocks. This challenge is further exacerbated by mandated government resource management and reporting of key attributes with respect to assessing impacts of natural disturbances, monitoring wildlife habitat and establishing policies to mitigate effects of climate change. This study presents a framework methodology utilized to inventory canopy height and crown closure over a 420,000 km2 area in Canada's Northwest Territories (NWT) by integrating field, LiDAR and satellite remote sensing data. Attributes are propagated from available field to coincident airborne LiDAR thru to satellite laser altimetry footprints. A quality controlled form of the latter are then submitted to a k-nearest neighbor (kNN) imputation algorithm to produce a continuous map of each attribute on a 30 m grid. The resultant kNN stand height (r=0.62, p=0.00) and crown closure (r=0.64, p=0.00) products were identified as statistically similar to a comprehensive independent airborne LiDAR source. Regional uncertainty can be produced with each attribute to identify areas of potential improvement through future strategic data acquisitions or the fine tuning of model parameters. This study's framework concept was developed to inform Natural Resources Canada - Canadian Forest Service's Multisource Vegetation Inventory and update vast regions of Canada's northern forest inventories, however, its applicability can be generalized to any environment. Not only can such a framework approach incorporate other data sources (such as Synthetic Aperture Radar) to potentially better characterize forest attributes, but it can also utilize future Earth observation mission data (for example ICESat-2) to monitor forest dynamics and the

  14. Thresholds for boreal biome transitions.

    Science.gov (United States)

    Scheffer, Marten; Hirota, Marina; Holmgren, Milena; Van Nes, Egbert H; Chapin, F Stuart

    2012-12-26

    Although the boreal region is warming twice as fast as the global average, the way in which the vast boreal forests and tundras may respond is poorly understood. Using satellite data, we reveal marked alternative modes in the frequency distributions of boreal tree cover. At the northern end and at the dry continental southern extremes, treeless tundra and steppe, respectively, are the only possible states. However, over a broad intermediate temperature range, these treeless states coexist with boreal forest (∼75% tree cover) and with two more open woodland states (∼20% and ∼45% tree cover). Intermediate tree covers (e.g., ∼10%, ∼30%, and ∼60% tree cover) between these distinct states are relatively rare, suggesting that they may represent unstable states where the system dwells only transiently. Mechanisms for such instabilities remain to be unraveled, but our results have important implications for the anticipated response of these ecosystems to climatic change. The data reveal that boreal forest shows no gradual decline in tree cover toward its limits. Instead, our analysis suggests that it becomes less resilient in the sense that it may more easily shift into a sparse woodland or treeless state. Similarly, the relative scarcity of the intermediate ∼10% tree cover suggests that tundra may shift relatively abruptly to a more abundant tree cover. If our inferences are correct, climate change may invoke massive nonlinear shifts in boreal biomes.

  15. Rating a Wildfire Mitigation Strategy with an Insurance Premium: A Boreal Forest Case Study

    Directory of Open Access Journals (Sweden)

    Georgina Rodriguez-Baca

    2016-05-01

    Full Text Available Risk analysis entails the systematic use of historical information to determine the frequency, magnitude and effects of unexpected events. Wildfire in boreal North America is a key driver of forest dynamics and may cause very significant economic losses. An actuarial approach to risk analysis based on cumulative probability distributions was developed to reduce the adverse effects of wildfire. To this effect, we developed spatially explicit landscape models to simulate the interactions between harvest, fire and forest succession over time in a boreal forest of eastern Canada. We estimated the amount of reduction of timber harvest necessary to build a buffer stock of sufficient size to cover fire losses and compared it to an insurance premium estimated in units of timber volume from the probability of occurrence and the amount of damage. Overall, the timber harvest reduction we applied was much more costly than the insurance premium even with a zero interest rate. This is due to the fact that the insurance premium is directly related to risk while the timber harvest reduction is not and, as a consequence, is much less efficient. These results, especially the comparison with a standard indicator such as an insurance premium, have useful implications at the time of choosing a mitigation strategy to protect timber supplies against risk without overly diminishing the provision of services from the forest. They are also promoting the use of insurance against disastrous events in forest management planning.

  16. The Effect of Pollution on Newly-Formed Particle Composition in Boreal Forest

    Science.gov (United States)

    Vaattovaara, Petri

    2010-05-01

    Petri Vaattovaara (1), Tuukka Petäjä (2), Jorma Joutsensaari (1), Pasi Miettinen (1), Boris Zaprudin (1,6), Aki Kortelainen (1), Juha Heijari (3,7), Pasi Yli-Pirilä (3), Pasi Aalto (2), Doug R. Worsnop (4), and Ari Laaksonen(1,5) (1) University of Eastern Finland, Finland (2) University of Helsinki, Finland (3) University of Eastern Finland, Finland (4) Aerodyne Research Inc., USA (5) Finnish Meteorological Institute, Finland (6) Currently at University of Turku, Finland (7) Currently at Maritime Research Centre, Finland Email address of the Corresponding author: Petri.Vaattovaara@uef.fi The geographical extent of the tropical, temperate and boreal forests is about 30% of the Earth's land surface. Those forests are located around the world in different climate zones effecting widely on atmospheric composition via new particle formation. The Boreal forests solely cover one third of the forests extent and are one of the largest vegetation environments, forming a circumpolar band throughout the northern hemisphere continents, with a high potential to affect climate processes [1]. In order to more fully understand the possible climatic effects of the forests, the properties of secondary organic aerosols (SOA) in varying conditions (e.g. a change in meteorological parameters or in the concentrations of biogenic and antropogenic trace gases) need to be better known. In this study, we applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer [2]) and the UFH-TDMA (ultrafine hygroscopicity tandem differential mobility analyzer [3]) methods parallel to shed light on the evolution of the nucleation and Aitken mode particle compositions (via physic-chemical properties) at a virgin boreal forest site in varying conditions. The measurements were carried out at Hyytiälä forest station in Northern Europe (Finland) during 15 spring nucleation events. We also carried out a statistical analysis using linear correlations in order to explain the variability in

  17. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, J.S.; Thornton, P.E.; White, M.A.; Running, S.W. [Montana Univ., Missoula, MT (United States). School of Forestry

    1997-12-31

    Studies have shown that the boreal forest region is in danger of experiencing significant warming and drying in response to increases in atmospheric CO{sub 2} concentration and other greenhouse gases. Since the boreal forest region contains 16-24 per cent of the world`s soil carbon, warming in this region could result in a rapid, large-scale displacement and redistribution of boreal forest, enhanced release of CO{sub 2} to the atmosphere, and an intensification of global warming. A study was conducted in which a process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce. The objective was to integrate point measurements across multiple spatial and temporal scales using process level models of the boreal forest water, energy and biogeochemical cycles. Climate characteristics that control simulated carbon fluxes were also studied. Results showed that trees with large daily evapotranspiration rates and those situated on sandy soils with low water holding capacities were especially vulnerable to increased temperature and drought conditions. Trees subject to frequent water stress during the growing season, particularly older trees that exhibit low photosynthetic and high respiration rates, were on the margin between being annual net sources or sinks for atmospheric carbon. 71 refs., 3 tabs., 5 figs.

  18. Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest.

    Science.gov (United States)

    Mazziotta, Adriano; Pouzols, Federico Montesino; Mönkkönen, Mikko; Kotiaho, Janne S; Strandman, Harri; Moilanen, Atte

    2016-09-15

    Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts. We first estimated how habitat availability for focal indicator species and economic returns from timber harvesting develop through time as a function of forest type and action chosen. We then developed an optimal resource allocation by accounting for budget size and habitat availability of indicator species in different forest types. We also accounted for the perspective adopted towards sustainability, modeled via temporal preference and economic and ecological time discounting. Controversially, we found that in boreal forest set-aside followed by protection of clear-cuts can become a winning cost-effective strategy when accounting for habitat requirements of multiple species, long planning horizon, and limited budget. It is particularly effective when adopting a long-term sustainability perspective, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    Science.gov (United States)

    Steyaert, L.T.; Hall, F.G.; Loveland, Thomas R.

    1997-01-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km ?? 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within

  20. DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state

    Science.gov (United States)

    O’Donnell, Jonathan A.; Aiken, George R.; Butler, Kenna D.; Guillemette, Francois; Podgorski, David C.; Spencer, Robert G. M.

    2016-01-01

    The boreal region stores large amounts of organic carbon (C) in organic-soil horizons, which are vulnerable to destabilization via warming and disturbance. Decomposition of soil organic matter (SOM) contributes to the production and turnover of dissolved organic matter (DOM). While temperature is a primary control on rates of SOM and DOM cycling, little is known about temperature effects on DOM composition in soil leachate. Here we conducted a 30 day incubation to examine the effects of temperature (20 versus 5°C) and SOM decomposition state (moss versus fibric versus amorphous horizons) on DOM composition in organic soils of interior Alaska. We characterized DOM using bulk dissolved organic C (DOC) concentration, chemical fractionation, optical properties, and ultrahigh-resolution mass spectrometry. We observed an increase in DOC concentration and DOM aromaticity in the 20°C treatment compared to the 5°C treatment. Leachate from fibric horizons had higher DOC concentration than shallow moss or deep amorphous horizons. We also observed chemical shifts in DOM leachate over time, including increases in hydrophobic organic acids, polyphenols, and condensed aromatics and decreases in low-molecular weight hydrophilic compounds and aliphatics. We compared ultrahigh-resolution mass spectrometry and optical data and observed strong correlations between polyphenols, condensed aromatics, SUVA254, and humic-like fluorescence intensities. These findings suggest that biolabile DOM was preferentially mineralized, and the magnitude of this transformation was determined by kinetics (i.e., temperature) and substrate quality (i.e., soil horizon). With future warming, our findings indicate that organic soils may release higher concentrations of aromatic DOM to aquatic ecosystems.

  1. Estimating seasonal variations in cloud droplet number concentration over the boreal forest from satellite observations

    NARCIS (Netherlands)

    Janssen, R.; Ganzeveld, L.N.; Kabat, P.; Kulmala, M.; Nieminen, T.; Roebeling, R.A.

    2011-01-01

    Seasonal variations in cloud droplet number concentration (NCD) in low-level stratiform clouds over the boreal forest are estimated from MODIS observations of cloud optical and microphysical properties, using a sub-adiabatic cloud model to interpret vertical profiles of cloud properties. An

  2. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Cofer, W.R. III; Levine, J.S.

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m -1 (OC) and 0.120 to 0.160 mg/m -3 (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m -3 (OC) and 0.006--0.050 mg/m -3 (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC)

  3. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences.

    Science.gov (United States)

    Williams, J.; Petäjä, T.

    2012-04-01

    This submission describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12th July-12th August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  4. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010: an overview of meteorological and chemical influences

    Directory of Open Access Journals (Sweden)

    J. Williams

    2011-10-01

    Full Text Available This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation in Hyytiälä, Finland from 12 July–12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce; mixed forest (Birch and conifers; and woodland scrub (e.g. Willows, Aspen; indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO, urban anthropogenic pollution (pentane and SO2 and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes. None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  5. Parameterized isoprene and monoterpene emissions from the boreal forest floor: Implementation into a 1D chemistry-transport model and investigation of the influence on atmospheric chemistry

    Science.gov (United States)

    Mogensen, Ditte; Aaltonen, Hermanni; Aalto, Juho; Bäck, Jaana; Kieloaho, Antti-Jussi; Gierens, Rosa; Smolander, Sampo; Kulmala, Markku; Boy, Michael

    2015-04-01

    Volatile organic compounds (VOCs) are emitted from the biosphere and can work as precursor gases for aerosol particles that can affect the climate (e.g. Makkonen et al., ACP, 2012). VOC emissions from needles and leaves have gained the most attention, however other parts of the ecosystem also have the ability to emit a vast amount of VOCs. This, often neglected, source can be important e.g. at periods where leaves are absent. Both sources and drivers related to forest floor emission of VOCs are currently limited. It is thought that the sources are mainly due to degradation of organic matter (Isidorov and Jdanova, Chemosphere, 2002), living roots (Asensio et al., Soil Biol. Biochem., 2008) and ground vegetation. The drivers are biotic (e.g. microbes) and abiotic (e.g. temperature and moisture). However, the relative importance of the sources and the drivers individually are currently poorly understood. Further, the relative importance of these factors is highly dependent on the tree species occupying the area of interest. The emission of isoprene and monoterpenes where measured from the boreal forest floor at the SMEAR II station in Southern Finland (Hari and Kulmala, Boreal Env. Res., 2005) during the snow-free period in 2010-2012. We used a dynamic method with 3 automated chambers analyzed by Proton Transfer Reaction - Mass Spectrometer (Aaltonen et al., Plant Soil, 2013). Using this data, we have developed empirical parameterizations for the emission of isoprene and monoterpenes from the forest floor. These parameterizations depends on abiotic factors, however, since the parameterizations are based on field measurements, biotic features are captured. Further, we have used the 1D chemistry-transport model SOSAA (Boy et al., ACP, 2011) to test the seasonal relative importance of inclusion of these parameterizations of the forest floor compared to the canopy crown emissions, on the atmospheric reactivity throughout the canopy.

  6. Ditch network maintenance in peat-dominated boreal forests: Review and analysis of water quality management options.

    Science.gov (United States)

    Nieminen, Mika; Piirainen, Sirpa; Sikström, Ulf; Löfgren, Stefan; Marttila, Hannu; Sarkkola, Sakari; Laurén, Ari; Finér, Leena

    2018-03-27

    The objective of this study was to evaluate the potential of different water management options to mitigate sediment and nutrient exports from ditch network maintenance (DNM) areas in boreal peatland forests. Available literature was reviewed, past data reanalyzed, effects of drainage intensity modeled, and major research gaps identified. The results indicate that excess downstream loads may be difficult to prevent. Water protection structures constructed to capture eroded matter are either inefficient (sedimentation ponds) or difficult to apply (wetland buffers). It may be more efficient to decrease erosion, either by limiting peak water velocity (dam structures) or by adjusting ditch depth and spacing to enable satisfactory drainage without exposing the mineral soil below peat. Future research should be directed towards the effects of ditch breaks and adjusted ditch depth and spacing in managing water quality in DNM areas.

  7. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    Science.gov (United States)

    Mazurek, Monica A.; Cofer, Wesley R., III; Levine, Joel S.

    1991-01-01

    During the boreal forest burn studied, the ambient concentrations for the particle carbon smoke aerosol are highest for the full-fire burn conditions and vary significantly throughout the burn. Collection strategies must accordingly define ranges in the smoke aerosol concentrations produced. While the highest elemental C concentrations are observed during full-fire conditions, the great majority of smoke aerosol particles are in the form of organic C particles irrespective of fire temperature. The formation of organic C light-scattering particles was a significant process in the burn studied.

  8. Modeling Soil Carbon Dynamics in Northern Forests: Effects of Spatial and Temporal Aggregation of Climatic Input Data.

    Science.gov (United States)

    Dalsgaard, Lise; Astrup, Rasmus; Antón-Fernández, Clara; Borgen, Signe Kynding; Breidenbach, Johannes; Lange, Holger; Lehtonen, Aleksi; Liski, Jari

    2016-01-01

    Boreal forests contain 30% of the global forest carbon with the majority residing in soils. While challenging to quantify, soil carbon changes comprise a significant, and potentially increasing, part of the terrestrial carbon cycle. Thus, their estimation is important when designing forest-based climate change mitigation strategies and soil carbon change estimates are required for the reporting of greenhouse gas emissions. Organic matter decomposition varies with climate in complex nonlinear ways, rendering data aggregation nontrivial. Here, we explored the effects of temporal and spatial aggregation of climatic and litter input data on regional estimates of soil organic carbon stocks and changes for upland forests. We used the soil carbon and decomposition model Yasso07 with input from the Norwegian National Forest Inventory (11275 plots, 1960-2012). Estimates were produced at three spatial and three temporal scales. Results showed that a national level average soil carbon stock estimate varied by 10% depending on the applied spatial and temporal scale of aggregation. Higher stocks were found when applying plot-level input compared to country-level input and when long-term climate was used as compared to annual or 5-year mean values. A national level estimate for soil carbon change was similar across spatial scales, but was considerably (60-70%) lower when applying annual or 5-year mean climate compared to long-term mean climate reflecting the recent climatic changes in Norway. This was particularly evident for the forest-dominated districts in the southeastern and central parts of Norway and in the far north. We concluded that the sensitivity of model estimates to spatial aggregation will depend on the region of interest. Further, that using long-term climate averages during periods with strong climatic trends results in large differences in soil carbon estimates. The largest differences in this study were observed in central and northern regions with strongly

  9. Behaviour of 137Cs in the Boreal forest ecosystem of central Sweden

    International Nuclear Information System (INIS)

    Fawaris, B.H.

    1995-01-01

    Behaviour of Chernobyl fallout 1 37 Cs in a coniferous forest ecosystem in central Sweden was investigated between 1990 and 1994. Results demonstrated that forest soil belongs to nutrient deficient type, and deposited fallout 1 37 Cs from Chernobyl nuclear accident (CNA) was retained (85%) in the upper 5 cm of humic forest soil layer, with a venial migration deeper into soil profile. No correlation between forest soil exchangeable and total potassium (K + ) and 1 37 Cs transfer parameters was observed. However, addition of K + , found to efficiently reduce 1 37 Cs uptake by sheep's fescue and the addition of stable caesium (1 33 Cs + ) enhanced it. The addition of ammonium (NH 4 + ) was slightly stimulating the uptake of 1 37 Cs by sheep's fescue in the first cut only. Field plants showed a considerably reduction in their 1 37 Cs activity concentrations. Relative to their 1 37 Cs levels of 1986-89, a little reduction in heather (16%) occurred eight years after CNA. In contrast the reductions in lingonberry and bilberry were 87% and 68%, respectively. Three fractions of forest soil bound 1 37 Cs were observed due to sequential extraction procedure (SEP). The first, is easily extractable 1 37 Cs fraction (F1+F2), it comprises 22% of total forest soil 1 37 Cs inventory in the upper 5 cm layer. The second, is soil organically and biologically bound 1 37 Cs (F3+F4) comprises about 30% of soil bound 1 37 Cs. This fraction might be accounted for long-term soil available 1 37 Cs for plant uptake after bio-degradation processes by soil microorganisms. The third, is the residual fraction (F5), it comprises more than 35% of total forest soil 1 37 Cs inventory, and may be associated with soil components which are probably of organic nature. Sorption of 1 37 Cs by zeolite (Mordenite) revealed that soil bound 1 37 Cs is to some extent more mobile in forest soils with high OM% and low pH than those with low OM%. 99 refs

  10. Soil Dissolved Organic Carbon Fluxes are Controlled by both Precipitation and Longer-Term Climate Effects on Boreal Forest Ecosystems

    Science.gov (United States)

    Hotchkiss, E. R.; Ziegler, S. E.; Edwards, K. A.; Bowering, K.

    2017-12-01

    Water acts as a control on the cycling of organic carbon (OC). Forest productivity responses to climate change are linked to water availability while water residence time is a major control on OC loss in aquatic ecosystems. However, controls on the export of terrestrial OC to the aquatic environment remains poorly understood. Transport of dissolved OC (DOC) through soils both vertically to deeper soil horizons and into aquatic systems is a key flux of terrestrial OC, but the climate drivers controlling OC mobilized from soils is poorly understood. We installed zero-tension lysimeters across similar balsam fir forest sites within three regions that span a MAT gradient of 5.2˚C and MAP of 1050-1500 mm. Using soil water collected over all seasons for four years we tested whether a warmer and wetter climate promotes greater DOC fluxes in ecosystems experiencing relatively high precipitation. Variability within and between years was compared to that observed across climates to test the sensitivity of this flux to shorter relative to longer-term climate effects on this flux. The warmest and wettest southern site exhibited the greatest annual DOC flux (25 to 28 g C m-2 y-1) in contrast to the most northern site (8 to 10 g C m -2 y-1). This flux represented 10% of litterfall C inputs across sites and surpassed the DOC export from associated forested headwater streams (1 to 16 g C m-2 y-1) suggesting terrestrial to aquatic interface processing. Historical climate and increased soil C inputs explain the greater DOC flux in the southern region. Even in years with comparable annual precipitation among regions the DOC flux differed by climate region. Furthermore, neither quantity nor form of precipitation could explain inter-annual differences in DOC flux within each region. Region specific relationships between precipitation and soil water flux instead suggest historical climate effects may impact soil water transport efficiency thereby controlling the regional variation in

  11. Importance of Arboreal Cyanolichen Abundance to Nitrogen Cycling in Sub-Boreal Spruce and Fir Forests of Central British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Ania Kobylinski

    2015-07-01

    Full Text Available The importance of N2-fixing arboreal cyanolichens to the nitrogen (N-balance of sub-boreal interior hybrid spruce (Picea glauca × engelmannii and subalpine fir (Abies lasiocarpa forests was examined at field sites in central BC, Canada. Host trees were accessed by a single-rope climbing technique and foliage as well as arboreal macrolichen functional groups were sampled by branch height in eight random sample trees from each of two high (High Cyano and two low (Low Cyano cyanolichen abundance sites for a total of 32 sample trees. Natural abundances of stable isotopes of N (15N, 14N and carbon (13C, 12C were determined for aggregate host tree and epiphytic lichen samples, as well as representative samples of upper organic and soil horizons (Ae and Bf from beneath host trees. As expected, N2-fixing cyanolichens had 2–6-fold greater N-contents than chlorolichens and a δ15N close to atmospheric N2, while foliage and chlorolichens were more depleted in 15N. By contrast, soils at all trees and sites were 15N-enriched (positive δ15N, with declining (not significant δ15N with increased tree-level cyanolichen abundance. Lichen functional groups and tree foliage fell into three distinct groups with respect to δ13C; the tripartite cyanolichen Lobaria pulmonaria (lightest, host-tree needles (intermediate, and bipartite cyanolichens, hair (Alectoria and Bryoria spp. and chlorolichens (heaviest. Branch height of host trees was an effective predictor of needle δ13C. Our results showed a modest positive correlation between host tree foliage N and cyanolichen abundance, supporting our initial hypothesis that higher cyanolichen abundances would elevate host tree foliar N. Further study is required to determine if high cyanolichen abundance enhances host tree and/or stand-level productivity in sub-boreal forests of central BC, Canada.

  12. Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle.

    Science.gov (United States)

    Gundale, Michael J; From, Fredrik; Bach, Lisbet H; Nordin, Annika

    2014-01-01

    It is proposed that increases in anthropogenic reactive nitrogen (Nr ) deposition may cause temperate and boreal forests to sequester a globally significant quantity of carbon (C); however, long-term data from boreal forests describing how C sequestration responds to realistic levels of chronic Nr deposition are scarce. Using a long-term (14-year) stand-scale (0.1 ha) N addition experiment (three levels: 0, 12.5, and 50 kg N ha(-1)  yr(-1) ) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We hypothesized that understory communities (i.e. mosses and shrubs) serve as important sinks for low-level N additions, with the strength of these sinks weakening as chronic N addition rates increase, due to shifts in species composition. We further hypothesized that trees would exhibit nonlinear increases in N acquisition, and subsequent C sequestration as N addition rates increased, due to a weakening understory N sink. Our data showed that understory biomass was reduced by 50% in response to the high N addition treatment, mainly due to reduced moss biomass. A (15) N labeling experiment showed that feather mosses acquired the largest fraction of applied label, with this fraction decreasing as the chronic N addition level increased. Contrary to our hypothesis, the proportion of label taken up by trees was equal (ca. 8%) across all three N addition treatments. The relationship between N addition and C sequestration in all vegetation pools combined was linear, and had a slope of 16 kg C kg(-1)  N. While canopy retention of Nr deposition may cause C sequestration rates to be slightly different than this estimate, our data suggest that a minor quantity of annual anthropogenic CO2 emissions are sequestered into boreal forests as a result of Nr deposition. © 2013 John Wiley & Sons Ltd.

  13. Salvage logging following fires can minimize boreal caribou habitat loss while maintaining forest quotas: An example of compensatory cumulative effects.

    Science.gov (United States)

    Beguin, Julien; McIntire, Eliot J B; Raulier, Frédéric

    2015-11-01

    Protected area networks are the dominant conservation approach that is used worldwide for protecting biodiversity. Conservation planning in managed forests, however, presents challenges when endangered species use old-growth forests targeted by the forest industry for timber supply. In many ecosystems, this challenge is further complicated by the occurrence of natural disturbance events that disrupt forest attributes at multiple scales. Using spatially explicit landscape simulation experiments, we gather insights into how these large scale, multifaceted processes (fire risk, timber harvesting and the amount of protected area) influenced both the persistence of the threatened boreal caribou and the level of timber supply in the boreal forest of eastern Canada. Our result showed that failure to account explicitly and a priori for fire risk in the calculation of timber supply led to an overestimation of timber harvest volume, which in turn led to rates of cumulative disturbances that threatened both the long-term persistence of boreal caribou and the sustainability of the timber supply itself. Salvage logging, however, allowed some compensatory cumulative effects. It minimised the reductions of timber supply within a range of ∼10% while reducing the negative impact of cumulative disturbances caused by fire and logging on caribou. With the global increase of the human footprint on forest ecosystems, our approach and results provide useful tools and insights for managers to resolve what often appear as lose-lose situation between the persistence of species at risk and timber harvest in other forest ecosystems. These tools contribute to bridge the gap between conservation and forest management, two disciplines that remain too often disconnected in practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Ecosystem Carbon Emissions from 2015 Forest Fires in Interior Alaska

    Science.gov (United States)

    Potter, Christopher S.

    2018-01-01

    In the summer of 2015, hundreds of wildfires burned across the state of Alaska, and consumed more than 1.6 million ha of boreal forest and wetlands in the Yukon-Koyukuk region. Mapping of 113 large wildfires using Landsat satellite images from before and after 2015 indicated that nearly 60% of this area was burned at moderate-to-high severity levels. Field measurements near the town of Tanana on the Yukon River were carried out in July of 2017 in both unburned and 2015 burned forested areas (nearly adjacent to one-another) to visually verify locations of different Landsat burn severity classes (low, moderate, or high). Results: Field measurements indicated that the loss of surface organic layers in boreal ecosystem fires is a major factor determining post-fire soil temperature changes, depth of thawing, and carbon losses from the mineral topsoil layer. Measurements in forest sites showed that soil temperature profiles to 30 cm depth at burned forest sites increased by an average of 8o - 10o C compared to unburned forest sites. Sampling and laboratory analysis indicated a 65% reduction in soil carbon content and a 58% reduction in soil nitrogen content in severely burned sample sites compared to soil mineral samples from nearby unburned spruce forests. Conclusions: Combined with nearly unprecedented forest areas severely burned in the Interior region of Alaska in 2015, total ecosystem fire emission of carbon to the atmosphere exceeded most previous estimates for the state.

  15. The role of novel forest ecosystems in the conservation of wood?inhabiting fungi in boreal broadleaved forests

    OpenAIRE

    Juutilainen, Katja; M?nkk?nen, Mikko; Kotiranta, Heikki; Halme, Panu

    2016-01-01

    Abstract The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood?associated species. This is especially alarming given the important role wood?inhabiting fungi have in the natural decay processes. In t...

  16. Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?

    Science.gov (United States)

    Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.

    2006-12-01

    The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.

  17. Soil Moisture Estimate under Forest using a Semi-empirical Model at P-Band

    Science.gov (United States)

    Truong-Loi, M.; Saatchi, S.; Jaruwatanadilok, S.

    2013-12-01

    In this paper we show the potential of a semi-empirical algorithm to retrieve soil moisture under forests using P-band polarimetric SAR data. In past decades, several remote sensing techniques have been developed to estimate the surface soil moisture. In most studies associated with radar sensing of soil moisture, the proposed algorithms are focused on bare or sparsely vegetated surfaces where the effect of vegetation can be ignored. At long wavelengths such as L-band, empirical or physical models such as the Small Perturbation Model (SPM) provide reasonable estimates of surface soil moisture at depths of 0-5cm. However for densely covered vegetated surfaces such as forests, the problem becomes more challenging because the vegetation canopy is a complex scattering environment. For this reason there have been only few studies focusing on retrieving soil moisture under vegetation canopy in the literature. Moghaddam et al. developed an algorithm to estimate soil moisture under a boreal forest using L- and P-band SAR data. For their studied area, double-bounce between trunks and ground appear to be the most important scattering mechanism. Thereby, they implemented parametric models of radar backscatter for double-bounce using simulations of a numerical forest scattering model. Hajnsek et al. showed the potential of estimating the soil moisture under agricultural vegetation using L-band polarimetric SAR data and using polarimetric-decomposition techniques to remove the vegetation layer. Here we use an approach based on physical formulation of dominant scattering mechanisms and three parameters that integrates the vegetation and soil effects at long wavelengths. The algorithm is a simplification of a 3-D coherent model of forest canopy based on the Distorted Born Approximation (DBA). The simplified model has three equations and three unknowns, preserving the three dominant scattering mechanisms of volume, double-bounce and surface for three polarized backscattering

  18. Dynamics of carbon 14 in soils: a review

    International Nuclear Information System (INIS)

    Tamponnet, C.

    2004-01-01

    In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial eco-sphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. (author)

  19. Competitive interactions among raptors in boreal forests.

    Science.gov (United States)

    Hakkarainen, Harri; Mykrä, Sakari; Kurki, Sami; Tornberg, Risto; Jungell, Sven

    2004-11-01

    We examined inter-specific interactions among goshawks ( Accipiter gentilis), common buzzards (Buteo buteo) and honey buzzards (Pernis apivorus) in western Finland in 1983-1996. Because goshawks are among the largest birds of prey species in boreal forests they may take over the nest of smaller and less-competitive forest-dwelling raptors when searching for suitable places for breeding. Accordingly, more than half of newly established goshawk territories were found on the territories previously occupied by the common buzzard and the honey buzzard. Otherwise, territory sharing between these species was rare. Fledgling production of honey buzzards was not associated with the presence of goshawks, probably owing to the almost 2 months later onset of breeding. This probably decreases competitive interactions between these two species. An intensive interference competition, instead, seemed to be evident between common buzzards and goshawks, because the fledgling production of common buzzards was decreased by 20% as a result of failures during incubation and nestling period in the vicinity (nests. Similarly, territory occupancy of common buzzards till the next breeding season was significantly reduced in the presence of goshawks. Relatively high proportions of occupied buzzard territories (17%) in the study area were shared by breeding goshawks on the same territory. This suggests that although their diets are dissimilar they inhabit similar habitats and might compete for the available prime nesting habitats within forest landscapes. In addition, goshawks benefit from taking over the complete nests of other raptors, imposing upon the original owners of the nest, because building a large stick nest is probably energetically costly. As a large raptor, the goshawk apparently has a competitive advantage over smaller ones, and may have an ever-increasing impact on smaller birds of prey, if there is a lack of sheltered forests inducing competition for the available nest sites.

  20. Traditional Uses of Medicinal Plants from the Canadian Boreal Forest for the Management of Chronic Pain Syndromes.

    Science.gov (United States)

    Uprety, Yadav; Lacasse, Anaïs; Asselin, Hugo

    2016-04-01

    Chronic pain is more prevalent in indigenous populations who often prefer traditional remedies over allopathic drugs. Our objective was to investigate the traditional uses of medicinal plants from the Canadian boreal forest for the management of chronic pain syndromes. We reviewed the most extensive database on medicinal plants used by aboriginal people of the Canadian boreal forest to investigate the plants used in the management of 3 of the most common chronic pain syndromes: arthritis/rheumatism; back pain; and headache/migraine. We also reviewed the pharmacology and phytochemistry literature to investigate concordance with indigenous knowledge. A total of 114 medicinal plant species were reported, of which 27 (23.5%) were used to treat more than 1 chronic pain syndrome. Pharmacological or phytochemical evidence to explain plant function as chronic pain remedy was available in the literature for only 38 species (33%), with several species reported to have anti-inflammatory and analgesic properties effective in treating chronic pain syndromes. Our study showed the potential of boreal plants as alternative and complementary medicines for the treatment of chronic pain syndromes that could be enhanced by further research on efficacy and safety issues. © 2015 World Institute of Pain.

  1. The upland flooding experiment : assessing the impact of reservoir creation on the biogeochemical cycling of mercury in boreal forest uplands

    Energy Technology Data Exchange (ETDEWEB)

    Rolfhus, K.R. [Wisconsin Univ., Madison, WI (United States). Water Chemistry Program; Bodaly, R.A.; Fudge, R.J.P.; Huebert, D.; Paterson, M.J. [Department of Fisheries and Oceans, Ottawa, ON (Canada) Fresh Water Inst.; Hall, B.D.; St Louis, V.L. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences; Krabbenhoft, D.P. [U.S. Geological Survey (United States); Hurley, J.P. [Wisconsin Univ., Madison, WI (United States). Water Resources Inst.; Peech, K. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Entomology

    2000-07-01

    One of the major environmental problems associated with boreal hydroelectric reservoirs such as those found in Canada and other northern countries is the elevated concentrations of mercury (Hg) in fish. A flooding experiment was conducted in northern Ontario to study methyl mercury (MeHg) production/bioaccumulation and greenhouse gas dynamics in impoundments with flooded upland forests of different soil carbon content, moisture and vegetation. The study, entitled Upland Flooding Experiment (FLUDEX) took place in June 1999 at the Experimental Lakes Area (ELA) where three impoundments of 0.7 ha were flooded to a depth of 1 m using oligotrophic lake water. The hydraulic residence time was 10-14 days. Responses to flooding were compared among treatment reservoirs and to previously flooded wetlands. The study included researchers from Canada and the United States who characterized mercury species fluxes from soils, the overall reservoir mass balance for total Hg and MeHg, inorganic Hg and MeHg concentration in zooplankton, benthic invertebrates, emerging insects and fish. Carbon decomposition was also examined. Preliminary results, one year after inundation, show significantly high levels of MeHg concentration compared to the feed water and that of surrounding natural lakes. Outflow samples from the dry forest areas showed the highest concentrations of Hg and MeHg, with lower concentrations from the moist forest. The lowest levels were observed from the outflow from the driest forest reservoir. A rapid pulse of inorganic Hg appears to have been released during the first 2 weeks of flooding. Soil leaching was found to be the main mechanism or inorganic Hg supply while MeHg appears to have been supplied by in situ microbial methylation. It was also shown that forage fish introduced into the reservoir had significantly elevated concentrations of MeHg compared to fish in natural lakes.

  2. Fire History of Appalachian Forests of the Lower St-Lawrence Region (Southern Quebec

    Directory of Open Access Journals (Sweden)

    Serge Payette

    2017-04-01

    Full Text Available Sugar maple (Acer saccharum forests are among the main forest types of eastern North America. Sugar maple stands growing on Appalachian soils of the Lower St-Lawrence region are located at the northeastern limit of the northern hardwood forest zone. Given the biogeographical position of these forests at the edge of the boreal biome, we aimed to reconstruct the fire history and document the occurrence of temperate and boreal trees in sugar maple sites during the Holocene based on soil macrocharcoal analysis. Despite having experienced a different number of fire events, the fire history of the maple sites was broadly similar, with two main periods of fire activity, i.e., early- to mid-Holocene and late-Holocene. A long fire-free interval of at least 3500 years separated the two periods from the mid-Holocene to 2000 years ago. The maple sites differ with respect to fire frequency and synchronicity of the last millennia. According to the botanical composition of charcoal, forest vegetation remained relatively homogenous during the Holocene, except recently. Conifer and broadleaf species coexisted in mixed forests during the Holocene, in phase with fire events promoting the regeneration of boreal and temperate tree assemblages including balsam fir (Abies balsamea and sugar maple.

  3. Effect of fire disturbances on soil respiration of Larix gmelinii Rupr ...

    African Journals Online (AJOL)

    The Da Xing'an Mountain is a key distribution area for Chinese boreal forests and is a fire-prone area. Frequent forest fires have influenced on the regional carbon cycle enormously, especially for the influence of soil respiration. Thus, understanding post-fire soil respiration is important in the study of the global carbon ...

  4. Effects of climatic changes on carbon dioxide and water vapor fluxes in boreal forest ecosystems of European part of Russia

    International Nuclear Information System (INIS)

    Olchev, A; Kurbatova, J; Novenko, E; Desherevskaya, O; Krasnorutskaya, K

    2009-01-01

    Effects of possible climatic and vegetation changes on H 2 O and CO 2 fluxes in boreal forest ecosystems of the central part of European Russia were quantified using modeling and experimental data. The future pattern of climatic conditions for the period up to 2100 was derived using the global climatic model ECHAM5 (Roeckner et al 2003 The Atmospheric General Circulation Model ECHAM 5. PART I: Model Description, Report 349 (Hamburg: Max-Planck Institute for Meteorology) p 127) with the A1B emission scenario. The possible trends of future vegetation changes were obtained by reconstructions of vegetation cover and paleoclimatic conditions in the Late Pleistocene and Holocene, as provided from pollen and plant macrofossil analysis of profiles in the Central Forest State Natural Biosphere Reserve (CFSNBR). Applying the method of paleoanalogues demonstrates that increasing the mean annual temperature, even by 1-2 deg. C, could result in reducing the proportion of spruce in boreal forest stands by up to 40%. Modeling experiments, carried out using a process-based Mixfor-SVAT model, show that the expected future climatic and vegetation changes lead to a significant increase of net ecosystem exchange (NEE) and gross primary productivity (GPP) of the boreal forests. Despite the expected warming and moistening of the climate, the modeling experiments indicate a relatively weak increase of annual evapotranspiration (ET) and even a reduction of transpiration (TR) rates of forest ecosystems compared to present conditions.

  5. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    International Nuclear Information System (INIS)

    Genet, H; Euskirchen, E S; McGuire, A D; Barrett, K; Breen, A; Bennett, A; Rupp, T S; Johnstone, J F; Kasischke, E S; Melvin, A M; Mack, M C; Schuur, A E G; Turetsky, M R; Yuan, F

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  6. [Prediction model of human-caused fire occurrence in the boreal forest of northern China].

    Science.gov (United States)

    Guo, Fu-tao; Su, Zhang-wen; Wang, Guang-yu; Wang, Qiang; Sun, Long; Yang, Ting-ting

    2015-07-01

    The Chinese boreal forest is an important forest resource in China. However, it has been suffering serious disturbances of forest fires, which were caused equally by natural disasters (e.g., lightning) and human activities. The literature on human-caused fires indicates that climate, topography, vegetation, and human infrastructure are significant factors that impact the occurrence and spread of human-caused fires. But the studies on human-caused fires in the boreal forest of northern China are limited and less comprehensive. This paper applied the spatial analysis tools in ArcGIS 10.0 and Logistic regression model to investigate the driving factors of human-caused fires. Our data included the geographic coordinates of human-caused fires, climate factors during year 1974-2009, topographic information, and forest map. The results indicated that distance to railway (x1) and average relative humidity (x2) significantly impacted the occurrence of human-caused fire in the study area. The logistic model for predicting the fire occurrence probability was formulated as P= 1/[11+e-(3.026-0.00011x1-0.047x2)] with an accuracy rate of 80%. The above model was used to predict the monthly fire occurrence during the fire season of 2015 based on the HADCM2 future weather data. The prediction results showed that the high risk of human-caused fire occurrence concentrated in the months of April, May, June and August, while April and May had higher risk of fire occurrence than other months. According to the spatial distribution of possibility of fire occurrence, the high fire risk zones were mainly in the west and southwest of Tahe, where the major railways were located.

  7. What makes segmentation good? A case study in boreal forest habitat mapping

    OpenAIRE

    Räsänen, Aleksi; Rusanen, Antti; Kuitunen, Markku; Lensu, Anssi

    2013-01-01

    Segmentation goodness evaluation is a set of approaches meant for deciding which segmentation is good. In this study, we tested different supervised segmentation evaluation measures and visual interpretation in the case of boreal forest habitat mapping in Southern Finland. The data used were WorldView-2 satellite imagery, a lidar digital elevation model (DEM), and a canopy height model (CHM) in 2 m resolution. The segmentation methods tested were the fractal net evolution approach (FNEA) and ...

  8. Fire severity filters regeneration traits to shape community assembly in Alaska's boreal forest.

    Directory of Open Access Journals (Sweden)

    Teresa N Hollingsworth

    Full Text Available Disturbance can both initiate and shape patterns of secondary succession by affecting processes of community assembly. Thus, understanding assembly rules is a key element of predicting ecological responses to changing disturbance regimes. We measured the composition and trait characteristics of plant communities early after widespread wildfires in Alaska to assess how variations in disturbance characteristics influenced the relative success of different plant regeneration strategies. We compared patterns of post-fire community composition and abundance of regeneration traits across a range of fire severities within a single pre-fire forest type- black spruce forests of Interior Alaska. Patterns of community composition, as captured by multivariate ordination with nonmetric multidimensional scaling, were primarily related to gradients in fire severity (biomass combustion and residual vegetation and secondarily to gradients in soil pH and regional climate. This pattern was apparent in both the full dataset (n = 87 sites and for a reduced subset of sites (n = 49 that minimized the correlation between site moisture and fire severity. Changes in community composition across the fire-severity gradient in Alaska were strongly correlated to variations in plant regeneration strategy and rooting depth. The tight coupling of fire severity with regeneration traits and vegetation composition after fire supports the hypothesis that disturbance characteristics influence patterns of community assembly by affecting the relative success of different regeneration strategies. This study further demonstrated that variations in disturbance characteristics can dominate over environmental constraints in determining early patterns of community assembly. By affecting the success of regeneration traits, changes in fire regime directly shape the outcomes of community assembly, and thus may override the effects of slower environmental change on boreal forest

  9. Neutralization of acidic raindrops on leaves of agricultural crop and boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, T.C.; Adams, C.M.; Gaber, B.A.

    1986-10-01

    The abilities of foliage of selected agricultural crop and native boreal forest species to neutralize acidic raindrops were compared. The species differed widely in their responses. Neutralization was influenced to a large extent by leaf wettability and was poorly related with species' susceptibility to foliar injury from acid rain sprayings. Little neutralization of pH 3.0 droplets occurred on very waxy leaves, e.g. cabbage (Brassica oleracea L.), due to the small contact area between the leaf surface and raindrops. In contrast, on sunflower (Helianthus annuus L.) and radish (Raphanus sativus L.) leaves, which are pubescent and easily wettable, neutralization was considerable. For all agricultural crop species examined, the pH of droplets drying on cotyledons was consistently higher than on the leaves. The pH values of raindrops were also higher when the foliage was injured by the acid rain, probably due to leakage of cellular contents. Among boreal forest species examined, bunchberry (Cornus canadensis L.) was particularly good at neutralizing natural acid rain, increasing the pH from 3.9 to 6.6 after 9 hr of foliar contact, while the response of other boreal species ranged from a final pH of 4.8 to 5.7 under the same conditions. Simulated raindrops on wild sarsaparilla (Aralia nudicaulis L.) were never neutralized but increased in acidity as they evaporated. Chemical analyses of droplets collected from foliage showed calcium (Ca) and potassium (K) to be the major cations entering the neutralized droplets. Neutralization of acidic raindrops appears to occur through two processes; solubilization of alkaline dusts and exudates on the leaf surface, and ion exchange removal of H/sup +/ by the foliage. 14 references.

  10. Neutralization of acidic raindrops on leaves of agricultural crop and boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, T.C.; Adams, C.M.; Gaber, B.A.

    1986-11-01

    The abilities of foliage of selected agricultural crop and native boreal forest species to neutralize acidic raindrops were compared. The species differed widely in their responses. Neutralization was influenced to a large extent by leaf wettability and was poorly related with species' susceptibility to foliar injury from acid rain sprayings. Little neutralization of pH 3.0 droplets occurred on very waxy leaves, e.g. cabbage (Brassica oleracea L.), due to the small contact area between the leaf surface and raindrops. In contrast, on sunflower (Helianthus annuus L.) and radish (Raphanus sativus L.) leaves, which are pubescent and easily wettable, neutralization was considerable. For all agricultural crop species examined, the pH of droplets drying on cotyledons was consistently higher than on the leaves. The pH values of raindrops were also higher when the foliage was injured by the acid rain, probably due to leakage of cellular contents. Among boreal forest species examined, bunchberry (Cornus canadensis L.) was particularly good at neutralizing natural acid rain, increasing the pH from 3.9 to 6.6 after 9 hr of foliar contact, while the response of other boreal species ranged from a final pH of 4.8 to 5.7 under the same conditions. Simulated raindrops on wild sarsaparilla (Aralia nudicaulis L.) were never neutralized but increased in acidity as they evaporated. Chemical analyses of droplets collected from foliage showed calcium and potassium to be the major cations entering the neutralized droplets. Neutralization of acidic raindrops appears to occur through two processes: solubilization of alkaline dusts and exudates on the leaf surface, and ion exchange removal of H/sup +/ by the foliage. 14 refs.

  11. BOREAS TGB-5 Biogenic Soil Emissions of NO and N2O

    Science.gov (United States)

    Levine, J. S.; Winstead, E. L.; Parsons, D. A. B.; Scholes, M. C.; Cofer, W. R.; Cahoon, D. R.; Sebacher, D. I.; Scholes, R. J.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB)-5 team made several measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains biogenic soil emissions of nitric oxide and nitrous oxide that were measured over a wide range of spatial and temporal site parameters. Since very little is known about biogenic soil emissions of nitric oxide and nitrous oxide from the boreal forest, the goal of the measurements was to characterize the biogenic soil fluxes of nitric oxide and nitrous oxide from black spruce and jack pine areas in the boreal forest. The diurnal variation and monthly variation of the emissions was examined as well as the impact of wetting through natural or artificial means. Temporally, the data cover mid-August 1993, June to August 1994, and mid-July 1995. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).

  12. Using MOPITT data and a Chemistry and Transport Model to Investigate Injection Height of Plumes from Boreal Forest Fires

    Science.gov (United States)

    Hyer, E. J.; Allen, D. J.; Kasischke, E. S.; Warner, J. X.

    2003-12-01

    Trace gas emissions from boreal forest fires are a significant factor in atmospheric composition and its interannual variability. A number of recent observations of emissions plumes above individual fire events (Fromm and Servranckx, 2003; COBRA 2003; Lamarque et al., 2003; Wotawa and Trainer, 2000) suggest that vertical properties of forest fire emission plumes can be very different from fossil fuel emission plumes. Understanding and constraining the vertical properties of forest fire emission plumes and their injection into the atmosphere during fire events is critical for accurate modeling of atmospheric transport and chemistry. While excellent data have been collected in a handful of experiments on individual fire events, a systematic examination of the range of behavior observed in fire events has been hampered by the scarcity of vertical profiles of atmospheric composition. In this study, we used a high-resolution model of boreal forest fire emissions (Kasischke et al, in review) as input to the Goddard/UM CTM driven by the GEOS-3 DAS, operating at 2 by 2.5 degrees with 35 vertical levels. We modeled atmospheric injection and transport of CO emissions during the fire season of 2000 (May-September). We altered the parameters of the model to simulate a range of scenarios of plume injection, and compared the resulting output to the CO profiles from the MOPITT instrument. The results presented here pertain to the boreal forest, but our methods should be useful for atmospheric modelers hoping to more realistically model transport of emission plumes from biomass burning. References: COBRA2003: see http://www.fas.harvard.edu/~cobra/smoke_canada_030530.pdf Fromm, M. and R. Servranckx, 2003. "Stratospheric Injection of Forest Fire Emissions on August 4, 1998: A Satellite Image Analysis of the Causal Supercell Convection." Geophysical Research Abstracts 5:13118. Kasischke, E.S.; E.J. Hyer, N.H.F. French, A.I. Sukhinin, J.H. Hewson, B.J. Stocks, in review. "Carbon

  13. Effects of the age class distributions of the temperate and boreal forests on the global CO2 source-sink function

    Science.gov (United States)

    Kohlmaier, G. H.; Häger, Ch.; Würth, G.; Lüdeke, M. K. B.; Ramge, P.; Badeck, F.-W.; Kindermann, J.; Lang, T.

    1995-02-01

    The rôle of the temperate and boreal forests as a global CO2 source or sink is examined, both for the present time and for the next hundred years. The results of the Forest Resource Assessment for 1990 of the Economic Comission for Europe and the Food and Agricultural Organisation of the United Nations (1992) serve as the main database in this study. Out of the estimated total area of approximately 20106 km2 of forests and wooded lands in the temperate and boreal zone only approximately fifty percent is documented within the category of exploitable forests, which are examined in detail here. In this study, a general formalism of the time evolution of an ensemble of forests within an ecological province is developed using the formalism of the Leslie matrix. This matrix can be formulated if the age class dependent mortalities which arise from the disturbances are known. A distinction is made between the natural disturbances by fire, wind throw and insect infestations and disturbances introduced through harvesting of timber. Through the use of Richards growth function each age class of a given biome is related to the corresponding biomass and annual increment. The data reported on the mean net annual increment and on the mean biomass serve to calibrate the model. The difference of the reported net annual increment and annual fellings of approximately 550 106 m3 roundwood correspond to a sink of 210-330 Mt of carbon per year excluding any changes in the soil balance. It could be shown that the present distribution of forest age classes for the United States, Canada, Europe, or the former Soviet Union does not correspond to a quasi-stationary state, in which biomass is accumulated only due to a stimulated growth under enhanced atmospheric CO2 levels. The present CO2 sink function will not persist in the next century, if harvesting rates increase with 0.5% annually or even less. The future state will also be influenced by the effect of the greenhouse climate, the impact

  14. Public Opinions and Use of Various Types of Recreational Infrastructure in Boreal Forest Settings

    Directory of Open Access Journals (Sweden)

    Vegard Gundersen

    2016-05-01

    Full Text Available We have investigated public preferences for use intensity and visual quality of forest recreational infrastructure. Forest infrastructure covers five classes, along a continuum from unmarked paths to paved walkways. Altogether, 39 sites were categorized into the five classes and measured with automatic counters. A sample of 545 respondents living in southeastern and middle Norway were asked to rate 15 forest scenes and 35 preconceptions of recreational settings. The path scenarios were depicted as digitally calibrated photos that systematically displayed physical path feature in boreal, semi-natural settings. Survey participants showed a clearly greater preference for photos and preconceptions of forests settings containing minor elements of forest infrastructure; unmarked paths received the highest score and forest roads/walkways/bikeways the lowest. We identified a clear mismatch between public preferences for forest infrastructure and the intensity of use; the less appreciated infrastructure was the most used. Planning and management has to consider these different needs for recreational infrastructure, and we propose an area zoning system that meets the different segments of forest visitors.

  15. Boreal Forest Fire Cools Climate

    Science.gov (United States)

    Randerson, J. T.; Liu, H.; Flanner, M.; Chambers, S. D.; Harden, J. W.; Hess, P. G.; Jin, Y.; Mack, M. C.; Pfister, G.; Schuur, E. A.; Treseder, K. K.; Welp, L. R.; Zender, C. S.

    2005-12-01

    We report measurements, modeling, and analysis of carbon and energy fluxes from a boreal forest fire that occurred in interior Alaska during 1999. In the first year after the fire, ozone production, atmospheric aerosol loading, greenhouse gas emissions, soot deposition, and decreases in summer albedo contributed to a positive annual radiative forcing (RF). These effects were partly offset by an increase in fall, winter, and spring albedo from reduced canopy cover and increased exposure of snow-covered surfaces. The atmospheric lifetime of aerosols and ozone and are relatively short (days to months). The radiative effects of soot on snow are also attenuated rapidly from the deposition of fresh snow. As a result, a year after the fire, only two classes of RF mechanisms remained: greenhouse gas emissions and post-fire changes in surface albedo. Summer albedo increased rapidly in subsequent years and was substantially higher than unburned control areas (by more than 0.03) after 4 years as a result of grass and shrub establishment. Satellite measurements from MODIS of other interior Alaska burn scars provided evidence that elevated levels of spring and summer albedo (relative to unburned control areas) persisted for at least 4 decades after fire. In parallel, our chamber, eddy covariance, and biomass measurements indicated that the post-fire ecosystems switch from a source to a sink within the first decade. Taken together, the extended period of increased spring and summer albedo and carbon uptake of intermediate-aged stands appears to more than offset the initial warming pulse caused by fire emissions, when compared using the RF concept. This result suggests that management of forests in northern countries to suppress fire and preserve carbon sinks may have the opposite effect on climate as that intended.

  16. Impacts of elevated carbon dioxide and temperature on a boreal forest ecosystem (CLIMEX project)

    DEFF Research Database (Denmark)

    Breemen, N. van; Jenkins, A.; Wright, R.F.

    1998-01-01

    To evaluate the effects of climate change on boreal forest ecosystems, both atmospheric CO2 (to 560 ppmv) and air temperature (by 3 degrees-5 degrees C above ambient) were increased at a forested headwater catchment in southern Norway. The entire catchment (860 m(2)) is enclosed within...... and the growing season has been prolonged relative to the control area. This has helped to sustain an increase in plant growth relative to the control and has also promoted increased N export in stream water. Photosynthetic capacity and carbon-nitrogen ratio of new leaves of most plant species did not change...

  17. Assessing seasonality of biochemical CO2 exchange model parameters from micrometeorological flux observations at boreal coniferous forest

    Directory of Open Access Journals (Sweden)

    T. Vesala

    2008-12-01

    Full Text Available The seasonality of the NEE of the northern boreal coniferous forests was investigated by means of inversion modelling using eddy covariance data. Eddy covariance data was used to optimize the biochemical model parameters. Our study sites consisted of three Scots pine (l. Pinus sylvestris forests and one Norway spruce (l. Picea abies forest that were located in Finland and Sweden. We obtained temperature and seasonal dependence for the biochemical model parameters: the maximum rate of carboxylation (Vc(max and the maximum rate of electron transport (Jmax. Both of the parameters were optimized without assumptions about their mutual magnitude. The values obtained for the biochemical model parameters were similar at all the sites during summer time. To describe seasonality, different temperature fits were made for the spring, summer and autumn periods. During summer, average Jmax across the sites was 54.0 μmol m−2 s−1 (variance 31.2 μmol m−2 s−1 and Vc(max was 12.0 μmol m−2 s−1 (variance 6.6 μmol m−2 s−1 at 17°C. The sensitivity of the model to LAI and atmospheric soil water stress was also studied. The impact of seasonality on annual GPP was 17% when only summertime parameterization was used throughout the year compared to seasonally changing parameterizations.

  18. Behaviour of {sup 137}Cs in the Boreal forest ecosystem of central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Fawaris, B.H.

    1995-12-31

    Behaviour of Chernobyl fallout 1{sup 37}Cs in a coniferous forest ecosystem in central Sweden was investigated between 1990 and 1994. Results demonstrated that forest soil belongs to nutrient deficient type, and deposited fallout 1{sup 37}Cs from Chernobyl nuclear accident (CNA) was retained in the upper 5 cm of humic forest soil layer, with a venial migration deeper into soil profile. No correlation between forest soil exchangeable and total potassium (K{sup +}) and 1{sup 37}Cs transfer parameters was observed. However, addition of K{sup +}, found to efficiently reduce 1{sup 37}Cs uptake by sheep`s fescue and the addition of stable caesium (1{sup 33}Cs{sup +}) enhanced it. The addition of ammonium (NH{sub 4}{sup +}) was slightly stimulating the uptake of 1{sup 37}Cs by sheep`s fescue in the first cut only. Field plants showed a considerably reduction in their 1{sup 37}Cs activity concentrations. Relative to their 1{sup 37}Cs levels of 1986-89, a little reduction in heather occurred eight years after CNA. In contrast the reductions in lingonberry and bilberry were 87% and 68%, respectively. Three fractions of forest soil bound 1{sup 37}Cs were observed due to sequential extraction procedure (SEP). The first, is easily extractable 1{sup 37}Cs fraction, it comprises 22% of total forest soil 1{sup 37}Cs inventory in the upper 5 cm layer. The second, is soil organically and biologically bound 1{sup 37}Cs comprises about 30% of soil bound 1{sup 37}Cs. This fraction might be accounted for long-term soil available 1{sup 37}Cs for plant uptake after bio-degradation processes by soil microorganisms. The third, is the residual fraction, it comprises more than 35% of total forest soil 1{sup 37}Cs inventory, and may be associated with soil components which are probably of organic nature. Sorption of 1{sup 37}Cs by zeolite (Mordenite) revealed that soil bound 1{sup 37}Cs is to some extent more mobile in forest soils with high OM% and low pH than those with low OM%.

  19. Behaviour of {sup 137}Cs in the Boreal forest ecosystem of central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Fawaris, B H

    1996-12-31

    Behaviour of Chernobyl fallout 1{sup 37}Cs in a coniferous forest ecosystem in central Sweden was investigated between 1990 and 1994. Results demonstrated that forest soil belongs to nutrient deficient type, and deposited fallout 1{sup 37}Cs from Chernobyl nuclear accident (CNA) was retained in the upper 5 cm of humic forest soil layer, with a venial migration deeper into soil profile. No correlation between forest soil exchangeable and total potassium (K{sup +}) and 1{sup 37}Cs transfer parameters was observed. However, addition of K{sup +}, found to efficiently reduce 1{sup 37}Cs uptake by sheep`s fescue and the addition of stable caesium (1{sup 33}Cs{sup +}) enhanced it. The addition of ammonium (NH{sub 4}{sup +}) was slightly stimulating the uptake of 1{sup 37}Cs by sheep`s fescue in the first cut only. Field plants showed a considerably reduction in their 1{sup 37}Cs activity concentrations. Relative to their 1{sup 37}Cs levels of 1986-89, a little reduction in heather occurred eight years after CNA. In contrast the reductions in lingonberry and bilberry were 87% and 68%, respectively. Three fractions of forest soil bound 1{sup 37}Cs were observed due to sequential extraction procedure (SEP). The first, is easily extractable 1{sup 37}Cs fraction, it comprises 22% of total forest soil 1{sup 37}Cs inventory in the upper 5 cm layer. The second, is soil organically and biologically bound 1{sup 37}Cs comprises about 30% of soil bound 1{sup 37}Cs. This fraction might be accounted for long-term soil available 1{sup 37}Cs for plant uptake after bio-degradation processes by soil microorganisms. The third, is the residual fraction, it comprises more than 35% of total forest soil 1{sup 37}Cs inventory, and may be associated with soil components which are probably of organic nature. Sorption of 1{sup 37}Cs by zeolite (Mordenite) revealed that soil bound 1{sup 37}Cs is to some extent more mobile in forest soils with high OM% and low pH than those with low OM%.

  20. Global W`o'rming and Darwin Revisited: Quantifying Soil Mixing Rates by Non-native Earthworms in Fennoscandian Boreal and Arctic Ecosystems

    Science.gov (United States)

    Wackett, A. A.; Yoo, K.; Cameron, E. K.; Olid, C.; Klaminder, J.

    2017-12-01

    Fennoscandian boreal and arctic ecosystems represent some of the most pristine environments in Europe and store sizeable quantities of soil carbon. Both ecosystems may have evolved without native earthworms since the last glaciation, but are now increasingly subject to arrivals of novel geoengineering earthworm species due to human activities. As a result, invaded areas are devoid of the typical thick organic horizon present in earthworm free forest soils and instead contain carbon-rich mineral (A-horizon) soils at the surface. How rapidly this transition occurs and how it affects the fate of soil organic carbon (SOC) pools is not well known. In this study, we quantify the rates at which earthworm-mediated mixing of forest soils proceeds in these formerly glaciated landscapes. We infer soil mass fluxes using the vertical distribution of 210Pb in soils from Fennoscandia (N=4) and North America (N=1) and quantify annual mixing velocities as well as vertical fluxes of organic and mineral matter throughout the upper soil profiles. Across the sites, mixing velocities generally increase with increasing earthworm biomass and functional group diversity, and our annual mixing rates closely align with those predicted by Darwin for earthworm-engineered ecosystems in the UK 130 years earlier. Reduction of the O-horizon is concomitant with a decrease in surface SOC contents. However, we observe minimal changes to SOC inventories with earthworm invasion across the sites, reflecting the upward translocation of mineral soil and accompanying increase in soil bulk densities. Thus, the reduction or depletion of organic horizon by exotic earthworms does not necessarily involve loss of SOC via earthworm-accelerated decomposition, but is rather compensated for by physical mixing of organic matter and minerals, which may facilitate stabilizing organo-mineral interactions. This work constitutes an important step to elucidate how non-native earthworms impact SOC inventories and potentially

  1. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    Science.gov (United States)

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  2. Proceedings of the California Forest Soils Council Conference on Forest Soils Biology and Forest Management

    Science.gov (United States)

    Robert F. Powers; Donald L. Hauxwell; Gary M. Nakamura

    2000-01-01

    Biotic properties of forest soil are the linkages connecting forest vegetation with an inert rooting medium to create a dynamic, functioning ecosystem. But despite the significance of these properties, managers have little awareness of the biotic world beneath their feet. Much of our working knowledge of soil biology seems anchored in myth and misunderstanding. To...

  3. Functional ecology of advance regeneration in relation to light in boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Messier, C.; Claveau, Y.; Kelly, C. [Quebec Univ., Montreal, PQ (Canada); Doucet, R. [Quebec Ministere des Ressources Naturelles, Ste. Foy, PQ (Canada); Ruel, J.C. [Laval Univ., Quebec, PQ (Canada); Lechowicz, M.J. [McGill Univ., Montreal, PQ (Canada). Dept. of Biology

    1999-06-01

    A comparative and functional approach is adopted that stresses the morphological and physiological qualities that may favor greater or lesser capacity to grow in the shaded understory. The current understanding of the functional basis for variation in the shade tolerance of the main boreal trees is reviewed, and a consideration is given to how shade tolerance is linked to the ability to respond effectively to small canopy openings. The most commercially important shade tolerant conifers in the boreal forests of North America are concentrated on including: balsam fir, black spruce, and white spruce. The functional basis of shade tolerance and competition among boreal trees are examined for understanding, by comparing these species to their most important shade intolerant counterparts: jack pine, lodgepole pine, trembling aspen, and paper birch. The functional basis for growth and survival of established seedlings and saplings up to pole size are stressed. The ability of boreal tree genera to grow and survive in shade up to pole size depends on the functional responses of saplings to the changing biotic and abiotic variables in the understory as overstory canopy changes over time. At the leaf level, the only consistent differences among boreal tree genera are in specific leaf mass and maximum photosynthetic capacity. At the shoot and crown levels, clear structural differences exist among conifer tree genera. Shoot and crown structural traits exhibit most plasticity in relation to light availability for firs and least for pines. At the whole-plant level, shade intolerant tree species such as pines tend to be more affected by shading than shade tolerant ones. Considering these main qualities, a framework is advanced for determining advance regeneration in sapling performance that relates interspecific differences in crown structural plasticity, growth strategies, and light requirements as size increases with the size and frequency of canopy gaps. Fir and spruce co

  4. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences

    NARCIS (Netherlands)

    Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Lelieveld, J.

    2011-01-01

    This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPACOPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyyti¨al¨a, Finland from 12 July–12

  5. Soil and soil cover changes in spruce forests after final logging

    Directory of Open Access Journals (Sweden)

    E. M. Lapteva

    2015-10-01

    Full Text Available Soil cover transformation and changes of morphological and chemical properties of Albeluvisols in clear-cuttings of middle taiga spruce forests were studied. The observed changes in structure and properties of podzolic texturally-differentiated soils at cuttings of spruce forests in the middle taiga subzone do not cause their transition to any other soil type. Soil cover of secondary deciduous-coniferous forests which replace cut forests are characterized with a varied soil contour and a combination of the main type of podzolic soils under undisturbed spruce forests. The increased surface hydromorphism in cut areas causes formation of complicated sub-types of podzolic texturally differentiated soils (podzolic surface-gley soils with microprofile of podzol and enlarges their ratio (up to 35–38 % in soil cover structure. Temporary soil over-wetting at the initial (5–10 years stage of after-cutting self-restoring vegetation succession provides for soil gleyzation, improves yield and segregation of iron compounds, increases the migratory activity of humic substances. Low content and resources of total nitrogen in forest litters mark anthropogenic transformation processes of podzolic soils at this stage. Later (in 30–40 years after logging, soils in cut areas still retain signs of hydromorphism. Forest litters are denser, less acidic and thick with a low weight ratio of organic carbon as compared with Albeluvisols of undisturbed spruce forest. The upper mineral soil horizons under secondary deciduous-coniferous forests contain larger amounts of total iron, its mobile (oxalate-dissolvable components, and Fe-Mn-concretions.

  6. Assessment of Soil Water Composition in the Northern Taiga Coniferous Forests of Background Territories in the Industrially Developed Region

    Science.gov (United States)

    Lukina, N. V.; Ershov, V. V.; Gorbacheva, T. T.; Orlova, M. A.; Isaeva, L. G.; Teben'kova, D. N.

    2018-03-01

    The composition of soil water under coniferous forests of Murmansk oblast—an industrially developed region of northern Russia—was investigated. The studied objects were dwarf-shrub-green-moss spruce forests and dwarf-shrub-lichen pine forests on Al-Fe-humus podzols ( Albic Rustic Podzols) that are widespread in the boreal zone. The concentrations and removal of organic carbon performing the most important biogeochemical and pedogenic functions were estimated. The results proved significant intra- and inter-biogeocenotic variability in the composition of atmospheric depositions and soil water. Carbon removal with soil water from organic and mineral horizons within elementary biogeoareas (EBGA) under tree crowns was 2-5 and 2-3 times (in some cases, up to 10 times) greater than that in the intercrown areas, respectively. The lowest critical level of mineral nitrogen (0.2 mg/L) was, as a rule, exceeded in tree EBGAs contrary to intercrown areas. Concentrations of sulfates and heavy metals in water of tree EBGA were 3-5 times greater than those in inter-crown areas. Significant inter-biogeocenotic variations related to differences in the height of trees and tree stand density were found. It is argued that adequate characterization of biochemical cycles and assessment of critical levels of components in soil water of forest ecosystems should be performed with due account for the intra- and inter-biogeocenotic variability.

  7. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    Science.gov (United States)

    Rappe-George, M. O.; Gärdenäs, A. I.; Kleja, D. B.

    2013-03-01

    Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in Stråsan experimental forest (Norway spruce) in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6), and tension lysimeters were installed in the underlying B horizon (n = 4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i) the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii) indirectly via priming of old SOM, and/or (iii) a suppression of extracellular oxidative enzymes.

  8. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    Directory of Open Access Journals (Sweden)

    M. O. Rappe-George

    2013-03-01

    Full Text Available Addition of mineral nitrogen (N can alter the concentration and quality of dissolved organic matter (DOM in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC and dissolved organic nitrogen (DON in Stråsan experimental forest (Norway spruce in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr of N addition than the shorter N2 treatment (24 yr. N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6, and tension lysimeters were installed in the underlying B horizon (n = 4: soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii indirectly via priming of old SOM, and/or (iii a suppression of extracellular oxidative enzymes.

  9. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest.

    Science.gov (United States)

    Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K

    2014-09-01

    Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG-CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle.

  10. Impact of postfire management on forest regeneration in a managed hemiboreal forest, Estonia

    Science.gov (United States)

    Kristi Parro; Marek Metslaid; Getter Renel; Allan Sims; John Stanturf; Kalev Jogiste; Kajar Koster

    2015-01-01

    Fire is a significant agent for the development of boreal and hemiboreal forests, altering soil and light conditions, affecting seedbanks, and removing seed trees. Burned areas should be managed with care, as inappropriate techniques prolong the regeneration period and reduce the diversity and resilience of stands to disturbances. To study the effects of fire and...

  11. Postfire Succession of Ants (Hymenoptera: Formicidae) Nesting in Dead Wood of Northern Boreal Forest.

    Science.gov (United States)

    Boucher, Philippe; Hébert, Christian; Francoeur, André; Sirois, Luc

    2015-10-01

    Dead wood decomposition begins immediately after tree death and involves a large array of invertebrates. Ecological successions are still poorly known for saproxylic organisms, particularly in boreal forests. We investigated the use of dead wood as nesting sites for ants along a 60-yr postfire chronosequence in northeastern coniferous forests. We sampled a total of 1,625 pieces of dead wood, in which 263 ant nests were found. Overall, ant abundance increased during the first 30 yr after wildfire, and then declined. Leptothorax cf. canadensis Provancher, the most abundant species in our study, was absent during the first 2 yr postfire, but increased steadily until 30 yr after fire, whereas Myrmica alaskensis Wheeler, second in abundance, was found at all stages of succession in the chronosequence. Six other species were less frequently found, among which Camponotus herculeanus (Linné), Formica neorufibarbis Emery, and Formica aserva Forel were locally abundant, but more scarcely distributed. Dead wood lying on the ground and showing numerous woodborer holes had a higher probability of being colonized by ants. The C:N ratio was lower for dead wood colonized by ants than for noncolonized dead wood, showing that the continuous occupation of dead wood by ants influences the carbon and nitrogen dynamics of dead wood after wildfire in northern boreal forests. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils.

    Science.gov (United States)

    Briones, María Jesús I; McNamara, Niall P; Poskitt, Jan; Crow, Susan E; Ostle, Nicholas J

    2014-09-01

    Partially decomposed plant and animal remains have been accumulating in organic soils (i.e. >40% C content) for millennia, making them the largest terrestrial carbon store. There is growing concern that, in a warming world, soil biotic processing will accelerate and release greenhouse gases that further exacerbate climate change. However, the magnitude of this response remains uncertain as the constraints are abiotic, biotic and interactive. Here, we examined the influence of resource quality and biological activity on the temperature sensitivity of soil respiration under different soil moisture regimes. Organic soils were sampled from 13 boreal and peatland ecosystems located in the United Kingdom, Ireland, Spain, Finland and Sweden, representing a natural resource quality range of C, N and P. They were incubated at four temperatures (4, 10, 15 and 20 °C) at either 60% or 100% water holding capacity (WHC). Our results showed that chemical and biological properties play an important role in determining soil respiration responses to temperature and moisture changes. High soil C : P and C : N ratios were symptomatic of slow C turnover and long-term C accumulation. In boreal soils, low bacterial to fungal ratios were related to greater temperature sensitivity of respiration, which was amplified in drier conditions. This contrasted with peatland soils which were dominated by bacterial communities and enchytraeid grazing, resulting in a more rapid C turnover under warmer and wetter conditions. The unexpected acceleration of C mineralization under high moisture contents was possibly linked to the primarily role of fermented organic matter, instead of oxygen, in mediating microbial decomposition. We conclude that to improve C model simulations of soil respiration, a better resolution of the interactions occurring between climate, resource quality and the decomposer community will be required. © 2014 John Wiley & Sons Ltd.

  13. Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire

    Science.gov (United States)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2015-05-01

    Biomass burning produces black carbon (BC), effectively transferring a fraction of the biomass C from an actively cycling pool to a passive C pool, which may be stored in the soil. Yet the timescales and mechanisms for incorporation of BC into the soil profile are not well understood. The High Park fire (HPF), which occurred in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire severity and geomorphology on properties of carbon (C), nitrogen (N) and BC in the Cache La Poudre River drainage. We sampled montane ponderosa pine forest floor (litter plus O-horizon) and soils at 0-5 and 5-15 cm depth 4 months post-fire in order to examine the effects of slope and burn severity on %C, C stocks, %N and BC. We used the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes but that there was no difference in BPCA-C content or stocks. BC content was greatest in the forest floor at burned sites (19 g BPCA-C kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g BPCA-C m-2). At the time of sampling, unburned and burned soils had equivalent BC content, indicating none of the BC deposited on the land surface post-fire had been incorporated into either the 0-5 or 5-15 cm soil layers. The ratio of B6CA : total BPCAs, an index of the degree of aromatic C condensation, suggested that BC in the 5-15 cm soil layer may have been formed at higher temperatures or experienced selective degradation relative to the forest floor and 0-5 cm soils. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely lost, either through erosion events, degradation or translocation to deeper soils. Future work examining mechanisms for BC losses from forest soils will be required for understanding the role BC plays in the global

  14. Palaeoecological data as a tool to predict possible future vegetation changes in the boreal forest zone of European Russia: a case study from the Central Forest Biosphere Reserve

    Science.gov (United States)

    Novenko, E. Yu; Tsyganov, A. N.; Olchev, A. V.

    2018-01-01

    New multi-proxy records (pollen, testate amoebae, and charcoal) were applied to reconstruct the vegetation dynamics in the boreal forest area of the southern part of Valdai Hills (the Central Forest Biosphere Reserve) during the Holocene. The reconstructions of the mean annual temperature and precipitation, the climate moisture index (CMI), peatland surface moisture, and fire activity have shown that climate change has a significant impact on the boreal forests of European Russia. Temperature growth and decreased moistening during the warmest phases of the Holocene Thermal Maximum in 7.0-6.2 ka BP and 6.0-5.5 ka BP and in the relatively warm phase in 3.4-2.5 ka BP led to structural changes in plant communities, specifically an increase in the abundance of broadleaf tree species in forest stands and the suppression of Picea. The frequency of forest fires was higher in that period, and it resulted in the replacement of spruce forests by secondary stands with Betula and Pinus. Despite significant changes in the climatic parameters projected for the 21st century using even the optimistic RCP2.6 scenario, the time lag between climate changes and vegetation responses makes any catastrophic vegetation disturbances (due to natural reasons) in the area in the 21st century unlikely.

  15. Response of Boreal forest tree canopy cover to chronic gamma irradiation

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1994-01-01

    A section of the Canadian Boreal forest was irradiated chronically by a point source of 137 Cs from 1973 to 1986. Tree canopy cover was measured at permanently marked locations during the pre-irradiation, irradiation and post-irradiation phases, spanning a period of two decades. The tree canopy was severely affected at dose rates greater than 10 mGy/h delivered chronically. The canopy of sensitive coniferous tree species, such as Abies balsamea and Picea Mariana, decreased at dose rates greater than 2 mGy/h, but in some cases the tree canopy was replaced by more resistant species, such as Populus tremuloides and Salix bebbiana. Effects on canopy cover could not be detected at dose rates less than 0.1 mGy/h. Even at dose rates of 5 mGy/h, the forest canopy is recovering six years after irradiation stopped. (author)

  16. Nesting ecology of boreal forest birds following a massive outbreak of spruce beetles

    Science.gov (United States)

    Matsuoka, S.M.; Handel, C.M.

    2007-01-01

    We studied breeding dark-eyed juncos (Junco hyemalis), yellow-rumped warblers (Dendroica coronata), and spruce-nesting birds from 1997 to 1998 among forests with different levels of spruce (Picea spp.) mortality following an outbreak of spruce beetles (Dendroctonus rufipennis) in Alaska, USA. We identified species using live and beetle-killed spruce for nest sites and monitored nests to determine how the outbreak influenced avian habitat selection and reproduction. We tested predictions that 1) nesting success of ground-nesting juncos would increase with spruce mortality due to proliferation of understory vegetation available to conceal nests from predators, 2) nesting success of canopy-nesting warblers would decrease with spruce mortality due to fewer live spruce in which to conceal nests, and 3) both species would alter nest-site selection in response to disturbance. Juncos did not benefit from changes in understory vegetation; nesting success in highly disturbed stands (46%) was comparable to that in undisturbed habitats throughout their range. In stands with low spruce mortality, nesting success of juncos was low (5%) and corresponded with high densities of red squirrels (Tamiasciurus hudsonicus). Yellow-rumped warblers nested exclusively in spruce, but success did not vary with spruce mortality. As disturbance increased, nesting warblers switched from selecting forest patches with high densities of live white spruce (Picea glauca) to patches with beetle-killed spruce. Warblers also placed nests in large-diameter live or beetle-killed spruce, depending on which was more abundant in the stand, with no differences in nesting success. Five of the 12 other species of spruce-nesting birds also used beetle-killed spruce as nest sites. Because beetle-killed spruce can remain standing for >50 years, even highly disturbed stands provide an important breeding resource for boreal forest birds. We recommend that boreal forest managers preserve uncut blocks of infested

  17. Effects of fire severity on plant nutrient uptake reinforce alternate pathways of succession in boreal forests

    Science.gov (United States)

    A. Shenoy; K. Kielland; J.F. Johnstone

    2013-01-01

    Fire activity in the North American boreal region is projected to increase under a warming climate and trigger changes in vegetation composition. In black spruce forests of interior Alaska, fire severity impacts residual organic layer depth which is strongly linked to the relative dominance of deciduous versus coniferous trees in early succession. These alternate...

  18. The impact of Norway spruce planting on herb vegetation in the mountain beech forests on two bedrock types

    Czech Academy of Sciences Publication Activity Database

    Máliš, František; Ujházy, K.; Vodálová, A.; Barka, I.; Čaboun, V.; Sitková, Z.

    2012-01-01

    Roč. 131, č. 5 (2012), s. 1551-1569 ISSN 1612-4669 Institutional support: RVO:67985939 Keywords : boreal forests * Bavarian Alps * temperate forests * soil * biodiversity * nitrogen mineralizaton Subject RIV: EF - Botanics Impact factor: 1.959, year: 2012

  19. Fire as an agent in redistributing fallout 137Cs in the Canadian boreal forest

    International Nuclear Information System (INIS)

    Paliouris, G.; Svoboda, J.; Mierzynski, B.; Taylor, H.W.; Wein, R.W.

    1994-01-01

    The presence of fallout 137 Cs in the boreal forest and the effect of fire in redistributing 137 Cs were studied in the remote region of Wood Buffalo National Park, N.W.T., Canada. Results of a preliminary study of five burned (the fire occurred in 1981) and five unburned stands conducted in 1986 revealed that 137 Cs concentrations were higher in the surface soil of the burned stands than in the unburned ones. In 1989, a comprehensive study was conducted, in which one burned and one unburned white spruce stand were sampled in greater detail. The latter investigation also revealed a difference in the distribution of 137 Cs within the burned stand compared to the unburned one. Specifically, in the unburned stand, the highest 137 Cs concentration was identified in the epiphytic lichens and in the mosses, whereas in the burned stand, the highest concentration was measured in the surface organic soil. These results indicate that fire caused the mobilization of part of the 137 Cs bound to the above-ground matter and concentrated it in the ash layer of the burned surface soil. An additional ecologically important finding in our study was that significantly lower total 137 Cs load was observed in the burned stand compared to the unburned one. Hence, our data not only provide evidence that 137 Cs is being redistributed within the burned stand to the surface soil, but also that part of the 137 Cs is lost due to fire, presumably contaminating other ecosystems. Volatilization and fly-ash during the fire, and runoff (e.g. from snow melt) after the fire are the most likely mechanisms for the 137 Cs removal. These findings point to fire as an agent of 137 Cs secondary contamination for initially unaffected systems, as well as for those previously contaminated

  20. Carbon sequestration from boreal wildfires via Pyrogenic Carbon production

    Science.gov (United States)

    Santin, Cristina; Doerr, Stefan; Preston, Caroline

    2014-05-01

    Fire releases important quantities of carbon (C) to the atmosphere. Every year, an average of 460 Million ha burn around the globe, generating C emissions equivalent to a third of the current annual contribution from fossil fuel combustion. Over the longer-term wildfires are widely considered as 'net zero C emission events', because C emissions from fires, excluding those associated with deforestation and peatland fires, are balanced by C uptake by regenerating vegetation. This 'zero C emission' scenario, however, may be flawed, as it does not consider the production of pyrogenic C (PyC). During fire, part of the biomass C burnt is emitted to the atmosphere but part is transformed into PyC (i.e. charcoal). The enhanced resistance of PyC to environmental degradation compared to unburnt biomass gives it the potential to sequester C over the medium/long term. Therefore, after complete regeneration of the vegetation, the PyC generated may represent an additional C pool and, hence, recurring fire-regrowth cycles could represent net sinks of atmospheric C. To estimate the quantitative importance of PyC production, accurate data on PyC generation with respect to the fuel combusted are needed. Unfortunately, detailed quantification of fuel prior to fire is normally only available for prescribed and experimental fires, which are usually of low-intensity and therefore not representative of higher-intensity wildfires. Furthermore, what little data is available is usually based on only a specific fraction of the PyC present following burning rather than the whole range of PyC products and pools (i.e. PyC in soil, ash, downed wood and standing vegetation). To address this research gap, we utilized the globally unique FireSmart experimental forest fires in Northwest Canada. They are aimed to reproduce wildfire conditions typical for boreal forest and, at the same time, allow pre-fire fuel assessment, fire behaviour monitoring and immediate post-fire fuel and PyC inventory. This

  1. Black (pyrogenic carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions

    Directory of Open Access Journals (Sweden)

    C. M. Preston

    2006-01-01

    Full Text Available The carbon (C cycle in boreal regions is strongly influenced by fire, which converts biomass and detrital C mainly to gaseous forms (CO2 and smaller proportions of CO and CH4, and some 1–3% of mass to pyrogenic C (PyC. PyC is mainly produced as solid charred residues, including visually-defined charcoal, and a black carbon (BC fraction chemically defined by its resistance to laboratory oxidation, plus much lower proportions of volatile soot and polycyclic aromatic hydrocarbons (PAHs. All PyC is characterized by fused aromatic rings, but varying in cluster sizes, and presence of other elements (N, O and functional groups. The range of PyC structures is often described as a continuum from partially charred plant materials, to charcoal, soot and ultimately graphite which is formed by the combination of heat and pressure. There are several reasons for current interest in defining more precisely the role of PyC in the C cycle of boreal regions. First, PyC is largely resistant to decomposition, and therefore contributes to very stable C pools in soils and sediments. Second, it influences soil processes, mainly through its sorption properties and cation exchange capacity, and third, soot aerosols absorb solar radiation and may contribute to global warming. However, there are large gaps in the basic information needed to address these topics. While charcoal is commonly defined by visual criteria, analytical methods for BC are mainly based on various measures of oxidation resistance, or on yield of benzenepolycarboxylic acids. These methods are still being developed, and capture different fractions of the PyC structural continuum. There are few quantitative reports of PyC production and stocks in boreal forests (essentially none for boreal peatlands, and results are difficult to compare due to varying experimental goals and methods, as well as inconsistent terminology. There are almost no direct field measurements of BC aerosol production from boreal

  2. Spectral contribution of understory to forest reflectance in a boreal site: an analysis of EO-1 Hyperion data

    Czech Academy of Sciences Publication Activity Database

    Rautianien, M.; Lukeš, Petr

    2015-01-01

    Roč. 171, dec (2015), s. 98-104 ISSN 0034-4257 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : forest reflectance model * hyperspectral * boreal * leaf area index * understory Subject RIV: EH - Ecology, Behaviour Impact factor: 5.881, year: 2015

  3. Impact of wildfire on stream nutrient chemistry and ecosystem metabolism in boreal forest catchments of interior Alaska

    Science.gov (United States)

    Emma F. Betts; Jeremy B. Jones

    2009-01-01

    With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient...

  4. Amines in boreal forest air at SMEAR II station in Finland

    Science.gov (United States)

    Hemmilä, Marja; Hellén, Heidi; Virkkula, Aki; Makkonen, Ulla; Praplan, Arnaud P.; Kontkanen, Jenni; Ahonen, Lauri; Kulmala, Markku; Hakola, Hannele

    2018-05-01

    We measured amines in boreal forest air in Finland both in gas and particle phases with 1 h time resolution using an online ion chromatograph (instrument for Measuring AeRosols and Gases in Ambient Air - MARGA) connected to an electrospray ionization quadrupole mass spectrometer (MS). The developed MARGA-MS method was able to separate and detect seven different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA), and butylamine (BA). The detection limits of the method for amines were low (0.2-3.1 ng m-3), the accuracy of IC-MS analysis was 11-37 %, and the precision 10-15 %. The proper measurements in the boreal forest covered about 8 weeks between March and December 2015. The amines were found to be an inhomogeneous group of compounds, showing different seasonal and diurnal variability. Total MMA (MMA(tot)) peaked together with the sum of ammonia and ammonium ions already in March. In March, monthly means for MMA were NH4+ these were 52 ± 16 and 425 ± 371 ng m-3, respectively. Monthly medians in March for MMA(tot), NH3, and NH4+ were 90 %, gas-phase DMA correlated well with 1.1-2 nm particle number concentration (R2 = 0.63) suggesting that it participates in atmospheric clustering. EA concentrations were low all the time. Its July means were < 0.36 and 0.4 ± 0.4 ng m-3 in gas and aerosol phases, respectively, but individual concentration data correlated well with monoterpene concentrations in July. Monthly means of PA and BA were below detection limits at all times.

  5. Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry

    International Nuclear Information System (INIS)

    Klaminder, J.; Grip, H.; Moerth, C.-M.; Laudon, H.

    2011-01-01

    Research highlights: → Organic compounds is mineralized during later transport in deep groundwater aquifers. → Carbonic acid generated by this process stimulates dissolution of silicate minerals. → Protons derived from pyrite oxidation also affects weathering in deep groundwater. → The identified weathering mechanisms affect base-flow chemistry in boreal streams. - Abstract: What role does mineralized organic C and sulfide oxidation play in weathering of silicate minerals in deep groundwater aquifers? In this study, how H 2 CO 3 , produced as a result of mineralization of organic matter during groundwater transport, affects silicate weathering in the saturated zone of the mineral soil along a 70 m-long boreal hillslope is demonstrated. Stream water measurements of base cations and δ 18 O are included to determine the importance of the deep groundwater system for downstream surface water. The results suggest that H 2 CO 3 generated from organic compounds being mineralized during the lateral transport stimulates weathering at depths between 0.5 and 3 m in the soil. This finding is indicated by progressively increasing concentrations of base cations-, silica- and inorganic C (IC) in the groundwater along the hillslope that co-occur with decreasing organic C (OC) concentrations. Protons derived from sulfide oxidation appear to be an additional driver of the weathering process as indicated by a build-up of SO 4 2- in the groundwater during lateral transport and a δ 34 S per mille value of +0.26-3.76 per mille in the deep groundwater indicating S inputs from pyrite. The two identified active acids in the deep groundwater are likely to control the base-flow chemistry of streams draining larger catchments (>1 km 2 ) as evident by δ 18 O signatures and base cation concentrations that overlap with that of the groundwater.

  6. Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klaminder, J., E-mail: jonatan.klaminder@emg.umu.se [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden)] [Department of Ecology and Environmental Science, Umea University, SE-901 87 (Sweden); Grip, H. [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden); Moerth, C.-M. [Department of Geological Sciences, Stockholm University, 106 91 Stockholm (Sweden); Laudon, H. [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden)

    2011-03-15

    Research highlights: {yields} Organic compounds is mineralized during later transport in deep groundwater aquifers. {yields} Carbonic acid generated by this process stimulates dissolution of silicate minerals. {yields} Protons derived from pyrite oxidation also affects weathering in deep groundwater. {yields} The identified weathering mechanisms affect base-flow chemistry in boreal streams. - Abstract: What role does mineralized organic C and sulfide oxidation play in weathering of silicate minerals in deep groundwater aquifers? In this study, how H{sub 2}CO{sub 3}, produced as a result of mineralization of organic matter during groundwater transport, affects silicate weathering in the saturated zone of the mineral soil along a 70 m-long boreal hillslope is demonstrated. Stream water measurements of base cations and {delta}{sup 18}O are included to determine the importance of the deep groundwater system for downstream surface water. The results suggest that H{sub 2}CO{sub 3} generated from organic compounds being mineralized during the lateral transport stimulates weathering at depths between 0.5 and 3 m in the soil. This finding is indicated by progressively increasing concentrations of base cations-, silica- and inorganic C (IC) in the groundwater along the hillslope that co-occur with decreasing organic C (OC) concentrations. Protons derived from sulfide oxidation appear to be an additional driver of the weathering process as indicated by a build-up of SO{sub 4}{sup 2-} in the groundwater during lateral transport and a {delta}{sup 34}S per mille value of +0.26-3.76 per mille in the deep groundwater indicating S inputs from pyrite. The two identified active acids in the deep groundwater are likely to control the base-flow chemistry of streams draining larger catchments (>1 km{sup 2}) as evident by {delta}{sup 18}O signatures and base cation concentrations that overlap with that of the groundwater.

  7. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    Science.gov (United States)

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.

  8. Can we produce carbon and climate neutral forest bioenergy?

    OpenAIRE

    Repo, Anna; Tuovinen, Juha Pekka; Liski, Jari

    2015-01-01

    Harvesting branches, stumps and unmercantable tops, in addition to stem wood, decreases the carbon input to the soil and consequently reduces the forest carbon stock. We examine the changes in the forest carbon cycle that would compensate for this carbon loss over a rotation period and lead to carbon neutral forest residue bioenergy systems. In addition, we analyse the potential climate impact of these carbon neutral systems. In a boreal forest, the carbon loss was compensated for with a 10% ...

  9. Soil surface CO2 efflux measurements in Norway spruce forests. Comparison between four different sites across Europe — from boreal to alpine forest

    Czech Academy of Sciences Publication Activity Database

    Acosta, Manuel; Pavelka, Marian; Montagnani, L.; Kutsch, W.; Lindroth, A.; Juszczak, R.; Janouš, Dalibor

    2013-01-01

    Roč. 192, JAN (2013), s. 295-303 ISSN 0016-7061 R&D Projects: GA MŠk OC08021; GA MŽP(CZ) SP/2D1/93/07; GA MŽP(CZ) SP/2D1/70/08; GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : Soil CO2 efflux * Forest * Chamber method * Q10 * Soil temperature * Spatial variability Subject RIV: EH - Ecology, Behaviour Impact factor: 2.509, year: 2013

  10. Soil fauna as an indicator of soil quality in forest stands, pasture and secondary forest

    Directory of Open Access Journals (Sweden)

    Felipe Vieira da Cunha Neto

    2012-11-01

    Full Text Available The interactions between soil invertebrates and environmental variations are relatively unknown in the assessment of soil quality. The objective of this study was to evaluate soil quality in areas with different soil management systems, based on soil fauna as indicator, in Além Paraíba, Minas Gerais, Brazil. The soil invertebrate community was sampled using pitfall traps, in the dry and rainy seasons, from areas with five vegetation types (acacia, mimosa, eucalyptus, pasture, and secondary forest. The abundance of organisms and the total and average richness, Shannon's diversity index, the Pielou uniformity index, and change index V were determined. The fauna was most abundant in the areas of secondary forest and mimosa plantations in the dry season (111.3 and 31.7 individuals per trap per day, respectively. In the rainy season, the abundance of organisms in the three vegetation types did not differ. The highest values of average and total richness were recorded in the secondary forest in the dry season and in the mimosa stand in the rainy season. Shannon's index ranged from 1.57 in areas with acacia and eucalyptus in the rainy season to 3.19 in the eucalyptus area in the dry season. The uniformity index was highest in forest stands (eucalyptus, acacia and mimosa in the dry season, but higher in the rainy season in the pasture and secondary forest than in the forest stands. The change index V indicated that the percentage of extremely inhibited groups was lowest in the area with mimosa, both in the dry and rainy season (36 and 23 %, respectively. Of all forest stands, the mimosa area had the most abundant soil fauna.

  11. Frost heaving of planted tree seedlings in the boreal forest of northern Sweden

    International Nuclear Information System (INIS)

    Goulet, France

    2000-01-01

    Frost heaving can be a leading cause of tree seedling mortality in many places in the boreal forest of Northern Sweden. The aim of this investigation was to improve our understanding of frost heaving of planted tree seedlings as related to snow cover, scarification, planting methods and soil types. The thesis is based on a review paper, three field experiments and one laboratory experiment. The experiments focus on different methods to control frost heaving of forest tree seedlings and on a number of factors affecting the extent of frost heaving. The review paper identifies the many aspects of frost heaving of forest tree seedlings and agricultural crops based on an intensive review of the research contributions made during the last century. Even if many investigations have been carried out with the aim to decrease the extent of frost heaving, very little quantitative results are available for tree seedlings. In a field experiment, the choice of planting positions was effective in decreasing frost heaving of planted seedlings following mounding or disc-trenching. Seedlings planted in the depressions were largely affected by frost heaving with a maximal vertical displacement of 5.4 cm while frost heaving did not occur on the top of the mound. On the other hand, the planting time and planting depth had no influence on the extent of frost heaving. In another field experiment the size of the scarified patches was strongly correlated to frost heaving which reached between 7.6 and 11.5 cm in 4 and 8-dm patches compared to between 4.4 and 5.3 in non-scarified soil and in a 1-dm patch. Ground vegetation probably decreases the diurnal temperature variation and the number of freezing-thawing cycles. The duration and magnitude of frost temperatures, the frost hour sum, increased with patch size. The difference between the 8-dm and 1-dm patch increased to 2064 hour-degrees at the end of the winter. In larger patches, the planting depth seemed to be effective in reducing the

  12. Frost heaving of planted tree seedlings in the boreal forest of northern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Goulet, France

    2000-07-01

    Frost heaving can be a leading cause of tree seedling mortality in many places in the boreal forest of Northern Sweden. The aim of this investigation was to improve our understanding of frost heaving of planted tree seedlings as related to snow cover, scarification, planting methods and soil types. The thesis is based on a review paper, three field experiments and one laboratory experiment. The experiments focus on different methods to control frost heaving of forest tree seedlings and on a number of factors affecting the extent of frost heaving. The review paper identifies the many aspects of frost heaving of forest tree seedlings and agricultural crops based on an intensive review of the research contributions made during the last century. Even if many investigations have been carried out with the aim to decrease the extent of frost heaving, very little quantitative results are available for tree seedlings. In a field experiment, the choice of planting positions was effective in decreasing frost heaving of planted seedlings following mounding or disc-trenching. Seedlings planted in the depressions were largely affected by frost heaving with a maximal vertical displacement of 5.4 cm while frost heaving did not occur on the top of the mound. On the other hand, the planting time and planting depth had no influence on the extent of frost heaving. In another field experiment the size of the scarified patches was strongly correlated to frost heaving which reached between 7.6 and 11.5 cm in 4 and 8-dm patches compared to between 4.4 and 5.3 in non-scarified soil and in a 1-dm patch. Ground vegetation probably decreases the diurnal temperature variation and the number of freezing-thawing cycles. The duration and magnitude of frost temperatures, the frost hour sum, increased with patch size. The difference between the 8-dm and 1-dm patch increased to 2064 hour-degrees at the end of the winter. In larger patches, the planting depth seemed to be effective in reducing the

  13. Establishment and growth of white spruce on a boreal forest floodplain: interactions between microclimate and mammalian herbivory

    Science.gov (United States)

    Amy C. Angell; Knut. Kielland

    2009-01-01

    White spruce (Picea glauca (Moench) Voss) is a dominant species in late-successional ecosystems along the Tanana River, interior Alaska, and the most important commercial timber species in these boreal floodplain forests. Whereas white spruce commonly seed in on young terraces in early primary succession, the species does not become a conspicuous...

  14. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Institute of Scientific and Technical Information of China (English)

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  15. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Science.gov (United States)

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, Ji; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) soil respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  16. Soil strength and forest operations

    OpenAIRE

    Beekman, F.

    1987-01-01

    The use of heavy machinery and transport vehicles is an integral part of modern forest operations. This use often causes damage to the standing trees and to the soil. In this study the effects of vehicle traffic on the soil are analysed and the possible consequences for forest management discussed. The study is largely restricted to sandy and loamy soils because of their importance for Dutch forestry.

    Soil strength, defined as the resistance of soil structure against the impa...

  17. Landscape patterns of species-level association between ground-beetles and overstory trees in boreal forests of western Canada (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Colin Bergeron

    2011-11-01

    Full Text Available Spatial associations between species of trees and ground-beetles (Coleoptera: Carabidae involve many indirect ecological processes, likely reflecting the function of numerous forest ecosystem components. Describing and quantifying these associations at the landscape scale is basic to the development of a surrogate-based framework for biodiversity monitoring and conservation. In this study, we used a systematic sampling grid covering 84 km2 of boreal mixedwood forest to characterize the ground-beetle assemblage associated with each tree species occurring on this landscape. Projecting the distribution of relative basal area of each tree species on the beetle ordination diagram suggests that the carabid community is structured by the same environmental factors that affects the distribution of trees, or perhaps even by trees per se. Interestingly beetle species are associated with tree species of the same rank order of abundance on this landscape, suggesting that conservation of less abundant trees will concomitantly foster conservation of less abundant beetle species. Landscape patterns of association described here are based on characteristics that can be directly linked to provincial forest inventories, providing a basis that is already available for use of tree species as biodiversity surrogates in boreal forest land management.

  18. Can Airborne Laser Scanning (ALS and Forest Estimates Derived from Satellite Images Be Used to Predict Abundance and Species Richness of Birds and Beetles in Boreal Forest?

    Directory of Open Access Journals (Sweden)

    Eva Lindberg

    2015-04-01

    Full Text Available In managed landscapes, conservation planning requires effective methods to identify high-biodiversity areas. The objective of this study was to evaluate the potential of airborne laser scanning (ALS and forest estimates derived from satellite images extracted at two spatial scales for predicting the stand-scale abundance and species richness of birds and beetles in a managed boreal forest landscape. Multiple regression models based on forest data from a 50-m radius (i.e., corresponding to a homogenous forest stand had better explanatory power than those based on a 200-m radius (i.e., including also parts of adjacent stands. Bird abundance and species richness were best explained by the ALS variables “maximum vegetation height” and “vegetation cover between 0.5 and 3 m” (both positive. Flying beetle abundance and species richness, as well as epigaeic (i.e., ground-living beetle richness were best explained by a model including the ALS variable “maximum vegetation height” (positive and the satellite-derived variable “proportion of pine” (negative. Epigaeic beetle abundance was best explained by “maximum vegetation height” at 50 m (positive and “stem volume” at 200 m (positive. Our results show that forest estimates derived from satellite images and ALS data provide complementary information for explaining forest biodiversity patterns. We conclude that these types of remote sensing data may provide an efficient tool for conservation planning in managed boreal landscapes.

  19. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape.

    Science.gov (United States)

    Helbig, Manuel; Chasmer, Laura E; Desai, Ankur R; Kljun, Natascha; Quinton, William L; Sonnentag, Oliver

    2017-08-01

    In the sporadic permafrost zone of northwestern Canada, boreal forest carbon dioxide (CO 2 ) fluxes will be altered directly by climate change through changing meteorological forcing and indirectly through changes in landscape functioning associated with thaw-induced collapse-scar bog ('wetland') expansion. However, their combined effect on landscape-scale net ecosystem CO 2 exchange (NEE LAND ), resulting from changing gross primary productivity (GPP) and ecosystem respiration (ER), remains unknown. Here, we quantify indirect land cover change impacts on NEE LAND and direct climate change impacts on modeled temperature- and light-limited NEE LAND of a boreal forest-wetland landscape. Using nested eddy covariance flux towers, we find both GPP and ER to be larger at the landscape compared to the wetland level. However, annual NEE LAND (-20 g C m -2 ) and wetland NEE (-24 g C m -2 ) were similar, suggesting negligible wetland expansion effects on NEE LAND . In contrast, we find non-negligible direct climate change impacts when modeling NEE LAND using projected air temperature and incoming shortwave radiation. At the end of the 21st century, modeled GPP mainly increases in spring and fall due to reduced temperature limitation, but becomes more frequently light-limited in fall. In a warmer climate, ER increases year-round in the absence of moisture stress resulting in net CO 2 uptake increases in the shoulder seasons and decreases during the summer. Annually, landscape net CO 2 uptake is projected to decline by 25 ± 14 g C m -2 for a moderate and 103 ± 38 g C m -2 for a high warming scenario, potentially reversing recently observed positive net CO 2 uptake trends across the boreal biome. Thus, even without moisture stress, net CO 2 uptake of boreal forest-wetland landscapes may decline, and ultimately, these landscapes may turn into net CO 2 sources under continued anthropogenic CO 2 emissions. We conclude that NEE LAND changes are more likely to be

  20. Study of landscape change under forest harvesting and climate warming-induced fire disturbance

    Science.gov (United States)

    S. He Hong; David J. Mladenoff; Eric J. Gustafson

    2002-01-01

    We examined tree species responses under forest harvesting and an increased fire disturbance scenario due to climate warming in northern Wisconsin where northern hardwood and boreal forests are currently predominant. Individual species response at the ecosystem scale was simulated with a gap model, which integrates soil, climate and species data, stratified by...

  1. Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site

    Directory of Open Access Journals (Sweden)

    J. Kontkanen

    2016-10-01

    Full Text Available The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS during 2006–2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.

  2. Graph SLAM correction for single scanner MLS forest data under boreal forest canopy

    Science.gov (United States)

    Kukko, Antero; Kaijaluoto, Risto; Kaartinen, Harri; Lehtola, Ville V.; Jaakkola, Anttoni; Hyyppä, Juha

    2017-10-01

    Mobile laser scanning (MLS) provides kinematic means to collect three dimensional data from surroundings for various mapping and environmental analysis purposes. Vehicle based MLS has been used for road and urban asset surveys for about a decade. The equipment to derive the trajectory information for the point cloud generation from the laser data is almost without exception based on GNSS-IMU (Global Navigation Satellite System - Inertial Measurement Unit) technique. That is because of the GNSS ability to maintain global accuracy, and IMU to produce the attitude information needed to orientate the laser scanning and imaging sensor data. However, there are known challenges in maintaining accurate positioning when GNSS signal is weak or even absent over long periods of time. The duration of the signal loss affects the severity of degradation of the positioning solution depending on the quality/performance level of the IMU in use. The situation could be improved to a certain extent with higher performance IMUs, but increasing system expenses make such approach unsustainable in general. Another way to tackle the problem is to attach additional sensors to the system to overcome the degrading position accuracy: such that observe features from the environment to solve for short term system movements accurately enough to prevent the IMU solution to drift. This results in more complex system integration with need for more calibration and synchronization of multiple sensors into an operational approach. In this paper we study operation of an ATV (All -terrain vehicle) mounted, GNSS-IMU based single scanner MLS system in boreal forest conditions. The data generated by RoamerR2 system is targeted for generating 3D terrain and tree maps for optimizing harvester operations and forest inventory purposes at individual tree level. We investigate a process-flow and propose a graph optimization based method which uses data from a single scanner MLS for correcting the post

  3. Can the soil fauna of boreal forests recover from lead-derived stress in a shooting range area?

    Science.gov (United States)

    Selonen, Salla; Liiri, Mira; Setälä, Heikki

    2014-04-01

    The responses of soil faunal communities to lead (Pb) contamination in a shooting range area and the recovery of these fauna after range abandonment were studied by comparing the communities at an active shotgun shooting range, an abandoned shooting range, and a control site, locating in the same forest. Despite the similar overall Pb pellet load at the shooting ranges, reaching up to 4 kg m(-2), Pb concentrations in the top soil of the abandoned range has decreased due to the accumulation of detritus on the soil surface. As a consequence, soil animal communities were shown to recover from Pb-related disturbances by utilizing the less contaminated soil layer. Microarthropods showed the clearest signs of recovery, their numbers and community composition being close to those detected at the control site. However, in the deepest organic soil layer, the negative effects of Pb were more pronounced at the abandoned than at the active shooting range, which was detected as altered microarthropod and nematode community structures, reduced abundances of several microarthropod taxa, and the total absence of enchytraeid worms. Thus, although the accumulation of fresh litter on soil surface can promote the recovery of decomposer communities in the top soil, the gradual release of Pb from corroding pellets may pose a long-lasting risk for decomposer taxa deeper in the soil.

  4. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest.

    Science.gov (United States)

    Tremblay, Junior A; Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R; Price, David T; St-Laurent, Martin-Hugues

    2018-01-01

    Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change") were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and

  5. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest.

    Directory of Open Access Journals (Sweden)

    Junior A Tremblay

    Full Text Available Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change" were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus, a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5, compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5. However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of

  6. The Interacting controls of pyrolysis temperature and plant taxa on pyrogenic organic matter stability and decomposition in a Northern Michigan forest soil

    Science.gov (United States)

    Gibson, C. D.; Filley, T. R.; Bird, J. A.; Hatton, P. J.; Stark, R. E.; Nadelhoffer, K. J.

    2017-12-01

    Pyrogenic organic matter (PyOM) produced during forest fires is considered a large sink of stable soil organic matter (SOM) in boreal-temperate forest ecotones, where fire frequency and intensity is growing with changing climate. Understanding how changes in fire regime and predicted shifts in plant taxa will interact to affect PyOM dynamics in soil is imperative to assessing the impact of climate change on SOM maintenance. The stability of PyOM in soil may be co-determined by the physiochemical structure imparted on PyOM during pyrolysis and by its initial taxa-dependent wood chemistry and anatomy. To determine PyOM-C turnover rates in soil, we followed the fate of 13C-enriched wood or PyOM (200, 300, 450, or 600°C) derived from red maple (RM) or jack pine (JP) wood in soil from a recently burned forest in northern Michigan, USA. We found that pyrolysis temperature-controlled physiochemical changes influenced, with threshold dynamics, PyOM stability resulting in mean residence times of 2 (PyOM 200°C) to 450 years for both taxa, confirming that most PyOM (wood taxa did affect PyOM C MRT, in part due to differences in the amount of water soluble C released by PyOM during the initial decomposition dynamics in soil.

  7. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests

    Science.gov (United States)

    Linda B. Brubaker; Philip E. Higuera; T. Scott Rupp; Mark A. Olson; Patricia M. Anderson; Feng Sheng. Hu

    2009-01-01

    Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecological model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a...

  8. Production and Transport of Ozone From Boreal Forest Fires

    Science.gov (United States)

    Tarasick, David; Liu, Jane; Osman, Mohammed; Sioris, Christopher; Liu, Xiong; Najafabadi, Omid; Parrington, Mark; Palmer, Paul; Strawbridge, Kevin; Duck, Thomas

    2013-04-01

    In the summer of 2010, the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) mission was planned by several universities and government agencies in the United Kingdom, Canada, and USA. Nearly 100 ozone soundings were made at 13 stations through the BORTAS Intensive Sounding Network, although aircraft measurements were unfortunately cancelled due to the volcanic eruption in Iceland. 2010 was actually an exceptional year for Canadian boreal fires. MODIS (Moderate Resolution Imaging Spectroradiometer) fire count data shows large fire events in Saskatchewan on several days in July. High amounts of NO2 close to the large fires are observed from OMI satellite data, indicating that not all NO2 is converted to PAN. Also associated with the fires, large amounts of CO, another precursor of ozone, are observed in MOPITT (Measurements Of Pollution In The Troposphere), AIRS and TES (Tropospheric Emission Spectrometer) satellite data in the middle to upper troposphere. These chemical conditions combined with sunny weather all favour ozone production. Following days with large fire activity, layers of elevated ozone mixing ratio (over 100 ppbv) are observed downwind at several sites. Back-trajectories suggest the elevated ozone in the profile is traceable to the fires in Saskatchewan. Lidar profiles also detect layers of aerosol at the same heights. However, the layers of high ozone are also associated with low humidity, which is not expected from a combustion source, and suggests the possibility of entrainment of stratospheric air.

  9. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration

    International Nuclear Information System (INIS)

    Kang, Sinkyu; Kimball, John S.; Running, Steven W.

    2006-01-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km 2 portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO 2 , climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO 2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T a ), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 o C for T a and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO 2 , climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients. (author)

  10. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.

    Science.gov (United States)

    Kang, Sinkyu; Kimball, John S; Running, Steven W

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.

  11. Soil amino acid composition across a boreal forest successional sequence

    Science.gov (United States)

    Nancy R. Werdin-Pfisterer; Knut Kielland; Richard D. Boone

    2009-01-01

    Soil amino acids are important sources of organic nitrogen for plant nutrition, yet few studies have examined which amino acids are most prevalent in the soil. In this study, we examined the composition, concentration, and seasonal patterns of soil amino acids across a primary successional sequence encompassing a natural gradient of plant productivity and soil...

  12. The importance of micrometeorological variations for photosynthesis and transpiration in a boreal coniferous forest

    DEFF Research Database (Denmark)

    Schurgers, Guy; Lagergren, F.; Molder, M.

    2015-01-01

    the importance of vertical variations in light, temperature, CO2 concentration and humidity within the canopy for fluxes of photosynthesis and transpiration of a boreal coniferous forest in central Sweden. A leaf-level photosynthesis-stomatal conductance model was used for aggregating these processes to canopy...... abovecanopy and within-canopy humidity, and despite large gradients in CO2 concentration during early morning hours after nights with stable conditions, neither humidity nor CO2 played an important role for vertical heterogeneity of photosynthesis and transpiration....

  13. The field-irradiator gamma study: Fourteen years of irradiation of the boreal forest

    International Nuclear Information System (INIS)

    Amiro, B.D.; Hawkins, J.L.; Laverock, M.J.; Sheppard, S.C.

    1996-01-01

    The Field-Irradiator Gamma (FIG) project is a long-term experiment on the response of boreal forest vegetation to chronic ionizing radiation. The forest was irradiated from 1973 to 1986 by a 370 TBq point source of 137 Cs placed at a height of 20 m. The forest is now in the recovery phase. The irradiated forest included several different community types, and each of these was affected differently by the radiation stress. New vegetation zones have now been created because of the selective tolerance to radiation along a gradient from background dose rates to a maximum of 65 mGy h -1 . One of the easiest measured indicators of the radiation stress has been photographic documentation of changes in forest communities over time. Measured changes in species composition and the decrease in tree canopy cover at dose rates >2 Gy h -1 have also helped quantify radiation effects. Indicators such as trends in annual growth rings have been less satisfactory. Our experiment suggests that there are no visible impacts at chronic dose rates less than 0.1 mGy h -1 and the threshold for effects likely is between 0.1 and 1 mGy h -1 . The experimental area has been preserved to allow measurements of long-term recovery of the site

  14. Forest Floor Carbon Exchange of a Boreal Black Spruce Forest in Eastern Canada

    Science.gov (United States)

    Bergeron, O.; Margolis, H. A.; Coursolle, C.

    2009-06-01

    This study reports continuous automated measurements of forest floor carbon (C) exchange over feathermoss, lichen, and sphagnum micro-sites in a black spruce forest in eastern North America during snow-free periods over three years. The response of soil respiration (Rs-auto) and forest floor photosynthesis (Pff) to environmental factors was determined. The seasonal contributions of scaled up Rs-auto adjusted for spatial representativeness (Rs-adj) and Pff (Pff-eco) relative to that of total ecosystem respiration (Re) and photosynthesis (Peco), respectively, were also quantified. Shallow soil temperature explained 67-86% of the variation in Rs-auto for all ground cover types, while deeper soil temperatures were related to Rs-auto only for the feathermoss micro-sites. Base respiration was consistently lower under feathermoss, intermediate under sphagnum, and higher under lichen during all three years. The Rs-adj/Re ratio increased from spring through autumn and ranged from 0.85 to 0.87 annually for the snow-free period. The Rs-adj/Re ratio was negatively correlated with the difference between air and shallow soil temperature and this correlation was more pronounced in autumn than summer and spring. Maximum photosynthetic capacity of the forest floor (Pffmax) saturated at low irradiance levels (~200 μmol m-2 s-1) and decreased with increasing air temperature and vapor pressure deficit for all three ground cover types, suggesting that Pff was more limited by desiccation than by light availability. Pffmax was lowest for sphagnum, intermediate for feathermoss, and highest for lichen for two of the three years. Pff normalized for light peaked at air temperatures of 5-8°C, suggesting that this is the optimal temperature range for Pff. The Pff-eco/Peco ratio varied seasonally from 13 to 24% and reached a minimum in mid-summer when both air temperature and Peco were at their maximum. On an annual basis, Pff-eco accounted for 17-18% of Peco depending on the year and the

  15. Modeling interactions of soil hydrological dynamics and soil thermal and permafrost dynamics and their effects on carbon cycling in northern high latitudes

    Science.gov (United States)

    Zhuang, Q.; Tang, J.

    2008-12-01

    Large areas of northern high latitude ecosystems are underlain with permafrost. The warming temperature and fires deteriorate the stability of those permafrost, altering hydrological cycle, and consequently soil temperature and active layer depth. These changes will determine the fate of large carbon pools in soils and permafrost over the region. We developed a modeling framework of hydrology, permafrost, and biogeochemical dynamics based on our existing modules of these components. The framework was incorporated with a new snow dynamics module and the effects of soil moisture on soil thermal properties. The framework was tested for tundra and boreal forest ecosystems at field sites with respect to soil thermal and hydrological regimes in Alaska and was then applied to the whole Alaskan ecosystems for the period of 1923-2000 at a daily time step. Our two sets of simulations with and without considering soil moisture effects indicated that the soil temperature profile and active layer depth between two simulations are significant different. The differences of soil thermal regime would expect to result in different carbon dynamics. Next, we will verify the framework with the observed data of soil moisture and soil temperature at poor-drain, moderate-drain, and well-drain boreal forest sites in Alaska. With the verified framework, we will evaluate the effects of interactions of soil thermal and hydrological dynamics on carbon dynamics for the whole northern high latitudes.

  16. Modeling the Impacts of Boreal Deforestation on the Near-Surface Temperature in European Russia

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-01-01

    Full Text Available Boreal deforestation plays an important role in affecting regional and global climate. In this study, the regional temperature variation induced by future boreal deforestation in European Russia boreal forest region was simulated based on future land cover change and the Weather Research and Forecasting (WRF model. This study firstly tested and validated the simulation results of the WRF model. Then the land cover datasets in different years (2000 as baseline year, 2010, and 2100 was used in the WRF model to explore the impacts of boreal deforestation on the near-surface temperature. The results indicated that the WRF model has good ability to simulate the temperature change in European Russia. The land cover change in European Russia boreal forest region, which will be characterized by the conversion from boreal forests to croplands (boreal deforestation in the future 100 years, will lead to significant change of the near-surface temperature. The regional annual temperature will decrease by 0.58°C in the future 100 years, resulting in cooling effects to some extent and making the near-surface temperature decrease in most seasons except the spring.

  17. UNDERSTANDING AND APPLICABILITY OF THE FOREST SOIL CONCEPT

    Directory of Open Access Journals (Sweden)

    Ana Paula Moreira Rovedder

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810563The forestry sector plays an important role in the socioeconomic and environmental Brazilian context, therefore the improvement of the knowledge about forest soil becomes essential for its sustainable use as a conservation base of natural heritage as resource for economical development. Forest soil can be characterized by pedogenesis occurred under influence of a forestry typology or under a currently natural or cultivated forest coverage. Differentiating forest soils from those occupied with other uses helps the understanding of possible alterations related to vegetal coverage and the developing of better management strategies to soil and forest use. Nevertheless, there is no consensus about this term because the soils present variations according to the forest characteristics, stimulating the discussion concerning its interpretation and applicability. This review aimed to analyze the utilization of forest soil concept, highlighting the differentiation characteristics and the relation with coverage type, natural or cultivated. Aspects related to deposition, quality and management of residues, nutrients cycling, soil compaction and site productivity are emphasized. The forest soil concept is widely used by specific literature and useful to collect specific information and to plan the sustainable use of soil and forest. The improvement of knowledge about these resources provides the creation of a common identity, supporting comparative studies and consolidating the research regarding to this theme.

  18. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Rocha, Adrian; Calvin, Katherine V.; Holmes, Bruce; Wang, Chuankuan; Goulden, Michael L.

    2014-01-01

    How will regional growth and mortality change with even relatively small climate shifts, even independent of catastrophic disturbances? This question is particularly acute for the North American boreal forest, which is carbon-dense and subject The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean DBH increased even as stand density and basal area declined significantly from 41.3 to 37.5 m2 ha-1. Tree mortality averaged 1.4±0.6% yr-1, with most mortality occurring in medium-sized trees. A combined tree ring chronology constructed from 2001, 2004, and 2012 sampling showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. There have been at least one, and probably two, significant recruitment episodes since stand initiation, and we infer that past climate extremes led to significant NOBS mortality still visible in the current forest structure. These results imply that a combination of successional and demographic processes, along with mortality driven by abiotic factors, continue to affect the stand, with significant implications for our understanding of previous work at NOBS and the sustainable management of regional forests.

  19. Belowground Competition Directs Spatial Patterns of Seedling Growth in Boreal Pine Forests in Fennoscandia

    Directory of Open Access Journals (Sweden)

    E. Petter Axelsson

    2014-09-01

    Full Text Available Aboveground competition is often argued to be the main process determining patterns of natural forest regeneration. However, the theory of multiple resource limitation suggests that seedling performance also depends on belowground competition and, thus, that their relative influence is of fundamental importance. Two approaches were used to address the relative importance of above- and below-ground competition on regeneration in a nutrient-poor pine (Pinus sylvestris boreal forest. Firstly, seedling establishment beneath trees stem-girdled 12 years ago show that a substantial proportion of the seedlings were established within two years after girdling, which corresponds to a time when nutrient uptake by tree roots was severely reduced without disrupting water transport to the tree canopy, which consequently was maintained. The establishment during these two years also corresponds to abundances high enough for normal stand replacement. Secondly, surveys of regeneration within forest gaps showed that surrounding forests depressed seedlings, so that satisfactory growth occurred only more than 5 m from forest edges and that higher solar radiation in south facing edges was not enough to mediate these effects. We conclude that disruption of belowground competitive interactions mediates regeneration and, thus, that belowground competition has a strong limiting influence on seedling establishment in these forests.

  20. Soil strength and forest operations

    NARCIS (Netherlands)

    Beekman, F.

    1987-01-01

    The use of heavy machinery and transport vehicles is an integral part of modern forest operations. This use often causes damage to the standing trees and to the soil. In this study the effects of vehicle traffic on the soil are analysed and the possible consequences for forest management

  1. Recent Changes to the Strength of the CO2 Sink in Boreal Land Regions (Invited)

    Science.gov (United States)

    Hayes, D. J.; McGuire, A. D.; Kicklighter, D. W.; Gurney, K. R.; Melillo, J. M.

    2009-12-01

    Studies suggest that high-latitude terrestrial ecosystems have had a significant influence on the global carbon budget by acting as a substantial sink of atmospheric CO2 over the latter part of the 20th Century. However, recent changes in the controlling factors of this sink, including surface air temperature warming and increases in the frequency and severity of disturbances, have the potential to alter the C balance of boreal land regions. Whether these ecosystems continue to sequester atmospheric CO2 in the face of these changes is a key question in global change science and policy, as any changes to the strength of this major terrestrial sink will have important implications for the global C budget and climate system. Here, we diagnose and attribute contemporary terrestrial CO2 sink strength in the boreal land regions using a biogeochemical process model within a simulation framework that incorporates the impacts of recent changes in atmospheric chemistry and climate variability, as well as fire, forest management and agricultural land use regimes. The simulations estimate that the boreal land regions acted as a net sink of 102 TgC yr-1 from 1960 to 1980 that declined in strength to 28 TgC yr-1 for the 1990s and switched to a source of 99 TgC yr-1 from years 2000 to 2006. The weakening sink strength in the 1990s was largely a result of C losses from Boreal North American tundra and forest ecosystems through increasing decomposition of soil organic matter in response to warmer temperatures. Compared to previous decades, a near doubling of fire emissions was the major factor causing the boreal land regions to switch to a net C source since 2000 when large burn years occurred across the region, particularly in forests of Boreal Asia. A steady sink averaging 23 TgC yr-1 was estimated for Boreal European ecosystems from 1960 to 2006, with the ‘fertilization’ effects of increasing atmospheric CO2 concentration and N deposition primarily responsible for the

  2. Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests.

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Ciais, Philippe; Friend, Andrew D; Ito, Akihiko; Kleidon, Axel; Lomas, Mark R; Quegan, Shaun; Rademacher, Tim T; Schaphoff, Sibyll; Tum, Markus; Wiltshire, Andy; Carvalhais, Nuno

    2017-08-01

    Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and

  3. Nitrous oxide emission inventory of German forest soils

    Science.gov (United States)

    Schulte-Bisping, Hubert; Brumme, Rainer; Priesack, Eckart

    2003-02-01

    Annual fluxes of N2O trace gas emissions were assessed after stratifying German forest soils into Seasonal Emission Pattern (SEP) and Background Emission Pattern (BEP). Broad-leaved forests with soil pH(KCl) ≤ 3.3 were assigned to have SEP, broad-leaved forests with soil pH(KCl) > 3.3 and all needle-leaved forests to have BEP. BEPs were estimated by a relationship between annual N2O emissions and carbon content of the O-horizon. SEPs were primarily controlled by temperature and moisture and simulated by the model Expert-N after calibration to a 9-year record of N2O measurements. Analysis with different climate and soil properties indicated that the model reacts highly sensitive to changes in soil temperature, soil moisture, and soil texture. A geographic information system (ARC/INFO) was used for a spatial resolution of 1 km × 1 km grid where land cover, dominant soil units, and hygro climate classes were combined. The mean annual N2O emission flux from German forest soils was estimated as 0.32 kg ha-1 yr-1. Broad-leaved forests with SEP had the highest emissions (2.05 kg ha-1 yr-1) followed by mixed forests (0.38 kg ha-1 yr-1), broad-leaved forests (0.37 kg ha-1 yr-1), and needle-leaved forests with BEP (0.17 kg ha-1 yr-1). The annual N2O emission from German forest soils was calculated as 3.26 Gg N2O-N yr-1. Although needle-leaved trees cover about 57% of the entire forest area in Germany, their contribution is low (0.96 Gg N2O-N yr-1). Broad-leaved forests cover about 22% of the forest area but have 55% higher emissions (1.49 Gg N2O-N yr-1) than needle-leaved. Mixed forests cover 21% of the area and contribute 0.81 Gg N2O-N yr-1. Compared to the total N2O emissions in Germany of 170 Gg N yr-1, forest soils contribute only 1.9%. However, there are some uncertainties in this emission inventory, which are intensely discussed.

  4. Methane flux from boreal peatlands

    International Nuclear Information System (INIS)

    Crill, P.; Bartlett, K.; Roulet, N.

    1992-01-01

    The peatlands in the boreal zone (roughly 45 deg - 60 degN) store a significant reservoir of carbon, much of which is potentially available for exchange with the atmosphere. The anaerobic conditions that cause these soils to accumulate carbon also makes wet, boreal peatlands significant sources of methane to the global troposphere. It is estimated that boreal wetlands contribute approximately 19.5 Tg methane per year. The data available on the magnitude of boreal methane emissions have rapidly accumulated in the past twenty years. This paper offers a short review of the flux measured (with range roughly 1 - 2000 mg methane/m2d), considers environmental controls of the flux and briefly discusses how climate change might affect future fluxes

  5. Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils

    Science.gov (United States)

    Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa

    2016-12-01

    Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected to two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity (Q10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over 6 orders of magnitude higher than that from CH4; cumulative CO2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52-73 % lower C. Cumulative CH4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Deep but unfrozen high-latitude soils have been shown to be

  6. The variation of methane flux rates from boreal tree species at the beginning of the growing season

    Science.gov (United States)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2016-04-01

    Boreal forests are considered as net sink for atmospheric methane (CH4) because of the CH4 oxidizing bacteria in the aerobic soil layer. However, within the last decades it has become more evident that trees play an important role in the global CH4 budget by offering pathways for anaerobically produced CH4 from deeper soil layers to the atmosphere. Furthermore, trees may also act as independent sources of CH4. To confirm magnitude, variability and the origin of the tree mediated CH4 emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured tree stem and shoot CH4 exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in southern Finland (61° 51'N, 24° 17'E, 181 asl). The fluxes were measured from silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation and forest structure by using the static chamber technique. Scaffold towers were used for measurements at multiple stem heights and shoots. The aim was to study the vertical profile of CH4 fluxes at stem and shoot level and compare these fluxes among the studied species, and to observe temporal changes in CH4 flux over the beginning of the growing season. We found that all the trees emitted CH4 from their stems and shoots. Overall, the birches showed higher emissions compared to the spruces. The emission rates were considerably larger in the lower parts of the birch stems than upper parts, and these emissions increased during the growing season. The spruces had more variation in the stem CH4 flux, but the emission rates of the upper parts of the stem exceeded the birch emissions at the same height. The shoot fluxes of all the studied trees indicated variable CH4 emissions without a clear pattern regarding the vertical profile and

  7. Response of net ecosystem CO2 exchange and evapotranspiration of boreal forest ecosystems to projected future climate changes: results of a modeling study

    Science.gov (United States)

    Olchev, Alexander; Kurbatova, Julia

    2014-05-01

    It is presented the modeling results describing the possible response of net ecosystem exchange of CO2 (NEE), gross (GPP) and net (NPP) primary production, as well as evapotranspiration (ET) of spruce forest ecosystems situated at central part of European part of Russia at the southern boundary of boreal forest community to projected future changes of climatic conditions and forest species composition. A process-based MixFor-SVAT model (Olchev et al 2002, 2008, 2009) has been used to describe the CO2 and H2O fluxes under present and projected future climate conditions. The main advantage of MixFor-SVAT is its ability not only to describe seasonal and daily dynamics of total CO2 and H2O fluxes at an ecosystem level, but also to adequately estimate the contributions of soil, forest understorey, and various tree species in overstorey into total ecosystem fluxes taking into account their individual responses to changes in environmental conditions as well as the differences in structure and biophysical properties. Results of modeling experiments showed that projected changes of climate conditions (moderate scenario A1B IPCC) and forest species composition at the end of 21 century can lead to small increase of annual evapotranspiration as well as to growth of NEE, GPP and NPP of the forests in case if the projected increase in temperature and elevated CO2 in the atmosphere in future will be strictly balanced with growth of available nutrients and water in plant and soil. It is obvious that any deficit of e.g. nitrogen in leaves (due to reduced transpiration, nitrogen availability in soil, etc.) may lead to decreases in the photosynthesis and respiration rates of trees and, as a consequence, to decreases in the GPP and NEE of entire forest ecosystem. Conducted modeling experiments have demonstrated that a 20% reduction of available nitrogen in tree leaves in a monospesific spruce forest stand may result in a 14% decrease in NEE, a 8% decrease in NPP, and a 4% decrease in

  8. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska

    Science.gov (United States)

    Wickland, Kimberly P.; Waldrop, Mark P.; Aiken, George R.; Koch, Joshua C.; Torre Jorgenson, M.; Striegl, Robert G.

    2018-06-01

    Permafrost (perennially frozen) soils store vast amounts of organic carbon (C) and nitrogen (N) that are vulnerable to mobilization as dissolved organic carbon (DOC) and dissolved organic and inorganic nitrogen (DON, DIN) upon thaw. Such releases will affect the biogeochemistry of permafrost regions, yet little is known about the chemical composition and source variability of active-layer (seasonally frozen) and permafrost soil DOC, DON and DIN. We quantified DOC, total dissolved N (TDN), DON, and DIN leachate yields from deep active-layer and near-surface boreal Holocene permafrost soils in interior Alaska varying in soil C and N content and radiocarbon age to determine potential release upon thaw. Soil cores were collected at three sites distributed across the Alaska boreal region in late winter, cut in 15 cm thick sections, and deep active-layer and shallow permafrost sections were thawed and leached. Leachates were analyzed for DOC, TDN, nitrate (NO3 ‑), and ammonium (NH4 +) concentrations, dissolved organic matter optical properties, and DOC biodegradability. Soils were analyzed for C, N, and radiocarbon (14C) content. Soil DOC, TDN, DON, and DIN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. These relationships were significantly different for active-layer and permafrost soils such that for a given soil C or N content, or radiocarbon age, permafrost soils released more DOC and TDN (mostly as DON) per gram soil than active-layer soils. Permafrost soil DOC biodegradability was significantly correlated with soil Δ14C and DOM optical properties. Our results demonstrate that near-surface Holocene permafrost soils preserve greater relative potential DOC and TDN yields than overlying seasonally frozen soils that are exposed to annual leaching and decomposition. While many factors control the fate of DOC and TDN, the greater relative yields from newly thawed Holocene permafrost soils will have the largest

  9. Warming alters energetic structure and function but not resilience of soil food webs

    Science.gov (United States)

    Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico

    2017-12-01

    Climate warming is predicted to alter the structure, stability, and functioning of food webs1-5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, the effects of warming on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments that test the interactive effects of warming with forest canopy disturbance and drought on energy flux in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7 °C, +3.4 °C) to closed-canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy flux to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates the reduction in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses in ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests.

  10. Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Montesino Pouzols, Federico; Mönkkönen, Mikko

    2016-01-01

    Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current......, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future....

  11. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada’s boreal forest

    Science.gov (United States)

    Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R.; Price, David T.; St-Laurent, Martin-Hugues

    2018-01-01

    Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as “drivers of change”) were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and

  12. Mammalian Herbivores in the Boreal Forests: Their Numerical Fluctuations and Use by Man

    Directory of Open Access Journals (Sweden)

    Kjell Danell

    1998-12-01

    Full Text Available Within the boreal zone, there are about 50 native mammalian herbivore species that belong to the orders Artiodactyla, Rodentia, and Lagomorpha. Of these species, 31 occur in the Nearctic and 24 in the Palaearctic. Only six species occur in both regions. Species of the family Cervidae have probably been, and still are, the most important group for man, as they provide both meat and hides. Pelts from squirrels, muskrats, and hares were commercially harvested at the beginning of the century, but have less value today. The semi-domestic reindeer in the Palaearctic produces meat and hides on a commercial basis. It is also used for milking, to a limited extent, as is the semi-domestic moose in Russia. The Siberian musk deer is used for its musk and is raised in captivity in China. All species heavier than 1 kg are utilized by man, those with a body mass in the range 1 kg - 1 hg are sometimes used, and species lighter than 1 hg are rarely used. Here, we review the numerical fluctuations in terms of periodicity and amplitude, based on an extensive data set found in the literature, especially from the former Soviet Union. Current understanding of the underlying factors behind the population fluctuations is briefly reviewed. Management and conservation aspects of the mammalian herbivores in the boreal zone are also discussed. We conclude that there is a challenge to manage the forests for the mammalian herbivores, but there is also a challenge to manage the populations of mammalian herbivores for the forests.

  13. Acidification and Nitrogen Eutrophication of Austrian Forest Soils

    Directory of Open Access Journals (Sweden)

    Robert Jandl

    2012-01-01

    Full Text Available We evaluated the effect of acidic deposition and nitrogen on Austrian forests soils. Until thirty years ago air pollution had led to soil acidification, and concerns on the future productivity of forests were raised. Elevated rates of nitrogen deposition were believed to cause nitrate leaching and imbalanced forest nutrition. We used data from a soil monitoring network to evaluate the trends and current status of the pH and the C : N ratio of Austrian forest soils. Deposition measurements and nitrogen contents of Norway spruce needles and mosses were used to assess the nitrogen supply. The pH values of soils have increased because of decreasing proton depositions caused by reduction of emissions. The C : N ratio of Austrian forest soils is widening. Despite high nitrogen deposition rates the increase in forest stand density and productivity has increased the nitrogen demand. The Austrian Bioindicator Grid shows that forest ecosystems are still deficient in nitrogen. Soils retain nitrogen efficiently, and nitrate leaching into the groundwater is presently not a large-scale problem. The decline of soil acidity and the deposition of nitrogen together with climate change effects will further increase the productivity of the forests until a limiting factor such as water scarcity becomes effective.

  14. Soil moisture in sessile oak forest gaps

    Science.gov (United States)

    Zagyvainé Kiss, Katalin Anita; Vastag, Viktor; Gribovszki, Zoltán; Kalicz, Péter

    2015-04-01

    By social demands are being promoted the aspects of the natural forest management. In forestry the concept of continuous forest has been an accepted principle also in Hungary since the last decades. The first step from even-aged stand to continuous forest can be the forest regeneration based on gap cutting, so small openings are formed in a forest due to forestry interventions. This new stand structure modifies the hydrological conditions for the regrowth. Without canopy and due to the decreasing amounts of forest litter the interception is less significant so higher amount of precipitation reaching the soil. This research focuses on soil moisture patterns caused by gaps. The spatio-temporal variability of soil water content is measured in gaps and in surrounding sessile oak (Quercus petraea) forest stand. Soil moisture was determined with manual soil moisture meter which use Time-Domain Reflectometry (TDR) technology. The three different sizes gaps (G1: 10m, G2: 20m, G3: 30m) was opened next to Sopron on the Dalos Hill in Hungary. First, it was determined that there is difference in soil moisture between forest stand and gaps. Second, it was defined that how the gap size influences the soil moisture content. To explore the short term variability of soil moisture, two 24-hour (in growing season) and a 48-hour (in dormant season) field campaign were also performed in case of the medium-sized G2 gap along two/four transects. Subdaily changes of soil moisture were performed. The measured soil moisture pattern was compared with the radiation pattern. It was found that the non-illuminated areas were wetter and in the dormant season the subdaily changes cease. According to our measurements, in the gap there is more available water than under the forest stand due to the less evaporation and interception loss. Acknowledgements: The research was supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and AGRARKLIMA.2 VKSZ_12-1-2013-0034.

  15. Assessing boreal forest photosynthetic dynamics through space-borne measurements of greenness, chlorophyll fluorescence and model GPP

    Science.gov (United States)

    Walther, Sophia; Guanter, Luis; Voigt, Maximilian; Köhler, Philipp; Jung, Martin; Joiner, Joanna

    2015-04-01

    sophia.walther@gfz-potsdam.de The seasonality of photosynthesis of boreal forests is an essential driver of the terrestrial carbon, water and energy cycles. However, current carbon cycle model results only poorly represent interannual variability and predict very different magnitudes and timings of carbon fluxes between the atmosphere and the land surface (e.g. Jung et al. 2011, Richardson et al. 2012). Reflectance-based satellite measurements, which give an indication of the amount of green biomass on the Earth's surface, have so far been used as input to global carbon cycle simulations, but they have limitations as they are not directly linked to instantaneous photosynthesis. As an alternative, space-borne retrievals of sun-induced chlorophyll fluorescence (SIF) boast the potential to provide a direct indication of the seasonality of boreal forest photosynthetic activity and thus to improve carbon model performances. SIF is a small electromagnetic signal that is re-emitted from the photosystems in the chloroplasts, which results in a direct relationship to photosynthetic efficiency. In this contribution we examine the seasonality of the boreal forests with three different vegetation parameters, namely greenness, SIF and model simulations of gross primary production (gross carbon flux into the plants by photosynthesis, GPP). We use the enhanced vegetation index (EVI) to represent green biomass. EVI is calculated from NBAR MODIS reflectance measurements (0.05deg, 16 days temporal resolution) for the time from January 2007-May 2013. SIF data originate from GOME-2 measurements on board the MetOp-A satellite in a spatial resolution of 0.5deg for the time from 2007-2011 (Joiner et al. (2013), Köhler et al. (2014)). As a third data source, data-driven GPP model results are used for the time from 2006-2012 with 0.5deg spatial resolution. The method to quantify phenology developed by Gonsamo et al. (2013) is applied to infer the main phenological phases (greenup/onset of

  16. Bichromatic Scintillometer Measurements of Sensible and Latent Heat Fluxes over a Boreal Forested Valley

    Science.gov (United States)

    Isabelle, P. E.; Nadeau, D.; Parent, A. C.; Rousseau, A. N.; Jutras, S.; Anctil, F.

    2017-12-01

    Boreal forest covers roughly 10% of the earth emerged surface, making it one of the world most common type of landscape. There is a large number of studies on the land-atmosphere exchanges of water and energy for this type of forested surfaces. However, few were located in complex terrain, and, to the best of our knowledge, none have looked at continuous regional scale fluxes. Scintillometry is a powerful tool that allows such measurements, but is usually used over flat homogeneous terrain due to its dependency on Monin-Obukhov Similarity Theory. However, some recent studies have applied this method over slopes, measuring fluxes comparable to those using the eddy covariance method. Still, more experiments are needed using scintillometry over sloped surfaces. This study presents bichromatic scintillometer measurements of sensible and latent heat fluxes over a boreal-forested valley. The field site is located in the Montmorency Forest, Québec, Canada (47°17'N; 71°10'W). The instrumented valley is surrounded by ridges at 900 m elevation, with the bottom stream at 785 m, and follows a 300-120° azimuth coinciding with the two main wind direction (up and down-valley, respectively). Vegetation mostly includes balsam firs 6-10 m tall, creating a rough but homogeneous surface. Scintillometer transmitters and receivers are installed on top of the ridges enclosing the valley, making the path 1.35 km long and its effective height 70-m tall. The setup includes a large aperture and a micro-wave scintillometer with crossing paths allowing the use of the bichromatic method. Measurement are taken continuously from August to October 2017. Scintillometer fluxes are compared with those measured by a 15-m eddy covariance tower located 100 m west of the measurement path, on the southern slope of the valley. Net radiation is also measured to assess energy budget closure over the valley. The setup allows us to test the limits of applicability of scintillometer measurements, especially

  17. Opposing effects of fire severity on climate feedbacks in Siberian larch forests

    Science.gov (United States)

    Loranty, M. M.; Alexander, H. D.; Natali, S.; Kropp, H.; Mack, M. C.; Bunn, A. G.; Davydov, S. P.; Erb, A.; Kholodov, A. L.; Schaaf, C.; Wang, Z.; Zimov, N.; Zimov, S. A.

    2017-12-01

    Boreal larch forests in northeastern Siberia comprise nearly 25% of the continuous permafrost zone. Structural and functional changes in these ecosystems will have important climate feedbacks at regional and global scales. Like boreal ecosystems in North America, fire is an important determinant of landscape scale forest distribution, and fire regimes are intensifying as climate warms. In Siberian larch forests are dominated by a single tree species, and there is evidence that fire severity influences post-fire forest density via impacts on seedling establishment. The extent to which these effects occur, or persist, and the associated climate feedbacks are not well quantified. In this study we use forest stand inventories, in situ observations, and satellite remote sensing to examine: 1) variation in forest density within and between fire scars, and 2) changes in land surface albedo and active layer dynamics associated with forest density variation. At the landscape scale we observed declines in Landsat derived albedo as forests recovered in the first several decades after fire, though canopy cover varied widely within and between individual fire scars. Within an individual mid-successional fire scar ( 75 years) we observed canopy cover ranging from 15-90% with correspondingly large ranges of albedo during periods of snow cover, and relatively small differences in albedo during the growing season. We found an inverse relationship between canopy density and soil temperature within this fire scar; high-density low-albedo stands had cooler soils and shallower active layers, while low-density stands had warmer soils and deeper active layers. Intensive energy balance measurements at a high- and low- density site show that canopy cover alters the magnitude and timing of ground heat fluxes that affect active layer properties. Our results show that fire impacts on stand structure in Siberian larch forests affect land surface albedo and active layer dynamics in ways that

  18. The soil indicator of forest health in the Forest Inventory and Analysis Program

    Science.gov (United States)

    Michael C. Amacher; Charles H. Perry

    2010-01-01

    Montreal Process Criteria and Indicators (MPCI) were established to monitor forest conditions and trends to promote sustainable forest management. The Soil Indicator of forest health was developed and implemented within the USFS Forest Inventory and Analysis (FIA) program to assess condition and trends in forest soil quality in U.S. forests regardless of ownership. The...

  19. Quantifying Boreal Forest Structure and Composition Using UAV Structure from Motion

    Directory of Open Access Journals (Sweden)

    Michael Alonzo

    2018-03-01

    Full Text Available The vast extent and inaccessibility of boreal forest ecosystems are barriers to routine monitoring of forest structure and composition. In this research, we bridge the scale gap between intensive but sparse plot measurements and extensive remote sensing studies by collecting forest inventory variables at the plot scale using an unmanned aerial vehicle (UAV and a structure from motion (SfM approach. At 20 Forest Inventory and Analysis (FIA subplots in interior Alaska, we acquired overlapping imagery and generated dense, 3D, RGB (red, green, blue point clouds. We used these data to model forest type at the individual crown scale as well as subplot-scale tree density (TD, basal area (BA, and aboveground biomass (AGB. We achieved 85% cross-validation accuracy for five species at the crown level. Classification accuracy was maximized using three variables representing crown height, form, and color. Consistent with previous UAV-based studies, SfM point cloud data generated robust models of TD (r2 = 0.91, BA (r2 = 0.79, and AGB (r2 = 0.92, using a mix of plot- and crown-scale information. Precise estimation of TD required either segment counts or species information to differentiate black spruce from mixed white spruce plots. The accuracy of species-specific estimates of TD, BA, and AGB at the plot scale was somewhat variable, ranging from accurate estimates of black spruce TD (+/−1% and aspen BA (−2% to misallocation of aspen AGB (+118% and white spruce AGB (−50%. These results convey the potential utility of SfM data for forest type discrimination in FIA plots and the remaining challenges to develop classification approaches for species-specific estimates at the plot scale that are more robust to segmentation error.

  20. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sinkyu [Department of Environmental Science, Kangwon National University, Chunchon, Kangwon-do 200-701 (Korea, Republic of); Kimball, John S.; Running, Steven W. [Numerical Terradynamic Simulation Group, Department of Ecosystem and Conservation Sciences, The University of Montana, Missoula, MT 59812 (United States)

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km{sup 2} portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO{sub 2}, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO{sub 2} resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T{sub a}), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 {sup o}C for T{sub a} and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO{sub 2}, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients. (author)

  1. Ectomycorrhizal colonization of naturally regenerating Pinus sylvestris L. seedlings growing in different micro-habitats in boreal forest.

    Science.gov (United States)

    Iwański, Michał; Rudawska, Maria

    2007-07-01

    We investigated the species richness and composition of ectomycorrhizal (EM) fungi colonizing Pinus sylvestris L. seedlings naturally regenerating in boreal forest, in three different microhabitats: on forest ground, on decaying stumps, and within moss layer on erratic boulders. We tested the hypothesis that habitat differences would affect the composition of the EM community of regenerating pine seedlings. In total, 16 EM species were detected, from which none occurred on seedlings growing in all three microhabitats. Piloderma croceum and Cenococcum geophilum were common for seedlings growing in forest ground and on boulders, while Tricholoma aestuans and Suillus luteus were shared between seedlings growing on forest ground and decaying stumps. EM species richness and composition were strikingly different between seedlings regenerating in different microhabitats. Results are discussed as a function of dispersal and niche differentiation of EM fungi.

  2. Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe

    Directory of Open Access Journals (Sweden)

    M. Jung

    2007-08-01

    Full Text Available Three terrestrial biosphere models (LPJ, Orchidee, Biome-BGC were evaluated with respect to their ability to simulate large-scale climate related trends in gross primary production (GPP across European forests. Simulated GPP and leaf area index (LAI were compared with GPP estimates based on flux separated eddy covariance measurements of net ecosystem exchange and LAI measurements along a temperature gradient ranging from the boreal to the Mediterranean region. The three models capture qualitatively the pattern suggested by the site data: an increase in GPP from boreal to temperate and a subsequent decline from temperate to Mediterranean climates. The models consistently predict higher GPP for boreal and lower GPP for Mediterranean forests. Based on a decomposition of GPP into absorbed photosynthetic active radiation (APAR and radiation use efficiency (RUE, the overestimation of GPP for the boreal coniferous forests appears to be primarily related to too high simulated LAI - and thus light absorption (APAR – rather than too high radiation use efficiency. We cannot attribute the tendency of the models to underestimate GPP in the water limited region to model structural deficiencies with confidence. A likely dry bias of the input meteorological data in southern Europe may create this pattern.

    On average, the models compare similarly well to the site GPP data (RMSE of ~30% or 420 gC/m2/yr but differences are apparent for different ecosystem types. In terms of absolute values, we find the agreement between site based GPP estimates and simulations acceptable when we consider uncertainties about the accuracy in model drivers, a potential representation bias of the eddy covariance sites, and uncertainties related to the method of deriving GPP from eddy covariance measurements data. Continental to global data-model comparison studies should be fostered in the future since they are necessary to identify consistent model bias along environmental

  3. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils

    Science.gov (United States)

    M.P. Waldrop; K.P. Wickland; R. White; A.A. Berhe; J.W. Harden; V.E. Romanovsky

    2010-01-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial...

  4. Aerosol volatility in a boreal forest environment

    Science.gov (United States)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  5. Amine Measurements in Boreal Forest Air

    Science.gov (United States)

    Hemmilä, Marja; Hellén, Heidi; Makkonen, Ulla; Hakola, Hannele

    2015-04-01

    Amines are reactive, volatile bases in the air with a general formula of RNH2, R2NH or R3N. Especially small amines can stabilize sulphuric acid clusters and hence affect nucleation. Amines react rapidly with hydroxyl radical (OH˙) thus affecting oxidative capacity of the atmosphere. The amine concentrations are higher in forest air than in urban air (Hellén et al., 2014), but the sources are not known. In order to get more information concerning amine sources, we conducted a measurement campaign in a boreal forest. At SMEAR II station at Hyytiälä, Southern Finland (61°510'N, 24°170'E, 180 m a.s.l.) The measurements cover seven months, from June to December 2014. For sampling and measuring we used MARGA (The instrument for Measuring AeRosols and Gases in Ambient air) which is an on-line ion chromatograph (IC) connected to a sampling system. The IC component of the MARGA system was coupled to an electrospray ionization quadrupole mass spectrometer (MS) to improve sensitivity of amine measurements. This new set-up enabled amine concentration measurements in ambient air both in aerosol and gas phases with a time resolution of only 1 hour. With MARGA-MS we analysed 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). In preliminary data-analysis we found out, that in June and July most of the measured amines were in gas phase, and particle phase amine concentrations were mostly under detection limits (<1.7 pptv). In June the gaseous amine concentrations were higher than in July. The measured concentrations of gaseous amines followed temperature variation, which could indicate that amines are produced and emitted from the environment or re-emitted from the surfaces as temperature rises after deposition during night-time. All measured amines had similar diurnal variation with maxima during afternoon and minima during night. Results from other months will also

  6. Impacts of climate and insect defoliators on productivity and function of trembling aspen (Populus tremuloides) in Alaskan boreal forests

    Science.gov (United States)

    Boyd, M. A.; Walker, X. J.; Rogers, B. M.; Goetz, S. J.; Wagner, D.; Mack, M. C.

    2017-12-01

    Climate change has increased tree mortality and growth decline in forested ecosystems worldwide. In response to warming and drying of the boreal forest, trembling aspen (Populus tremuloides) has experienced recent large-scale productivity declines. Although declines in productivity are thought to be primarily a result of moistures stress, infestation is another major driver of aspen decline and may interact strongly with climate. Throughout interior Alaska widespread and consistent foliar damage by the aspen epidermal leaf miner Phyllocnistis populiella has been observed concurrent with some of the warmest and driest growing seasons on record. Here we use tree ring measurements and remote sensing indices of vegetation productivity (NDVI) to study the influence of leaf miner and climate on aspen productivity and physiology in the Alaskan boreal forest, and assess if NDVI reflects variations in these ground-based measurements. We assessed ring width and tree ring stable carbon isotope (d13C) response of aspen to infestation and a climate moisture index (CMI) from 2004 - 2014. We found that when growth was negatively correlated to infestation, then it was no longer positively influenced by moisture availability during the growing season. Regardless of the radial growth response to leaf mining, tree ring d13C decreased with increasing infestation. We also found that NDVI was influenced by leaf mining and showed a positive correlation with tree ring d13C, which suggests that NDVI is reflective of changes in tree characteristics under leaf mining that influence tree ring d13C. This finding also reveals the prospect of using satellite data to monitor fluctuations in tree physiology during leaf miner infestation. Our results indicate that aspen productivity will be severely hindered during leaf miner infestation, and that infestation will inhibit the ability of aspen to respond to favorable climate conditions by increasing growth and potentially photosynthesis. This

  7. Response of the boreal forest ecosystem to climatic change and its silvicultural implications

    Energy Technology Data Exchange (ETDEWEB)

    Kellomaeki, S; Haenninen, H; Karjalainen, T [Joensuu Univ. (Finland). Faculty of Forestry; and others

    1997-12-31

    During the next 100 years, the mean annual temperature is expected to be 1-6 deg C higher than at present. It is also expected to be accompanied by a lengthening of the thermal growing season and increased precipitation. Consequently, climatic change will increase the uncertainty of the management of forest ecosystems in the future. In this context, this research project aimed to outline the ecological and silvicultural implications of climatic change with regard to (1) how the expected climatic change might modify the functioning and structure of the boreal forest ecosystem, and (2) how the silvicultural management of the forest ecosystem should be modified in order to maintain sustainable forest yield under changing climatic conditions. The experimental component of the project concerned first the effect that elevating temperature and elevating concentration of atmospheric carbon have on the ontogenetic development of Scots pine (Pinus sylvestris L) and on the subsequent increase in frost damage during winter. The second part of the study looked the effect of elevating temperature and elevating concentration of atmospheric carbon on the growth of Scots pine through photosynthesis, respiration, transpiration, nutrient supply, and changes in crown structure. This experiment was utilised in several subprojects of the overall project

  8. Response of the boreal forest ecosystem to climatic change and its silvicultural implications

    Energy Technology Data Exchange (ETDEWEB)

    Kellomaeki, S.; Haenninen, H.; Karjalainen, T. [Joensuu Univ. (Finland). Faculty of Forestry] [and others

    1996-12-31

    During the next 100 years, the mean annual temperature is expected to be 1-6 deg C higher than at present. It is also expected to be accompanied by a lengthening of the thermal growing season and increased precipitation. Consequently, climatic change will increase the uncertainty of the management of forest ecosystems in the future. In this context, this research project aimed to outline the ecological and silvicultural implications of climatic change with regard to (1) how the expected climatic change might modify the functioning and structure of the boreal forest ecosystem, and (2) how the silvicultural management of the forest ecosystem should be modified in order to maintain sustainable forest yield under changing climatic conditions. The experimental component of the project concerned first the effect that elevating temperature and elevating concentration of atmospheric carbon have on the ontogenetic development of Scots pine (Pinus sylvestris L) and on the subsequent increase in frost damage during winter. The second part of the study looked the effect of elevating temperature and elevating concentration of atmospheric carbon on the growth of Scots pine through photosynthesis, respiration, transpiration, nutrient supply, and changes in crown structure. This experiment was utilised in several subprojects of the overall project

  9. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated

  10. Revegetation of coal mine soil with forest litter

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Ludeke, K.L.; Thames, J.L.

    1986-11-01

    Forest litter, a good source of organic matter and seeds, was applied on undisturbed soil and on coal mine (spoils) in experiments conducted on the Black Mesa Coal Mine near Kayenta, Arizona over a 2-year period (1977-1978). Germination, seedling establishment, plant height and ground cover were evaluated for two seeding treatments (forest litter and no forest litter) and two soil moisture treatments (natural rainfall and natural rainfall plus irrigation). The forest litter was obtained at random from the Coconino National Forest, broadcast over the surface of the soil materials and incorporated into the surface 5 cm of each soil material. Germination, seedling establishment, plant height and ground cover on undisturbed soil and coal mine soil were higher when forest litter was applied than when it was not applied and when natural rainfall was supplemented with sprinkler irrigation than when rainfall was not supplemented with irrigation. Applications of forest litter and supplemental irrigation may ensure successful establishment of vegetation on areas disturbed by open-pit coal mining.

  11. Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999.

    Science.gov (United States)

    J.W. Harden; J.C. Neff; D.V. Sandberg; M.R. Turetsky; R. Ottmar; G. Gleixner; T.L. Fries; K.L. Manies

    2004-01-01

    Wildfires represent one of the most common disturbances in boreal regions, and have the potential to reduce C, N, and Hg stocks in soils while contributing to atmospheric emissions. Organic soil layers of the forest floor were sampled before and after the FROSTFIRE experimental burn in interior Alaska, and were analyzed for bulk density, major and trace elements, and...

  12. Paludified forests of Komi Republic (Northeastern Europe) do not act as hotspots of the CH4 emissions

    Science.gov (United States)

    Schneider, Julia; Lukasheva, Maria; Gudyrev, Vasiliy; Miglovets, Mikhail

    2017-04-01

    In the Komi Republic, which is situated in Northeastern Europe and is subject of Russian Federation, 306,000km2 or about 73 % of the total area are covered by forest. The predominant part of these forests lies within the boreal zone. Within the boreal forests the vegetation patterns are a result of the moisture characteristics and air temperature. Based on the moisture conditions forest communities can be grouped into wet, mesic and dry sites. In conditions of high soil moisture content forest peatlands can develop. In boreal forest landscapes it is not a rare phenomenon and can reach coverage of up to one third of the total area. In addition to the high water content of the soils forested peatlands are characterised by low soil temperatures, high organic matter accumulation and low organic matter decomposition. The thick moss-organic layer on the forest floor and waterlogged soils favours methanogenesis. Such process of accumulation of poorly decomposed organic matter mostly originating from Sphagnum which involves the formation of waterlogged conditions is defined as paludification. Highly favourable to forest paludification are sites characterised by fine-textured soils which highly hamper percolation. Paludified forests also occur at peatland margins as a result of peatland expansion. During the last years peatland margins were considered as potential biogeochemical hotspots within the peatlands and due to their high nutrient and dissolved organic matter content they may also be a major methane emitter. Paludification can also occur at forests sites after clear cutting, which is a very intensive logging type and usually leads to water table elevations. In this study measurements were conducted at peatland margins and at a clear cut sites during three climatically different years. The summer of the year 2013 was considerably warmer and drier, and the summer of the year 2014 was considerably colder and wetter than the long term mean. The investigation period in

  13. A synthesis of the impacts of ditch network maintenance on the quantity and quality of runoff from drained boreal peatland forests.

    Science.gov (United States)

    Nieminen, Mika; Palviainen, Marjo; Sarkkola, Sakari; Laurén, Ari; Marttila, Hannu; Finér, Leena

    2017-10-29

    Drained peatlands are an important source of forest biomass in boreal regions and ditch network maintenance (DNM) operations may be needed to restore the drainage functions of ditches. By reviewing the available literature, as well as utilizing an existing hydrological model and analyzing the characteristics of eroded sediments, we assessed the impacts of DNM on runoff and exports of suspended solids (SS), dissolved organic carbon (DOC), nitrogen (N), and phosphorus (P). In general, DNM had minor impact on runoff and dissolved N and P, and it decreased rather than increased DOC exports. To increase the understanding of the hydrochemical impacts of DNM, future research should focus on the characteristics of SS and particulate nutrient exports. A major gap in knowledge is also the very limited regional representativeness of the available studies. High erosion risk in the ditches reaching the mineral soil below peat should be acknowledged when planning mitigation measures.

  14. HONO (nitrous acid) emissions from acidic northern soils

    Science.gov (United States)

    Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Martikainen, Pertti J.

    2015-04-01

    The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). The emissions of HONO from soils have been recently reported in few studies. Soil HONO emissions are regarded as missing sources of HONO when considering the chemical reactions in the atmosphere. The soil-derived HONO has been connected to soil nitrite (NO2-) and also directly to the activity of ammonia oxidizing bacteria, which has been studied with one pure culture. Our hypothesis was that boreal acidic soils with high nitrification activity could be also sources of HONO and the emissions of HONO are connected with nitrification. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle and also NO and N2O emissions. Natural peatlands and boreal coniferous forests on mineral soils had the lowest HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low availability of nitrite in these soils is the likely reason also for their low HONO production rates. We also studied the origin of HONO in one peat soil with acetylene and other nitrification inhibitors and we found that HONO production is not closely connected to ammonium oxidation (nitrification). Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus there is another source behind HONO emission from these soils than ammonium oxidation. It is still an open question if this process is microbial or chemical origin.

  15. Forest soil carbon is threatened by intensive biomass harvesting.

    Science.gov (United States)

    Achat, David L; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-11-04

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers' decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils.

  16. Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest.

    Science.gov (United States)

    Bansal, Sheel; Nilsson, Marie-Charlotte; Wardle, David A

    2012-07-01

    In the long-term absence of rejuvenating disturbances, forest succession frequently proceeds from a maximal biomass phase to a retrogressive phase characterized by reduced nutrient availability [notably nitrogen (N) and phosphorus (P)] and net primary productivity. Few studies have considered how retrogression induces changes in ecophysiological responses associated with photosynthetic carbon (C) gain, and only for trees. We tested the hypothesis that retrogression would negatively impact photosynthetic C gain of four contrasting species, and that this impact would be greater for vascular plants (i.e., trees and shrubs) than for non-vascular plants (i.e., mosses). We used a 5,000-year-old chronosequence of forested islands in Sweden, where retrogression occurs in the long-term absence of lightning-ignited wildfires. Despite fundamental differences in plant form and ecological niche among species, vascular plants and mosses showed similar ecophysiological responses to retrogression. The most common effects of retrogression were reductions in photosynthesis and respiration per unit foliar N, increases in foliar N, δ(13)C and δ(15)N, and decreases in specific leaf areas. In contrast, photosynthesis per unit mass or area generally did not change along the chronosequence, but did vary many-fold between vascular plants and mosses. The consistent increases in foliar N without corresponding increases in mass- or area-based photosynthesis suggest that other factor(s), such as P co-limitation, light conditions or water availability, may co-regulate C gain in retrogressive boreal forests. Against our predictions, traits of mosses associated with C and N were generally highly responsive to retrogression, which has implications for how mosses influence ecosystem processes in boreal forests.

  17. Effects of Burn Severity and Environmental Conditions on Post-Fire Regeneration in Siberian Larch Forest

    OpenAIRE

    Thuan Chu; Xulin Guo; Kazuo Takeda

    2017-01-01

    Post-fire forest regeneration is strongly influenced by abiotic and biotic heterogeneity in the pre- and post-fire environments, including fire regimes, species characteristics, landforms, hydrology, regional climate, and soil properties. Assessing these drivers is key to understanding the long-term effects of fire disturbances on forest succession. We evaluated multiple factors influencing patterns of variability in a post-fire boreal Larch (Larix sibirica) forest in Siberia. A time-series o...

  18. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession

    Science.gov (United States)

    Goulden, M.L.; Mcmillan, A.M.S.; Winston, G.C.; Rocha, A.V.; Manies, K.L.; Harden, J.W.; Bond-Lamberty, B. P.

    2011-01-01

    We combined year-round eddy covariance with biometry and biomass harvests along a chronosequence of boreal forest stands that were 1, 6, 15, 23, 40, 74, and 154 years old to understand how ecosystem production and carbon stocks change during recovery from stand-replacing crown fire. Live biomass (Clive) was low in the 1 and 6 year old stands, and increased following a logistic pattern to high levels in the 74 and 154year old stands. Carbon stocks in the forest floor (Cforest floor) and coarse woody debris (CCWD) were comparatively high in the 1year old stand, reduced in the 6 through 40year old stands, and highest in the 74 and 154year old stands. Total net primary production (TNPP) was reduced in the 1 and 6year old stands, highest in the 23 through 74year old stands and somewhat reduced in the 154year old stand. The NPP decline at the 154year old stand was related to increased autotrophic respiration rather than decreased gross primary production (GPP). Net ecosystem production (NEP), calculated by integrated eddy covariance, indicated the 1 and 6 year old stands were losing carbon, the 15year old stand was gaining a small amount of carbon, the 23 and 74year old stands were gaining considerable carbon, and the 40 and 154year old stands were gaining modest amounts of carbon. The recovery from fire was rapid; a linear fit through the NEP observations at the 6 and 15year old stands indicated the transition from carbon source to sink occurred within 11-12 years. The NEP decline at the 154year old stand appears related to increased losses from Clive by tree mortality and possibly from Cforest floor by decomposition. Our findings support the idea that NPP, carbon production efficiency (NPP/GPP), NEP, and carbon storage efficiency (NEP/TNPP) all decrease in old boreal stands. ?? 2010 Blackwell Publishing Ltd.

  19. Effects of Lightning and Other Meteorological Factors on Fire Activity in the North American Boreal Forest: Implications for Fire Weather Forecasting

    Science.gov (United States)

    Peterson, D.; Wang, J.; Ichoku, C.; Remer, L. A.

    2010-01-01

    The effects of lightning and other meteorological factors on wildfire activity in the North American boreal forest are statistically analyzed during the fire seasons of 2000-2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-kin gridded meteorological data from North American Regional Reanalysis (NARR), and the lightning data collected by the Canadian Lightning Detection Network (CLDN) and the Alaska Lightning Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground lightning strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) lightning strikes account for only 20% of the total lightning strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and lightning occurrence and variability were also found between the eastern and western sub-regions. Locations with a high percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet lightning events are found to occur with a large range of CAPE values, a high probability for dry lightning occurs only when 500 hPa geopotential heights are above 5700m and CAPE values are near the maximum

  20. Soil respiration dynamics in the middle taiga of Central Siberia region

    Science.gov (United States)

    Makhnykina, Anastasia; Prokushkin, Anatoly; Polosukhina, Daria

    2017-04-01

    A large amount of carbon in soil is released to the atmosphere through soil respiration, which is the main pathway of transferring carbon from terrestrial ecosystems (Comstedt et al., 2011). Considering that boreal forests is a large terrestrial sink (Tans et al., 1990) and represent approximately 11 % of the Earth's total land area (Gower et al., 2001), even a small change in soil respiration could significantly intensify - or mitigate - current atmospheric increases of CO2, with potential feedbacks to climate change. The objectives of the present study are: (a) to study the dynamic of CO2 emission from the soil surface during summer season (from May to October); (b) to identify the reaction of soil respiration to different amount of precipitation as the main limiting factor in the region. The research was located in the pine forests in Central Siberia (60°N, 90°E), Russia. Sample plots were represented by the lichen pine forest, moss pine forest, mixed forest and anthropogenic destroyed area. We used the automated soil CO2 flux system based on the infrared gas analyzer -LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths -5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. The presence and type of ground cover substantially affects the value of soil respiration fluxes. The carbon dioxide emission from the soil surface averaged 5.4 ±2.3 μmol CO2 m-2 s-1. The destroyed area without plant cover demonstrated the lowest soil respiration (0.1-5.6 μmol CO2 m-2 s-1). The lowest soil respiration among forested areas was observed in the feathermoss pine forest. The lichen pine forest was characterized by the intermediate values of soil respiration. The maximum soil respiration values and seasonal fluctuations were obtained in the mixed forest (2.3-29.3 μmol CO2 m-2 s-1). The analysis of relation between soil CO2 efflux and climatic conditions identified the parameters with

  1. [Soil hydrolase characteristics in late soil-thawing period in subalpine/alpine forests of west Sichuan].

    Science.gov (United States)

    Tan, Bo; Wu, Fu-Zhong; Yang, Wan-Qin; Yu, Sheng; Yang, Yu-Lian; Wang, Ao

    2011-05-01

    Late soil-thawing period is a critical stage connecting winter and growth season. The significant temperature fluctuation at this stage might have strong effects on soil ecological processes. In order to understand the soil biochemical processes at this stage in the subalpine/alpine forests of west Sichuan, soil samples were collected from the representative forests including primary fir forest, fir and birch mixed forest, and secondary fir forest in March 5-April 25, 2009, with the activities of soil invertase, urease, and phosphatase (neutral, acid and alkaline phosphatases) measured. In soil frozen period, the activities of the three enzymes in test forests still kept relatively higher. With the increase of soil temperature, the activities of hydrolases at the early stage of soil-thawing decreased rapidly after a sharp increase, except for neutral phosphatease. Thereafter, there was an increase in the activities of urease and phosphatase. Relative to soil mineral layer, soil organic layer had higher hydrolase activity in late soil-thawing period, and showed more obvious responses to the variation of soil temperature.

  2. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine(Pinus nigra Ar. ssp. salzmannii) Forest.

    Science.gov (United States)

    Lucas-Borja, M E; Hedo, J; Cerdá, A; Candel-Pérez, D; Viñegla, B

    2016-08-15

    This study aimed to investigate the effects that stand age and forest structure have on microbiological soil properties, enzymatic activities and nutrient content. Thirty forest compartments were randomly selected at the Palancares y Agregados managed forest area (Spain), supporting forest stands of five ages; from 100 to 80years old to compartments with trees that were 19-1years old. Forest area ranging from 80 to 120years old and without forest intervention was selected as the control. We measured different soil enzymatic activities, soil respiration and nutrient content (P, K, Na, Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pb and Ca) in the top cm of 10 mineral soils in each compartment. Results showed that the lowest forest stand age and the forest structure created by management presented lower values of organic matter, soil moisture, water holding capacity and litterfall and higher values of C/N ratio in comparison with the highest forest stand age and the related forest structure, which generated differences in soil respiration and soil enzyme activities. The forest structure created by no forest management (control plot) presented the highest enzymatic activities, soil respiration, NH4(+) and NO3(-). Results did not show a clear trend in nutrient content comparing all the experimental areas. Finally, the multivariate PCA analysis clearly clustered three differentiated groups: Control plot; from 100 to 40years old and from 39 to 1year old. Our results suggest that the control plot has better soil quality and that extreme forest stand ages (100-80 and 19-1years old) and the associated forest structure generates differences in soil parameters but not in soil nutrient content. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Water, Energy and Carbon Balance Research: Recovery Trajectories For Oil Sands Reclamation and Disturbed Watersheds in the Western Boreal Forest

    Science.gov (United States)

    Petrone, R. M.; Carey, S. K.

    2014-12-01

    The Oil Sand Region (OSR) of North-Central Alberta exists within the sub-humid Boreal Plains (BP) ecozone, with a slight long-term moisture deficit regime. Despite this deficit, the BP is comprised of productive wetland and mixed wood (aspen and conifer dominated) forests. Reclamation activities are now underway at a large number of surface mining operations in the OSR, where target ecosystems are identified, soil prescriptions placed and commercial forest species planted. Some watersheds have been created that now contain wetlands. However, recent work in the BP suggests that over time wetlands supply moisture for the productivity of upland forests. Thus, water use of reclaimed forests is going to be critical in determining the sustainability of these systems and adjacent wetlands, and whether in time, either will achieve some form of equivalent capability that will allow for certification by regulators. A critical component in the success of any reclamation is that sufficient water is available to support target ecosystems through the course of natural climate cycles in the region. Water Use Efficiency (WUE), which links photosynthesis (GEP) with water use (Evapotranspiration (ET)), provides a useful metric to compare ecosystems and evaluate their utilization of resources. In this study, 41 site years of total growing season water and carbon flux data over 8 sites (4 reclamation, 4 regeneration) were evaluated using eddy covariance micrometeorological towers. WUE shows clear discrimination among ecosystem types as aspen stands assimilate more carbon per unit weight of water than conifers. WUEs also change with time as ecosystems become more effective at transpiring water through plant pathways compared with bare-soil evaporation, which allows an assessment of ability to limit water loss without carbon uptake. In addition, clonal rooting systems allow aspen forests to recover quicker after disturbance than reclamation sites in terms of their WUE. For reclamation

  4. Multi-Cohort Stand Structural Classification: Ground- and LiDAR-based Approaches for Boreal Mixedwood and Black Spruce Forest Types of Northeastern Ontario

    Science.gov (United States)

    Kuttner, Benjamin George

    Natural fire return intervals are relatively long in eastern Canadian boreal forests and often allow for the development of stands with multiple, successive cohorts of trees. Multi-cohort forest management (MCM) provides a strategy to maintain such multi-cohort stands that focuses on three broad phases of increasingly complex, post-fire stand development, termed "cohorts", and recommends different silvicultural approaches be applied to emulate different cohort types. Previous research on structural cohort typing has relied upon primarily subjective classification methods; in this thesis, I develop more comprehensive and objective methods for three common boreal mixedwood and black spruce forest types in northeastern Ontario. Additionally, I examine relationships between cohort types and stand age, productivity, and disturbance history and the utility of airborne LiDAR to retrieve ground-based classifications and to extend structural cohort typing from plot- to stand-levels. In both mixedwood and black spruce forest types, stand age and age-related deadwood features varied systematically with cohort classes in support of an age-based interpretation of increasing cohort complexity. However, correlations of stand age with cohort classes were surprisingly weak. Differences in site productivity had a significant effect on the accrual of increasingly complex multi-cohort stand structure in both forest types, especially in black spruce stands. The effects of past harvesting in predictive models of class membership were only significant when considered in isolation of age. As an age-emulation strategy, the three cohort model appeared to be poorly suited to black spruce forests where the accrual of structural complexity appeared to be more a function of site productivity than age. Airborne LiDAR data appear to be particularly useful in recovering plot-based cohort types and extending them to the stand-level. The main gradients of structural variability detected using Li

  5. Using the ratio of optical channels in satellite image decoding in monitoring biodiversity of boreal forests

    Science.gov (United States)

    Rozhkov, Yurj P.; Kondakova, Maria Y.

    2013-10-01

    The study contains the results of forest monitoring at three levels: the forests condition assessment at the time of recording or mapping for this indicator, the seasonal changes assessment in the forests condition, mainly during the vegetation period and the evaluation of long-term changes in the values of the studied parameters on the example of the forests recovery after a fire. The use of two indices - NDVI and Image Difference in the boreal forests monitoring is treated. NDVI assesses the state of plant biomass and its productivity. The rate of Image Difference characterizes the optical density and allows estimate the density of the forest stand. In addition, by identifying Image Difference on summer and autumn pictures it can makes a distinction of different wood species, to divide forest areas, which consist of deciduous and coniferous species and larch which shedded needles at the end of the vegetation period. Therefore, it is possible to differentiate the pine, cedar, spruce forests on the one side and birch, larch, alder on the other side. The optical density of the forest decreases after the needles- and the leaf sheddings. Using the index Image Difference in estimates of long-term changes of the forest stand shows the trend of changes of the forest density and the tree species composition. The results of the analysis of the recovery process of the forest after a fire in the period from 1995 to 2009 showed how shoots of birch, larch and pine recover wastelands.

  6. Mechanisms controlling radionuclide mobility in forest soils

    International Nuclear Information System (INIS)

    Delvaux, B.; Kruyts, N.; Maes, E.; Agapkina, G.I.; Kliashtorin, A.; Bunzl, K.; Rafferty, B.

    1996-01-01

    Soil processes strongly influence the radionuclide mobility in soils. The mobility of radionuclides in forest soils is governed by several processes involving both abiotic and biotic factors. The sorption-desorption process chiefly governs the activity of radionuclides in the soil solution, hence thereby their mobility and biological availability. Radiocaesium exhibits a very low mobility in mineral soils. Both mobility and bioavailability however increase as the thickness of organic layers and their content in organic matter increases. Clay minerals of micaceous origin strongly act as slinks for radiocaesium in forest soils. The magnitude of cesium mineral fixation in topsoils is expected to be the highest in mineral soils of Eutric cambisol type, and, to a lesser extent, of type of Distric cambisol and Podzoluvisol. A low mobility of radiocaesium in the surface horizons of forest soils may also be partially explained by a biological mobilization: fungi absorb radiocaesium and transport it to upper layers, thereby contributing to constantly recycle the radioelement in the organic horizons. This mechanism is probably important in soils with thick organic layers (Podsol, Histosol, and, to a lesser extent, Distric cambisol and Podzoluvisol). Radionuclides can be associated with soluble organic anions in the soil solution of forest acid soils. Such associations are highly mobile: they are stable in conditions of poor biological activity (low temperatures, acid soil infertility, water excess, etc.). Their magnitude is expected to be the highest in thick acid organic layers (soils of type Podzol and Histosol)

  7. [Responses of boreal forest landscape in northern Great Xing'an Mountains of Northeast China to climate change].

    Science.gov (United States)

    Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu

    2012-12-01

    With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.

  8. Adapting fire management to future fire regimes: impacts on boreal forest composition and carbon balance in Canadian National Parks

    Science.gov (United States)

    de Groot, W. J.; Flannigan, M. D.; Cantin, A.

    2009-04-01

    The effects of future fire regimes altered by climate change, and fire management in adaptation to climate change were studied in the boreal forest region of western Canada. Present (1975-90) and future (2080-2100) fire regimes were simulated for several National Parks using data from the Canadian (CGCM1) and Hadley (HadCM3) Global Climate Models (GCM) in separate simulation scenarios. The long-term effects of the different fire regimes on forests were simulated using a stand-level, boreal fire effects model (BORFIRE). Changes in forest composition and biomass storage due to future altered fire regimes were determined by comparing current and future simulation results. This was used to assess the ecological impact of altered fire regimes on boreal forests, and the future role of these forests as carbon sinks or sources. Additional future simulations were run using adapted fire management strategies, including increased fire suppression and the use of prescribed fire to meet fire cycle objectives. Future forest composition, carbon storage and emissions under current and adapted fire management strategies were also compared to determine the impact of various future fire management options. Both of the GCM's showed more severe burning conditions under future fire regimes. This includes fires with higher intensity, greater depth of burn, greater total fuel consumption and shorter fire cycles (or higher rates of annual area burned). The Canadian GCM indicated burning conditions more severe than the Hadley GCM. Shorter fire cycles of future fire regimes generally favoured aspen, birch, and jack pine because it provided more frequent regeneration opportunity for these pioneer species. Black spruce was only minimally influenced by future fire regimes, although white spruce declined sharply. Maintaining representation of pure and mixed white spruce ecosystems in natural areas will be a concern under future fire regimes. Active fire suppression is required in these areas. In

  9. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    Science.gov (United States)

    I. J. Simpson; S. K. Akagi; B. Barletta; N. J. Blake; Y. Choi; G. S. Diskin; A. Fried; H. E. Fuelberg; S. Meinardi; F. S. Rowland; S. A. Vay; A. J. Weinheimer; P. O. Wennberg; P. Wiebring; A. Wisthaler; M. Yang; R. J. Yokelson; D. R. Blake

    2011-01-01

    Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic...

  10. Short-term responses to watershed logging on biomass mercury and methylmercury accumulation by periphyton in boreal lakes

    Energy Technology Data Exchange (ETDEWEB)

    Desrosiers, M.; Planas, D. [Quebec Univ., Montreal, PQ (Canada). Dept. de sciences biologiques; Mucci, A. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences

    2006-08-15

    Increased timber harvesting in the boreal regions of Quebec may have a significant impact on aquatic ecosystems. Watershed disturbances such as logging increase chemical loading to lakes. Soil in the Canadian Shield readily adsorbs and accumulates mercury (Hg) from atmospheric deposition. Forest watersheds serve as large reservoirs of Hg that shed their metal load when soil and land hydrology are disrupted. This paper presented the results of a study evaluating the impact of logging on periphyton algal biomass and dry mass. The study also evaluated the impact of total mercury (THG) and methylmercury (MeHg) accumulation in the littoral zone of the boreal lakes. A before-after control-impact (BACI) sample design was applied that required data from control and target sites sampled both before and after the disturbances. The study was carried out on 18 boreal lakes located in the Grenville geological province. Eight lakes had their watersheds logged over 15 to 79 per cent of their area. A further 10 lakes were used as control sites to document interannual variations. The project used water quality and physiographic data acquired by research groups within the Sustainable Forest Management Network. Fourteen study lakes were sampled once a year during 2 consecutive ice-free seasons before and after logging, and another 4 lakes were sampled 2 years after logging. Significant decreases in algal biomass and increases in MeHg concentrations in periphyton mats in a majority of the harvested watershed lakes were detected. The increases may have a significant impact on organisms of higher trophic levels as they are at the base of the food web. Results suggested that the observed decrease in periphyton biomass combined with the increase in MeHg accumulation may magnify the impact of logging activities on fish and other aquatic predators. Two years after logging, it was observed that MeHg concentrations were still increasing. It was concluded that further research is needed

  11. Forest floor carbon exchange of a boreal black spruce forest in eastern North America

    Science.gov (United States)

    Bergeron, O.; Margolis, H. A.; Coursolle, C.

    2009-09-01

    This study reports continuous automated measurements of forest floor carbon (C) exchange over feathermoss, lichen, and sphagnum micro-sites in a black spruce forest in eastern North America during snow-free periods over three years. The response of soil respiration (Rs-auto) and forest floor photosynthesis (Pff) to environmental factors was determined. The seasonal contributions of scaled up Rs-auto adjusted for spatial representativeness (Rs-adj) and Pff (Pff-eco) relative to that of total ecosystem respiration (Re) and photosynthesis (Peco), respectively, were also quantified. Shallow (5 cm) soil temperature explained 67-86% of the variation in Rs-auto for all ground cover types, while deeper (50 and 100 cm) soil temperatures were related to Rs-auto only for the feathermoss micro-sites. Base respiration was consistently lower under feathermoss, intermediate under sphagnum, and higher under lichen during all three years. The Rs-adj/Re ratio increased from spring through autumn and ranged from 0.85 to 0.87 annually for the snow-free period. The Rs-adj/Re ratio was negatively correlated with the difference between air and shallow soil temperature and this correlation was more pronounced in autumn than summer and spring. Maximum photosynthetic capacity of the forest floor (Pff-max) saturated at low irradiance levels (~200 μmol m-2 s-1) and decreased with increasing air temperature and vapor pressure deficit for all three ground cover types, suggesting that Pff was more limited by desiccation than by light availability. Pff-max was lowest for sphagnum, intermediate for feathermoss, and highest for lichen for two of the three years. Pff normalized for light peaked at air temperatures of 5-8°C, suggesting that this is the optimal temperature range for Pff. The Pff-eco/Peco ratio varied from 13 to 24% over the snow-free period and reached a minimum in mid-summer when both air temperature and Peco were at their maximum. On an annual basis, Pff-eco accounted for 17

  12. Soil mineralogy and microbes determine forest life history strategy and carbon cycling in humid tropical forests

    Science.gov (United States)

    Soong, J.; Verbruggen, E.; Peñuelas, J.; Janssens, I. A.; Grau, O.

    2017-12-01

    Tropical forests account for over one third of global terrestrial gross primary productivity and cycle more C than any other ecosystem on Earth. However, we still lack a mechanistic understanding of how such high productivity is maintained on the old, highly weathered and phosphorus depleted soils in the tropics. We hypothesized that heterogeneity in soil texture, mineralogy and microbial community composition may be the major drivers of differences in soil C storage and P limitation across tropical forests. We sampled 12 forest sites across a 200 km transect in the humid neo-tropics of French Guiana that varied in soil texture, precipitation and mineralogy. We found that soil texture was a major driver of soil carbon stocks and forest life history strategy, where sandy forests have lower soil C stocks, slower turnover and decomposition and a more closed nutrient cycle while clayey forests have higher soil C stocks, faster turnover and a more leaky nutrient cycle (using natural abundance stable isotope evidence). We found that although the presence of Al and Fe oxides in the clayey soils occludes soil organic matter and P, a greater abundance of arbuscular mycorrhizal fungi help forests to access occluded P in clayey soils fueling higher turnover and faster decomposition rates. Evidence from a laboratory incubation of tropical soils with nutrient additions further demonstrates the de-coupling of microbial P demands from C:N limitations providing further evidence for the need to examine microbial stoichiometry to explain C cycling in the P-limited tropics. We argue that microbial community composition and physiological demands, constrained within the limitations of soil mineralogical reactivity, largely controls nutrient and C cycling in tropical forest soils. Together our observational field study and laboratory incubation provide a unique dataset to shed light on the mineralogical and microbial controls on C and nutrient cycling in tropical soils. By integrating

  13. Microbial production of nitrous oxide and nitric oxide in boreal peatlands

    International Nuclear Information System (INIS)

    Regina, K.

    1998-01-01

    Soils are an important source of nitrous oxide (N 2 O) and nitric oxide (NO). N 2 O is a greenhouse gas participating in both warming of the climate and the destruction of ozone, and NO is active in tropospheric chemistry. The fluxes and formation mechanisms of these gases in boreal Finnish peatlands were studied by both laboratory and field techniques. Special attention was paid to factors regulating their production, e.g. height of the water table, pH, temperature, nutrient level and nitrification activity. Both N 2 O and NO fluxes were detected in the peatlands, some of which were sources of these trace gases and some sinks. The flux rates of N 2 O ranged from negative values to several milligrammes per square metre per day. Natural peatlands were the lowest sources of N 2 O, often showing negative fluxes, whereas sites drained for forestry some decades ago had markedly higher fluxes. A site drained for agriculture (grassland) was the highest source found. NO fluxes were observed on the two drained sites studied, a forested fen and the same field of grass, but not on a natural fen with a high water table. NO fluxes amounted to 16-30 % of the N 2 O flux rates. The importance of the water table in regulating N 2 0 fluxes was demonstrated in field and laboratory studies. It was shown in the laboratory that even a short lowering of the water table, for 14 weeks at 20 deg C, induced N 2 0 fluxes from the fens that normally acted as sinks or only low sources. Raising the water table in peat monoliths from drained sites reduced the flux of N 2 O. Nutrient-rich peatlands had much higher capacities for N 2 O and NO production than poorer ones. The addition of KNO 3 , NH 4 Cl or urea to minerotrophic peat further increased the fluxes of N 2 O and NO, and also nitrogen mineralisation. There was a clear connection between the fluxes of N 2 0 and NO and nitrification activity measured as the numbers of nitrite-oxidising bacteria, nitrification potential or in situ net

  14. Microbial production of nitrous oxide and nitric oxide in boreal peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Regina, K.

    1998-12-31

    Soils are an important source of nitrous oxide (N{sub 2}O) and nitric oxide (NO). N{sub 2}O is a greenhouse gas participating in both warming of the climate and the destruction of ozone, and NO is active in tropospheric chemistry. The fluxes and formation mechanisms of these gases in boreal Finnish peatlands were studied by both laboratory and field techniques. Special attention was paid to factors regulating their production, e.g. height of the water table, pH, temperature, nutrient level and nitrification activity. Both N{sub 2}O and NO fluxes were detected in the peatlands, some of which were sources of these trace gases and some sinks. The flux rates of N{sub 2}O ranged from negative values to several milligrammes per square metre per day. Natural peatlands were the lowest sources of N{sub 2}O, often showing negative fluxes, whereas sites drained for forestry some decades ago had markedly higher fluxes. A site drained for agriculture (grassland) was the highest source found. NO fluxes were observed on the two drained sites studied, a forested fen and the same field of grass, but not on a natural fen with a high water table. NO fluxes amounted to 16-30 % of the N{sub 2}O flux rates. The importance of the water table in regulating N{sub 2}0 fluxes was demonstrated in field and laboratory studies. It was shown in the laboratory that even a short lowering of the water table, for 14 weeks at 20 deg C, induced N{sub 2}0 fluxes from the fens that normally acted as sinks or only low sources. Raising the water table in peat monoliths from drained sites reduced the flux of N{sub 2}O. Nutrient-rich peatlands had much higher capacities for N{sub 2}O and NO production than poorer ones. The addition of KNO{sub 3}, NH{sub 4}Cl or urea to minerotrophic peat further increased the fluxes of N{sub 2}O and NO, and also nitrogen mineralisation. There was a clear connection between the fluxes of N{sub 2}0 and NO and nitrification activity measured as the numbers of nitrite

  15. Microbial production of nitrous oxide and nitric oxide in boreal peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Regina, K

    1999-12-31

    Soils are an important source of nitrous oxide (N{sub 2}O) and nitric oxide (NO). N{sub 2}O is a greenhouse gas participating in both warming of the climate and the destruction of ozone, and NO is active in tropospheric chemistry. The fluxes and formation mechanisms of these gases in boreal Finnish peatlands were studied by both laboratory and field techniques. Special attention was paid to factors regulating their production, e.g. height of the water table, pH, temperature, nutrient level and nitrification activity. Both N{sub 2}O and NO fluxes were detected in the peatlands, some of which were sources of these trace gases and some sinks. The flux rates of N{sub 2}O ranged from negative values to several milligrammes per square metre per day. Natural peatlands were the lowest sources of N{sub 2}O, often showing negative fluxes, whereas sites drained for forestry some decades ago had markedly higher fluxes. A site drained for agriculture (grassland) was the highest source found. NO fluxes were observed on the two drained sites studied, a forested fen and the same field of grass, but not on a natural fen with a high water table. NO fluxes amounted to 16-30 % of the N{sub 2}O flux rates. The importance of the water table in regulating N{sub 2}0 fluxes was demonstrated in field and laboratory studies. It was shown in the laboratory that even a short lowering of the water table, for 14 weeks at 20 deg C, induced N{sub 2}0 fluxes from the fens that normally acted as sinks or only low sources. Raising the water table in peat monoliths from drained sites reduced the flux of N{sub 2}O. Nutrient-rich peatlands had much higher capacities for N{sub 2}O and NO production than poorer ones. The addition of KNO{sub 3}, NH{sub 4}Cl or urea to minerotrophic peat further increased the fluxes of N{sub 2}O and NO, and also nitrogen mineralisation. There was a clear connection between the fluxes of N{sub 2}0 and NO and nitrification activity measured as the numbers of nitrite

  16. Ecological factors governing the distribution of soil microfungi in some forest soils of Pachmarhi Hills, India

    Directory of Open Access Journals (Sweden)

    Shashi Chauhan

    2014-01-01

    Full Text Available An ecological study of the microfungi occurring in the various forest soils of Pachmarhi Hills, India has been carried-out by the soil plate technique. Soil samples from 5 different forest communities viz., moist deciduous forest dominated by tree ferns, Diospyros forest, Terminalia forest, Shorea forest and scrub forest dominated by Acacia and Dalbergia sp. were collected during October, 1983. Some physico-chemical characteristics of the soil were analysed and their role in distribution of fungi in 5 soil types was studied and discussed. 43 fungal species were isolated, of which Asperigillus niger I and Penicillium janthinellum occurred in all the 5 soil types. Statistically, none of the edaphic factors showed positive significant correlation with the number of fungi.

  17. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling

    Science.gov (United States)

    James A. Thompson; Randall K. Kolka

    2005-01-01

    Carbon storage in soils is important to forest ecosystems. Moreover, forest soils may serve as important C sinks for ameliorating excess atmospheric CO2. Spatial estimates of soil organic C (SOC) storage have traditionally relied upon soil survey maps and laboratory characterization data. This approach does not account for inherent variability...

  18. Detecting Local Drivers of Fire Cycle Heterogeneity in Boreal Forests: A Scale Issue

    Directory of Open Access Journals (Sweden)

    Annie Claude Bélisle

    2016-07-01

    Full Text Available Severe crown fires are determining disturbances for the composition and structure of boreal forests in North America. Fire cycle (FC associations with continental climate gradients are well known, but smaller scale controls remain poorly documented. Using a time since fire map (time scale of 300 years, the study aims to assess the relative contributions of local and regional controls on FC and to describe the relationship between FC heterogeneity and vegetation patterns. The study area, located in boreal eastern North America, was partitioned into watersheds according to five scales going from local (3 km2 to landscape (2800 km2 scales. Using survival analysis, we observed that dry surficial deposits and hydrography density better predict FC when measured at the local scale, while terrain complexity and slope position perform better when measured at the middle and landscape scales. The most parsimonious model was selected according to the Akaike information criterion to predict FC throughout the study area. We detected two FC zones, one short (159 years and one long (303 years, with specific age structures and tree compositions. We argue that the local heterogeneity of the fire regime contributes to ecosystem diversity and must be considered in ecosystem management.

  19. Multi-year lags between forest browning and soil respiration at high northern latitudes.

    Directory of Open Access Journals (Sweden)

    Ben Bond-Lamberty

    Full Text Available High-latitude northern ecosystems are experiencing rapid climate changes, and represent a large potential climate feedback because of their high soil carbon densities and shifting disturbance regimes. A significant carbon flow from these ecosystems is soil respiration (R(S, the flow of carbon dioxide, generated by plant roots and soil fauna, from the soil surface to atmosphere, and any change in the high-latitude carbon cycle might thus be reflected in R(S observed in the field. This study used two variants of a machine-learning algorithm and least squares regression to examine how remotely-sensed canopy greenness (NDVI, climate, and other variables are coupled to annual R(S based on 105 observations from 64 circumpolar sites in a global database. The addition of NDVI roughly doubled model performance, with the best-performing models explaining ∼62% of observed R(S variability. We show that early-summer NDVI from previous years is generally the best single predictor of R(S, and is better than current-year temperature or moisture. This implies significant temporal lags between these variables, with multi-year carbon pools exerting large-scale effects. Areas of decreasing R(S are spatially correlated with browning boreal forests and warmer temperatures, particularly in western North America. We suggest that total circumpolar R(S may have slowed by ∼5% over the last decade, depressed by forest stress and mortality, which in turn decrease R(S. Arctic tundra may exhibit a significantly different response, but few data are available with which to test this. Combining large-scale remote observations and small-scale field measurements, as done here, has the potential to allow inferences about the temporal and spatial complexity of the large-scale response of northern ecosystems to changing climate.

  20. Dynamic of radionuclides behaviour in forest soils

    International Nuclear Information System (INIS)

    Ruehm, W.; Steiner, M.; Wirth, E.; Dvornik, A.; Zhuchenko, T.A.; Kliashtorin, A.; Rafferty, B.; Shaw, G.; Kuchma, N.

    1996-01-01

    Within the research project ECP-5, the dynamics of radionuclides in automorphic forest soils within the 30-km-zone of Chernobyl and of hydromorphic forest soils in Belarus have been investigated. In upland forest soils, the lower layers of the organic horizons are characterized by the highest residence times for radiocesium and represent the largest pool for all radionuclides investigated. According to a preliminary estimate, radiocesium is more mobile compared to 125 Sb, which in turn migrates faster than 60 Co, 144 Ce, and 154 Eu. 106 Ru shows the lowest mobility. With regard to radiocesium, hydromorphic soils exhibit migration rates and transfer factors from soil to trees, which by far exceed those in automorphic soils. Based on a two-component quasi-diffusional model the average bias of 137 Cs in mesotrophic swamp soils was predicted. The activity concentrations of U, Pu, and Cs suggest that U and Pu were originally deposited as hot particles and that U is naturally accumulated in organic horizons

  1. Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century

    Science.gov (United States)

    Balshi, M. S.; McGuire, Anthony David; Duffy, P.; Flannigan, M.; Kicklighter, David W.; Melillo, J.

    2009-01-01

    The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies each year with changing climatic and fuel moisture conditions. We apply the process-based Terrestrial Ecosystem Model to evaluate the role of future fire on the carbon dynamics of boreal North America in the context of changing atmospheric carbon dioxide (CO2) concentration and climate in the A2 and B2 emissions scenarios of the CGCM2 global climate model. Relative to the last decade of the 20th century, decadal total carbon emissions from fire increase by 2.5–4.4 times by 2091–2100, depending on the climate scenario and assumptions about CO2fertilization. Larger fire emissions occur with warmer climates or if CO2 fertilization is assumed to occur. Despite the increases in fire emissions, our simulations indicate that boreal North America will be a carbon sink over the 21st century if CO2 fertilization is assumed to occur in the future. In contrast, simulations excluding CO2 fertilization over the same period indicate that the region will change to a carbon source to the atmosphere, with the source being 2.1 times greater under the warmer A2 scenario than the B2 scenario. To improve estimates of wildfire on terrestrial carbon dynamics in boreal North America, future studies should incorporate the role of dynamic vegetation to represent more accurately post-fire successional processes, incorporate fire severity parameters that change in time and space, account for human influences through increased fire suppression, and integrate the role of other disturbances and their interactions with future fire regime.

  2. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.

    2012-01-01

    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil

  3. Permafrost soil characteristics and microbial community structure across a boreal forest watershed vary over short spatial scales and dictate community responses to thaw.

    Science.gov (United States)

    Stegen, J.; Bottos, E. M.; Kennedy, D.; Romero, E. B.; Fansler, S.; Chu, R. K.; Tfaily, M.; Jansson, J.; Bernstein, H. C.; Brown, J. M.; Markillie, L. M.

    2017-12-01

    Understanding drivers of permafrost microbial community structure and function is critical for understanding permafrost microbiology and predicting ecosystem responses to thaw; however, studies describing ecological controls on these communities are lacking. We hypothesize that permafrost communities are uniquely shaped by constraints imposed by prolonged freezing, and decoupled from the selective factors that influence non-permafrost soil communities, but that pre-thaw environmental and community characteristics will be strong determinants of community structure and function post-thaw. We characterized patterns of environmental variation and microbial community composition in sixty permafrost samples spanning landscape gradients in a boreal forest watershed, and monitored community responses to thaw. Consistent with our hypothesis, we found that, proportionally, the strongest process influencing permafrost community composition was dispersal limitation (0.36), exceeding the influence of homogenous selection (0.21) and variable selection (0.16), and that deterministic selection arose primarily from energetic constraints of the permafrost environment. Our data supported a structural equation model in which organic carbon thermodynamics and organic acid content, influenced redox conditions and total selection. Post-thaw community composition was found to be driven primarily by pre-thaw community composition, indicating a strong influence of historical conditions. Together, these results suggest that community responses to thaw may be highly varied over short distances and that changes in community structure and function are likely to be drastic, as changes to system hydrology mobilize organisms and nutrients, thereby relieving the primary constraints on the system. These findings are being integrated with metabolomic and metatranscriptomic analyses to improve understanding of how pre-thaw conditions can be used to predict microbial activity post-thaw.

  4. Does the amount of trees retained at clearfelling of temperate and boreal forests influence biodiversity response?

    Directory of Open Access Journals (Sweden)

    Fedrowitz Katja

    2012-05-01

    Full Text Available Abstract Clear-felling is one of the main methods used in many parts of the world for the production of pulp, timber and bioenergy, leading to a simplified forest structure and species composition. One of the measures to mitigate the impact of logging on biodiversity is the retention of trees at final harvest. Tree retention approaches in forestry are still rather new, although widely distributed across different continents. Several studies have been performed on the effects of retention trees on biodiversity but to date there is no evidence on the relation between the amounts of trees, i.e. the number, volume or area per ha retained, and the response of biodiversity. The overall aim of our review will be to provide forest practitioners and conservationists in temperate and boreal forests with more detailed recommendations regarding the amount of trees that should be retained in order to achieve positive effects for biodiversity compared to traditional clear-cutting.

  5. Responses of northern forest plants to atmospheric changes

    Energy Technology Data Exchange (ETDEWEB)

    Laine, K; Huttunen, S; Kauppi, M; Ohtonen, R; Laehdesmaeki, P [Oulu Univ. (Finland). Dept. of Biology

    1997-12-31

    This research programme has been under way since 1990 to study the long-term synergistic effects of air pollutants and changing climatic conditions on the northern forest ecosystem and to increase the knowledge of climatic change and its consequences for the fragile northern nature. Ecological, physiological, morphological and biochemical methods have been used to study the responses of forest trees, dwarf shrubs, lichens and soil biology to environmental changes. The research programme is divided into four subprojects concentrating on different ecosystem levels. The subprojects are: (1) life, growth and survival strategies of northern dwarf shrubs under the pressure of a changing environment, (2) forest trees under the impact of air pollutants, increasing CO{sub 2} and UV-B, (3) susceptibility of lichens to air pollution and climatic change and (4) impact of elevated atmospheric CO{sub 2} and O{sub 3} on soil biology with special reference to carbon allocation and N fixation in symbiotic systems. This report summarizes the results of short-term experiments which showed many ecological and physiological changes in almost all elements of the northern boreal forests. These species-level measurements focused on the key species of the northern boreal forest, which have been thought to be useful in large-scale ecosystem experiments and modelling. The results will also facilitate the further studies on the patterns of plant species distribution and northern ecosystem function with respect to the environmental parameters that are expected to change along with global change (e.g. temperature, airchemistry, UV-B, snow condition)

  6. Responses of northern forest plants to atmospheric changes

    Energy Technology Data Exchange (ETDEWEB)

    Laine, K.; Huttunen, S.; Kauppi, M.; Ohtonen, R.; Laehdesmaeki, P. [Oulu Univ. (Finland). Dept. of Biology

    1996-12-31

    This research programme has been under way since 1990 to study the long-term synergistic effects of air pollutants and changing climatic conditions on the northern forest ecosystem and to increase the knowledge of climatic change and its consequences for the fragile northern nature. Ecological, physiological, morphological and biochemical methods have been used to study the responses of forest trees, dwarf shrubs, lichens and soil biology to environmental changes. The research programme is divided into four subprojects concentrating on different ecosystem levels. The subprojects are: (1) life, growth and survival strategies of northern dwarf shrubs under the pressure of a changing environment, (2) forest trees under the impact of air pollutants, increasing CO{sub 2} and UV-B, (3) susceptibility of lichens to air pollution and climatic change and (4) impact of elevated atmospheric CO{sub 2} and O{sub 3} on soil biology with special reference to carbon allocation and N fixation in symbiotic systems. This report summarizes the results of short-term experiments which showed many ecological and physiological changes in almost all elements of the northern boreal forests. These species-level measurements focused on the key species of the northern boreal forest, which have been thought to be useful in large-scale ecosystem experiments and modelling. The results will also facilitate the further studies on the patterns of plant species distribution and northern ecosystem function with respect to the environmental parameters that are expected to change along with global change (e.g. temperature, airchemistry, UV-B, snow condition)

  7. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Science.gov (United States)

    M. Mazur; C.P.J. Mitchell; C.S. Eckley; S.L. Eggert; R.K. Kolka; S.D. Sebestyen; E.B. Swain

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil-air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown.We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg...

  8. Benchmark values for forest soil carbon stocks in Europe

    DEFF Research Database (Denmark)

    De Vos, Bruno; Cools, Nathalie; Ilvesniemi, Hannu

    2015-01-01

    Soil organic carbon (SOC) stocks in forest floors and in mineral and peat forest soils were estimated at the European scale. The assessment was based on measured C concentration, bulk density, coarse fragments and effective soil depth data originating from 4914 plots in 22 EU countries belonging...... to the UN/ECE ICP Forests 16 × 16 km Level I network. Plots were sampled and analysed according to harmonized methods during the 2nd European Forest Soil Condition Survey. Using continuous carbon density depth functions, we estimated SOC stocks to 30-cm and 1-m depth, and stratified these stocks according...... to 22 WRB Reference Soil Groups (RSGs) and 8 humus forms to provide European scale benchmark values. Average SOC stocks amounted to 22.1 t C ha− 1 in forest floors, 108 t C ha− 1 in mineral soils and 578 t C ha− 1 in peat soils, to 1 m depth. Relative to 1-m stocks, the vertical SOC distribution...

  9. Adaptive root foraging strategies along a boreal–temperate forest gradient

    Czech Academy of Sciences Publication Activity Database

    Ostonen, I.; Truu, M.; Helmisaari, H.-S.; Lukač, M.; Borken, W.; Vanguelova, H.; Godbold, Douglas; Löhmus, K.; Zang, U.; Tedersoo, L.; Preem, J.-K.; Rosenvald, K.; Aosaar, J.; Armolaitis, K.; Frey, J.; Kabral, N.; Kukumägi, M.; Leppälammi-Kujansuu, J.; Lindroos, A.-J.; Merila, P.; Napa, Ü.; Nöjd, P.; Parts, K.; Uri, V.; Varik, M.; Truu, J.

    2017-01-01

    Roč. 215, č. 3 (2017), s. 977-991 ISSN 0028-646X EU Projects: European Commission(XE) 315982; European Commission(XE) 315982; European Commission(XE) 90/E38 Institutional support: RVO:67179843 Keywords : boreal and temperate forests * climate gradient * ectomycorrhizal (EcM) mycelium * fine and ectomycorrhizal root biomass * root foraging * root morphology * soil and rhizosphere bacteria * soil C * N ratio Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 7.330, year: 2016

  10. Sources and sinks of carbon in boreal ecosystems of interior Alaska: a review

    Science.gov (United States)

    Douglas, Thomas A.; Jones, Miriam C.; Hiemstra, Christopher A.

    2014-01-01

    Boreal regions store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region, underlain by discontinuous permafrost, presents a challenging landscape for itemizing current and potential carbon sources and sinks in the boreal soil and vegetation. The roles of fire, forest succession, and the presence (or absence) of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in this area for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape process changes over the next 20 to 50 years. This provides a major challenge for predicting how the interplay between land management activities and impacts of climate warming will affect carbon sources and sinks in Interior Alaska. To assist land managers in adapting and managing for potential changes in the Interior Alaska carbon cycle we developed this review paper incorporating an overview of the climate, ecosystem processes, vegetation types, and soil regimes in Interior Alaska with a focus on ramifications for the carbon cycle. Our objective is to provide a synthesis of the most current carbon storage estimates and measurements to support policy and land management decisions on how to best manage carbon sources and sinks in Interior Alaska. To support this we have surveyed relevant peer reviewed estimates of carbon stocks in aboveground and belowground biomass for Interior Alaska boreal ecosystems. We have also summarized methane and carbon dioxide fluxes from the same ecosystems. These data have been converted into the same units to facilitate comparison across ecosystem compartments. We identify potential changes in the carbon cycle with climate change and human disturbance including how compounding disturbances can affect the boreal system. Finally, we provide

  11. Ecosystem warming does not affect photosynthesis or aboveground autotrophic respiration for boreal black spruce

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, D.R. [Wyoming Univ., Laramie, WY (United States). Dept. of Renewable Resources; Gower, S.T. [Wisconsin Univ., Madison, WI (United States). Dept. of Forest Ecology and Management

    2010-04-15

    Substantial increases in climatic temperatures may cause boreal forests to become a carbon source. An improved understanding of the effect of climatic warming on photosynthesis and autotrophic respiration is needed in order to determine the impact of temperature increases on net carbon balances. This study measured the light-saturated photosynthesis foliage respiration and stem respiration of black spruce in heated and control plots during a 3-year period at a site located in Thompson, Manitoba. Greenhouses and soil-heating cables were used to maintain air and soil temperatures at 5 degrees C above ambient air and soil temperatures. Studies were conducted to determine the influence of soil and air warming; soil-only warming; and greenhouses maintained at ambient temperatures. The study showed that treatment differences for photosynthesis, foliage respiration, and stem respiration were not significant over the 3-year period. Results suggested that black spruce may not have significant changes in photosynthesis or respiration rates in warmer climates. 38 refs., 3 tabs., 4 figs.

  12. Soils characterisation along ecological forest zones in the Eastern Himalayas

    Science.gov (United States)

    Simon, Alois; Dhendup, Kuenzang; Bahadur Rai, Prem; Gratzer, Georg

    2017-04-01

    Elevational gradients are commonly used to characterise vegetation patterns and, to a lesser extent, also to describe soil development. Furthermore, interactions between vegetation cover and soil characteristics are repeatedly observed. Combining information on soil development and easily to distinguish forest zones along elevational gradients, creates an added value for forest management decisions especially in less studied mountain regions. For this purpose, soil profiles along elevational gradients in the temperate conifer forests of Western and Central Bhutan, ranging from 2600-4000m asl were investigated. Thereby, 82 soil profiles were recorded and classified according to the World Reference Base for Soil Resources. Based on 19 representative profiles, genetic horizons were sampled and analysed. We aim to provide fundamental information on forest soil characteristics along these elevational transects. The results are presented with regard to ecological forest zones. The elevational distribution of the reference soil groups showed distinct distribution ranges for most of the soils. Cambisols were the most frequently recorded reference soil group with 58% of the sampled profiles, followed by Podzols in higher elevations, and Stagnosols, at intermediate elevations. Fluvisols occurred only at the lower end of the elevational transects and Phaeozems only at drier site conditions in the cool conifer dry forest zone. The humus layer thickness differs between forest zones and show a shift towards increased organic layer (O-layer) with increasing elevation. The reduced biomass productivity with increasing elevation and subsequently lower litter input compensates for the slow decomposition rates. The increasing O-layer thickness is an indicator of restrained intermixing of organic and mineral components by soil organisms at higher elevation. Overall, the soil types and soil characteristics along the elevational gradient showed a continuous and consistent change, instead

  13. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.

    Science.gov (United States)

    Girardin, Martin P; Hogg, Edward H; Bernier, Pierre Y; Kurz, Werner A; Guo, Xiao Jing; Cyr, Guillaume

    2016-02-01

    An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations. © 2015 Her Majesty the Queen in Right of Canada. Reproduced with

  14. SOIL QUALITY CHANGES FOLLOWING FOREST CLEARANCE IN BENGKULU, SUMATRA

    Directory of Open Access Journals (Sweden)

    I.P. HANDAYANI

    2004-01-01

    Full Text Available Intense destruction and degradation of tropical forests is recognized as one of the environmental threats and tragedies. These have increased the need to assess the effects of subsequent land-use following forest extraction on soil quality. Therefore, the objective of this study is to evaluate the impacts of land-use type on soil quality properties in Bengkulu Province, Sumatra. Soil samples were collected from adjacent sites including natural secondary forest, bare land, cultivated land and grassland. The results show that land-use following forest clearance lowered saturated hydraulic conductivity (85%, porosity (10.50%, soil water content at field capacity (34%,C organic (27%, N total (26%, inorganic N (37%, soil microbial biomass C (32%, mineralizable C (22%, and particulate organic matter (50%, but slightly increased water soluble organic C. Specific respiration activi ty rates increased about 14% in cultivated soils compared to natural forest soils, indicating greater C turnover per labile C pool in the form of soil microbial biomass, thus decreased biologically active soil organic matter. Forest conversion tends to reduce the C,ffg/Crer for all deforested sites. All of deforested areas relatively have infertile soil, with the worst case found in cultivated field. The C^g/Crd of cultivated field s was about 24% less than that of remnant fo rest (1.07. Grassland apparently mainta ins only slightly higher soil C levels than the bare land. On average, degradation index of so il following forest clearance was 35% with the highest deterioration occurred in the bare land (38%. Fallowing the fields by naturally growth of Imperata cylindrica for about 15 yr in abandoned land after 3-5 years of cultivation did not improve the soil quality. Moreover, forest clearance has an impact on soil quality as resulted in the loss of a physically protected organic matter and reduction in some labile C pools, thus declined biological activity at disturbed

  15. The effect of assimilating satellite derived soil moisture in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    NARCIS (Netherlands)

    van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W.

    2015-01-01

    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture and carbon fluxes as compared to e.g. Europe. To better constrain our

  16. Evaporation components of a boreal forest: variations during the growing season

    Science.gov (United States)

    Grelle, A.; Lundberg, A.; Lindroth, A.; Morén, A.-S.; Cienciala, E.

    1997-10-01

    To improve the understanding of interactions between the boreal forest and the climate system as a key issue for global climate change, the water budget of a mixed pine and spruce forest in central Sweden was estimated by measurements of the water flux components and the total evaporation flux during the period 16 May-31 October 1995. Total evaporation was measured using eddy correlation and the components were obtained using measurements of precipitation, throughfall, tree transpiration, and forest floor evaporation. On a daily basis, tree transpiration was the dominant evaporation component during the vegetation period. However, it could be efficiently blocked by a wet canopy associated with large interception evaporation. The accumulated total evaporation was 399 mm, transpiration was 243 mm, forest floor evaporation was 56 mm and interception evaporation was 74 mm. The accumulated sum of interception, transpiration, and floor evaporation was 51 mm larger than the actual measured total evaporation. This difference was mainly attributed to the fact that transpiration was measured in a rather dense 50-year-old stand while total evaporation represented the average conditions of older, roughly 100-year-old stands. To compare eddy-correlation measurements with small-scale measurements of evaporation components, a source area analysis was made to select the flux data that give the best representation of the investigated stand. Especially under stable atmospheric conditions the requirements for surface homogeneity were very high and extreme care had to be taken to be aware of the flux source areas. Canopy water storage was determined by two methods: by the water balance of the canopy, which gave a result of 3.3 mm; and by the so-called minimum method based on plots of throughfall versus precipitation, which gave a much lower value of 1.5 mm. Seasonal interception evaporation constituted 30% of the precipitation.

  17. Biogeochemistry and plant physiological traits interact to reinforce patterns of post-fire dominance in boreal forests

    Science.gov (United States)

    Shenoy, A.; Kielland, K.; Johnstone, J. F.

    2011-12-01

    Increases in the frequency, extent, and severity of fire in the North American boreal region are projected to continue under a warming climate and are likely to be associated with changes in future vegetation composition. In interior Alaska, fire severity is linked to the relative dominance of deciduous versus coniferous canopy species. Severely burned areas have high levels of deciduous recruitment and subsequent stand dominance, while lightly burned areas exhibit black spruce self-replacement. To elucidate potential mechanisms by which differential fire severity results in differential post-fire vegetation development, we examined changes in soil nitrogen (N) supply (NO3- and NH4+) and in situ 15N uptake by young aspen (Populus tremuloides) and black spruce (Picea mariana) trees growing in lightly and severely burned areas. We hypothesized that (a) soil nitrate supply would be higher in severely burned sites and (b) since conifers have been shown to have a reduced physiological capacity for NO3- uptake, aspen would display greater rates of NO3- uptake than spruce in severely burned sites. Our results suggested that the composition and magnitude of inorganic N supply 14 years after the fire was nearly identical in high-severity and low-severity sites, and nitrate represented nearly 50% of the supply. However, both aspen and spruce took up substantially more NH4+-N than NO3- -N regardless of fire severity. Surprisingly, spruce exhibited only a moderately lower rate of NO3- uptake (μg N/g root-1h-1) than aspen. At the stand level, aspen took up nearly an order-of-magnitude more N per hectare in severely burned sites compared to lightly burned sites, while spruce exhibited the opposite pattern of N uptake with respect to fire severity. Whereas ammonium appeared to be preferred by both species, nitrate represented a larger component of N uptake (based on the NO3-:NH4+ uptake ratio) in aspen (0.7) than in spruce (0.4). We suggest that these species

  18. Migration and bioavailability of 137Cs in forest soil of southern Germany

    International Nuclear Information System (INIS)

    Konopleva, I.; Klemt, E.; Konoplev, A.; Zibold, G.

    2009-01-01

    To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered

  19. Trophic conditions of forest soils of the Pieniny National Park, southern Poland

    Directory of Open Access Journals (Sweden)

    Wanic Tomasz

    2017-12-01

    Full Text Available The primary objective of this study was to characterise the edaphic conditions of forest areas in the Pieniny National Park (PNP, and to describe the dependencies between properties of forest soils and types of forest plant communities. The “Soil Trophic Index” (SIGg for mountainous areas was applied. The evaluation of the trophism for 74 forest monitoring employed the soil trophic index for mountainous areas SIGg or SIGgo. Plant communities in the forest monitoring areas were classified according to the Braun-Blanquet’s phytosociological method. Soils of PNP present in the forest monitoring areas were mostly classified as eutrophic brown soils (72.9%, rendzinas (10.8%, brown rendzinas (5.41%, and rubble initial soils (5.41%. Pararendzinas, dystrophic brown soils, and gley soils were less common (total below 5.5%. In the forest monitoring areas of PNP, eutrophic soils predominate over mesotrophic soils. High SIGg index of the soils is caused by high values of acidity and nitrogen content. The Carpathian beech forest Dentario glandulosae-Fagetum and thermophilic beech forest Carici albae-Fagetum associations are characterised by high naturalness and compatibility of theoretical habitats. The soils of the Carpathian fir forest Dentario glandulosae-Fagetum abietetosum subcommunity is characterised by a higher share of silt and clay particles and lower acidity as compared to the Carpathian beech forest Dentario glandulosae-Fagetum typicum subcommunity. The soils of the forest monitoring areas in PNP stand out in terms of their fertility against forest soils in other mountainous areas in Poland.

  20. Soil heat flux measurements in an open forest

    NARCIS (Netherlands)

    vanderMeulen, MJW; Klaassen, W; Kiely, G

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  1. Soil Heat Flux Measurements in an Open Forest

    NARCIS (Netherlands)

    Meulen, M.W.J. van der; Klaassen, W.

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  2. VARIABILITY OF ARABLE AND FOREST SOILS PROPERTIES ON ERODED SLOPES

    Directory of Open Access Journals (Sweden)

    Paweł Wiśniewski

    2014-10-01

    Full Text Available The basic method of reducing soil and land erosion is a change of land use, for example, from arable to forest. Particularly effective as a protective role – according to the Polish law – soil-protecting forests. The thesis presents differences in the deformation of the basic soil properties on moraine slopes, depending on land use. There has been presented the function and the efficiency of the soil-protecting forests in erosion control. The soil cross section transects and soil analysis displayed that soil-protecting forests are making an essential soil cover protection from degradation, inter alia, limiting the decrease of humus content, reduction of upper soil horizons and soil pedons layer. On the afforested slopes it was stated some clear changes of grain size and chemical properties of soils in relation to adjacent slopes agriculturally used.

  3. Acid-base status and changes in Swedish forest soils

    International Nuclear Information System (INIS)

    Karltun, Erik; Stendahl, Johan; Lundin, Lars

    2003-01-01

    In this paper we use data from the Swedish National Survey of Forest Soils and Vegetation (NSFSV) to evaluate the present acid-base status of forest soils to try to answer the following questions. Which role do anthropogenic and biological acidification play for the present acid-base status of the soil profile? What is the present acid-base status of Swedish forest soils and how large areas may be considered as severely acidified? Do the current tendencies in soil acid-base status correspond with the positive development in surface waters?

  4. The role of entrainment in surface-atmosphere interactions over the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K.J. [Minnesota Univ., St. Paul, MN (United States). Dept. of Soil Science; Lenschow, D.H.; Oncley, S.P. [National Center for Atmospheric Research, Boulder, Colorado (United States); Kiemle, C.; Ehret, G.; Giez, A. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Mann, J. [Risoe National Lab., Roskilde (Denmark)

    1997-07-01

    We present a description of the evolution of the convective boundary layer (CBL) over the boreal forests of Saskatchewan and Manitoba, as observed by the national center for atmospheric research (NCAR) Electra research aircraft during the 1994 boreal ecosystem-atmosphere study (BOREAS). All observations were made between 1530 and 2230 UT (0930-1630 local solar time, LST). We show that the CBL flux divergence often led to drying of the CBL over the course of the day, with the greatest drying (approaching 0.5 gkg{sup -1}hr{sup -1}) observed in the morning, 1000-1200 LST, and decreasing over time to nearly no drying (0 to 0.1 gkg{sup -1}hr{sup -1}) by midafternoon (1500-1600 LST). The maximum warming (0.45 Khr{sup -1}) also occurred in the morning and decreased slightly to about 0.4 Khr{sup -1} by midafternoon. The CBL vapor pressure deficit (VPD) increases over the course of the day. A significant portion of this increase can be explained by the vertical flux divergence, though horizontal advection also appears to be important. We suggest a linkage between boundary layer growth, the vertical flux divergences, and boundary layer cloud formation, with cloud activity peaking at midday in response to rapid CBL growth, then decreasing somewhat later in the day in response to CBL warming and decreased growth. We also see evidence of feedback between increasing VPD and stomatal control. (orig.) 39 refs.

  5. Advances of study on atmospheric methane oxidation (consumption) in forest soil

    Institute of Scientific and Technical Information of China (English)

    WANG Chen-rui; SHI Yi; YANG Xiao-ming; WU Jie; YUE Jin

    2003-01-01

    Next to CO2, methane (CH4) is the second important contributor to global warming in the atmosphere and global atmospheric CH4 budget depends on both CH4 sources and sinks. Unsaturated soil is known as a unique sink for atmospheric CH4 in terrestrial ecosystem. Many comparison studies proved that forest soil had the biggest capacity of oxidizing atmospheric CH4 in various unsaturated soils. However, up to now, there is not an overall review in the aspect of atmospheric CH4 oxidation (consumption) in forest soil. This paper analyzed advances of studies on the mechanism of atmospheric CH4 oxidation, and related natural factors (Soil physical and chemical characters, temperature and moisture, ambient main greenhouse gases concentrations, tree species, and forest fire) and anthropogenic factors (forest clear-cutting and thinning, fertilization, exogenous aluminum salts and atmospheric deposition, adding biocides, and switch of forest land use) in forest soils. It was believed that CH4 consumption rate by forest soil was limited by diffusion and sensitive to changes in water status and temperature of soil. CH4 oxidation was also particularly sensitive to soil C/N, Ambient CO2, CH4 and N2O concentrations, tree species and forest fire. In most cases, anthropogenic disturbances will decrease atmospheric CH4 oxidation, thus resulting in the elevating of atmospheric CH4. Finally, the author pointed out that our knowledge of atmospheric CH4 oxidation (consumption) in forest soil was insufficient. In order to evaluate the contribution of forest soils to atmospheric CH4 oxidation and the role of forest played in the process of global environmental change, and to forecast the trends of global warming exactly, more researchers need to studies further on CH4 oxidation in various forest soils of different areas.

  6. Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions

    Directory of Open Access Journals (Sweden)

    Zoë Lindo

    2017-03-01

    Full Text Available The predominant input of available nitrogen (N in boreal forest ecosystems originates from moss-associated cyanobacteria, which fix unavailable atmospheric N2, contribute to the soil N pool, and thereby support forest productivity. Alongside climate warming, increases in atmospheric CO2 concentrations are expected in Canada’s boreal region over the next century, yet little is known about the combined effects of these factors on N fixation by forest floor cyanobacteria. Here we assess changes in N fixation in a common forest floor, moss-associated cyanobacterium, Nostoc punctiforme Hariot, under elevated CO2 conditions over 30 days and warming combined with elevated CO2 over 90 days. We measured rates of growth and changes in the number of specialized N2 fixing heterocyst cells, as well as the overall N fixing activity of the cultures. Elevated CO2 stimulated growth and N fixation overall, but this result was influenced by the growth stage of the cyanobacteria, which in turn was influenced by our temperature treatments. Taken together, climate change factors of warming and elevated CO2 are expected to stimulate N2 fixation by moss-associated cyanobacteria in boreal forest systems.

  7. Soil does not explain monodominance in a Central African tropical forest.

    Directory of Open Access Journals (Sweden)

    Kelvin S-H Peh

    2011-02-01

    Full Text Available Soil characteristics have been hypothesised as one of the possible mechanisms leading to monodominance of Gilbertiodendron dewerei in some areas of Central Africa where higher-diversity forest would be expected. However, the differences in soil characteristics between the G. dewevrei-dominated forest and its adjacent mixed forest are still poorly understood. Here we present the soil characteristics of the G. dewevrei forest and quantify whether soil physical and chemical properties in this monodominant forest are significantly different from the adjacent mixed forest.We sampled top soil (0-5, 5-10, 10-20, 20-30 cm and subsoil (150-200 cm using an augur in 6 × 1 ha areas of intact central Africa forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart, all chosen to be topographically homogeneous. Analysis--subjected to Bonferroni correction procedure--revealed no significant differences between the monodominant and mixed forests in terms of soil texture, median particle size, bulk density, pH, carbon (C content, nitrogen (N content, C:N ratio, C:total NaOH-extractable P ratio and concentrations of labile phosphorous (P, inorganic NaOH-extractable P, total NaOH-extractable P, aluminium, barium, calcium, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, selenium, silicon, sodium and zinc. Prior to Bonferroni correction procedure, there was a significant lower level of silicon concentration found in the monodominant than mixed forest deep soil; and a significant lower level of nickel concentration in the monodominant than mixed forest top soil. Nevertheless, these were likely to be the results of multiple tests of significance.Our results do not provide clear evidence of soil mediation for the location of monodominant forests in relation to adjacent mixed forests. It is also likely that G. dewevrei does not influence soil chemistry in the monodominant forests.

  8. Soil does not explain monodominance in a Central African tropical forest.

    Science.gov (United States)

    Peh, Kelvin S-H; Sonké, Bonaventure; Lloyd, Jon; Quesada, Carlos A; Lewis, Simon L

    2011-02-10

    Soil characteristics have been hypothesised as one of the possible mechanisms leading to monodominance of Gilbertiodendron dewerei in some areas of Central Africa where higher-diversity forest would be expected. However, the differences in soil characteristics between the G. dewevrei-dominated forest and its adjacent mixed forest are still poorly understood. Here we present the soil characteristics of the G. dewevrei forest and quantify whether soil physical and chemical properties in this monodominant forest are significantly different from the adjacent mixed forest. We sampled top soil (0-5, 5-10, 10-20, 20-30 cm) and subsoil (150-200 cm) using an augur in 6 × 1 ha areas of intact central Africa forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart), all chosen to be topographically homogeneous. Analysis--subjected to Bonferroni correction procedure--revealed no significant differences between the monodominant and mixed forests in terms of soil texture, median particle size, bulk density, pH, carbon (C) content, nitrogen (N) content, C:N ratio, C:total NaOH-extractable P ratio and concentrations of labile phosphorous (P), inorganic NaOH-extractable P, total NaOH-extractable P, aluminium, barium, calcium, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, selenium, silicon, sodium and zinc. Prior to Bonferroni correction procedure, there was a significant lower level of silicon concentration found in the monodominant than mixed forest deep soil; and a significant lower level of nickel concentration in the monodominant than mixed forest top soil. Nevertheless, these were likely to be the results of multiple tests of significance. Our results do not provide clear evidence of soil mediation for the location of monodominant forests in relation to adjacent mixed forests. It is also likely that G. dewevrei does not influence soil chemistry in the monodominant forests.

  9. Isotope geochemistry of sulfur in forest soils and in new groundwater below forest soils

    International Nuclear Information System (INIS)

    Mayer, B.

    1993-04-01

    The isotope geochemistry of sulphur in aerobic forest soils and new groundwater below forest soils was investigated for the purpose of investigating the transport and transformation behaviour of sulfate in the water-unsaturated zone. The effects of hydrodynamic and biogeochemical processes on the development of seepage water sulfate isotopes between depositions and groundwater were investigated by means of laboratory experiments, profile studies, lysimeter experiments, and field studies in order to determine the sulphur conversion processes. Dissolved sulphur from precipitates, seepage water, creek water and groundwater, as well as sulphur extracted from soil samples, were precipitated in the form of BaSO 4 or AgS 2 , decomposed thermally into SO 2 or CO 2 , and the 34 S/ 32 S and 18 O/ 16 O isotope ratios were determined by mass spectrometry. (orig.) [de

  10. Understanding the Effect of Land Cover Classification on Model Estimates of Regional Carbon Cycling in the Boreal Forest Biome

    Science.gov (United States)

    Kimball, John; Kang, Sinkyu

    2003-01-01

    The original objectives of this proposed 3-year project were to: 1) quantify the respective contributions of land cover and disturbance (i.e., wild fire) to uncertainty associated with regional carbon source/sink estimates produced by a variety of boreal ecosystem models; 2) identify the model processes responsible for differences in simulated carbon source/sink patterns for the boreal forest; 3) validate model outputs using tower and field- based estimates of NEP and NPP; and 4) recommend/prioritize improvements to boreal ecosystem carbon models, which will better constrain regional source/sink estimates for atmospheric C02. These original objectives were subsequently distilled to fit within the constraints of a 1 -year study. This revised study involved a regional model intercomparison over the BOREAS study region involving Biome-BGC, and TEM (A.D. McGuire, UAF) ecosystem models. The major focus of these revised activities involved quantifying the sensitivity of regional model predictions associated with land cover classification uncertainties. We also evaluated the individual and combined effects of historical fire activity, historical atmospheric CO2 concentrations, and climate change on carbon and water flux simulations within the BOREAS study region.

  11. Soil-plant transfer factors in forest ecosystems

    International Nuclear Information System (INIS)

    Strebl, F.; Gerzabek, M.H.

    1995-04-01

    Within scope of an extended study about 137 Cs behaviour in forest ecosystems several parameters were found to influence soil-plant transfer factors. TF-values of different plant species cover a range of two magnitudes. This is partly due to variations in rooting depth of plants and specific physiological adaptations of nutrient supply. Perrenial plants like trees (Picea abies) and dwarf shrubs (Vaccinium myrtillus) showed a distinct age - dependency of 137 Cs - transfer factors. In young plant parts caesium concentration is higher than in old, more signified twigs. A correlation analysis of physico-chemical soil parameters and TF-values to forest vegetation showed, that soil organic matter, especially the degree of humification and the ratio between extractable fulvic to humic acids are important influencing factors of 137 Cs transfer from forest soils to plants. (author)

  12. Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events

    Science.gov (United States)

    Seo, Eunkyo; Lee, Myong-In; Jeong, Jee-Hoon; Koster, Randal D.; Schubert, Siegfried D.; Kim, Hye-Mi; Kim, Daehyun; Kang, Hyun-Suk; Kim, Hyun-Kyung; MacLachlan, Craig; Scaife, Adam A.

    2018-05-01

    This study uses a global land-atmosphere coupled model, the land-atmosphere component of the Global Seasonal Forecast System version 5, to quantify the degree to which soil moisture initialization could potentially enhance boreal summer surface air temperature forecast skill. Two sets of hindcast experiments are performed by prescribing the observed sea surface temperature as the boundary condition for a 15-year period (1996-2010). In one set of the hindcast experiments (noINIT), the initial soil moisture conditions are randomly taken from a long-term simulation. In the other set (INIT), the initial soil moisture conditions are taken from an observation-driven offline Land Surface Model (LSM) simulation. The soil moisture conditions from the offline LSM simulation are calibrated using the forecast model statistics to minimize the inconsistency between the LSM and the land-atmosphere coupled model in their mean and variability. Results show a higher boreal summer surface air temperature prediction skill in INIT than in noINIT, demonstrating the potential benefit from an accurate soil moisture initialization. The forecast skill enhancement appears especially in the areas in which the evaporative fraction—the ratio of surface latent heat flux to net surface incoming radiation—is sensitive to soil moisture amount. These areas lie in the transitional regime between humid and arid climates. Examination of the extreme 2003 European and 2010 Russian heat wave events reveal that the regionally anomalous soil moisture conditions during the events played an important role in maintaining the stationary circulation anomalies, especially those near the surface.

  13. Soil Quality Index Determination Models for Restinga Forest

    Science.gov (United States)

    Bonilha, R. M.; Casagrande, J. C.; Soares, R. M.

    2012-04-01

    The Restinga Forest is a set of plant communities in mosaic, determined by the characteristics of their substrates as a result of depositional processes and ages. In this complex mosaic are the physiognomies of restinga forests of high-stage regeneration (high restinga) and middle stage of regeneration (low restinga), each with its plant characteristics that differentiate them. Located on the coastal plains of the Brazilian coast, suffering internal influences both the continental slopes, as well as from the sea. Its soils come from the Quaternary and are subject to constant deposition of sediments. The climate in the coastal type is tropical (Köppen). This work was conducted in four locations: (1) Anchieta Island, Ubatuba, (2) Juréia-Itatins Ecological Station, Iguape, (3) Vila das Pedrinhas, Comprida Island; and (4) Cardoso Island, Cananeia. The soil samples were collect at a depths of 0 to 5, 0-10, 0-20, 20-40 and 40 to 60cm for the chemical and physical analysis. Were studied the additive and pondering additive models to evaluate soil quality. It was concluded: a) the comparative additive model produces quantitative results and the pondering additive model quantitative results; b) as the pondering additive model, the values of Soil Quality Index (SQI) for soils under forest of restinga are low and realistic, demonstrating the small plant biomass production potential of these soils, as well as their low resilience; c) the values of SQI similar to areas with and without restinga forest give quantitative demonstration of the restinga be considered as soil phase; d) restinga forest, probably, is maintained solely by the cycling of nutrients in a closed nutrient cycling; e) for the determination of IQS for soils under restinga vegetation the use of routine chemical analysis is adequate. Keywords: Model, restinga forest, Soil Quality Index (SQI).

  14. Forest harvesting reduces the soil metagenomic potential for biomass decomposition.

    Science.gov (United States)

    Cardenas, Erick; Kranabetter, J M; Hope, Graeme; Maas, Kendra R; Hallam, Steven; Mohn, William W

    2015-11-01

    Soil is the key resource that must be managed to ensure sustainable forest productivity. Soil microbial communities mediate numerous essential ecosystem functions, and recent studies show that forest harvesting alters soil community composition. From a long-term soil productivity study site in a temperate coniferous forest in British Columbia, 21 forest soil shotgun metagenomes were generated, totaling 187 Gb. A method to analyze unassembled metagenome reads from the complex community was optimized and validated. The subsequent metagenome analysis revealed that, 12 years after forest harvesting, there were 16% and 8% reductions in relative abundances of biomass decomposition genes in the organic and mineral soil layers, respectively. Organic and mineral soil layers differed markedly in genetic potential for biomass degradation, with the organic layer having greater potential and being more strongly affected by harvesting. Gene families were disproportionately affected, and we identified 41 gene families consistently affected by harvesting, including families involved in lignin, cellulose, hemicellulose and pectin degradation. The results strongly suggest that harvesting profoundly altered below-ground cycling of carbon and other nutrients at this site, with potentially important consequences for forest regeneration. Thus, it is important to determine whether these changes foreshadow long-term changes in forest productivity or resilience and whether these changes are broadly characteristic of harvested forests.

  15. Modelling trends in soil solution concentrations under five forest-soil combinations in the Netherlands

    NARCIS (Netherlands)

    Salm, van der C.; Vries, de W.; Kros, J.

    1996-01-01

    The influence of forest and soil properties on changes in soil solution concentration upon a reduction deposition was examined for five forest-soil combinations with the dynamic RESAM model. Predicted concentrations decreased in the direction Douglas fir - Scotch pine - oak, due to decreased

  16. Mapping boreal forest biomass with imagery from polarimetric and semi-polarimetric SAR sensors / Mapeamento da biomassa fl orestal boreal com imagens dos sensores SAR polarimétricos e semi-polarimétricos

    Directory of Open Access Journals (Sweden)

    Yrjo Rauste

    2008-09-01

    Full Text Available Data from ALOS/Palsar and TerraSAR-X were used to estimate forest biomass in Boreal forest zone in Finland. In the study site in Heinavesi (forest biomass between 0 and 255 tons/ha, the HH-polarised componentof dual-polarised ALOS/Palsar produced biomass estimation accuracies (RMSE between 35 and 42 tons/ha. In the Kuortane site (biomass0…188 tons/ha the RMSE varied between 25 and 28 tons/ha. Since onlytwo winter-time scenes from TerraSAR-X were available, TerraSAR-X results were very preliminary. The phase of the HH-VV cross-coherenceproduced the highest biomass-correlations among the TerraSAR-X derived features. This produced a biomass estimation accuracy (RMSE of 49 tons/ha in the Heinavesi study site.

  17. The effect of assimilating satellite-derived soil moisture data in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    NARCIS (Netherlands)

    van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W.

    2016-01-01

    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture, and carbon fluxes as compared to e.g. Europe. To better constrain our

  18. Atmosphere composition changes, solar irradiance variations, and changing forest tree growth

    International Nuclear Information System (INIS)

    Chalupa, V.

    1997-01-01

    The paper deals with changes in the Earth's atmosphere composition, which greatly influence the growth and health condition of forests. Impacts of increasing concentrations of greenhouse gases and anthropogenic aerosols on future climate changes are assessed. In the past forty years increasing assimilation of CO2 by forests growing in temperature and boreal zones in the Northern Hemisphere was observed. Increasing trends in diameter, height and volume growth of forest trees were found in the Central, Western and Northern Europe. Causes of higher increments are not exactly known, however, the results of present measurements indicate that higher air temperature, nitrogen deposition in forest soils and raising atmospheric CO2 concentration participated in increased growth of forests

  19. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils

    DEFF Research Database (Denmark)

    de Vries, Wim; Reinds, Gert Jan; Gundersen, Per

    2006-01-01

    for CO2 emissions because of harvest and forest fires, was assumed 33% of the overall C pool changes by growth. C sequestration in the soil were based on calculated nitrogen (N) retention (N deposition minus net N uptake minus N leaching) rates in soils, multiplied by the C/N ratio of the forest soils......An estimate of net carbon (C) pool changes and long-term C sequestration in trees and soils was made at more than 100 intensively monitored forest plots (level II plots) and scaled up to Europe based on data for more than 6000 forested plots in a systematic 16 km x 16 km grid (level I plots). C...... pool changes in trees at the level II plots were based on repeated forest growth surveys At the level I plots, an estimate of the mean annual C pool changes was derived from stand age and available site quality characteristics. C sequestration, being equal to the long-term C pool changes accounting...

  20. Evidence for Diverse Biogeochemical Drivers of Boreal Forest New Particle Formation

    Science.gov (United States)

    Lawler, Michael J.; Rissanen, Matti P.; Ehn, Mikael; Mauldin, R. Lee; Sarnela, Nina; Sipilä, Mikko; Smith, James N.

    2018-02-01

    New particle formation (NPF) is an important contributor to particle number in many locations, but the chemical drivers for this process are not well understood. Daytime NPF events occur regularly in the springtime Finnish boreal forest and strongly impact aerosol abundance. In April 2014 size-resolved chemical measurements of ambient nanoparticles were made using the Time-of-Flight Thermal Desorption Chemical ionization Mass Spectrometer and we report results from two NPF events. While growth overall was dominated by terpene oxidation products, newly formed 20-70 nm particles showed enhancement in apparent alkanoic acids. The events occurred on days with rapid transport of marine air, which correlated with low background aerosol loading and higher gas phase methanesulfonic acid levels. These results are broadly consistent with previous studies on Nordic NPF but indicate that further attention should be given to the sources and role of non-terpenoid organics and the possible contribution of transported marine compounds in this process.

  1. Migration and bioavailability of {sup 137}Cs in forest soil of southern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Konopleva, I.; Klemt, E. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany); Konoplev, A. [Scientific Production Association ' TYPHOON' , Obninsk (Russian Federation); Zibold, G. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany)], E-mail: zibold@hs-weingarten.de

    2009-04-15

    To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered.

  2. Forests trapped in nitrogen limitation--an ecological market perspective on ectomycorrhizal symbiosis.

    Science.gov (United States)

    Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N

    2014-07-01

    Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    Science.gov (United States)

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  4. Mineral Soil Carbon in Managed Hardwood Forests of the Northeastern US

    Science.gov (United States)

    Vario, C.; Friedland, A.; Hornig, C.

    2013-12-01

    New England is characterized by extensive forest cover and large reservoirs of soil carbon (C). In northern hardwood forests, mineral soil C can account for up to 50% of total ecosystem C. There has been an increasing demand for forests to serve both as a C sink and a renewable energy source, and effective management of the ecosystem C balance relies on accurate modeling of each compartment of the ecosystem. However, the dynamics of soil C storage with respect to forest use are variable and poorly understood, particularly in mineral soils. For example, current regional models assume C pools after forest harvesting do not change, while some studies suggest that belowground mineral soil C pools can be affected by disturbances at the soil surface. We quantified mineral soil C pools in previously clear-cut stands in seven research or protected forests across New York, New Hampshire, Massachusetts, and Vermont. The ages of the sites sampled ranged from recently cleared to those with no disturbance history, with 21 forest stands represented in the study. Within each research forest studied, physical parameters such as soil type, forest type, slope and land-use history (aside from forest harvest) did not vary between the stands of different ages. Soil samples were collected to a depth of 60 cm below the mineral-organic boundary using a gas-powered augur and 9.5-cm diameter drill bit. Samples were collected in 10-cm increments in shallow mineral soil and 15-cm increments from 30-60 cm depth. Carbon, nitrogen (N), pH, texture and soil mineralogy were measured across the regional sites. At Bartlett Experimental Forest (BEF) in New Hampshire, mineral soil biogeochemistry in cut and uncut sites was studied at a finer scale. Measurements included soil temperature to 55 cm depth, carbon compound analyses using Py-GCMS and soil microbial messenger RNA extractions from mineral soil. Finally, we simulated C dynamics after harvesting by building a model in Stella, with a particular

  5. Effect of soil compaction and biomass removal on soil CO2 efflux in a Missouri forest

    Science.gov (United States)

    Felix, Jr. Ponder

    2005-01-01

    Forest disturbances associated with harvesting activities can affect soil properties and soil respiration. A soda-lime technique was used to measure soil carbon dioxide (CO2) efflux rates in clearcut plots of a Missouri oak-hickory (Quercus spp. L.-Carya spp. Nutt.) forest 4 years after being treated with two levels of forest...

  6. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    . Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...... and thermally labile to resistant components decreased from grassland to forest successional stages, and corresponded to decreased SOC protection within stable aggregates. This PhD thesis showed that mineral SOC stocks and physically protected SOC fractions decreased following forest expansion on mountain......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...

  7. Bioecology of pear thrips: distribution in forest soils

    Science.gov (United States)

    Margaret Skinner; Bruce L. Parker

    1991-01-01

    The vertical and horizontal distribution of pear thrips in Vermont sugar maple forest soils was investigated. In the fall, about 86% of the thrips were found in the upper 10 cm of soil, though a few were found as deep as 20 cm. No thrips were found in the leaf litter. Soil sampling tools to determine thrips populations within an entire forest were tested and a standard...

  8. Linkages between forest soils and water quality and quantity

    Science.gov (United States)

    Daniel G. Neary; George G. Ice; C. Rhett Jackson

    2009-01-01

    The most sustainable and best quality fresh water sources in the world originate in forest ecosystems. The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, moderating stream hydrology, and providing diverse aquatic habitat. Forest soils feature litter layers and...

  9. Studies of the influence of soil biogenic acidity on podzol formation

    OpenAIRE

    Yashin, Ivan; Vasenev, Ivan; Valentini, Ricardo; Petukhova, Anastasiya; Kogut, Lubov

    2013-01-01

    The paper with a review and generalization of data analysis on the principal forms of soil biogenic acidity is based on research into representative podzols and podzoluvisols with combined parent materials and boreal (taiga) ecosystems at the Central Forest Biosphere Reserve (CFBR) (Tver region), Forest Experimental Station of RSAU (FES) (Moscow) and LAMP Experimental plot in Taiga park of Petrozavodsk. Long-term monitoring of acidity forms was performed by the authors during 2002-2012. Two p...

  10. Granulated wood ash to forest soil - Ecological effects

    International Nuclear Information System (INIS)

    Rosen, K.; Eriksson, H.; Clarholm, M.; Lundkvist, H.; Rudebeck, A.

    1993-01-01

    This report describes research concerning ecological effects of wood ash recycling to forest soils. The main part of the minerals in the wood fuels are retained in the ashes after combustion. By returning the ashes back to the cleared forest areas, the mineral losses can be reduced. Adding ashes and limestone is a method to vitalize acidified forest soils and restore the production capacity. 48 refs, 26 figs, 8 tabs

  11. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams.

    Science.gov (United States)

    Rasilo, Terhi; Hutchins, Ryan H S; Ruiz-González, Clara; Del Giorgio, Paul A

    2017-02-01

    Streams are typically supersaturated in carbon dioxide (CO 2 ) and methane (CH 4 ), and are recognized as important components of regional carbon (C) emissions in northern landscapes. Whereas there is consensus that in most of the systems the CO 2 emitted by streams represents C fixed in the terrestrial ecosystem, the pathways delivering this C to streams are still not well understood. We assessed the contribution of direct soil CO 2 injection versus the oxidation of soil-derived dissolved organic C (DOC) and CH 4 in supporting CO 2 supersaturation in boreal streams in Québec. We measured the concentrations of CO 2 , CH 4 and DOC in 43 streams and adjacent soil waters during summer base-flow period. A mass balance approach revealed that all three pathways are significant, and that the mineralization of soil-derived DOC and CH 4 accounted for most of the estimated stream CO 2 emissions (average 75% and 10%, respectively), and that these estimated contributions did not change significantly between the studied low order (≤3) streams. Whereas some of these transformations take place in the channel proper, our results suggest that they mainly occur in the hyporheic zones of the streams. Our results further show that stream CH 4 emissions can be fully explained by soil CH 4 inputs. This study confirms that these boreal streams, and in particular their hyporheic zones, are extremely active processors of soil derived DOC and CH 4 , not just vents for soil produced CO 2 . Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Coastal Plain Soil Fertility Degradation And Natural Forest Ecosystem Regeneration

    Science.gov (United States)

    Casagrande, J. C.; Sato, C. A.; Reis-Duarte, R. M.; Soares, M. R.; Galvão Bueno, M. S.

    2009-04-01

    The sand coastal plain vegetation (Restinga Forest) has been described as an ecosystem associated with the Atlantic Forest, constituted of mosaics, which occur in areas of great ecological diversity, particularly the features of the soil which mostly influence the forest, therefore assigned as edaphic community. The Restinga forest is one of the most fragile, showing low resilience to human damage This work was carried out in several points (14) of Restinga Forest (six low - trees from 3 to 10 m high - and eight high forest - trees from 10 to 15 m high) in the litoral coast of the state of São Paulo. Each sample was made of 15 subsamples of each area collected in each depth (one in 0 - 5, 5 - 10, 10 - 15, 15 - 20, and another in 0 - 20, 20 - 40, 40 and 60 cm). Soil characteristics analyzed were pH, P, Na, K, Ca, Mg, S, H + Al, Al, B, Cu, Fe, Mn, Zn contents and base saturation, cation exchange capacity and aluminum saturation. The vegetation physiognomies of Restinga forest (low and high) were associated with soil results and with the history of human occupation. The soils are sandy (2 to 4% of clay), resulting in a low capacity of nutrient retention. Soil fertility analysis to low and high Restinga forest were similar and showed very low contents of phosphorous, calcium and magnesium in all areas investigated. The base saturation was low due to low amounts of Na, K, Ca and Mg. Base saturation presents low level in all cases, less than 10, indicating low nutritional reserve in the soil. The aluminum saturation values varied from 58 to 69%. The level of calcium and magnesium were low in the subsurface soil layer mainly, associate with high aluminum saturation, representing an limiting factor for the root system development in depth. If soil fertility parameters do not show any significant difference between low and high Restinga physiognomy, what make distinction is the recuperation time. In the areas of high Forest can be note a too long time of recuperation

  13. Sources of nitrous oxide emitted from European forest soils

    DEFF Research Database (Denmark)

    Ambus, P.; Zechmeister-Boltenstern, S.; Butterbach-Bahl, K.

    2006-01-01

    Forest ecosystems may provide strong sources of nitrous oxide (N2O), which is important for atmospheric chemical and radiative properties. Nonetheless, our understanding of controls on forest N2O emissions is insufficient to narrow current flux estimates, which still are associated with great...... uncertainties. In this study, we have investigated the quantitative and qualitative relationships between N-cycling and N2O production in European forests in order to evaluate the importance of nitrification and denitrification for N2O production. Soil samples were collected in 11 different sites characterized...... by variable climatic regimes and forest types. Soil N-cycling and associated production of N2O was assessed following application of 15N-labeled nitrogen. The N2O emission varied significantly among the different forest soils, and was inversely correlated to the soil C: N ratio. The N2O emissions were...

  14. Radon levels and transport parameters in Atlantic Forest soils

    International Nuclear Information System (INIS)

    Farias, E.E.G. de; Silva Neto, P.C. da; Souza, E.M. de; De Franca, E.J.; Hazin, C.A.

    2016-01-01

    In natural forest soils, the radon transport processes can be significantly intensified due to the contribution of living organism activities to soil porosity. In this paper, the first results of the radon concentrations were obtained for soil gas from the Atlantic Forest, particularly in the Refugio Ecologico Charles Darwin, Brazil. The estimation of permeability and radon exhalation rate were carried out in this conservation unit. For forested soils, radon concentrations as high as 40 kBq m -3 were found. Based on the radon concentrations and on the permeability parameter, the results indicated considerable radon hazard for human occupation in the neighborhood. (author)

  15. Carbon stocks in tree biomass and soils of German forests

    Directory of Open Access Journals (Sweden)

    Wellbrock Nicole

    2017-06-01

    Full Text Available Close to one third of Germany is forested. Forests are able to store significant quantities of carbon (C in the biomass and in the soil. Coordinated by the Thünen Institute, the German National Forest Inventory (NFI and the National Forest Soil Inventory (NFSI have generated data to estimate the carbon storage capacity of forests. The second NFI started in 2002 and had been repeated in 2012. The reporting time for the NFSI was 1990 to 2006. Living forest biomass, deadwood, litter and soils up to a depth of 90 cm have stored 2500 t of carbon within the reporting time. Over all 224 t C ha-1 in aboveground and belowground biomass, deadwood and soil are stored in forests. Specifically, 46% stored in above-ground and below-ground biomass, 1% in dead wood and 53% in the organic layer together with soil up to 90 cm. Carbon stocks in mineral soils up to 30 cm mineral soil increase about 0.4 t C ha-1 yr-1 stocks between the inventories while the carbon pool in the organic layers declined slightly. In the living biomass carbon stocks increased about 1.0 t C ha-1 yr-1. In Germany, approximately 58 mill. tonnes of CO2 were sequestered in 2012 (NIR 2017.

  16. Climate change moisture stresses on northern coniferous forests

    International Nuclear Information System (INIS)

    Wein, R.W.; Hogg, E.H.

    1990-01-01

    The predictions of general circulation models suggest major climatic changes for high latitude tundra ecosystems and lower latitude forested ecosystems. Of particular interest to Canadians is the predicted shift in the boreal forest climate northward, with a considerable northern expansion of the grasslands of western Canada. Reductions in soil moisture would have both direct and indirect effects on forest composition and productivity. The most important likely physical factors subject to alteration are permafrost, hydrological regimes and fire. Under warmer and drier conditions, potential fire burn frequency will increase, and might lead to greater proportions of jack pine than previously present. It is anticipated that permafrost will disappear from the extensive discontinuous permafrost zone where soil permafrost temperatures are presently -3 degree C or higher. In wet sites, melting of the permafrost could lead to drowning of forests as soils subside and become temporarily waterlogged. In more northerly areas, forest growth may increase in drier areas as the depth of the active layer increases. Fire may be a significant feed-back mechanism that could enhance the greenhouse effect. The estimated proportion of carbon in Canadian peatlands is in the order of 170 gigatonnes, whereas one-tenth of a gigatonne of carbon is released annually by fossil fuel combustion in Canada. 11 refs

  17. Acidification of forest soil in Russia: From 1893 to present

    Science.gov (United States)

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.; Bobrov, A.A.; Torn, M.S.; Harden, J.W.

    2004-01-01

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations ???100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases in precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place. Copyright 2004 by the American Geophysical Union.

  18. REAL AND SIMULATED WAVEFORM RECORDING LIDAR DATA IN BOREAL JUVENILE FOREST VEGETATION

    Directory of Open Access Journals (Sweden)

    A. Hovi

    2013-05-01

    Full Text Available Airborne small-footprint LiDAR is replacing field measurements in regional-level forest inventories, but auxiliary field work is still required for the optimal management of young stands. Waveform (WF recording sensors can provide a more detailed description of the vegetation compared to discrete return (DR systems. Furthermore, knowing the shape of the signal facilitates comparisons between real data and those obtained with simulation tools. We performed a quantitative validation of a Monte Carlo ray tracing (MCRT -based LiDAR simulator against real data and used simulations and empirical data to study the WF recording LiDAR for the classification of boreal juvenile forest vegetation. Geometric-optical models of three common species were used as input for the MCRT model. Simulated radiometric and geometric WF features were in good agreement with the real data, and interspecies differences were preserved. We used the simulator to study the effects of sensor parameters on species classification performance. An increase in footprint size improved the classification accuracy up to a certain footprint size, while the emitted pulse width and the WF sampling rate had minor effects. Analyses on empirical data showed small improvement in performance compared to existing studies, when classifying seedling stand vegetation to four operational classes. The results on simulator validation serve as a basis for the future use of simulation models e.g. in LiDAR survey planning or in the simulation of synthetic training data, while the empirical findings clarify the potential of WF LiDAR data in the inventory chain for the operational forest management planning in Finland.

  19. Soil amendments effects on radiocesium translocation in forest soils.

    Science.gov (United States)

    Sugiura, Yuki; Ozawa, Hajime; Umemura, Mitsutoshi; Takenaka, Chisato

    2016-12-01

    We conducted an experiment to investigate the potential of phytoremediation by soil amendments in a forest area. To desorb radiocesium ( 137 Cs) from variable charges in the soil, ammonium sulfate (NH 4 + ) and elemental sulfur (S) (which decrease soil pH) were applied to forest soil collected from contaminated area at a rate of 40 and 80 g/m 2 , respectively. A control condition with no soil treatment was also considered. We defined four groups of aboveground conditions: planted with Quercus serrata, planted with Houttuynia cordata, covered with rice straw as litter, and unplanted/uncovered (control). Cultivation was performed in a greenhouse with a regular water supply for four months. Following elemental sulfur treatment, soil pH values were significantly lower than pH values following ammonium sulfate treatment and no treatment. During cultivation, several plant species germinated from natural seeds. No clear differences in aboveground tissue 137 Cs concentrations in planted Q. serrata and H. cordata were observed among the treatments. However, aboveground tissue 137 Cs concentration values in the germinated plants following elemental sulfur treatment were higher than the values following the ammonium sulfate treatment and no treatment. Although biomass values for Q. serrata, H. cordata, and germinated plants following elemental sulfur treatment tended to be low, the total 137 Cs activities in the aboveground tissue of germinated plants were higher than those following ammonium sulfate treatment and no treatment in rice straw and unplanted conditions. Although no significant differences were observed, 137 Cs concentrations in rice straw following ammonium sulfate and elemental sulfur treatments tended to be higher than those in the control case. The results of this study indicate that elemental sulfur lowers the soil pH for a relatively long period and facilitates 137 Cs translocation to newly emerged and settled plants or litter, but affects plant growth in

  20. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems

    Directory of Open Access Journals (Sweden)

    Kezia eGoldmann

    2015-11-01

    Full Text Available Fungal communities have been shown to be highly sensitive towards shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L., with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L. or spruce (Picea abies Karst. which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure.We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal OTU richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera.This study extends our knowledge