WorldWideScience

Sample records for bordetella adenylate cyclase

  1. Monospecific antibody against Bordetella pertussis Adenylate Cyclase protects from Pertussis

    Directory of Open Access Journals (Sweden)

    Yasmeen Faiz Kazi

    2012-06-01

    Full Text Available Objectives: Acellular pertussis vaccines has been largely accepted world-wide however, there are reports about limitedantibody response against these vaccines suggesting that multiple antigens should be included in acellular vaccinesto attain full protection. The aim of present study was to evaluate the role of Bordetella pertussis adenylate cyclase as aprotective antigen.Materials and methods: Highly mono-specific antibody against adenylate cyclase (AC was raised in rabbits usingnitrocellulose bound adenylate cyclase and the specificity was assessed by immuoblotting. B.pertussis 18-323, wasincubated with the mono-specific serum and without serum as a control. Mice were challenged intra-nasally and pathophysiolgicalresponses were recorded.Results: The production of B.pertussis adenylate cyclase monospecific antibody that successfully recognized on immunoblotand gave protection against fatality (p< 0.01 and lung consolidation (p <0.01. Mouse weight gain showedsignificant difference (p< 0.05.Conclusion: These preliminary results highlight the role of the B.pertussis adenylate cyclase as a potential pertussisvaccine candidate. B.pertussis AC exhibited significant protection against pertussis in murine model. J Microbiol InfectDis 2012; 2(2: 36-43Key words: Pertussis; monospecific; antibody; passive-protection

  2. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme.

    Science.gov (United States)

    Masin, Jiri; Osicka, Radim; Bumba, Ladislav; Sebo, Peter

    2015-11-01

    The adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) is a key virulence factor of the whooping cough agent Bordetella pertussis. CyaA targets myeloid phagocytes expressing the complement receptor 3 (CR3, known as αMβ2 integrin CD11b/CD18 or Mac-1) and translocates by a poorly understood mechanism directly across the cytoplasmic membrane into cell cytosol of phagocytes an adenylyl cyclase(AC) enzyme. This binds intracellular calmodulin and catalyzes unregulated conversion of cytosolic ATP into cAMP. Among other effects, this yields activation of the tyrosine phosphatase SHP-1, BimEL accumulation and phagocyte apoptosis induction. In parallel, CyaA acts as a cytolysin that forms cation-selective pores in target membranes. Direct penetration of CyaA into the cytosol of professional antigen-presenting cells allows the use of an enzymatically inactive CyaA toxoid as a tool for delivery of passenger antigens into the cytosolic pathway of processing and MHC class I-restricted presentation, which can be exploited for induction of antigen-specific CD8(+) cytotoxic T-lymphocyte immune responses.

  3. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Finley, Natosha L., E-mail: finleynl@miamioh.edu [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 (United States)

    2014-10-10

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken

  4. Amidate prodrugs of 9-[2-(phosphonomethoxy)ethyl]adenine as inhibitors of adenylate cyclase toxin from Bordetella pertussis.

    Science.gov (United States)

    Šmídková, Markéta; Dvoráková, Alexandra; Tloust'ová, Eva; Česnek, Michal; Janeba, Zlatko; Mertlíková-Kaiserová, Helena

    2014-01-01

    Adenylate cyclase toxin (ACT) is the key virulence factor of Bordetella pertussis that facilitates its invasion into the mammalian body. 9-[2-(Phosphonomethoxy)ethyl]adenine diphosphate (PMEApp), the active metabolite of the antiviral drug bis(POM)PMEA (adefovir dipivoxil), has been shown to inhibit ACT. The objective of this study was to evaluate six novel amidate prodrugs of PMEA, both phenyloxy phosphonamidates and phosphonodiamidates, for their ability to inhibit ACT activity in the J774A.1 macrophage cell line. The two phenyloxy phosphonamidate prodrugs exhibited greater inhibitory activity (50% inhibitory concentration [IC50] = 22 and 46 nM) than the phosphonodiamidates (IC50 = 84 to 3,960 nM). The inhibitory activity of the prodrugs correlated with their lipophilicity and the degree of their hydrolysis into free PMEA in J774A.1 cells. Although the prodrugs did not inhibit ACT as effectively as bis(POM)PMEA (IC50 = 6 nM), they were significantly less cytotoxic. Moreover, they all reduced apoptotic effects of ACT and prevented an ACT-induced elevation of intracellular [Ca(2+)]i. The amidate prodrugs were less susceptible to degradation in Caco-2 cells compared to bis(POM)PMEA, while they exerted good transepithelial permeability in this assay. As a consequence, a large amount of intact amidate prodrug is expected to be available to target macrophages in vivo. This feature makes nontoxic amidate prodrugs attractive candidates for further investigation as novel antimicrobial agents.

  5. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin.

    Science.gov (United States)

    Springer, Tzvia I; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L

    2014-10-10

    Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD's β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD's β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (Rh) and reduced thermal stability in the mutant complex. Taken together, our data provide new structural insights into the β-hairpin's role in stabilizing interactions between CyaA-ACD and N-CaM.

  6. Stability, structural and functional properties of a monomeric, calcium–loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis

    Science.gov (United States)

    Cannella, Sara E.; Ntsogo Enguéné, Véronique Yvette; Davi, Marilyne; Malosse, Christian; Sotomayor Pérez, Ana Cristina; Chamot-Rooke, Julia; Vachette, Patrice; Durand, Dominique; Ladant, Daniel; Chenal, Alexandre

    2017-01-01

    Bordetella pertussis, the causative agent of whooping cough, secretes an adenylate cyclase toxin, CyaA, which invades eukaryotic cells and alters their physiology by cAMP overproduction. Calcium is an essential cofactor of CyaA, as it is the case for most members of the Repeat-in-ToXins (RTX) family. We show that the calcium-bound, monomeric form of CyaA, hCyaAm, conserves its permeabilization and haemolytic activities, even in a fully calcium-free environment. In contrast, hCyaAm requires sub-millimolar calcium in solution for cell invasion, indicating that free calcium in solution is involved in the CyaA toxin translocation process. We further report the first in solution structural characterization of hCyaAm, as deduced from SAXS, mass spectrometry and hydrodynamic studies. We show that hCyaAm adopts a compact and stable state that can transiently conserve its conformation even in a fully calcium-free environment. Our results therefore suggest that in hCyaAm, the C-terminal RTX-domain is stabilized in a high-affinity calcium-binding state by the N-terminal domains while, conversely, calcium binding to the C-terminal RTX-domain strongly stabilizes the N-terminal regions. Hence, the different regions of hCyaAm appear tightly connected, leading to stabilization effects between domains. The hysteretic behaviour of CyaA in response to calcium is likely shared by other RTX cytolysins. PMID:28186111

  7. Bisamidate Prodrugs of 2-Substituted 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA, adefovir) as Selective Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis.

    Science.gov (United States)

    Česnek, Michal; Jansa, Petr; Šmídková, Markéta; Mertlíková-Kaiserová, Helena; Dračínský, Martin; Brust, Tarsis F; Pávek, Petr; Trejtnar, František; Watts, Val J; Janeba, Zlatko

    2015-08-01

    Novel small-molecule agents to treat Bordetella pertussis infections are highly desirable, as pertussis (whooping cough) remains a serious health threat worldwide. In this study, a series of 2-substituted derivatives of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA, adefovir), in their isopropyl ester bis(L-phenylalanine) prodrug form, were designed and synthesized as potent inhibitors of adenylate cyclase toxin (ACT) isolated from B. pertussis. The series consists of PMEA analogues bearing either a linear or branched aliphatic chain or a heteroatom at the C2 position of the purine moiety. Compounds with a small C2 substituent showed high potency against ACT without cytotoxic effects as well as good selectivity over human adenylate cyclase isoforms AC1, AC2, and AC5. The most potent ACT inhibitor was found to be the bisamidate prodrug of the 2-fluoro PMEA derivative (IC50 =0.145 μM). Although the bisamidate prodrugs reported herein exhibit overall lower activity than the bis(pivaloyloxymethyl) prodrug (adefovir dipivoxil), their toxicity and plasma stability profiles are superior. Furthermore, the bisamidate prodrug was shown to be more stable in plasma than in macrophage homogenate, indicating that the free phosphonate can be effectively distributed to target tissues, such as the lungs. Thus, ACT inhibitors based on acyclic nucleoside phosphonates may represent a new strategy to treat whooping cough.

  8. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form.

    Science.gov (United States)

    Karst, Johanna C; Ntsogo Enguéné, V Yvette; Cannella, Sara E; Subrini, Orso; Hessel, Audrey; Debard, Sylvain; Ladant, Daniel; Chenal, Alexandre

    2014-10-31

    The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.

  9. Bordetella adenylate cyclase toxin differentially modulates toll-like receptor-stimulated activation, migration and T cell stimulatory capacity of dendritic cells.

    Directory of Open Access Journals (Sweden)

    Irena Adkins

    Full Text Available Adenylate cyclase toxin (CyaA is a key virulence factor of the whooping cough agent Bordetella pertussis. The toxin targets CD11b-expressing phagocytes and delivers into their cytosol an adenylyl cyclase (AC enzyme that subverts cellular signaling by increasing cAMP levels. In the present study, we analyzed the modulatory effects of CyaA on adhesive, migratory and antigen presenting properties of Toll-like receptor (TLR-activated murine and human dendritic cells (DCs. cAMP signaling of CyaA enhanced TLR-induced dissolution of cell adhesive contacts and migration of DCs towards the lymph node-homing chemokines CCL19 and CCL21 in vitro. Moreover, we examined in detail the capacity of toxin-treated DCs to induce CD4(+ and CD8(+ T cell responses. Exposure to CyaA decreased the capacity of LPS-stimulated DCs to present soluble protein antigen to CD4+ T cells independently of modulation of co-stimulatory molecules and cytokine production, and enhanced their capacity to promote CD4(+CD25(+Foxp3(+ T regulatory cells in vitro. In addition, CyaA decreased the capacity of LPS-stimulated DCs to induce CD8(+ T cell proliferation and limited the induction of IFN-γ producing CD8(+ T cells while enhancing IL-10 and IL-17-production. These results indicate that through activation of cAMP signaling, the CyaA may be mobilizing DCs impaired in T cell stimulatory capacity and arrival of such DCs into draining lymph nodes may than contribute to delay and subversion of host immune responses during B. pertussis infection.

  10. Bordetella pertussis commits human dendritic cells to promote a Th1/Th17 response through the activity of adenylate cyclase toxin and MAPK-pathways.

    Directory of Open Access Journals (Sweden)

    Giorgio Fedele

    Full Text Available The complex pathology of B. pertussis infection is due to multiple virulence factors having disparate effects on different cell types. We focused our investigation on the ability of B. pertussis to modulate host immunity, in particular on the role played by adenylate cyclase toxin (CyaA, an important virulence factor of B. pertussis. As a tool, we used human monocyte derived dendritic cells (MDDC, an ex vivo model useful for the evaluation of the regulatory potential of DC on T cell immune responses. The work compared MDDC functions after encounter with wild-type B. pertussis (BpWT or a mutant lacking CyaA (BpCyaA-, or the BpCyaA- strain supplemented with either the fully functional CyaA or a derivative, CyaA*, lacking adenylate cyclase activity. As a first step, MDDC maturation, cytokine production, and modulation of T helper cell polarization were evaluated. As a second step, engagement of Toll-like receptors (TLR 2 and TLR4 by B. pertussis and the signaling events connected to this were analyzed. These approaches allowed us to demonstrate that CyaA expressed by B. pertussis strongly interferes with DC functions, by reducing the expression of phenotypic markers and immunomodulatory cytokines, and blocking IL-12p70 production. B. pertussis-treated MDDC promoted a mixed Th1/Th17 polarization, and the activity of CyaA altered the Th1/Th17 balance, enhancing Th17 and limiting Th1 expansion. We also demonstrated that Th1 effectors are induced by B. pertussis-MDDC in the absence of IL-12p70 through an ERK1/2 dependent mechanism, and that p38 MAPK is essential for MDDC-driven Th17 expansion. The data suggest that CyaA mediates an escape strategy for the bacterium, since it reduces Th1 immunity and increases Th17 responses thought to be responsible, when the response is exacerbated, for enhanced lung inflammation and injury.

  11. Ca2+ influx and tyrosine kinases trigger Bordetella adenylate cyclase toxin (ACT endocytosis. Cell physiology and expression of the CD11b/CD18 integrin major determinants of the entry route.

    Directory of Open Access Journals (Sweden)

    Kepa B Uribe

    Full Text Available Humans infected with Bordetella pertussis, the whooping cough bacterium, show evidences of impaired host defenses. This pathogenic bacterium produces a unique adenylate cyclase toxin (ACT which enters human phagocytes and catalyzes the unregulated formation of cAMP, hampering important bactericidal functions of these immune cells that eventually cause cell death by apoptosis and/or necrosis. Additionally, ACT permeabilizes cells through pore formation in the target cell membrane. Recently, we demonstrated that ACT is internalised into macrophages together with other membrane components, such as the integrin CD11b/CD18 (CR3, its receptor in these immune cells, and GM1. The goal of this study was to determine whether ACT uptake is restricted to receptor-bearing macrophages or on the contrary may also take place into cells devoid of receptor and gain more insights on the signalling involved. Here, we show that ACT is rapidly eliminated from the cell membrane of either CR3-positive as negative cells, though through different entry routes, which depends in part, on the target cell physiology and characteristics. ACT-induced Ca(2+ influx and activation of non-receptor Tyr kinases into the target cell appear to be common master denominators in the different endocytic strategies activated by this toxin. Very importantly, we show that, upon incubation with ACT, target cells are capable of repairing the cell membrane, which suggests the mounting of an anti-toxin cell repair-response, very likely involving the toxin elimination from the cell surface.

  12. Guanylate cyclase in Dictyostelium discoideum with the topology of mammalian adenylate cyclase

    NARCIS (Netherlands)

    Roelofs, J; Snippe, H; Kleineidam, RG; Van Haastert, PJM

    2001-01-01

    The core of adenylate and guanylate cyclases is formed by an intramolecular ol intermolecular dimer of two cyclase domains arranged in an antiparallel fashion. Metazoan membrane-bound adenylate cyclases are composed of 12 transmembrane spanning regions, and two cyclase domains which function as a he

  13. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Cronin, M.J.; Evans, W.S.; Rogol, A.D.; Weiss, A.A.; Thorner, M.O.; Orth, D.N.; Nicholson, W.E.; Yasumoto, T.; Hewlett, E.L.

    1986-08-01

    Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplified the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release.

  14. Pituitary adenylate cyclase activating polypeptide and migraine

    DEFF Research Database (Denmark)

    Zagami, Alessandro S; Edvinsson, Lars; Goadsby, Peter J

    2014-01-01

    with moderate or severe migraine headache had elevated PACAP in the external jugular vein during headache (n = 15), that was reduced 1 h after treatment with sumatriptan 6 mg (n = 11), and further reduced interictally (n = 9). The data suggest PACAP, or its receptors, are a promising target for migraine......Pituitary adenylate cyclase activating peptide (PACAP) is found in human trigeminocervical complex and can trigger migraine. PACAP levels were measured using a sensitive radioimmunoassay. Stimulation of the superior sagittal sinus (SSS) in cat elevated PACAP levels in cranial blood. Patients...

  15. Adenylate cyclases involvement in pathogenicity, a minireview.

    Science.gov (United States)

    Costache, Adriana; Bucurenci, Nadia; Onu, Adrian

    2013-01-01

    Cyclic AMP (cAMP), one of the most important secondary messengers, is produced by adenylate cyclase (AC) from adenosine triphosphate (ATP). AC is a widespread enzyme, being present both in prokaryotes and eukaryotes. Although they have the same enzymatic activity (ATP cyclization), the structure of these proteins varies, depending on their function and the producing organism. Some pathogenic bacteria utilize these enzymes as toxins which interact with calmodulin (or another eukaryote activator), causing intense cAMP synthesis and disruption of infected cell functions. In contrast, other pathogenic bacteria benefit of augmentation of AC activity for their own function. Based on sequence analysis ofAC catalytic domain from two pathogenic bacteria (Bacillus anthracis and Bordetellapertussis) with known three-dimensional structures, a possible secondary structure for 1-255 amino acid fragment from Pseudomonas aeruginosa AC (with 80TKGFSVKGKSS90 as the ATP binding site) is proposed.

  16. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Directory of Open Access Journals (Sweden)

    César Martín

    Full Text Available Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  17. Adenyl cyclase in the human placenta.

    Science.gov (United States)

    Sato, K; Ryan, K J

    1971-09-21

    This study demonstrated that the human placenta possesses an adenyl cyclase system responsive to catecholamines and sodium flouride (NaF). 2.5 gm human term placentas were homogenized, centrifuged, washed, resuspended, and used as the enzyme system when placed with various agents. Incubations and the determination of adenosine 3', 5' monophosphate (cyclic AMP) formed were performed. Samples stimulated by .0001 M catecholamines (L-epinephrine or L-norepinephrine) or .01 M NaF had higher levels of cyclic AMP than the controls (p. 005 for catecholamine-treated samples and p. 001 for NaF-treated samples). A concentration of .0001 M L-epinephrine or L-norepinephrine appeared to be a maximum effective dose and .0000001 M a minimum. L=epinephrine was 10 times as effective in the stimulation as L-norepinephrine. With .0001 M, 499 and 439 pmoles/10 minutes per 25 mg of tissue was formed, whereas in the control (no added hormones) 256 pmoles/10 minutes were formed. 3.2% ethanol activated the system by a small amount (p.02). Propranolol alone did not appear to have any effect; however, the effect of .0001 M L-epinephrine was reduced by 95% in the presence of .00001 M propranolol. Propranolol had no effect on NaF-stimulated activity.

  18. Thyrotropin receptor-adenylate cyclase function in human thyroid neoplasms.

    Science.gov (United States)

    Saltiel, A R; Powel-Jones, C H; Thomas, C G; Nayfeh, S N

    1981-06-01

    The action of thyrotropin (TSH) on plasma membranes was studied to elucidate the mechanism of hormonal regulation of malignant versus normal human thyroid tissue. Thyroid plasma membranes of six specimens of papillary or follicular carcinoma and six of adenoma, as well as adjacent normal tissue obtained from these patients, were evaluated with respect to binding of 125I-labeled TSH and stimulation of adenylate cyclase. Scatchard analysis of TSH binding revealed the presence of two species of binding sites in normal thyroid of different affinities and capacities. In 11 of 12 tumors studied, the high-affinity binding site remained intact; however, the total number of low-affinity sites was markedly lower than normal tissue. Other parameters of binding were not altered in neoplastic thyroid. In each of these tissues, the hormone responsiveness and kinetics of adenylate cyclase activation were essentially identical to those observed in normal tissue, although basal activity was typically greater in the neoplasm. One carcinoma was totally deficient in both 125I-labeled TSH binding and TSH-stimulatable adenylate cyclase, although basal activity was detected. Furthermore, adenylate cyclase of this specimen was not activated by prostaglandin, in contrast to normal thyroid and other thyroid tumors. These results suggest that: (a) clinical behavior of thyroid carcinomas may not be reflected by TSH receptor-adenylate cyclase function; (b) lack of clinical response as manifest by tumor regression cannot be ascribed to the absence of functional TSH receptors or adenylate cyclase; and (c) decreased low-affinity binding present in tumors is not correlated with altered hormone responsiveness of adenylate cyclase but may reflect more general cancer-induced changes in membrane structure or composition.

  19. Pertussis toxin inhibits cAMP-induced desensitization of adenylate cyclase in Dictyostelium discoideum

    NARCIS (Netherlands)

    Snaar-Jagalska, B. Ewa; Haastert, Peter J.M. van

    1990-01-01

    cAMP binds to surface receptors of Dictyostelium discoideum cells, transducing the signal to adenylate cyclase, guanylate cyclase and to chemotaxis. The activation of adenylate cyclase is maximal after 1 min and then declines to basal levels due to desensitization, which is composed of two component

  20. Restoration of adenylate cyclase responsiveness in murine myeloid leukemia permits inhibition of proliferation by hormone. Butyrate augments catalytic activity of adenylate cyclase.

    Science.gov (United States)

    Inhorn, L; Fleming, J W; Klingberg, D; Gabig, T G; Boswell, H S

    1988-04-01

    Mechanisms of leukemic cell clonal dominance may include aberrations of transmembrane signaling. In particular, neoplastic transformation has been associated with reduced capacity for hormone-stimulated adenylate cyclase activity. In the present study, prostaglandin E, a hormonal activator of adenylate cyclase that has antiproliferative activity in myeloid cells, and cholera toxin, an adenylate cyclase agonist that functions at a postreceptor site by activating the adenylate cyclase stimulatory GTP-binding protein (Gs), were studied for antiproliferative activity in two murine myeloid cell lines. FDC-P1, an interleukin 3 (IL 3)-dependent myeloid cell line and a tumorigenic IL 3-independent subline, FI, were resistant to these antiproliferative agents. The in vitro ability of the "differentiation" agent, sodium butyrate, to reverse their resistance to adenylate cyclase agonists was studied. The antiproliferative action of butyrate involved augmentation of transmembrane adenylate cyclase activity. Increased adenylate cyclase catalyst activity was the primary alteration of this transmembrane signaling group leading to the functional inhibitory effects on leukemia cells, although alterations in regulatory G-proteins appear to play a secondary role.

  1. Allosteric activation of Bordetella pertussis adenylyl cyclase by calmodulin: molecular dynamics and mutagenesis studies.

    Science.gov (United States)

    Selwa, Edithe; Davi, Marilyne; Chenal, Alexandre; Sotomayor-Pérez, Ana-Cristina; Ladant, Daniel; Malliavin, Thérèse E

    2014-07-25

    Adenylyl cyclase (AC) toxin is an essential toxin that allows Bordetella pertussis to invade eukaryotic cells, where it is activated after binding to calmodulin (CaM). Based on the crystal structure of the AC catalytic domain in complex with the C-terminal half of CaM (C-CaM), our previous molecular dynamics simulations (Selwa, E., Laine, E., and Malliavin, T. (2012) Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Proteins 80, 1028–1040) suggested that three residues (i.e. Arg(338), Asn(347), and Asp(360)) might be important for stabilizing the AC/CaM interaction. These residues belong to a loop-helix-loop motif at the C-terminal end of AC, which is located at the interface between CaM and the AC catalytic loop. In the present study, we conducted the in silico and in vitro characterization of three AC variants, where one (Asn(347); ACm1A), two (Arg(338) and Asp(360); ACm2A), or three residues (Arg(338), Asn(347), and Asp(360); ACm3A) were substituted with Ala. Biochemical studies showed that the affinities of ACm1A and ACm2A for CaM were not affected significantly, whereas that of ACm3A was reduced dramatically. To understand the effects of these modifications, molecular dynamics simulations were performed based on the modified proteins. The molecular dynamics trajectories recorded for the ACm3AC-CaM complex showed that the calcium-binding loops of C-CaM exhibited large fluctuations, which could be related to the weakened interaction between ACm3A and its activator. Overall, our results suggest that the loop-helix-loop motif at the C-terminal end of AC is crucial during CaM binding for stabilizing the AC catalytic loop in an active configuration.

  2. Calpain-Mediated Processing of Adenylate Cyclase Toxin Generates a Cytosolic Soluble Catalytically Active N-Terminal Domain.

    Directory of Open Access Journals (Sweden)

    Kepa B Uribe

    Full Text Available Bordetella pertussis, the whooping cough pathogen, secretes several virulence factors among which adenylate cyclase toxin (ACT is essential for establishment of the disease in the respiratory tract. ACT weakens host defenses by suppressing important bactericidal activities of the phagocytic cells. Up to now, it was believed that cell intoxication by ACT was a consequence of the accumulation of abnormally high levels of cAMP, generated exclusively beneath the host plasma membrane by the toxin N-terminal catalytic adenylate cyclase (AC domain, upon its direct translocation across the lipid bilayer. Here we show that host calpain, a calcium-dependent Cys-protease, is activated into the phagocytes by a toxin-triggered calcium rise, resulting in the proteolytic cleavage of the toxin N-terminal domain that releases a catalytically active "soluble AC". The calpain-mediated ACT processing allows trafficking of the "soluble AC" domain into subcellular organella. At least two strategic advantages arise from this singular toxin cleavage, enhancing the specificity of action, and simultaneously preventing an indiscriminate activation of cAMP effectors throughout the cell. The present study provides novel insights into the toxin mechanism of action, as the calpain-mediated toxin processing would confer ACT the capacity for a space- and time-coordinated production of different cAMP "pools", which would play different roles in the cell pathophysiology.

  3. Adenylate cyclase toxin-mediated delivery of the S1 subunit of pertussis toxin into mammalian cells.

    Science.gov (United States)

    Iwaki, Masaaki; Konda, Toshifumi

    2016-02-01

    The adenylate cyclase toxin (ACT) of Bordetella pertussis internalizes its catalytic domain into target cells. ACT can function as a tool for delivering foreign protein antigen moieties into immune effector cells to induce a cytotoxic T lymphocyte response. In this study, we replaced the catalytic domain of ACT with an enzymatically active protein moiety, the S1 (ADP-ribosyltransferase) subunit of pertussis toxin (PT). The S1 moiety was successfully internalized independent of endocytosis into sheep erythrocytes. The introduced polypeptide exhibited ADP-ribosyltransferase activity in CHO cells and induced clustering typical to PT. The results indicate that ACT can act as a vehicle for not only epitopes but also enzymatically active peptides to mammalian cells.

  4. Evidence for adenylate cyclase as a scaffold protein for Ras2-Ira interaction in Saccharomyces cerevisie.

    Science.gov (United States)

    Colombo, Sonia; Paiardi, Chiara; Pardons, Katrien; Winderickx, Joris; Martegani, Enzo

    2014-05-01

    Data in literature suggest that budding yeast adenylate cyclase forms a membrane-associated complex with the upstream components of the cAMP/PKA pathway. Here we provide evidences that adenylate cyclase (Cyr1p) acts as a scaffold protein keeping Ras2 available for its regulatory factors. We show that in a strain with deletion of the CYR1 gene (cyr1Δ pde2Δ msn2Δ msn4Δ) the basal Ras2-GTP level is very high and this is independent on the lack of feedback inhibition that could result from the absence of adenylate cyclase activity. Moreover, strains effected either in the intrinsic adenylate cyclase activity (fil1 strain) or in the stimulation of adenylate cyclase activity by active G-proteins (lcr1 strain) had a normal basal and glucose-induced Ras2-GTP level, indicating that adenylate cyclase activity does not influence the Ras2 activation state and suggesting that Cyr1 protein is required for the proper interaction between Ras2 and the Ira proteins. We also provide evidence that the two Ras-binding sites mapped on Cyr1p are required for the signalling complex assembly. In fact, we show that the cyr1Δ strain expressing CYR1 alleles lacking either the LRR region or the C-terminal domain still have a high basal and glucose-induced Ras2-GTP level. In contrast, a mutant expressing a Cyr1 protein only missing the N-terminal domain showed a normal Ras2 activation pattern. Likewise, the Ras2-GTP levels are comparable in the wild type strain and the srv2Δ strain, supporting the hypothesis that Cap is not essential for the Ras-adenylate cyclase interaction.

  5. Adenylate cyclase regulates elongation of mammalian primary cilia

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J. [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Rattner, Jerome B. [Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Hoorn, Frans A. van der, E-mail: fvdhoorn@ucalgary.ca [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada)

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  6. Neurohypophyseal hormone-responsive renal adenylate cyclase. IV. A random-hit matrix model for coupline in a hormone-sensitive adenylate cyclase system.

    Science.gov (United States)

    Bergman, R N; Hechter, O

    1978-05-10

    A "random-hit" matrix model is proposed to account for the dynamic and steady state relationship between occupation of bovine renal medullary membrane receptors by [Lys8]vasopressin (LVP) and neurohypophyseal hormones (NHH) and the associated activation of membrane-bound adenylate cyclase. The model was developed by systematic introduction of specific rules concerning receptor coupling into a general structural model which consists of two square matrices of identical size, one composed of homogeneous R ("receptor") units, the second of homogeneous C ("cyclase") units. R units are either occupied (RO) or unoccupied (RU); C units are either active (CA) or inactive (CI). Hormone molecules are envisioned to "collide" with R units randomly; collision with RU leads to "binding", and occupation is maintained for a characteristic mean occupancy time, TO. In this structure, each R unit has an "interaction field" which consists of the "twin" unit in the "C" matrix, and the 4 nearest neighbor C units surrounding the twin. Occupation of an R unit leads to activation of all CI units in the interaction field of that R; CA units in the interaction field are refractory. Thus binding at a given R may "recruit" a variable number of inactive neighboring C units (5, 4, 3, 2, 1, or 0). The model requires that there be individual coupling delays between the moment of binding at a given R and subsequent activation of CI units (mean coupling delay (Td) approximately 10% To). Activation of C units persists as long as the "parent" R is occupied and is maintained for an additional short time interval (Tp) after RO reverts to RU, corresponding to hormone dissociation from receptor. The model accounts for the following previously demonstrated relations between LVP occupation of receptors and adenylate cyclase activation in bovine renal medullary membranes: 1) the shape of the nonlinear steady state relation between normalized (percentage maximal) receptor occupation (O) and cyclase activation

  7. [The aspects of adenylate cyclase activity regulation in myocardium cell membranes during hypokinesia].

    Science.gov (United States)

    Bulanova, K Ia; Komar, E S; Lobanok, L M

    1999-01-01

    Nonstimulated and isoproterenol, GTF, GITF, NaF stimulated activities of the adenylate cyclase in sarcolemma in white rats' myocardium was studied after two weeks of hypokinesia. As was established, in restrained animals the sensitivity of adenylate cyclase to the specified agents was increased and transition to the bimodal GTF regulation took place. It is hypothesised that involvement of membrane-bound Gi-proteins in the adrenergic effects on cardiomyocytes is one of mechanisms of the cardiotropic effects of restraint and heart distresses.

  8. Bordetella

    Science.gov (United States)

    The genus Bordetella includes 8 formally recognized species, of which Bordetella parapertussis, Bordetella bronchiseptica, Bordetella avium, and Bordetella hinzii are of veterinary interest. Bordetella pertussis, the type species, is an obligate human pathogen and the causative agent of whooping co...

  9. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores.

    Directory of Open Access Journals (Sweden)

    Radovan Fiser

    Full Text Available Bordetella adenylate cyclase toxin-hemolysin (CyaA penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC⁻ toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P toxoid, unable to conduct Ca²⁺ into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca²⁺ influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca²⁺ influx promoted by molecules locked in a Ca²⁺-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux.

  10. Receptor binding and adenylate cyclase activities of glucagon analogues modified in the N-terminal region

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.L.; Pelton, J.T.; Trivedi, D.; Johnson, D.G.; Coy, D.H.; Sueiras-Diaz, J.; Hruby, V.J.

    1986-04-08

    In this study, we determined the ability of four N-terminally modified derivatives of glucagon, (3-Me-His1,Arg12)-, (Phe1,Arg12)-, (D-Ala4,Arg12)-, and (D-Phe4)glucagon, to compete with 125I-glucagon for binding sites specific for glucagon in hepatic plasma membranes and to activate the hepatic adenylate cyclase system, the second step involved in producing many of the physiological effects of glucagon. Relative to the native hormone, (3-Me-His1,Arg12)glucagon binds approximately twofold greater to hepatic plasma membranes but is fivefold less potent in the adenylate cyclase assay. (Phe1,Arg12)glucagon binds threefold weaker and is also approximately fivefold less potent in adenylate cyclase activity. In addition, both analogues are partial agonists with respect to adenylate cyclase. These results support the critical role of the N-terminal histidine residue in eliciting maximal transduction of the hormonal message. (D-Ala4,Arg12)glucagon and (D-Phe4)glucagon, analogues designed to examine the possible importance of a beta-bend conformation in the N-terminal region of glucagon for binding and biological activities, have binding potencies relative to glucagon of 31% and 69%, respectively. (D-Ala4,Arg12)glucagon is a partial agonist in the adenylate cyclase assay system having a fourfold reduction in potency, while the (D-Phe4) derivative is a full agonist essentially equipotent with the native hormone. These results do not necessarily support the role of an N-terminal beta-bend in glucagon receptor recognition. With respect to in vivo glycogenolysis activities, all of the analogues have previously been reported to be full agonists.

  11. Age-associated alterations in hepatic. beta. -adrenergic receptor/adenylate cyclase complex

    Energy Technology Data Exchange (ETDEWEB)

    Graham, S.M.; Herring, P.A.; Arinze, I.J.

    1987-09-01

    The effect of age on catecholamine regulation of hepatic glycogenolysis and on hepatic adenylate cyclase was studied in male rats up to 24 mo of age. Epinephrine and norepinephrine stimulated glycogenolysis in isolated hepatocytes at all age groups studied. Isoproterenol, however, stimulated glycogenolysis only at 24 mo. In isolated liver membranes, usual activators of adenylate cyclase increased the activity of the enzyme considerably more in membranes from 24-mo-old rats than in membranes from either 3- or 22-mo-old rats. The Mn/sup 2 +/-dependent activity of the cyclase was increased by 2.9-fold in 3-mo-old animals and approx. 5.7-fold in 24-mo-old rats, indicating a substantial age-dependent increase in the intrinsic activity of the catalytic unit. The density of the ..beta..-adrenergic receptor, as measured by the binding of (/sup 125/I)-iodocyanopindolol to plasma membranes, was 5-8 fmol/mg protein in rats aged 3-12 mo but increased to 19 fmol/mg protein in 24-mo-old rats. Computer-aided analysis of isoproterenol competition of the binding indicated a small age-dependent increase in the proportion of ..beta..-receptors in the high-affinity state. These observations suggest that ..beta..-receptor-mediated hepatic glycogenolysis in the aged rat is predicated upon increases in the density of ..beta..-receptors as well as increased intrinsic activity of the catalytic unit of adenylate cyclase.

  12. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the circulation after sumatriptan

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Fahrenkrug, Jan; Petersen, Jesper Troensegaard;

    2013-01-01

    The origin of migraine pain is still elusive, but increasingly researchers focus on the neuropeptides in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. The parasympathetic neurotransmitters, pituitary adenylate cyclase activating...

  13. The role of transcriptional regulation in maintaining the availability of mycobacterial adenylate cyclases

    Directory of Open Access Journals (Sweden)

    Sarah J. Casey

    2014-03-01

    Full Text Available Mycobacterium species have a complex cAMP regulatory network indicated by the high number of adenylate cyclases annotated in their genomes. However the need for a high level of redundancy in adenylate cyclase genes remains unknown. We have used semiquantitiative RT-PCR to examine the expression of eight Mycobacterium smegmatis cyclases with orthologs in the human pathogen Mycobacterium tuberculosis, where cAMP has recently been shown to be important for virulence. All eight cyclases were transcribed in all environments tested, and only four demonstrated environmental-mediated changes in transcription. M. smegmatis genes MSMEG_0545 and MSMEG_4279 were upregulated during starvation conditions while MSMEG_0545 and MSMEG_4924 were downregulated in H2O2 and MSMEG_3780 was downregulated in low pH and starvation. Promoter fusion constructs containing M. tuberculosis H37Rv promoters showed consistent regulation compared to their M. smegmatis orthologs. Overall our findings indicate that while low levels of transcriptional regulation occur, regulation at the mRNA level does not play a major role in controlling cellular cyclase availability in a given environment.

  14. Stimulatory and inhibitory effects of forskolin on adenylate cyclase in rat normal hepatocytes and hepatoma cells.

    Science.gov (United States)

    Miyamoto, K; Sanae, F; Koshiura, R; Matsunaga, T; Takagi, K; Satake, T; Hasegawa, T

    1989-02-01

    Forskolin synergistically potentiated adenosine 3',5'-cyclic monophosphate formation by prostaglandin E1 (PGE1) in rat normal hepatocytes freshly prepared by collagenase digestion and rat ascites hepatoma AH66 cells, but dose-dependently inhibited the accumulation by PGE1 in AH66F cells. Forskolin activated adenylate cyclase in a dose-dependent manner in homogenates of all cell lines. In normal hepatocytes and AH66 cells, simultaneous addition of forskolin and other adenylate cyclase activators [isoproterenol (IPN), PGE1, guanosine 5'-triphosphate sodium salt (GTP), 5'-guanylylimidodiphosphate sodium salt (Gpp (NH)p), NaF, cholera toxin, islet activating protein and MnCl2] gave greater than additive responses. On the other hand, in AH66F cells, the effect of forskolin on adenylate cyclase was hardly influenced by GTP, but forskolin diminished the activities induced by high concentrations of GTP to that by the diterpene alone. Forskolin also significantly inhibited the PGE1-stimulated and the guanine nucleotide binding regulatory protein-stimulated activities. Because AH66F cells were insensitive to IPN, the combination with forskolin and IPN gave similar activity to that obtained with the diterpene alone. The effect of forskolin on the activation by manganese ion was neither synergistic nor inhibitory but was additive in AH66F cells. These results suggest that forskolin promotes the interaction between the stimulatory guanine nucleotide binding regulatory protein and the catalytic unit in normal hepatocytes and AH66 cells, but in AH66F cells forskolin interferes with the coupling of the two components of adenylate cyclase.

  15. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    Directory of Open Access Journals (Sweden)

    Ma’ayan Israeli

    2016-08-01

    Full Text Available Edema Factor (EF, the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP, and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules.

  16. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin

    Science.gov (United States)

    Masin, Jiri; Osickova, Adriana; Sukova, Anna; Fiser, Radovan; Halada, Petr; Bumba, Ladislav; Linhartova, Irena; Osicka, Radim; Sebo, Peter

    2016-01-01

    The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins. PMID:27581058

  17. Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments.

    Science.gov (United States)

    Imbert, M; Chabardès, D; Montégut, M; Clique, A; Morel, F

    1975-01-01

    A method is described, which allows adenylate cyclase activity measurement in single pieces of various nephron segments. Tubular samples of 0.5 to 2 mm length were isolated by microdissection from collagenase treated slices of rabbit kidney. A photograph of each piece was taken in order to measure its length. After a permeabilisation treatment involving preincubation in a hypoosmotic medium and a freezing step, each sample was incubated for 30 mm at 30 degrees C in a medium containing high specific (alpha-32-P)-ATP 3-10-4 M, final volume 2.5 mu 1. The (32P)-cAMP formed was separated from the other labelled nucleotides by filtering the incubate on a dry aluminium oxide microcolumn, 3H cAMP was added as a tracer for measuring cAMP recovery. The sensitivity of the method was found to be a few fentomoles (10-15 M) cAMP. cAMP generation increased linearly as a function of the incubation time up to more than 30 min, and as a function of the length of the segment used. Control and fluoride (5 mM) stimulated adenvlate cyclase activities were measured in the following segments of the nephron: early proximal convoluted tubule (PCT), pars recta of the proximal tubule (PR), thin descending limb of the loop (TDL), cortical portion of the thick ascending limb (CAL), distal convoluted tubule (dct), first branched portion of the collecting tubule (BCT), further cortical (CCT) and medullary (MCT) portions of the collecting tubule. Mean control adenylate cyclase activity varied from 7 (PR) to 75 (BCT) fmoles/mm/30 min. Flouride addition resulted in a 10 (BCT) to 50 (PR) fold increase in enzyme activity. Series of replicates gave a scatter equal to plus or minus 20% (S.D. as a per cent of the mean). The method described appears to be suitable to determine which nephron segments contain hormone-dependent adenylate cyclase.

  18. Effect of mitomycin C on the activation of adenylate cyclase in rat ascites hepatoma AH130 cells.

    Science.gov (United States)

    Miyamoto, K; Matsunaga, T; Sanae, F; Koshiura, R

    1986-09-01

    Isoproterenol (IPN)-stimulated activity of adenylate cyclase was enhanced in a dose-dependent manner by exposure of AH130 cells to mitomycin C (MMC). The enhancement was also observed in prostaglandin E1-, guanine nucleotide analog-, NaF-, cholera toxin- and forskolin-stimulated activities of the enzyme but not in manganese-stimulated activity. In addition, even when the cells pretreated with islet-activating protein were exposed to MMC, IPN-stimulated activity of adenylate cyclase was enhanced. Anaerobic exposure of AH130 cells to MMC somewhat inhibited IPN-stimulated activity of adenylate cyclase in contrast with aerobic exposure. Exposure of cells to adriamycin also caused enhancement of IPN-stimulated activity of adenylate cyclase but exposure to nitrogen mustard inhibited the enzyme stimulation by IPN. The enhancing effect of MMC was lost by the combined treatment with alpha-tocopherol. From these results, it was shown that MMC modulated the activity of adenylate cyclase, probably through alterations in membrane structure.

  19. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    KAUST Repository

    Hussein, Rana

    2012-11-01

    Cyclic nucleotide, cAMP, is an important signaling molecule in animals and plants. However, in plants the enzymes that synthesize this second messenger, adenyl cyclases (ACs), remain elusive. Given the physiological importance of cAMP in signaling, particularly in response to biotic and abiotic stresses, it is thus important to identify and characterize ACs in higher plants. Using computational approaches, a disease resistance protein from Arabidopsis thaliana, At3g04220 was found to have an AC catalytic center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified. The nucleotide cyclase activity of the recombinant protein was examined using cyclic nucleotide enzyme immunoassays. In parallel, the expression of At3g04220 was measured in leaves under three different stress conditions in order to determine under which conditions the disease resistance protein could function. Results show that the purified recombinant protein has Mn2+ dependent AC activity in vitro, and the expression analysis supports a role for At3g04220 and cAMP in plant defense.

  20. Cyclic 3', 5'-AMP relay in Dictyostelium discoideum: adaptation is independent of activation of adenylate cyclase

    OpenAIRE

    1983-01-01

    In Dictyostelium discoideum, binding of cAMP to high affinity surface receptors leads to a rapid activation of adenylate cyclase followed by subsequent adaptation within several minutes. The rate of secretion of [ 3H ]cAMP, which reflects the state of activation of the enzyme, was measured. Caffeine noncompetitively inhibited the response to cAMP. Inhibition was rapidly reversible and pretreatment of cells with caffeine for up to 22 min had little effect on the subsequent responsiveness to cA...

  1. Differential Effects of Temperature on cAMP-induced Excitation, Adaptation, and Deadaptation of Adenylate and Guanylate Cyclase in Dictyostelium discoideum

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1987-01-01

    Extracellular cAMP induces excitation of adenylate and guanylate cyclase in Dictyostelium discoideum. Continuous stimulation with cAMP leads to adaptation, while cells deadapt upon removal of the cAMP stimulus. Excitation of guanylate cyclase by cAMP has a lag time of ~1 s; excitation of adenylate c

  2. Adenylate Cyclase AcyA Regulates Development, Aflatoxin Biosynthesis and Fungal Virulence in Aspergillus flavus

    Science.gov (United States)

    Yang, Kunlong; Qin, Qiuping; Liu, Yinghang; Zhang, Limei; Liang, Linlin; Lan, Huahui; Chen, Chihao; You, Yunchao; Zhang, Feng; Wang, Shihua

    2016-01-01

    Aspergillus flavus is one of the most important opportunistic pathogens of crops and animals. The carcinogenic mycotoxin, aflatoxins produced by this pathogen cause a health problem to human and animals. Since cyclic AMP signaling controls a range of physiological processes, like fungal development and infection when responding to extracellular stimuli in fungal pathogens, in this study, we investigated the function of adenylate cyclase, a core component of cAMP signaling, in aflatoxins biosynthesis and virulence on plant seeds in A. flavus. A gene replacement strategy was used to generate the deletion mutant of acyA that encodes the adenylate cyclase. Severe defects in fungal growth, sporulation and sclerotia formation were observed in the acyA deletion mutant. The defect in radical growth could be partially rescued by exogenous cAMP analog. The acyA mutant was also significantly reduced in aflatoxins production and virulence. Similar to the former studies in other fungi, The acyA mutant showed enhancing tolerance to oxidative stress, but more sensitive to heat stress. Overall, the pleiotropic defects of the acyA deletion mutant indicates that the cAMP-PKA pathway is involved in fungal development, aflatoxins biosynthesis and plant seed invasion in A. flavus. PMID:28066725

  3. Adenylate-cyclase activity in platelets of patients with obsessive-compulsive disorder

    Directory of Open Access Journals (Sweden)

    D Marazziti, S Baroni

    2009-07-01

    Full Text Available D Marazziti, S Baroni, L Palego, I Masala, G Consoli, M Catena Dell’Osso, G Giannaccini, A LucacchiniDipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Pisa, ItalyAbstract: Although the main biological hypothesis on the pathophysiology of obsessive-compulsive disorder (OCD is centered on the serotonin system, indications are available that other neurotransmitters, and even second messengers, particularly the cyclic adenosine monophosphate (cAMP signaling, may be involved, though effective data are few. Therefore, the aim of the present study was to evaluate and compare the basal and isoprenaline (ISO-stimulated velocity of adenylate-cyclase (AC in human platelet membranes of patients with OCD and healthy control subjects. The results showed that the basal and ISO-stimulated AC activity, as well as the dose-response curves of ISO by using agonist concentrations ranging between 0.1 nM and 10 µM, were not different in the two groups. However, OCD patients showed lower EC50 and higher Emax values than healthy subjects. These findings suggest the presence of supersensitive β-adrenergic receptors in platelets of OCD patients.Keywords: obsessive-compulsive disorder, norepinephrine, second messengers, adenylate-cyclase, platelets, isoprenaline, β-adrenergic receptors

  4. Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase.

    Science.gov (United States)

    Agarwal, Nisheeth; Lamichhane, Gyanu; Gupta, Radhika; Nolan, Scott; Bishai, William R

    2009-07-02

    With 8.9 million new cases and 1.7 million deaths per year, tuberculosis is a leading global killer that has not been effectively controlled. The causative agent, Mycobacterium tuberculosis, proliferates within host macrophages where it modifies both its intracellular and local tissue environment, resulting in caseous granulomas with incomplete bacterial sterilization. Although infection by various mycobacterial species produces a cyclic AMP burst within macrophages that influences cell signalling, the underlying mechanism for the cAMP burst remains unclear. Here we show that among the 17 adenylate cyclase genes present in M. tuberculosis, at least one (Rv0386) is required for virulence. Furthermore, we demonstrate that the Rv0386 adenylate cyclase facilitates delivery of bacterial-derived cAMP into the macrophage cytoplasm. Loss of Rv0386 and the intramacrophage cAMP it delivers results in reductions in TNF-alpha production via the protein kinase A and cAMP response-element-binding protein pathway, decreased immunopathology in animal tissues, and diminished bacterial survival. Direct intoxication of host cells by bacterial-derived cAMP may enable M. tuberculosis to modify both its intracellular and tissue environments to facilitate its long-term survival.

  5. The effect of adenylate cyclase stimulation on endocochlear potential in the guinea pig.

    Science.gov (United States)

    Doi, K; Mori, N; Matsunaga, T

    1990-01-01

    Forskolin, a diterpene extracted from Coleus forskohlii, is potentially an important tool for studying the modulation of ionic currents by cAMP because it stimulates adenylate cyclase in a variety of cells. We studied the effect of forskolin on cochlear potentials and found that its perfusion of the scala vestibuli (SV) to a concentration more than 10(-5) M and the scala tympani (ST) to more than 10(-4) M produced a reversible elevation of the endocochlear potential (EP) in a dose-dependent manner. The cochlear microphonics recorded simultaneously with the EP was not depressed during the EP elevation. A large negative EP was induced by anoxia following the SV perfusion with forskolin (2 X 10(-4) M). The results suggest that the EP elevation produced by forskolin does not result from the decrease in the negative component of EP but from the increase in the positive component of EP.

  6. Distribution and protective function of pituitary adenylate cyclase-activating polypeptide (PACAP in the retina

    Directory of Open Access Journals (Sweden)

    Tomoya eNakamachi

    2012-11-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP, which is found in 27- or 38-amino acid forms, belongs to the VIP/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert a protective effect against several types of neural damage. The retina is considered to be part of the central nervous system, and retinopathy is a common cause of profound and intractable loss of vision. This review will examine the expression and morphological distribution of PACAP and its receptors in the retina, and will summarize the current state of knowledge regarding the protective effect of PACAP against different kinds of retinal damage, such as that identified in association with diabetes, ultraviolet light, hypoxia, optic nerve transection, and toxins. This article will also address PACAP-mediated protective pathways involving retinal glial cells.

  7. Adenylate cyclase 5 is required for melanophore and male pattern development in the guppy (Poecilia reticulata).

    Science.gov (United States)

    Kottler, Verena A; Künstner, Axel; Koch, Iris; Flötenmeyer, Matthias; Langenecker, Tobias; Hoffmann, Margarete; Sharma, Eshita; Weigel, Detlef; Dreyer, Christine

    2015-09-01

    Guppies (Poecilia reticulata) are colorful fish that have attracted the attention of pigmentation researchers for almost a century. Here, we report that the blond phenotype of the guppy is caused by a spontaneous mutation in the guppy ortholog of adenylate cyclase 5 (adcy5). Using double digest restriction site-associated DNA sequencing (ddRADseq) and quantitative trait locus (QTL) mapping, we linked the blond phenotype to a candidate region of 118 kb, in which we subsequently identified a 2-bp deletion in adcy5 that alters splicing and leads to a premature stop codon. We show that adcy5, which affects life span and melanoma growth in mouse, is required for melanophore development and formation of male orange pigmentation traits in the guppy. We find that some components of the male orange pattern are particularly sensitive to loss of Adcy5 function. Our work thus reveals a function for Adcy5 in patterning of fish color ornaments.

  8. Forskolin inhibits the Gs-stimulated adenylate cyclase in rat ascites hepatoma AH66F cells.

    Science.gov (United States)

    Miyamoto, K; Sanae, F; Koshiura, R; Matsunaga, T; Hasegawa, T; Takagi, K; Satake, T

    1989-09-01

    Forskolin increased intracellular cyclic AMP and augmented cyclic AMP formation by prostaglandin E1 (PGE1) in normal rat hepatocytes and ascites hepatoma AH66 cells. However, in AH66F cells which were derived from the AH66 cell line, the diterpene only slightly increased the cyclic AMP level, and dose-dependently inhibited the accumulation caused by PGE1. Forskolin dose-dependently activated adenylate cyclase in these membranes, and the magnitude of activation by forskolin was largest in the following order: hepatocytes, AH66 cells, and AH66F cells. This difference may be based on the number of forskolin-binding sites. The binding affinity of forskolin for each cell membrane was similar. The number and affinity of forskolin-binding sites in these cells were not influenced by 5'-guanylylimidodiphosphate [Gpp(NH)p]. In hepatocytes and AH66 cells, forskolin and other adenylate cyclase activators such as PGE1, GTP, Gpp(NH)p, F-, and Mn2+ synergistically increased the enzyme activity. In AH66F cells, the forskolin-stimulated activity was hardly influenced by the GTP analog, and forskolin diminished the activities induced by the GTP analog in a manner similar to that of diterpene alone. Forskolin (10 microM) also significantly inhibited the activities induced by PGE1, GTP, and F-. The effect of forskolin with Mn2+ was additive in AH66F cells. The data suggest that forskolin promotes the interaction between the stimulatory guanine nucleotide-binding protein and the catalytic unit in the membrane of normal hepatocytes and AH66 cells, but it interferes with the coupling in AH66F cells.

  9. Adenyl cyclases and cAMP in plant signaling - Past and present

    KAUST Repository

    Gehring, Christoph A.

    2010-06-25

    In lower eukaryotes and animals 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins. 2010 Gehring; licensee BioMed Central Ltd.

  10. Responsiveness of adenylate cyclase to pituitary gonadotropins and evidence of a hormone-induced desensitization in the lizard ovary.

    Science.gov (United States)

    Borrelli, L; De Stasio, R; Bovenzi, V; Parisi, E; Filosa, S

    1997-07-01

    Gonadotropins (FSH and LH) affect several mammalian gonadal functions. In particular, FSH stimulates oogonial proliferation and oocyte growth, while LH regulates ovulation and progesterone secretion. In lacertilian reptiles, gonadal function is also regulated by pituitary gonadotropins, but which hormone controls ovarian activities and the mechanisms of action are unknown. The present study aimed to clarify mechanisms of action of pituitary gonadotropins on the ovary of Podarcis sicula (Lacertilia). The data demonstrate that mammalian gonadotropins FSH and LH produce a threefold stimulation of adenylate cyclase activity in follicular membranes, while hCG and TSH are less effective, causing a twofold increase in adenylate cyclase activity. Neurotransmitters such as dopamine, serotonin, and catecholamines have no effect on enzyme activity. The action of mammalian FSH and LH on the ovary mimics the effect of homologous hormones: in lizard ovaries incubated in vitro in the presence of isolated homologous pituitary glands, the intracellular cAMP level increased by 50% with respect to control ovaries. Mammalian gonadotropins appear homologous to lizard gonadotropin(s): Southern blot analyses show that the lizard genome contains nucleotide sequences homologous to those encoding for mammalian beta FSH and beta LH. Both homologous and heterologous desensitization of adenylate cyclase activity occurs in the lizard ovary. In fact, responsiveness of adenylate cyclase to gonadotropin stimulation is abolished in animals 2 hr after in vivo treatment with FSH. Sensitivity to gonadotropin stimulation is restored 2 weeks after the beginning of the in vivo treatment. Desensitization was also observed in ovaries incubated in vitro with mammalian FSH or with isolated pituitary glands.

  11. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    Energy Technology Data Exchange (ETDEWEB)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  12. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    Energy Technology Data Exchange (ETDEWEB)

    Masure, H.R.; Donovan, M.G.; Storm, D.R.

    1991-01-01

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca{sup 2}{sup +} to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increases in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca{sup 2}{sup +} and this interaction may be important for its invasion into animal cells.

  13. Overexpression of adenylate cyclase-associated protein 2 is a novel prognostic marker in malignant melanoma.

    Science.gov (United States)

    Masugi, Yohei; Tanese, Keiji; Emoto, Katsura; Yamazaki, Ken; Effendi, Kathryn; Funakoshi, Takeru; Mori, Mariko; Sakamoto, Michiie

    2015-12-01

    Malignant melanoma is one of the lethal malignant tumors worldwide. Previously we reported that adenylate cyclase-associated protein 2 (CAP2), which is a well-conserved actin regulator, was overexpressed in hepatocellular carcinoma; however, CAP2 expression in other clinical cancers remains unclear. The aim of the current study was to clarify the clinicopathological significance of CAP2 overexpression in malignant melanoma. Immunohistochemical analyses revealed that many melanoma cells exhibited diffuse cytoplasmic expression of CAP2, whereas no normal melanocytes showed detectable immunostaining for CAP2. A high level of CAP2 expression was seen in 14 of 50 melanomas and was significantly correlated with greater tumor thickness and nodular melanoma subtypes. In addition, a high level of CAP2 expression was associated with poor overall survival in univariate and multivariate analyses. For 13 patients, samples of primary and metastatic melanoma tissue were available: four patients exhibited higher levels of CAP2 expression in metastatic tumor compared to the primary site, whereas no patient showed lower levels of CAP2 expression in metastatic melanomas. Our findings show that CAP2 overexpression is a novel prognostic marker in malignant melanoma and that CAP2 expression seems to increase stepwise during tumor progression, suggesting the involvement of CAP2 in the aggressive behavior of malignant melanoma.

  14. Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility.

    Science.gov (United States)

    Yamazaki, Ken; Takamura, Masaaki; Masugi, Yohei; Mori, Taisuke; Du, Wenlin; Hibi, Taizo; Hiraoka, Nobuyoshi; Ohta, Tsutomu; Ohki, Misao; Hirohashi, Setsuo; Sakamoto, Michiie

    2009-04-01

    Pancreatic cancer has the worst prognosis among cancers due to the difficulty of early diagnosis and its aggressive behavior. To characterize the aggressiveness of pancreatic cancers on gene expression, pancreatic cancer xenografts transplanted into severe combined immunodeficient mice served as a panel for gene-expression profiling. As a result of profiling, the adenylate cyclase-associated protein 1 (CAP1) gene was shown to be overexpressed in all of the xenografts. The expression of CAP1 protein in all 73 cases of pancreatic cancer was recognized by immunohistochemical analyses. The ratio of CAP1-positive tumor cells in clinical specimens was correlated with the presence of lymph node metastasis and neural invasion, and also with the poor prognosis of patients. Immunocytochemical analyses in pancreatic cancer cells demonstrated that CAP1 colocalized to the leading edge of lamellipodia with actin. Knockdown of CAP1 by RNA interference resulted in the reduction of lamellipodium formation, motility, and invasion of pancreatic cancer cells. This is the first report demonstrating the overexpression of CAP1 in pancreatic cancers and suggesting the involvement of CAP1 in the aggressive behavior of pancreatic cancer cells.

  15. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    Directory of Open Access Journals (Sweden)

    Mounira Tlili

    2015-01-01

    Full Text Available The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP, we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC and cytokines (IL-1α and TNF-α in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders.

  16. Adenylate Cyclase Type III Is Not a Ubiquitous Marker for All Primary Cilia during Development

    Science.gov (United States)

    Antal, Maria Cristina; Bénardais, Karelle; Samama, Brigitte; Auger, Cyril; Schini-Kerth, Valérie; Ghandour, Said; Boehm, Nelly

    2017-01-01

    Adenylate cyclase type III (AC3) is localized in plasma membrane of neuronal primary cilium and can be used as a marker of this cilium. AC3 has also been detected in some other primary cilia such as those of fibroblasts, synoviocytes or astrocytes. Despite the presence of a cilium in almost all cell types, we show that AC3 is not a common marker of all primary cilia of different human and mouse tissues during development. In peripheral organs, AC3 is present mainly in primary cilia in cells of the mesenchymal lineage (fibroblasts, chondroblasts, osteoblasts-osteocytes, odontoblasts, muscle cells and endothelial cells). In epithelia, the apical cilium of renal and pancreatic tubules and of ductal plate in liver is AC3-negative whereas the cilium of basal cells of stratified epithelia is AC3-positive. Using fibroblasts cell culture, we show that AC3 appears at the plasma membrane of the primary cilium as soon as this organelle develops. The functional significance of AC3 localization at the cilium membrane in some cells but not others has to be investigated in relationship with cell physiology and expression at the cilium plasma membrane of specific upstream receptors. PMID:28122017

  17. Pituitary adenylate cyclase activating peptide (PACAP participates in adipogenesis by activating ERK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Tatjana Arsenijevic

    Full Text Available Pituitary adenylate cyclase activating peptide (PACAP belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP family. Its action can be mediated by three different receptor subtypes: PAC1, which has exclusive affinity for PACAP, and VPAC1 and VPAC2 which have equal affinity for PACAP and VIP. We showed that all three receptors are expressed in 3T3-L1 cells throughout their differentiation into adipocytes. We established the activity of these receptors by cAMP accumulation upon induction by PACAP. Together with insulin and dexamethasone, PACAP induced adipogenesis in 3T3-L1 cell line. PACAP increased cAMP production within 15 min upon stimulation and targeted the expression and phosphorylation of MAPK (ERK1/2, strengthened by the ERK1/2 phosphorylation being partially or completely abolished by different combinations of PACAP receptors antagonists. We therefore speculate that ERK1/2 activation is crucial for the activation of CCAAT/enhancer- binding protein β (C/EBPβ.

  18. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP knockout mice

    Directory of Open Access Journals (Sweden)

    Satoko eHattori

    2012-10-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1. Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J x 129SvEv for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased social interaction in Crawley’s three-chamber social approach test, although PACAP KO had no significant impact on social interaction in a home cage. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze and the T-maze, while they did not show any significant abnormalities in the left-right discrimination task in the T-maze. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially

  19. Pituitary adenylate cyclase activating polypeptide modulates catecholamine storage and exocytosis in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Yan Dong

    Full Text Available A number of efforts have been made to understand how pituitary adenylate cyclase activating polypeptide (PACAP functions as a neurotrophic and neuroprotective factor in Parkinson's disease (PD. Recently its effects on neurotransmission and underlying mechanisms have generated interest. In the present study, we investigate the effects of PACAP on catecholamine storage and secretion in PC12 cells with amperometry and transmission electron microscopy (TEM. PACAP increases quantal release induced by high K+ without significantly regulating the frequency of vesicle fusion events. TEM data indicate that the increased volume of the vesicle is mainly the result of enlargement of the fluidic space around the dense core. Moreover, the number of docked vesicles isn't modulated by PACAP. When cells are acutely treated with L-DOPA, the vesicular volume and quantal release both increase dramatically. It is likely that the characteristics of amperometric spikes from L-DOPA treated cells are associated with increased volume of individual vesicles rather than a direct effect on the mechanics of exocytosis. Treatment with PACAP versus L-DOPA results in different profiles of the dynamics of exocytosis. Release via the fusion pore prior to full exocytosis was observed with the same frequency following treatment with PACAP and L-DOPA. However, release events have a shorter duration and higher average current after PACAP treatment compared to L-DOPA. Furthermore, PACAP reduced the proportion of spikes having rapid decay time and shortened the decay time of both fast and slow spikes. In contrast, the distributions of the amperometric spike decay for both fast and slow spikes were shifted to longer time following L-DOPA treatment. Compared to L-DOPA, PACAP may produce multiple favorable effects on dopaminergic neurons, including protecting dopaminergic neurons against neurodegeneration and potentially regulating dopamine storage and release, making it a promising

  20. Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis.

    Science.gov (United States)

    Hamelink, Carol; Tjurmina, Olga; Damadzic, Ruslan; Young, W Scott; Weihe, Eberhard; Lee, Hyeon-Woo; Eiden, Lee E

    2002-01-08

    The adrenal gland is important for homeostatic responses to metabolic stress: hypoglycemia stimulates the splanchnic nerve, epinephrine is released from adrenomedullary chromaffin cells, and compensatory glucogenesis ensues. Acetylcholine is the primary neurotransmitter mediating catecholamine secretion from the adrenal medulla. Accumulating evidence suggests that a secretin-related neuropeptide also may function as a transmitter at the adrenomedullary synapse. Costaining with highly specific antibodies against the secretin-related neuropeptide pituitary adenylate cyclase-activating peptide (PACAP) and the vesicular acetylcholine transporter (VAChT) revealed that PACAP is found in nerve terminals at all mouse adrenomedullary cholinergic synapses. Mice with a targeted deletion of the PACAP gene had otherwise normal cholinergic innervation and morphology of the adrenal medulla, normal adrenal catecholamine and blood glucose levels, and an intact initial catecholamine secretory response to insulin-induced hypoglycemia. However, insulin-induced hypoglycemia was more profound and longer-lasting in PACAP knock-outs, and was associated with a dose-related lethality absent in wild-type mice. Failure of PACAP-deficient mice to adequately counterregulate plasma glucose levels could be accounted for by impaired long-term secretion of epinephrine, secondary to a lack of induction of tyrosine hydroxylase, normally occurring after insulin hypoglycemia in wild-type mice, and a consequent depletion of adrenomedullary epinephrine stores. Thus, PACAP is needed to couple epinephrine biosynthesis to secretion during metabolic stress. PACAP appears to function as an "emergency response" cotransmitter in the sympathoadrenal axis, where the primary secretory response is controlled by a classical neurotransmitter but sustained under paraphysiological conditions by a neuropeptide.

  1. Effect of Cardiopulmonary Bypass on Beta Adrenergic ReceptorAdenylate Cyclase System on Surfaces of Peripheral Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    LUO Ailin; TIAN Yuke; JIN Shiao

    2000-01-01

    The experimental results showed that the level of CAMP, the ratio of cAPM to cGMP,IL-2R expression and IL-2 production in vitro in lymphocytes immediate and 2 weeks after cardiopulmonary bypass (CPB) were significantly lower than those before anesthetics in the patients undergoing cardiac surgery with CPB. These findings suggested that CPB could cause serious damage to adrenergic beta receptor-adenylate cyclase system on circulating lymphocytes surfaces,which might be one of the mechanisms resulting in immunosuppression after open heart surgery with CPB.

  2. The Arabidopsis thalianaK+-uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre

    KAUST Repository

    Al-Younis, Inas

    2015-11-27

    Adenylate Cyclases (ACs) catalyze the formation of the second messenger cyclic adenosine 3′, 5′-monophosphate (cAMP) from adenosine 5’-triphosphate (ATP). Although cAMP is increasingly recognized as an important signaling molecule in higher plants, ACs have remained somewhat elusive. Here we used a search motif derived from experimentally tested guanylyl cyclases (GCs), substituted the residues essential for substrate specificity and identified the Arabidopsis thaliana K+-uptake permease 7 (AtKUP7) as one of several candidate ACs. Firstly, we show that a recombinant N-terminal, cytosolic domain of AtKUP71-100 is able to complement the AC-deficient mutant cyaA in Escherichia coli and thus restoring the fermentation of lactose, and secondly, we demonstrate with both enzyme immunoassays and mass spectrometry that a recombinant AtKUP71-100 generates cAMP in vitro.

  3. Studies on cell migration, adenylate cyclase and membrane-coating granules in the buccal epithelium of the zinc-deficient rabbit, including the influence of isoproterenol.

    Science.gov (United States)

    Chen, S Y

    1988-01-01

    Cell migration was slightly increased; cytochemical reaction deposits of adenylate cyclase and the area density of membrane-coating granules (MCG) were significantly increased. Upon isoproterenol stimulation, the MCG area density was significantly increased, whereas the cell migration rate was unchanged. Thus in zinc deficiency, there may be a simultaneous increase in the production and secretion of MCGs, in adenylate cyclase activity, and in cell migration. The non-significantly increased cell migration rate may not keep pace with the significantly increased cell-production rate, resulting in thickening of the epithelium.

  4. Inhibition of adenylate cyclase by delta 9-tetrahydrocannabinol in mouse spleen cells: a potential mechanism for cannabinoid-mediated immunosuppression.

    Science.gov (United States)

    Schatz, A R; Kessler, F K; Kaminski, N E

    1992-01-01

    The ability of delta 9-Tetrahydrocannabinol (delta 9-THC) to modulate adenylate cyclase activity in mouse spleen cells was investigated. These studies were prompted by the recent identification and cloning of a G-protein coupled cannabinoid receptor localized in certain regions of the brain and the potential for a common mechanism between cannabinoid-mediated CNS effects and immunosuppression. Temporal addition studies were initially performed to identify the period of time when spleen cells in culture were most susceptible to the inhibitory effects of delta 9-THC, as measured by the day 5 IgM antibody forming cell response. delta 9-THC was only inhibitory when added to spleen cell cultures during the first 2 hr following antigen sensitization. In light of this time course, adenylate cyclase activity was measured in spleen cells incubated in the presence of 22 microM delta 9-THC for 5 min and subsequently stimulated with forskolin. delta 9-THC treated spleen cells demonstrated a 33% inhibition and a 66% inhibition in intracellular cAMP after a 5 or 15 min stimulation with forskolin, respectively. These studies suggest that inhibition of immune function by delta 9-THC may be mediated through the inhibition of intracellular cAMP early after antigen stimulation.

  5. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Schytz, Henrik W

    2014-01-01

    Pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) and vasoactive intestinal polypeptide are structurally and functionally closely related but show differences in migraine-inducing properties. Mechanisms responsible for the difference in migraine induction are unknown. Here, for the ......Pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) and vasoactive intestinal polypeptide are structurally and functionally closely related but show differences in migraine-inducing properties. Mechanisms responsible for the difference in migraine induction are unknown. Here......, for the first time, we present a head-to-head comparison study of the immediate and long-lasting observations of the migraine-inducing, arterial, physiological and biochemical responses comparing PACAP38 and vasoactive intestinal polypeptide. In a double-blind crossover study 24 female migraine patients without...... the start of PACAP38 infusion only in those patients who later reported migraine attacks. Blood levels of vasoactive intestinal polypeptide and tryptase were unchanged after PACAP38 infusion. In conclusion, PACAP38-induced migraine was associated with sustained dilatation of extracranial arteries...

  6. Knocking down the expression of adenylate cyclase-associated protein 1 inhibits the proliferation and migration of breast cancer cells.

    Science.gov (United States)

    Yu, Xia-Fei; Ni, Qi-Chao; Chen, Jin-Peng; Xu, Jun-Fei; Jiang, Ying; Yang, Shu-Yun; Ma, Jing; Gu, Xiao-Ling; Wang, Hua; Wang, Ying-Ying

    2014-04-01

    Adenylate cyclase-associated protein 1 (CAP1) is a conserved protein that was found to be up-regulated in breast cancer and related to the migration of breast cancer. We verified its roles in breast cancer specimens and cell lines. In our results, 71 of 100 specimens of breast cancer showed high levels of CAP1 by immunohistochemistry. Associated with statistical analysis, we saw that CAP1 was related to the grade of breast cancer. In MDA-MB-231, the expression of CAP1 was the highest and by knocking down the expression of CAP1 in MDA-MB-231, its ability for proliferating and migrating apparently decreased and induced changes in morphology, which were related to the arrangement of F-actin. Therefore, CAP1 might be a potential molecular targeted therapy for surgery and immune treatment.

  7. Effects of cimetidine on adenylate cyclase activity of guinea pig gastric mucosa stimulated by histamine, sodium fluoride and 5'-guanylylimidodiphosphate.

    Science.gov (United States)

    Anttila, P; Westermann, E

    1976-08-01

    Cimetidine, a recently developed histamine H2-receptor blocking agent has been shown to be a potent inhibitor of histamine-stimulated gastric acid secretion in rat, cat, dog and man. To study the mode of action of cimetidine the modification of stimulatory effects of histamine, sodium flouride and 5'-guanylylimidodiphosphate by cimetidine on the adenylate cyclase activity of guinea pig gastric mucosa was studied. The effect of cimetidine was also compared to that of metiamide, an older histamine H2-receptor antagonist. The effect of cimetidine was qualitatively similar to that of metiamide, i.e. a selective blockade of histamine H2-receptors. Quantitatively cimetidine was about 10-fold more potent than metiamide.

  8. The adenylate cyclase gene MaAC is required for virulence and multi-stress tolerance of Metarhizium acridum

    Directory of Open Access Journals (Sweden)

    Liu Shuyang

    2012-08-01

    Full Text Available Abstract Background The efficacy of entomopathogenic fungi in pest control is mainly affected by various adverse environmental factors, such as heat shock and UV-B radiation, and by responses of the host insect, such as oxidative stress, osmotic stress and fever. In this study, an adenylate cyclase gene (MaAC was cloned from the locust-specific entomopathogenic fungus, Metarhizium acridum, which is homologous to various fungal adenylate cyclase genes. RNA silencing was adapted to analyze the role of MaAC in virulence and tolerance to adverse environmental and host insect factors. Results Compared with the wild type, the vegetative growth of the RNAi mutant was decreased in PD (potato dextrose medium, Czapek-dox and PDA plates, respectively, demonstrating that MaAC affected vegetative growth. The cAMP levels were also reduced in PD liquid culture, and exogenous cAMP restored the growth of RNAi mutants. These findings suggested that MaAC is involved in cAMP synthesis. The knockdown of MaAC by RNAi led to a reduction in virulence after injection or topical inoculation. Furthermore, the RNAi mutant grew much slower than the wild type in the haemolymph of locust in vitro and in vivo, thus demonstrating that MaAC affects the virulence of M. acridum via fungal growth inside the host locust. A plate assay indicated that the tolerances of the MaAC RNAi mutant under oxidative stress, osmotic stress, heat shock and UV-B radiation was decreased compared with the wild type. Conclusion MaAC is required for virulence and tolerance to oxidative stress, osmotic stress, heat shock and UV-B radiation. MaAC affects fungal virulence via vegetative growth inside the insect and tolerance against oxidative stress, osmotic stress and locust fever.

  9. Subtyping of Salmonella enterica subspecies I using single nucleotide polymorphisms in adenylate cyclase (cyaA)

    Science.gov (United States)

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single nucleotide polymorphisms (SNPs) were characterized within adenylate cyclas...

  10. High expression of adenylate cyclase-associated protein 1 accelerates the proliferation, migration and invasion of neural glioma cells.

    Science.gov (United States)

    Bao, Zhen; Qiu, Xiaojun; Wang, Donglin; Ban, Na; Fan, Shaochen; Chen, Wenjuan; Sun, Jie; Xing, Weikang; Wang, Yunfeng; Cui, Gang

    2016-04-01

    Adenylate cyclase-associated protein 1 (CAP1), a conserved member of cyclase-associated proteins was reported to be associated with the proliferation, migration or invasion of the tumors of pancreas, breast and liver, and was involved in astrocyte proliferation after acute Traumatic Brain Injury (TBI). In this study, we sought to investigate the character of CAP1 in the pathological process of human glioma by detecting human glioma specimens and cell lines. 43 of 100 specimens showed high expression of CAP1 via immunohistochemistry. With statistics analysis, we found out the expression level of CAP1 was correlated with the WHO grades of human glioma and was great positively related to Ki-67 (p<0.01). In vitro, silencing CAP1 in U251 and U87MG, the glioma cell lines with the relatively higher expression of CAP1, induced the proliferation of the cells significantly retarded, migration and invasion as well. Obviously, our results indicated that CAP1 participated in the molecular pathological process of glioma indeed, and in a certain sense, CAP1 might be a potential and promising molecular target for glioma diagnosis and therapies in the future.

  11. Studies on responsiveness of hepatoma cells to catecholamines. III. Difference between the receptor-adenylate cyclase regulating systems in AH130 cells and cultured normal rat liver cells.

    Science.gov (United States)

    Sanae, F; Matsunaga, T; Miyamoto, K; Koshiura, R

    1986-10-01

    The responsiveness to three beta-adrenergic agonists, isoproterenol (IPN), epinephrine (Epi) and norepinephrine (NE) in AH13O cells was examined compared with that in normal rat liver cells which were cultured for 24 hr after collagenase digestion. As regards to the activation of adenylate cyclase in the cell homogenates, the relative affinity of the three agonists was in order of IPN greater than NE greater than Epi in AH130 cells and IPN greater than Epi greater than NE in cultured normal liver cells. While the efficacies of the three agonists were similar in cultured liver cells, those of NE and Epi were markedly lower than that of IPN in AH13O cells and were increased to the similar level of IPN by pretreatment with phentolamine, but not with prazosin. Clonidine inhibited the activation of adenylate cyclase by IPN in AH13O cells. When cells were preincubated with islet-activating protein (IAP), the activity of adenylate cyclase in the presence or absence of agonist in both cell lines increased. In IAP-treated AH13O cells, the efficacies of NE and Epi became close to that of IPN. Adenylate cyclase in IAP-treated AH13O cells was activated by GTP in a dose-dependent manner, but that in IAP-treated cultured liver cells was not. In the presence of IPN, biphasic (activatory and inhibitory) effects of GTP on the cyclase were observed, and the inhibitory phase was eliminated by the IAP-treatment in both cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. (/sup 3/H)forskolin- and (/sup 3/H)dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    Energy Technology Data Exchange (ETDEWEB)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1988-03-01

    The characteristics of the cardiac adenylate cyclase system were studied in rats fed diets containing fish oil (menhaden oil) and other oils. Adenylate cyclase activity generally was higher in cardiac homogenates and membranes of rats fed diet containing 10% menhaden oil than in the other oils. The increase in enzyme activity, especially in forskolin-stimulated activity, was associated with an increase in the concentration of the (/sup 3/H) forskolin-binding sites in cardiac membranes of rats fed menhaden oil. The beta-adrenergic receptor concentration was not significantly altered although the affinity for (/sup 3/H)dihydroalprenolol-binding was lower in membranes of rats fed menhaden oil than those fed the other oils. omega-3 fatty acids from menhaden oil were incorporated into the cardiac membrane phospholipids. The results suggest that the observed increase in myocardial adenylate cyclase activity of rats fed menhaden oil may be due to an increase in the number of the catalytic subunits of the enzyme or due to a greater availability of the forskolin-binding sites.

  13. Linalool from rosewood (Aniba rosaeodora Ducke) oil inhibits adenylate cyclase in the retina, contributing to understanding its biological activity.

    Science.gov (United States)

    Sampaio, Lucia de Fatima S; Maia, José Guilherme S; de Parijós, Amanda M; de Souza, Rita Z; Barata, Lauro Euclides S

    2012-01-01

    Rosewood oil (RO) (Aniba rosaeodora Ducke) is rich in linalool, a monoterpene alcohol, which has well studied anxiolytic, sedative and anticonvulsant effects. The inhibition of the increases in cAMP protects against seizures in a diversity of models of epilepsy. In this paper, the principal aim was to investigate the effects of RO, (±)-linalool and (-)-linalool) on adenylate cyclase. They were tested in chick retinas and forskolin was used to stimulate the enzyme target. The phosphodiesterase inhibitor, 4-(3-butoxy-4-methoxybenzyl)-imidazolidin-2-one, and the non-selective adenosine receptor antagonist 3-isobutyl-methyl-xanthine (IBMX), were used to control the participation of phosphodiesterase and adenosine receptors in the resulting effects, respectively. The cAMP accumulation was measured by enzyme immune assay (EIA). Rosewood oil, (-)-linalool and (±)-linalool inhibited exclusively the cAMP accumulation stimulated by forskolin, even when adenosine receptors were blocked with IBMX. The IC(50) values (in μ m concentration range) calculated from their concentration response-curves were not statistically different, however, the compounds presented a different relative efficacy. These results extend the range of subcellular mechanisms underlying the relaxant action of linalool on the central nervous system.

  14. Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti-Medicago symbiosis.

    Science.gov (United States)

    Tian, Chang Fu; Garnerone, Anne-Marie; Mathieu-Demazière, Céline; Masson-Boivin, Catherine; Batut, Jacques

    2012-04-24

    Legumes and soil bacteria called rhizobia have coevolved a facultative nitrogen-fixing symbiosis. Establishment of the symbiosis requires bacterial entry via root hair infection threads and, in parallel, organogenesis of nodules that subsequently are invaded by bacteria. Tight control of nodulation and infection is required to maintain the mutualistic character of the interaction. Available evidence supports a passive bacterial role in nodulation and infection after the microsymbiont has triggered the symbiotic plant developmental program. Here we identify in Sinorhizobium meliloti, the Medicago symbiont, a cAMP-signaling regulatory cascade consisting of three receptor-like adenylate cyclases, a Crp-like regulator, and a target gene of unknown function. The cascade is activated specifically by a plant signal during nodule organogenesis. Cascade inactivation results in a hyperinfection phenotype consisting of abortive epidermal infection events uncoupled from nodulation. These findings show that, in response to a plant signal, rhizobia play an active role in the control of infection. We suggest that rhizobia may modulate the plant's susceptibility to infection. This regulatory loop likely aims at optimizing legume infection.

  15. PPARgamma-dependent regulation of adenylate cyclase 6 amplifies the stimulatory effect of cAMP on renin gene expression.

    Science.gov (United States)

    Desch, Michael; Schubert, Thomas; Schreiber, Andrea; Mayer, Sandra; Friedrich, Björn; Artunc, Ferruh; Todorov, Vladimir T

    2010-11-01

    The second messenger cAMP plays an important role in the regulation of renin gene expression. Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) is known to stimulate renin gene transcription acting through PPARγ-binding sequences in renin promoter. We show now that activation of PPARγ by unsaturated fatty acids or thiazolidinediones drastically augments the cAMP-dependent increase of renin mRNA in the human renin-producing cell line Calu-6. The underlying mechanism involves potentiation of agonist-induced cAMP increase and up-regulation of adenylate cyclase 6 (AC6) gene expression. We identified a palindromic element with a 3-bp spacer (Pal3) in AC6 intron 1 (AC6Pal3). AC6Pal3 bound PPARγ and mediated trans-activation by PPARγ agonist. AC6 knockdown decreased basal renin mRNA level and attenuated the maximal PPARγ-dependent stimulation of the cAMP-induced renin gene expression. AC6Pal3 decoy oligonucleotide abrogated the PPARγ-dependent potentiation of cAMP-induced renin gene expression. Treatment of mice with PPARγ agonist increased AC6 mRNA kidney levels. Our data suggest that in addition to its direct effect on renin gene transcription, PPARγ "sensitizes" renin gene to cAMP via trans-activation of AC6 gene. AC6 has been identified as PPARγ target gene with a functional Pal3 sequence.

  16. Pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor is expressed during embryonic development of the earthworm.

    Science.gov (United States)

    Boros, Akos; Somogyi, Ildikó; Engelmann, Péter; Lubics, Andrea; Reglodi, Dóra; Pollák, Edit; Molnár, László

    2010-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.

  17. Rapid, semi-automated, and inexpensive radioimmunoassay of cAMP: application in GPCR-mediated adenylate cyclase assays.

    Science.gov (United States)

    Brown, Justin T; Kant, Andrew; Mailman, Richard B

    2009-03-15

    Cyclic AMP (cAMP) is an important signal transduction second messenger that is commonly used as a functional mirror on the actions of G protein-coupled receptors that can activate or inhibit adenylate cyclases. A radioimmunoassay for cAMP with femtomole sensitivity was first reported by Steiner more than 30 years ago, and there have been several subsequent modifications that have improved this assay in various ways. Here we describe additional improvement to existing methods that markedly improve speed and reduce cost without sacrificing sensitivity, and is also adaptable to analysis of cGMP. The primary antibody is coupled directly to magnetic beads that are then separated from unbound marker using filtration on microplates. This eliminates the need for a secondary antibody, and markedly increases throughput. In addition, we report a simple, reproducible, and inexpensive method to make the radiomarker used for this assay. Although still requiring the use of radioactivity, the resulting method retains a high degree of accuracy and precision, and is suitable for low-cost high throughput screening. Use of aspects of this method can also improve throughput in other radioimmunoassays.

  18. Stress tolerance of the Saccharomyces cerevisiae adenylate cyclase fil1 (CYR1) mutant depends on Hsp26.

    Science.gov (United States)

    Vianna, Cristina R; Ferreira, Mariana C; Silva, Carol L C; Tanghe, An; Neves, Maria J; Thevelein, Johan M; Rosa, Carlos A; Van Dijck, Patrick

    2010-01-01

    Fermentation-induced loss of stress resistance in yeast is an important phenotype from an industrial point of view. It hampers optimal use of frozen dough applications as well as high gravity brewing fermentations because these applications require stress-tolerant yeast strains during active fermentation. Different mutants (e.g. fil1, an adenylate cyclase mutant CYR1(lys1682)) that are affected in this loss of stress resistance have been isolated, but so far the identification of the target genes important for the increased tolerance has failed. Previously we have shown that neither trehalose nor Hsp104 nor STRE-controlled genes are involved in the higher stress tolerance of the fil1 mutant. The contribution of other putative downstream factors of the PKA pathway was investigated and here we show that the small heat-shock protein Hsp26 is required for the high heat stress tolerance of the fil1 mutant, both in stationary phase cells as well as during active fermentation.

  19. The effects of isatin (indole-2, 3-dione on pituitary adenylate cyclase-activating polypeptide-induced hyperthermia in rats

    Directory of Open Access Journals (Sweden)

    Tóth Gábor

    2002-02-01

    Full Text Available Abstract Background Previous studies have demonstrated that centrally administered natriuretic peptides and pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38 have hyperthermic properties. Isatin (indole-2, 3-dione is an endogenous indole that has previously been found to inhibit hyperthermic effects of natriuretic peptides. In this study the aim was to investigate the effects of isatin on thermoregulatory actions of PACAP-38, in rats. Results One μg intracerebroventricular (icv. injection of PACAP-38 had hyperthermic effect in male, Wistar rats, with an onset of the effect at 2 h and a decline by the 6th h after administration. Intraperitoneal (ip. injection of different doses of isatin (25-50 mg/kg significantly decreased the hyperthermic effect of 1 μg PACAP-38 (icv., whereas 12.5 mg/kg isatin (ip. had no inhibiting effect. Isatin alone did not modify the body temperature of the animals. Conclusion The mechanisms that participate in the mediation of the PACAP-38-induced hyperthermia may be modified by isatin. The capability of isatin to antagonize the hyperthermia induced by all members of the natriuretic peptide family and by PACAP-38 makes it unlikely to be acting directly on receptors for natriuretic peptides or on those for PACAP in these hyperthermic processes.

  20. Regulation by the quorum sensor from Vibrio indicates a receptor function for the membrane anchors of adenylate cyclases.

    Science.gov (United States)

    Beltz, Stephanie; Bassler, Jens; Schultz, Joachim E

    2016-02-27

    Adenylate cyclases convert intra- and extracellular stimuli into a second messenger cAMP signal. Many bacterial and most eukaryotic ACs possess membrane anchors with six transmembrane spans. We replaced the anchor of the AC Rv1625c by the quorum-sensing receptor from Vibrio harveyi which has an identical 6TM design and obtained an active, membrane-anchored AC. We show that a canonical class III AC is ligand-regulated in vitro and in vivo. At 10 µM, the cholera-autoinducer CAI-1 stimulates activity 4.8-fold. A sequence based clustering of membrane domains of class III ACs and quorum-sensing receptors established six groups of potential structural and functional similarities. The data support the notion that 6TM AC membrane domains may operate as receptors which directly regulate AC activity as opposed and in addition to the indirect regulation by GPCRs in eukaryotic congeners. This adds a completely novel dimension of potential AC regulation in bacteria and vertebrates.

  1. Presence of pituitary adenylate cyclase-activating polypeptide (PACAP) in the plasma and milk of ruminant animals.

    Science.gov (United States)

    Czegledi, Levente; Tamas, Andrea; Borzsei, Rita; Bagoly, Terez; Kiss, Peter; Horvath, Gabriella; Brubel, Reka; Nemeth, Jozsef; Szalontai, Balint; Szabadfi, Krisztina; Javor, Andras; Reglodi, Dora; Helyes, Zsuzsanna

    2011-05-15

    Milk contains a variety of proteins and peptides that possess biological activity. Growth factors, such as growth hormone, insulin-like, epidermal and nerve growth factors are important milk components which may regulate growth and differentiation in various neonatal tissues and also those of the mammary gland itself. We have recently shown that pituitary adenylate cyclase-activating polypeptide (PACAP), an important neuropeptide with neurotrophic actions, is present in the human milk in much higher concentration than in the plasma of lactating women. Investigation of growth factors in the milk of domestic animals is of utmost importance for their nutritional values and agricultural significance. Therefore, the aim of the present study was to determine the presence and concentration of PACAP in the plasma and milk of three ruminant animal species. Furthermore, the presence of PACAP and its specific PAC1 receptor were investigated in the mammary glands. Radioimmunoassay measurements revealed that PACAP was present in the plasma and the milk of the sheep, goat and the cow in a similar concentration to that measured previously in humans. PACAP38-like immunoreactivity (PACAP38-LI) was 5-20-fold higher in the milk than in the plasma samples of the respective animals, a similar serum/milk ratio was found in all the three species. The levels did not show significant changes within the examined 3-month-period of lactation after delivery. Similar PACAP38-LI was measured in the homogenates of the sheep mammary gland samples taken 7 and 30 days after delivery. PAC1 receptor expression was detected in these udder biopsies by fluorescent immunohistochemistry suggesting that this peptide might have an effect on the mammary glands themselves. These data show that PACAP is present in the milk of various ruminant domestic animal species at high concentrations, the physiological implications of which awaits further investigation.

  2. The circadian neuropeptide PDF signals preferentially through a specific adenylate cyclase isoform AC3 in M pacemakers of Drosophila.

    Directory of Open Access Journals (Sweden)

    Laura B Duvall

    Full Text Available The neuropeptide Pigment Dispersing Factor (PDF is essential for normal circadian function in Drosophila. It synchronizes the phases of M pacemakers, while in E pacemakers it decelerates their cycling and supports their amplitude. The PDF receptor (PDF-R is present in both M and subsets of E cells. Activation of PDF-R stimulates cAMP increases in vitro and in M cells in vivo. The present study asks: What is the identity of downstream signaling components that are associated with PDF receptor in specific circadian pacemaker neurons? Using live imaging of intact fly brains and transgenic RNAi, we show that adenylate cyclase AC3 underlies PDF signaling in M cells. Genetic disruptions of AC3 specifically disrupt PDF responses: they do not affect other Gs-coupled GPCR signaling in M cells, they can be rescued, and they do not represent developmental alterations. Knockdown of the Drosophila AKAP-like scaffolding protein Nervy also reduces PDF responses. Flies with AC3 alterations show behavioral syndromes consistent with known roles of M pacemakers as mediated by PDF. Surprisingly, disruption of AC3 does not alter PDF responses in E cells--the PDF-R(+ LNd. Within M pacemakers, PDF-R couples preferentially to a single AC, but PDF-R association with a different AC(s is needed to explain PDF signaling in the E pacemakers. Thus critical pathways of circadian synchronization are mediated by highly specific second messenger components. These findings support a hypothesis that PDF signaling components within target cells are sequestered into "circadian signalosomes," whose compositions differ between E and M pacemaker cell types.

  3. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Oxidative Stress in Zebrafish Hair Cells.

    Science.gov (United States)

    Kasica, Natalia; Podlasz, Piotr; Sundvik, Maria; Tamas, Andrea; Reglodi, Dora; Kaleczyc, Jerzy

    2016-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide, with known antiapoptotic functions. Our previous in vitro study has demonstrated the ameliorative role of PACAP-38 in chicken hair cells under oxidative stress conditions, but its effects on living hair cells is now yet known. Therefore, the aim of the present study was to investigate in vivo the protective role of PACAP-38 in hair cells found in zebrafish (Danio rerio) sense organs-neuromasts. To induce oxidative stress the 5-day postfertilization (dpf) zebrafish larvae were exposed to 1.5 mM H2O2 for 15 min or 1 h. This resulted in an increase in caspase-3 and p-38 MAPK level in the hair cells as well as in an impairment of the larvae basic behavior. To investigate the ameliorative role of PACAP-38, the larvae were incubated with a mixture of 1.5 mM H2O2 and 100 nM PACAP-38 following 1 h preincubation with 100 nM PACAP-38 only. PACAP-38 abilities to prevent hair cells from apoptosis were investigated. Whole-mount immunohistochemistry and confocal microscopy analyses revealed that PACAP-38 treatment decreased the cleaved caspase-3 level in the hair cells, but had no influence on p-38 MAPK. The analyses of basic locomotor activity supported the protective role of PACAP-38 by demonstrating the improvement of the fish behavior after PACAP-38 treatment. In summary, our in vivo findings demonstrate that PACAP-38 protects zebrafish hair cells from oxidative stress by attenuating oxidative stress-induced apoptosis.

  4. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    Science.gov (United States)

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity.

  5. Augmented cystine-glutamate exchange by pituitary adenylate cyclase-activating polypeptide signaling via the VPAC1 receptor

    Science.gov (United States)

    Resch, Jon M.; Albano, Rebecca; Liu, XiaoQian; Hjelmhaug, Julie; Lobner, Doug; Baker, David A.; Choi, SuJean

    2014-01-01

    In the central nervous system, cystine import in exchange for glutamate through system xc− is critical for the production of the antioxidant glutathione by astrocytes, as well as the maintenance of extracellular glutamate. Therefore, regulation of system xc− activity affects multiple aspects of cellular physiology and may contribute to disease states. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuronally-derived peptide that has already been demonstrated to modulate multiple aspects of glutamate signaling suggesting PACAP may also target activity of cystine-glutamate exchange via system xc−. In the current study, 24-hour treatment of primary cortical cultures containing neurons and glia with PACAP concentration-dependently increased system xc− function as measured by radiolabeled cystine uptake. Furthermore, the increase in cystine uptake was completely abolished by the system xc− inhibitor, (S)-4-carboxyphenylglycine (CPG), attributing increases in cystine uptake specifically to system xc− activity. Time course and quantitative PCR results indicate that PACAP signaling may increase cystine-glutamate exchange by increasing expression of xCT, the catalytic subunit of system xc−. Furthermore, the potentiation of system xc− activity by PACAP occurs via a PKA-dependent pathway that is not mediated by the PAC1R, but rather the shared vasoactive intestinal polypeptide receptor VPAC1R. Finally, assessment of neuronal, astrocytic, and microglial-enriched cultures demonstrated that only astrocyte-enriched cultures exhibit enhanced cystine uptake following both PACAP and VIP treatment. These data introduce a novel mechanism by which both PACAP and VIP regulate system xc− activity. PMID:25066643

  6. Impaired nocifensive behaviours and mechanical hyperalgesia, but enhanced thermal allodynia in pituitary adenylate cyclase-activating polypeptide deficient mice.

    Science.gov (United States)

    Sándor, K; Kormos, V; Botz, B; Imreh, A; Bölcskei, K; Gaszner, B; Markovics, A; Szolcsányi, J; Shintani, N; Hashimoto, H; Baba, A; Reglodi, D; Helyes, Z

    2010-10-01

    Pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) and its receptors (PAC1 and VPAC) have been shown in the spinal dorsal horn, dorsal root ganglia and sensory nerve terminals. Data concerning the role of PACAP in central pain transmission are controversial and we have recently published its divergent peripheral effects on nociceptive processes. The aim of the present study was to investigate acute somatic and visceral nocifensive behaviours, partial sciatic nerve ligation-evoked chronic neuropathic, as well as resiniferatoxin-induced inflammatory thermal and mechanical hyperalgesia in PACAP deficient (PACAP(-/-)) mice to elucidate its overall function in pain transmission. Neuronal activation was investigated with c-Fos immunohistochemistry. Paw lickings in the early (0-5 min) and late (20-45 min) phases of the formalin test were markedly reduced in PACAP(-/-) mice. Acetic acid-evoked abdominal contractions referring to acute visceral chemonociception was also significantly attenuated in PACAP knockout animals. In both models, the excitatory role of PACAP was supported by markedly greater c-Fos expression in the periaqueductal grey and the somatosensory cortex. In PACAP-deficient animals neuropathic mechanical hyperalgesia was absent, while c-Fos immunopositivity 20 days after the operation was significantly higher. In this chronic model, these neurons are likely to indicate the activation of secondary inhibitory pathways. Intraplantarly injected resiniferatoxin-evoked mechanical hyperalgesia involving both peripheral and central processes was decreased, but thermal allodynia mediated by only peripheral mechanisms was increased in PACAP(-/-) mice. These data clearly demonstrate an overall excitatory role of PACAP in pain transmission originating from both exteroceptive and interoceptive areas, it is also involved in central sensitization. This can be explained by the signal transduction mechanisms of its identified receptors, both PAC1 and VPAC

  7. Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass

    Science.gov (United States)

    Li, Shengjie; Han, Linqiang; Bai, Junjie; Ma, Dongmei; Quan, Yingchun; Fan, Jiajia; Jiang, Peng; Yu, Lingyun

    2015-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass ( Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.

  8. Effects of combinatorial treatment with pituitary adenylate cyclase activating peptide and human mesenchymal stem cells on spinal cord tissue repair.

    Directory of Open Access Journals (Sweden)

    Kuan-Min Fang

    Full Text Available The aim of this study is to understand if human mesenchymal stem cells (hMSCs and neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP have synergistic protective effect that promotes functional recovery in rats with severe spinal cord injury (SCI. To evaluate the effect of delayed combinatorial therapy of PACAP and hMSCs on spinal cord tissue repair, we used the immortalized hMSCs that retain their potential of neuronal differentiation under the stimulation of neurogenic factors and possess the properties for the production of several growth factors beneficial for neural cell survival. The results indicated that delayed treatment with PACAP and hMSCs at day 7 post SCI increased the remaining neuronal fibers in the injured spinal cord, leading to better locomotor functional recovery in SCI rats when compared to treatment only with PACAP or hMSCs. Western blotting also showed that the levels of antioxidant enzymes, Mn-superoxide dismutase (MnSOD and peroxiredoxin-1/6 (Prx-1 and Prx-6, were increased at the lesion center 1 week after the delayed treatment with the combinatorial therapy when compared to that observed in the vehicle-treated control. Furthermore, in vitro studies showed that co-culture with hMSCs in the presence of PACAP not only increased a subpopulation of microglia expressing galectin-3, but also enhanced the ability of astrocytes to uptake extracellular glutamate. In summary, our in vivo and in vitro studies reveal that delayed transplantation of hMSCs combined with PACAP provides trophic molecules to promote neuronal cell survival, which also foster beneficial microenvironment for endogenous glia to increase their neuroprotective effect on the repair of injured spinal cord tissue.

  9. Overexpression of adenylate cyclase-associated protein 1 is associated with metastasis of lung cancer.

    Science.gov (United States)

    Tan, Min; Song, Xiaolian; Zhang, Guoliang; Peng, Aimei; Li, Xuan; Li, Ming; Liu, Yang; Wang, Changhui

    2013-10-01

    Lung cancer ranks first in both prevalence and mortality rates among all types of cancer. Metastasis is the main cause of treatment failure. Biomarkers are critical to early diagnosis and prediction and monitoring of progressive lesions. Several biomarkers have been identified for lung cancer but none have been routinely used clinically. The present study assessed the diagnostic and prognostic value of cyclase-associated protein 1 (CAP1) for lung cancer. CAP1 mRNA abundance and protein content were determined by real-time PCR and western blot analysis and/or immunostaining in biopsy specimens (24 neoplastic and 6 non-neoplastic) freshly collected at surgical lung resection, in 82 pathologically banked lung cancer specimens and in cultured non-invasive (95-C) and invasive (95-D) lung cancer cells. Multivariate regression analysis was performed to correlate immunoreactive CAP1 signal with cancer type and stage. In vitro cell migration was performed to determine the effect of RNA interference-mediated CAP1 gene silencing on invasiveness of 95-D cells. These analyses collectively demonstrated that: i) both CAP1 mRNA abundance and protein content were significantly higher in neoplastic compared to non-neoplastic specimens and in metastatic compared to non-metastatic specimens but not different between adenocarcinoma and squamous cell carcinoma; ii) immunoreactive CAP1 signal was significantly stronger in metastatic specimens and 95-D cells compared to non-metastatic specimens and 95-C cells; and iii) RNA interference-mediated CAP1 gene silencing adequately attenuated the invasive capacity of 95-D cells in vitro. These findings suggest that overexpression of CAP1 in lung cancer cells, particularly at the metastatic stage, may have significant clinical implications as a diagnostic/prognostic factor for lung cancer.

  10. Adenylate cyclase 5 coordinates the action of ADP, P2Y1, P2Y13 and ATP-gated P2X7 receptors on axonal elongation.

    Science.gov (United States)

    del Puerto, Ana; Díaz-Hernández, Juan-Ignacio; Tapia, Mónica; Gomez-Villafuertes, Rosa; Benitez, María José; Zhang, Jin; Miras-Portugal, María Teresa; Wandosell, Francisco; Díaz-Hernández, Miguel; Garrido, Juan José

    2012-01-01

    In adult brains, ionotropic or metabotropic purinergic receptors are widely expressed in neurons and glial cells. They play an essential role in inflammation and neurotransmission in response to purines secreted to the extracellular medium. Recent studies have demonstrated a role for purinergic receptors in proliferation and differentiation of neural stem cells although little is known about their role in regulating the initial neuronal development and axon elongation. The objective of our study was to investigate the role of some different types of purinergic receptors, P2Y1, P2Y13 and P2X7, which are activated by ADP or ATP. To study the role and crosstalk of P2Y1, P2Y13 and P2X7 purinergic receptors in axonal elongation, we treated neurons with specific agonists and antagonists, and we nucleofected neurons with expression or shRNA plasmids. ADP and P2Y1-GFP expression improved axonal elongation; conversely, P2Y13 and ATP-gated P2X7 receptors halted axonal elongation. Signaling through each of these receptor types was coordinated by adenylate cyclase 5. In neurons nucleofected with a cAMP FRET biosensor (ICUE3), addition of ADP or Blue Brilliant G, a P2X7 antagonist, increased cAMP levels in the distal region of the axon. Adenylate cyclase 5 inhibition or suppression impaired these cAMP increments. In conclusion, our results demonstrate a crosstalk between two metabotropic and one ionotropic purinergic receptor that regulates cAMP levels through adenylate cyclase 5 and modulates axonal elongation triggered by neurotropic factors and the PI3K-Akt-GSK3 pathway.

  11. ASP-56, a new actin sequestering protein from pig platelets with homology to CAP, an adenylate cyclase-associated protein from yeast.

    Science.gov (United States)

    Gieselmann, R; Mann, K

    1992-02-24

    A new 56 kDa actin-binding protein (ASP-56) was isolated from pig platelet lysate. In falling ball viscosimetry it caused a reduction in viscosity that could be attributed to a decrease in the concentration of polymeric actin. Fluorescence measurements with NBD-labelled actin showed reduction of polymeric actin, too. These results could be explained by sequestering of actin in a non-polymerizable 1:1 ASP-56/actin complex. Sequencing of about 20 tryptic peptides of ASP-56 and comparison with known sequences revealed about 60% homology to the adenylate cyclase-associated protein (CAP) from yeast.

  12. Suppression of the humoral immune response by cannabinoids is partially mediated through inhibition of adenylate cyclase by a pertussis toxin-sensitive G-protein coupled mechanism.

    Science.gov (United States)

    Kaminski, N E; Koh, W S; Yang, K H; Lee, M; Kessler, F K

    1994-11-16

    Cannabinoid compounds, including the major psychoactive component of marihuana, delta 9-tetrahydrocannabinol (delta 9-THC), have been widely established as being inhibitory on a broad array of humoral and cell-mediated immune responses. The presence of cannabinoid receptors has been identified recently on mouse spleen cells, which possess structural and functional characteristics similar to those of the G-protein coupled cannabinoid receptor originally identified in rat brain. These findings, together with those demonstrating that delta 9-THC inhibits adenylate cyclase in splenocytes, strongly suggest that certain aspects of immune inhibition by cannabinoids may be mediated through a cannabinoid receptor-associated mechanism. The objective of the present studies was to determine whether inhibition of adenylate cyclase is relevant to mouse spleen cell immune function and, if so, whether this inhibition is mediated through a Gi-protein coupled mechanism as previously described in neuronal tissue. Spleen cell activation by the phorbol ester phorbol-12-myristate-13-acetate (PMA), plus the calcium ionophore ionomycin, produced a rapid but transient increase in cytosolic cAMP, which was inhibited completely by immunosuppressive concentrations of delta 9-THC (22 microM) and the synthetic bicyclic cannabinoid CP-55940 (5.2 microM), which produced no effect on cell viability. Inhibition by cannabinoids of lymphocyte proliferative responses to PMA plus ionomycin and sheep erythrocyte (sRBC) IgM antibody-forming cell (AFC) response, was abrogated completely by low concentrations of dibutyryl-cAMP (10-100 microM). Inhibition of the sRBC AFC response by both delta 9-THC (22 microM) and CP-55940 (5.2 microM) was also abrogated by preincubation of splenocytes for 24 hr with pertussis toxin (0.1-100 ng/mL). Pertussis toxin pretreatment of spleen cells was also found to directly abrogate cannabinoid inhibition of adenylate cyclase, as measured by forskolin-stimulated accumulation

  13. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    Science.gov (United States)

    Penzkofer, A.; Tanwar, M.; Veetil, S. K.; Kateriya, S.; Stierl, M.; Hegemann, P.

    2013-09-01

    The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr-Tyr cross-linking (o,o‧-ditysosine formation) and partial flavin cofactor reduction.

  14. Absorption and fluorescence characteristics of photo-activated adenylate cyclase nano-clusters from the amoeboflagellate Naegleria gruberi NEG-M strain

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultaet fuer Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Stierl, M.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany); Kateriya, S. [Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India)

    2012-01-02

    Graphical abstract: Protein color center emissions were observed in the wavelength range from 340 nm to 900 nm from nano-clusters of the photo-activated adenylate cyclase (nPAC) from the amoeboflagellate Naegleria gruberi. Highlights: Black-Right-Pointing-Pointer Adenylyl cyclase nPAC in aqueous pH 7.5 buffer dissolved only to nano-clusters. Black-Right-Pointing-Pointer Nano-cluster size was determined by light attenuation (scattering) measurements. Black-Right-Pointing-Pointer The size of the nano-clusters was growing by coalescing during observation period. Black-Right-Pointing-Pointer In nPAC nano-clusters color centers were present in emission range of 360-900 nm. Black-Right-Pointing-Pointer The nPAC color center emission is compared with fluorescent protein emission. - Abstract: The spectroscopic characteristics of BLUF (BLUF = sensor of blue light using flavin) domain containing soluble adenylate cyclase (nPAC = Naegleria photo-activated cyclase) samples from the amoeboflagellate Naegleria gruberi NEG-M strain is studied at room temperature. The absorption and fluorescence spectroscopic development in the dark was investigated over two weeks. Attenuation coefficient spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation distributions were measured. Thawing of frozen nPAC samples gave solutions with varying protein nano-cluster size and varying flavin, tyrosine, tryptophan, and protein color-center emission. Protein color-center emission was observed in the wavelength range of 360-900 nm with narrow emission bands of small Stokes shift and broad emission bands of large Stokes shift. The emission spectra evolved in time with protein nano-cluster aging.

  15. Pituitary adenylate cyclase activating-peptide and its receptor antagonists in development of acute pancreatitis in rats

    Institute of Scientific and Technical Information of China (English)

    You-Dai Chen; Zong-Guang Zhou; Zhao Wang; Hong-Kai Gao; Wen-Wei Yan; Cun Wang; Gao-Ping Zhao; Xiao-Hui Peng

    2005-01-01

    AIM: Pituitary adenylate cyclase activating-peptide (PACAP) is a late member of the secretin/glucagon/vasoactive intestinal peptide (VIP) family of brain-gut peptides. It is unknown whether PACAP takes part in the development of acute pancreatitis and whether PACAP or its antagonists can be used to suppress the progression of acute pancreatitis.We investigated the actions of PACAP and its receptor antagonists in acute pancreatitis on rats.METHODS: Acute pancreatitis was induced in rats with caerulein or 3.5% sodium taurocholate. The rats were continuously infused with 5-30 μg/kg PACAP via jugular vein within the first 90 min, while 10-100 μg/kg PACAP6-27 and (4-Cl-D-Phe6, Leu17) VIP (PACAP receptor antagonists) were intravenously infused for 1 h. Biochemical and histopathological assessments were made at 4 h after infusion. Pancreatic and duodenal PACAP concentrations were determined by enzyme-linked immunosorbent assay (ELISA). Chinese ink-perfused pancreas was fixed, sectioned and cleared for counting the functional capillary density.RESULTS: PACAP augmented caerulein-induced pancreatitis and failed to ameliorate sodium taurocholate-induced pancreatitis. ELISA revealed that relative concentrations of PACAP in pancreas and duodenum were significantly increased in both sodium taurocholate- and caeruleininduced pancreatitis compared with those in normal controls.Unexpectedly, PACAP6-27 and (4-Cl-DPhe6, Leu17) VIP could induce mild acute pancreatitis and aggravate caeruleininduced pancreatitis with characteristic manifestations of acute hemorrhagic/necrotizing pancreatitis. Functional capillary density of pancreas was interpreted in the context of pancreatic edema, and calibrated functional capillary density (calibrated FCD), which combined measurement of functional capillary density with dry weight/wet weight ratio, was introduced. Hyperemia or congestion, rather than ischemia, characterized pancreatic microcirculatory changes in acute pancreatitis

  16. Thyroid-stimulating immunoglobulins in Hashimoto's thyroiditis measured by radioreceptor assay and adenylate cyclase stimulation and their relationship to HLA-D alleles

    Energy Technology Data Exchange (ETDEWEB)

    Bliddal, H. (Frederiksberg Hospital, Copenhagen, Denmark); Bech, K.; Feldt-Rasmussen, U.; Thomsen, M.; Ryder, L.P.; Hansen, J.M.; Siersbaek-Nielsen, K.; Friis, T.

    1982-11-01

    The relationship between thyroid-stimulating immunoglobulins, measured by both radioreceptor assay and adenylate cyclase stimulation, and the HLA alleles was studied in 41 patients with Hashimoto's thyroiditis. TSH binding-inhibiting immunoglobulins (TBII) were detected in 9 (22%) patients, and human thyroid adenylate cyclase-stimulating immunoglobulins (HTACS) were found in 21 (51%) patients. Only 2 patients were positive in both assays, and an inverse relationship was observed between TBII and HTACS. In the 21 HTACS-positive patients, HLA-Dw5 was found in 1 subject, compared to 8 of the 20 HTACS-negative patients (P < 0.01), while 4 of the 9 TBII-positive patients had HLA-Dw5 compared to 5 of the 32 TBII-negative subjects (P = 0.09).No significant relations were observed between the presence of HTACS or TBII and HLA-Dw3 or HLA-B8. It is concluded that TBII and HTACS are produced independently in Hashimoto's thyroiditis, and that the production of these autoantibodies seems to be related to the HLA-D region in this disease.

  17. Reduced early and late phase insulin response to glucose in isolated spiny mouse (Acomys cahirinus) islets: a defective link between glycolysis and adenylate cyclase.

    Science.gov (United States)

    Nesher, R; Abramovitch, E; Cerasi, E

    1989-09-01

    The spiny mouse (Acomys cahirinus) exhibits low insulin responsiveness to glucose with a nearly absent early phase release. The alternative fuel-secretagogue glyceraldehyde (10 mmol/l) produced a maximal early insulin response in rat islets but failed to affect early response in Acomys; however, it potentiated the late insulin response in both species alike. Glucagon (1.5 mumol/l) potentiated the early insulin response to intermediate (8.3 mmol/l) glucose in rat and Acomys islets by two- and four-fold, respectively. Glucose doubled cyclic AMP levels in rat islets but no significant response was noted in Acomys islets. Isobutylmethylxanthine (0.1 mmol/l) and forskolin (25 mumol/l) caused a significant rise in islet cyclic AMP levels in both types of islets; however, neither agent restored the glucose stimulation of cyclic AMP in spiny mouse islets. Forskolin and isobutylmethylxanthine potentiated early and late phase insulin release in both species; however, neither augmented the early response in the Acomys to the degree observed in rat islets. Thus: (1) A deficient link exists in Acomys between glycolysis and subsequent signals. (2) These islets contain a glucose-insensitive adenylate cyclase. (3) The early insulin response may be potentiated by direct activation of adenylate cyclase. (4) The glucose effects on early and late phase insulin release are probably mediated by distinct pathways. (5) In the spiny mouse the signals mediating the early response are deranged to a greater extent than those activating the late phase insulin release.

  18. Pituitary adenylate cyclase activating polypeptide induces vascular relaxation and inhibits non-vascular smooth muscle activity in the rabbit female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Ottesen, B; Jørgensen, M;

    1994-01-01

    In vitro effects of two bioactive forms of pituitary adenylate cyclase activating polypeptide (PACAP): PACAP-38 and PACAP-27 were studied on rabbit vascular and non-vascular smooth muscle. Segments of the ovarian artery and muscle strips from the fallopian tube were used. Two series of experiments...... with PACAP-38 (10(-7) M), PACAP-27 (10(-7) M) or VIP (10(-7) M). The effect of PACAP-38, PACAP-27 and VIP (10(-10)-10(-6) M) was investigated on spontaneously contracting smooth muscle of the fallopian tube. Longitudinally as well as transversally cut specimens were investigated. PACAP-38 produced...... in the low-dose interval was observed. The peptides caused a significant, dose-dependent inhibition of both frequency and amplitude on the fallopian tube smooth muscle activity. The effects of the three peptides on longitudinally as well as transversally cut specimens were alike....

  19. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans.

    Science.gov (United States)

    Bahn, Y S; Sundstrom, P

    2001-05-01

    In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains with CAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in the cap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles of CAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficient cap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis.

  20. A homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide is both necessary and instructive for the rapid formation of associative memory in an invertebrate.

    Science.gov (United States)

    Pirger, Zsolt; László, Zita; Kemenes, Ildikó; Tóth, Gábor; Reglodi, Dóra; Kemenes, György

    2010-10-13

    Similar to other invertebrate and vertebrate animals, cAMP-dependent signaling cascades are key components of long-term memory (LTM) formation in the snail Lymnaea stagnalis, an established experimental model for studying evolutionarily conserved molecular mechanisms of long-term associative memory. Although a great deal is already known about the signaling cascades activated by cAMP, the molecules involved in the learning-induced activation of adenylate cyclase (AC) in Lymnaea remained unknown. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy in combination with biochemical and immunohistochemical methods, recently we have obtained evidence for the existence of a Lymnaea homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide (PACAP) and for the AC-activating effect of PACAP in the Lymnaea nervous system. Here we first tested the hypothesis that PACAP plays an important role in the formation of robust LTM after single-trial classical food-reward conditioning. Application of the PACAP receptor antagonist PACAP6-38 around the time of single-trial training with amyl acetate and sucrose blocked associative LTM, suggesting that in this "strong" food-reward conditioning paradigm the activation of AC by PACAP was necessary for LTM to form. We found that in a "weak" multitrial food-reward conditioning paradigm, lip touch paired with sucrose, memory formation was also dependent on PACAP. Significantly, systemic application of PACAP at the beginning of multitrial tactile conditioning accelerated the formation of transcription-dependent memory. Our findings provide the first evidence to show that in the same nervous system PACAP is both necessary and instructive for fast and robust memory formation after reward classical conditioning.

  1. Studies on responsiveness of hepatoma cells to catecholamines. VI. Characteristics of adrenoceptors and adenylate cyclase response in rat ascites hepatoma cells and human hepatoma cells.

    Science.gov (United States)

    Sanae, F; Kohei, K; Nomura, M; Miyamoto, K

    1992-06-01

    Alpha 1, alpha 2- and beta-Adrenoceptor densities and catecholamine responsiveness in established hepatoma cells, rat ascites hepatoma AH13, AH66, AH66F, AH109A, AH130 and AH7974 cells and human hepatocellular carcinoma HLF and HepG2 cells, were compared with those in normal rat hepatocytes and Chang liver cells. Alpha 1-Adrenoceptor densities measured by [3H]prazosin bindings were not detected in all hepatoma cell lines. Alpha 2-Adrenoceptor densities measured by [3H]clonidine bindings were also barely detected in hepatoma cell lines except for AH130 cells and HepG2 cells. Regarding beta-adrenoceptor, AH109A, AH130 and AH7974 cells had much more [125I]iodocyanopindolol binding sites than normal rat hepatocytes, although we could not detect the binding in HepG2 cells. Adenylate cyclase of normal rat hepatocyte and Chang liver cells were stimulated by beta 2-adrenergic agonist salbutamol, while the cyclase in hepatoma cells had no beta 2-adrenergic response but a beta 1-type response. These findings indicate that the characteristics of adrenergic response in hepatoma cell lines is very different from that in normal hepatocytes, suggesting a participation in the hepatocarcinogenesis and/or the autonomous proliferation of hepatoma cells.

  2. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany); Tanwar, M.; Veetil, S.K.; Kateriya, S. [Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India); Stierl, M.; Hegemann, P. [Institut für Biologie/Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany)

    2013-09-23

    Highlights: • Lyophilizing of NgPAC2 from Naegleria gruberi caused loss of BLUF domain activity. • Photo-induced tyrosine to flavin electron transfer in lyophilized NgPAC2. • Photo-induced Tyr–Tyr cross-linking to o,o′-dityrosine in lyophilized NgPAC2. • Photo-induced partial flavin cofactor reduction in lyophilized NgPAC2. • Two NgPAC2 conformations with fast and slow photo-induced electron transfer. - Abstract: The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr–Tyr cross-linking (o,o′-ditysosine formation) and partial flavin cofactor reduction.

  3. Photo-dynamics of the BLUF domain containing soluble adenylate cyclase (nPAC) from the amoeboflagellate Naegleria gruberi NEG-M strain

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultaet fuer Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Stierl, M.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany); Kateriya, Suneel [Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India)

    2011-08-25

    Graphical abstract: The photoactivated adenylyl cyclase (nPAC) from Naegleria gruberi was expressed heterologously in Escherichia coli and its photo-cycling dynamics was studied by optical absorption and fluorescence spectroscopy. Highlights: {yields} Photo-activated adenylyl cyclase (nPAC) from Naegleria gruberi NEG-M was expressed. {yields} Photodynamics of BLUF domain in BLUF sensor - cyclase actuator protein was studied. {yields} Photo-excitation caused BLUF photo-cycling and permanent protein re-conformation. {yields} Re-conformed protein enabled photo-induced flavin reduction by proton transfer. {yields} Fluorescence of flavin in dark- and light-adapted state of nPAC was characterized. - Abstract: The amoeboflagellate Naegleria gruberi NEG-M comprises a BLUF (blue light sensor using flavin) regulated adenylate cyclase (nPAC). The nPAC gene was expressed heterologously in Escherichia coli and the photo-dynamics of the nPAC protein was studied by optical absorption and fluorescence spectroscopy. Blue-light exposure of nPAC caused a typical BLUF-type photo-cycle behavior (spectral absorption red-shift, fluorescence quenching, absorption and fluorescence recovery in the dark). Additionally, time-delayed reversible photo-induced one-electron reduction of fully oxidized flavin (Fl{sub ox}) to semi-reduced flavin (FlH{sup {center_dot}}) occurred. Furthermore, photo-excitation of FlH{sup {center_dot}} caused irreversible electron transfer to fully reduced anionic flavin (FlH{sup -}). A photo-induced electron transfer from Tyr or Trp to flavin (Tyr{sup {center_dot}+}-Fl{sup {center_dot}-} or Trp{sup {center_dot}+}-Fl{sup {center_dot}-} radical ion-pair formation) is thought to cause H-bond restructuring responsible for BLUF-type photo-cycling and permanent protein re-conformation enabling photo-induced flavin reduction by proton transfer. Some photo-degradation of Fl{sub ox} to lumichrome was observed. A model of the photo-dynamics of nPAC is developed.

  4. Effects of Yulangsan polysaccharide on monoamine neurotransmitters, adenylate cyclase activity and brain-derived neurotrophic factor expression in a mouse model of depression induced by unpredictable chronic mild stress

    Institute of Scientific and Technical Information of China (English)

    Shuang Liang; Renbin Huang; Xing Lin; Jianchun Huang; Zhongshi Huang; Huagang Liu

    2012-01-01

    The present study established a mouse model of depression induced by unpredictable chronic mild stress. The model mice were treated with Yulangsan polysaccharide (YLSPS; 150, 300 and 600 mg/kg) for 21 days, and compared with fluoxetine-treated and normal control groups. Enzyme-linked immunosorbent assay, radioimmunity and immunohistochemical staining showed that following treatment with YLSPS (300 and 600 mg/kg), monoamine neurotransmitter levels, prefrontal cortex adenylate cyclase activity and hippocampal brain-derived neurotrophic factor expression were significantly elevated, and depression-like behaviors were improved. Open-field and novelty-suppressed feeding tests showed that mouse activity levels were increased and feeding latency was shortened following treatment. Our results indicate that YLSPS inhibits depression by upregulating monoamine neurotransmitters, prefrontal cortex adenylate cyclase activity and hippocampal brain-derived neurotrophic factor expression.

  5. Testosterone regulates levels of cystic fibrosis transmembrane regulator, adenylate cyclase, and cAMP in the seminal vesicles of orchidectomized rats.

    Science.gov (United States)

    Ramli, Nur Siti Khadijah; Giribabu, Nelli; Muniandy, Sekaran; Salleh, Naguib

    2016-01-15

    Secretions of chloride (Cl(-))- and bicarbonate (HCO3(-))-rich fluid by the seminal vesicles could involve cystic fibrosis transmembrane regulator (CFTR), which activity can be stimulated by cAMP generated from the reaction involving adenylate cyclase (AC). In this study, we investigated levels of CFTR, AC, and cAMP in the seminal vesicles under testosterone influence. Orchidectomized adult male rats received 7-day treatment with 125 or 250 μg/kg/day of testosterone with or without flutamide or finasteride. At the end of the treatment, animals were sacrificed and seminal vesicles were harvested for analyses of CFTR and AC protein expression level by Western blotting. Distribution of CFTR and AC in seminal vesicles was observed by immunohistochemistry. Levels of cAMP and dihydrotestosterone in seminal vesicle homogenates were measured by ELISA. Cystic fibrosis transmembrane regulator, AC, and cAMP levels increased with increasing doses of testosterone (P seminal vesicle lumen with higher expression levels observed in testosterone-treated rats than in non-treated orchidectomized rats (P seminal vesicle homogenates after treatment with 250 μg/kg/day than with 125 μg/kg/day of testosterone (P seminal vesicles might contribute toward an increase in Cl(-) and HCO3(-) concentrations in the seminal fluid as reported under testosterone influence.

  6. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Directory of Open Access Journals (Sweden)

    Tamás Juhász

    2015-07-01

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.

  7. Reduced expression of brain-derived neurotrophic factor in mice deficient for pituitary adenylate cyclase activating polypeptide type-I-receptor.

    Science.gov (United States)

    Zink, Mathias; Otto, Christiane; Zörner, Björn; Zacher, Christiane; Schütz, Günther; Henn, Fritz A; Gass, Peter

    2004-04-22

    In vitro pituitary adenylate cyclase activating polypeptide (PACAP) induces the expression of brain-derived neurotrophic factor (BDNF) via its specific receptor PAC1. Since BDNF has been implicated in learning paradigms and mice lacking functional PAC1 have deficits in hippocampus-dependent associative learning, we investigated whether PAC1 mutants show alterations in hippocampal expression of BDNF and its receptor TrkB. Semi-quantitative in situ-hybridization using exon-specific BDNF-probes revealed significantly reduced expression of the exon-III and exon-V-specific transcripts within the hippocampal CA3 region in PAC1-deficient mice. A similar trend was observed for the exon-I-specific transcript. The expression of the exon-III-specific transcript was also reduced within the dentate gyrus, while Trk B-expression did not differ between genotypes. Our data demonstrate that even in vivo PAC1-mediated signaling seems to play a pivotal role for the transcriptional regulation of BDNF.

  8. First report of the pituitary adenylate cyclase activating polypeptide (PACAP) in crustaceans: conservation of its functions as growth promoting factor and immunomodulator in the white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Lugo, Juana María; Carpio, Yamila; Morales, Reynold; Rodríguez-Ramos, Tania; Ramos, Laida; Estrada, Mario Pablo

    2013-12-01

    The high conservation of the pituitary adenylate cyclase activating polypeptide (PACAP) sequence indicates that this peptide fulfills important biological functions in a broad spectrum of organisms. However, in invertebrates, little is known about its presence and its functions remain unclear. Up to now, in non-mammalian vertebrates, the majority of studies on PACAP have focused mainly on the localization, cloning and structural evolution of this peptide. As yet, little is known about its biological functions as growth factor and immunomodulator in lower vertebrates. Recently, we have shown that PACAP, apart from its neuroendocrine role, influences immune functions in larval and juvenile fish. In this work, we isolated for the first time the cDNA encoding the mature PACAP from a crustacean species, the white shrimp Litopenaeus vannamei, corroborating its high degree of sequence conservation, when compared to sequences reported from tunicates to mammalian vertebrates. Based on this, we have evaluated the effects of purified recombinant Clarias gariepinus PACAP administrated by immersion baths on white shrimp growth and immunity. We demonstrated that PACAP improves hemocyte count, superoxide dismutase, lectins and nitric oxide synthase derived metabolites in treated shrimp related with an increase in total protein concentration and growth performance. From our results, PACAP acts as a regulator of shrimp growth and immunity, suggesting that in crustaceans, as in vertebrate organisms, PACAP is an important molecule shared by both the endocrine and the immune systems.

  9. Effect of the pituitary adenylate cyclase-activating polypeptide on the autophagic activation observed in in vitro and in vivo models of Parkinson's disease.

    Science.gov (United States)

    Lamine-Ajili, Asma; Fahmy, Ahmed M; Létourneau, Myriam; Chatenet, David; Labonté, Patrick; Vaudry, David; Fournier, Alain

    2016-04-01

    Parkinson's disease (PD) is a neurodegenerative disorder that leads to destruction of the midbrain dopaminergic (DA) neurons. This phenomenon is related to apoptosis and its activation can be blocked by the pituitary adenylate cyclase-activating polypeptide (PACAP). Growing evidence indicates that autophagy, a self-degradation activity that cleans up the cell, is induced during the course of neurodegenerative diseases. However, the role of autophagy in the pathogenesis of neuronal disorders is yet poorly understood and the potential ability of PACAP to modulate the related autophagic activation has never been significantly investigated. Hence, we explored the putative autophagy-modulating properties of PACAP in in vitro and in vivo models of PD, using the neurotoxic agents 1-methyl-4-phenylpyridinium (MPP(+)) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), respectively, to trigger alterations of DA neurons. In both models, following the toxin exposure, PACAP reduced the autophagic activity as evaluated by the production of LC3 II, the modulation of the p62 protein levels, and the formation of autophagic vacuoles. The ability of PACAP to inhibit autophagy was also observed in an in vitro cell assay by the blocking of the p62-sequestration activity produced with the autophagy inducer rapamycin. Thus, the results demonstrated that autophagy is induced in PD experimental models and that PACAP exhibits not only anti-apoptotic but also anti-autophagic properties.

  10. Overexpression of adenylate cyclase-associated protein 1 may predict brain metastasis in non-small cell lung cancer.

    Science.gov (United States)

    Xie, Shuan-Shuan; Tan, Min; Lin, Hai-Yan; Xu, Lei; Shen, Chang-Xing; Yuan, Qing; Song, Xiao-Lian; Wang, Chang-Hui

    2015-01-01

    This study was designed to establish a biomarker risk model for predicting brain metastasis (BM) in non-small cell lung cancer (NSCLC). The model comprises 120 cases of NSCLC that were treated and followed up for 4 years. The patients were divided into the BM (n=50) and non-BM (other visceral metastasis and those without recurrence) (n=70) groups. Immunohistochemical and western blot analyses were performed in metastatic tissues of NSCLC. Multivariate regression analysis was performed to correlate the immunoreactive cyclase-associated protein 1 (CAP1) signal with BM. Survival analyses were performed by using the Kaplan-Meier method. CAP1 protein content and immunoreactivity were significantly increased in BM specimens compared to other-metastatic specimens. The survival analysis revealed that CAP1 overexpression was significantly associated with survival (P<0.05). The ROC test suggested that the area under the curve was 73.33% (P<0.001; 95% CI, 63.5-83.2%). When P=0.466, the sensitivity and specificity reached 79.5 and 67.1%, respectively. These findings suggested that CAP1 is involved in the BM of NSCLC, and that elevated levels of CAP1 expression may indicate a poor prognosis for patients with BM. The CAP1 molecular model may be useful in the prediction of the risk of BM in NSCLC.

  11. Optogenetic Modulation of an Adenylate Cyclase in Toxoplasma gondii Demonstrates a Requirement of the Parasite cAMP for Host-Cell Invasion and Stage Differentiation*

    Science.gov (United States)

    Hartmann, Anne; Arroyo-Olarte, Ruben Dario; Imkeller, Katharina; Hegemann, Peter; Lucius, Richard; Gupta, Nishith

    2013-01-01

    Successful infection and transmission of the obligate intracellular parasite Toxoplasma gondii depends on its ability to switch between fast-replicating tachyzoite (acute) and quiescent bradyzoite (chronic) stages. Induction of cAMP in the parasitized host cells has been proposed to influence parasite differentiation. It is not known whether the parasite or host cAMP is required to drive this phenomenon. Other putative roles of cAMP for the parasite biology also remain to be identified. Unequivocal research on cAMP-mediated signaling in such intertwined systems also requires a method for an efficient and spatial control of the cAMP pool in the pathogen or in the enclosing host cell. We have resolved these critical concerns by expressing a photoactivated adenylate cyclase that allows light-sensitive control of the parasite or host-cell cAMP. Using this method, we reveal multiple roles of the parasite-derived cAMP in host-cell invasion, stage-specific expression, and asexual differentiation. An optogenetic method provides many desired advantages such as: (i) rapid, transient, and efficient cAMP induction in extracellular/intracellular and acute/chronic stages; (ii) circumvention of the difficulties often faced in cultures, i.e. poor diffusion, premature degradation, steady activation, and/or pleiotropic effects of cAMP agonists and antagonists; (iii) genetically encoded enzyme expression, thus inheritable to the cell progeny; and (iv) conditional and spatiotemporal control of cAMP levels. Importantly, a successful optogenetic application in Toxoplasma also illustrates its wider utility to study cAMP-mediated signaling in other genetically amenable two-organism systems such as in symbiotic and pathogen-host models. PMID:23525100

  12. A membrane-associated adenylate cyclase modulates lactate dehydrogenase and creatine kinase activities required for bull sperm capacitation induced by hyaluronic acid.

    Science.gov (United States)

    Fernández, Silvina; Córdoba, Mariana

    2017-04-01

    Hyaluronic acid, as well as heparin, is a glycosaminoglycan present in the female genital tract of cattle. The aim of this study was to evaluate oxidative metabolism and intracellular signals mediated by a membrane-associated adenylate cyclase (mAC), in sperm capacitation with hyaluronic acid and heparin, in cryopreserved bull sperm. The mAC inhibitor, 2',5'-dideoxyadenosine, was used in the present study. Lactate dehydrogenase (LDH) and creatine kinase (CK) activities and lactate concentration were determined spectrophotometrically in the incubation medium. Capacitation and acrosome reaction were evaluated by chlortetracycline technique, while plasma membrane and acrosome integrity were determined by trypan blue stain/differential interference contrast microscopy. Heparin capacitated samples had a significant decrease in LDH and CK activities, while in hyaluronic acid capacitated samples LDH and CK activities both increased compared to control samples, in heparin and hyaluronic acid capacitation conditions, respectively. A significant increase in lactate concentration in the incubation medium occurred in hyaluronic acid-treated sperm samples compared to heparin treatment, indicating this energetic metabolite is produced during capacitation. The LDH and CK enzyme activities and lactate concentrations in the incubation medium were decreased with 2',5'-dideoxyadenosine treatment in hyaluronic acid samples. The mAC inhibitor significantly inhibited heparin-induced capacitation of sperm cells, but did not completely inhibit hyaluronic acid capacitation. Therefore, hyaluronic acid and heparin are physiological glycosaminoglycans capable of inducing in vitro capacitation in cryopreserved bull sperm, stimulating different enzymatic pathways and intracellular signals modulated by a mAC. Hyaluronic acid induces sperm capacitation involving LDH and CK activities, thereby reducing oxidative metabolism, and this process is mediated by mAC.

  13. Pituitary Adenylate Cyclase-Activating Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the Melanocortin and the TrkB Systems.

    Science.gov (United States)

    Iemolo, Attilio; Ferragud, Antonio; Cottone, Pietro; Sabino, Valentina

    2015-07-01

    Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexia produced by PACAP in the central nucleus of the amygdala (CeA), a limbic structure implicated in the emotional components of ingestive behavior. Male rats were microinfused with PACAP (0-1 μg per rat) into the CeA and home-cage food intake, body weight change, microstructural analysis of food intake, and locomotor activity were assessed. Intra-CeA (but not intra-basolateral amygdala) PACAP dose-dependently induced anorexia and body weight loss without affecting locomotor activity. PACAP-treated rats ate smaller meals of normal duration, revealing that PACAP slowed feeding within meals by decreasing the regularity and maintenance of feeding from pellet-to-pellet; postprandial satiety was unaffected. Intra-CeA PACAP-induced anorexia was blocked by coinfusion of either the melanocortin receptor 3/4 antagonist SHU 9119 or the tyrosine kinase B (TrKB) inhibitor k-252a, but not the CRF receptor antagonist D-Phe-CRF(12-41). These results indicate that the CeA is one of the brain areas through which the PACAP system promotes anorexia and that PACAP preferentially lessens the maintenance of feeding in rats, effects opposite to those of palatable food. We also demonstrate that PACAP in the CeA exerts its anorectic effects via local melanocortin and the TrKB systems, and independently from CRF.

  14. Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway.

    Science.gov (United States)

    Portugal, Leivi; Muñóz-Garay, Carlos; Martínez de Castro, Diana L; Soberón, Mario; Bravo, Alejandra

    2017-01-01

    Bacillus thuringiensis (Bt) bacteria produce Cry toxins that are able to kill insect pests. Different models explaining the mode of action of these toxins have been proposed. The pore formation model proposes that the toxin creates pores in the membrane of the larval midgut cells after interaction with different receptors such as cadherin, aminopeptidase N and alkaline phosphatase and that this pore formation activity is responsible for the toxicity of these proteins. The alternative model proposes that interaction with cadherin receptor triggers an intracellular cascade response involving protein G, adenylate cyclase (AC) and protein kinase A (PKA). In addition, it was shown that Cry toxins induce a defense response in the larvae involving the activation of mitogen-activated kinases such as MAPK p38 in different insect orders. Here we analyzed the mechanism of action of Cry1Ab and Cry1Ac toxins and a collection of mutants from these toxins in the insect cell line CF1 from Choristoneura fumiferana, that is naturally sensitive to these toxins. Our results show that both toxins induced permeability of K(+) ions into the cells. The initial response after intoxication with Cry1Ab and Cry1Ac toxins involves the activation of a defense response that involves the phosphorylation of MAPK p38. Analysis of activation of PKA and AC activities indicated that the signal transduction involving PKA, AC and cAMP was not activated during Cry1Ab or Cry1Ac intoxication. In contrast we show that Cry1Ab and Cry1Ac activate apoptosis. These data indicate that Cry toxins can induce an apoptotic death response not related with AC/PKA activation. Since Cry1Ab and Cry1Ac toxins affected K(+) ion permeability into the cells, and that mutant toxins affected in pore formation are not toxic to CF1, we propose that pore formation activity of the toxins is responsible of triggering cell death response in CF1cells.

  15. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models

    Science.gov (United States)

    Kiss, Tibor; Jungling, Adel

    2017-01-01

    ABSTRACT Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP. PMID:28067625

  16. [Differentially expressed genes identified in the main olfactory epithelium of mice with deficiency of adenylate cyclase 3 by using suppression subtractive hybridization approach].

    Science.gov (United States)

    Zhenlong, Cao; Jiangye, Hao; Yanfen, Zhou; Zhe, Zhang; Zhihua, Ni; Yuanxiang, Hu; Weili, Liu; Yongchao, Li; Daniel, R Storm; Runlin, Z Ma; Zhenshan, Wang

    2014-06-01

    Adenylate cyclase 3 (AC3) is one of the major players in the olfactory signaling within the main olfactory epithelium (MOE) of mice. However, we are not ascertained whether deficiency of AC3 will lead to the differential expression of related genes in the MOE. Forward and reverse subtractive libraries were constructed by suppression subtractive hybridization (SSH) approach, with MOEs from AC3(-/-) and AC3(+/+) mice. These two libraries were primarily screened by Dot blot, differential expressed clones were sequenced and analyzed by bioinformatics, and differential expressed genes were verified by qRT-PCR. A total of 386 differentially expressed clones were picked out after Dot blot. The DNA sequences of 80 clones randomly selected were determined, and 62 clones were identified by blasting in GenBank. We found that 24 up-regulated clones were corresponded to genes of kcnk3, mapk7, megf11, and 38 down-regulated clones were corresponded to tmem88b, c-mip, skp1a, mlycd, etc. Their functions were annotated with Gene Ontology (GO) and found to be mainly focused on molecular binding, cell cycle, processes of biology and cells. Five genes (kcnk3, c-mip, mlycd, tmem88b and trappc5) were verified by qRT-PCR with individuals of AC3(+/+) and AC3(-/-) mice. The data indicate that kcnk3 gene is up-regulated significantly, increasing 1.27 folds compared to control mice, whereas c-mip, mlycd, tmem88b and trappc5 are down-regulated significantly, decreasing 20%, 7%, 32% and 29% compared to the AC3(+/+)mice. The functions of these genes are closely related with K(+) channels, cell differentiation, metabolism of fats, membrane transportation, and so on. It is tempting to speculate that these genes might work together with AC3 to orchestrate the olfactory transduction signaling in the MOE.

  17. Pituitary Adenylate Cyclase Activating Polypeptide, A Potential Therapeutic Agent for Diabetic Retinopathy in Rats: Focus on the Vertical Information Processing Pathway.

    Science.gov (United States)

    Szabadfi, K; Reglodi, D; Szabo, A; Szalontai, B; Valasek, A; Setalo, Gy; Kiss, P; Tamas, A; Wilhelm, M; Gabriel, R

    2016-04-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophic and neuroprotective peptide that has been shown to exert protective effects in different neuronal injuries, such as retinal degenerations. Diabetic retinopathy (DR), the most common complication of diabetes, affects the microvasculature and neuronal architecture of the retina. We have proven earlier that PACAP is also protective in a rat model of DR. In this study, streptozotocin-induced DR was treated with intravitreal PACAP administration in order to further analyze the synaptic structure and proteins of PACAP-treated diabetic retinas, primarily in the vertical information processing pathway. Streptozotocin-treated Wistar rats received intravitreal PACAP injection three times into the right eye 2 weeks after the induction of diabetes. Morphological and molecular biological (qRT-PCR; Western blot) methods were used to analyze retinal synapses (ribbons, conventional) and related structures. Electron microscopic analysis revealed that retinal pigment epithelium, the ribbon synapses and other synaptic profiles suffered alterations in diabetes. However, in PACAP-treated diabetic retinas more bipolar ribbon synapses were found intact in the inner plexiform layer than in DR animals. The ribbon synapse was marked with C-terminal binding protein 2/Bassoon and formed horseshoe-shape ribbons, which were more retained in PACAP-treated diabetic retinas than in DR rats. These results are supported by molecular biological data. The selective degeneration of related structures such as bipolar and ganglion cells could be ameliorated by PACAP treatment. In summary, intravitreal administration of PACAP may have therapeutic potential in streptozotocin-induced DR through maintaining synapse integrity in the vertical pathway.

  18. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models.

    Science.gov (United States)

    Maasz, Gabor; Zrinyi, Zita; Reglodi, Dora; Petrovics, Dora; Rivnyak, Adam; Kiss, Tibor; Jungling, Adel; Tamas, Andrea; Pirger, Zsolt

    2017-02-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP.

  19. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) regulate murine neural progenitor cell survival, proliferation, and differentiation.

    Science.gov (United States)

    Scharf, Eugene; May, Victor; Braas, Karen M; Shutz, Kristin C; Mao-Draayer, Yang

    2008-11-01

    Neural stem/progenitor cells (NPC) have gained wide interest over the last decade from their therapeutic potential, either through transplantation or endogenous replacement, after central nervous system (CNS) disease and damage. Whereas several growth factors and cytokines have been shown to promote NPC survival, proliferation, or differentiation, the identification of other regulators will provide much needed options for NPC self-renewal or lineage development. Although previous studies have shown that pituitary adenylate cyclase-activating polypeptide (PACAP)/vasoactive intestinal peptide (VIP) can regulate stem/progenitor cells, the responses appeared variable. To examine the direct roles of these peptides in NPCs, postnatal mouse NPC cultures were withdrawn from epidermal growth factor (EGF) and fibroblastic growth factor (FGF) and maintained under serum-free conditions in the presence or absence of PACAP27, PACAP38, or VIP. The NPCs expressed the PAC1(short)null receptor isoform, and the activation of these receptors decreased progenitor cell apoptosis more than 80% from TUNEL assays and facilitated proliferation more than fivefold from bromodeoxyuridine (BrdU) analyses. To evaluate cellular differentiation, replicate control and peptide-treated cultures were examined for cell fate marker protein and transcript expression. In contrast with previous work, PACAP peptides downregulated NPC differentiation, which appeared consistent with the proliferation status of the treated cells. Accordingly, these results demonstrate that PACAP signaling is trophic and can maintain NPCs in a multipotent state. With these attributes, PACAP may be able to promote endogenous NPC self-renewal in the adult CNS, which may be important for endogenous self-repair in disease and ageing processes.

  20. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways.

    Science.gov (United States)

    Taylor, Ruth D T; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP ) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP , resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons.

  1. Multiple nickel-sensitive targets elicit cardiac arrhythmia in isolated mouse hearts after pituitary adenylate cyclase-activating polypeptide-mediated chronotropy.

    Science.gov (United States)

    Tevoufouet, Etienne E; Nembo, Erastus N; Distler, Fabian; Neumaier, Felix; Hescheler, Jürgen; Nguemo, Filomain; Schneider, Toni

    2017-03-01

    The pituitary adenylate cyclase-activating polypeptide (PACAP)-27 modulates various biological processes, from the cellular level to function specification. However, the cardiac actions of this neuropeptide are still under intense studies. Using control (+|+) and mice lacking (-|-) either R-type (Cav2.3) or T-type (Cav3.2) Ca(2+) channels, we investigated the effects of PACAP-27 on cardiac activity of spontaneously beating isolated perfused hearts. Superfusion of PACAP-27 (20nM) caused a significant increase of baseline heart frequency in Cav2.3(+|+) (156.9±10.8 to 239.4±23.4 bpm; p<0.01) and Cav2.3(-|-) (190.3±26.4 to 270.5±25.8 bpm; p<0.05) hearts. For Cav3.2, the heart rate was significantly increased in Cav3.2(-|-) (133.1±8.5 bpm to 204.6±27.9 bpm; p<0.05) compared to Cav3.2(+|+) hearts (185.7±11.2 bpm to 209.3±22.7 bpm). While the P wave duration and QTc interval were significantly increased in Cav2.3(+|+) and Cav2.3(-|-) hearts following PACAP-27 superfusion, there was no effect in Cav3.2(+|+) and Cav3.2(-|-) hearts. The positive chronotropic effects observed in the four study groups, as well as the effect on P wave duration and QTc interval were abolished in the presence of Ni(2+) (50μM) and PACAP-27 (20nM) in hearts from Cav2.3(+|+) and Cav2.3(-|-) mice. In addition to suppressing PACAP's response, Ni(2+) also induced conduction disturbances in investigated hearts. In conclusion, the most Ni(2+)-sensitive Ca(2+) channels (R- and T-type) may modulate the PACAP signaling cascade during cardiac excitation in isolated mouse hearts, albeit to a lesser extent than other Ni(2+)-sensitive targets.

  2. Racemic Salsolinol and its Enantiomers Act as Agonists of the μ-Opioid Receptor by Activating the Gi Protein-Adenylate Cyclase Pathway

    Science.gov (United States)

    Berríos-Cárcamo, Pablo; Quintanilla, María E.; Herrera-Marschitz, Mario; Vasiliou, Vasilis; Zapata-Torres, Gerald; Rivera-Meza, Mario

    2017-01-01

    Background: Several studies have shown that the ethanol-derived metabolite salsolinol (SAL) can activate the mesolimbic system, suggesting that SAL is the active molecule mediating the rewarding effects of ethanol. In vitro and in vivo studies suggest that SAL exerts its action on neuron excitability through a mechanism involving opioid neurotransmission. However, there is no direct pharmacologic evidence showing that SAL activates opioid receptors. Methods: The ability of racemic (R/S)-SAL, and its stereoisomers (R)-SAL and (S)-SAL, to activate the μ-opioid receptor was tested in cell-based (light-emitting) receptor assays. To further characterizing the interaction of SAL stereoisomers with the μ-opioid receptor, a molecular docking study was performed using the crystal structure of the μ-opioid receptor. Results: This study shows that SAL activates the μ-opioid receptor by the classical G protein-adenylate cyclase pathway with an half-maximal effective concentration (EC50) of 2 × 10−5 M. The agonist action of SAL was fully blocked by the μ-opioid antagonist naltrexone. The EC50 for the purified stereoisomers (R)-SAL and (S)-SAL were 6 × 10−4 M and 9 × 10−6 M respectively. It was found that the action of racemic SAL on the μ-opioid receptor did not promote the recruitment of β-arrestin. Molecular docking studies showed that the interaction of (R)- and (S)-SAL with the μ-opioid receptor is similar to that predicted for the agonist morphine. Conclusions: It is shown that (R)-SAL and (S)-SAL are agonists of the μ-opioid receptor. (S)-SAL is a more potent agonist than the (R)-SAL stereoisomer. In silico analysis predicts a morphine-like interaction between (R)- and (S)-SAL with the μ-opioid receptor. These results suggest that an opioid action of SAL or its enantiomers is involved in the rewarding effects of ethanol. PMID:28167903

  3. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways

    Science.gov (United States)

    Taylor, Ruth DT; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP, resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:23996525

  4. A new recombinant pituitary adenylate cyclase-activating peptide-derived peptide efficiently promotes glucose uptake and glucose-dependent insulin secretion

    Institute of Scientific and Technical Information of China (English)

    Yi Ma; Tianjie Luo; Wenna Xu; Zulu Ye; An Hong

    2012-01-01

    The recombinant peptide,DBAYL,a promising therapeutic peptide for type 2 diabetes,is a new,potent,and highly selective agonist for VPAC2 generated through sitedirected mutagenesis based on sequence alignments of pituitary adenylate cyclase-activating peptide (PACAP),vasoactive intestinal peptide (VIP),and related analogs.The recombinant DBAYL was used to evaluate its effect and mechanism in blood glucose metabolism and utilization.As much as 28.9 mg recombinant DBAYL peptide with purity over 98% can be obtained from 1 I of Luria-Bertani medium culture by the method established in this study and the prepared DBAYL with four mutations (N10Q,V18L,N29Q,and M added to the N-terminal)were much more stable than BAY55-9837.The half-life of recombinant DBAYL was about 25 folds compared with that of BAY55-9837 in vitro.The bioactivity assay of DBAYL showed that it displaced [125I]PACAP38 and [125I]VIP from VPAC2 with a half-maximal inhibitory concentration of 48.4 ± 6.9 and 47.1 ± 4.9 nM,respectively,which were significantly lower than that of BAY55-9837,one established VPAC2 agonists.DBAYL enhances the cAMP accumulation in CHO cells expressing human VPAC2 with a half-maximal stimulatory concentration (EC5o) of 0.68 nM,whereas the receptor potency of DBAYL at human VPAC1 (ECso of 737 nM) was only 1/1083of that at human VPAC2,and DBAYL had no activity toward human PAC1 receptor.Western blot analysis of the key proteins of insulin receptor signaling pathway:insulin receptor substrate 1 (IRS-1) and glucose transporter 4(GLUT4) indicated that the DBAYL could significantly induce the insulin-stimulated IRS-1 and GLUT4 expression more efficiently than BAY55-9837 and VIP in adipocytes.Compared with BAY55-9837 and PACAP38,the recombinant peptide DBAYL can more efficiently promote insulin release and decrease plasma glucose level in Institute of Cancer Research (ICR) mice.These results suggested that DBAYL could efficiently improve glucose uptake and glucose-dependent insulin

  5. Comparative study of hemolytic activity of Bordetella species

    Directory of Open Access Journals (Sweden)

    C N Khobragade

    2009-11-01

    Full Text Available Background and objectives: Bordetella species colonize the respiratory tract of mammals and thereby cause the whooping cough. Most of the species produce adenylate cyclase - a toxin ( hemolysin responsible for increasing intracellular cyclic AMP (cAMP levels in mammalian neutrophils and macrophages and as a consequence their phagocytic function get impaired . This study was carried out to isolate species of Bordetella and to study the hemolytic activity of each species on RBCs of sheep, human and poultry at varied culture conditions by altering the temperature, pH and cell age."nMaterials and Methods: Three pathogenic Bordetella species were isolated from fifty suspected whooping cough patients on Bordet-Gengou agar and identified by their biochemical profiles. The hemolytic activity of B. pertussis, B. parapertussis and B. bronchiseptica was investigated in terms of cell bound and cell free hemolysin on human, poultry and sheep RBCs at variable pH, temperature and cell age in Stainer Scholt broth. The hemolysin activity was also determined qualitatively on blood agar containing different blood samples."nResults: All the species revealed optimum hemolytic activity in pH range 7.5-8.0 (in slight alkaline condition, temperature 37°C and cell age up to 20-24 hrs. The cell bound hemolytic activity was found to be maximum than cell free activity and varied with blood samples of different species. B. pertussis showed maximum hemolytic activity on human red blood cells followed by poultry and sheep RBCs. B. parapertussis and B. bronchiseptica showed maximum hemolytic activity on sheep and poultry RBCs respectively."nConclusion: The findings of our study revealed that different determinants are involved in host interactions and virulence of Bordetella species.

  6. Adenylate cyclase stimulation and ocular hypertension inhibition by forskolin analogs%佛司可林类似物激动腺苷酸环化酶及抑制兔高眼压探讨

    Institute of Scientific and Technical Information of China (English)

    杨为民; 李新华; 陈植和; 聂玲辉; 王伯龄; 沈志强

    2001-01-01

    目的 从滇产毛喉鞘蕊花植物中提取到3个佛司可林类似物,即异佛司可林、去酰基佛司可林、1-乙酰基佛司可林,体外测定它们激动腺苷酸环化酶活性,并观察去酰基佛司可林及1-乙酰基佛司可林对水负荷兔高眼压的影响。 方法 体外测定激动腺苷酸环化酶活性用蛋白质结合放免法、气动式眼压计观察兔眼压。 结果 异佛司可林体外激动腺苷酸环化酶活性与佛司可林相当,去酰基佛司可林稍弱,1-乙酰基佛司可林无活性。1%去酰基佛司可林及1-乙酰基佛司可林滴眼液滴兔眼,能抑制水负荷造成的兔高眼压,抑制率最高分别达6.0%及10.9%,作用持续至少3h。 结论 研究表明异佛司可林及去酰基佛司可林具有体外激动腺苷酸环化酶活性的作用,而去酰基佛司可林及1-乙酰基佛司可林具有抑制水负荷兔高眼压的作用。%ObjectiveForskolin (FSK) analogs,isoforskolin (isoF),deacetylforskolin(deaF),and 1-acetylforskolin(1-aF),extracted from Coleus forskohlii native to Yunnan,were assayed for their adenylate cyclase stimulating activities in vitro and for effects of two analogs on ocular hypertension (OHT) in water-loaded rabbits.MethodsAdenylate cyclase stimulation was determined by protein-binding method of radioimmunoassay,and intraocular pressure was monitored by pneumatonometer.ResultsIt showed that isoforskolin and forskolin stimulated adenylate cyclase in vitro with almost equal activity,deacetylforskolin with milder activity,and 1-acetylforskolin with little activity in vitro.1% deaF and 1-aF suppressed rabbit OHT induced by water-loading for at least 3h,with the maximal inhibitory rates of 6.0,10.9% respectively.ConclusionThis study suggests that two foskolin analogs (isoforskolin,deacetylforskolin) possess adenylate cyclase stimulation activities in vitro;deacetylforskolin and 1

  7. A FRET-Based Method for Probing the Conformational Behavior of an Intrinsically Disordered Repeat Domain from Bordetella pertussis Adenylate Cyclase

    Science.gov (United States)

    2009-10-22

    ACKNOWLEDGMENT We thank Carol Li for technical help and Elliot Campbell for help with the stopped-flow fluorescence measurements. Dr. Ladant (Institute...387–401. 21. Ringler, P., and Schulz, G. E. (2003) Self-assembly of proteins into designed networks. Science 302, 106–109. 22. Reiersen, H., and Rees

  8. The type III secreted protein BspR regulates the virulence genes in Bordetella bronchiseptica.

    Directory of Open Access Journals (Sweden)

    Jun Kurushima

    Full Text Available Bordetella bronchiseptica is closely related with B. pertussis and B. parapertussis, the causative agents of whooping cough. These pathogenic species share a number of virulence genes, including the gene locus for the type III secretion system (T3SS that delivers effector proteins. To identify unknown type III effectors in Bordetella, secreted proteins in the bacterial culture supernatants of wild-type B. bronchiseptica and an isogenic T3SS-deficient mutant were compared with iTRAQ-based, quantitative proteomic analysis method. BB1639, annotated as a hypothetical protein, was identified as a novel type III secreted protein and was designated BspR (Bordetella secreted protein regulator. The virulence of a BspR mutant (ΔbspR in B. bronchiseptica was significantly attenuated in a mouse infection model. BspR was also highly conserved in B. pertussis and B. parapertussis, suggesting that BspR is an essential virulence factor in these three Bordetella species. Interestingly, the BspR-deficient strain showed hyper-secretion of T3SS-related proteins. Furthermore, T3SS-dependent host cell cytotoxicity and hemolytic activity were also enhanced in the absence of BspR. By contrast, the expression of filamentous hemagglutinin, pertactin, and adenylate cyclase toxin was completely abolished in the BspR-deficient strain. Finally, we demonstrated that BspR is involved in the iron-responsive regulation of T3SS. Thus, Bordetella virulence factors are coordinately but inversely controlled by BspR, which functions as a regulator in response to iron starvation.

  9. Changes in vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide and neuropeptide Y-ergic structures of the enteric nervous system in the carcinoma of the human large intestine.

    Directory of Open Access Journals (Sweden)

    Ireneusz Mirosław Łakomy

    2010-08-01

    Full Text Available This investigation was aimed at immunohistochemical analysis of potential changes in the enteric nervous system caused by cancer of the large intestine. In this purpose, neurons and nerve fibers of intestinal plexuses containing neuropeptides: vasoactive intestinal peptide (VIP, pituitary adenylate cyclase-activating polypeptide (PACAP and neuropeptide Y (NPY, in pathologically changed part of the large intestine were microscpically observed and compared. Samples were taken from patients operated due to cancer of the sigmoid colon and rectum. The number of neurons and density of nerve fibres containing neuropeptides found in sections with cancer tissues were compared to those observed in sections from the uninvolved intestinal wall. Changes relating to reductions in the number of NPY-ergic neurons and density of nerve fibres in submucous and myenteric plexuses in the sections with cancer tissues (pathological sections were statistically significant. A statistically similar presence of VIP-ergic and PACAP-ergic neurons in the submucosal and myenteric plexuses was observed in both the pathological and control sections. On the other hand, in the pathological sections, VIP-ergic nerve fibres in the myenteric plexuses and PACAP-ergic nerve fibres in the submucosal and myenteric plexuses were found to be less dense. Analysis revealed changes in pathologically affected part of the large intestine may caused disruption of proper intestinal function. Observed changes in the neural elements which are responsible for relaxation of the intestine may suggest dysfunction in the innervation of this part of the colon.

  10. 斜带石斑鱼PACAP的原核表达及活性分析%The prokaryotic expression and biological activity of the pituitary adenylate cyclase activating polypeptide in groupers Epinephelus coioides

    Institute of Scientific and Technical Information of China (English)

    江湧; 李文笙; 林浩然

    2005-01-01

    自1989年从绵羊下丘脑提取物发现垂体腺苷酸环化酶激活多肽(Pituitary adenylate cyclase activating polypeptide,PACAP)以来(Miyata et al.,1989),已证明它能促进垂体激素释放,同时还具有神经递质、神经调质和神经营养等作用,使对PACAP的研究成为十分活跃的领域。PACAP属于血管活性肠肽(VIP)-胰高血糖素-生长激素释放因子-分泌素家族(Campbell and Scanes,1992)成员,已鉴别出包含27和38个氨基酸两种类型。对原索动物(McRory et al.,1997)、两栖类(蛙)(Alexandre et al.,2000)、爬行类(蜥蜴)(Pohland Wank,1998)、鸟类(鸡)(McRory et al.,1997),啮齿类(鼠)(Ghatei et al.,1993)等脊椎动物PACAP的研究多集中在结构与进化方面,对功能了解甚少。

  11. The expression and significance of adenylate cyclase-associated protein 2 in human hepatocellular carcinoma%腺苷酸环化酶相关蛋白2在肝癌组织中的表达及其意义

    Institute of Scientific and Technical Information of China (English)

    谢艳英; 徐秋霞; 韩双印; 张立达; 白阳秋; 杨玉秀

    2010-01-01

    @@ 有关腺苷酸环化酶相关蛋白(adenylate cyclase-associated protein,CAP)2在肝癌中的生物学作用机制尚不明确.本研究应用逆转录聚合酶链反应(RT-PCR)及免疫组织化学技术检测CAP2在人正常肝脏、肝硬化和肝癌组织中的表达,探讨CAP2在肝癌发生发展过程中的作用.

  12. Review of the neutrophil response to Bordetella pertussis infection.

    Science.gov (United States)

    Eby, Joshua C; Hoffman, Casandra L; Gonyar, Laura A; Hewlett, Erik L

    2015-12-01

    The nature and timing of the neutrophil response to infection with Bordetella pertussis is influenced by multiple virulence factors expressed by the bacterium. After inoculation of the host airway, the recruitment of neutrophils signaled by B. pertussis lipooligosaccharide (LOS) is suppressed by pertussis toxin (PTX). Over the next week, the combined activities of PTX, LOS and adenylate cyclase toxin (ACT) result in production of cytokines that generate an IL-17 response, promoting neutrophil recruitment which peaks at 10-14 days after inoculation in mice. Arriving at the site of infection, neutrophils encounter the powerful local inhibitory activity of ACT, in conjunction with filamentous hemagglutinin. With the help of antibodies, neutrophils contribute to clearance of B. pertussis, but only after 28-35 days in a naïve mouse. Studies of the lasting, antigen-specific IL-17 response to infection in mice and baboons has led to progress in vaccine development and understanding of pathogenesis. Questions remain about the mediators that coordinate neutrophil recruitment and the mechanisms by which neutrophils overcome B. pertussis virulence factors.

  13. Bordetella pertussis modulates human macrophage defense gene expression.

    Science.gov (United States)

    Valdez, Hugo Alberto; Oviedo, Juan Marcos; Gorgojo, Juan Pablo; Lamberti, Yanina; Rodriguez, Maria Eugenia

    2016-08-01

    Bordetella pertussis, the etiological agent of whooping cough, still causes outbreaks. We recently found evidence that B. pertussis can survive and even replicate inside human macrophages, indicating that this host cell might serve as a niche for persistence. In this work, we examined the interaction of B. pertussis with a human monocyte cell line (THP-1) that differentiates into macrophages in culture in order to investigate the host cell response to the infection and the mechanisms that promote that intracellular survival. To that end, we investigated the expression profile of a selected number of genes involved in cellular bactericidal activity and the inflammatory response during the early and late phases of infection. The bactericidal and inflammatory response of infected macrophages was progressively downregulated, while the number of THP-1 cells heavily loaded with live bacteria increased over time postinfection. Two of the main toxins of B. pertussis, pertussis toxin (Ptx) and adenylate cyclase (CyaA), were found to be involved in manipulating the host cell response. Therefore, failure to express either toxin proved detrimental to the development of intracellular infections by those bacteria. Taken together, these results support the relevance of host defense gene manipulation to the outcome of the interaction between B. pertussis and macrophages.

  14. Bordetella pertussis.

    Science.gov (United States)

    Nieves, Delma J; Heininger, Ulrich

    2016-06-01

    Pertussis is a highly infectious vaccine-preventable cough illness that continues to be a significant source of morbidity and mortality around the world. The majority of human illness is caused by Bordetella pertussis, and some is caused by Bordetella parapertussis. Bordetella is a Gram-negative, pleomorphic, aerobic coccobacillus. In the past several years, even countries with high immunization rates in early childhood have experienced rises in pertussis cases. Reasons for the resurgence of reported pertussis may include molecular changes in the organism and increased awareness and diagnostic capabilities, as well as lessened vaccine efficacy and waning immunity. The most morbidity and mortality with pertussis infection is seen in infants too young to benefit from immunization. Severe infection requiring hospitalization, including in an intensive care setting, is mostly seen in those under 3 months of age. As a result, research and public health actions have been aimed at better understanding and reducing the spread of Bordetella pertussis. Studies comparing the cost benefit of cocooning strategies versus immunization of pregnant women have been favorable towards immunizing pregnant women. This strategy is expected to prevent a larger number of pertussis cases, hospitalizations, and deaths in infants <1 year old while also being cost-effective. Studies have demonstrated that the source of infection in infants usually is a family member. Efforts to immunize children and adults, in particular pregnant women, need to remain strong.

  15. In Vitro and In Vivo Characterization of a Bordetella bronchiseptica Mutant Strain with a Deep Rough Lipopolysaccharide Structure

    Science.gov (United States)

    Sisti, Federico; Fernández, Julieta; Rodríguez, María Eugenia; Lagares, Antonio; Guiso, Nicole; Hozbor, Daniela Flavia

    2002-01-01

    Bordetella bronchiseptica is closely related to Bordetella pertussis, which produces respiratory disease primarily in mammals other than humans. However, its importance as a human pathogen is being increasingly recognized. Although a large amount of research on Bordetella has been generated regarding protein virulence factors, the participation of the surface lipopolysaccharide (LPS) during B. bronchiseptica infection is less understood. To get a better insight into this matter, we constructed and characterized the behavior of an LPS mutant with the deepest possible rough phenotype. We generated the defective mutant B. bronchiseptica LP39 on the waaC gene, which codes for a heptosyl transferase involved in the biosynthesis of the core region of the LPS molecule. Although in B. bronchiseptica LP39 the production of the principal virulence determinants adenylate cyclase-hemolysin, filamentous hemagglutinin, and pertactin persisted, the quantity of the two latter factors was diminished, with the levels of pertactin being the most greatly affected. Furthermore, the LPS of B. bronchiseptica LP39 did not react with sera obtained from mice that had been infected with the parental strain, indicating that this defective LPS is immunologically different from the wild-type LPS. In vivo experiments demonstrated that the ability to colonize the respiratory tract is reduced in the mutant, being effectively cleared from lungs within 5 days, whereas the parental strain survived at least for 30 days. In vitro experiments have demonstrated that, although B. bronchiseptica LP39 was impaired for adhesion to human epithelial cells, it is still able to survive within the host cells as efficiently as the parental strain. These results seem to indicate that the deep rough form of B. bronchiseptica LPS cannot represent a dominant phenotype at the first stage of colonization. Since isolates with deep rough LPS phenotype have already been obtained from human B. bronchiseptica chronic

  16. Human dendritic cell maturation and cytokine secretion upon stimulation with Bordetella pertussis filamentous haemagglutinin.

    Science.gov (United States)

    Dirix, Violette; Mielcarek, Nathalie; Debrie, Anne-Sophie; Willery, Eve; Alonso, Sylvie; Versheure, Virginie; Mascart, Françoise; Locht, Camille

    2014-07-01

    In addition to antibodies, Th1-type T cell responses are also important for long-lasting protection against pertussis. However, upon immunization with the current acellular vaccines, many children fail to induce Th1-type responses, potentially due to immunomodulatory effects of some vaccine antigens, such as filamentous haemagglutinin (FHA). We therefore analysed the ability of FHA to modulate immune functions of human monocyte-derived dendritic cells (MDDC). FHA was purified from pertussis toxin (PTX)-deficient or from PTX- and adenylate cyclase-deficient Bordetella pertussis strains, and residual endotoxin was neutralized with polymyxin B. FHA from both strains induced phenotypic maturation of human MDDC and cytokine secretion (IL-10, IL-12p40, IL-12p70, IL-23 and IL-6). To identify the FHA domains responsible for MDDC immunomodulation, MDDC were stimulated with FHA containing a Gly→Ala substitution at its RGD site (FHA-RAD) or with an 80-kDa N-terminal moiety of FHA (Fha44), containing its heparin-binding site. Whereas FHA-RAD induced maturation and cytokine production comparable to those of FHA, Fha44 did not induce IL-10 production, but maturated MDDC at least partially. Nevertheless, Fha44 induced the secretion of IL-12p40, IL-12p70, IL-23 and IL-6 by MDDC, albeit at lower levels than FHA. Thus, FHA can modulate MDDC responses in multiple ways, and IL-10 induction can be dissociated from the induction of other cytokines.

  17. 百日咳杆菌腺苷酸环化酶毒素基因的克隆及原核表达%Cloning and Prokaryotic Expression of Bordetella pertussis Adenylate Cyclase Toxin Gene

    Institute of Scientific and Technical Information of China (English)

    石碧珠; 张华捷; 孟民杰; 张庶民

    2010-01-01

    目的 克隆百日咳杆菌腺苷酸环化酶毒素(CyaA,ACT)基因,表达并纯化重组CyaA蛋白.方法 从百日咳杆菌CS株的基因组DNA中PCR扩增CyaA编码基因,克隆人载体pET30a,构建重组原核表达质粒pET30a/cyaA,转化感受态大肠杆菌BL21(DE3),IPTG诱导表达.表达的重组蛋白经8 mol/L尿素变性、透析复性、DEAE阴离子交换柱纯化后,采用Western blot法鉴定其反应原性.结果 重组原核表达质粒pET30a/cyaA经PCR、双酶切及测序证明构建正确;表达的重组蛋白主要以包涵体形式存在,表达量约占菌体总蛋白的20%;纯化的重组蛋白纯度达90%左右,可与全细胞百日咳疫苗和无细胞百日咳疫苗免疫血清结合.结论 已成功克隆了百日咳杆菌cyaA基因,并在大肠杆菌中表达了重组CyaA蛋白,为进一步开展CyaA的应用研究奠定了基础.

  18. Bordetella pertussis transmission.

    Science.gov (United States)

    Trainor, Elizabeth A; Nicholson, Tracy L; Merkel, Tod J

    2015-11-01

    Bordetella pertussis and B. bronchiseptica are Gram-negative bacterial respiratory pathogens. Bordetella pertussis is the causative agent of whooping cough and is considered a human-adapted variant of B. bronchiseptica. Bordetella pertussis and B. bronchiseptica share mechanisms of pathogenesis and are genetically closely related. However, despite the close genetic relatedness, these Bordetella species differ in several classic fundamental aspects of bacterial pathogens such as host range, pathologies and persistence. The development of the baboon model for the study of B. pertussis transmission, along with the development of the swine and mouse model for the study of B. bronchiseptica, has enabled the investigation of different aspects of transmission including the route, attack rate, role of bacterial and host factors, and the impact of vaccination on transmission. This review will focus on B. pertussis transmission and how animal models of B. pertussis transmission and transmission models using the closely related B. bronchiseptica have increased our understanding of B. pertussis transmission.

  19. Functional significance of the highly conserved Glu(570) in the putative pore-forming helix 3 of the Bordetella pertussis haemolysin toxin.

    Science.gov (United States)

    Kurehong, Chattip; Powthongchin, Busaba; Thamwiriyasati, Niramon; Angsuthanasombat, Chanan

    2011-05-01

    Adenylate cyclase-haemolysin toxin (CyaA) is a virulence factor secreted from the etiologic agent of whooping cough, Bordetella pertussis. Previously, the haemolysin or pore-forming domain (CyaA-PF) has been shown to cause cell lysis of sheep erythrocytes independently, and the predicted helix 3((570-593)) within the PF-hydrophobic stretch could be a pore-lining constituent. Here, a plausible involvement in haemolytic activity of polar or charged residues (Glu(570), Gln(574), Glu(581), Ser(584) and Ser(585)) lining the hydrophilic side of CyaA-PF helix 3 was investigated via single-alanine substitutions. All the 126-kDa mutant proteins over-expressed in Escherichia coli were verified for toxin acylation as the results are corresponding to the wild-type toxin. When haemolytic activity of E. coli lysates containing soluble mutant proteins was tested against sheep erythrocytes, the importance of Glu(570), which is highly conserved among the pore-forming RTX cytotoxin family, was revealed for pore formation, conceivably for a general pore-lining residue involved in ion conduction.

  20. The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase

    Directory of Open Access Journals (Sweden)

    Marletta Michael A

    2008-10-01

    Full Text Available Abstract Background Soluble guanylate cyclases generate cyclic GMP when bound to nitric oxide, thereby linking nitric oxide levels to the control of processes such as vascular homeostasis and neurotransmission. The guanylate cyclase catalytic module, for which no structure has been determined at present, is a class III nucleotide cyclase domain that is also found in mammalian membrane-bound guanylate and adenylate cyclases. Results We have determined the crystal structure of the catalytic domain of a soluble guanylate cyclase from the green algae Chlamydomonas reinhardtii at 2.55 Å resolution, and show that it is a dimeric molecule. Conclusion Comparison of the structure of the guanylate cyclase domain with the known structures of adenylate cyclases confirms the close similarity in architecture between these two enzymes, as expected from their sequence similarity. The comparison also suggests that the crystallized guanylate cyclase is in an inactive conformation, and the structure provides indications as to how activation might occur. We demonstrate that the two active sites in the dimer exhibit positive cooperativity, with a Hill coefficient of ~1.5. Positive cooperativity has also been observed in the homodimeric mammalian membrane-bound guanylate cyclases. The structure described here provides a reliable model for functional analysis of mammalian guanylate cyclases, which are closely related in sequence.

  1. Adenylate-forming enzymes

    Science.gov (United States)

    Schmelz, Stefan; Naismith, James H.

    2012-01-01

    Thioesters, amides and esters are common chemical building blocks in a wide array of natural products. The formation of these bonds can be catalyzed in a variety of ways. For chemists, the use of an activating group is a common strategy and adenylate enzymes are exemplars of this approach. Adenylating enzymes activate the otherwise unreactive carboxylic acid by transforming the normal hydroxyl leaving group into adenosine monophosphate. Recently there have been a number of studies of such enzymes and in this review we suggest a new classification scheme. The review highlights the diversity in enzyme fold, active site architecture and metal coordination that has evolved to catalyze this particular reaction. PMID:19836944

  2. Evaluation of the Specificity of BP3385 for Bordetella pertussis

    Science.gov (United States)

    BP3385 has been proposed as a diagnostic PCR target for discriminating between Bordetella pertussis and other Bordetella species that also infect humans. Our results demonstrate this gene is also present in some strains of Bordetella hinzii and Bordetella bronchiseptica....

  3. Bordetella parapertussis Circumvents Neutrophil Extracellular Bactericidal Mechanisms

    Science.gov (United States)

    Gorgojo, Juan; Scharrig, Emilia; Gómez, Ricardo M.; Harvill, Eric T.; Rodríguez, Maria Eugenia

    2017-01-01

    B. parapertussis is a whooping cough etiological agent with the ability to evade the immune response induced by pertussis vaccines. We previously demonstrated that in the absence of opsonic antibodies B. parapertussis hampers phagocytosis by neutrophils and macrophages and, when phagocytosed, blocks intracellular killing by interfering with phagolysosomal fusion. But neutrophils can kill and/or immobilize extracellular bacteria through non-phagocytic mechanisms such as degranulation and neutrophil extracellular traps (NETs). In this study we demonstrated that B. parapertussis also has the ability to circumvent these two neutrophil extracellular bactericidal activities. The lack of neutrophil degranulation was found dependent on the O antigen that targets the bacteria to cell lipid rafts, eventually avoiding the fusion of nascent phagosomes with specific and azurophilic granules. IgG opsonization overcame this inhibition of neutrophil degranulation. We further observed that B. parapertussis did not induce NETs release in resting neutrophils and inhibited NETs formation in response to phorbol myristate acetate (PMA) stimulation by a mechanism dependent on adenylate cyclase toxin (CyaA)-mediated inhibition of reactive oxygen species (ROS) generation. Thus, B. parapertussis modulates neutrophil bactericidal activity through two different mechanisms, one related to the lack of proper NETs-inducer stimuli and the other one related to an active inhibitory mechanism. Together with previous results these data suggest that B. parapertussis has the ability to subvert the main neutrophil bactericidal functions, inhibiting efficient clearance in non-immune hosts. PMID:28095485

  4. 21 CFR 866.3065 - Bordetella spp. serological reagents.

    Science.gov (United States)

    2010-04-01

    ... identification aids in the diagnosis of diseases caused by bacteria belonging to the genus Bordetella and provides epidemiological information on these diseases. Bordetella spp. cause whooping cough...

  5. Nucleotidyl cyclase activity of particulate guanylyl cyclase A: comparison with particulate guanylyl cyclases E and F, soluble guanylyl cyclase and bacterial adenylyl cyclases CyaA and edema factor.

    Directory of Open Access Journals (Sweden)

    Kerstin Y Beste

    Full Text Available Guanylyl cyclases (GCs regulate many physiological processes by catalyzing the synthesis of the second messenger cGMP. The GC family consists of seven particulate GCs (pGCs and a nitric oxide-activated soluble GC (sGC. Rat sGC α1β1 possesses much broader substrate specificity than previously assumed. Moreover, the exotoxins CyaA from Bordetella pertussis and edema factor (EF from Bacillus anthracis possess nucleotidyl cyclase (NC activity. pGC-A is a natriuretic peptide-activated homodimer with two catalytic sites that act cooperatively. Here, we studied the NC activity of rat pGC-A in membranes of stably transfected HEK293 cells using a highly sensitive and specific HPLC-MS/MS technique. GTP and ITP were effective, and ATP and XTP were only poor, pGC-A substrates. In contrast to sGC, pGC-A did not use CTP and UTP as substrates. pGC-E and pGC-F expressed in bovine rod outer segment membranes used only GTP as substrate. In intact HEK293 cells, pGC-A generated only cGMP. In contrast to pGCs, EF and CyaA showed very broad substrate-specificity. In conclusion, NCs exhibit different substrate-specificities, arguing against substrate-leakiness of enzymes and pointing to distinct physiological functions of cyclic purine and pyrimidine nucleotides.

  6. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size.

    Science.gov (United States)

    Masin, Jiri; Fiser, Radovan; Linhartova, Irena; Osicka, Radim; Bumba, Ladislav; Hewlett, Erik L; Benz, Roland; Sebo, Peter

    2013-12-01

    A large subgroup of the repeat in toxin (RTX) family of leukotoxins of Gram-negative pathogens consists of pore-forming hemolysins. These can permeabilize mammalian erythrocytes (RBCs) and provoke their colloid osmotic lysis (hemolytic activity). Recently, ATP leakage through pannexin channels and P2X receptor-mediated opening of cellular calcium and potassium channels were implicated in cell permeabilization by pore-forming toxins. In the study described here, we examined the role played by purinergic signaling in the cytolytic action of two RTX toxins that form pores of different sizes. The cytolytic potency of ApxIA hemolysin of Actinobacillus pleuropneumoniae, which forms pores about 2.4 nm wide, was clearly reduced in the presence of P2X7 receptor antagonists or an ATP scavenger, such as pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), Brilliant Blue G, ATP oxidized sodium salt, or hexokinase. In contrast, antagonists of purinergic signaling had no impact on the hemolytic potency of the adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis, which forms pores of 0.6 to 0.8 nm in diameter. Moreover, the conductance of pores formed by ApxIA increased with the toxin concentration, while the conductance of the CyaA single pore units was constant at various toxin concentrations. However, the P2X7 receptor antagonist PPADS inhibited in a concentration-dependent manner the exacerbated hemolytic activity of a CyaA-ΔN489 construct (lacking 489 N-terminal residues of CyaA), which exhibited a strongly enhanced pore-forming propensity (>20-fold) and also formed severalfold larger conductance units in planar lipid bilayers than intact CyaA. These results point to a pore size threshold of purinergic amplification involvement in cell permeabilization by pore-forming RTX toxins.

  7. Environmental Origin of the Genus Bordetella

    Science.gov (United States)

    Hamidou Soumana, Illiassou; Linz, Bodo; Harvill, Eric T.

    2017-01-01

    Members of the genus Bordetella include human and animal pathogens that cause a variety of respiratory infections, including whooping cough in humans. Despite the long known ability to switch between a within-animal and an extra-host lifestyle under laboratory growth conditions, no extra-host niches of pathogenic Bordetella species have been defined. To better understand the distribution of Bordetella species in the environment, we probed the NCBI nucleotide database with the 16S ribosomal RNA (16S rRNA) gene sequences from pathogenic Bordetella species. Bacteria of the genus Bordetella were frequently found in soil, water, sediment, and plants. Phylogenetic analyses of their 16S rRNA gene sequences showed that Bordetella recovered from environmental samples are evolutionarily ancestral to animal-associated species. Sequences from environmental samples had a significantly higher genetic diversity, were located closer to the root of the phylogenetic tree and were present in all 10 identified sequence clades, while only four sequence clades possessed animal-associated species. The pathogenic bordetellae appear to have evolved from ancestors in soil and/or water. We show that, despite being animal-adapted pathogens, Bordetella bronchiseptica, and Bordetella hinzii have preserved the ability to grow and proliferate in soil. Our data implicate soil as a probable environmental origin of Bordetella species, including the animal-pathogenic lineages. Soil may further constitute an environmental niche, allowing for persistence and dissemination of the bacterial pathogens. Spread of pathogenic bordetellae from an environmental reservoir such as soil may potentially explain their wide distribution as well as frequent disease outbreaks that start without an obvious infectious source. PMID:28174558

  8. Evolution of French Bordetella pertussis and Bordetella parapertussis isolates: increase of Bordetellae not expressing pertactin.

    Science.gov (United States)

    Hegerle, N; Paris, A-S; Brun, D; Dore, G; Njamkepo, E; Guillot, S; Guiso, N

    2012-09-01

    Bordetella pertussis and Bordetella parapertussis are closely related bacterial agents of whooping cough. Whole-cell pertussis (wP) vaccine was introduced in France in 1959. Acellular pertussis (aP) vaccine was introduced in 1998 as an adolescent booster and was rapidly generalized to the whole population, changing herd immunity by specifically targeting the virulence of the bacteria. We performed a temporal analysis of all French B. pertussis and B. parapertussis isolates collected since 2000 under aP vaccine pressure, using pulsed-field gel electrophoresis (PFGE), genotyping and detection of expression of virulence factors. Particular isolates were selected according to their different phenotype and PFGE type and their characteristics were analysed using the murine model of respiratory infection and in vitro cell cytotoxic assay. Since the introduction of the aP vaccines there has been a steady increase in the number of B. pertussis and B. parapertussis isolates collected that are lacking expression of pertactin. These isolates seem to be as virulent as those expressing all virulence factors according to animal and cellular models of infection. Whereas wP vaccine-induced immunity led to a monomorphic population of B. pertussis, aP vaccine-induced immunity enabled the number of circulating B. pertussis and B. parapertussis isolates not expressing virulence factors to increase, sustaining our previous hypothesis.

  9. Growth Phase dependent gene regulation in Bordetella bronchiseptica

    Science.gov (United States)

    Bordetellae are Gram negative bacterial respiratory pathogens. Bordetella pertussis, the causative agent of whooping cough, is a human-restricted variant of Bordetella bronchiseptica, which infects a broad range of mammals causing chronic and often asymptomatic infections. Growth phase dependent gen...

  10. Whooping cough in Pakistan: Bordetella pertussis vs Bordetella parapertussis in 2005-2009.

    Science.gov (United States)

    Bokhari, Habib; Said, Fahad; Syed, Muhammad A; Mughal, Amjad; Kazi, Yasmeen F; Heuvelman, Kees; Mooi, Frits R

    2011-10-01

    Pertussis, or whooping cough, is an acute respiratory disease mainly affecting infants and children and is caused by Bordetella pertussis and Bordetella parapertussis. The aim of this study was to investigate the share of Bordetella species from potential whooping cough cases during 2005-2009. Eight hundred and two samples from suspected pertussis cases were collected, mainly from 2 provinces of Pakistan. Bacterial culture, identification, DNA extraction and routinely used polymerase chain reaction (PCR) methods using IS1001, IS1002 and IS481 were used to identify the Bordetella species. The results were unexpected, because all of the isolates collected from the different cities were identified as B. parapertussis (7.4%); B. pertussis was not isolated from any sample. However, PCR results indicated the presence of a small percentage (0.6%) of B. pertussis among the total cases studied. This study suggests that vaccines to protect against both B. pertussis and B. parapertussis should be considered.

  11. Structure of Bordetella pertussis peptidoglycan

    Energy Technology Data Exchange (ETDEWEB)

    Folkening, W.J.; Nogami, W.; Martin, S.A.; Rosenthal, R.S.

    1987-09-01

    Bordetella pertussis Tohama phases I and III were grown to the late-exponential phase in liquid medium containing (/sup 3/H)diaminopimelic acid and treated by a hot (96/sup 0/C) sodium dodecyl sulfate extraction procedure. Washed sodium dodecyl sulfate-insoluble residue from phases I and III consisted of complexes containing protein (ca. 40%) and peptidoglycan (60/sup 6/). Subsequent treatment with proteinase K yielded purified peptidoglycan which contained N-acetylglucosamine, N-acetylmuramic acid, alanine, glutamic acid, and diaminopimelic acid in molar ratios of 1:1:2:1:1 and <2% protein. Radiochemical analyses indicated that /sup 3/H added in diaminopimelic acid was present in peptidoglycan-protein complexes and purified peptidoglycan as diaminopimelic acid exclusively and that pertussis peptidoglycan was not O acetylated, consistent with it being degraded completely by hen egg white lysozyme. Muramidase-derived disaccharide peptide monomers and peptide-cross-linked dimers and higher oligomers were isolated by molecular-sieve chromatography; from the distribution of these peptidoglycan fragments, the extent of peptide cross-linking of both phase I and III peptidoglycan was calculated to be ca. 48%. Unambiguous determination of the structure of muramidase-derived pepidoglycan fragments by fast atom bombardment-mass spectrometry and tandem mass spectrometry indicated that the pertussis peptidoglycan monomer fraction was surprisingly homogeneous, consisting of >95% N-acetylglucosaminyl-N-acetylmuramyl-alanyl-glutamyl-diaminopimelyl-alanine.

  12. Bordetella pertussis diagnosed by polymerase chain reaction

    DEFF Research Database (Denmark)

    Birkebaek, N H; Heron, I; Skjødt, K

    1994-01-01

    The object of this work was to test the polymerase chain reaction (PCR) for demonstration of Bordetella pertussis (BP) in nasopharyngeal secretions. The method was applied to patients with recently diagnosed pertussis, as verified by BP culture. In order to test the sensitivity and specificity of...

  13. Genetic Variation of Bordetella pertussis in Austria

    NARCIS (Netherlands)

    Wagner, B.; Melzer, H.; Freymuller, G.; Stumvoll, S.; Rendi-Wagner, P.; Paulke-Korinek, M.; Repa, A.; Mooi, F.R.; Kollaritsch, H.; Mittermayer, H.; Kessler, H.H.; Stanek, G.; Steinborn, R.; Duchene, M.; Wiedermann, U.

    2015-01-01

    In Austria, vaccination coverage against Bordetella pertussis infections during infancy is estimated at around 90%. Within the last years, however, the number of pertussis cases has increased steadily, not only in children but also in adolescents and adults, indicating both insufficient herd immunit

  14. Pituitary adenylate cyclase-activating polypeptide stimulates renin secretion via activation of PAC1 receptors

    DEFF Research Database (Denmark)

    Hautmann, Matthias; Friis, Ulla G; Desch, Michael

    2007-01-01

    concentration was significantly lower in PAC1-/- compared with their wild-type littermates under control conditions as well as under a low- or high-salt diet and under treatment with the angiotensin-converting enzyme inhibitor ramipril, whereas no differences in plasma renin concentration between the genotypes......), because PACAP (1-27) applied in concentrations in the physiologic range (10 and 100 pmol/L) did not enhance renin release from isolated kidneys of PAC1 receptor knockout mice (PAC1-/-), whereas it stimulated renin release 1.38- and 2.5-fold in kidneys from wild-type mice. Moreover, plasma renin...... were detectable after water deprivation. These data show that PACAP acting on PAC1 receptors potently stimulates renin release, serving as a tonic enhancer of the renin system in vivo....

  15. Intein-mediated Rapid Purification of Recombinant Human Pituitary Adenylate Cyclase Activating Polypeptide

    Institute of Scientific and Technical Information of China (English)

    Rong-jie YU; An HONG; Yun DAI; Yuan GAO

    2004-01-01

    In order to obtain the recombinant human PACAP efficiently by intein-mediated single column purification, a gene encoding human PACAP was synthesized and cloned into Escherichia coli expression vector pKYB. The recombinant vector pKY-PAC was transferred into E. coli ER2566 cells and the target protein was over-expressed as a fusion to the N-terminus of a self-cleavable affinity tag. After the PACAPintein-CBD fusion protein was purified by chitin-affinity chromatography, the self-cleavage activity of the intein was induced by DTT and the rhPACAP was released from the chitin-bound intein tag. The activity of the rhPACAP to stimulate cyclic AMP accumulation was detected using the human pancreas carcinoma cells SW1990. Twenty-two milligrams of rhPACAP with the purity over 98% was obtained by single column purification from 1 liter of induced culture. The preliminary biological assay indicated that the rhPACAP, which has an extra Met at its N-terminus compared with the native human PACAP, had the similar activity of stimulating cAMP accumulation with the standard PACAP38 in the SW1990 cells. A new efficient production procedure of the active recombinant human PACAP was established.

  16. Gustatory Habituation in "Drosophila" Relies on "Rutabaga" (Adenylate Cyclase)-Dependent Plasticity of GABAergic Inhibitory Neurons

    Science.gov (United States)

    Paranjpe, Pushkar; Rodrigues, Veronica; VijayRaghavan, K.; Ramaswami, Mani

    2012-01-01

    In some situations, animals seem to ignore stimuli which in other contexts elicit a robust response. This attenuation in behavior, which enables animals to ignore a familiar, unreinforced stimulus, is called habituation. Despite the ubiquity of this phenomenon, it is generally poorly understood in terms of the underlying neural circuitry. Hungry…

  17. Pituitary adenylate cyclase-activating polypeptide promotes eccrine gland sweat secretion

    DEFF Research Database (Denmark)

    Sasaki, S; Watanabe, J; Ohtaki, H;

    2016-01-01

    BACKGROUND: Sweat secretion is the major function of eccrine sweat glands; when this process is disturbed (paridrosis), serious skin problems can arise. To elucidate the causes of paridrosis, an improved understanding of the regulation, mechanisms and factors underlying sweat production is required...... and several exocrine glands, the effects of PACAP on the process of eccrine sweat secretion have not been examined. OBJECTIVES: To investigate the effect of PACAP on eccrine sweat secretion. METHODS: Reverse transcriptase-polymerase chain reaction and immunostaining were used to determine the expression...... and localization of PACAP and its receptors in mouse and human eccrine sweat glands. We injected PACAP subcutaneously into the footpads of mice and used the starch-iodine test to visualize sweat-secreting glands. RESULTS: Immunostaining showed PACAP and PAC1R expression by secretory cells from mouse and human...

  18. Accelerated evolution of the pituitary adenylate cyclase-activating polypeptide precursor gene during human origin

    DEFF Research Database (Denmark)

    Wang, Yin-Qiu; Qian, Ya-Ping; Yang, Su

    2005-01-01

    a strong functional constraint during the course of evolution. However, through comparative sequence analysis, we demonstrated that the PACAP precursor gene underwent an accelerated evolution in the human lineage since the divergence from chimpanzees, and the amino acid substitution rate in humans...... is at least seven times faster than that in other mammal species resulting from strong Darwinian positive selection. Eleven human-specific amino acid changes were identified in the PACAP precursors, which are conserved from murine to African apes. Protein structural analysis suggested that a putative novel...... neuropeptide might have originated during human evolution and functioned in the human brain. Our data suggested that the PACAP precursor gene underwent adaptive changes during human origin and may have contributed to the formation of human cognition. Udgivelsesdato: 2005-Jun...

  19. Diagnosis of whooping cough in Switzerland: differentiating Bordetella pertussis from Bordetella holmesii by polymerase chain reaction.

    Science.gov (United States)

    Pittet, Laure F; Emonet, Stéphane; François, Patrice; Bonetti, Eve-Julie; Schrenzel, Jacques; Hug, Melanie; Altwegg, Martin; Siegrist, Claire-Anne; Posfay-Barbe, Klara M

    2014-01-01

    Bordetella holmesii, an emerging pathogen, can be misidentified as Bordetella pertussis by routine polymerase chain reaction (PCR). In some reports, up to 29% of the patients diagnosed with pertussis have in fact B. holmesii infection and invasive, non-respiratory B. holmesii infections have been reported worldwide. This misdiagnosis undermines the knowledge of pertussis' epidemiology, and may lead to misconceptions on pertussis vaccine's efficacy. Recently, the number of whooping cough cases has increased significantly in several countries. The aim of this retrospective study was to determine whether B. holmesii was contributing to the increase in laboratory-confirmed cases of B. pertussis in Switzerland. A multiplex species-specific quantitative PCR assay was performed on 196 nasopharyngeal samples from Swiss patients with PCR-confirmed Bordetella infection (median age: 6 years-old, minimum 21 days-old, maximum 86 years-old), formerly diagnosed as Bordetella pertussis (IS481+). No B. holmesii (IS481+, IS1001-, hIS1001+) was identified. We discuss whether laboratories should implement specific PCR to recognize different Bordetella species. We conclude that in Switzerland B. holmesii seems to be circulating less than in neighboring countries and that specific diagnostic procedures are not necessary routinely. However, as the epidemiological situation may change rapidly, periodic reevaluation is suggested.

  20. Diagnosis of whooping cough in Switzerland: differentiating Bordetella pertussis from Bordetella holmesii by polymerase chain reaction.

    Directory of Open Access Journals (Sweden)

    Laure F Pittet

    Full Text Available Bordetella holmesii, an emerging pathogen, can be misidentified as Bordetella pertussis by routine polymerase chain reaction (PCR. In some reports, up to 29% of the patients diagnosed with pertussis have in fact B. holmesii infection and invasive, non-respiratory B. holmesii infections have been reported worldwide. This misdiagnosis undermines the knowledge of pertussis' epidemiology, and may lead to misconceptions on pertussis vaccine's efficacy. Recently, the number of whooping cough cases has increased significantly in several countries. The aim of this retrospective study was to determine whether B. holmesii was contributing to the increase in laboratory-confirmed cases of B. pertussis in Switzerland. A multiplex species-specific quantitative PCR assay was performed on 196 nasopharyngeal samples from Swiss patients with PCR-confirmed Bordetella infection (median age: 6 years-old, minimum 21 days-old, maximum 86 years-old, formerly diagnosed as Bordetella pertussis (IS481+. No B. holmesii (IS481+, IS1001-, hIS1001+ was identified. We discuss whether laboratories should implement specific PCR to recognize different Bordetella species. We conclude that in Switzerland B. holmesii seems to be circulating less than in neighboring countries and that specific diagnostic procedures are not necessary routinely. However, as the epidemiological situation may change rapidly, periodic reevaluation is suggested.

  1. Complete Genome Sequences of Four Different Bordetella sp. Isolates Causing Human Respiratory Infections

    Science.gov (United States)

    Peng, Yanhui; Loparev, Vladimir; Batra, Dhwani; Bowden, Katherine E.; Cassiday, Pamela K.; Davis, Jamie K.; Johnson, Taccara; Juieng, Phalasy; Miner, Christine E.; Rowe, Lori; Sheth, Mili; Tondella, M. Lucia; Williams, Margaret M.

    2016-01-01

    Species of the genus Bordetella associate with various animal hosts, frequently causing respiratory disease. Bordetella pertussis is the primary agent of whooping cough and other Bordetella species can cause similar cough illness. Here, we report four complete genome sequences from isolates of different Bordetella species recovered from human respiratory infections.

  2. [Counterimmunoelectrophoresis in the diagnosis of Bordetella pertussis].

    Science.gov (United States)

    Grinstein, S; López, E L; Muchinik, G; Duhart, E; Bonesana, N

    1979-01-01

    The serum of 50 patients between 25 days to 15 years old who were admitted with the diagnosis of pertussis syndrome were investigated for precipitating antibodies by means of discontinuous counterimmunolectrophoresis (CIED). The presence of antibodies for Bordetella pertussis antigen was shown in 28 cases. All samples were taken within the first 24/48 hours of admission and at convalescence. The technique is easy to carry out, quick and of low cost. This test offers an adequate and fast means to differentiate a Bordetella pertussis syndrome form others produced by different viral etiologies. Besides, this serologic technique shows earlier results and of lower cost than classic techniques such as agglutination and complement fixation which are more difficult to apply.

  3. Bordetella bronchiseptica and fatal pneumonia of dogs and cats

    Science.gov (United States)

    Bordetella bronchiseptica frequently causes nonfatal tracheobronchitis, but its role in fatal pneumonia is less well-studied. The objectives of this study were to identify the frequency of Bordetella bronchiseptica infection in fatal cases of bronchopneumonia in dogs and cats and to compare the diag...

  4. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology

    Science.gov (United States)

    Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.

    2016-01-01

    This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.

  5. Genomic island excisions in Bordetella petrii

    Directory of Open Access Journals (Sweden)

    Levillain Erwan

    2009-07-01

    Full Text Available Abstract Background Among the members of the genus Bordetella B. petrii is unique, since it is the only species isolated from the environment, while the pathogenic Bordetellae are obligately associated with host organisms. Another feature distinguishing B. petrii from the other sequenced Bordetellae is the presence of a large number of mobile genetic elements including several large genomic regions with typical characteristics of genomic islands collectively known as integrative and conjugative elements (ICEs. These elements mainly encode accessory metabolic factors enabling this bacterium to grow on a large repertoire of aromatic compounds. Results During in vitro culture of Bordetella petrii colony variants appear frequently. We show that this variability can be attributed to the presence of a large number of metastable mobile genetic elements on its chromosome. In fact, the genome sequence of B. petrii revealed the presence of at least seven large genomic islands mostly encoding accessory metabolic functions involved in the degradation of aromatic compounds and detoxification of heavy metals. Four of these islands (termed GI1 to GI3 and GI6 are highly related to ICEclc of Pseudomonas knackmussii sp. strain B13. Here we present first data about the molecular characterization of these islands. We defined the exact borders of each island and we show that during standard culture of the bacteria these islands get excised from the chromosome. For all but one of these islands (GI5 we could detect circular intermediates. For the clc-like elements GI1 to GI3 of B. petrii we provide evidence that tandem insertion of these islands which all encode highly related integrases and attachment sites may also lead to incorporation of genomic DNA which originally was not part of the island and to the formation of huge composite islands. By integration of a tetracycline resistance cassette into GI3 we found this island to be rather unstable and to be lost from

  6. Cytosolic adenylate changes during exercise in prawn muscle

    Energy Technology Data Exchange (ETDEWEB)

    Thebault, M.T. [College de France, 29 - Concarneau (France); Raffin, J.P.; Pichon, R. [Brest Univ., 29 (France)

    1994-11-01

    {sup 31}P NMR and biochemical analysis were used to assess the effect of heavy exercise on cytosolic adenylate levels in Palaemon serratus abdominal muscle. At rest, the MgATP level corresponded to 85.5% of the total ATP content. The cytosolic adenylate concentrations of the prawn muscle are considerably different from that of vertebrates. The percentage of ADP bound to myofilaments was lower in the prawn muscle. Consequently, the level of free cytosolic AMP was greatly higher (thirty fold higher) than in vertebrate muscle. During vigorous work, the concentration of MgATP dropped and the cytosolic AMP accumulated, while the cytosolic adenine nucleotide pool decreased significantly. The phosphorylation potential value and the ATP/ADP ratio, calculated from the cytosolic adenylate, dropped acutely during the whole period of muscular contractions. On the contrary, the adenylate energy charge calculated from the cytosolic adenylate decreased slightly. Therefore, even in muscle displaying no AMP deamination, the adenylate charge is stabilized during exercise by the dynamic changes between cytosolic and bound adenylate species. (author). 21 refs., 2 tabs.

  7. Structural studies of Schistosoma mansoni adenylate kinases

    Energy Technology Data Exchange (ETDEWEB)

    Marques, I.A. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Pereira, H.M.; Garrat, R.C. [Universidade de Sao Paulo (USP-SC), Sao Carlos, SP (Brazil)

    2012-07-01

    Full text: Parasitic diseases are a major cause of death in developing countries, however receive little or no attention from pharmaceutical companies for the development of novel therapies. In this respect, the Center for Structural Molecular Biology (CBME) of the Institute of Physics of Sao Carlos (IFSC / USP) has developed expertise in all stages of the development of active compounds against target enzymes from parasitic diseases. The present work focuses on the adenylate kinase enzymes (ADK's) from Schistosoma mansoni. These enzymes are widely distributed and catalyze the reaction of phosphoryl exchange between nucleotides in the reaction 2ADP to ATP + AMP, which is critical for the cells life cycle. Due to the particular property of the reaction catalyzed, the ADK's are recognized as reporters of the cells energetic state, translating small changes in the balance between ATP and ADP into a large change in concentration of AMP. The genome of S. mansoni was recently sequenced by the Sanger Center in England. On performing searches for genes encoding adenylate kinases we found two such genes. The corresponding gene products were named ADK1 (197 residues) and ADK2 (239 residues), and the two sequences share only 28 percent identity. Both have been cloned into the pET-28a(+)vector, expressed in E. coli and purified. Preliminary tests of activity have been performed only for ADK1 showing it to be catalytically active. Crystallization trials were performed for both proteins and thus far, crystals of ADK1 have been obtained which diffract to 2.05 at the LNLS beamline MX2 and the structure solved by molecular replacement. Understanding, at the atomic level, the function of these enzymes may help in the development of specific inhibitors and may provide tools for developing diagnostic tests for schistosomiasis. (author)

  8. Bordetella pertussis: why is it still circulating?

    Science.gov (United States)

    Guiso, Nicole

    2014-01-01

    Bordetella pertussis is the causal agent of whooping cough, a highly contagious respiratory disease that is life-threatening in infants under the age of three months and may also be very severe in pregnant women and seniors. This disease can be prevented by vaccination but it remains a public health problem in many developed and developing countries.(1) So, why is B. pertussis still circulating? We need to consider several aspects of this vaccine-preventable disease when answering this question: (i) the history of the disease and the historical context in which the vaccine was developed; (ii) the type of vaccine used; (iii) the vaccination strategy and coverage; (iv) the disease surveillance after the introduction of generalized vaccination and (v) the surveillance for the causal agent of the disease.

  9. Mechanistic investigations on six bacterial terpene cyclases

    Directory of Open Access Journals (Sweden)

    Patrick Rabe

    2016-08-01

    Full Text Available The products obtained by incubation of farnesyl diphosphate (FPP with six purified bacterial terpene cyclases were characterised by one- and two-dimensional NMR spectroscopic methods, allowing for a full structure elucidation. The absolute configurations of four terpenes were determined based on their optical rotary powers. Incubation experiments with 13C-labelled isotopomers of FPP in buffers containing water or deuterium oxide allowed for detailed insights into the cyclisation mechanisms of the bacterial terpene cyclases.

  10. Pertussis toxin

    Energy Technology Data Exchange (ETDEWEB)

    Sekura, R.D.; Moss, J.; Vaughan, M.

    1985-01-01

    This book contains 13 selections. Some of the titles are: Genetic and Functional Studies of Pertussis Toxin Substrates; Effect of Pertussis Toxin on the Hormonal Responsiveness of Different Tissues; Extracellular Adenylate Cyclase of Bordetella pertussis; and GTP-Regulatory Proteins are Introcellular Messagers: A Model for Hormone Action.

  11. Prevalence of Bordetella pertussis and Bordetella parapertussis in Samples Submitted for RSV Screening

    Directory of Open Access Journals (Sweden)

    Walsh, Paul

    2008-08-01

    Full Text Available BACKGROUND: The clinical presentation of Bordetella pertussis can overlap with that of respiratory syncytial virus (RSV; however, management differs.HYPOTHESIS: First, the prevalence of B. pertussis is less than 2% among patients screened for RSV, and second the prevalence of B. parapertussis is also less than 2% among these patients.METHODS: Nasal washings submitted to a clinical laboratory for RSV screening were tested for B. pertussis and B. parapertussis, using species-specific real-time polymerase chain reaction (PCR assays. These were optimized to target conserved regions within a complement gene and the CarB gene, respectively. A Bordetella spp. genus-specific real-time PCR assay was designed to detect the Bhur gene of B. pertussis, B. parapertussis, and B. bronchiseptica. RSV A and B subtypes were tested by reverse transcription-PCR.RESULTS: Four hundred and eighty-nine clinical samples were tested. There was insufficient material to complete testing for one B. pertussis, 10 RSV subtype A, and four RSV subtype B assays. Bordetella pertussis was detected in 3/488 (0.6% (95% CI 0.1% to 1.8%, while B. parapertussis was detected in 5/489 (1.0% (95% CI 0.3% to 2.4%. Dual infection of B. pertussis with RSV and of B. parapertussis with RSV occurred in two and in three cases respectively. RSV was detected by PCR in 127 (26.5%.CONCLUSION: The prevalence of B. pertussis in nasal washings submitted for RSV screening was less than 2%. The prevalence of parapertussis may be higher than 2%. RSV with B. pertussis and RSV with B. parapertussis coinfection do occur.

  12. The flagellar adenylate kinases of Trypanosoma cruzi.

    Science.gov (United States)

    Camara, María de los Milagros; Bouvier, León A; Miranda, Mariana R; Pereira, Claudio A

    2015-01-01

    Adenylate kinases (ADK) are key enzymes involved in cell energy management. Trypanosomatids present the highest number of variants in a single cell in comparison with the rest of the living organisms. In this work, we characterized two flagellar ADKs from Trypanosoma cruzi, called TcADK1 and TcADK4, which are also located in the cell cytosol. Interestingly, TcADK1 presents a stage-specific expression. This variant was detected in epimastigotes cells, and was completely absent in trypomastigotes and amastigotes, while TcADK4 is present in the major life cycle stages of T. cruzi. Both variants are also regulated, in opposite ways, along the parasite growth curve suggesting that their expression depends on the intra- and extracellular conditions. Both, TcADK1 and TcADK4 present N-terminal extension that could be responsible for their subcellular localization. The presence of ADK variants in the flagellum would be critical for the provision of energy in a process of high ATP consumption such as cell motility.

  13. The Cyclase-associated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhou

    2012-09-01

    Full Text Available Surface recognition and penetration are critical steps in the infection cycle of many plant pathogenic fungi. In Magnaporthe oryzae, cAMP signaling is involved in surface recognition and pathogenesis. Deletion of the MAC1 adenylate cyclase gene affected appressorium formation and plant infection. In this study, we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting proteins is the adenylate cyclase-associated protein named Cap1. CAP genes are well-conserved in phytopathogenic fungi but none of them have been functionally characterized. Deletion of CAP1 blocked the effects of a dominant RAS2 allele and resulted in defects in invasive growth and a reduced intracellular cAMP level. The Δcap1 mutant was defective in germ tube growth, appressorium formation, and formation of typical blast lesions. Cap1-GFP had an actin-like localization pattern, localizing to the apical regions in vegetative hyphae, at the periphery of developing appressoria, and in circular structures at the base of mature appressoria. Interestingly, Cap1, similar to LifeAct, did not localize to the apical regions in invasive hyphae, suggesting that the apical actin cytoskeleton differs between vegetative and invasive hyphae. Domain deletion analysis indicated that the proline-rich region P2 but not the actin-binding domain (AB of Cap1 was responsible for its subcellular localization. Nevertheless, the AB domain of Cap1 must be important for its function because CAP1(ΔAB only partially rescued the Δcap1 mutant. Furthermore, exogenous cAMP induced the formation of appressorium-like structures in non-germinated conidia in CAP1(ΔAB transformants. This novel observation suggested that AB domain deletion may result in overstimulation of appressorium formation by cAMP treatment. Overall, our results indicated that CAP1 is important for the activation of adenylate cyclase, appressorium morphogenesis, and plant

  14. The Cyclase-associated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae.

    Science.gov (United States)

    Zhou, Xiaoying; Zhang, Haifeng; Li, Guotian; Shaw, Brian; Xu, Jin-Rong

    2012-09-01

    Surface recognition and penetration are critical steps in the infection cycle of many plant pathogenic fungi. In Magnaporthe oryzae, cAMP signaling is involved in surface recognition and pathogenesis. Deletion of the MAC1 adenylate cyclase gene affected appressorium formation and plant infection. In this study, we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting proteins is the adenylate cyclase-associated protein named Cap1. CAP genes are well-conserved in phytopathogenic fungi but none of them have been functionally characterized. Deletion of CAP1 blocked the effects of a dominant RAS2 allele and resulted in defects in invasive growth and a reduced intracellular cAMP level. The Δcap1 mutant was defective in germ tube growth, appressorium formation, and formation of typical blast lesions. Cap1-GFP had an actin-like localization pattern, localizing to the apical regions in vegetative hyphae, at the periphery of developing appressoria, and in circular structures at the base of mature appressoria. Interestingly, Cap1, similar to LifeAct, did not localize to the apical regions in invasive hyphae, suggesting that the apical actin cytoskeleton differs between vegetative and invasive hyphae. Domain deletion analysis indicated that the proline-rich region P2 but not the actin-binding domain (AB) of Cap1 was responsible for its subcellular localization. Nevertheless, the AB domain of Cap1 must be important for its function because CAP1(ΔAB) only partially rescued the Δcap1 mutant. Furthermore, exogenous cAMP induced the formation of appressorium-like structures in non-germinated conidia in CAP1(ΔAB) transformants. This novel observation suggested that AB domain deletion may result in overstimulation of appressorium formation by cAMP treatment. Overall, our results indicated that CAP1 is important for the activation of adenylate cyclase, appressorium morphogenesis, and plant infection in M

  15. Mouse lung adhesion assay for Bordetella pertussis

    Energy Technology Data Exchange (ETDEWEB)

    Burns, K.A.; Freer, J.H. (Department of Microbiology, Alexander Stone Building, Bearsden, Glasgow, Scotland)

    1982-03-01

    The ability of Bordetella pertussis to adhere to cell surfaces has been demonstrated by adhesion to tissue culture cells and adhesion to chicken, hamster or rabbit trachea in organ culture. In this report a mouse lung assay for adhesion is described and the results obtained using two virulent strains of B. pertussis and their avirulent counterparts. These were a C modulation of one of the original virulent strains and a phase IV variant of the other virulent strain. Organisms were radiolabelled by adding 1 ..mu..Ci (37 K Bq) of (/sup 14/C)glutamic acid per 10 ml of culture medium before inoculation and incubation for 5 days. The lungs were washed by perfusion in situ with at least two volumes (1 ml) of sterile 1% (w/v) casamino acids. The percentage of the inoculated organisms retained in the lungs was determined, after removal of the lungs, by one of the following two methods: viable count or radioactive count. Results for both methods were expressed as the percentage of the inoculum retained in the lungs plus or minus one standard deviation.

  16. Bordetella pertussis fimbriae (Fim): relevance for vaccines.

    Science.gov (United States)

    Gorringe, Andrew R; Vaughan, Thomas E

    2014-10-01

    Bordetella pertussis produces two serologically distinct fimbriae, Fim2 and Fim3. Expression of these antigens is governed by the BvgA/S system and by the length of a poly(C) tract in the promoter of each gene. Fim2 and Fim3 are important antigens for whole cell pertussis vaccines as clinical trials have shown an association of anti-fimbriae antibody-mediated agglutination and protection. The current five component acellular pertussis vaccine contains co-purified Fim2/3 and provided good efficacy in clinical trials with the anti-Fim antibody response correlating with protection when pre and post exposure antibody levels were analysed. The predominant serotype of B. pertussis isolates has changed over time in most countries but it is not understood whether this is vaccine-driven or whether serotype is linked to the prevailing predominant genotype. Recent studies have shown that both Fim2 and Fim3 are expressed during infection and that Fim2 is more immunogenic than Fim3 in the acellular vaccine.

  17. Coupled ATPase-adenylate kinase activity in ABC transporters

    Science.gov (United States)

    Kaur, Hundeep; Lakatos-Karoly, Andrea; Vogel, Ramona; Nöll, Anne; Tampé, Robert; Glaubitz, Clemens

    2016-01-01

    ATP-binding cassette (ABC) transporters, a superfamily of integral membrane proteins, catalyse the translocation of substrates across the cellular membrane by ATP hydrolysis. Here we demonstrate by nucleotide turnover and binding studies based on 31P solid-state NMR spectroscopy that the ABC exporter and lipid A flippase MsbA can couple ATP hydrolysis to an adenylate kinase activity, where ADP is converted into AMP and ATP. Single-point mutations reveal that both ATPase and adenylate kinase mechanisms are associated with the same conserved motifs of the nucleotide-binding domain. Based on these results, we propose a model for the coupled ATPase-adenylate kinase mechanism, involving the canonical and an additional nucleotide-binding site. We extend these findings to other prokaryotic ABC exporters, namely LmrA and TmrAB, suggesting that the coupled activities are a general feature of ABC exporters. PMID:28004795

  18. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    Directory of Open Access Journals (Sweden)

    Laakso Kati

    2007-10-01

    Full Text Available Abstract Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1 and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains.

  19. Nucleoside triphosphate synthesis catalysed by adenylate kinase is ADP dependent

    DEFF Research Database (Denmark)

    Willemoës, Martin; Kilstrup, Mogens

    2005-01-01

    Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP+(d)NDPADP+(d)NTP. This reaction, suggested to occur by the tran......Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP+(d)NDPADP+(d)NTP. This reaction, suggested to occur...

  20. Characterization of two unusual guanylyl cyclases from Dictyostelium

    NARCIS (Netherlands)

    Roelofs, Jeroen; Haastert, Peter J.M. van

    2002-01-01

    Guanylyl cyclase A (GCA) and soluble guanylyl cyclase (sGC) encode GCs in Dictyostelium and have a topology similar to 12-transmembrane and soluble adenylyl cyclase, respectively. We demonstrate that all detectable GC activity is lost in a cell line in which both genes have been inactivated. Cell li

  1. Bordetella pertussis Strain Lacking Pertactin and Pertussis Toxin.

    Science.gov (United States)

    Williams, Margaret M; Sen, Kathryn; Weigand, Michael R; Skoff, Tami H; Cunningham, Victoria A; Halse, Tanya A; Tondella, M Lucia

    2016-02-01

    A Bordetella pertussis strain lacking 2 acellular vaccine immunogens, pertussis toxin and pertactin, was isolated from an unvaccinated infant in New York State in 2013. Comparison with a French strain that was pertussis toxin-deficient, pertactin wild-type showed that the strains carry the same 28-kb deletion in similar genomes.

  2. Induction and maintenance of Bordetella pertussis specific immune responses

    NARCIS (Netherlands)

    Stenger, R.M.

    2010-01-01

    Pertussis, also referred to as whooping cough, is a serious respiratory disease mainly caused by the gram-negative bacterium Bordetella pertussis. The disease is most severe in neonates and children under the age of 1. Before childhood vaccination was introduced in the 1950s, pertussis was an import

  3. Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti–Medicago symbiosis

    OpenAIRE

    Tian, Chang Fu; Garnerone, Anne-Marie; Mathieu-Demazière, Céline; Masson-Boivin, Catherine; Batut, Jacques

    2012-01-01

    Legumes and soil bacteria called rhizobia have coevolved a facultative nitrogen-fixing symbiosis. Establishment of the symbiosis requires bacterial entry via root hair infection threads and, in parallel, organogenesis of nodules that subsequently are invaded by bacteria. Tight control of nodulation and infection is required to maintain the mutualistic character of the interaction. Available evidence supports a passive bacterial role in nodulation and infection after the microsymbiont has trig...

  4. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity

    Directory of Open Access Journals (Sweden)

    Janna eBlechman

    2013-05-01

    Full Text Available Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.

  5. Innervation of the rat pineal gland by pituitary adenylate cyclase-activating polypeptide (PACAP)-immunoreactive nerve fibres

    DEFF Research Database (Denmark)

    Møller, Morten; Fahrenkrug, Jan; Hannibal, J.

    1999-01-01

    Calcitonin gene-related peptide, vasoactive intestinal peptide, neuropeptide Y, colocalization, trigeminal ganglion, rat (Wistar)......Calcitonin gene-related peptide, vasoactive intestinal peptide, neuropeptide Y, colocalization, trigeminal ganglion, rat (Wistar)...

  6. Y1 receptors for neuropeptide Y are coupled to mobilization of intracellular calcium and inhibition of adenylate cyclase

    DEFF Research Database (Denmark)

    Aakerlund, L; Gether, U; Fuhlendorff, J;

    1990-01-01

    Two types of binding sites have previously been described for neuropeptide Y (NPY), called Y1 and Y2 receptors. The intracellular events following Y1 receptor activation was studied in the human neuroblastoma cell line SK-N-MC. Both NPY and the specific Y1 receptor ligand, [Leu31,Pro34]-NPY, caused...

  7. Nucleoside triphosphate synthesis catalysed by adenylate kinase is ADP dependent

    DEFF Research Database (Denmark)

    Willemoes, Martin; Kilstrup, M.

    2005-01-01

    Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP + (d)NDP ¿ ADP + (d)NTP. This reaction, suggested to occur...

  8. Bicarbonate-Regulated Soluble Adenylyl Cyclase

    Directory of Open Access Journals (Sweden)

    Wuttke MS

    2001-07-01

    Full Text Available Soluble adenylyl cyclase (sAC represents a novel form of mammalian adenylyl cyclase structurally, molecularly, and biochemically distinct from the G protein-regulated, transmembrane adenylyl cyclases (tmACs. sAC possesses no transmembrane domains and is insensitive to classic modulators of tmACs, such as heterotrimeric G proteins and P site ligands. Thus, sAC defines an independently regulated cAMP signaling system within mammalian cells. sAC is directly stimulated by bicarbonate ion both in vivo in heterologously expressing cells and in vitro using purified protein. sAC appears to be the predominant form of adenylyl cyclase (AC in mammalian sperm, and its direct activation by bicarbonate provides a mechanism for generating the cAMP required to complete the bicarbonate-induced processes necessary for fertilization, including hyperactivated motility, capacitation, and the acrosome reaction. Immunolocalization studies reveal sAC is also abundantly expressed in other tissues which respond to bicarbonate or carbon dioxide levels suggesting it may function as a general bicarbonate/CO(2 sensor throughout the body.

  9. Misidentification of Bordetella bronchiseptica as Bordetella pertussis using a Newly Described RT-PCR Targeting the Pertactin Gene

    Science.gov (United States)

    Recently a real-time PCR (RT-PCT) assay based on sequence from the gene for pertactin was proposed for identification of Bordetella pertussis. Here we report that the B. pertussis pertactin gene sequence for the region encompassing the RT-PCR probe and primers is nearly identical to that of many B....

  10. cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects.

    Science.gov (United States)

    Beckert, Ulrike; Grundmann, Manuel; Wolter, Sabine; Schwede, Frank; Rehmann, Holger; Kaever, Volkhard; Kostenis, Evi; Seifert, Roland

    2014-09-05

    In addition to the well-known second messengers cAMP and cGMP, mammalian cells contain the cyclic pyrimidine nucleotides cCMP and cUMP. The Pseudomonas aeruginosa toxin ExoY massively increases cGMP and cUMP in cells, whereas the Bordetella pertussis toxin CyaA increases cAMP and, to a lesser extent, cCMP. To mimic and dissect toxin effects, we synthesized cNMP-acetoxymethylesters as prodrugs. cNMP-AMs rapidly and effectively released the corresponding cNMP in cells. The combination of cGMP-AM plus cUMP-AM mimicked cytotoxicity of ExoY. cUMP-AM and cGMP-AM differentially activated gene expression. Certain cCMP and cUMP effects were independent of the known cNMP effectors protein kinases A and G and guanine nucleotide exchange factor Epac. In conclusion, cNMP-AMs are useful tools to mimic and dissect bacterial nucleotidyl cyclase toxin effects.

  11. Genetic Variation of Bordetella pertussis in Austria.

    Directory of Open Access Journals (Sweden)

    Birgit Wagner

    Full Text Available In Austria, vaccination coverage against Bordetella pertussis infections during infancy is estimated at around 90%. Within the last years, however, the number of pertussis cases has increased steadily, not only in children but also in adolescents and adults, indicating both insufficient herd immunity and vaccine coverage. Waning immunity in the host and/or adaptation of the bacterium to the immunised hosts could contribute to the observed re-emergence of pertussis. In this study we therefore addressed the genetic variability in B. pertussis strains from several Austrian cities. Between the years 2002 and 2008, 110 samples were collected from Vienna (n = 32, Linz (n = 63 and Graz (n = 15 by nasopharyngeal swabs. DNA was extracted from the swabs, and bacterial sequence polymorphisms were examined by MLVA (multiple-locus variable number of tandem repeat analysis (n = 77, by PCR amplification and conventional Sanger sequencing of the polymorphic regions of the prn (pertactin gene (n = 110, and by amplification refractory mutation system quantitative PCR (ARMS-qPCR (n = 110 to directly address polymorphisms in the genes encoding two pertussis toxin subunits (ptxA and ptxB, a fimbrial adhesin (fimD, tracheal colonisation factor (tcfA, and the virulence sensor protein (bvgS. Finally, the ptxP promoter region was screened by ARMS-qPCR for the presence of the ptxP3 allele, which has been associated with elevated production of pertussis toxin. The MLVA analysis revealed the highest level of polymorphisms with an absence of MLVA Type 29, which is found outside Austria. Only Prn subtypes Prn1/7, Prn2 and Prn3 were found with a predominance of the non-vaccine type Prn2. The analysis of the ptxA, ptxB, fimD, tcfA and bvgS polymorphisms showed a genotype mixed between the vaccine strain Tohama I and a clinical isolate from 2006 (L517. The major part of the samples (93% displayed the ptxP3 allele. The consequences for the vaccination strategy are discussed.

  12. Genetic Variation of Bordetella pertussis in Austria.

    Science.gov (United States)

    Wagner, Birgit; Melzer, Helen; Freymüller, Georg; Stumvoll, Sabine; Rendi-Wagner, Pamela; Paulke-Korinek, Maria; Repa, Andreas; Mooi, Frits R; Kollaritsch, Herwig; Mittermayer, Helmut; Kessler, Harald H; Stanek, Gerold; Steinborn, Ralf; Duchêne, Michael; Wiedermann, Ursula

    2015-01-01

    In Austria, vaccination coverage against Bordetella pertussis infections during infancy is estimated at around 90%. Within the last years, however, the number of pertussis cases has increased steadily, not only in children but also in adolescents and adults, indicating both insufficient herd immunity and vaccine coverage. Waning immunity in the host and/or adaptation of the bacterium to the immunised hosts could contribute to the observed re-emergence of pertussis. In this study we therefore addressed the genetic variability in B. pertussis strains from several Austrian cities. Between the years 2002 and 2008, 110 samples were collected from Vienna (n = 32), Linz (n = 63) and Graz (n = 15) by nasopharyngeal swabs. DNA was extracted from the swabs, and bacterial sequence polymorphisms were examined by MLVA (multiple-locus variable number of tandem repeat analysis) (n = 77), by PCR amplification and conventional Sanger sequencing of the polymorphic regions of the prn (pertactin) gene (n = 110), and by amplification refractory mutation system quantitative PCR (ARMS-qPCR) (n = 110) to directly address polymorphisms in the genes encoding two pertussis toxin subunits (ptxA and ptxB), a fimbrial adhesin (fimD), tracheal colonisation factor (tcfA), and the virulence sensor protein (bvgS). Finally, the ptxP promoter region was screened by ARMS-qPCR for the presence of the ptxP3 allele, which has been associated with elevated production of pertussis toxin. The MLVA analysis revealed the highest level of polymorphisms with an absence of MLVA Type 29, which is found outside Austria. Only Prn subtypes Prn1/7, Prn2 and Prn3 were found with a predominance of the non-vaccine type Prn2. The analysis of the ptxA, ptxB, fimD, tcfA and bvgS polymorphisms showed a genotype mixed between the vaccine strain Tohama I and a clinical isolate from 2006 (L517). The major part of the samples (93%) displayed the ptxP3 allele. The consequences for the vaccination strategy are discussed.

  13. Diterpene Cyclases and the Nature of the Isoprene Fold

    Science.gov (United States)

    Cao, Rong; Zhang, Yonghui; Mann, Francis M.; Huang, Cancan; Mukkamala, Dushyant; Hudock, Michael P.; Mead, Matthew; Prisic, Sladjana; Wang, Ke; Lin, Fu-Yang; Chang, Ting-Kai; Peters, Reuben; Oldfield, Eric

    2013-01-01

    The structures and mechanism of action of many terpene cyclases are known, but there are no structures of diterpene cyclases. Here, we propose structural models based on bioinformatics, site-directed mutagenesis, domain swapping, enzyme inhibition and spectroscopy that help explain the nature of diterpene cyclase structure, function, and evolution. Bacterial diterpene cyclases contain ∼20 α-helices and the same conserved “QW” and DxDD motifs as in triterpene cyclases, indicating the presence of a βγ barrel structure. Plant diterpene cyclases have a similar catalytic motif and βγ-domain structure together with a third, α-domain, forming an αβγ structure, and in H+-initiated cyclases, there is an EDxxD-like Mg2+/diphosphate binding motif located in the γ-domain. The results support a new view of terpene cyclase structure and function and suggest evolution from ancient (βγ) bacterial triterpene cyclases to (βγ) bacterial and thence to (αβγ) plant diterpene cyclases. PMID:20602361

  14. A Multiplex PCR for Detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, and Bordetella pertussis in Clinical Specimens

    Science.gov (United States)

    2007-11-02

    NAVAL HEALTH RESEARCH CENTER A MULTIPLEX PCR FOR DETECTION OF Mycoplasma pneumoniae,Chlamydophila pneumoniae, Legionella pneumophila, AND Bordetella...5300 2 A Multiplex PCR for Detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, and Bordetella pertussis in Clinical...Chlamydophila pneumoniae, Legionella pneumophila, and Bordetella pertussis in uncultured patient specimens. These organisms cause similar symptomologies

  15. Epidemiology of whooping cough & typing of Bordetella pertussis.

    Science.gov (United States)

    Hegerle, Nicolas; Guiso, Nicole

    2013-11-01

    Bordetella pertussis is a Gram-negative human-restricted bacterium that evolved from the broad-range mammalian pathogen, Bordetella bronchiseptica. It causes whooping cough or pertussis in humans, which is the most prevalent vaccine-preventable disease worldwide. The introduction of the pertussis whole-cell vaccination for young children, followed by the introduction of the pertussis acellular vaccination (along with booster vaccination) for older age groups, has affected the bacterial population and epidemiology of the disease. B. pertussis is relatively monomorphic worldwide, but nevertheless, different countries are facing different epidemiological evolutions of the disease. Although it is tempting to link vaccine-driven phenotypic and genotypic evolution of the bacterium to epidemiology, many other factors should be considered and surveillance needs to continue, in addition to studies investigating the impact of current clinical isolates on vaccine efficacy.

  16. Cilia-associated bacteria in fatal Bordetella bronchiseptica pneumonia of dogs and cats

    Science.gov (United States)

    Bordetella bronchiseptica frequently causes nonfatal tracheobronchitis, but its role in fatal pneumonia is less well-studied. The objectives of this study were to identify the frequency of Bordetella bronchiseptica infection in fatal cases of bronchopneumonia in dogs and cats and to compare the diag...

  17. Evaluation of 3 analyte-specific reagents for detection of Bordetella pertussis and Bordetella parapertussis in clinical specimens.

    Science.gov (United States)

    Hassan, Ferdaus; Hays, Lindsay; Bell, Jeremiah; Selvarangan, Rangaraj

    2014-11-01

    The performance of 3 analyte-specific reagents (ASRs), Elitech Biosciences, EraGen Biosciences, and Focus Diagnostic, was evaluated for detection of Bordetella pertussis (BP) and Bordetella parapertussis (BPP) in nasopharyngeal swab specimens. A total of 104 frozen, leftover clinical specimens obtained from pediatric patients during 2011-2012 were included in this study. Performance was compared to the Bordetella real-time polymerase chain reaction (PCR) laboratory-developed test (LDT). The positive percent agreement for detection of BP by Elitech was 96% (95% confidence interval [CI]: 85.14-99.30); EraGen and Focus was 98% (95% CI: 87.99-99.89) in comparison to LDT PCR assay. The negative percent agreement of Elitech, EraGen, and Focus in comparison to LDT was 96% (95% CI: 85.14-99.30), 92% (95% CI: 79.89-97.41), and 96% (95% CI: 85.14-99.30), respectively. Limit of detection (LOD) for BP was 0.1 CFU/reaction by both Focus and EraGen and 1.0 CFU/reaction by Elitech. However, LOD for BPP was lower by EraGen (0.1 CFU/reaction) compared to Focus (1.0 CFU/reaction) and Elitech (1.0 CFU/reaction). These results demonstrate that all 3 ASRs tested are comparable and reliable for routine clinical diagnosis of pertussis and parapertussis.

  18. Effect of association with adenylyl cyclase-associated protein on the interaction of yeast adenylyl cyclase with Ras protein.

    Science.gov (United States)

    Shima, F; Yamawaki-Kataoka, Y; Yanagihara, C; Tamada, M; Okada, T; Kariya, K; Kataoka, T

    1997-03-01

    Posttranslational modification of Ras protein has been shown to be critical for interaction with its effector molecules, including Saccharomyces cerevisiae adenylyl cyclase. However, the mechanism of its action was unknown. In this study, we used a reconstituted system with purified adenylyl cyclase and Ras proteins carrying various degrees of the modification to show that the posttranslational modification, especially the farnesylation step, is responsible for 5- to 10-fold increase in Ras-dependent activation of adenylyl cyclase activity even though it has no significant effect on their binding affinity. The stimulatory effect of farnesylation is found to depend on the association of adenylyl cyclase with 70-kDa adenylyl cyclase-associated protein (CAP), which was known to be required for proper in vivo response of adenylyl cyclase to Ras protein, by comparing the levels of Ras-dependent activation of purified adenylyl cyclase with and without bound CAP. The region of CAP required for this effect is mapped to its N-terminal segment of 168 amino acid residues, which coincides with the region required for the in vivo effect. Furthermore, the stimulatory effect is successfully reconstituted by in vitro association of CAP with the purified adenylyl cyclase molecule lacking the bound CAP. These results indicate that the association of adenylyl cyclase with CAP is responsible for the stimulatory effect of posttranslational modification of Ras on its activity and that this may be the mechanism underlying its requirement for the proper in vivo cyclic AMP response.

  19. The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae

    Directory of Open Access Journals (Sweden)

    Schneiker-Bekel Susanne

    2008-09-01

    Full Text Available Abstract Background Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described. Results In this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae. Conclusion The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches.

  20. An aberrant adenylate kinase isoenzyme from the serum of patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Hamada, M; Okuda, H; Oka, K; Watanabe, T; Ueda, K; Nojima, M; Kuby, S A; Manship, M; Tyler, F H; Ziter, F A

    1981-08-13

    The sera from patients with human Duchenne (X-linked) progressive muscular dystrophy contain elevated adenylate kinase (ATP: AMP phosphotransferase, EC 2.7.4.3) activities, in addition to their characteristically high creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) activities. By agarose gel electrophoresis of human Duchenne dystrophic serum, the presence of an apparently normal human serum adenylate kinase together with a variant species of adenylate kinase was detected. The latter enzyme species appeared, in its mobility, to be similar to that of the normal human liver-type adenylate kinase. The presence of this aberrant liver-type adenylate kinase could also be demonstrated by characteristic (for the liver type) inhibition patterns with P1,P5-di-(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate. On the other hand, by inhibition titrations with an anti-muscle-type adenylate kinase, hemolysates from the erythrocytes of several Duchenne and Becker's dystrophics were found to contain approx. 96% muscle-type adenylate kinase and their serum approx. 97% muscle-type adenylate kinase. These same patients contained approx. 89% M-M type creatine kinase in their serum (by inhibition against anti-human muscle-type creatine kinase) indicative of the presence also of M-B plus B-B type active isoenzymes. All of these data can best be explained by the presence of a variant or mutant adenylate kinase isoenzyme in the dystrophic serum. This isoenzyme appears to resemble the liver type in its inhibition patterns with P1,P5-di(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate, and in its heat stability (compare also the agarose gel electrophoresis pattern); but structurally, it is a muscle type, or derived from a muscle type, as shown immunologically by inhibition reactions with anti-muscle-type adenylate kinase. Whether this is a fetal-type isoenzyme of adenylate kinase will require further

  1. G-protein-mediated interconversions of cell-surface cAMP receptors and their involvement in excitation and desensitization of guanylate cyclase in Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    van Haastert, P.J.; de Wit, R.J.; Janssens, P.M.; Kesbeke, F.; DeGoede, J.

    1986-05-25

    In Dictyostelium discoideum cells, extracellular cAMP induces the rapid (within 2 s) activation of guanylate cyclase, which is followed by complete desensitization after about 10 s. cAMP binding to these cells is heterogeneous, showing a subclass of fast dissociating sites coupled to adenylate cyclase (A-sites) and a subclass of slowly dissociating sites coupled to guanylate cyclase (B-sites). The kinetics of the B-sites were further investigated on a seconds time scale. Statistical analysis of the association of (/sup 3/H)cAMP to the B-sites and dissociation of the complex revealed that the receptor can exist in three states which interconvert according to the following scheme. cAMP binds to the BF-state (off-rate 2.5 s) which rapidly (t1/2 = 3 s) converts to the BS-state (off-rate 15 s) and subsequently (without a detectable delay) into the BSS-state (off-rate 150 s). In membranes, both the BS- and BSS-states are converted to the BF-state by GTP and GDP, suggesting the involvement of a G-protein. Densensitized cells show a 80% reduction of the formation of the BSS-state, but no reduction of the BF- or BS-state. These data are combined into a model in which the transitions of the B-sites are mediated by a G-protein; activation of the G-protein and guanylate cyclase is associated with the transition of the BS- to the BSS-state of the receptor, whereas desensitization is associated with the inhibition of this transition.

  2. Isoform-targeted regulation of cardiac adenylyl cyclase.

    Science.gov (United States)

    Ishikawa, Yoshihiro

    2003-01-01

    Numerous attempts have been made to develop strategies for regulating the intracellular cyclic AMP signal pharmacologically, with an intention to establish either new medical therapeutic methods or experimental tools. In the past decades, many pharmacological reagents have been identified that regulate this pathway at the level of the receptor. G protein, adenylyl cyclase, cyclic AMP, protein kinase A and phosphodiesterase. Since the cloning of adenylyl cyclase isoforms during the 1990s, investigators including ourselves have tried to find reagents that regulate the activity of this enzyme directly in an isoform-dependent manner. The ultimate goal of developing such reagents would be to regulate the cyclic AMP signal in an organ-dependent manner. Ourselves and other workers have reported that such reagents may vary from a simple cation to kinases. In a more recent study, using the results from crystallographic studies and computer-assisted drug design programs, we have identified subtype-selective regulators of adenylyl cyclase. Such regulators are mostly based upon forskolin, a diterpene compound obtained from Coleus forskolii, that acts directly on adenylyl cyclase to increase the intracellular levels of cyclic AMP. Similarly, novel reagents have been identified that inhibit a specific adenylyl cyclase isoform (e.g. type 5 adenylyl cyclase). Such reagents would potentially provide a new therapeutic strategy to treat hypertension, for example, as well as methods to selectively stimulate or inhibit this adenylyl cyclase isoform, which may be reminiscent of overexpression or knocking out of the cardiac adenylyl cyclase isoform by the use of a pharmacological method.

  3. Seroepidemiology of Bordetella pertussis infections in the twin cities of Pakistan

    Directory of Open Access Journals (Sweden)

    Fahad Said

    2009-12-01

    Full Text Available Background: Bordetella pertussis is the cause of whooping cough occurring mainly in children. The prevalence of this disease has been reduced largely due to worldwide mass vaccination with DTP vaccine. However, the immunity produced by the vaccination wanes by the passage of time. Still this disease kills around 2-4 million children annually. Adults may be a source of infection for infants and children. Furthermore, Bordetella pertussis has also been found to be associated with cases of persistent cough in adults in many countries. Aim: The aim of this study was to study the exposure of the adult population to the Bordetella pertussis by detecting IgG antibodies. Materials and Methods: We performed Seroepidemiology of Bordetella pertussis infections in multiethnic twin cities of Pakistan (Rawalpindi and Islamabad using a commercially available ELISA kit to have a picture of epidemiology of Bordetella pertussis in Pakistan. We targeted adults of age between 18-45 years (mean age 29.64 years. Results: The results of our study show a high percentage of seropositivity to Bordetella pertussis (89 percent, which indicates higher exposure to this organism and risk of infection to infants, children, adolescents and adults. Conclusion: A high percentage of seropositive individuals are alarming to health care professionals as well as policy makers. Bordetella pertussis infections may be associated with their atypical manifestation in Pakistan. Adult vaccination with DTP is recommended to reduce the risk of infection in infants and children through adult reservoirs.

  4. Seroepidemiology of Bordetella pertussis infections in the twin cities of Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Syed

    2009-01-01

    Full Text Available Background: Bordetella pertussis is the cause of whooping cough occurring mainly in children. The prevalence of this disease has been reduced largely due to worldwide mass vaccination with DTP vaccine. However, the immunity produced by the vaccination wanes by the passage of time. Still this disease kills around 2-4 million children annually. Adults may be a source of infection for infants and children. Furthermore, Bordetella pertussis has also been found to be associated with cases of persistent cough in adults in many countries. Aim: The aim of this study was to study the exposure of the adult population to the Bordetella pertussis by detecting IgG antibodies. Materials and Methods: We performed Seroepidemiology of Bordetella pertussis infections in multiethnic twin cities of Pakistan (Rawalpindi and Islamabad using a commercially available ELISA kit to have a picture of epidemiology of Bordetella pertussis in Pakistan. We targeted adults of age between 18-45 years (mean age 29.64 years. Results: The results of our study show a high percentage of seropositivity to Bordetella pertussis (89 percent, which indicates higher exposure to this organism and risk of infection to infants, children, adolescents and adults. Conclusion: A high percentage of seropositive individuals are alarming to health care professionals as well as policy makers. Bordetella pertussis infections may be associated with their atypical manifestation in Pakistan. Adult vaccination with DTP is recommended to reduce the risk of infection in infants and children through adult reservoirs.

  5. Crystallization of cyclase-associated protein from Dictyostelium discoideum.

    Science.gov (United States)

    Hofmann, Andreas; Hess, Sonja; Noegel, Angelika A; Schleicher, Michael; Wlodawer, Alexander

    2002-10-01

    Cyclase-associated protein (CAP) is a conserved two-domain protein that helps to activate the catalytic activity of adenylyl cyclase in the cyclase-bound state through interaction with Ras, which binds to the cyclase in a different region. With its other domain, CAP can bind monomeric actin and therefore also carries a cytoskeletal function. The protein is thus involved in Ras/cAMP-dependent signal transduction and most likely serves as an adapter protein translocating the adenylyl cyclase complex to the actin cytoskeleton. Crystals belonging to the orthorhombic space group C222, with unit-cell parameters a = 71.2, b = 75.1, c = 162.9 A, have been obtained from Dictyostelium discoideum CAP carrying a C-terminal His tag. A complete native data set extending to 2.2 A resolution was collected from a single crystal using an in-house X-ray system. The asymmetric unit contains one molecule of CAP.

  6. Transcriptional analysis of the Bordetella alcaligin siderophore biosynthesis operon.

    Science.gov (United States)

    Kang, H Y; Armstrong, S K

    1998-02-01

    The alc gene cluster of Bordetella pertussis includes three genes, alcA, alcB, and alcC, which are involved in alcaligin siderophore biosynthesis in response to iron starvation. The production of AlcA, AlcB, and AlcC in Bordetella cells and the transcriptional organization of alcA, alcB, and alcC were investigated by using a set of three alc'-'lacZ gene fusion constructs that were contiguous with the known promoter upstream of alcA and extended to fusion junctions within each alc cistron. All three alc'-'lacZ fusions exhibited iron-repressible reporter gene expression which was abolished by deletion of the 105-bp alcA promoter-operator region. In an immunoblot analysis using a monoclonal antibody specific for beta-galactosidase, the AlcA-LacZ, AlcB-LacZ, and AlcC-LacZ hybrid proteins were detected in Bordetella cells grown under iron-depleted conditions. A B. pertussis mutant in which the 105-bp alcA promoter-operator region was deleted by allelic exchange was unable to produce detectable levels of siderophore. Hybridization analysis using gene-specific probes showed that alc-specific transcript levels in the mutant were negligible compared with those of the wild-type parent. These results confirm that alcA, alcB, and alcC are cotranscribed from an iron-regulated control region immediately upstream of alcA. Transcript analysis using hybridization probes representing regions downstream of alcC demonstrated that alc transcription extends approximately 3.6 kb further downstream from the alcC coding region, suggesting the cotranscription of additional, uncharacterized alcaligin system genes.

  7. Bordetella pertussis, B. parapertussis, vaccines and cycles of whooping cough.

    Science.gov (United States)

    Bouchez, Valérie; Guiso, Nicole

    2015-10-01

    Whooping cough is a vaccine-preventable disease due to Bordetella pertussis and B. parapertussis. This highly contagious respiratory disease occurs through epidemic cycles every 3-5 years and vaccination did not change this frequency. Models suggest that the cyclic increase of susceptibles is linked to demographic differences and different vaccine coverage. However, differences in surveillance of the disease as well as adaptation of the agents of the disease to their human hosts and to vaccine pressure might also play an important role. These parameters are discussed in this review.

  8. Pertussis in the Era of New Strains of Bordetella pertussis.

    Science.gov (United States)

    Souder, Emily; Long, Sarah S

    2015-12-01

    Despite implementation of a successful vaccination program, pertussis remains a significant health problem. Although the incidence of pertussis in the United States is reduced by approximately 80% compared with incidence before the introduction of vaccination in the 1940s, deaths still occur and the unrecognized disease burden remains high, with 1 million Bordetella pertussis infections annually in the United States estimated by serologic surveys. Reasons for the resurgence and current prevalence of pertussis may be multifactorial and include waning vaccine-induced protection as well as lower vaccine effectiveness, failure to vaccinate, and changes in the organism itself.

  9. Mejoras en el ensayo de potencia de Bordetella pertussis

    OpenAIRE

    Carmen Alina del Puerto; Aleida Mandiarote; Orialys Valle; Juan Francisco Núñez; Luis Izquierdo; Nadiezda Baños; Irma Labrador

    2013-01-01

    La potencia del componente pertussis, presente en la vacuna DPT-vax, se evalúa mediante el ensayo de Kendrick. La cepa recomendada por OMS para este ensayo es Bordetella pertussis 18 323, la cual debe ser conservada de manera que se asegure su viabilidad, pureza y virulencia. Como parte de dicho ensayo debe calcularse la concentración de una suspensión de la cepa, cuya opacidad se compara a simple vista con la 5ta Preparación Internacional de Referencia de Opacidad. Este método es muy inexact...

  10. Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels.

    Science.gov (United States)

    Makarchikov, Alexander F; Wins, Pierre; Janssen, Edwin; Wieringa, Bé; Grisar, Thierry; Bettendorff, Lucien

    2002-10-21

    Thiamine triphosphate (ThTP) is found at low concentrations in most animal tissues and it may act as a phosphate donor for the phosphorylation of proteins, suggesting a potential role in cell signaling. Two mechanisms have been proposed for the enzymatic synthesis of ThTP. A thiamine diphosphate (ThDP) kinase (ThDP+ATP if ThTP+ADP) has been purified from brewer's yeast and shown to exist in rat liver. However, other data suggest that, at least in skeletal muscle, adenylate kinase 1 (AK1) is responsible for ThTP synthesis. In this study, we show that AK1 knockout mice have normal ThTP levels in skeletal muscle, heart, brain, liver and kidney, demonstrating that AK1 is not responsible for ThTP synthesis in those tissues. We predict that the high ThTP content of particular tissues like the Electrophorus electricus electric organ, or pig and chicken skeletal muscle is more tightly correlated with high ThDP kinase activity or low soluble ThTPase activity than with non-stringent substrate specificity and high activity of adenylate kinase.

  11. Resident microbiota affect Bordetella pertussis infectious dose and host specificity.

    Science.gov (United States)

    Weyrich, Laura S; Feaga, Heather A; Park, Jihye; Muse, Sarah J; Safi, Chetan Y; Rolin, Olivier Y; Young, Sarah E; Harvill, Eric T

    2014-03-01

    Before contacting host tissues, invading pathogens directly or indirectly interact with host microbiota, but the effects of such interactions on the initial stages of infection are poorly understood. Bordetella pertussis is highly infectious among humans but requires large doses to colonize rodents, unlike a closely related zoonotic pathogen, Bordetella bronchiseptica, raising important questions about the contributions of bacterial competition to initial colonization and host selection. We observed that <100 colony-forming units (CFU) of B. bronchiseptica efficiently infected mice and displaced culturable host microbiota, whereas 10 000 CFU of B. pertussis were required to colonize murine nasal cavities and did not displace host microorganisms. Bacteria isolated from murine nasal cavities but not those from the human lower respiratory tract limited B. pertussis growth in vitro, indicating that interspecies competition may limit B. pertussis colonization of mice. Further, a broad-spectrum antibiotic treatment delivered before B. pertussis inoculation reduced the infectious dose to <100 CFU, and reintroduction of single Staphylococcus or Klebsiella species was sufficient to inhibit B. pertussis colonization of antibiotic-treated mice. Together, these results reveal that resident microorganisms can prevent B. pertussis colonization and influence host specificity, and they provide rationale for manipulating microbiomes to create more-accurate animal models of infectious diseases.

  12. Mejoras en el ensayo de potencia de Bordetella pertussis

    Directory of Open Access Journals (Sweden)

    Carmen Alina del Puerto

    2013-08-01

    Full Text Available La potencia del componente pertussis, presente en la vacuna DPT-vax, se evalúa mediante el ensayo de Kendrick. La cepa recomendada por OMS para este ensayo es Bordetella pertussis 18 323, la cual debe ser conservada de manera que se asegure su viabilidad, pureza y virulencia. Como parte de dicho ensayo debe calcularse la concentración de una suspensión de la cepa, cuya opacidad se compara a simple vista con la 5ta Preparación Internacional de Referencia de Opacidad. Este método es muy inexacto y con frecuencia conduce a errores. En este trabajo se elaboró y caracterizó un lote de siembra de Bordetella. pertussis 18 323; se calculó la concentración de dicha cepa empleando una curva de calibración. El lote se empleó en ocho ensayos de potencia y en los mismos se cumplieron los criterios de validez establecidos.

  13. Polymorphisms influencing expression of dermonecrotic toxin in Bordetella bronchiseptica.

    Directory of Open Access Journals (Sweden)

    Keisuke Okada

    Full Text Available Bordetella bronchiseptica is a pathogenic bacterium causing respiratory infections in a broad range of mammals. Recently, we determined the whole genome sequence of B. bronchiseptica S798 strain isolated from a pig infected with atrophic rhinitis and found four single-nucleotide polymorphisms (SNPs at positions -129, -72, +22, and +38 in the region upstream of dnt encoding dermonecrotic toxin (DNT, when compared with a rabbit isolate, RB50. DNT is known to be involved in turbinate atrophy observed in atrophic rhinitis. Immunoblotting, quantitative real-time PCR, and β-galactosidase reporter assay revealed that these SNPs resulted in the increased promoter activity of dnt and conferred the increased ability to produce DNT on the bacteria. Similar or identical SNPs were also found in other pig isolates kept in our laboratory, all of which produce a larger amount of DNT than RB50. Our analysis revealed that substitution of at least two of the four bases, at positions -72 and +22, influenced the promoter activity for dnt. These results imply that these SNPs are involved in the pathogenicity of bordetellae specific to pig diseases.

  14. Complete Genome Sequences of Bordetella pertussis Vaccine Reference Strains 134 and 10536

    Science.gov (United States)

    Peng, Yanhui; Loparev, Vladimir; Batra, Dhwani; Burroughs, Mark; Johnson, Taccara; Juieng, Phalasy; Rowe, Lori; Tondella, M. Lucia; Williams, Margaret M.

    2016-01-01

    Vaccine formulations and vaccination programs against whooping cough (pertussis) vary worldwide. Here, we report the complete genome sequences of two divergent Bordetella pertussis reference strains used in the production of pertussis vaccines. PMID:27635001

  15. Patterns of Susceptibility in an Outbreak of Bordetella pertussis: Evidence from a Community-Based Study

    Directory of Open Access Journals (Sweden)

    David M Moore

    2002-01-01

    Full Text Available OBJECTIVE: To describe an outbreak of Bordetella pertussis and to assess which factors were associated with the development of clinical pertussis in children and adults during the outbreak.

  16. Complete Genome Sequences of Bordetella pertussis Vaccine Reference Strains 134 and 10536.

    Science.gov (United States)

    Weigand, Michael R; Peng, Yanhui; Loparev, Vladimir; Batra, Dhwani; Burroughs, Mark; Johnson, Taccara; Juieng, Phalasy; Rowe, Lori; Tondella, M Lucia; Williams, Margaret M

    2016-09-15

    Vaccine formulations and vaccination programs against whooping cough (pertussis) vary worldwide. Here, we report the complete genome sequences of two divergent Bordetella pertussis reference strains used in the production of pertussis vaccines.

  17. Canine distemper virus infection with secondary Bordetella bronchiseptica pneumonia in dogs

    OpenAIRE

    HEADLEY, Selwyn Arlington; Graça,Dominguita Lühers; Costa,Mateus Matiuzzi da; Vargas,Agueda Castagna de

    1999-01-01

    Canine distemper virus infection and secondary Bordetella bronchiseptica pneumonia are described in mongrel dogs. Canine distemper was characterised by nonsuppurative demyelinating encephalitis with typical inclusion bodies in astrocytes. B. bronchiseptica was isolated from areas of purulent bronchopneumonia.

  18. An extended conformation of calmodulin induces interactions between the structural domains of adenylyl cyclase from Bacillus anthracis to promote catalysis.

    Science.gov (United States)

    Drum, C L; Yan, S Z; Sarac, R; Mabuchi, Y; Beckingham, K; Bohm, A; Grabarek, Z; Tang, W J

    2000-11-17

    The edema factor exotoxin produced by Bacillus anthracis is an adenylyl cyclase that is activated by calmodulin (CaM) at resting state calcium concentrations in infected cells. A C-terminal 60-kDa fragment corresponding to the catalytic domain of edema factor (EF3) was cloned, overexpressed in Escherichia coli, and purified. The N-terminal 43-kDa domain (EF3-N) of EF3, the sole domain of edema factor homologous to adenylyl cyclases from Bordetella pertussis and Pseudomonas aeruginosa, is highly resistant to protease digestion. The C-terminal 160-amino acid domain (EF3-C) of EF3 is sensitive to proteolysis in the absence of CaM. The addition of CaM protects EF3-C from being digested by proteases. EF3-N and EF3-C were expressed separately, and both fragments were required to reconstitute full CaM-sensitive enzyme activity. Fluorescence resonance energy transfer experiments using a double-labeled CaM molecule were performed and indicated that CaM adopts an extended conformation upon binding to EF3. This contrasts sharply with the compact conformation adopted by CaM upon binding myosin light chain kinase and CaM-dependent protein kinase type II. Mutations in each of the four calcium binding sites of CaM were examined for their effect on EF3 activation. Sites 3 and 4 were found critical for the activation, and neither the N- nor the C-terminal domain of CaM alone was capable of activating EF3. A genetic screen probing loss-of-function mutations of EF3 and site-directed mutations based on the homology of the edema factor family revealed a conserved pair of aspartate residues and an arginine that are important for catalysis. Similar residues are essential for di-metal-mediated catalysis in mammalian adenylyl cyclases and a family of DNA polymerases and nucleotidyltransferases. This suggests that edema factor may utilize a similar catalytic mechanism.

  19. Detection of small RNAs in Bordetella pertussis and identification of a novel repeated genetic element

    Directory of Open Access Journals (Sweden)

    Wulbrecht Bérénice

    2011-04-01

    Full Text Available Abstract Background Small bacterial RNAs (sRNAs have been shown to participate in the regulation of gene expression and have been identified in numerous prokaryotic species. Some of them are involved in the regulation of virulence in pathogenic bacteria. So far, little is known about sRNAs in Bordetella, and only very few sRNAs have been identified in the genome of Bordetella pertussis, the causative agent of whooping cough. Results An in silico approach was used to predict sRNAs genes in intergenic regions of the B. pertussis genome. The genome sequences of B. pertussis, Bordetella parapertussis, Bordetella bronchiseptica and Bordetella avium were compared using a Blast, and significant hits were analyzed using RNAz. Twenty-three candidate regions were obtained, including regions encoding the already documented 6S RNA, and the GCVT and FMN riboswitches. The existence of sRNAs was verified by Northern blot analyses, and transcripts were detected for 13 out of the 20 additional candidates. These new sRNAs were named Bordetella pertussis RNAs, bpr. The expression of 4 of them differed between the early, exponential and late growth phases, and one of them, bprJ2, was found to be under the control of BvgA/BvgS two-component regulatory system of Bordetella virulence. A phylogenetic study of the bprJ sequence revealed a novel, so far undocumented repeat of ~90 bp, found in numerous copies in the Bordetella genomes and in that of other Betaproteobacteria. This repeat exhibits certain features of mobile elements. Conclusion We shown here that B. pertussis, like other pathogens, expresses sRNAs, and that the expression of one of them is controlled by the BvgA/BvgS system, similarly to most virulence genes, suggesting that it is involved in virulence of B. pertussis.

  20. Calcium regulation of adenylyl cyclase relevance for endocrine control.

    Science.gov (United States)

    Antoni, F A

    1997-01-01

    A fundamental process in the hormonal regulation of body functions is the conversion of the intercellular signal into an intracellular signal. The first recognized intracellular messengers mediating the actions of hormones were calcium ions (Ca(2+)) and adenosine 3':5' monophosphate (cAMP), which is synthesized from ATP by adenylyl cyclase. Recent work on the structure of adenylyl cyclases has shown that these enzymes are individually tailored molecular machines controlled by diverse Ca(2+)-dependent mechanisms. These include allosteric regulation of enzyme activity through the Ca(2+)-receptor protein calmodulin, apparently direct actions of Ca(2+)on the cyclase catalytic moiety and phosphorylation/dephosphorylation by Ca(2+)-regulated protein kinases and protein phosphatases. This article is a brief review of the recent developments in the area of cyclase control that forecast a major revival of the interest in cAMP-Ca(2+)interactions. (c) 1997, Elsevier Science Inc. (Trends Endocrinol Metab 1997;8:7-14).

  1. Bacillus anthracis Edema Toxin Inhibits Staphylococcus aureus Enterotoxin B Effects in Vitro: A Potential Protein Therapeutic?

    Science.gov (United States)

    2005-10-01

    shown that the adverse effects of the SEs and TSST-1 are naturally poten- tiated by a ubiquitous component of all gram-negative bacte- ria, namely...5). Inherent characteristics of edema toxin and other procaryotic adenylate cyclases from Bordetella pertussis, Pseudomonas aeruginosa, and Yersinia...various groups (11, 28), and this effect is linked to gene transcription (9). As evidenced with other cell types (18), the cAMP levels in human

  2. Pituitary Adenlylate Cyclase Activating Peptide Protects Adult Neural Stem Cells from a Hypoglycaemic milieu.

    Directory of Open Access Journals (Sweden)

    Shiva Mansouri

    Full Text Available Hypoglycaemia is a common side-effect of glucose-lowering therapies for type-2 diabetic patients, which may cause cognitive/neurological impairment. Although the effects of hypoglycaemia in the brain have been extensively studied in neurons, how hypoglycaemia impacts the viability of adult neural stem cells (NSCs has been poorly investigated. In addition, the cellular and molecular mechanisms of how hypoglycaemia regulates NSCs survival have not been characterized. Recent work others and us have shown that the pituitary adenylate cyclase-activating polypeptide (PACAP and the glucagon-like peptide-1 receptor (GLP-1R agonist Exendin-4 stimulate NSCs survival against glucolipoapoptosis. The aim of this study was to establish an in vitro system where to study the effects of hypoglycaemia on NSC survival. Furthermore, we determine the potential role of PACAP and Exendin-4 in counteracting the effect of hypoglycaemia. A hypoglycaemic in vitro milieu was mimicked by exposing subventricular zone-derived NSC to low levels of glucose. Moreover, we studied the potential involvement of apoptosis and endoplasmic reticulum stress by quantifying protein levels of Bcl-2, cleaved caspase-3 and mRNA levels of CHOP. We show that PACAP via PAC-1 receptor and PKA activation counteracts impaired NSC viability induced by hypoglycaemia. The protective effect induced by PACAP correlated with endoplasmic reticulum stress, Exendin-4 was ineffective. The results show that hypoglycaemia decreases NSC viability and that this effect can be substantially counteracted by PACAP via PAC-1 receptor activation. The data supports a potential therapeutic role of PAC-1 receptor agonists for the treatment of neurological complications, based on neurogenesis impairment by hypoglycaemia.

  3. Rapid increase in pertactin-deficient Bordetella pertussis isolates, Australia.

    Science.gov (United States)

    Lam, Connie; Octavia, Sophie; Ricafort, Lawrence; Sintchenko, Vitali; Gilbert, Gwendolyn L; Wood, Nicholas; McIntyre, Peter; Marshall, Helen; Guiso, Nicole; Keil, Anthony D; Lawrence, Andrew; Robson, Jenny; Hogg, Geoff; Lan, Ruiting

    2014-04-01

    Acellular vaccines against Bordetella pertussis were introduced in Australia in 1997. By 2000, these vaccines had replaced whole-cell vaccines. During 2008-2012, a large outbreak of pertussis occurred. During this period, 30% (96/320) of B. pertussis isolates did not express the vaccine antigen pertactin (Prn). Multiple mechanisms of Prn inactivation were documented, including IS481 and IS1002 disruptions, a variation within a homopolymeric tract, and deletion of the prn gene. The mechanism of lack of expression of Prn in 16 (17%) isolates could not be determined at the sequence level. These findings suggest that B. pertussis not expressing Prn arose independently multiple times since 2008, rather than by expansion of a single Prn-negative clone. All but 1 isolate had ptxA1, prn2, and ptxP3, the alleles representative of currently circulating strains in Australia. This pattern is consistent with continuing evolution of B. pertussis in response to vaccine selection pressure.

  4. Bordetella pertussis evolution in the (functional) genomics era.

    Science.gov (United States)

    Belcher, Thomas; Preston, Andrew

    2015-11-01

    The incidence of whooping cough caused by Bordetella pertussis in many developed countries has risen dramatically in recent years. This has been linked to the use of an acellular pertussis vaccine. In addition, it is thought that B. pertussis is adapting under acellular vaccine mediated immune selection pressure, towards vaccine escape. Genomics-based approaches have revolutionized the ability to resolve the fine structure of the global B. pertussis population and its evolution during the era of vaccination. Here, we discuss the current picture of B. pertussis evolution and diversity in the light of the current resurgence, highlight import questions raised by recent studies in this area and discuss the role that functional genomics can play in addressing current knowledge gaps.

  5. Infectious Disease Report: Bordetella pertussis Infection in Patients With Cancer.

    Science.gov (United States)

    Yacoub, Abraham; Nanjappa, Sowmya; Janz, Tyler; Greene, John N

    2016-04-01

    We illustrate 2 cases of pneumonia associated with Bordetella pertussis infection in 72-year-old and 61-year-old patients with cancer receiving myelosuppressive therapy after hematopoietic stem cell transplantation. Bacterial infections are a significant cause of morbidity and mortality in patients with cancer, and those receiving hematopoietic stem cell transplant, solid organ transplant, or myelosuppressive therapy are at increased risk. The infection was detected and the 2 patients had good outcomes following azithromycin treatment. Pertussis, also known as whooping cough, is a contagious respiratory illness that has become a public health challenge due to decreased immunity of the pertussis vaccine. Therefore, it is critical to recognize pertussis early in the course of the disease.

  6. Harmonization of Bordetella pertussis real-time PCR diagnostics in the United States in 2012.

    Science.gov (United States)

    Williams, Margaret M; Taylor, Thomas H; Warshauer, David M; Martin, Monte D; Valley, Ann M; Tondella, M Lucia

    2015-01-01

    Real-time PCR (rt-PCR) is an important diagnostic tool for the identification of Bordetella pertussis, Bordetella holmesii, and Bordetella parapertussis. Most U.S. public health laboratories (USPHLs) target IS481, present in 218 to 238 copies in the B. pertussis genome and 32 to 65 copies in B. holmesii. The CDC developed a multitarget PCR assay to differentiate B. pertussis, B. holmesii, and B. parapertussis and provided protocols and training to 19 USPHLs. The 2012 performance exercise (PE) assessed the capability of USPHLs to detect these three Bordetella species in clinical samples. Laboratories were recruited by the Wisconsin State Proficiency Testing program through the Association of Public Health Laboratories, in partnership with the CDC. Spring and fall PE panels contained 12 samples each of viable Bordetella and non-Bordetella species in saline. Fifty and 53 USPHLs participated in the spring and fall PEs, respectively, using a variety of nucleic acid extraction methods, PCR platforms, and assays. Ninety-six percent and 94% of laboratories targeted IS481 in spring and fall, respectively, in either singleplex or multiplex assays. In spring and fall, respectively, 72% and 79% of USPHLs differentiated B. pertussis and B. holmesii and 68% and 72% identified B. parapertussis. IS481 cycle threshold (CT) values for B. pertussis samples had coefficients of variation (CV) ranging from 10% to 28%. Of the USPHLs that differentiated B. pertussis and B. holmesii, sensitivity was 96% and specificity was 95% for the combined panels. The 2012 PE demonstrated increased harmonization of rt-PCR Bordetella diagnostic protocols in USPHLs compared to that of the previous survey.

  7. Molecular and Functional Characterization of a Trypanosoma cruzi Nuclear Adenylate Kinase Isoform

    OpenAIRE

    María de los Milagros Cámara; Bouvier, León A.; Canepa, Gaspar E.; Mariana R Miranda; Pereira, Claudio A.

    2013-01-01

    Trypanosoma cruzi, the etiological agent of Chagas’ disease, is an early divergent eukaryote in which control of gene expression relies mainly in post-transcriptional mechanisms. Transcription levels are globally up and down regulated during the transition between proliferating and non-proliferating life-cycle stages. In this work we characterized a nuclear adenylate kinase isoform (TcADKn) that is involved in ribosome biogenesis. Nuclear adenylate kinases have been recently described in a fe...

  8. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Tumbale, Percy [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Williams, Jessica S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Schellenberg, Matthew J. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Kunkel, Thomas A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. of Molecular Genetics; Williams, R. Scott [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. Molecular Genetics

    2013-12-22

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA–DNA, and acting in an RNA–DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure–function studies of human APTX–RNA–DNA–AMP–Zn complexes define a mechanism for detecting and reversing adenylation at RNA–DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA–DNA may contribute to neurological disease.

  9. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2015-01-01

    Full Text Available The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i the supply of ADP and Mg2+, supported by adenylate kinase (AK equilibrium in the intermembrane space, (ii the supply of phosphate via membrane transporter in symport with H+, and (iii the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.

  10. Molecular Physiology of Membrane Guanylyl Cyclase Receptors.

    Science.gov (United States)

    Kuhn, Michaela

    2016-04-01

    cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.

  11. Role of glutaminyl cyclases in thyroid carcinomas.

    Science.gov (United States)

    Kehlen, Astrid; Haegele, Monique; Menge, Katja; Gans, Kathrin; Immel, Uta-Dorothee; Hoang-Vu, Cuong; Klonisch, Thomas; Demuth, Hans-Ulrich

    2013-02-01

    CCL2 is a chemokine known to recruit monocytes/macrophages to sites of inflammation. CCL2 is also associated with tumor progression in several cancer types. Recently, we showed that the N-terminus of CCL2 is modified to a pyroglutamate (pE)-residue by both glutaminyl cyclases (QC (QPCT)) and its isoenzyme (isoQC (QPCTL)). The pE-residue increases stability against N-terminal degradation by aminopeptidases. Here, we report an upregulation of QPCT expression in tissues of patients with thyroid carcinomas compared with goiter tissues, whereas QPCTL was not regulated. In thyroid carcinoma cell lines, QPCT gene expression correlates with the mRNA levels of its substrate CCL2. Both QPCT and CCL2 are regulated in a NF-κB-dependent pathway shown by stimulation with TNFa and IL1b as well as by inhibition with the IKK2 inhibitor and RNAi of p50. In the culture supernatant of thyroid carcinoma cells, equal amounts of pECCL2 and total CCL2 were detected by two ELISAs discriminating between total CCL2 and pECCL2, concluding that all CCL2 is secreted as pECCL2. Activation of the CCL2/CCR2 pathway by recombinant CCL2 increased tumor cell migration of FTC238 cells in scratch assays as well as thyroid carcinoma cell-derived CCL2-induced migration of monocytic THP1 cells. Suppression of CCL2 signaling by CCR2 antagonist, IKK2 inhibitor, and QPCT RNAi reduced FTC238 cell growth measured by WST8 proliferation assays. Our results reveal new evidence for a novel role of QC in thyroid carcinomas and provide an intriguing rationale for the use of QC inhibitors as a means of blocking pECCL2 formation and preventing thyroid cancer metastasis.

  12. Conformational dynamics of a ligand-free adenylate kinase.

    Directory of Open Access Journals (Sweden)

    Hyun Deok Song

    Full Text Available Adenylate kinase (AdK is a phosphoryl-transfer enzyme with important physiological functions. Based on a ligand-free open structure and a ligand-bound closed structure solved by crystallography, here we use molecular dynamics simulations to examine the stability and dynamics of AdK conformations in the absence of ligands. We first perform multiple simulations starting from the open or the closed structure, and observe their free evolutions during a simulation time of 100 or 200 nanoseconds. In all seven simulations starting from the open structure, AdK remained stable near the initial conformation. The eight simulations initiated from the closed structure, in contrast, exhibited large variation in the subsequent evolutions, with most (seven undergoing large-scale spontaneous conformational changes and approaching or reaching the open state. To characterize the thermodynamics of the transition, we propose and apply a new sampling method that employs a series of restrained simulations to calculate a one-dimensional free energy along a curved pathway in the high-dimensional conformational space. Our calculated free energy profile features a single minimum at the open conformation, and indicates that the closed state, with a high (∼13 kcal/mol free energy, is not metastable, consistent with the observed behaviors of the unrestrained simulations. Collectively, our simulations suggest that it is energetically unfavorable for the ligand-free AdK to access the closed conformation, and imply that ligand binding may precede the closure of the enzyme.

  13. Computational identification of candidate nucleotide cyclases in higher plants

    KAUST Repository

    Wong, Aloysius Tze

    2013-09-03

    In higher plants guanylyl cyclases (GCs) and adenylyl cyclases (ACs) cannot be identified using BLAST homology searches based on annotated cyclic nucleotide cyclases (CNCs) of prokaryotes, lower eukaryotes, or animals. The reason is that CNCs are often part of complex multifunctional proteins with different domain organizations and biological functions that are not conserved in higher plants. For this reason, we have developed CNC search strategies based on functionally conserved amino acids in the catalytic center of annotated and/or experimentally confirmed CNCs. Here we detail this method which has led to the identification of >25 novel candidate CNCs in Arabidopsis thaliana, several of which have been experimentally confirmed in vitro and in vivo. We foresee that the application of this method can be used to identify many more members of the growing family of CNCs in higher plants. © Springer Science+Business Media New York 2013.

  14. Tyrosine phosphorylation of the human guanylyl cyclase C receptor

    Indian Academy of Sciences (India)

    Rashna Bhandari; Roy Mathew; K Vijayachandra; Sandhya S Visweswariah

    2000-12-01

    Tyrosine phosphorylation events are key components of several cellular signal transduction pathways. This study describes a novel method for identification of substrates for tyrosine kinases. Co-expression of the tyrosine kinase EphB1 with the intracellular domain of guanylyl cyclase C (GCC) in Escherichia coli cells resulted in tyrosine phosphorylation of GCC, indicating that GCC is a potential substrate for tyrosine kinases. Indeed, GCC expressed in mammalian cells is tyrosine phosphorylated, suggesting that tyrosine phosphorylation may play a role in regulation of GCC signalling. This is the first demonstration of tyrosine phosphorylation of any member of the family of membrane-associated guanylyl cyclases.

  15. AKAPs and Adenylyl Cyclase in Cardiovascular Physiology and Pathology

    Science.gov (United States)

    Efendiev, Riad; Dessauer, Carmen W.

    2011-01-01

    Cyclic AMP, generated by adenylyl cyclase (AC), serves as a second messenger in signaling pathways regulating many aspects of cardiac physiology including contraction rate and action potential duration, and in the pathophysiology of hypertrophy and heart failure. A kinase-anchoring proteins (AKAPs) localize the effect of cAMP in space and time by organizing receptors, adenylyl cyclase, protein kinase A and other components of the cAMP cascade into multiprotein complexes. In this review we discuss how interaction of AKAPs with distinct AC isoforms affects cardiovascular physiology. PMID:21978991

  16. Deducing the origin of soluble adenylyl cyclase, a gene lost in multiple lineages

    NARCIS (Netherlands)

    Roelofs, Jeroen; Haastert, Peter J.M. van

    2002-01-01

    The family of eukaryotic adenylyl cyclases consists of a very large group of 12 transmembrane adenylyl cyclases and a very small group of soluble adenylyl cyclase (sAC). Orthologs of human sAC are present in rat Diclyostelium and bacteria but absent from the completely sequenced genomes of Drosophil

  17. Aislamiento y caracterización de cepas de Bordetella bronchiseptica de origen canino

    OpenAIRE

    Graciela Molina González; María Eugenia Rosales; Gabriela Bárcenas Morales; Juan Antonio Montaraz Crespo

    2006-01-01

    Se aislaron, identifi caron y caracterizaron cepas de Bordetella bronchiseptica de origen canino. Con ese propósito se tomaron exudados nasales de perros con semiótica de afecciones respiratorias y clínicamente sanos, con ayuda de hisopos impregnados con medio infusión cerebro-corazón. Éstos se cultivaron en agar Mac Conkey incubando a 37°C durante 48 h; las colonias presuntivas de Bordetella bronchiseptica se identifi caron por movilidad, tinción de Gram y pruebas bioquímicas. Las cepas se c...

  18. Real-time PCR-based detection of Bordetella pertussis and Bordetella parapertussis in an Irish paediatric population.

    LENUS (Irish Health Repository)

    Grogan, Juanita A

    2011-06-01

    Novel real-time PCR assays targeting the Bordetella pertussis insertion sequence IS481, the toxin promoter region and Bordetella parapertussis insertion sequence IS1001 were designed. PCR assays were capable of detecting ≤10 copies of target DNA per reaction, with an amplification efficiency of ≥90 %. From September 2003 to December 2009, per-nasal swabs and nasopharyngeal aspirates submitted for B. pertussis culture from patients ≤1 month to >15 years of age were examined by real-time PCR. Among 1324 patients, 76 (5.7 %) were B. pertussis culture positive and 145 (10.95 %) were B. pertussis PCR positive. Of the B. pertussis PCR-positive patients, 117 (81 %) were aged 6 months or less. A total of 1548 samples were examined, of which 87 (5.6 %) were culture positive for B. pertussis and 169 (10.92 %) were B. pertussis PCR positive. All culture-positive samples were PCR positive. Seven specimens (0.5 %) were B. parapertussis culture positive and 10 (0.8 %) were B. parapertussis PCR positive, with all culture-positive samples yielding PCR-positive results. A review of patient laboratory records showed that of the 1324 patients tested for pertussis 555 (42 %) had samples referred for respiratory syncytial virus (RSV) testing and 165 (30 %) were positive, as compared to 19.4 % of the total 5719 patients tested for RSV in this period. Analysis of the age distribution of RSV-positive patients identified that 129 (78 %) were aged 6 months or less, similar to the incidence observed for pertussis in that patient age group. In conclusion, the introduction of the real-time PCR assays for the routine detection of B. pertussis resulted in a 91 % increase in the detection of the organism as compared to microbiological culture. The incidence of infection with B. parapertussis is low while the incidence of RSV infection in infants suspected of having pertussis is high, with a similar age distribution to B. pertussis infection.

  19. New Data on Vaccine Antigen Deficient Bordetella pertussis Isolates

    Directory of Open Access Journals (Sweden)

    Valérie Bouchez

    2015-09-01

    Full Text Available Evolution of Bordetella pertussis is driven by natural and vaccine pressures. Isolates circulating in regions with high vaccination coverage present multiple allelic and antigenic variations as compared to isolates collected before introduction of vaccination. Furthermore, during the last epidemics reported in regions using pertussis acellular vaccines, isolates deficient for vaccine antigens, such as pertactin (PRN, were reported to reach high proportions of circulating isolates. More sporadic filamentous hemagglutinin (FHA or pertussis toxin (PT deficient isolates were also collected. The whole genome of some recent French isolates, deficient or non-deficient in vaccine antigens, were analyzed. Transcription profiles of the expression of the main virulence factors were also compared. The invasive phenotype in an in vitro human tracheal epithelial (HTE cell model of infection was evaluated. Our genomic analysis focused on SNPs related to virulence genes known to be more likely to present allelic polymorphism. Transcriptomic data indicated that isolates circulating since the introduction of pertussis vaccines present lower transcription levels of the main virulence genes than the isolates of the pre-vaccine era. Furthermore, isolates not producing FHA present significantly higher expression levels of the entire set of genes tested. Finally, we observed that recent isolates are more invasive in HTE cells when compared to the reference strain, but no multiplication occurs within cells.

  20. Antibodies to BrkA augment killing of Bordetella pertussis.

    Science.gov (United States)

    Oliver, D C; Fernandez, R C

    2001-10-12

    BrkA is a Bvg-regulated Bordetella pertussis protein that mediates serum resistance and adherence. It shares sequence identity with another B. pertussis virulence factor called pertactin, and it is a member of the diverse group of proteins found in Gram-negative bacteria that are secreted by an autotransporter mechanism. Sera, either from individuals who have been vaccinated with acellular pertussis vaccines, or from individuals who have no re-collection of recent infection with B. pertussis fail to kill wild-type B. pertussis, but kill brkA mutant strains very well. We examined whether BrkA could be neutralised in serum fitting this profile. BrkA is synthesised as a 103kDa precursor that is processed into a surface-associated N-terminal 73kDa passenger domain, and an outer-membrane embedded C-terminal 30kDa transporter moiety. Polyclonal antibodies were raised to a recombinant, re-folded histidine-tagged fusion protein representing the 73kDa passenger region. These anti-BrkA antibodies were shown to boost the existing bactericidal capacity of human serum against B. pertussis by neutralising BrkA.

  1. Clinical, laboratorial and radiographic predictors of Bordetella pertussis infection

    Directory of Open Access Journals (Sweden)

    Camila Vieira Bellettini

    2014-12-01

    Full Text Available OBJECTIVE: To identify clinical, laboratorial and radiographic predictors for Bordetella pertussis infection.METHODS: This was a retrospective study, which analyzed medical records of all patients submitted to a molecular dignosis (qPCR for B. pertussis from September 2011 to January 2013. Clinical and laboratorial data were reviewed, including information about age, sex, signs/symptoms, length of hospitalization, blood cell counts, imaging findings, coinfection with other respiratory pathogens and clinical outcome.RESULTS: 222 cases were revised. Of these, 72.5% had proven pertussis, and 60.9% were under 1 year old. In patients aging up to six months, independent predictors for B. pertussisinfection were (OR 8.0, CI 95% 1.8-36.3; p=0.007 and lymphocyte count >104/µL (OR 10.0, CI 95% 1.8-54.5; p=0.008. No independent predictors of B. pertussisinfection could be determined for patients older than six months. Co-infection was found in 21.4% of patients, of which 72.7% were up to six months of age. Adenovirus was the most common agent (40.9%. In these patients, we were not able to identify any clinical features to detect patients presenting with a respiratory co-infection, even though longer hospital stay was observed in patients with co-infections (12 vs. 6 days; p=0.009.CONCLUSIONS: Cyanosis and lymphocytosis are independent predictors for pertussis in children up to 6 months old.

  2. Waning and aging of cellular immunity to Bordetella pertussis.

    Science.gov (United States)

    van Twillert, Inonge; Han, Wanda G H; van Els, Cécile A C M

    2015-11-01

    While it is clear that the maintenance of Bordetella pertussis-specific immunity evoked both after vaccination and infection is insufficient, it is unknown at which pace waning occurs and which threshold levels of sustained functional memory B and T cells are required to provide long-term protection. Longevity of human cellular immunity to B. pertussis has been studied less extensively than serology, but is suggested to be key for the observed differences between the duration of protection induced by acellular vaccination and whole cell vaccination or infection. The induction and maintenance of levels of protective memory B and T cells may alter with age, associated with changes of the immune system throughout life and with accumulating exposures to circulating B. pertussis or vaccine doses. This is relevant since pertussis affects all age groups. This review summarizes current knowledge on the waning patterns of human cellular immune responses to B. pertussis as addressed in diverse vaccination and infection settings and in various age groups. Knowledge on the effectiveness and flaws in human B. pertussis-specific cellular immunity ultimately will advance the improvement of pertussis vaccination strategies.

  3. Bordetella pertussis iron regulated proteins as potential vaccine components.

    Science.gov (United States)

    Alvarez Hayes, Jimena; Erben, Esteban; Lamberti, Yanina; Principi, Guido; Maschi, Fabricio; Ayala, Miguel; Rodriguez, Maria Eugenia

    2013-08-01

    Bordetella pertussis is the etiologic agent of whooping cough, an illness whose incidence has been increasing over the last decades. Pertussis reemergence despite high vaccination coverage, together with the recent isolation of circulating strains deficient in some of the vaccine antigens, highlight the need for new vaccines. Proteins induced under physiological conditions, such as those required for nutrient acquisition during infection, might represent good targets for better preventive strategies. By mean of serological proteome analysis we identified two novel antigens of B. pertussis potentially involved in iron acquisition during host colonization. We had previously demonstrated that one of them, designated IRP1-3, is protective against pertussis infection in mice. In the present study, we show that the other antigen, named AfuA (BP1605), is a highly antigenic protein, exposed on the bacterial surface, conserved among clinical isolates and expressed during infection. Immunization of mice with the recombinant AfuA induced opsonophagocytic antibodies which could explain the protection against B. pertussis infection conferred by mice immunization with rAfuA. Importantly, we found that the addition of rAfuA and rIRP1-3 proteins to the commercial three pertussis components acellular vaccine significantly increased its protective activity. Taken together, our results point at these two antigens as potential components of a new generation of acellular vaccines.

  4. The multifaceted RisA regulon of Bordetella pertussis

    Science.gov (United States)

    Coutte, Loïc; Huot, Ludovic; Antoine, Rudy; Slupek, Stephanie; Merkel, Tod J.; Chen, Qing; Stibitz, Scott; Hot, David; Locht, Camille

    2016-01-01

    The whooping cough agent Bordetella pertussis regulates the production of its virulence factors by the BvgA/S system. Phosphorylated BvgA activates the virulence-activated genes (vags) and represses the expression of the virulence-repressed genes (vrgs) via the activation of the bvgR gene. In modulating conditions, with MgSO4, the BvgA/S system is inactive, and the vrgs are expressed. Here, we show that the expression of almost all vrgs depends on RisA, another transcriptional regulator. We also show that some vags are surprisingly no longer modulated by MgSO4 in the risA− background. RisA also regulates the expression of other genes, including chemotaxis and flagellar operons, iron-regulated genes, and genes of unknown function, which may or may not be controlled by BvgA/S. We identified RisK as the likely cognate RisA kinase and found that it is important for expression of most, but not all RisA-regulated genes. This was confirmed using the phosphoablative RisAD60N and the phosphomimetic RisAD60E analogues. Thus the RisA regulon adds a new layer of complexity to B. pertussis virulence gene regulation. PMID:27620673

  5. Bordetella pertussis entry into respiratory epithelial cells and intracellular survival.

    Science.gov (United States)

    Lamberti, Yanina; Gorgojo, Juan; Massillo, Cintia; Rodriguez, Maria E

    2013-12-01

    Bordetella pertussis is the causative agent of pertussis, aka whooping cough. Although generally considered an extracellular pathogen, this bacterium has been found inside respiratory epithelial cells, which might represent a survival strategy inside the host. Relatively little is known, however, about the mechanism of internalization and the fate of B. pertussis inside the epithelia. We show here that B. pertussis is able to enter those cells by a mechanism dependent on microtubule assembly, lipid raft integrity, and the activation of a tyrosine-kinase-mediated signaling. Once inside the cell, a significant proportion of the intracellular bacteria evade phagolysosomal fusion and remain viable in nonacidic lysosome-associated membrane-protein-1-negative compartments. In addition, intracellular B. pertussis was found able to repopulate the extracellular environment after complete elimination of the extracellular bacteria with polymyxin B. Taken together, these data suggest that B. pertussis is able to survive within respiratory epithelial cells and by this means potentially contribute to host immune system evasion.

  6. Competition, coinfection and strain replacement in models of Bordetella pertussis.

    Science.gov (United States)

    Nicoli, Emily J; Ayabina, Diepreye; Trotter, Caroline L; Turner, Katherine M E; Colijn, Caroline

    2015-08-01

    Pertussis, or whooping cough, is an important respiratory infection causing considerable infant mortality worldwide. Recently, incidence has risen in countries with strong vaccine programmes and there are concerns about antigenic shift resulting in vaccine evasion. Interactions between pertussis and non-vaccine-preventable strains will play an important role in the evolution and population dynamics of pertussis. In particular, if we are to understand the role strain replacement plays in vaccinated settings, it will be essential to understand how strains or variants of pertussis interact. Here we explore under what conditions we would expect strain replacement to be of concern in pertussis. We develop a dynamic transmission model that allows for coinfection between Bordetella pertussis (the main causative agent of pertussis) and a strain or variant unaffected by the vaccine. We incorporate both neutrality (in the sense of ecological/population genetic neutrality) and immunity into the model, leaving the specificity of the immune response flexible. We find that strain replacement may be considerable when immunity is non-specific. This is in contrast to previous findings where neutrality was not considered. We conclude that the extent to which models reflect ecological neutrality can have a large impact on conclusions regarding strain replacement. This will likely have onward consequences for estimates of vaccine efficacy and cost-effectiveness.

  7. The multifaceted RisA regulon of Bordetella pertussis.

    Science.gov (United States)

    Coutte, Loïc; Huot, Ludovic; Antoine, Rudy; Slupek, Stephanie; Merkel, Tod J; Chen, Qing; Stibitz, Scott; Hot, David; Locht, Camille

    2016-09-13

    The whooping cough agent Bordetella pertussis regulates the production of its virulence factors by the BvgA/S system. Phosphorylated BvgA activates the virulence-activated genes (vags) and represses the expression of the virulence-repressed genes (vrgs) via the activation of the bvgR gene. In modulating conditions, with MgSO4, the BvgA/S system is inactive, and the vrgs are expressed. Here, we show that the expression of almost all vrgs depends on RisA, another transcriptional regulator. We also show that some vags are surprisingly no longer modulated by MgSO4 in the risA(-) background. RisA also regulates the expression of other genes, including chemotaxis and flagellar operons, iron-regulated genes, and genes of unknown function, which may or may not be controlled by BvgA/S. We identified RisK as the likely cognate RisA kinase and found that it is important for expression of most, but not all RisA-regulated genes. This was confirmed using the phosphoablative RisAD(60)N and the phosphomimetic RisAD(60)E analogues. Thus the RisA regulon adds a new layer of complexity to B. pertussis virulence gene regulation.

  8. Ectopic expression of cyclase associated protein CAP restores the streaming and aggregation defects of adenylyl cyclase a deficient Dictyostelium discoideum cells

    OpenAIRE

    Sultana Hameeda; Neelakanta Girish; Rivero Francisco; Blau-Wasser Rosemarie; Schleicher Michael; Noegel Angelika A

    2012-01-01

    Abstract Background Cell adhesion, an integral part of D. discoideum development, is important for morphogenesis and regulated gene expression in the multicellular context and is required to trigger cell-differentiation. G-protein linked adenylyl cyclase pathways are crucially involved and a mutant lacking the aggregation specific adenylyl cyclase ACA does not undergo multicellular development. Results Here, we have investigated the role of cyclase-associated protein (CAP), an important regul...

  9. General base-general acid catalysis by terpenoid cyclases.

    Science.gov (United States)

    Pemberton, Travis A; Christianson, David W

    2016-07-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.

  10. Multilevel control of glucose homeostasis by adenylyl cyclase 8

    NARCIS (Netherlands)

    Raoux, Matthieu; Vacher, Pierre; Papin, Julien; Picard, Alexandre; Kostrzewa, Elzbieta; Devin, Anne; Gaitan, Julien; Limon, Isabelle; Kas, Martien J.; Magnan, Christophe; Lang, Jochen

    2015-01-01

    Aims/hypothesis: Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an importa

  11. Soluble guanylate cyclase : a potential therapeutic target for heart failure

    NARCIS (Netherlands)

    Gheorghiade, Mihai; Marti, Catherine N.; Sabbah, Hani N.; Roessig, Lothar; Greene, Stephen J.; Boehm, Michael; Burnett, John C.; Campia, Umberto; Cleland, John G. F.; Collins, Sean P.; Fonarow, Gregg C.; Levy, Phillip D.; Metra, Marco; Pitt, Bertram; Ponikowski, Piotr; Sato, Naoki; Voors, Adriaan A.; Stasch, Johannes-Peter; Butler, Javed

    2013-01-01

    The number of annual hospitalizations for heart failure (HF) and the mortality rates among patients hospitalized for HF remains unacceptably high. The search continues for safe and effective agents that improve outcomes when added to standard therapy. The nitric oxide (NO)-soluble guanylate cyclase

  12. The 70-kilodalton adenylyl cyclase-associated protein is not essential for interaction of Saccharomyces cerevisiae adenylyl cyclase with RAS proteins.

    OpenAIRE

    Wang, J; Suzuki, N.; Kataoka, T

    1992-01-01

    In the yeast Saccharomyces cerevisiae, adenylyl cyclase is regulated by RAS proteins. We show here that the yeast adenylyl cyclase forms at least two high-molecular-weight complexes, one with the RAS protein-dependent adenylyl cyclase activity and the other with the Mn(2+)-dependent activity, which are separable by their size difference. The 70-kDa adenylyl cyclase-associated protein (CAP) existed in the former complex but not in the latter. Missense mutations in conserved motifs of the leuci...

  13. Distribution of vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, nitric oxide synthase, and their receptors in human and rat sphenopalatine ganglion

    DEFF Research Database (Denmark)

    Csati, A; Tajti, J; Kuris, A

    2012-01-01

    and VPAC1 immunoreactivity was found in the satellite glial cells of both human and rat. Western blot revealed protein expression of PAC1, VPAC1, and VPAC2 in rat SPG. The trigeminal-autonomic reflex may be active in migraine attacks. We hypothesized that VIP, PACAP, NOS, PAC1, VPAC1, and VPAC2 play a role...... in the activation of parasympathetic cranial outflow during migraine attacks....

  14. H3 receptor-mediated inhibition of noradrenaline release: an investigation into the involvement of Ca2+ and K+ ions, G protein and adenylate cyclase.

    Science.gov (United States)

    Schlicker, E; Kathmann, M; Detzner, M; Exner, H J; Göthert, M

    1994-07-01

    The present study was aimed at the identification of mechanisms following the activation of histamine H3 receptors. Mouse brain cortex slices preincubated with 3H-noradrenaline were superfused and the (H3 receptor-mediated) effect of histamine on the electrically evoked tritium overflow was studied under a variety of conditions. The extent of inhibition produced by histamine was inversely related to the frequency of stimulation used to evoke tritium overflow and to the Ca2+ concentration in the superfusion medium. An activator (levcromakalim) and blocker (glibenclamide) of ATP-dependent K+ channels did not affect the electrically evoked tritium overflow and its inhibition by histamine. A blocker of voltage-sensitive K+ channels, tetraethylammonium (TEA), increased the evoked overflow and attenuated the inhibitory effect of histamine. TEA also reduced the inhibitory effect of noradrenaline and prostaglandin E2 on the evoked overflow. When the facilitatory effect of TEA on the evoked overflow was compensated for by reducing the Ca2+ concentration in the superfusion medium, TEA did no longer attenuate the effect of histamine. Exposure of the slices to the SH group-alkylating agent N-ethylmaleimide increased the evoked overflow and attenuated the inhibitory effect of histamine; both effects were counteracted by the SH group-protecting agent dithiothreitol, which, by itself, did not affect the evoked overflow and its inhibition by histamine. Mouse brain cortex membranes were used to study the effect of the H3 receptor agonist R-(-)-alpha-methylhistamine on the basal cAMP accumulation and on the accumulation stimulated by forskolin or noradrenaline.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. [Role of the adenyl cyclase system in achieving the immunogenesis-stimulating action of bacterial lipopolysaccharides--pyrogenal and endogenous serum pyrogen].

    Science.gov (United States)

    Dzheksenbaev, O Sh; Selezneva, V P; Loginova, V T

    1976-05-01

    Experiments were conducted on rabbits immunized intraperitoneally with corpuscular typhoid vaccine; the number of antibody-forming cells in the spleen proved to increase after tha administration of bacterial lipopolysaccharide (LPS)--pyropeneal, and endogenous serum pyrogen (EPS) together with theopylline. The data obtained indicated that the adenylcyclase system played a certain role in the mechanism of the stimulating action of LPS and EPS.

  16. GABAB受体与腺苷酸环化酶偶联环节的脱敏研究%STUDIES ON DESENSITIZATION OF GABAB RECEPTOR COUPLED ADENYLATE CYCLASE

    Institute of Scientific and Technical Information of China (English)

    俞在芳; 程冠军; 胡本荣

    1997-01-01

    将突触体膜与佛波酯(PMA),GABAB受体激动剂巴氯芬(Baclofen,BAL)预孵育一定时间后,BAL对腺苷酸环化酶(AC)基础活性及forskolin刺激的AC活性的抑制率显著降低(脱敏);而forskolin预孵育时,BAL对基础及forskolin刺激的AC活性的抑制率不变,表明GABAB受体与AC偶联环节的脱敏机制涉及蛋白激酶C(PKC)激活,而与蛋白激酶A无关,脱敏时GABAB受体的Kd值增加.本实验提示,可能由于PKC激活导致GABAB受体结构或构象改变,使受体-G蛋白脱偶联而出现脱敏现象.

  17. Stimulation of adenylate cyclase in relation to dopamine-induced long-term enhancement (LTE) of muscarinic depolarization in the rabbit superior cervical ganglion.

    Science.gov (United States)

    Mochida, S; Kobayashi, H; Libet, B

    1987-02-01

    Dopamine (DA) induction of the long-term enhancement (LTE) of the slow muscarinic depolarizing response to methacholine (MCh), equivalent to the slow EPSP (S-EPSP), was previously found to be mimicked by exogenous cyclic AMP (cAMP) in the rabbit superior cervical ganglion (SCG). DA-induced LTE of the S-EPSP was shown to be depressed by some DA antagonists. We now show that DA (15 microM), its analog, 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene (ADTN), and a D2 receptor antagonist, metoclopramide, each can induce both LTE of MCh depolarization and an increase in ganglionic cAMP. Conversely, antagonists of DA-induced LTE also depress DA-induced rises in cAMP; these antagonists include haloperidol (1 microM), both (+) and (-) enantiomers of butaclamol (0.7-7 microM), flupenthixol (1 microM), and (+)-R-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-o l (SCH-23390) (7 microM). The selective D2 antagonists sulpiride (10 microM) and domperidone (10 microM) affect neither DA action. Alpha-2 adrenergic agonists (alpha-methyl-norepinephrine and clonidine) produce no LTE; alpha-antagonist dihydroergotamine (35 microM) does not affect either DA action, although it can completely block the hyperpolarizing response to DA or other catecholamines. Beta-antagonist propranolol (5 microM) partially depresses DA-induced rises in cAMP but has no effect on the DA-induced LTE. (Butaclamol and propranolol in combination can completely block the cAMP rise induced by DA.) Beta-agonist isoproterenol can induce appreciable LTE of MCh depolarization, but this LTE is not depressed by propranolol (10 microM). Isoproterenol can elicit a substantial rise in cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. A subnanomolar concentration of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) pre-synaptically modulates glutamatergic transmission in the rat hippocampus acting through acetylcholine.

    Science.gov (United States)

    Pecoraro, Valeria; Sardone, Lara Maria; Chisari, Mariangela; Licata, Flora; Li Volsi, Guido; Perciavalle, Vincenzo; Ciranna, Lucia; Costa, Lara

    2017-01-06

    The neuropeptide PACAP modulates synaptic transmission in the hippocampus exerting multiple effects through different receptor subtypes: the underlying mechanisms have not yet been completely elucidated. The neurotransmitter acetylcholine (ACh) also exerts a well-documented modulation of hippocampal synaptic transmission and plasticity. Since PACAP was shown to stimulate ACh release in the hippocampus, we tested whether PACAP acting through ACh might indirectly modulate glutamate-mediated synaptic transmission at a pre- and/or at a post-synaptic level. Using patch clamp on rat hippocampal slices, we tested PACAP effects on stimulation-evoked AMPA receptor-mediated excitatory post-synaptic currents (EPSCsAMPA) in the CA3-CA1 synapse and on spontaneous miniature EPSCs (mEPSCs) in CA1 pyramidal neurons. A subnanomolar dose of PACAP (0.5nM) decreased EPSCsAMPA amplitude, enhanced EPSC paired-pulse facilitation (PPF) and reduced mEPSC frequency, indicating a pre-synaptic decrease of glutamate release probability: these effects were abolished by simultaneous blockade of muscarinic and nicotinic ACh receptors, indicating the involvement of endogenous ACh. The effect of subnanomolar PACAP was abolished by a PAC1 receptor antagonist but not by a VPAC receptor blocker. At a higher concentration (10nM), PACAP inhibited EPSCsAMPA: this effect persisted in the presence of ACh receptor antagonists and did not involve any change in PPF or in mEPSC frequency, thus was not mediated by ACh and was exerted post- synaptically on CA1 pyramidal neurons. We suggest that a high-affinity PAC1 receptor pre-synaptically modulates hippocampal glutamatergic transmission acting through ACh. Therefore, administration of PACAP at very low doses might be envisaged in cognitive diseases with reduced cholinergic transmission.

  19. Neuronal localization of pituitary adenylate cyclase-activating polypeptide 38 in the adrenal medulla and growth-inhibitory effect on chromaffin cells

    DEFF Research Database (Denmark)

    Frödin, M; Hannibal, J; Wulff, B S

    1995-01-01

    medulla showed PACAP38 immunoreactivity in a widely distributed network of delicate nerve fibers surrounding the chromaffin cells. In a primary culture system, PACAP38 inhibited growth factor-stimulated DNA synthesis by 90% in neonatal and adult rat chromaffin cells with half-maximal inhibition at 4 and 0...

  20. Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-σ factor.

    Science.gov (United States)

    Ahuja, Umesh; Shokeen, Bhumika; Cheng, Ning; Cho, Yeonjoo; Blum, Charles; Coppola, Giovanni; Miller, Jeff F

    2016-03-01

    The BvgAS phosphorelay regulates ∼10% of the annotated genomes of Bordetella pertussis and Bordetella bronchiseptica and controls their infectious cycles. The hierarchical organization of the regulatory network allows the integration of contextual signals to control all or specific subsets of BvgAS-regulated genes. Here, we characterize a regulatory node involving a type III secretion system (T3SS)-exported protein, BtrA, and demonstrate its role in determining fundamental differences in T3SS phenotypes among Bordetella species. We show that BtrA binds and antagonizes BtrS, a BvgAS-regulated extracytoplasmic function (ECF) sigma factor, to couple the secretory activity of the T3SS apparatus to gene expression. In B. bronchiseptica, a remarkable spectrum of expression states can be resolved by manipulating btrA, encompassing over 80 BtrA-activated loci that include genes encoding toxins, adhesins, and other cell surface proteins, and over 200 BtrA-repressed genes that encode T3SS apparatus components, secretion substrates, the BteA effector, and numerous additional factors. In B. pertussis, BtrA retains activity as a BtrS antagonist and exerts tight negative control over T3SS genes. Most importantly, deletion of btrA in B. pertussis revealed T3SS-mediated, BteA-dependent cytotoxicity, which had previously eluded detection. This effect was observed in laboratory strains and in clinical isolates from a recent California pertussis epidemic. We propose that the BtrA-BtrS regulatory node determines subspecies-specific differences in T3SS expression among Bordetella species and that B. pertussis is capable of expressing a full range of T3SS-dependent phenotypes in the presence of appropriate contextual cues.

  1. Manufacturing Vaccines: An Illustration of Using PAT Tools for Controlling the Cultivation of Bordetella pertussis

    NARCIS (Netherlands)

    Sprang, van E.N.M.; Streefland, M.; Ramaker, H.J.; Pol, van der L.A.; Beuvery, E.C.; Smilde, A.K.

    2007-01-01

    An illustration of the operational consistency of the upstream part of a biopharmaceutical process is given. For this purpose four batch cultivations of Bordetella pertussis have been executed under identical conditions. The batches have been monitored by means of two fundamentally different process

  2. Virulence of pertactin-negative Bordetella pertussis isolates from infants, France.

    Science.gov (United States)

    Bodilis, Hélène; Guiso, Nicole

    2013-03-01

    Bordetella pertussis isolates that do not express pertactin (PRN) are increasing in regions where acellular pertussis vaccines have been used for >7 years. We analyzed data from France and compared clinical symptoms among infants <6 months old infected by PRN-positive or PRN-negative isolates. No major clinical differences were found between the 2 groups.

  3. Cholesterol-rich domains are involved in Bordetella pertussis phagocytosis and intracellular survival in neutrophils

    NARCIS (Netherlands)

    Lamberti, Yanina; Perez Vidakovics, Maria Laura; Van der Pol, Ludo-W.; Eugenia Rodriguez, Maria

    2008-01-01

    Bordetella pertussis-specific antibodies protect against whooping cough by facilitating host defense mechanisms such as phagocytosis However. the mechanism involved in the phagocytosis of the bacteria under non-opsonic conditions is still poorly characterized. We report here that B. pertussis bindin

  4. Absence of Bordetella pertussis Among Infants Hospitalized for Bronchiolitis in Finland, 2008-2010.

    Science.gov (United States)

    Korppi, Matti; Kivistö, Juho; Koponen, Petri; Lehtinen, Pasi; Remes, Sami; Piippo-Savolainen, Eija; Piedra, Pedro A; Espinola, Janice A; Camargo, Carlos A; Jartti, Tuomas

    2016-02-01

    In 169 Finnish infants hospitalized for bronchiolitis at age Bordetella pertussis and 16 viruses. Respiratory viruses were detected in 89% (71% with respiratory syncytial virus), but no infant had B. pertussis. The latter finding may reflect a positive effect from the broadening of the Finnish pertussis vaccination program in 2005.

  5. Evidence of Bordetella pertussis infection in vaccinated 1-year-old Danish children

    DEFF Research Database (Denmark)

    von Linstow, Marie-Louise; Pontoppidan, Peter Lotko; von König, Carl-Heinz Wirsing;

    2010-01-01

    %. The apparent high Bordetella pertussis infection rate in Danish infants suggests that the monocomponent PT toxoid vaccine used in Denmark has limited efficacy against B. pertussis infection. A prospective immunization study comparing a multi-component vaccine with the present monocomponent PT toxoid vaccine...

  6. Bordetella pertussis attachment to respiratory epithelial cells can be impaired by fimbriae-specific antibodies

    NARCIS (Netherlands)

    Rodriguez, ME; Hellwig, SMM; Vidakovics, MLAP; Berbers, GAM; van de Winkel, JGJ

    2006-01-01

    Bordetella pertussis attachment to host cells is a crucial step in colonization. In this study, we investigated the specificity of antibodies, induced either by vaccination or infection, capable of reducing bacterial adherence to respiratory epithelial cells. Both sera and purified anti-B. pertussis

  7. Iron stress increases Bordetella pertussis mucin-binding capacity and attachment to respiratory epithelial cells

    NARCIS (Netherlands)

    Perez Vidakovics, Maria L. A.; Lamberti, Yanina; Serra, Diego; Berbers, Guy A. M.; van der Pol, W.-Ludo; Rodriguez, Maria Eugenia

    2007-01-01

    Whooping cough is a reemerging infectious disease of the respiratory tract caused by Bordetella pertussis. The incomplete understanding of the molecular mechanisms of host colonization hampers the efforts to control this disease. Among the environmental factors that commonly determine the bacterial

  8. Identification of Bordetella bronchseptica in fatal pneumonia of dogs and cats

    Science.gov (United States)

    Infection with Bordetella bronchiseptica is a common cause of tracheobronchitis and upper respiratory disease in dogs and cats, but it can also lead to fatal pneumonia. Identification of this pathogen is important due the risk of transmission to other animals, availability of vaccines and potential...

  9. Bordetella bronchiseptica in a paediatric cystic fibrosis patient: possible transmission from a household cat

    Science.gov (United States)

    Bordetella bronchiseptica was isolated from the sputum of a cystic fibrosis patient recently exposed to a kitten with an acute respiratory disease. Genetic characterization of the isolate and comparison with other isolates of human or feline origin strongly implicate the kitten as the source of infe...

  10. Evaluation of a commercial loop-mediated isothermal amplification assay for diagnosis of Bordetella pertussis infection.

    Science.gov (United States)

    Kamachi, Kazunari; Moriuchi, Takumi; Hiramatsu, Yukihiro; Otsuka, Nao; Shibayama, Keigo

    2017-02-01

    We evaluated a commercial loop-mediated isothermal amplification (LAMP) assay kit for Bordetella pertussis detection. The LAMP primers were designed to target the ptxP1 allele of the pertussis toxin promoter, but the assay could detect B. pertussis ptxP3 and ptxP8 strains in addition to ptxP1 strains, with high analytical sensitivity.

  11. Differentially expressed genes in Bordetella pertussis strains belonging to a lineage which recently spread globally

    NARCIS (Netherlands)

    de Gouw, Daan; Hermans, Peter W M; Bootsma, Hester J; Zomer, Aldert; Heuvelman, Kees; Diavatopoulos, Dimitri A; Mooi, Frits R

    2014-01-01

    Pertussis is a highly contagious, acute respiratory disease in humans caused by the Gram-negative pathogen Bordetella pertussis. Pertussis has resurged in the face of intensive vaccination and this has coincided with the emergence of strains carrying a particular allele for the pertussis toxin promo

  12. Global population structure and evolution of Bordetella pertussis and their relationship with vaccination

    NARCIS (Netherlands)

    Bart, M.J.; Harris, S.R.; Advani, A.; Arakawa, Y.; Bottero, D.; Bouchez, V.; Cassiday, P.K.; Chiang, C.S.; Dalby, T.; Fry, N.K.; Gaillard, M.E.; Gent, M. van; Guiso, N.; Hallander, H.O.; Harvill, E.T.; He, Q.; Heide, H.G. van der; Heuvelman, K.; Hozbor, D.F.; Kamachi, K.; Karataev, G.I.; Lan, R.; Lutylska, A.; Maharjan, R.P.; Mertsola, J.; Miyamura, T.; Octavia, S.; Preston, A.; Quail, M.A.; Sintchenko, V.; Stefanelli, P.; Tondella, M.L.; Tsang, R.S.; Xu, Y.; Yao, S.M.; Zhang, S.; Parkhill, J.; Mooi, F.R.

    2014-01-01

    Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-ce

  13. Phase variation and microevolution at homopolymeric tracts in Bordetella pertussis

    Directory of Open Access Journals (Sweden)

    Cummings Craig A

    2007-05-01

    Full Text Available Abstract Background Bordetella pertussis, the causative agent of whooping cough, is a highly clonal pathogen of the respiratory tract. Its lack of genetic diversity, relative to many bacterial pathogens, could limit its ability to adapt to a hostile and changing host environment. This limitation might be overcome by phase variation, as observed for other mucosal pathogens. One of the most common mechanisms of phase variation is reversible expansion or contraction of homopolymeric tracts (HPTs. Results The genomes of B. pertussis and the two closely related species, B. bronchiseptica and B. parapertussis, were screened for homopolymeric tracts longer than expected on the basis of chance, given their nucleotide compositions. Sixty-nine such HPTs were found in total among the three genomes, 74% of which were polymorphic among the three species. Nine HPTs were genotyped in a collection of 90 geographically and temporally diverse B. pertussis strains using the polymerase chain reaction/ligase detection reaction (PCR/LDR assay. Six HPTs were polymorphic in this collection of B. pertussis strains. Of note, one of these polymorphic HPTs was found in the fimX promoter, where a single base insertion variant was present in seven strains, all of which were isolated prior to introduction of the pertussis vaccine. Transcript abundance of fimX was found to be 3.8-fold lower in strains carrying the longer allele. HPTs in three other genes, tcfA, bapC, and BP3651, varied widely in composition across the strain collection and displayed allelic polymorphism within single cultures. Conclusion Allelic polymorphism at homopolymeric tracts is common within the B. pertussis genome. Phase variability may be an important mechanism in B. pertussis for evasion of the immune system and adaptation to different niches in the human host. High sensitivity and specificity make the PCR/LDR assay a powerful tool for investigating allelic variation at HPTs. Using this method

  14. Coiled-coil interaction of N-terminal 36 residues of cyclase-associated protein with adenylyl cyclase is sufficient for its function in Saccharomyces cerevisiae ras pathway.

    Science.gov (United States)

    Nishida, Y; Shima, F; Sen, H; Tanaka, Y; Yanagihara, C; Yamawaki-Kataoka, Y; Kariya, K; Kataoka, T

    1998-10-23

    In the budding yeast Saccharomyces cerevisiae, association with the 70-kDa cyclase-associated protein (CAP) is required for proper response of adenylyl cyclase to Ras proteins. We show here that a small segment comprising the N-terminal 36 amino acid residues of CAP is sufficient for association with adenylyl cyclase as well as for its function in the Ras-adenylyl cyclase pathway as assayed by the ability to confer RAS2(Val-19)-dependent heat shock sensitivity to yeast cells. The CAP-binding site of adenylyl cyclase was mapped to a segment of 119 amino acid residues near its C terminus. Both of these regions contained tandem repetitions of a heptad motif alphaXXalphaXXX (where alpha represents a hydrophobic amino acid and X represents any amino acid), suggesting a coiled-coil interaction. When mutants of CAP defective in associating with adenylyl cyclase were isolated by screening of a pool of randomly mutagenized CAP, they were found to carry substitution mutations in one of the key hydrophobic residues in the heptad repeats. Furthermore, mutations of the key hydrophobic residues in the heptad repeats of adenylyl cyclase also resulted in loss of association with CAP. These results indicate the coiled-coil mechanism as a basis of the CAP-adenylyl cyclase interaction.

  15. The 70-kilodalton adenylyl cyclase-associated protein is not essential for interaction of Saccharomyces cerevisiae adenylyl cyclase with RAS proteins.

    Science.gov (United States)

    Wang, J; Suzuki, N; Kataoka, T

    1992-11-01

    In the yeast Saccharomyces cerevisiae, adenylyl cyclase is regulated by RAS proteins. We show here that the yeast adenylyl cyclase forms at least two high-molecular-weight complexes, one with the RAS protein-dependent adenylyl cyclase activity and the other with the Mn(2+)-dependent activity, which are separable by their size difference. The 70-kDa adenylyl cyclase-associated protein (CAP) existed in the former complex but not in the latter. Missense mutations in conserved motifs of the leucine-rich repeats of the catalytic subunit of adenylyl cyclase abolished the RAS-dependent activity, which was accompanied by formation of a very high molecular weight complex having the Mn(2+)-dependent activity. Contrary to previous results, disruption of the gene encoding CAP did not alter the extent of RAS protein-dependent activation of adenylyl cyclase, while a concomitant decrease in the size of the RAS-responsive complex was observed. These results indicate that CAP is not essential for interaction of the yeast adenylyl cyclase with RAS proteins even though it is an inherent component of the RAS-responsive adenylyl cyclase complex.

  16. Skeletal muscle contractile performance and ADP accumulation in adenylate kinase-deficient mice

    NARCIS (Netherlands)

    Hancock, C.R.; Janssen, E.E.W.; Terjung, R.L.

    2005-01-01

    The production of AMP by adenylate kinase (AK) and subsequent deamination by AMP deaminase limits ADP accumulation during conditions of high-energy demand in skeletal muscle. The goal of this study was to investigate the consequences of AK deficiency (-/-) on adenine nucleotide management and whole

  17. Adenylate kinase-independent thiamine triphosphate accumulation under severe energy stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Wins Pierre

    2008-01-01

    Full Text Available Abstract Background Thiamine triphosphate (ThTP exists in most organisms and might play a role in cellular stress responses. In E. coli, ThTP is accumulated in response to amino acid starvation but the mechanism of its synthesis is still a matter of controversy. It has been suggested that ThTP is synthesized by an ATP-dependent specific thiamine diphosphate kinase. However, it is also known that vertebrate adenylate kinase 1 catalyzes ThTP synthesis at a very low rate and it has been postulated that this enzyme is responsible for ThTP synthesis in vivo. Results Here we show that bacterial, as vertebrate adenylate kinases are able to catalyze ThTP synthesis, but at a rate more than 106-fold lower than ATP synthesis. This activity is too low to explain the high rate of ThTP accumulation observed in E. coli during amino acid starvation. Moreover, bacteria from the heat-sensitive CV2 strain accumulate high amounts of ThTP (>50% of total thiamine at 37°C despite complete inactivation of adenylate kinase and a subsequent drop in cellular ATP. Conclusion These results clearly demonstrate that adenylate kinase is not responsible for ThTP synthesis in vivo. Furthermore, they show that E. coli accumulate large amounts of ThTP under severe energy stress when ATP levels are very low, an observation not in favor of an ATP-dependent mechanisms for ThTP synthesis.

  18. Intracellular cAMP signaling by soluble adenylyl cyclase.

    Science.gov (United States)

    Tresguerres, Martin; Levin, Lonny R; Buck, Jochen

    2011-06-01

    Soluble adenylyl cyclase (sAC) is a recently identified source of the ubiquitous second messenger cyclic adenosine 3',5' monophosphate (cAMP). sAC is distinct from the more widely studied source of cAMP, the transmembrane adenylyl cyclases (tmACs); its activity is uniquely regulated by bicarbonate anions, and it is distributed throughout the cytoplasm and in cellular organelles. Due to its unique localization and regulation, sAC has various functions in a variety of physiological systems that are distinct from tmACs. In this review, we detail the known functions of sAC, and we reassess commonly held views of cAMP signaling inside cells.

  19. Bordetella pertussis en estudiantes adolescentes de la Ciudad de México Bordetella pertussis em estudantes adolescentes da Cidade do México Bordetella pertussis in adolescents students in Mexico City

    Directory of Open Access Journals (Sweden)

    Patricia Tomé Sandoval

    2008-08-01

    Full Text Available OBJETIVO: Estimar la seroprevalencia a Bordetella pertussis en escolares y sus contactos escolares y familiares. MÉTODOS: Un total de 12.273 estudiantes de 12 a 15 años de edad, de 14 escuelas secundarias públicas de la Ciudad de México fueron estudiados durante los meses de Septiembre 2002 a Marzo 2003. Se tomó muestra de exudado nasofaríngeo en adolescentes con tos de más de 14 días de evolución. La infección fue confirmada por la técnica de reacción en cadena de polimerasa. Se realizó estudio de contactos escolares y familiares. RESULTADOS: La incidencia de tos fue de 5 para 1.000 estudiantes. De los 61 estudiantes con tos incluidos en la muestra, 20 (32,8% fueron positivos para Bordetella. De los 152 contactos escolares, 16 (10,6% resultaron positivos, y ocho tenían tos. Uno de esos contactos fue el director de una de las escuelas responsable de más del 60% de los casos positivos (12/20, quien también dio lecciones a diez de los estudiantes infectados. De los 29 familiares, ocho (27,6% fueron positivos, pertenecientes a tres familias. CONCLUSIONES: Los resultados muestran que la frecuencia de la enfermedad fue similar al comunicado en la población adolescente de otros países. Sin embargo, este trastorno no tiene necesariamente signos clínicos de la tos persistente y está sujeto a la existencia de infectados asintomáticos con Bordetella.OBJETIVO: Estimar a soroprevalência a Bordetella pertussis em escolares e seus contatos. MÉTODOS: Foram examinados 12.273 alunos entre 12 e 15 anos de idade, de 14 escolas secundárias públicas da Cidade do México, de setembro de 2002 a março de 2003. Amostras de exudado nasofaríngeo foram coletadas de adolescentes com tosse por mais de 14 dias. A infecção foi confirmada por reação em cadeia da polimerase. Todos os alunos e funcionários dos colégios dos casos confirmados por reação em cadeia da polimerase e seus familiares foram testados. RESULTADOS: A incidência de tosse

  20. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Z Zhang; R Zhou; J Sauder; P Tonge; S Burley; S Swaminathan

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  1. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Swaminathan, S.; Zhou, R.; Sauder, J. M.; Tonge, P. J.; Burley, S. K.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  2. Bordetella pertussis isolates in Finland: Serotype and fimbrial expression

    Directory of Open Access Journals (Sweden)

    Mertsola Jussi

    2008-09-01

    Full Text Available Abstract Background Bordetella pertussis causes whooping cough or pertussis in humans. It produces several virulence factors, of which the fimbriae are considered adhesins and elicit immune responses in the host. B. pertussis has three distinct serotypes Fim2, Fim3 or Fim2,3. Generally, B. pertussis Fim2 strains predominate in unvaccinated populations, whereas Fim3 strains are often isolated in vaccinated populations. In Finland, pertussis vaccination was introduced in 1952. The whole-cell vaccine contained two strains, 18530 (Fim3 since 1962 and strain 1772 (Fim2,3 added in 1976. After that the vaccine has remained the same until 2005 when the whole-cell vaccine was replaced by the acellular vaccine containing pertussis toxin and filamentous hemagglutinin. Our aims were to study serotypes of Finnish B. pertussis isolates from 1974 to 2006 in a population with > 90% vaccination coverage and fimbrial expression of the isolates during infection. Serotyping was done by agglutination and serotype-specific antibody responses were determined by blocking ELISA. Results Altogether, 1,109 isolates were serotyped. Before 1976, serotype distributions of Fim2, Fim3 and Fim2,3 were 67%, 19% and 10%, respectively. From 1976 to 1998, 94% of the isolates were Fim2 serotype. Since 1999, the frequency of Fim3 strains started to increase and reached 83% during a nationwide epidemic in 2003. A significant increase in level of serum IgG antibodies against purified fimbriae was observed between paired sera of 37 patients. The patients infected by Fim3 strains had antibodies which blocked the binding of monoclonal antibodies to Fim3 but not to Fim2. Moreover, about one third of the Fim2 strain infected patients developed antibodies capable of blocking of binding of both anti-Fim2 and Fim3 monoclonal antibodies. Conclusion Despite extensive vaccinations in Finland, B. pertussis Fim2 strains were the most common serotype. Emergence of Fim3 strains started in 1999 and

  3. Differential expression of alpha 4 integrins on effector memory T helper cells during Bordetella infections. Delayed responses in Bordetella pertussis.

    Directory of Open Access Journals (Sweden)

    Tuan M Nguyen

    Full Text Available Bordetella pertussis (B. pertussis is the causative agent of whooping cough, a respiratory disease that is reemerging worldwide. Mechanisms of selective lymphocyte trafficking to the airways are likely to be critical in the immune response to this pathogen. We compared murine infection by B. pertussis, B. parapertussis, and a pertussis toxin-deleted B. pertussis mutant (BpΔPTX to test the hypothesis that effector memory T-helper cells (emTh display an altered pattern of trafficking receptor expression in B. pertussis infection due to a defect in imprinting. Increased cell recruitment to the lungs at 5 days post infection (p.i. with B. parapertussis, and to a lesser extent with BpΔPTX, coincided with an increased frequency of circulating emTh cells expressing the mucosal-associated trafficking receptors α4β7 and α4β1 while a reduced population of these cells was observed in B. pertussis infection. These cells were highly evident in the blood and lungs in B. pertussis infection only at 25 days p.i. when B. parapertussis and BpΔPTX infections were resolved. Although at 5 days p.i., an equally high percentage of lung dendritic cells (DCs from all infections expressed maturation markers, this expression persisted only in B. pertussis infection at 25 days p.i. Furthermore, at 5 days p.i with B. pertussis, lung DCs migration to draining lymph nodes may be compromised as evidenced by decreased frequency of CCR7(+ DCs, inhibited CCR7-mediated in vitro migration, and fewer DCs in lung draining lymph nodes. Lastly, a reduced frequency of allogeneic CD4(+ cells expressing α4β1 was detected following co-culture with lung DCs from B. pertussis-infected mice, suggesting a defect in DC imprinting in comparison to the other infection groups. The findings in this study suggest that B. pertussis may interfere with imprinting of lung-associated trafficking receptors on T lymphocytes leading to extended survival in the host and a prolonged course of disease.

  4. Development of a multiplex real-time PCR assay for the detection of Bordetella pertussis and Bordetella parapertussis in a single tube reaction.

    Science.gov (United States)

    Arbefeville, Sophie; Levi, Michael H; Ferrieri, Patricia

    2014-02-01

    Pertussis is an infectious respiratory disease caused by the fastidious bacterium Bordetella pertussis, which may infect unvaccinated, previously vaccinated children, and adults in whom immunity has waned. Infants are at a particular risk for severe disease and complications. Bordetella parapertussis may cause a similar illness, however the symptoms are less severe and of shorter duration. Pertussis is a highly contagious disease and early diagnosis is essential. Studies have shown that PCR is 2-4 times more likely than culture to detect Bordetella pertussis. We developed a multiplex, real-time PCR assay using analyte-specific reagent (ASR) primers and probes dispensed in a convenient lyophilized bead format that targeted the multi-copy insertion sequences IS481 and IS1001 of B. pertussis and B. parapertussis, respectively. These specific ASRs were used in conjunction with Cepheid Smartmix. Included in the ASRs is a competitive internal control to evaluate the performance of the PCR reaction. After DNA extraction, amplification and detection were done on the Smart Cycler System, which performs integrated amplification and detection automatically in a single step. Specificity of the assay was confirmed using multiple distinct bacterial strains. Sensitivity of the assay and extraction efficiency were evaluated on DNA isolated from pure bacterial cultures and on spiked respiratory specimens. We also spiked different swab types and transport media to evaluate for interfering substances. To assess accuracy, we studied different patient specimen types received from two outside laboratories that used similar or different methods to detect B. pertussis and B. parapertussis. The sensitivity and the specificity of the assay for B. pertussis were 90% and 96%, respectively, and for B. parapertussis 71% (only 7 positive specimens were available for testing) and 100%, respectively. Our assay was found to be a valid method for the simultaneous detection of B. pertussis and B

  5. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    Science.gov (United States)

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia.

  6. Bordetella pertussis and pertactin-deficient clinical isolates: lessons for pertussis vaccines.

    Science.gov (United States)

    Hegerle, Nicolas; Guiso, Nicole

    2014-09-01

    Bordetella pertussis causes whooping cough in humans, a highly transmissible respiratory disease life threatening for unvaccinated infants. Vaccination strategies were thus introduced worldwide with great success in developed countries reaching high vaccine coverage with efficacious vaccines. In the late 20th/early 21st century, acellular pertussis vaccines replaced whole cell pertussis vaccines but B. pertussis still circulates and evolves in humans, its only known reservoir. The latest transformation of this pathogen, and of its close relative Bordetella parapertussis, is the loss of pertactin production, a virulence factor included in different acellular pertussis vaccines. The real impact of this evolution on acellular pertussis vaccines efficacy and effectiveness should be assessed through standardized surveillance and isolation of B. pertussis and B. parapertussis worldwide.

  7. NCBI nr-aa BLAST: CBRC-ACAR-01-0303 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ACAR-01-0303 ref|NP_066939.1| brain adenylate cyclase 1 [Homo sapiens] sp|Q088...28|ADCY1_HUMAN Adenylate cyclase type 1 (Adenylate cyclase type I) (ATP pyrophosphate-lyase 1) (Adenylyl cyclase... 1) (Ca(2+)/calmodulin-activated adenylyl cyclase) gb|EAL23741.1| adenylate cyclase 1 (brain) [Homo sapiens] NP_066939.1 6e-54 57% ...

  8. Analysis of the function of the 70-kilodalton cyclase-associated protein (CAP) by using mutants of yeast adenylyl cyclase defective in CAP binding.

    Science.gov (United States)

    Wang, J; Suzuki, N; Nishida, Y; Kataoka, T

    1993-07-01

    In Saccharomyces cerevisiae, adenylyl cyclase forms a complex with the 70-kDa cyclase-associated protein (CAP). By in vitro mutagenesis, we assigned a CAP-binding site of adenylyl cyclase to a small segment near its C terminus and created mutants which lost the ability to bind CAP. CAP binding was assessed first by observing the ability of the overproduced C-terminal 150 residues of adenylyl cyclase to sequester CAP, thereby suppressing the heat shock sensitivity of yeast cells bearing the activated RAS2 gene (RAS2Val-19), and then by immunoprecipitability of adenylyl cyclase activity with anti-CAP antibody and by direct measurement of the amount of CAP bound. Yeast cells whose chromosomal adenylyl cyclase genes were replaced by the CAP-nonbinding mutants possessed adenylyl cyclase activity fully responsive to RAS2 protein in vitro. However, they did not exhibit sensitivity to heat shock in the RAS2Val-19 background. When glucose-induced accumulation of cyclic AMP (cAMP) was measured in these mutants carrying RAS2Val-19, a rapid transient rise indistinguishable from that of wild-type cells was observed and a high peak level and following persistent elevation of the cAMP concentration characteristic of RAS2Val-19 were abolished. In contrast, in the wild-type RAS2 background, similar cyclase gene replacement did not affect the glucose-induced cAMP response. These results suggest that the association with CAP, although not involved in the in vivo response to the wild-type RAS2 protein, is somehow required for the exaggerated response of adenylyl cyclase to activated RAS2.

  9. Bordetella avium Causes Induction of Apoptosis and Nitric Oxide Synthase in Turkey Tracheal Explant Cultures

    OpenAIRE

    Miyamoto, David M.; Ruff, Kristin; Beach, Nathan M.; Dorsey-Oresto, Angella; Masters, Isaac; Temple, Louise M.

    2011-01-01

    Bordetellosis is an upper respiratory disease of turkeys caused by Bordetella avium in which the bacteria attach specifically to ciliated respiratory epithelial cells. Little is known about the mechanisms of pathogenesis of this disease, which has a negative impact in the commercial turkey industry. In this study, we produced a novel explant organ culture system that was able to successfully reproduce pathogenesis of B. avium in vitro, using tracheal tissue derived from 26 day-old turkey embr...

  10. Detection of IgG antibodies against Bordetella pertussis with /sup 125/I-protein A

    Energy Technology Data Exchange (ETDEWEB)

    Wirsing von Koenig, C.H.; Finger, H.

    1981-01-01

    A method for the detection of IgG antibodies against Bordetella pertussis is described, based on the principle of 'sandwich' radioimmunoassay. /sup 125/I protein A is used as radioactive tracer. The influence of amounts of antigen, antibody, radioactive tracer, incubation time and temperature were tested and the optimal conditions for the assay are described. The procedure offers a simple, quick, and sensitive method for detecting antibodies against B. pertussis. Application and limitation of the test are discussed.

  11. The potential role of subclinical Bordetella Pertussis colonization in the etiology of multiple sclerosis.

    Science.gov (United States)

    Rubin, Keith; Glazer, Steven

    2016-04-01

    It is established that (1) subclinical Bordetella pertussis colonization of the nasopharynx persists in highly vaccinated populations, and (2) B. pertussis toxin is a potent adjuvant that, when co-administered with neural antigens, induces neuropathology in experimental autoimmune encephalomyelitis, the principle animal model of multiple sclerosis. Building on these observations with supporting epidemiologic and biologic evidence, we propose that, contrary to conventional wisdom that subclinical pertussis infections are innocuous to hosts, B. pertussis colonization is an important cause of multiple sclerosis.

  12. Understanding receptor specificity through the massively variable major tropism determinant of Bordetella bacteriophage

    OpenAIRE

    Jason L Miller

    2006-01-01

    Only a few protein folds are known to tolerate massive sequence variation for the sake of binding diversity. The immunoglobulin (Ig)-fold found in the structural design of antibodies and T-cell receptors as well as the leucine- rich repeat-fold (LRR's) discovered in the variable lymphocyte receptors of the agnathous hagfish are capable of withstanding recombinant variability on the order of 1014-1016 unique protein sequences. Our studies have elucidated the structure of Bordetella bacteriopha...

  13. Piracy of adhesins: attachment of superinfecting pathogens to respiratory cilia by secreted adhesins of Bordetella pertussis.

    Science.gov (United States)

    Tuomanen, E

    1986-12-01

    Two proteins secreted by Bordetella pertussis are known to mediate adherence of these bacteria to mammalian respiratory cilia. When either ciliated cells or other pathogenic bacteria were pretreated with these adhesins, Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus acquired the ability to adhere to cilia in vitro and in vivo. Such piracy of adhesins may contribute to superinfection in mucosal diseases such as whooping cough.

  14. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice.

    Directory of Open Access Journals (Sweden)

    Matt S Conover

    Full Text Available Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA. In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.

  15. Biodegradation of endosulfan isomers and its metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2015-01-01

    The main objective of the investigation was to study the biodegradation of endosulfan isomers and its major metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii. The significance of the study is to evaluate the capability of biosurfactant producing bacterial strains in enhancing the bioavailability of endosulfan. Sixty bacterial strains were isolated from the endosulfan degrading bacterial consortium and were screened for endosulfan degradation and biosurfactant production. Among those, two strains Bordetella petrii I GV 34 (Gene bank Accession No KJ02262) and Bordetella petrii II GV 36 (Gene bank Accession No KJ022625) were capable of degrading endosulfan with simultaneous biosurfactant production. Bordetella petrii I degraded 89% of α and 84% of β isomers of endosulfan whereas Bordetella petrii II degraded 82% of both the isomers. Both the strains were able to reduce the surface tension up to 19.6% and 21.4% with a minimum observed surface tension of 45 Dynes/cm and 44 Dynes/cm, respectively. The study revealed that the strains have the potential to enhance the degradation endosulfan residues in contaminated sites and water by biosurfactant production.

  16. The intact CFTR protein mediates ATPase rather than adenylate kinase activity.

    Science.gov (United States)

    Ramjeesingh, Mohabir; Ugwu, Francisca; Stratford, Fiona L L; Huan, Ling-Jun; Li, Canhui; Bear, Christine E

    2008-06-01

    The two NBDs (nucleotide-binding domains) of ABC (ATP-binding-cassette) proteins function in a complex to mediate ATPase activity and this activity has been linked to their regulated transport activity. A similar model has been proposed for CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel defective in cystic fibrosis, wherein ATP binding and hydrolysis regulate the channel gate. Recently, it was shown that the individual NBDs isolated from CFTR primarily mediate adenylate kinase activity, raising the possibility that this activity may also contribute to gating of the CFTR channel. However, this present study shows that whereas the isolated NBDs exhibit adenylate kinase activity, the full-length purified and reconstituted CFTR protein functions as an ATPase, arguing that the enzymatic activity of the NBDs is dependent on their molecular context and appropriate domain-domain assembly. As expected, the disease-causing mutant bearing a mutation in the ABC signature motif, CFTR-G551D, exhibited a markedly reduced ATPase activity. Furthermore, mutation of the putative catalytic base in CFTR caused a reduction in ATPase activity, with the CFTR-E1371Q mutant supporting a low level of residual activity. Neither of these mutants exhibited detectable adenylate kinase activity. Together, these findings support the concept that the molecular mechanism of action of CFTR is dependent on ATP binding and hydrolysis, and that the structure of prokaryotic ABC ATPases provide a useful template for understanding their mechanism of action.

  17. Adenylate kinase from Streptococcus pneumoniae is essential for growth through its catalytic activity

    Directory of Open Access Journals (Sweden)

    Trung Thanh Thach

    2014-01-01

    Full Text Available Streptococcus pneumoniae (pneumococcus infection causes more than 1.6 million deaths worldwide. Pneumococcal growth is a prerequisite for its virulence and requires an appropriate supply of cellular energy. Adenylate kinases constitute a major family of enzymes that regulate cellular ATP levels. Some bacterial adenylate kinases (AdKs are known to be critical for growth, but the physiological effects of AdKs in pneumococci have been poorly understood at the molecular level. Here, by crystallographic and functional studies, we report that the catalytic activity of adenylate kinase from S. pneumoniae (SpAdK serotype 2 D39 is essential for growth. We determined the crystal structure of SpAdK in two conformations: ligand-free open form and closed in complex with a two-substrate mimic inhibitor adenosine pentaphosphate (Ap5A. Crystallographic analysis of SpAdK reveals Arg-89 as a key active site residue. We generated a conditional expression mutant of pneumococcus in which the expression of the adk gene is tightly regulated by fucose. The expression level of adk correlates with growth rate. Expression of the wild-type adk gene in fucose-inducible strains rescued a growth defect, but expression of the Arg-89 mutation did not. SpAdK increased total cellular ATP levels. Furthermore, lack of functional SpAdK caused a growth defect in vivo. Taken together, our results demonstrate that SpAdK is essential for pneumococcal growth in vitro and in vivo.

  18. NMR studies of the AMP-binding site and mechanism of adenylate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Fry, D.C.; Kuby, S.A.; Mildvan, A.S.

    1987-03-24

    NMR has previously been used to determine the conformation of enzyme-bound MgATP and to locate the MgATP-binding site on adenylate kinase. To determine the conformation and location of the other substrate, AMP, distances have been measured from Cr/sup 3 +/AMPPCP, a linear competitive inhibitor with respect to MgATP, to six protons and to the phosphorus atom of AMP on adenylate kinase, with the paramagnetic probe-T/sub 1/ method. Time-dependent nuclear Overhauser effects (NOEs) have been used to measure five interproton distances on enzyme-bound AMP. These distances were used to determine the conformation of bound AMP in addition to its position with respect to metal-ATP. Ten intermolecular NOEs, from protons of the enzyme to those of AMP, were detected, indicating the proximity of at least three hydrophobic amino acids to bound AMP. These constraints, together with the conformation of AMP and the intersubstrate distances, were used to position AMP into the X-ray structure of adenylate kinase. The AMP binding site is found to be near Leu-116, Arg-171, Val-173, Val-182, and Leu-190; all of these residues have been found to be invariant in muscle-type rabbit, calf, human, porcine.

  19. Multiforms of mammalian adenylate kinase and its monoclonal antibody against AK1.

    Science.gov (United States)

    Kurokawa, Y; Takenaka, H; Sumida, M; Oka, K; Hamada, M; Kuby, S A

    1990-01-01

    An attempt has been made to determine the intracellular distribution of the multiforms of the adenylate kinase (AK) isoenzymes in mammalian tissues, to shed some light on their physiological roles, especially in energy metabolism. The adenylate kinase zymograms obtained from isoelectric focusing yielded two typical isoform patterns: (1) with a pI greater than or equal to 9 and 8.6, specific for bovine skeletal muscle, heart, aorta and brain, and (2) with a pI = 7.9 and 7.1, specific for liver and kidney. Pattern (1) was attributed to the cytosolic isoenzyme (AK1) as demonstrated by immunostaining with anti-AK1. Pattern (2) was attributed to the mitochondrial isoenzyme (AK2). These results were largely confirmed by chromatofocusing experiments. The AK1 isoenzyme was partially purified from the cytosol fraction of bovine aortic smooth muscle and had an apparent Mr of 23.5 kilodaltons. Its kinetic features are discussed from a comparative standpoint. Finally, the human serum AK1 isoform was also detected by Western blotting with a monoclonal antibody directed against crystalline porcine muscle AK1. These results are to form the basis of further studies on the 'aberrant' adenylate kinase isoenzyme from the serum of Duchenne muscular dystrophics.

  20. A non-canonical peptide synthetase adenylates 3-methyl-2-oxovaleric acid for auriculamide biosynthesis

    Directory of Open Access Journals (Sweden)

    Daniel Braga

    2016-12-01

    Full Text Available Auriculamide is the first natural product known from the predatory bacterium Herpetosiphon aurantiacus. It is composed of three unusual building blocks, including the non-proteinogenic amino acid 3-chloro-L-tyrosine, the α-hydroxy acid L-isoleucic acid, and a methylmalonyl-CoA-derived ethane unit. A candidate genetic locus for auriculamide biosynthesis was identified and encodes four enzymes. Among them, the non-canonical 199 kDa four-domain nonribosomal peptide synthetase, AulA, is extraordinary in that it features two consecutive adenylation domains. Here, we describe the functional characterization of the recombinantly produced AulA. The observed activation of 3-methyl-2-oxovaleric acid by the enzyme supports the hypothesis that it participates in the biosynthesis of auriculamide. An artificially truncated version of AulA that lacks the first adenylation domain activated this substrate like the full-length enzyme which shows that the first adenylation domain is dispensable. Additionally, we provide evidence that the enzyme tolerates structural variation of the substrate. α-Carbon substituents significantly affected the substrate turnover. While all tested aliphatic α-keto acids were accepted by the enzyme and minor differences in chain size and branches did not interfere with the enzymatic activity, molecules with methylene α-carbons led to low turnover. Such enzymatic plasticity is an important attribute to help in the perpetual search for novel molecules and to access a greater structural diversity by mutasynthesis.

  1. Inhibition of a plant sesquiterpene cyclase by mevinolin.

    Science.gov (United States)

    Vögeli, U; Chappell, J

    1991-07-01

    The specificity of mevinolin as an inhibitor of sterol and sesquiterpene metabolism in tobacco cell suspension cultures was examined. Exogenous mevinolin inhibited [14C]acetate, but not [3H]mevalonate incorporation into free sterols. In contrast, mevinolin inhibited the incorporation of both [14C]acetate and [3H]mevalonate into capsidiol, an extracellular sesquiterpene. Microsomal 3-hydroxy-3-methylglutaryl Coenzyme A reductase was inhibited greater than 90% by microM mevinolin, while squalene synthetase was insensitive to even 600 microM mevinolin. Sesquiterpene cyclase, the first branch point enzyme specific for sesquiterpene biosynthesis, was inhibited in a dose-dependent manner by mevinolin with a 50% reduction in activity at 100 microM. Kinetic analysis indicated that the mechanism for inhibition was complex with mevinolin acting as both a competitive and noncompetitive inhibitor. The results suggest that the mevinolin inhibition of [3H]mevalonate incorporation into extracellular sesquiterpenes can, in part, be attributed to a secondary, but specific, site of inhibition, the sesquiterpene cyclase.

  2. Asymmetrically acting lycopene beta-cyclases (CrtLm) from non-photosynthetic bacteria.

    Science.gov (United States)

    Tao, L; Picataggio, S; Rouvière, P E; Cheng, Q

    2004-03-01

    Carotenoids have important functions in photosynthesis, nutrition, and protection against oxidative damage. Some natural carotenoids are asymmetrical molecules that are difficult to produce chemically. Biological production of carotenoids using specific enzymes is a potential alternative to extraction from natural sources. Here we report the isolation of lycopene beta-cyclases that selectively cyclize only one end of lycopene or neurosporene. The crtLm genes encoding the asymmetrically acting lycopene beta-cyclases were isolated from non-photosynthetic bacteria that produced monocyclic carotenoids. Co-expression of these crtLm genes with the crtEIB genes from Pantoea stewartii (responsible for lycopene synthesis) resulted in the production of monocyclic gamma-carotene in Escherichia coli. The asymmetric cyclization activity of CrtLm could be inhibited by the lycopene beta-cyclase inhibitor 2-(4-chlorophenylthio)-triethylamine (CPTA). Phylogenetic analysis suggested that bacterial CrtL-type lycopene beta-cyclases might represent an evolutionary link between the common bacterial CrtY-type of lycopene beta-cyclases and plant lycopene beta- and epsilon-cyclases. These lycopene beta-cyclases may be used for efficient production of high-value asymmetrically cyclized carotenoids.

  3. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria.

    Science.gov (United States)

    Maresca, Julia A; Graham, Joel E; Wu, Martin; Eisen, Jonathan A; Bryant, Donald A

    2007-07-10

    A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacterial genomes that lack genes encoding CrtL- or CrtY-type lycopene cyclases. The cyanobacterium Synechococcus sp. PCC 7002 has two homologs of CruA, denoted CruA and CruP, and both were shown to have lycopene cyclase activity. Although all characterized lycopene cyclases in plants are CrtL-type proteins, genes orthologous to cruP also occur in plant genomes. The CruA- and CruP-type carotenoid cyclases are members of the FixC dehydrogenase superfamily and are distantly related to CrtL- and CrtY-type lycopene cyclases. Identification of these cyclases fills a major gap in the carotenoid biosynthetic pathways of green sulfur bacteria and cyanobacteria.

  4. Ibogaine and noribogaine potentiate the inhibition of adenylyl cyclase activity by opioid and 5-HT receptors.

    Science.gov (United States)

    Rabin, R A; Winter, J C

    1996-12-05

    The effects of the putative anti-addictive compound ibogaine and its principal metabolite, noribogaine, on adenylyl cyclase activity were determined in various areas of the rat brain. Neither compound altered either basal or forskolin-stimulated adenylyl cyclase activities in the frontal cortex, midbrain or striatum. However, in all three brain areas the addition of ibogaine and noribogaine significantly enhanced inhibition of adenylyl cyclase activity by a maximally effective concentration of morphine. Similarly, both compounds also potentiated the inhibition of hippocampal adenylyl cyclase activity by a maximally effective concentration of 5-hydroxytryptamine (5-HT). Although ibogaine appears to be more potent than noribogaine in augmenting opioid- and 5-HT-mediated inhibition of adenylyl cyclase activity, both compounds appear to be of comparable efficacy. Neither compound, however, modified the inhibitory action of the muscarinic acetylcholine agonist, carbachol, on adenylyl cyclase activity. The present data indicate that ibogaine and noribogaine cause a selective increase in receptor-mediated inhibition of adenylyl cyclase activity. This potentiation may be involved in the pharmacological actions of these compounds.

  5. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum.

    Science.gov (United States)

    Yin, Tao; Zhang, Qiang; Wang, Jianhua; Liu, Huiquan; Wang, Chenfang; Xu, Jin-Rong; Jiang, Cong

    2017-01-31

    Fusarium graminearum is a causal agent of wheat scab and a producer of the trichothecene mycotoxin deoxynivalenol (DON). The expression of trichothecene biosynthesis (TRI) genes and DON production are mainly regulated by the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway and two pathway-specific transcription factors (TRI6 and TRI10). Interestingly, deletion mutants of TRI6 show reduced expression of several components of cAMP signalling, including the FgCAP1 adenylate-binding protein gene that has not been functionally characterized in F. graminearum. In this study, we show that FgCap1 interacts with Fac1 adenylate cyclase and that deletion of FgCAP1 reduces the intracellular cAMP level and PKA activity. The Fgcap1 deletion mutant is defective in vegetative growth, conidiogenesis and plant infection. It also shows significantly reduced DON production and TRI gene expression, which can be suppressed by exogenous cAMP, indicating a PKA-dependent regulation of DON biosynthesis by FgCap1. The wild-type, but not tri6 mutant, shows increased levels of intracellular cAMP and FgCAP1 expression under DON-producing conditions. Furthermore, the promoter of FgCAP1 contains one putative Tri6-binding site that is important for its function during DON biosynthesis, but is dispensable for hyphal growth, conidiogenesis and pathogenesis. In addition, FgCap1 shows an actin-like localization to the cortical patches at the apical region of hyphal tips. Phosphorylation of FgCap1 at S353 was identified by phosphoproteomics analysis. The S353A mutation in FgCAP1 has no effect on its functions during vegetative growth, conidiation and DON production. However, expression of the FgCAP1(S353A) allele fails to complement the defects of the Fgcap1 mutant in plant infection, indicating the importance of the phosphorylation of FgCap1 at S353 during pathogenesis. Taken together, our results suggest that FgCAP1 is involved in the regulation of DON production via cAMP signalling

  6. Pasteurella multocida and Bordetella bronchiseptica in atrophic rhinitis and pneumonia in swine.

    OpenAIRE

    Cowart, R P; Bäckström, L; Brim, T A

    1989-01-01

    A total of 163 pigs from nine farrow-to-finish herds representing various levels of atrophic rhinitis (AR) were selected for postslaughter examination of AR and pneumonia. Nasal swabs and lungs were cultured for detection of Bordetella bronchiseptica and Pasteurella multocida. Seventy-three pigs were examined at eight weeks of age and 90 contemporaries at six months of age. Mean AR scores were 1.21 and 1.11 for the eight week and six month old pigs, respectively (0 = normal, 3 = severe). In i...

  7. Produccion de suspensiones de bordetella pertussis por fermentación

    OpenAIRE

    2011-01-01

    En este trabajo se estudió la producción de suspensión de Bordetella pertussis por fermentación para obtener el ingrediente activo de la vacuna contra tosferina. Se probaron diferentes medios de cultivo para el proceso, seleccionando el medio Stainer-Scholte adicionado con 3 g/L de casaminoacidos, el cual permite obtener altas concentraciones de células y suspensiones de buena calidad. Se estudió también la cinética de consumo de glutamato de sodio, producción de biomasa y evolución del pH. E...

  8. Respiratory disease associated with Bordetella bronchiseptica in a Hoffmann's two-toed sloth (Choloepus hoffmanni).

    Science.gov (United States)

    Hammond, Elizabeth E; Sosa, Daniel; Beckerman, Robert; Aguilar, Roberto F

    2009-06-01

    A 2-yr-old female captive-born Hoffmann's two-toed sloth (Choloepus hoffmanni) presented with respiratory disease. A severe inspiratory dyspnea with nasal congestion was observed with open-mouthed breathing and bilateral mucopurulent nasal exudate. Despite initial treatment with broad-spectrum antimicrobial therapy and anti-inflammatory and supportive care, the dyspnea persisted. The animal was anesthetized for bronchoscopy to obtain a deep tracheal sample. Based on culture of Bordetella bronchiseptica and sensitivity, a combination of systemic enrofloxacin, dexamethasone, and coupage with nebulization of saline, gentamicin, and albuterol as well as supportive care resulted in full recovery after 6 weeks of treatment.

  9. Identification of alcA, a Bordetella bronchiseptica gene necessary for alcaligin production.

    Science.gov (United States)

    Giardina, P C; Foster, L A; Toth, S I; Roe, B A; Dyer, D W

    1995-12-29

    The alcA gene, essential for the production of the dihydroxamate siderophore, alcaligin, by Bordetella bronchiseptica, was cloned and sequenced. The alcA gene was identified on a 4.7-kb EcoRI genomic fragment adjacent to a Tn5lac transposon insertion that inactivated alcaligin production in strain MBORD846. Analysis of the alcA nucleotide sequence revealed a putative Fur-binding site, suggesting that expression of this gene is repressed by iron. The deduced amino-acid sequence of this open reading frame had significant homology with the Escherichia coli iucD gene product, an enzyme required for biosynthesis of the dihydroxamate siderophore aerobactin.

  10. Inferring biological functions of guanylyl cyclases with computational methods

    KAUST Repository

    Alquraishi, May Majed

    2013-09-03

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  11. Diadenosine Homodinucleotide Products of ADP-ribosyl Cyclases Behave as Modulators of the Purinergic Receptor P2X7*

    Science.gov (United States)

    Bruzzone, Santina; Basile, Giovanna; Chothi, Madhu Parakkottil; Nobbio, Lucilla; Usai, Cesare; Jacchetti, Emanuela; Schenone, Angelo; Guse, Andreas H.; Di Virgilio, Francesco; De Flora, Antonio; Zocchi, Elena

    2010-01-01

    ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5′,5′"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509–14514). P24, but not P18, proved to increase the intracellular Ca2+ concentration ([Ca2+]i) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca2+ through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca2+ influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC50 of ∼1 μm. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca2+]i has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146–23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca2+]i to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A. PMID:20439466

  12. Diadenosine homodinucleotide products of ADP-ribosyl cyclases behave as modulators of the purinergic receptor P2X7.

    Science.gov (United States)

    Bruzzone, Santina; Basile, Giovanna; Chothi, Madhu Parakkottil; Nobbio, Lucilla; Usai, Cesare; Jacchetti, Emanuela; Schenone, Angelo; Guse, Andreas H; Di Virgilio, Francesco; De Flora, Antonio; Zocchi, Elena

    2010-07-02

    ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5',5'"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509-14514). P24, but not P18, proved to increase the intracellular Ca(2+) concentration ([Ca(2+)](i)) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca(2+) through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca(2+) influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC(50) of approximately 1 mum. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca(2+)](i) has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146-23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca(2+)](i) to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A.

  13. NMR studies of the AMP-binding site and mechanism of adenylate kinase.

    Science.gov (United States)

    Fry, D C; Kuby, S A; Mildvan, A S

    1987-03-24

    NMR has previously been used to determine the conformation of enzyme-bound MgATP and to locate the MgATP-binding site on adenylate kinase [Fry, D. C., Kuby, S. A., & Mildvan, A. S. (1985) Biochemistry 24, 4680-4694]. To determine the conformation and location of the other substrate, AMP, distances have been measured from Cr3+AMPPCP, a linear competitive inhibitor with respect to MgATP, to six protons and to the phosphorus atom of AMP on adenylate kinase, with the paramagnetic probe-T1 method. Time-dependent nuclear Overhauser effects (NOEs) have been used to measure five interproton distances on enzyme-bound AMP. These distances were used to determine the conformation of bound AMP in addition to its position with respect to metal-ATP. Enzyme-bound AMP exhibits a high anti-glycosyl torsional angle (chi = 110 +/- 10 degrees), a 3'-endo,2'-exo ribose pucker (delta = 105 +/- 10 degrees), and gauche-trans orientations about the C4'-C5' bond (gamma = 180 +/- 10 degrees) and the C5'-O5' bond (beta = 170 +/- 20 degrees). The distance from Cr3+ to the phosphorus of AMP is 5.9 +/- 0.3 A, indicating a reaction coordinate distance of approximately 3 A, which is consistent with an associative SN2 mechanism for the phosphoryl transfer. Ten intermolecular NOEs, from protons of the enzyme to those of AMP, were detected, indicating the proximity of at least three hydrophobic amino acids to bound AMP. These constraints, together with the conformation of AMP and the intersubstrate distances, were used to position AMP into the X-ray structure of adenylate kinase. The AMP binding site is found to be near (less than or equal to 4 A from) Leu-116, Arg-171, Val-173, Val-182, and Leu-190; all of these residues have been found to be invariant in muscle-type rabbit, calf, human, porcine [Kuby, S. A., Palmieri, R. H., Frischat, A., Fischer, A. H., Wu, L. H., Maland, L., & Manship, M. (1984) Biochemistry 23, 2393-2399], and chicken adenylate kinase [Kishi, F., Maruyama, M., Tanizawa, Y

  14. Seroprevalence of pertussis in the Gambia : evidence for continued circulation of bordetella pertussis despite high vaccination rates

    NARCIS (Netherlands)

    Scott, Susana; van der Sande, Marianne; Faye-Joof, Tisbeh; Mendy, Maimuna; Sanneh, Bakary; Barry Jallow, Fatou; de Melker, Hester; van der Klis, Fiona; van Gageldonk, Pieter; Mooi, Frits; Kampmann, Beate

    2015-01-01

    BACKGROUND: Bordetella pertussis can cause severe respiratory disease and death in children. In recent years, large outbreaks have occurred in high-income countries; however, little is known about pertussis incidence in sub-Saharan Africa. METHODS: We evaluated antibody responses to pertussis toxin

  15. Pertactin-negative variants of Bordetella pertussis in New York State: a retrospective analysis, 2004-2013.

    Science.gov (United States)

    Quinlan, Tammy; Musser, Kimberlee A; Currenti, Salvatore A; Zansky, Shelley M; Halse, Tanya A

    2014-08-01

    The first report of pertactin-negative variants of Bordetella pertussis in the United States has raised questions about the role of acellular pertussis vaccines in the recent increase of pertussis cases. Our laboratory utilized a sequence-based method to identify mutations in the pertactin gene responsible for these variants and assessed vaccination status from the associated cases.

  16. Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species

    Science.gov (United States)

    Bacteria in the genus Bordetella include nine species that are important pathogens. B. pertussis causes whooping cough, a serious and sometimes fatal disease in infants and in elderly people. Some strains of B. parapertussis also cause whooping cough-like disease in children while others cause pn...

  17. Evaluation of Amplification Targets for the Specific Detection of Bordetella pertussis Using Real-Time Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Mohammad Rubayet Hasan

    2014-01-01

    Full Text Available BACKGROUND: Bordetella pertussis infections continue to be a major public health challenge in Canada. Polymerase chain reaction (PCR assays to detect B pertussis are typically based on the multicopy insertion sequence IS481, which offers high sensitivity but lacks species specificity.

  18. [Biosynthesis of cyclic GMP in plant cells - new insight into guanylate cyclases].

    Science.gov (United States)

    Świeżawska, Brygida; Marciniak, Katarzyna; Szmidt-Jaworska, Adriana

    2015-01-01

    Cyclic 3',5'-guanosine monophosphate (cGMP) is involved in many physiological processes in plants. Concentration of this second messenger in plant cell is determined by guanylyl cyclases (GCs) responsible for cGMP synthesis and phosphodiesterases (PDEs) involved in cGMP inactivation. First discovered plant GCs were localized in cytosol, but few years ago a new family of plasma membrane proteins with guanylyl cyclase activity was identified in Arabidopsis thaliana. These proteins belong to the family of a leucine-rich repeat receptor-like kinases (LRR-RLK) with extracellular leucine-rich repeat domain, a transmembrane-spanning domain, and an intracellular kinase domain. A novel class of guanylyl cyclases contain the GC catalytic center encapsulated within the intracellular kinase domain. These molecules are different to animal GCs in that the GC catalytic center is nested within the kinase domain. In presented paper we summarized the most recent data concerning plant guanylyl cyclases.

  19. Bordetella avium causes induction of apoptosis and nitric oxide synthase in turkey tracheal explant cultures.

    Science.gov (United States)

    Miyamoto, David M; Ruff, Kristin; Beach, Nathan M; Stockwell, Stephanie B; Dorsey-Oresto, Angella; Masters, Isaac; Temple, Louise M

    2011-09-01

    Bordetellosis is an upper respiratory disease of turkeys caused by Bordetella avium in which the bacteria attach specifically to ciliated respiratory epithelial cells. Little is known about the mechanisms of pathogenesis of this disease, which has a negative impact in the commercial turkey industry. In this study, we produced a novel explant organ culture system that was able to successfully reproduce pathogenesis of B. avium in vitro, using tracheal tissue derived from 26 day-old turkey embryos. Treatment of the explants with whole cells of B. avium virulent strain 197N and culture supernatant, but not lipopolysaccharide (LPS) or tracheal cytotoxin (TCT), specifically induced apoptosis in ciliated cells, as shown by annexin V and TUNEL staining. LPS and TCT are known virulence factors of Bordetella pertussis, the causative agent of whooping cough. Treatment with whole cells of B. avium and LPS specifically induced NO response in ciliated cells, shown by uNOS staining and diaphorase activity. The explant system is being used as a model to elucidate specific molecules responsible for the symptoms of bordetellosis.

  20. Direct Detection of Erythromycin-Resistant Bordetella pertussis in Clinical Specimens by PCR.

    Science.gov (United States)

    Wang, Zengguo; Han, Ruijun; Liu, Ying; Du, Quanli; Liu, Jifeng; Ma, Chaofeng; Li, Hengxin; He, Qiushui; Yan, Yongping

    2015-11-01

    Resistance of Bordetella pertussis to erythromycin has been increasingly reported. We developed an allele-specific PCR method for rapid detection of erythromycin-resistant B. pertussis directly from nasopharyngeal (NP) swab samples submitted for diagnostic PCR. Based on the proven association of erythromycin resistance with the A2047G mutation in the 23S rRNA of B. pertussis, four primers, two of which were designed to be specific for either the wild-type or the mutant allele, were used in two different versions of the allele-specific PCR assay. The methods were verified with results obtained by PCR-based sequencing of 16 recent B. pertussis isolates and 100 NP swab samples submitted for diagnostic PCR. The detection limits of the two PCR assays ranged from 10 to 100 fg per reaction for both erythromycin-susceptible and -resistant B. pertussis. Two amplified fragments of each PCR, of 286 and 112 bp, respectively, were obtained from a mutant allele of the isolates and/or NP swab samples containing B. pertussis DNAs. For the wild-type allele, only a 286-bp fragment was visible when the allele-specific PCR assay 1 was performed. No amplification was found when a number of non-Bordetella bacterial pathogens and NP swab samples that did not contain the DNAs of B. pertussis were examined. This assay can serve as an alternative for PCR-based sequencing, especially for local laboratories in resource-poor countries.

  1. In vivo phosphorylation dynamics of the Bordetella pertussis virulence-controlling response regulator BvgA.

    Science.gov (United States)

    Boulanger, Alice; Chen, Qing; Hinton, Deborah M; Stibitz, Scott

    2013-04-01

    We have used protein electrophoresis through polyacrylamide gels derivatized with the proprietary ligand Phos-tag™ to separate the response regulator BvgA from its phosphorylated counterpart BvgA∼P. This approach has allowed us to readily ascertain the degree of phosphorylation of BvgA in in vitro reactions, or in crude lysates of Bordetella pertussis grown under varying laboratory conditions. We have used this technique to examine the kinetics of BvgA phosphorylation after shift of B. pertussis cultures from non-permissive to permissive conditions, or of its dephosphorylation following a shift from permissive to non-permissive conditions. Our results provide the first direct evidence that levels of BvgA∼P in vivo correspond temporally to the expression of early and late BvgA-regulated virulence genes. We have also examined a number of other aspects of BvgA function predicted from previous studies and by analogy with other two-component response regulators. These include the site of BvgA phosphorylation, the exclusive role of the cognate BvgS sensor kinase in its phosphorylation in Bordetella pertussis, and the effect of the T194M mutation on phosphorylation. We also detected the phosphorylation of a small but consistent fraction of BvgA purified after expression in Escherichia coli.

  2. PROLIFERATION RESPONSES IN PREIMMUNIZED MICE LYMPHOCYTES BY BORDETELLA PERTUSSIS CELL WALL COMPONENTS

    Directory of Open Access Journals (Sweden)

    Ashraf Mohabbati Mobarez

    2003-03-01

    Full Text Available Bordetella pertussis infects the respiratory tract of the human host and causes whooping cough in children. The nature of immunity against Bordetella pertussis infection and disease is poorly understood. The aim of this study was to investigate cell mediated immunity in mice immunized with outer membrane component of cell wall, of B. Pertussis.A group of mice were immunized with outer membrane complex (OMC and killed whole cell (WCV of B. pertussis, with an interval of 2 weeks. During a period of 7 weeks following the immunization, lymphocytes were isolated from lymph nodes of immunized mice. The in vitro proliferative response of isolated lymphocyte to stimulation with 20 ^g of 30 and 69 kDa outer membrane protein (OMP were measured as parameters for cell mediated immunity (CMI. The data were expressed as mean count per minute (CPMxlO3 after subtraction of the CPM of unstimulated control cultures. Lymphoblastogenic response was observed in immunized mice with WCV and OMC. At 30 days of post immunization a significant increase in response to 30 and 69 kDa OMP was observed, a small decrease in the response was evident against P30 and P69 at 60 and 120 days of post immunization, but the response was still higher than what was observed in control mice.Current findings indicate strongly the potential of outer membrane protein component of B. pertussis in proliferating lymphocytes in the mice.

  3. 2'-Phosphate cyclase activity of RtcA: a potential rationale for the operon organization of RtcA with an RNA repair ligase RtcB in Escherichia coli and other bacterial taxa.

    Science.gov (United States)

    Das, Ushati; Shuman, Stewart

    2013-10-01

    RNA terminal phosphate cyclase catalyzes the ATP-dependent conversion of a 3'-phosphate RNA end to a 2',3'-cyclic phosphate via covalent enzyme-(histidinyl-Nε)-AMP and RNA(3')pp(5')A intermediates. Here, we report that Escherichia coli RtcA (and its human homolog Rtc1) are capable of cyclizing a 2'-phosphate RNA end in high yield. The rate of 2'-phosphate cyclization by RtcA is five orders of magnitude slower than 3'-phosphate cyclization, notwithstanding that RtcA binds with similar affinity to RNA3'p and RNA2'p substrates. These findings expand the functional repertoire of RNA cyclase and suggest that phosphate geometry during adenylate transfer to RNA is a major factor in the kinetics of cyclization. RtcA is coregulated in an operon with an RNA ligase, RtcB, that splices RNA 5'-OH ends to either 3'-phosphate or 2',3'-cyclic phosphate ends. Our results suggest that RtcA might serve an end healing function in an RNA repair pathway, by converting RNA 2'-phosphates, which cannot be spliced by RtcB, to 2',3'-cyclic phosphates that can be sealed. The rtcBA operon is controlled by the σ(54) coactivator RtcR encoded by an adjacent gene. This operon arrangement is conserved in diverse bacterial taxa, many of which have also incorporated the RNA-binding protein Ro (which is implicated in RNA quality control under stress conditions) as a coregulated component of the operon.

  4. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms

    OpenAIRE

    Bradbury, Louis M. T.; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J.; Wurtzel, Eleanore T

    2012-01-01

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784–11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that...

  5. [Soluble guanylate cyclase in the molecular mechanism underlying the therapeutic action of drugs].

    Science.gov (United States)

    Piatakova, N V; Severina, I S

    2012-01-01

    The influence of ambroxol--a mucolytic drug--on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside and Sin-1) were investigated. Ambroxol in the concentration range from 0.1 to 10 microM had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the sodium nitroprusside-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values 3.9 and 2.1 microM, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX. The influence of artemisinin--an antimalarial drug--on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1-100 microM) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the sodium nitroprusside-induced activation of human platelet guanylate cyclase with an IC50 value 5.6 microM. Artemisinin (10 microM) also inhibited (by 71 +/- 4.0%) the activation of the enzyme by thiol-dependent NO-donor the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 microM), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the sygnalling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin.

  6. Genetic and biochemical analysis of the adenylyl cyclase-associated protein, cap, in Schizosaccharomyces pombe.

    OpenAIRE

    Kawamukai, M; Gerst, J; Field, J.; Riggs, M.; Rodgers, L; Wigler, M; Young, D

    1992-01-01

    We have identified, cloned, and studied a gene, cap, encoding a protein that is associated with adenylyl cyclase in the fission yeast Schizosaccharomyces pombe. This protein shares significant sequence homology with the adenylyl cyclase-associated CAP protein in the yeast Saccharomyces cerevisiae. CAP is a bifunctional protein; the N-terminal domain appears to be involved in cellular responsiveness to RAS, whereas loss of the C-terminal portion is associated with morphological and nutritional...

  7. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W. (UIUC); (Iowa State); (Penn)

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  8. Structure and Mechanism of the Diterpene Cyclase ent-Copalyl Diphosphate Synthase

    Science.gov (United States)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-01-01

    The structure of ent-copalyl diphosphate synthase (CPS) reveals three α-helical domains (α, β, γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in CPS but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions. PMID:21602811

  9. Choreographing the adenylyl cyclase signalosome: sorting out the partners and the steps.

    Science.gov (United States)

    Ostrom, Rennolds S; Bogard, Amy S; Gros, Robert; Feldman, Ross D

    2012-01-01

    Adenylyl cyclases are a ubiquitous family of enzymes and are critical regulators of metabolic and cardiovascular function. Multiple isoforms of the enzyme are expressed in a range of tissues. However, for many processes, the adenylyl cyclase isoforms have been thought of as essentially interchangeable, with their impact more dependent on their common actions to increase intracellular cyclic adenosine monophosphate content regardless of the isoform involved. It has long been appreciated that each subfamily of isoforms demonstrate a specific pattern of "upstream" regulation, i.e., specific patterns of ion dependence (e.g., calcium-dependence) and specific patterns of regulation by kinases (protein kinase A (PKA), protein kinase C (PKC), raf). However, more recent studies have suggested that adenylyl cyclase isoform-selective patterns of signaling are a wide-spread phenomenon. The determinants of these selective signaling patterns relate to a number of factors, including: (1) selective coupling of specific adenylyl cyclase isoforms with specific G protein-coupled receptors, (2) localization of specific adenylyl cyclase isoforms in defined structural domains (AKAP complexes, caveolin/lipid rafts), and (3) selective coupling of adenylyl cyclase isoforms with specific downstream signaling cascades important in regulation of cell growth and contractility. The importance of isoform-specific regulation has now been demonstrated both in mouse models as well as in humans. Adenylyl cyclase has not been viewed as a useful target for therapeutic regulation, given the ubiquitous expression of the enzyme and the perceived high risk of off-target effects. Understanding which isoforms of adenylyl cyclase mediate distinct cellular effects would bring new significance to the development of isoform-specific ligands to regulate discrete cellular actions.

  10. Dimerization Domain of Retinal Membrane Guanylyl Cyclase 1 (RetGC1) Is an Essential Part of Guanylyl Cyclase-activating Protein (GCAP) Binding Interface.

    Science.gov (United States)

    Peshenko, Igor V; Olshevskaya, Elena V; Dizhoor, Alexander M

    2015-08-01

    The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide receptor A (NPRA). Study of RetGC1 regulation in vitro and its association with fluorescently tagged GCAP in transfected cells showed that R822P substitution in the cyclase dimerization domain causing congenital early onset blindness disrupted RetGC1 ability to bind GCAP but did not eliminate its affinity for another photoreceptor-specific protein, retinal degeneration 3 (RD3). Likewise, the presence of the NPRA dimerization domain in RetGC1/NPRA chimera specifically disabled binding of GCAPs but not of RD3. In subsequent mapping using hybrid dimerization domains in RetGC1/NPRA chimera, multiple RetGC1-specific residues contributed to GCAP binding by the cyclase, but the region around Met(823) was the most crucial. Either positively or negatively charged residues in that position completely blocked GCAP1 and GCAP2 but not RD3 binding similarly to the disease-causing mutation in the neighboring Arg(822). The specificity of GCAP binding imparted by RetGC1 dimerization domain was not directly related to promoting dimerization of the cyclase. The probability of coiled coil dimer formation computed for RetGC1/NPRA chimeras, even those incapable of binding GCAP, remained high, and functional complementation tests showed that the RetGC1 active site, which requires dimerization of the cyclase, was formed even when Met(823) or Arg(822) was mutated. These results directly demonstrate that the interface for GCAP binding on RetGC1 requires not only the kinase homology region but also directly involves the dimerization domain and especially its portion containing Arg(822) and Met(823).

  11. Design, synthesis, and biological evaluation of α-hydroxyacyl-AMS inhibitors of amino acid adenylation enzymes.

    Science.gov (United States)

    Davis, Tony D; Mohandas, Poornima; Chiriac, Maria I; Bythrow, Glennon V; Quadri, Luis E N; Tan, Derek S

    2016-11-01

    Biosynthesis of bacterial natural-product virulence factors is emerging as a promising antibiotic target. Many such natural products are produced by nonribosomal peptide synthetases (NRPS) from amino acid precursors. To develop selective inhibitors of these pathways, we have previously described aminoacyl-AMS (sulfamoyladenosine) macrocycles that inhibit NRPS amino acid adenylation domains but not mechanistically-related aminoacyl-tRNA synthetases. To improve the cell permeability of these inhibitors, we explore herein replacement of the α-amino group with an α-hydroxy group. In both macrocycles and corresponding linear congeners, this leads to decreased biochemical inhibition of the cysteine adenylation domain of the Yersina pestis siderophore synthetase HMWP2, which we attribute to loss of an electrostatic interaction with a conserved active-site aspartate. However, inhibitory activity can be regained by installing a cognate β-thiol moiety in the linear series. This provides a path forward to develop selective, cell-penetrant inhibitors of the biosynthesis of virulence factors to probe their biological functions and potential as therapeutic targets.

  12. Purine and pyrimidine nucleosides preserve human astrocytoma cell adenylate energy charge under ischemic conditions.

    Science.gov (United States)

    Balestri, Francesco; Giannecchini, Michela; Sgarrella, Francesco; Carta, Maria Caterina; Tozzi, Maria Grazia; Camici, Marcella

    2007-02-01

    The brain depends on both glycolysis and mitochondrial oxidative phosphorylation for maintenance of ATP pools. Astrocytes play an integral role in brain functions providing trophic supports and energy substrates for neurons. In this paper, we report that human astrocytoma cells (ADF) undergoing ischemic conditions may use both purine and pyrimidine nucleosides as energy source to slow down cellular damage. The cells are subjected to metabolic stress conditions by exclusion of glucose and incubation with oligomycin (an inhibitor of oxidative phosphorylation). This treatment brings about a depletion of the ATP pool, with a concomitant increase in the AMP levels, which results in a significant decrease of the adenylate energy charge. The presence of purine nucleosides in the culture medium preserves the adenylate energy charge, and improves cell viability. Besides purine nucleosides, also pyrimidine nucleosides, such as uridine and, to a lesser extent, cytidine, are able to preserve the ATP pool. The determination of lactate in the incubation medium indicates that nucleosides can preserve the ATP pool through anaerobic glycolysis, thus pointing to a relevant role of the phosphorolytic cleavage of the N-glycosidic bond of nucleosides which generates, without energy expense, the phosphorylated pentose, which through the pentose phosphate pathway and glycolysis can be converted to energetic intermediates also in the absence of oxygen. In fact, ADF cells possess both purine nucleoside phosphorylase and uridine phosphorylase activities.

  13. Structure of the adenylation domain of NAD(+)-dependent DNA ligase from Staphylococcus aureus.

    Science.gov (United States)

    Han, Seungil; Chang, Jeanne S; Griffor, Matt

    2009-11-01

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3'-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD(+)-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD(+)-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD(+)-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.

  14. Structure of the adenylation domain of NAD[superscript +]-dependent DNA ligase from Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seungil; Chang, Jeanne S.; Griffor, Matt; Pfizer

    2010-09-17

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3''-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD{sup +}-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD{sup +}-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD{sup +}-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.

  15. Diazepam inhibits forskolin-stimulated adenylyl cyclase activity in human tumour cells.

    Science.gov (United States)

    Niles, L P; Wang, J

    1999-10-01

    Previous studies have shown that the benzodiazepine agonist, diazepam, suppresses adenylyl cyclase activity in rat brain, via a G protein-coupled benzodiazepine receptor. Since diazepam binding sites are also present in diverse non-neuronal tissues including tumour cells, its effects on adenylyl cyclase activity were examined in membranes from human MCF-7 (breast cancer) and M-6 (melanoma) cells. Diazepam caused a biphasic and concentration-dependent inhibition of forskolin-stimulated adenylyl cyclase activity in MCF-7 membranes. The first phase of inhibition, at picomolar to nanomolar drug concentrations (EC50=5.7 x 10(-12)M), is similar to the receptor mediated phase observed in the rat brain. At micromolar concentrations of diazepam (EC50= 1.8 x 10(-4)M), the steep decrease in adenylyl cyclase activity may involve a direct action on the enzyme itself, as detected previously in rat brain membranes. Diazepam-induced suppression of adenylyl cyclase activity was also detected in M-6 membranes. However, in contrast to MCF-7 findings, only micromolar concentrations of diazepam (EC50=5.2 x 10(-4)M) inhibited enzyme activity in M-6 membranes. These findings suggest that G protein-coupled benzodiazepine receptors, which mediate inhibition of the adenylyl cyclase-cAMP pathway in the brain, are also expressed in MCF-7 cells.

  16. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    Science.gov (United States)

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  17. Use of adenylate kinase as a solubility tag for high level expression of T4 DNA ligase in Escherichia coli.

    Science.gov (United States)

    Liu, Xinxin; Huang, Anliang; Luo, Dan; Liu, Haipeng; Han, Huzi; Xu, Yang; Liang, Peng

    2015-05-01

    The discovery of T4 DNA ligase in 1960s was pivotal in the spread of molecular biotechnology. The enzyme has become ubiquitous for recombinant DNA routinely practiced in biomedical research around the globe. Great efforts have been made to express and purify T4 DNA ligase to meet the world demand, yet over-expression of soluble T4 DNA ligase in E. coli has been difficult. Here we explore the use of adenylate kinase to enhance T4 DNA ligase expression and its downstream purification. E.coli adenylate kinase, which can be expressed in active form at high level, was fused to the N-terminus of T4 DNA ligase. The resulting His-tagged AK-T4 DNA ligase fusion protein was greatly over-expressed in E. coli, and readily purified to near homogeneity via two purification steps consisting of Blue Sepharose and Ni-NTA chromatography. The purified AK-T4 DNA ligase not only is fully active for DNA ligation, but also can use ADP in addition to ATP as energy source since adenylate kinase converts ADP to ATP and AMP. Thus adenylate kinase may be used as a solubility tag to facilitate recombinant protein expression as well as their downstream purification.

  18. The Cyclase-associated Protein CAP as Regulator of Cell Polarity and cAMP Signaling in Dictyostelium

    OpenAIRE

    Noegel, Angelika A; Blau-Wasser, Rosemarie; Sultana, Hameeda; Müller, Rolf; Israel, Lars; Schleicher, Michael; Patel, Hitesh; Weijer, Cornelis J

    2004-01-01

    Cyclase-associated protein (CAP) is an evolutionarily conserved regulator of the G-actin/F-actin ratio and, in yeast, is involved in regulating the adenylyl cyclase activity. We show that cell polarization, F-actin organization, and phototaxis are altered in a Dictyostelium CAP knockout mutant. Furthermore, in complementation assays we determined the roles of the individual domains in signaling and regulation of the actin cytoskeleton. We studied in detail the adenylyl cyclase activity and fo...

  19. Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

    Science.gov (United States)

    Desai, Kevin K; Bingman, Craig A; Cheng, Chin L; Phillips, George N; Raines, Ronald T

    2014-10-01

    RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme.

  20. Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase

    Science.gov (United States)

    Banta, Amy B.; Wei, Jeremy H.; Gill, Clare C. C.; Giner, José-Luis; Welander, Paula V.

    2017-01-01

    Cyclic triterpenoids are a broad class of polycyclic lipids produced by bacteria and eukaryotes. They are biologically relevant for their roles in cellular physiology, including membrane structure and function, and biochemically relevant for their exquisite enzymatic cyclization mechanism. Cyclic triterpenoids are also geobiologically significant as they are readily preserved in sediments and are used as biomarkers for ancient life throughout Earth's history. Isoarborinol is one such triterpenoid whose only known biological sources are certain angiosperms and whose diagenetic derivatives (arboranes) are often used as indicators of terrestrial input into aquatic environments. However, the occurrence of arborane biomarkers in Permian and Triassic sediments, which predates the accepted origin of angiosperms, suggests that microbial sources of these lipids may also exist. In this study, we identify two isoarborinol-like lipids, eudoraenol and adriaticol, produced by the aerobic marine heterotrophic bacterium Eudoraea adriatica. Phylogenetic analysis demonstrates that the E. adriatica eudoraenol synthase is an oxidosqualene cyclase homologous to bacterial lanosterol synthases and distinct from plant triterpenoid synthases. Using an Escherichia coli heterologous sterol expression system, we demonstrate that substitution of four amino acid residues in a bacterial lanosterol synthase enabled synthesis of pentacyclic arborinols in addition to tetracyclic sterols. This variant provides valuable mechanistic insight into triterpenoid synthesis and reveals diagnostic amino acid residues to differentiate between sterol and arborinol synthases in genomic and metagenomic datasets. Our data suggest that there may be additional bacterial arborinol producers in marine and freshwater environments that could expand our understanding of these geologically informative lipids.

  1. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation

    Science.gov (United States)

    Lee, Y. C.; Martin, E.; Murad, F.

    2000-01-01

    The alpha1- and beta1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2, 4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

  2. Long-Term Exposure to High Corticosterone Levels Inducing a Decrease of Adenylate Kinase 1 Activity

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yu'nan; SHEN Jia; SU Hui; HUANG Yufang; XING Dongming; DU Lijun

    2009-01-01

    Corticosterone, a principal glucocorticoid synthesized in the rodent adrenal cortex, can be cumula-tively toxic to hippocampal neurons, the cause of which is not known. The present study determined whether the cytosol adenylate kinase (AK) system was involved in the neuronal damage induced by long-term exposure to high corticosterone levels. We investigated the effects of long-term exposure to high corticosterone levels on AK1 activity, AK1 mRNA expression, and energy levels in cultured hippocampal neurons. The results show that long-term exposure to high corticosterone levels induces a reduction of the cultured hippocampal neuron viability, significantly reduces energy levels, and causes a time-dependant re-duction of the AK1 activity. These findings indicate that changes in the AK system might be the mechanism underlying neuronal damage induced by long-term exposure to high corticosterone levels.

  3. INVOLVEMENT OF THE Ca2+-PROTEIN KINASE C AND ADENYLATE CYCLACE SIGNAL PATHWAYS IN THE ACTIVATION OF THYMOCYTES IN RESPONSE TO WHOLE-BODY IRRADIATION WITH LOW DOSE X-RAYS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective. To study the molecular mechanism of the stimulatory effect of low dose radiation(LDR) on T cell activation.Methods. Thymocytes from Kunming mice exposed to whole-body irradiation(WBI) with different doses of X-rays were analyzed for the changes in signal molecules of the phospholipase C-phosphatidylinositol biphosphate(PLC-IP2) and G protein-adenylate cyclase(AC) pathways.Results.It was found that[Ca2+]i increased in response to doses within 0.2 Gy which was most marked after 0.075 Gy and the increase was accentuated in the presence of Con A. The changes in CD3 and calcineurin(CN) expression of the thymocytes followed the same pattern as the alterations in [Ca2+]i after LDR. The expression of α,β1 and β2 isoforms of protein kinase C(PKC) was all up-regulated after 0.075 Gy with the increase in PKC-β1 expression being most marked. The cAMP/cGMP ratio and PKA activity of the thymocytes was lowered after low dose radiation and increased after doses above 0.5 Gy in a dose-dependent manner, thus giving rise to J-shaped dose-response curves. The Ca antagonist TMB-8 and cAMP stimulant cholera toxin suppressed the augmented thymocyte proliferation induced by LDR.Conclusion.Data presented in the present paper suggest that activation of the PLC-PIP2 signal pathway and suppression of the AC-cAMP signal pathway are involved in the stimulation of the thymocytes following WBI with low dose X-rays.

  4. Evidence of Bordetella pertussis infection in vaccinated 1-year-old Danish children

    DEFF Research Database (Denmark)

    von Linstow, Marie-Louise; Pontoppidan, Peter Lotko; von König, Carl-Heinz Wirsing

    2010-01-01

    We measured IgA and IgG antibodies to pertussis toxin (PT) and filamentous hemagglutinin (FHA) in sera from 203 1-year-old children who had received one to three doses of a monocomponent PT toxoid vaccine. Ten children (5%) had IgA antibody to PT indicating recent infection; seven of these children...... had received three doses of vaccine. PT IgA responders did not have significantly longer coughing episodes than PT IgA non-responders. Since an IgA antibody response occurs in only approximately 50% of infected children, the actual infection rate in our cohort is estimated to approximately 10......%. The apparent high Bordetella pertussis infection rate in Danish infants suggests that the monocomponent PT toxoid vaccine used in Denmark has limited efficacy against B. pertussis infection. A prospective immunization study comparing a multi-component vaccine with the present monocomponent PT toxoid vaccine...

  5. Mouse and pig models for studies of natural and vaccine-induced immunity to Bordetella pertussis.

    Science.gov (United States)

    Mills, Kingston H G; Gerdts, Volker

    2014-04-01

    The increasing incidence of whooping cough in many developed countries has been linked with waning immunity induced after immunization with acellular pertussis (aP) vaccines. The rational design of an improved aP vaccine requires a full understanding of the mechanism of protective immunity and preclinical studies in animal models. Infection of mice and pigs with Bordetella pertussis has many features of the infection seen in humans and has already provided valuable information on the roles of innate and adaptive immune responses in protection. Recent findings in these models have already indicated that it may be possible to develop an improved aP vaccine based on a formulation that includes a Toll-like receptor agonist as an adjuvant.

  6. Importance of (antibody-dependent) complement-mediated serum killing in protection against Bordetella pertussis.

    Science.gov (United States)

    Geurtsen, Jeroen; Fae, Kellen C; van den Dobbelsteen, Germie P J M

    2014-10-01

    Pertussis is a highly contagious respiratory disease that is caused by Bordetella pertussis. Despite being vaccine preventable, pertussis rates have been rising steadily over the last decades, even in areas with high vaccine uptake. Recently, experiments with infant baboons indicated that although vaccination with acellular pertussis vaccines prevented disease, no apparent effect was observed on infection and transmission. One explanation may be that current acellular pertussis vaccines do not induce high levels of opsonophagocytic and/or bactericidal activity, implying that engineering of vaccines that promote bacterial killing may improve efficacy. Here, we discuss the importance of complement-mediated killing in vaccine-induced protection against B. pertussis. We first examine how B. pertussis may have evolved different complement evasion strategies. Second, we explore the benefits of opsonophagocytic and/or bactericidal killing in vaccine-induced protection and discuss whether or not inclusion of new opsonophagocytic or bactericidal target antigens in pertussis vaccines may benefit efficacy.

  7. Pertactin deficient Bordetella pertussis present a better fitness in mice immunized with an acellular pertussis vaccine.

    Science.gov (United States)

    Hegerle, N; Dore, G; Guiso, N

    2014-11-20

    Bordetella pertussis is the etiologic agent of whooping cough and has been the target of vaccination for over fifty years. The latest strategies include the use of acellular pertussis vaccines that induce specific immunity against few virulence factors amongst which pertactin is included in three and five component acellular pertussis vaccines. Recently, it has been reported that B. pertussis clinical isolates loose the production of this adhesin in regions reaching high vaccine coverage with vaccines targeting this virulence factor. We here demonstrate that isolates not producing pertactin are capable of sustaining longer infection as compared to pertactin producing isolates in an in vivo model of acellular pertussis immunization. Loosing pertactin production might thus provide a selective advantage to these isolates in this background, which could account for the upraise in prevalence of these pertactin deficient isolates in the population.

  8. Complete genome sequence of a clinical Bordetella pertussis isolate from Brazil

    Directory of Open Access Journals (Sweden)

    Bruno Gabriel N Andrade

    2014-11-01

    Full Text Available There has been a resurgence in the number of pertussis cases in Brazil and around the world. Here, the genome of a clinical Bordetella pertussis strain (Bz181 that was recently isolated in Brazil is reported. Analysis of the virulence-associated genes defining the pre- and post-vaccination lineages revealed the presence of the prn2-ptxS1A-fim3B-ptxP3 allelic profile in Bz181, which is characteristic of the current pandemic lineage. A putative metallo-β-lactamase gene presenting all of the conserved zinc-binding motifs that characterise the catalytic site was identified, in addition to a multidrug efflux pump of the RND family that could confer resistance to erythromycin, which is the antibiotic of choice for treating pertussis disease.

  9. A dynamic metabolic flux balance based model of fed-batch fermentation of Bordetella pertussis.

    Science.gov (United States)

    Budman, Hector; Patel, Nilesh; Tamer, Melih; Al-Gherwi, Walid

    2013-01-01

    A mathematical model based on a dynamic metabolic flux balance (DMFB) is developed for a process of fed-batch fermentation of Bordetella pertussis. The model is based on the maximization of growth rate at each time interval subject to stoichiometric constraints. The model is calibrated and verified with experimental data obtained in two different bioreactor experimental systems. It was found that the model calibration was mostly sensitive to the consumption or production rates of tyrosine and, for high supplementation rates, to the consumption rate of glutamate. Following this calibration the model correctly predicts biomass and by-products concentrations for different supplementation rates. Comparisons of model predictions to oxygen uptake and carbon emission rates measurements indicate that the TCA cycle is fully functional.

  10. Comparison of lipopolysaccharide structures of Bordetella pertussis clinical isolates from pre- and post-vaccine era.

    Science.gov (United States)

    Albitar-Nehme, Sami; Basheer, Soorej M; Njamkepo, Elisabeth; Brisson, Jean-Robert; Guiso, Nicole; Caroff, Martine

    2013-08-30

    Endotoxins are lipopolysaccharides (LPS), and major constituents of the outer membrane of Gram-negative bacteria. Bordetella pertussis LPS were the only major antigens, of this agent of whooping-cough, that were not yet analyzed on isolates from the pre- and post-vaccination era. We compared here the LPS structures of four clinical isolates with that of the vaccine strain BP 1414. All physico-chemical analyses, including SDS-PAGE, TLC, and different MALDI mass spectrometry approaches were convergent. They helped demonstrating that, on the contrary to some other B. pertussis major antigens, no modification occurred in the dodecasaccharide core structure, as well as in the whole LPS molecules. These results are rendering these major antigens good potential vaccine components. Molecular modeling of this conserved LPS structure also confirmed the conclusions of previous experiments leading to the production of anti-LPS monoclonal antibodies and defining the main epitopes of these major antigens.

  11. Complete genome sequence of a clinical Bordetella pertussis isolate from Brazil.

    Science.gov (United States)

    Andrade, Bruno Gabriel N; Marin, Michel F Abanto; Cambuy, Diego Duque; Fonseca, Erica Lourenço; Souza, Nadjla Ferreira; Vicente, Ana Carolina P

    2014-11-01

    There has been a resurgence in the number of pertussis cases in Brazil and around the world. Here, the genome of a clinical Bordetella pertussis strain (Bz181) that was recently isolated in Brazil is reported. Analysis of the virulence-associated genes defining the pre- and post-vaccination lineages revealed the presence of the prn2-ptxS1A-fim3B-ptxP3 allelic profile in Bz181, which is characteristic of the current pandemic lineage. A putative metallo-β-lactamase gene presenting all of the conserved zinc-binding motifs that characterise the catalytic site was identified, in addition to a multidrug efflux pump of the RND family that could confer resistance to erythromycin, which is the antibiotic of choice for treating pertussis disease.

  12. Effects of polysaccharide on chicks co-infected with Bordetella avium and Avian leukosis virus.

    Science.gov (United States)

    Guo, Fanxia; Xue, Cong; Wu, Cun; Zhao, Xue; Qu, Tinghe; He, Xiaohua; Guo, Zhongkun; Zhu, Ruiliang

    2014-08-30

    Chicks' co-infection with immunosuppressive virus and bacteria seriously threaten the development of the poultry industry. In this study, a model was established in which chicks were injected with either subgroup B ALV (ALV-B)+Bordetella avium (B. avium), or ALV-B+B. avium+Taishan Pinus massoniana pollen polysaccharide (TPPPS), or B. avium only, or B. avium+TPPPS. The data showed that the group injected with ALV-B and B. avium exhibited significant inhibition of the immune function and therefore increased pathogenicity compared with the group injected with B. avium-only. Application of TPPPS effectively alleviated immunosuppression, and body weights increased sharply in the TPPPS groups compared with non-TPPPS groups. To some extent, TPPPS may reduce the proliferation of ALV-B. These results suggest that Pinus pollen polysaccharides are beneficial treating co-infections with immunosuppressive virus and bacteria and therefore have potential for development into safe and effective immunoregulator.

  13. Produccion de suspensiones de bordetella pertussis por fermentación

    Directory of Open Access Journals (Sweden)

    Algecira N.

    1998-12-01

    Full Text Available En este trabajo se estudió la producción de suspensión de Bordetella pertussis por fermentación para obtener el ingrediente activo de la vacuna contra tosferina. Se probaron diferentes medios de cultivo para el proceso, seleccionando el medio Stainer-Scholte adicionado con 3 g/L de casaminoacidos, el cual permite obtener altas concentraciones de células y suspensiones de buena calidad. Se estudió también la cinética de consumo de glutamato de sodio, producción de biomasa y evolución del pH. El crecimiento fue descrito por un modelo logístico. Se compara la tecnología de cultivo estacionario con el cultivo en fermentador presentándose esta última como la mejor alternativa de producción.

  14. Cough and fear of sleep: early clinical signs of Bordetella pertussis in an adult

    Directory of Open Access Journals (Sweden)

    Thomas C. Jones

    2004-08-01

    Full Text Available Pertussis is increasing in frequency among adults, but early diagnosis requires special attention to details in the medical history. We describe a 64 year-old male with classic signs and symptoms of pertussis and documented Bordetella pertussis infection that were overlooked because he presented with a chief complaint of cough and fear of falling asleep. Coughing paroxysms and a feeling of suffocation (30-60 seconds only occurred at night after short periods of deep sleep (30-45 minutes. The physicians did not observe these episodes during daytime examinations, and the basis of the patient's fear of sleep was not explored. We recommend reassessment of how adults describe symptoms of pertussis, including fear of sleep, and we suggest the use of PCR technology to allow early diagnosis and prompt treatment.

  15. New crystal structures of adenylate kinase from Streptococcus pneumoniae D39 in two conformations.

    Science.gov (United States)

    Thach, Trung Thanh; Lee, Sangho

    2014-11-01

    Adenylate kinases (AdKs; EC 2.7.3.4) play a critical role in intercellular homeostasis by the interconversion of ATP and AMP to two ADP molecules. Crystal structures of adenylate kinase from Streptococcus pneumoniae D39 (SpAdK) have recently been determined using ligand-free and inhibitor-bound crystals belonging to space groups P21 and P1, respectively. Here, new crystal structures of SpAdK in ligand-free and inhibitor-bound states determined at 1.96 and 1.65 Å resolution, respectively, are reported. The new ligand-free crystal belonged to space group C2, with unit-cell parameters a=73.5, b=54.3, c=62.7 Å, β=118.8°. The new ligand-free structure revealed an open conformation that differed from the previously determined conformation, with an r.m.s.d on Cα atoms of 1.4 Å. The new crystal of the complex with the two-substrate-mimicking inhibitor P1,P5-bis(adenosine-5'-)pentaphosphate (Ap5A) belonged to space group P1, with unit-cell parameters a=53.9, b=62.3, c=63.0 Å, α=101.9, β=112.6, γ=89.9°. Despite belonging to the same space group as the previously reported crystal, the new Ap5A-bound crystal contains four molecules in the asymmetric unit, compared with two in the previous crystal, and shows slightly different lattice contacts. These results demonstrate that SpAdK can crystallize promiscuously in different forms and that the open structure is flexible in conformation.

  16. NMr studies of the AMP binding site and mechanism of adenylate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Kuby, S.A.; Fry, D.C.; Mildvan, A.S.

    1986-05-01

    The authors recently located by NMR the MgATP binding site on adenylate kinase correcting the proposed location for this site based on X-ray studies of the binding of salicylate. To determine the conformation and location of the other substrate, they have determined distances from Cr/sup 3 +/ AMPPCP to 6 protons and to the phosphorus atom of AMP on adenylate kinase using the paramagnetic-probe-T/sub 1/ method. They have also used time-dependent NOEs to measure five interproton distances on AMP, permitting evaluation of the conformation of enzyme-bound AMP and its position with respect to metal-ATP. Enzyme-bound AMP exhibits a high-anti glycosyl torsional angle (X = 110/sup 0/), a 3'-endo sugar pucker (delta = 105/sup 0/), and a gauche-trans orientation about the C/sub 4/'-C/sub 5/' bond (..gamma.. = 180/sup 0/). The distance from Cr/sup 3 +/ to the phosphorus of AMP is 6.4 +/- 0.3 A, indicating a reaction coordinate distance of greater than or equal to A which is consistent with an associative SN2 mechanism for the phosphoryl transfer. Ten intermolecular NOEs, from protons of the enzyme to those of AMP were detected. These constraints, together with the conformation of AMP and the X-ray structure of the enzyme, suggest proximity (less than or equal to A) of AMP to leu 116, arg 171, val 173, gln 185, thr 188, and asp 191.

  17. Synthetic genes for human muscle-type adenylate kinase in Escherichia coli.

    Science.gov (United States)

    Kim, H J; Nishikawa, S; Tanaka, T; Uesugi, S; Takenaka, H; Hamada, M; Kuby, S A

    1989-01-01

    An artificial gene coding for the human muscle-type cytosolic adenylate kinase (hAK1) was chemically synthesized and directly expressed in Escherichia coli under the control of trp promoter. The DNA duplex of 596 bp was designed and constructed from 40 oligonucleotide fragments of typically 30 nucleotides in length. Twelve unique restriction sites were fairly evenly spaced in the synthetic gene to facilitate site-specific mutagenesis at any part of this recombinant protein. The genes for mutant hAK1 (Tyr 95----Phe 95, Y95F hAK1; Arg 97----Ala 97, R97A hAK1) were constructed by cassette mutagenesis and utilized restriction sites incorporated in the hAK1 gene. The recombinant hAK1 was purified to homogeneity by a two-step chromatographic procedure with a good yield, and showed the same adenylate kinase activity as that of authentic hAK1. Preliminary kinetic studies show that the enzymatic activity (Vmax app,cor/Et) of Y95F hAK1 was slightly greater than that of recombinant hAK1, whereas R97A hAK1 still possessed approximately 4% of recombinant hAK1 activity. These results suggest that the Arg-97 residue is important but not essential for catalytic activity, and that Tyr-95 can be replaced by phenylalanine without substantial effects on the enzymatic activity. Moreover, preliminary estimates of the apparent kinetic parameters suggest that these residues are not required for MgATP binding, and therefore they do not appear to be part of the MgATP binding site.

  18. Growth phase- and nutrient limitation-associated transcript abundance regulation in Bordetella pertussis.

    Science.gov (United States)

    Nakamura, Mari M; Liew, Sin-Yee; Cummings, Craig A; Brinig, Mary M; Dieterich, Christine; Relman, David A

    2006-10-01

    To survive in a host environment, microbial pathogens must sense local conditions, including nutrient availability, and adjust their growth state and virulence functions accordingly. No comprehensive investigation of growth phase-related gene regulation in Bordetella pertussis has been reported previously. We characterized changes in genome-wide transcript abundance of B. pertussis as a function of growth phase and availability of glutamate, a key nutrient for this organism. Using a Bordetella DNA microarray, we discovered significant changes in transcript abundance for 861 array elements during the transition from log phase to stationary phase, including declining transcript levels of many virulence factor genes. The responses to glutamate depletion exhibited similarities to the responses induced by exit from log phase, including decreased virulence factor transcript levels. However, only 23% of array elements that showed at least a fourfold growth phase-associated difference in transcript abundance also exhibited glutamate depletion-associated changes, suggesting that nutrient limitation may be one of several interacting factors affecting gene regulation during stationary phase. Transcript abundance patterns of a Bvg+ phase-locked mutant revealed that the BvgAS two-component regulatory system is a key determinant of growth phase- and nutrient limitation-related transcriptional control. Several adhesin genes exhibited lower transcript abundance during stationary phase and under glutamate restriction conditions. The predicted bacterial phenotype was confirmed: adherence to bronchoepithelial cells decreased 3.3- and 4.4-fold at stationary phase and with glutamate deprivation, respectively. Growth phase and nutrient availability may serve as cues by which B. pertussis regulates virulence according to the stage of infection or the location within the human airway.

  19. Survey and Rapid detection of Bordetella pertussis in clinical samples targeting the BP485 in China

    Directory of Open Access Journals (Sweden)

    Wei eLiu

    2015-03-01

    Full Text Available Bordetella pertussis is an important human respiratory pathogen. Here, we describe a loop-mediated isothermal amplification (LAMP method for the rapid detection of B. pertussis in clinical samples based on a visual test. The LAMP assay detected the BP485 target sequence within 60 min with a detection limit of 1.3 pg/µl, a 10-fold increase in sensitivity compared with conventional PCR. All 31 non-pertussis respiratory pathogens tested were negative for LAMP detection, indicating the high specificity of the primers for B. pertussis. To evaluate the application of the LAMP assay to clinical diagnosis, of 105 sputum and nasopharyngeal samples collected from the patients with suspected respiratory infections in China, a total of 12 Bordetella pertussis isolates were identified from 33 positive samples detected by LAMP-based surveillance targeting BP485. Strikingly, a 4.5 months old baby and her mother were found to be infected with B. pertussis at the same time. All isolates belonged to different B. pertussis multilocus sequence typing (MLST groups with different alleles of the virulence-related genes including 4 alleles of ptxA, 6 of prn, 4 of tcfA, 2 of fim2 and 3 of fim3. The diversity of B. pertussis carrying toxin genes in clinical strains indicates a rapid and continuing evolution of B. pertussis. This combined with its high prevalence will make it difficult to control. In conclusion, we have developed a visual detection LAMP assay, which could be a useful tool for rapid B. pertussis detection, especially in situations where resources are poor and in point-of-care tests.

  20. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides.

    Science.gov (United States)

    Gagne, Steve J; Stout, Jake M; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M; Page, Jonathan E

    2012-07-31

    Δ(9)-Tetrahydrocannabinol (THC) and other cannabinoids are responsible for the psychoactive and medicinal properties of Cannabis sativa L. (marijuana). The first intermediate in the cannabinoid biosynthetic pathway is proposed to be olivetolic acid (OA), an alkylresorcinolic acid that forms the polyketide nucleus of the cannabinoids. OA has been postulated to be synthesized by a type III polyketide synthase (PKS) enzyme, but so far type III PKSs from cannabis have been shown to produce catalytic byproducts instead of OA. We analyzed the transcriptome of glandular trichomes from female cannabis flowers, which are the primary site of cannabinoid biosynthesis, and searched for polyketide cyclase-like enzymes that could assist in OA cyclization. Here, we show that a type III PKS (tetraketide synthase) from cannabis trichomes requires the presence of a polyketide cyclase enzyme, olivetolic acid cyclase (OAC), which catalyzes a C2-C7 intramolecular aldol condensation with carboxylate retention to form OA. OAC is a dimeric α+β barrel (DABB) protein that is structurally similar to polyketide cyclases from Streptomyces species. OAC transcript is present at high levels in glandular trichomes, an expression profile that parallels other cannabinoid pathway enzymes. Our identification of OAC both clarifies the cannabinoid pathway and demonstrates unexpected evolutionary parallels between polyketide biosynthesis in plants and bacteria. In addition, the widespread occurrence of DABB proteins in plants suggests that polyketide cyclases may play an overlooked role in generating plant chemical diversity.

  1. Cloning and Functional Characterization of a Lycopene β-Cyclase from Macrophytic Red Alga Bangia fuscopurpurea

    Directory of Open Access Journals (Sweden)

    Tian-Jun Cao

    2017-04-01

    Full Text Available Lycopene cyclases cyclize the open ends of acyclic lycopene (ψ,ψ-carotene into β- or ε-ionone rings in the crucial bifurcation step of carotenoid biosynthesis. Among all carotenoid constituents, β-carotene (β,β-carotene is found in all photosynthetic organisms, except for purple bacteria and heliobacteria, suggesting a ubiquitous distribution of lycopene β-cyclase activity in these organisms. In this work, we isolated a gene (BfLCYB encoding a lycopene β-cyclase from Bangia fuscopurpurea, a red alga that is considered to be one of the primitive multicellular eukaryotic photosynthetic organisms and accumulates carotenoid constituents with both β- and ε-rings, including β-carotene, zeaxanthin, α-carotene (β,ε-carotene and lutein. Functional complementation in Escherichia coli demonstrated that BfLCYB is able to catalyze cyclization of lycopene into monocyclic γ-carotene (β,ψ-carotene and bicyclic β-carotene, and cyclization of the open end of monocyclic δ-carotene (ε,ψ-carotene to produce α-carotene. No ε-cyclization activity was identified for BfLCYB. Sequence comparison showed that BfLCYB shares conserved domains with other functionally characterized lycopene cyclases from different organisms and belongs to a group of ancient lycopene cyclases. Although B. fuscopurpurea also synthesizes α-carotene and lutein, its enzyme-catalyzing ε-cyclization is still unknown.

  2. Estradiol rapidly inhibits soluble guanylyl cyclase expression in rat uterus

    Science.gov (United States)

    Krumenacker, J. S.; Hyder, S. M.; Murad, F.

    2001-01-01

    Previous reports that investigated the regulation of the NO/soluble guanylyl cyclase (sGC)/cGMP pathway by estrogenic compounds have focused primarily on the levels of NO, NO-producing enzymes, and cGMP in various tissues. In this study, we demonstrate that 17beta-estradiol (E2) regulates the alpha(1) and beta(1) subunits of the NO receptor, sGC, at the mRNA and protein levels in rat uterus. Using real-time quantitative PCR, we found that within 1 h of in vivo E2 administration to rats, sGC mRNA levels begin to diminish. After 3 h, there is a maximal diminution of sGC mRNA expression (sGC alpha(1) 10% and sGC beta(1) 33% of untreated). This effect was blocked by the estrogen receptor antagonist, ICI 182,780, indicating that estrogen receptor is required. The effect of E2 also was observed in vitro with incubations of uterine tissue, indicating that the response does not depend on the secondary release of other hormones or factors from other tissues. Puromycin did not block the effect, suggesting the effects occur because of preexisting factors in uterine tissues and do not require new protein synthesis. Using immunoblot analysis, we found that sGC protein levels also were reduced by E2 over a similar time course as the sGC mRNA. We conclude that sGC plays a vital role in the NO/sGC/cGMP regulatory pathway during conditions of elevated estrogen levels in the rat uterus as a result of the reduction of sGC expression.

  3. NCBI nr-aa BLAST: CBRC-GACU-11-0020 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GACU-11-0020 ref|NP_001107.2| adenylate cyclase 9 [Homo sapiens] sp|O60503|ADCY9_HUMAN Adenylate cyclas...e type 9 (Adenylate cyclase type IX) (ATP pyrophosphate-lyase 9) (Adenylyl cyclase ...9) gb|AAK29464.1| adenylate cyclase type 9 [Homo sapiens] gb|AAY21237.1| adenylyl cyclase type 9 [Homo sapie...ns] gb|EAW85331.1| adenylate cyclase 9, isoform CRA_a [Homo sapiens] gb|EAW85332.1| adenylate cyclase... 9, isoform CRA_a [Homo sapiens] gb|AAI51208.1| Adenylate cyclase 9 [Homo sapiens] NP_001107.2 0.0 63% ...

  4. A Comparative Study of Detection of Bordetella avium Antibodies in Turkeys by ELISA, SPAT, and AGID Test

    OpenAIRE

    TÜRKYILMAZ, Süheyla; TÜRKYILMAZ, Kenan; KAYA, Osman

    2006-01-01

    The aims of this study were to develop a serum plate agglutination test (SPAT) antigen and agar gel immunodiffusion (AGID) test antigen for the serological detection of turkeys that have been exposed to Bordetella avium; to compare the sensitivity of commercial enzyme-linked immunosorbent assay (ELISA) with SPAT, and AGID test, and to survey B. avium antibodies in turkey flocks in Aydın, Turkey. For these purposes, serum samples collected from 300 turkeys were examined by ELISA, SPAT, and AGI...

  5. Bordetella pertussis lipid A glucosamine modification confers resistance to cationic antimicrobial peptides and increases resistance to outer membrane perturbation.

    Science.gov (United States)

    Shah, Nita R; Hancock, Robert E W; Fernandez, Rachel C

    2014-08-01

    Bordetella pertussis, the causative agent of whooping cough, has many strategies for evading the human immune system. Lipopolysaccharide (LPS) is an important Gram-negative bacterial surface structure that activates the immune system via Toll-like receptor 4 and enables susceptibility to cationic antimicrobial peptides (CAMPs). We show modification of the lipid A region of LPS with glucosamine increased resistance to numerous CAMPs, including LL-37. Furthermore, we demonstrate that this glucosamine modification increased resistance to outer membrane perturbation.

  6. Bordetella holmesii DNA is not detected in nasopharyngeal swabs from Finnish and Dutch patients with suspected pertussis.

    Science.gov (United States)

    Antila, Mia; He, Qiushui; de Jong, Caroline; Aarts, Ingrid; Verbakel, Harold; Bruisten, Sylvia; Keller, Suzanne; Haanperä, Marjo; Mäkinen, Johanna; Eerola, Erkki; Viljanen, Matti K; Mertsola, Jussi; van der Zee, Anneke

    2006-08-01

    Bordetella holmesii is a Gram-negative bacterium first identified in 1995. It can cause pertussis-like symptoms in humans. B. holmesii contains insertion sequences IS481 and IS1001, two frequently used targets in the PCR diagnosis of Bordetella pertussis and Bordetella parapertussis infections. To investigate the prevalence of B. holmesii in Finnish and Dutch patients with pertussis-like symptoms and whether B. holmesii has caused any false-positive results in diagnostic PCRs, B. holmesii-specific real-time PCRs were developed. The Finnish methods were conventional IS481 PCR and B. holmesii-specific real-time PCR (LightCycler, Roche) targeting the B. holmesii recA gene. The Dutch methods were IS481 and IS1001 PCRs with conventional or real-time formats and B. holmesii-specific real-time PCR targeting the homologue of IS1001. Of 11,319 nasopharyngeal swabs, 2804 were collected from Finnish patients from 2000 to 2003, and 8515 from Dutch patients from 1992 to 2003. B. holmesii DNA was not found in the samples analysed. The results suggest that B. holmesii is not among the causative agents of pertussis-like symptoms in Finnish and Dutch patients and thus does not in practice confound IS481 and IS1001 PCRs.

  7. Simultaneous stimulation of GABA and beta adrenergic receptors stabilizes isotypes of activated adenylyl cyclase heterocomplex

    Directory of Open Access Journals (Sweden)

    Robichon Alain

    2004-06-01

    Full Text Available Abstract Background We investigated how the synthesis of cAMP, stimulated by isoproterenol acting through β-adrenoreceptors and Gs, is strongly amplified by simultaneous incubation with baclofen. Baclofen is an agonist of δ-aminobutyric acid type B receptors [GABAB], known to inhibit adenylyl cyclase via Gi. Because these agents have opposite effects on cAMP levels, the unexpected increase in cAMP synthesis when they are applied simultaneously has been intensively investigated. From previous reports, it appears that cyclase type II contributes most significantly to this phenomenon. Results We found that simultaneous application of isoproterenol and baclofen specifically influences the association/dissociation of molecules involved in the induction and termination of cyclase activity. Beta/gamma from [GABA]B receptor-coupled Gi has a higher affinity for adenylyl cyclase isoform(s when these isoforms are co-associated with Gs. Our data also suggest that, when beta/gamma and Gαs are associated with adenylyl cyclase isoform(s, beta/gamma from [GABA]B receptor-coupled Gi retards the GTPase activity of Gαs from adrenergic receptor. These reciprocal regulations of subunits of the adenylyl cyclase complex might be responsible for the drastic increase of cAMP synthesis in response to the simultaneous signals. Conclusions Simultaneous signals arriving at a particular synapse converge on molecular detectors of coincidence and trigger specific biochemical events. We hypothesize that this phenomenon comes from the complex molecular architectures involved, including scaffolding proteins that make reciprocal interactions between associated molecules possible. The biochemistry of simultaneous signaling is addressed as a key to synaptic function.

  8. Multifunctional oxidosqualene cyclases and cytochrome P450involved in the biosynthesis of apple fruit triterpenic acids

    OpenAIRE

    Andre, Christelle; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; M.Cooney, Janine; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; A.Laing, William

    2016-01-01

    Summary Apple (Malus × domestica) accumulates bioactive ursane‐, oleanane‐, and lupane‐type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology‐based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with co...

  9. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria

    OpenAIRE

    Maresca, Julia A.; Graham, Joel E.; Wu, Martin; Eisen, Jonathan A; Bryant, Donald A.

    2007-01-01

    A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacterial genomes that lack genes encoding CrtL- or CrtY-type lycopene cyclases. The cyanobacterium Synechoc...

  10. A Novel Mechanism for Adenylyl Cyclase Inhibition from the Crystal Structure of its Complex with Catechol Estrogen

    Energy Technology Data Exchange (ETDEWEB)

    Steegborn,C.; Litvin, T.; Hess, K.; Capper, A.; Taussig, R.; Buck, J.; Levin, L.; Wu, H.

    2005-01-01

    Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog. The catechol estrogen is bound to a newly identified, conserved hydrophobic patch near the active center but distinct from the ATP-binding cleft. Inhibitor binding leads to a chelating interaction between the catechol estrogen hydroxyl groups and the catalytic magnesium ion, distorting the active site and trapping the enzyme substrate complex in a non-productive conformation. This novel inhibition mechanism likely applies to other adenylyl cyclase inhibitors, and the identified ligand-binding site has important implications for the development of specific adenylyl cyclase inhibitors.

  11. A cost-effective method for Illumina small RNA-Seq library preparation using T4 RNA ligase 1 adenylated adapters

    Directory of Open Access Journals (Sweden)

    Chen Yun-Ru

    2012-09-01

    Full Text Available Abstract Background Deep sequencing is a powerful tool for novel small RNA discovery. Illumina small RNA sequencing library preparation requires a pre-adenylated 3’ end adapter containing a 5’,5’-adenyl pyrophosphoryl moiety. In the absence of ATP, this adapter can be ligated to the 3’ hydroxyl group of small RNA, while RNA self-ligation and concatenation are repressed. Pre-adenylated adapters are one of the most essential and costly components required for library preparation, and few are commercially available. Results We demonstrate that DNA oligo with 5’ phosphate and 3’ amine groups can be enzymatically adenylated by T4 RNA ligase 1 to generate customized pre-adenylated adapters. We have constructed and sequenced a small RNA library for tomato (Solanum lycopersicum using the T4 RNA ligase 1 adenylated adapter. Conclusion We provide an efficient and low-cost method for small RNA sequencing library preparation, which takes two days to complete and costs around $20 per library. This protocol has been tested in several plant species for small RNA sequencing including sweet potato, pepper, watermelon, and cowpea, and could be readily applied to any RNA samples.

  12. A real-time PCR assay with improved specificity for detection and discrimination of all clinically relevant Bordetella species by the presence and distribution of three Insertion Sequence elements

    Directory of Open Access Journals (Sweden)

    Ossewaarde Jacobus M

    2011-01-01

    Full Text Available Abstract Background In Dutch laboratories molecular detection of B. pertussis and B. parapertussis is commonly based on insertion sequences IS481 and IS1001, respectively. Both IS elements are more widely spread among Bordetella species. Both Bordetella holmesii, and B. bronchiseptica can harbour IS481. Also, IS1001 is found among B. bronchiseptica. IS481, and IS1001 based PCR thus lacks specificity when used for detection of specific Bordetella spp. Findings We designed a PCR based on IS1002, another IS element that is present among Bordetella species, and exploited it as a template in combination with PCR for IS481, and IS1001. In combining the PCRs for IS481, IS1001, and IS1002, and including an inhibition control, we were able to detect and discriminate all clinically relevant Bordetella species. Conclusions We developed an improved PCR method for specific detection of B. pertussis, B. parapertussis, B. holmesii, and B. bronchiseptica.

  13. Multiple lineage specific expansions within the guanylyl cyclase gene family

    Directory of Open Access Journals (Sweden)

    O'Halloran Damien M

    2006-03-01

    Full Text Available Abstract Background Guanylyl cyclases (GCs are responsible for the production of the secondary messenger cyclic guanosine monophosphate, which plays important roles in a variety of physiological responses such as vision, olfaction, muscle contraction, homeostatic regulation, cardiovascular and nervous function. There are two types of GCs in animals, soluble (sGCs which are found ubiquitously in cell cytoplasm, and receptor (rGC forms which span cell membranes. The complete genomes of several vertebrate and invertebrate species are now available. These data provide a platform to investigate the evolution of GCs across a diverse range of animal phyla. Results In this analysis we located GC genes from a broad spectrum of vertebrate and invertebrate animals and reconstructed molecular phylogenies for both sGC and rGC proteins. The most notable features of the resulting phylogenies are the number of lineage specific rGC and sGC expansions that have occurred during metazoan evolution. Among these expansions is a large nematode specific rGC clade comprising 21 genes in C. elegans alone; a vertebrate specific expansion in the natriuretic receptors GC-A and GC-B; a vertebrate specific expansion in the guanylyl GC-C receptors, an echinoderm specific expansion in the sperm rGC genes and a nematode specific sGC clade. Our phylogenetic reconstruction also shows the existence of a basal group of nitric oxide (NO insensitive insect and nematode sGCs which are regulated by O2. This suggests that the primordial eukaryotes probably utilized sGC as an O2 sensor, with the ligand specificity of sGC later switching to NO which provides a very effective local cell-to-cell signalling system. Phylogenetic analysis of the sGC and bacterial heme nitric oxide/oxygen binding protein domain supports the hypothesis that this domain originated from a cyanobacterial source. Conclusion The most salient feature of our phylogenies is the number of lineage specific expansions

  14. Identification and regulation of expression of a gene encoding a filamentous hemagglutinin-related protein in Bordetella holmesii

    Directory of Open Access Journals (Sweden)

    Gross Roy

    2007-11-01

    Full Text Available Abstract Background Bordetella holmesii is a human pathogen closely related to B. pertussis, the etiological agent of whooping cough. It is able to cause disease in immunocompromised patients, but also whooping cough-like symptoms in otherwise healthy individuals. However, virtually nothing was known so far about the underlying virulence mechanisms and previous attempts to identify virulence factors related to those of B. pertussis were not successful. Results By use of a PCR approach we were able to identify a B. holmesii gene encoding a protein with significant sequence similarities to the filamentous hemagglutinin (FHA of B. avium and to a lesser extent to the FHA proteins of B. pertussis, B. parapertussis, and B. bronchiseptica. For these human and animal pathogens FHA is a crucial virulence factor required for successful colonization of the host. Interestingly, the B. holmesii protein shows a relatively high overall sequence similarity with the B. avium protein, while sequence conservation with the FHA proteins of the human and mammalian pathogens is quite limited and is most prominent in signal sequences required for their export to the cell surface. In the other Bordetellae expression of the fhaB gene encoding FHA was shown to be regulated by the master regulator of virulence, the BvgAS two-component system. Recently, we identified orthologs of BvgAS in B. holmesii, and here we show that this system also contributes to regulation of fhaB expression in B. holmesii. Accordingly, the purified BvgA response regulator of B. holmesii was shown to bind specifically in the upstream region of the fhaB promoter in vitro in a manner similar to that previously described for the BvgA protein of B. pertussis. Moreover, by deletion analysis of the fhaB promoter region we show that the BvgA binding sites are relevant for in vivo transcription from this promoter in B. holmesii. Conclusion The data reported here show that B. holmesii is endowed with a

  15. Ectopic expression of cyclase associated protein CAP restores the streaming and aggregation defects of adenylyl cyclase a deficient Dictyostelium discoideum cells

    Directory of Open Access Journals (Sweden)

    Sultana Hameeda

    2012-01-01

    Full Text Available Abstract Background Cell adhesion, an integral part of D. discoideum development, is important for morphogenesis and regulated gene expression in the multicellular context and is required to trigger cell-differentiation. G-protein linked adenylyl cyclase pathways are crucially involved and a mutant lacking the aggregation specific adenylyl cyclase ACA does not undergo multicellular development. Results Here, we have investigated the role of cyclase-associated protein (CAP, an important regulator of cell polarity and F-actin/G-actin ratio in the aca- mutant. We show that ectopic expression of GFP-CAP improves cell polarization, streaming and aggregation in aca- cells, but it fails to completely restore development. Our studies indicate a requirement of CAP in the ACA dependent signal transduction for progression of the development of unicellular amoebae into multicellular structures. The reduced expression of the cell adhesion molecule DdCAD1 together with csA is responsible for the defects in aca- cells to initiate multicellular development. Early development was restored by the expression of GFP-CAP that enhanced the DdCAD1 transcript levels and to a lesser extent the csA mRNA levels. Conclusions Collectively, our data shows a novel role of CAP in regulating cell adhesion mechanisms during development that might be envisioned to unravel the functions of mammalian CAP during animal embryogenesis.

  16. Structure of the adenylation-peptidyl carrier protein didomain of the Microcystis aeruginosa microcystin synthetase McyG.

    Science.gov (United States)

    Tan, Xiao-Feng; Dai, Ya-Nan; Zhou, Kang; Jiang, Yong-Liang; Ren, Yan-Min; Chen, Yuxing; Zhou, Cong-Zhao

    2015-04-01

    Microcystins, which are the most common cause of hepatotoxicity associated with cyanobacterial water blooms, are assembled in vivo on a large multienzyme complex via a mixed nonribosomal peptide synthetase/polyketide synthetase (NRPS/PKS). The biosynthesis of microcystin in Microcystis aeruginosa PCC 7806 starts with the enzyme McyG, which contains an adenylation-peptidyl carrier protein (A-PCP) didomain for loading the starter unit to assemble the side chain of an Adda residue. However, the catalytic mechanism remains unclear. Here, the 2.45 Å resolution crystal structure of the McyG A-PCP didomain complexed with the catalytic intermediate L-phenylalanyl-adenylate (L-Phe-AMP) is reported. Each asymmetric unit contains two protein molecules, one of which consists of the A-PCP didomain and the other of which comprises only the A domain. Structural analyses suggest that Val227 is likely to be critical for the selection of hydrophobic substrates. Moreover, two distinct interfaces demonstrating variable crosstalk between the PCP domain and the A domain were observed. A catalytic cycle for the adenylation and peptide transfer of the A-PCP didomain is proposed.

  17. Global population structure and evolution of Bordetella pertussis and their relationship with vaccination.

    Science.gov (United States)

    Bart, Marieke J; Harris, Simon R; Advani, Abdolreza; Arakawa, Yoshichika; Bottero, Daniela; Bouchez, Valérie; Cassiday, Pamela K; Chiang, Chuen-Sheue; Dalby, Tine; Fry, Norman K; Gaillard, María Emilia; van Gent, Marjolein; Guiso, Nicole; Hallander, Hans O; Harvill, Eric T; He, Qiushui; van der Heide, Han G J; Heuvelman, Kees; Hozbor, Daniela F; Kamachi, Kazunari; Karataev, Gennady I; Lan, Ruiting; Lutyńska, Anna; Maharjan, Ram P; Mertsola, Jussi; Miyamura, Tatsuo; Octavia, Sophie; Preston, Andrew; Quail, Michael A; Sintchenko, Vitali; Stefanelli, Paola; Tondella, M Lucia; Tsang, Raymond S W; Xu, Yinghua; Yao, Shu-Man; Zhang, Shumin; Parkhill, Julian; Mooi, Frits R

    2014-04-22

    Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343 B. pertussis strains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in which B. pertussis and the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines. IMPORTANCE Whooping cough is mainly caused by Bordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343 B. pertussis

  18. Differentially expressed genes in Bordetella pertussis strains belonging to a lineage which recently spread globally.

    Science.gov (United States)

    de Gouw, Daan; Hermans, Peter W M; Bootsma, Hester J; Zomer, Aldert; Heuvelman, Kees; Diavatopoulos, Dimitri A; Mooi, Frits R

    2014-01-01

    Pertussis is a highly contagious, acute respiratory disease in humans caused by the Gram-negative pathogen Bordetella pertussis. Pertussis has resurged in the face of intensive vaccination and this has coincided with the emergence of strains carrying a particular allele for the pertussis toxin promoter, ptxP3, which is associated with higher levels of pertussis toxin (Ptx) production. Within 10 to 20 years, ptxP3 strains have nearly completely replaced the previously dominant ptxP1 strains resulting in a worldwide selective sweep. In order to identify B. pertussis genes associated with the selective sweep, we compared the expression of genes in ptxP1 and ptxP3 strains that are under control of the Bordetella master virulence regulatory locus (bvgASR). The BvgAS proteins comprise a two component sensory transduction system which is regulated by temperature, nicotinic acid and sulfate. By increasing the sulfate concentration, it is possible to change the phase of B. pertussis from virulent to avirulent. Until recently, the only distinctive phenotype of ptxP3 strains was a higher Ptx production. Here we identify additional phenotypic differences between ptxP1 and ptxP3 strains which may have contributed to its global spread by comparing global transcriptional responses under sulfate-modulating conditions. We show that ptxP3 strains are less sensitive to sulfate-mediated gene suppression, resulting in an increased production of the vaccine antigens pertactin (Prn) and Ptx and a number of other virulence genes, including a type III secretion toxin, Vag8, a protein involved in complement resistance, and lpxE involved in lipid A modification. Furthermore, enhanced expression of the vaccine antigens Ptx and Prn by ptxP3 strains was confirmed at the protein level. Identification of genes differentially expressed between ptxP1 and ptxP3 strains may elucidate how B. pertussis has adapted to vaccination and allow the improvement of pertussis vaccines by identifying novel

  19. Differentially expressed genes in Bordetella pertussis strains belonging to a lineage which recently spread globally.

    Directory of Open Access Journals (Sweden)

    Daan de Gouw

    Full Text Available Pertussis is a highly contagious, acute respiratory disease in humans caused by the Gram-negative pathogen Bordetella pertussis. Pertussis has resurged in the face of intensive vaccination and this has coincided with the emergence of strains carrying a particular allele for the pertussis toxin promoter, ptxP3, which is associated with higher levels of pertussis toxin (Ptx production. Within 10 to 20 years, ptxP3 strains have nearly completely replaced the previously dominant ptxP1 strains resulting in a worldwide selective sweep. In order to identify B. pertussis genes associated with the selective sweep, we compared the expression of genes in ptxP1 and ptxP3 strains that are under control of the Bordetella master virulence regulatory locus (bvgASR. The BvgAS proteins comprise a two component sensory transduction system which is regulated by temperature, nicotinic acid and sulfate. By increasing the sulfate concentration, it is possible to change the phase of B. pertussis from virulent to avirulent. Until recently, the only distinctive phenotype of ptxP3 strains was a higher Ptx production. Here we identify additional phenotypic differences between ptxP1 and ptxP3 strains which may have contributed to its global spread by comparing global transcriptional responses under sulfate-modulating conditions. We show that ptxP3 strains are less sensitive to sulfate-mediated gene suppression, resulting in an increased production of the vaccine antigens pertactin (Prn and Ptx and a number of other virulence genes, including a type III secretion toxin, Vag8, a protein involved in complement resistance, and lpxE involved in lipid A modification. Furthermore, enhanced expression of the vaccine antigens Ptx and Prn by ptxP3 strains was confirmed at the protein level. Identification of genes differentially expressed between ptxP1 and ptxP3 strains may elucidate how B. pertussis has adapted to vaccination and allow the improvement of pertussis vaccines by

  20. Evaluation of real-time PCR for diagnosis of Bordetella pertussis infection

    Directory of Open Access Journals (Sweden)

    Fox Julie D

    2006-03-01

    Full Text Available Abstract Background Nucleic acid amplification of the IS481 region by PCR is more sensitive than culture for detection and diagnosis of Bordetella pertussis but the assay has known cross-reactivity for Bordetella holmesii and its use as a routine diagnostic assay has not been widely evaluated. Methods The objectives of this study were: 1 to assess the diagnostic utility of real-time IS481 PCR by comparison of results with culture and direct fluorescent antigen (DFA testing for B. pertussis, 2 to employ a PCR assay designed against a different insertion sequence (IS1001 to assess the incidence of B. holmesii in symptomatic individuals and 3 to design and evaluate a new PCR-based assay which could be used for B. pertussis confirmation. A total of 808 nasopharyngeal specimens were included in the study the majority of which were submitted in charcoal transport medium (88% with the rest submitted in Regan-Lowe medium. Results Concordant results for PCR, DFA and culture were obtained for 21 B. pertussis positive and 729 B. pertussis negative specimens. DFA was prone to false positive and negative reactions when compared with both PCR and culture. The IS481 PCR identified 28 positive results for specimens that were DFA and culture negative. A novel real-time PCR targeting the B. pertussis toxin promoter was found to be specific and useful for confirming the majority of IS481 positive specimens as B. pertussis. B. holmesii was not detected in any of the submitted samples. Conclusion The potential pick up of B. holmesii by the IS481 PCR had minimal diagnostic relevance in the Alberta population during the time period of our study. The IS481 PCR assay is now used in our laboratory routinely for front-line screening of samples for B. pertussis with associated enhancement in diagnostic sensitivity compared with DFA and culture. Retrospectively, patients' samples are batched and tested by the IS1001 MB and TPR assays for research purposes and to ensure

  1. Soluble guanylyl cyclase is involved in PDT-induced injury of crayfish glial cells

    Science.gov (United States)

    Kovaleva, V. D.; Uzdensky, A. B.

    2016-04-01

    Photodynamic therapy (PDT) is a potential tool for selective destruction of malignant brain tumors. However, not only malignant but also healthy neurons and glial cells may be damaged during PDT. Nitric oxide is an important modulator of cell viability and intercellular neuroglial communications. NO have been already shown to participate in PDT-induced injury of neurons and glial cells. As soluble guanylyl cyclase is the only known receptor for NO, we have studied the possible role of soluble guanylyl cyclase in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Using inhibitory analysis we have shown that during PDT soluble guanylyl cyclase, probably, has proapoptotic and antinecrotic effect on the glial cells of the isolated crayfish stretch receptor. Proapoptotic effect of soluble guanylyl cyclase could be mediated by protein kinase G (PKG). Thus, the involvement of NO/sGC/cGMP/PKG signaling pathway in PDT-induced apoptosis of glial cells was indirectly demonstrated.

  2. Comparison of human CAP and CAP2, homologs of the yeast adenylyl cyclase-associated proteins.

    Science.gov (United States)

    Yu, G; Swiston, J; Young, D

    1994-06-01

    We previously reported the identification of human CAP, a protein that is related to the Saccharomyces cerevisiae and Schizosaccharomyces pombe adenylyl cyclase-associated CAP proteins. The two yeast CAP proteins have similar functions: the N-terminal domains are required for the normal function of adenylyl cyclase, while loss of the C-terminal domains result in morphological and nutritional defects that are unrelated to the cAMP pathways. We have amplified and cloned cDNAs from a human glioblastoma library that encode a second CAP-related protein, CAP2. The human CAP and CAP2 proteins are 64% identical. Expression of either human CAP or CAP2 in S. cerevisiae cap- strains suppresses phenotypes associated with deletion of the C-terminal domain of CAP, but does not restore hyper-activation of adenylyl cyclase by RAS2val19. Similarly, expression of either human CAP or CAP2 in S. pombe cap- strains suppresses the morphological and temperature-sensitive phenotypes associated with deletion of the C-terminal domain of CAP in this yeast. In addition, expression of human CAP, but not CAP2, suppresses the propensity to sporulate due to deletion of the N-terminal domain of CAP in S. pombe. This latter observation suggests that human CAP restores normal adenylyl cyclase activity in S. pombe cap- cells. Thus, functional properties of both N-terminal and C-terminal domains are conserved between the human and S. pombe CAP proteins.

  3. Impairment of adenylyl cyclase signal transduction in mecobalamin-deficient rats.

    Science.gov (United States)

    Hatta, S; Watanabe, M; Ikeda, H; Kamada, H; Saito, T; Ohshika, H

    1995-11-30

    This study examined alterations in the beta-adrenoceptor-G5-adenylyl cyclase system in cerebral cortex membranes from vitamin B12-deficient rats fed a diet lacking vitamin B12 (mecobalamin) for 15 weeks. Basal, 5(7)-guanylylimidodiphosphate (GppNHp)-, isoproterenol-, and forskolin-stimulated adenylyl cyclase activities were significantly reduced in mecobalamin-deficient rats compared with those in control rats. However, no significant differences were observed in the amount and function of G5- estimated by immunoblotting and guanine nucleotide photoaffinity labeling, respectively, or in the densities and the dissociation constants of beta-adrenoceptors, estimated by [125I] pindolol binding, between control and the deficient rats. These results indicate that vitamin B12 deficiency results in the impairment of the coupling among the beta-adrenoceptor, G5- and the catalytic subunit of adenylyl cyclase, and in dysfunction of the catalytic subunit of the enzyme, suggesting that vitamin B12 participates in the regulation of neuronal adenylyl cyclase signal transduction.

  4. A novel Myb homolog initiates Dictyostelium development by induction of adenylyl cyclase expression

    NARCIS (Netherlands)

    Otsuka, Hideshi; Haastert, Peter J.M. van

    1998-01-01

    Dictyostelium development is induced by starvation. The adenylyl cyclase gene ACA is one of the first genes expressed upon starvation. ACA produces extracellular cAMP that induces chemotaxis, aggregation, and differentiation in neighboring cells. Using insertional mutagenesis we have isolated a muta

  5. Adenylate nucleotide levels and energy charge in Arthrobacter crystallopoietes during growth and starvation.

    Science.gov (United States)

    Leps, W T; Ensign, J C

    1979-07-01

    The adenylate nucleotide concentrations, based on internal water space, were determined in cells of Arthrobacter crystallopoietes during growth and starvation and the energy charge of the cells was calculated. The energy charge of spherical cells rose during the first 10 h of growth, then remained nearly constant for as long as 20 h into the stationary phase. The energy charge of rod-shaped cells rose during the first 4 h of growth, then remained constant during subsequent growth and decreased in the stationary growth phase. Both spherical and rod-shaped cells excreted adenosine monophosphate but not adenosine triphosphate or adenosine diphosphate during starvation. The intracellular energy charge of spherical cells declined during the initial 10 h and then remained constant for 1 week of starvation at a value of 0.78. The intracellular energy charge of rod-shaped cells declined during the first 24 h of starvation, remained constant for the next 80 h, then decreased to a value of 0.73 after a total of 168 h starvation. Both cell forms remained more than 90% viable during this time. Addition of a carbon and energy source to starving cells resulted in an increase in the ATP concentration and as a result the energy charge increased to the smae levels as found during growth.

  6. Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases.

    Science.gov (United States)

    He, Weizhi; Zhang, Xuhui; Zhang, Jun; Jia, Xu; Zhang, Jing; Sun, Wenxia; Jiang, Hengyi; Chen, Dongrong; Murchie, Alastair I H

    2013-08-01

    The acquisition of antibiotic resistance by human pathogens poses a significant threat to public health. The mechanisms that control the proliferation and expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are a historically important class of antibiotics that were introduced in the 1940s. Aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug or enzymatic modification of the target rRNA through methylation or through the overexpression of efflux pumps. In our recent paper, we reported that expression of the aminoglycoside resistance genes encoding the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes was controlled by an aminoglycoside-sensing riboswitch RNA. This riboswitch is embedded in the leader RNA of the aac/aad genes and is associated with the integron cassette system. The leader RNA can sense and bind specific aminoglycosides such that the binding causes a structural transition in the leader RNA, which leads to the induction of aminoglycoside antibiotic resistance. Specific aminoglycosides induce reporter gene expression mediated by the leader RNA. Aminoglycoside RNA binding was measured directly and, aminoglycoside-induced changes in RNA structure monitored by chemical probing. UV cross-linking and mutational analysis identified potential aminoglycoside binding sites on the RNA.

  7. Phylogenetic relationships of 18 passerines based on Adenylate Kinase Intron 5 sequences

    Institute of Scientific and Technical Information of China (English)

    GUO Hui-yan; YU Hui-xin; BAI Su-ying; MA Yu-kun

    2008-01-01

    The 18 species of bird studied originally are known to belong to muscicapids, robins and sylviids of passerines, but some disputations are always present in their classification systems. In this experiment, phylogenetic relationships of 18 species of passerines were studied using Adenylate Kinase Intron 5 (AK5) sequences and DNA techniques. Through sequences analysis in comparison with each other, phylogenetic tree figures of 18 species of passerines were constructed using Neighbor-Joining (NJ) and Maximum-Parsimony (MP) methods . The results showed that sylviids should be listed as an independent family, while robins and flycatchers should be listed into Muscicapidae. Since the phylogenetic relationships between long-tailed tits and old world warblers are closer than that between long-tailed tits and parids, the long-tailed tits should be independent of paridae and be categorized into aegithalidae. Muscicapidae and Paridae are known to be two monophylitic families, but Sylviidae is not a monophyletic group. AK5 sequences had better efficacy in resolving close relationships of interspecies among intrageneric groups.

  8. Adenylate kinase 2 (AK2 promotes cell proliferation in insect development

    Directory of Open Access Journals (Sweden)

    Chen Ru-Ping

    2012-09-01

    Full Text Available Abstract Background Adenylate kinase 2 (AK2 is a phosphotransferase that catalyzes the reversible reaction 2ADP(GDP ↔ ATP(GTP + AMP and influences cellular energy homeostasis. However, the role of AK2 in regulating cell proliferation remains unclear because AK2 has been reported to be involved in either cell proliferation or cell apoptosis in different cell types of various organisms. Results This study reports AK2 promotion of cell proliferation using the lepidopteran insect Helicoverpa armigera and its epidermal cell line HaEpi as models. Western blot analysis indicates that AK2 constitutively expresses in various tissues during larval development. Immunocytochemistry analysis indicates that AK2 localizes in the mitochondria. The recombinant expressed AK2 in E. coli promotes cell growth and viability of HaEpi cell line by 3-(4, 5-Dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT assay. AK2 knockdown in larvae by RNA interference causes larval growth defects, including body weight decrease and development delay. AK2 knockdown in larvae also decreases the number of circulating haemocytes. The mechanism for such effects might be the suppression of gene transcription involved in insect development caused by AK2 knockdown. Conclusion These results show that AK2 regulates cell growth, viability, and proliferation in insect growth and development.

  9. On the Roles of Substrate Binding and Hinge Unfolding in Conformational Changes of Adenylate Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Brokaw, Jason B.; Chu, Jhih-wei

    2010-11-17

    We characterized the conformational change of adenylate kinase (AK) between open and closed forms by conducting five all-atom molecular-dynamics simulations, each of 100 ns duration. Different initial structures and substrate binding configurations were used to probe the pathways of AK conformational change in explicit solvent, and no bias potential was applied. A complete closed-to-open and a partial open-to-closed transition were observed, demonstrating the direct impact of substrate-mediated interactions on shifting protein conformation. The sampled configurations suggest two possible pathways for connecting the open and closed structures of AK, affirming the prediction made based on available x-ray structures and earlier works of coarse-grained modeling. The trajectories of the all-atom molecular-dynamics simulations revealed the complexity of protein dynamics and the coupling between different domains during conformational change. Calculations of solvent density and density fluctuations surrounding AK did not show prominent variation during the transition between closed and open forms. Finally, we characterized the effects of local unfolding of an important hinge near Pro177 on the closed-to-open transition of AK and identified a novel mechanism by which hinge unfolding modulates protein conformational change. The local unfolding of Pro177 hinge induces alternative tertiary contacts that stabilize the closed structure and prevent the opening transition.

  10. The energy profiles of atomic conformational transition intermediates of adenylate kinase.

    Science.gov (United States)

    Feng, Yaping; Yang, Lei; Kloczkowski, Andrzej; Jernigan, Robert L

    2009-11-15

    The elastic network interpolation (ENI) (Kim et al., Biophys J 2002;83:1620-1630) is a computationally efficient and physically realistic method to generate conformational transition intermediates between two forms of a given protein. However it can be asked whether these calculated conformations provide good representatives for these intermediates. In this study, we use ENI to generate conformational transition intermediates between the open form and the closed form of adenylate kinase (AK). Based on C(alpha)-only intermediates, we construct atomic intermediates by grafting all the atoms of known AK structures onto the C(alpha) atoms and then perform CHARMM energy minimization to remove steric conflicts and optimize these intermediate structures. We compare the energy profiles for all intermediates from both the CHARMM force-field and from knowledge-based energy functions. We find that the CHARMM energies can successfully capture the two energy minima representing the open AK and closed AK forms, while the energies computed from the knowledge-based energy functions can detect the local energy minimum representing the closed AK form and show some general features of the transition pathway with a somewhat similar energy profile as the CHARMM energies. The combinatorial extension structural alignment (Shindyalov et al., 1998;11:739-747) and the k-means clustering algorithm are then used to show that known PDB structures closely resemble computed intermediates along the transition pathway.

  11. Structure and function of adenylate kinase isozymes in normal humans and muscular dystrophy patients.

    Science.gov (United States)

    Hamada, M; Takenaka, H; Fukumoto, K; Fukamachi, S; Yamaguchi, T; Sumida, M; Shiosaka, T; Kurokawa, Y; Okuda, H; Kuby, S A

    1987-01-01

    Two isozymes of adenylate kinase from human Duchenne muscular dystrophy serum, one of which was an aberrant form specific to DMD patients, were separated by Blue Sepharose CL-6B affinity chromatography. The separated aberrant form possessed a molecular weight of 98,000 +/- 1,500, whereas the normal serum isozyme had a weight of 87,000 +/- 1,600, as determined by SDS-polyacrylamide gel electrophoresis, gel filtration, and sedimentation equilibrium. The sedimentation coefficients were 5.8 S and 5.6 S for the aberrant form and the normal form, respectively. Both serum isozymes are tetramers. The subunit size of the aberrant isozyme (Mr = 24,700) was very similar to that of the normal human liver isozyme, and the subunit size of the normal isozyme (Mr = 21,700) was very similar to that of the normal human muscle enzyme. The amino acid composition of the normal serum isozyme was similar to that of the muscle-type enzyme, and that of the aberrant isozyme was similar to that of the liver enzyme, with some exceptions in both cases.

  12. Influence of sampling, storage, processing and optimal experimental conditions on adenylate energy charge in penaeid shrimp

    Directory of Open Access Journals (Sweden)

    Robles-Romo Arlett

    2014-01-01

    Full Text Available Adenylate energy charge (AEC has been used as a practical index of the physiological status and health in several disciplines, such as ecotoxicology and aquaculture. This study standardizes several procedures for AEC determination in penaeid shrimp that are very sensitive to sampling. We concluded that shrimp can be frozen in liquid nitrogen and then stored at -76°C for up to two years for further analysis, or freshly dissected and immediately homogenized in acid. Other cooling procedures, such as immersion in cold water or placing shrimp on ice for 15 min resulted in 50% and 73% decreases in ATP levels, and 9-fold and 10-fold increases in IMP levels, respectively. Optimal values of AEC (0.9 were obtained in shrimp recently transferred from ponds to indoor conditions, but decreased to 0.77 after one month in indoor tanks when stocked at high densities; the AEC re-established to 0.85 when the shrimps were transferred to optimal conditions (lower density and dark tanks. While the levels of arginine phosphate followed the same pattern, its levels did not fully re-establish. Comparison of different devices for sample homogenization indicated that a cryogenic ball mill mixer is the more suitable procedure.

  13. Membrane-Pore Forming Characteristics of the Bordetella pertussis CyaA-Hemolysin Domain

    Directory of Open Access Journals (Sweden)

    Chattip Kurehong

    2015-04-01

    Full Text Available Previously, the 126-kDa Bordetella pertussis CyaA pore-forming/hemolysin (CyaA-Hly domain was shown to retain its hemolytic activity causing lysis of susceptible erythrocytes. Here, we have succeeded in producing, at large quantity and high purity, the His-tagged CyaA-Hly domain over-expressed in Escherichia coli as a soluble hemolytically-active form. Quantitative assays of hemolysis against sheep erythrocytes revealed that the purified CyaA-Hly domain could function cooperatively by forming an oligomeric pore in the target cell membrane with a Hill coefficient of ~3. When the CyaA-Hly toxin was incorporated into planar lipid bilayers (PLBs under symmetrical conditions at 1.0 M KCl, 10 mM HEPES buffer (pH 7.4, it produced a clearly resolved single channel with a maximum conductance of ~35 pS. PLB results also revealed that the CyaA-Hly induced channel was unidirectional and opened more frequently at higher negative membrane potentials. Altogether, our results first provide more insights into pore-forming characteristics of the CyaA-Hly domain as being the major pore-forming determinant of which the ability to induce such ion channels in receptor-free membranes could account for its cooperative hemolytic action on the target erythrocytes.

  14. Population diversity among Bordetella pertussis isolates, United States, 1935-2009.

    Science.gov (United States)

    Schmidtke, Amber J; Boney, Kathryn O; Martin, Stacey W; Skoff, Tami H; Tondella, M Lucia; Tatti, Kathleen M

    2012-08-01

    Since the 1980s, pertussis notifications in the United States have been increasing. To determine the types of Bordetella pertussis responsible for these increases, we divided 661 B. pertussis isolates collected in the United States during 1935-2009 into 8 periods related to the introduction of novel vaccines or changes in vaccination schedule. B. pertussis diversity was highest from 1970-1990 (94%) but declined to ≈ 70% after 1991 and has remained constant. During 2006-2009, 81.6% of the strains encoded multilocus sequence type prn2-ptxP3-ptxS1A-fim3B, and 64% were multilocus variable number tandem repeat analysis type 27. US trends were consistent with those seen internationally; emergence and predominance of the fim3B allele was the only molecular characteristic associated with the increase in pertussis notifications. Changes in the vaccine composition and schedule were not the direct selection pressures that resulted in the allele changes present in the current B. pertussis population.

  15. The drug resistance of Bordetella pertussis%百日咳杆菌耐药

    Institute of Scientific and Technical Information of China (English)

    杨永弘; 杨颖

    2016-01-01

    大环内酯类抗生素是治疗百日咳的首选药物。然而,近年来出现了百日咳杆菌对红霉素等大环内酯类抗生素耐药的现象,局部监测耐药率甚至达到90%。现将从百日咳杆菌耐药情况、耐药机制、耐药后的抗生素选择、耐药的防治和控制等方面进行综述。%Macrolides have been the first line antibiotic choice for treatment and prophylaxis of pertussis.In re-cent years,several erythromycin -resistant Bordetella pertussis(B.pertussis)isolates have been reported worldwide.Fur-thermore,the resistant rate was high to 90% in some regions.This review aimes to summarize the current status of drug resistance,the resistance mechanism and the control and prevention of the resistance of B.pertussis.

  16. Structural and functional studies of BapC protein of Bordetella pertussis.

    Science.gov (United States)

    Riaz, Muhammad Rizwan; Siddiqi, Abdul Rauf; Bokhari, Habib

    2015-05-01

    Bordetella pertussis, the causative agent of whooping cough, attaches to mucosal surface in upper respiratory tract, where it produces a variety of surface associated and secreted autotransporter molecules among others. In this study we have cloned newly identified member of autotransporter family BapC (B. pertussis autotransporter protein C); expressed it in Escherichia coli and characterized it for its different properties. We have also raised antisera to BapC protein; the antisera were used in immunofluorescence assay to determine the surface association of the protein. Results suggest that BapC in B. pertussis Taberman parent is surface exposed when compared with the respective BapC mutant. The neutralizing effect of anti-BapC serum was also evaluated in the presence of active complement proteins and results suggest that antiserum can potentiate the killing of B. pertussis cells in the presence of added source of complement. Structure of the protein was also studied, both α and β domains of the protein were modeled, β domain exhibits typical transmembrane β-barrel porin topology whereas α domain behaves as a characteristic bacterial autotransporter passenger domain.

  17. Genetic diversity and population dynamics of Bordetella pertussis in China between 1950-2007.

    Science.gov (United States)

    Xu, Yinghua; Zhang, Liu; Tan, Yajun; Wang, Lichan; Zhang, Shumin; Wang, Junzhi

    2015-11-17

    Pertussis is an acute respiratory infectious disease caused by the bacterium Bordetella pertussis. Although pertussis vaccination was introduced in the 1960s, pertussis is still an endemic disease in China. To better understand the genetic diversity of the Chinese B. pertussis population, we characterized 115 clinical isolates obtained in China during 1950-2007 using multilocus variable-number tandem repeat analysis (MLVA). Forty-six different B. pertussis MLVA profiles (MTs) were identified, of which 13 were new MTs. Analysis using a minimum-spanning tree showed that distinct MTs were prevalent during different periods, suggesting that a dynamic change in B. pertussis MTs occurred over time in China. The predominant MTs in recent isolates from China were different from those of many developed countries. A decreasing trend in genetic diversity of the B. pertussis population was observed following the introduction of pertussis vaccines. Similar to the pertactin 2 (prn2) allele, the novel pertussis toxin promoter (ptxP3) allele first emerged in 2000, but unlike trends elsewhere, ptxP1 remained predominant among the isolates, further reflecting the unique temporal trends in the B. pertussis population in China. Our results suggest that temporal changes in the B. pertussis population may be closely associated with vaccination coverage and the vaccine types used. These data may lead to an improved understanding of the virulence mechanism of B. pertussis and facilitate new strategies for controlling this infectious disease.

  18. Pertactin negative Bordetella pertussis demonstrates higher fitness under vaccine selection pressure in a mixed infection model.

    Science.gov (United States)

    Safarchi, Azadeh; Octavia, Sophie; Luu, Laurence Don Wai; Tay, Chin Yen; Sintchenko, Vitali; Wood, Nicholas; Marshall, Helen; McIntyre, Peter; Lan, Ruiting

    2015-11-17

    Whooping cough or pertussis is a highly infectious respiratory disease in humans caused by Bordetella pertussis. The use of acellular vaccines (ACV) has been associated with the recent resurgence of pertussis in developed countries including Australia despite high vaccination coverage where B. pertussis strains that do not express pertactin (Prn), a key antigenic component of the ACV, have emerged and become prevalent. In this study, we used an in vivo competition assay in mice immunised with ACV and in naïve (control) mice to compare the proportion of colonisation with recent clinical Prn positive and Prn negative B. pertussis strains from Australia. The Prn negative strain colonised the respiratory tract more effectively than the Prn positive strain in immunised mice, out-competing the Prn positive strain by day 3 of infection. However, in control mice, the Prn positive strain out-competed the Prn negative strain. Our findings of greater ability of Prn negative strains to colonise ACV-immunised mice are consistent with reports of selective advantage for these strains in ACV-immunised humans.

  19. Analysis of Bordetella pertussis clinical isolates circulating in European countries during the period 1998-2012.

    Science.gov (United States)

    van Gent, M; Heuvelman, C J; van der Heide, H G; Hallander, H O; Advani, A; Guiso, N; Wirsing von Kőnig, C H; Vestrheim, D F; Dalby, T; Fry, N K; Pierard, D; Detemmerman, L; Zavadilova, J; Fabianova, K; Logan, C; Habington, A; Byrne, M; Lutyńska, A; Mosiej, E; Pelaz, C; Gröndahl-Yli-Hannuksela, K; Barkoff, A M; Mertsola, J; Economopoulou, A; He, Q; Mooi, F R

    2015-04-01

    Despite more than 50 years of vaccination, pertussis is still an endemic disease, with regular epidemic outbreaks. With the exception of Poland, European countries have replaced whole-cell vaccines (WCVs) by acellular vaccines (ACVs) in the 1990s. Worldwide, antigenic divergence in vaccine antigens has been found between vaccine strains and circulating strains. In this work, 466 Bordetella pertussis isolates collected in the period 1998-2012 from 13 European countries were characterised by multi-locus antigen sequence typing (MAST) of the pertussis toxin promoter (ptxP) and of the genes coding for proteins used in the ACVs: pertussis toxin (Ptx), pertactin (Prn), type 2 fimbriae (Fim2) and type 3 fimbriae (Fim3). Isolates were further characterised by fimbrial serotyping, multi-locus variable-number tandem repeat analysis (MLVA) and pulsed-field gel electrophoresis (PFGE). The results showed a very similar B. pertussis population for 12 countries using ACVs, while Poland, which uses a WCV, was quite distinct, suggesting that ACVs and WCVs select for different B. pertussis populations. This study forms a baseline for future studies on the effect of vaccination programmes on B. pertussis populations.

  20. Whole-genome sequencing reveals the effect of vaccination on the evolution of Bordetella pertussis.

    Science.gov (United States)

    Xu, Yinghua; Liu, Bin; Gröndahl-Yli-Hannuksila, Kirsi; Tan, Yajun; Feng, Lu; Kallonen, Teemu; Wang, Lichan; Peng, Ding; He, Qiushui; Wang, Lei; Zhang, Shumin

    2015-08-18

    Herd immunity can potentially induce a change of circulating viruses. However, it remains largely unknown that how bacterial pathogens adapt to vaccination. In this study, Bordetella pertussis, the causative agent of whooping cough, was selected as an example to explore possible effect of vaccination on the bacterial pathogen. We sequenced and analysed the complete genomes of 40 B. pertussis strains from Finland and China, as well as 11 previously sequenced strains from the Netherlands, where different vaccination strategies have been used over the past 50 years. The results showed that the molecular clock moved at different rates in these countries and in distinct periods, which suggested that evolution of the B. pertussis population was closely associated with the country vaccination coverage. Comparative whole-genome analyses indicated that evolution in this human-restricted pathogen was mainly characterised by ongoing genetic shift and gene loss. Furthermore, 116 SNPs were specifically detected in currently circulating ptxP3-containing strains. The finding might explain the successful emergence of this lineage and its spread worldwide. Collectively, our results suggest that the immune pressure of vaccination is one major driving force for the evolution of B. pertussis, which facilitates further exploration of the pathogenicity of B. pertussis.

  1. Better colonisation of newly emerged Bordetella pertussis in the co-infection mouse model study.

    Science.gov (United States)

    Safarchi, Azadeh; Octavia, Sophie; Luu, Laurence Don Wai; Tay, Chin Yen; Sintchenko, Vitali; Wood, Nicholas; Marshall, Helen; McIntyre, Peter; Lan, Ruiting

    2016-07-25

    Molecular epidemiological data indicates that the resurgence of pertussis (whooping cough) in populations with high vaccine coverage is associated with genomic adaptation of Bordetella pertussis, the causative agent of the disease, to vaccine selection pressure. We have previously shown that in the period after the introduction of acellular pertussis vaccine (ACV), the majority of circulating strains in Australia switched to single nucleotide polymorphism (SNP) cluster I (carrying ptxP3/prn2), replacing SNP cluster II (carrying ptxP1/prn3). In this study, we carried out an in vivo competition assay using a mouse model infected with SNP cluster I and II B. pertussis strains from Australia. We found that the SNP cluster I strain colonised better than the SNP cluster II strain, in both naïve and immunised mice, suggesting that SNP cluster I strains had better fitness regardless of immunisation status of the host, consistent with SNP cluster I strains replacing SNP cluster II. Nevertheless, we found that ACV enhanced clearance of both SNP cluster I and II strains from the mouse respiratory tract.

  2. Purification design and practice for pertactin, the third component of acellular pertussis vaccine, from Bordetella pertussis.

    Science.gov (United States)

    Li, Zenglan; Zhang, Yan; Wang, Qi; Li, Zhengjun; Liu, Yongdong; Zhang, Songping; Zhang, Guifeng; Ma, Guanghui; Luo, Jian; Su, Zhiguo

    2016-07-25

    Development of acellular pertussis vaccine (aPV) requires purification of several components from Bordetella pertussis. While the components pertussis toxin (PT) and filamentous hemagglutinin (FHA) have been successfully purified, the third component, pertactin, proves to be a difficult target due to its very low concentration. In order to solve its purification problem, we performed the surface potential analysis with GRASP2 program. The results demonstrated that there are two major charge patches, one negative and one positive, which are located separately on this linear protein. For this special feature, we designed a dual ion exchange chromatography strategy including an anionic exchange and a cationic exchange process for separation of pertactin from the heat extract of B. pertussis. The initial anionic exchange chromatography concentrated the product from 1.7% to 14.6%, with recovery of 80%. The second cationic exchange chromatography increased the purity to 33%, with recovery of 83%. The final purification was accomplished by hydrophobic interaction chromatography, yielding a purity of 96%. The total recovery of the three columns was 61%. Characterization of the purified antigen was performed with CD, intrinsic fluorescence, HP-SEC and western-blot, showing that the purified protein kept its natural conformation and immune-reactivity. The rationally designed process proved to be feasible, and it is suitable for large-scale preparation of the third aPV component pertactin.

  3. Proteomics-identified Bvg-activated autotransporters protect against bordetella pertussis in a mouse model.

    Science.gov (United States)

    de Gouw, Daan; Gouw, Daan de; de Jonge, Marien I; Jonge, Marien I de; Hermans, Peter W M; Wessels, Hans J C T; Zomer, Aldert; Berends, Alinda; Pratt, Catherine; Berbers, Guy A; Mooi, Frits R; Diavatopoulos, Dimitri A

    2014-01-01

    Pertussis is a highly infectious respiratory disease of humans caused by the bacterium Bordetella pertussis. Despite high vaccination coverage, pertussis has re-emerged globally. Causes for the re-emergence of pertussis include limited duration of protection conferred by acellular pertussis vaccines (aP) and pathogen adaptation. Pathogen adaptations involve antigenic divergence with vaccine strains, the emergence of strains which show enhanced in vitro expression of a number of virulence-associated genes and of strains that do not express pertactin, an important aP component. Clearly, the identification of more effective B. pertussis vaccine antigens is of utmost importance. To identify novel antigens, we used proteomics to identify B. pertussis proteins regulated by the master virulence regulatory system BvgAS in vitro. Five candidates proteins were selected and it was confirmed that they were also expressed in the lungs of naïve mice seven days after infection. The five proteins were expressed in recombinant form, adjuvanted with alum and used to immunize mice as stand-alone antigens. Subsequent respiratory challenge showed that immunization with the autotransporters Vag8 and SphB1 significantly reduced bacterial load in the lungs. Whilst these antigens induced strong opsonizing antibody responses, we found that none of the tested alum-adjuvanted vaccines - including a three-component aP - reduced bacterial load in the nasopharynx, suggesting that alternative immunological responses may be required for efficient bacterial clearance from the nasopharynx.

  4. Population dynamics of Bordetella pertussis in Finland and Sweden, neighbouring countries with different vaccination histories.

    Science.gov (United States)

    Elomaa, Annika; Advani, Abdolreza; Donnelly, Declan; Antila, Mia; Mertsola, Jussi; He, Qiushui; Hallander, Hans

    2007-01-15

    Pertussis is an infectious disease of the respiratory tract in humans caused by Bordetella pertussis. Despite extensive vaccinations, pertussis has remained endemic and re-emerged. In Finland, a whole-cell pertussis vaccine has been used since 1952 with high coverage. In Sweden, whole-cell vaccinations were introduced in 1953 but ceased in 1979, and pertussis vaccinations with acellular vaccines were introduced in 1996. Two epidemic peaks occurred in Sweden in 1999 and 2002 and in Finland in 1999 and 2003. We compared Finnish (N=193) and Swedish (N=455) B. pertussis isolates circulating in 1998-2003 together with vaccine strains used in these neighbouring countries with different vaccination histories. The isolates were analysed by serotyping, genotyping of pertussis toxin S1 subunit and pertactin, and pulsed-field gel electrophoresis. The results suggest that the sequential epidemics were caused by clonal expansion of a certain B. pertussis strain possibly transmitted from Sweden to Finland. The roles of antigenic variation in immunity-driven evolution of B. pertussis in both countries are discussed.

  5. Drug Target Identification and Elucidation of Natural Inhibitors for Bordetella petrii: An In Silico Study

    Science.gov (United States)

    Ray, Manisha; Pattnaik, Animesh; Pradhan, Sukanta Kumar

    2016-01-01

    Environmental microbes like Bordetella petrii has been established as a causative agent for various infectious diseases in human. Again, development of drug resistance in B. petrii challenged to combat against the infection. Identification of potential drug target and proposing a novel lead compound against the pathogen has a great aid and value. In this study, bioinformatics tools and technology have been applied to suggest a potential drug target by screening the proteome information of B. petrii DSM 12804 (accession No. PRJNA28135) from genome database of National Centre for Biotechnology information. In this regards, the inhibitory effect of nine natural compounds like ajoene (Allium sativum), allicin (A. sativum), cinnamaldehyde (Cinnamomum cassia), curcumin (Curcuma longa), gallotannin (active component of green tea and red wine), isoorientin (Anthopterus wardii), isovitexin (A. wardii), neral (Melissa officinalis), and vitexin (A. wardii) have been acknowledged with anti-bacterial properties and hence tested against identified drug target of B. petrii by implicating computational approach. The in silico studies revealed the hypothesis that lpxD could be a potential drug target and with recommendation of a strong inhibitory effect of selected natural compounds against infection caused due to B. petrii, would be further validated through in vitro experiments. PMID:28154518

  6. Interaction of Bordetella bronchiseptica and Its Lipopolysaccharide with In Vitro Culture of Respiratory Nasal Epithelium

    Directory of Open Access Journals (Sweden)

    Carolina Gallego

    2013-01-01

    Full Text Available The nasal septa of fetal rabbits at 26 days of gestation were harvested by cesarean section of the does while under anesthesia and then exposed to Bordetella bronchiseptica or its lipopolysaccharide (LPS for periods of 2 and 4 hours. A total of 240 explants were used. The tissues were examined using the Hematoxylin & Eosin technique. Then, semithin sections (0.5 m were stained with toluidine blue and examined with indirect immunoperoxidase (IPI and lectin histochemistry. The most frequent and statistically significant findings were as follows: (1 cell death and increased goblet cell activity when exposed to bacteria and (2 cell death, cytoplasmic vacuolation and infiltration of polymorphonuclear leukocytes when exposed to LPS. The lesions induced by the bacterium were more severe than with LPS alone, except for the cytoplasmic vacuolation in epithelial cells. IPI stained the ciliated border of the epithelium with the bacterium more intensely, while LPS lectin histochemistry preferentially labeled the cytoplasm of goblet cell. These data indicate that B. bronchiseptica and its LPS may have an affinity for specific glycoproteins that would act as adhesion receptors in both locations.

  7. A Proteomic Characterization of Bordetella pertussis Clinical Isolates Associated with a California State Pertussis Outbreak

    Directory of Open Access Journals (Sweden)

    Yulanda M. Williamson

    2015-01-01

    Full Text Available Bordetella pertussis (Bp is the etiologic agent of pertussis (whooping cough, a highly communicable infection. Although pertussis is vaccine preventable, in recent years there has been increased incidence, despite high vaccine coverage. Possible reasons for the rise in cases include the following: Bp strain adaptation, waning vaccine immunity, increased surveillance, and improved clinical diagnostics. A pertussis outbreak impacted California (USA in 2010; children and preadolescents were the most affected but the burden of disease fell mainly on infants. To identify protein biomarkers associated with this pertussis outbreak, we report a whole cellular protein characterization of six Bp isolates plus the pertussis acellular vaccine strain Bp Tohama I (T, utilizing gel-free proteomics-based mass spectrometry (MS. MS/MS tryptic peptide detection and protein database searching combined with western blot analysis revealed three Bp isolates in this study had markedly reduced detection of pertactin (Prn, a subunit of pertussis acellular vaccines. Additionally, antibody affinity capture technologies were implemented using anti-Bp T rabbit polyclonal antisera and whole cellular proteins to identify putative immunogens. Proteome profiling could shed light on pathogenesis and potentially lay the foundation for reduced infection transmission strategies and improved clinical diagnostics.

  8. Modulation of the NF-kappaB pathway by Bordetella pertussis filamentous hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Tzvia Abramson

    Full Text Available BACKGROUND: Filamentous hemagglutinin (FHA is a cell-associated and secreted adhesin produced by Bordetella pertussis with pro-apoptotic and pro-inflammatory activity in host cells. Given the importance of the NF-kappaB transcription factor family in these host cell responses, we examined the effect of FHA on NF-kappaB activation in macrophages and bronchial epithelial cells, both of which are relevant cell types during natural infection. METHODOLOGY/PRINCIPAL FINDINGS: Exposure to FHA of primary human monocytes and transformed U-937 macrophages, but not BEAS-2B epithelial cells, resulted in early activation of the NF-kappaB pathway, as manifested by the degradation of cytosolic IkappaB alpha, by NF-kappaB DNA binding, and by the subsequent secretion of NF-kappaB-regulated inflammatory cytokines. However, exposure of macrophages and human monocytes to FHA for two hours or more resulted in the accumulation of cytosolic IkappaB alpha, and the failure of TNF-alpha to activate NF-kappaB. Proteasome activity was attenuated following exposure of cells to FHA for 2 hours, as was the nuclear translocation of RelA in BEAS-2B cells. CONCLUSIONS: These results reveal a complex temporal dynamic, and suggest that despite short term effects to the contrary, longer exposures of host cells to this secreted adhesin may block NF-kappaB activation, and perhaps lead to a compromised immune response to this bacterial pathogen.

  9. Comparison of five commercial enzyme-linked immunosorbent assays for detection of antibodies to Bordetella pertussis.

    Science.gov (United States)

    Kösters, K; Riffelmann, M; Dohrn, B; von König, C H

    2000-05-01

    Measuring antibodies to Bordetella pertussis antigens is mostly done by enzyme-linked immunosorbent assays (ELISAs). We compared the performance of five commercially available ELISA kits with the help of 65 serum specimens which were repetitively tested for evaluation of the kits. The specimens contained 20 paired serum samples from patients with clinical pertussis, 15 samples were from children vaccinated with a diphtheria-tetanus-acellular pertussis vaccine, seven specimens were taken from an interlaboratory comparison of ELISAs, and there were three reference preparations from the Food and Drug Administration's (FDA's) Laboratory of Pertussis and from our laboratory. Reference values were obtained from the FDA or from results obtained with an in-house ELISA. Commercial ELISAs were compared with respect to their reproducibility and variability, their ability to detect significant titer rises in paired serum samples, their ability to detect an immune response after vaccination, and the comparability of semiquantitative and quantitative results. Reproducibility was generally good (>89%), intra-assay variation ranged from 2.4 to 28.7%, and indeterminate results were recorded in up to 18.5% of all specimens. Most kits correctly identified the antibody response to an acellular pertussis vaccine. None of the commercial kits identified all cases of pertussis correctly, and the sensitivity ranged between 60 and 95%. All five commercial ELISAs showed great discrepancies when comparing semiquantitative results and contained obviously different antigen preparations. Our data suggest that the five commercial ELISAs tested here need further improvement and standardization.

  10. Rapid and sensitive detection of Bordetella bronchiseptica by loop-mediated isothermal amplification (LAMP

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Bordetella bronchiseptica causes acute and chronic respiratory infections in diverse animal species and occasionally in humans. In this study, we described the establishment of a simple, sensitive and cost-efficient loop-mediated isothermal amplification (LAMP assay for the detection of B. bronchiseptica. A set of primers towards a 235 bp region within the flagellum gene of B. bronchiseptica was designed with online software.. The specificity of the LAMP assay was examined by using 6 porcine pathogens and 100 nasal swabs collected from healthy pigs and suspect infected pigs. The results indicated that positive reactions were confirmed for all B. bronchiseptica and no cross-reactivity was observed from other non-B. bronchiseptica. In sensitivity evaluations, the technique successfully detected a serial dilutions of extracted B. bronchiseptica DNA with a detection limit of 9 copies, which was 10 times more sensitive than that of PCR. Compared with conventional PCR, the higher sensitivity of LAMP method and no need for the complex instrumentation make this LAMP assay a promising alternative for the diagnosis of B. bronchiseptica in rural areas and developing countries where there lacks of complex laboratory services.

  11. Immunoproteomic Analysis ofBordetella bronchisepticaOuter Membrane Proteins and Identiifcation of New Immunogenic Proteins

    Institute of Scientific and Technical Information of China (English)

    JI Quan-an

    2014-01-01

    Bordetella bronchiseptica is a Gram-negative pathogen that causes acute and chronic respiratory infection in a variety of animals. To identify useful antigen candidates for diagnosis and subunit vaccine ofB. bronchiseptica, immunoproteomic analysis was adopted to analyse outer membrane proteins of it. The outer membrane proteins extracted fromB. bronchiseptica were separated by two-dimensional gel electrophoresis and analyzed by Western blotting for their reactivity with the convalescent serum against two strains. Immunogenic proteins were identiifed by matrix-assisted laser desorption/ionization time of lfight-mass spectrometry (MALDI-TOF-MS), a total of 14 proteins are common immunoreactive proteins, of which 1 was known antigen and 13 were novel immunogenic proteins forB. bronchiseptica. Putative lipoprotein gene was cloned and recombinantly expressed. The recombinant protein induced high titer antibody, but showed low protective indices against challenges with HB (B. bronchiseptica strain isolated from a infected rabbit). The mortality of mice was 80% compared to 100% of positive controls. The identiifcation of these novel antigenic proteins is an important resource for further development of a new diagnostic test and vaccine for B. bronchiseptica.

  12. Production and characterization of recombinant pertactin, fimbriae 2 and fimbriae 3 from Bordetella pertussis

    Directory of Open Access Journals (Sweden)

    Hou Qiming

    2009-12-01

    Full Text Available Abstract Background Bordetella pertussis is a causative agent of pertussis or whooping cough in humans. Pertactin (Prn, fimbriae 2 (Fim2 and fimbriae 3 (Fim3 of B. pertussis are important virulence factors and immunogens which have been included in some acellular pertussis vaccines. In this present study, we cloned, expressed and purified Prn, Fim2 and Fim3, respectively. The immunogenicity and protective efficacy of the three recombinant proteins (rPrn, rFim2 and rFim3 were investigated in mouse model. Results Three recombinant proteins with amount of 12 to 25 mg/L were produced. Compared to the control mice only immunized with adjuvant, serum IgG antibody responses were significantly induced in the mice immunized with rPrn, rFim2 or rFim3 (P P B. pertussis (P Conclusions We have developed an efficient method to produce large amounts of rPrn, rFim2, and rFim3 from B. pertussis. The three recombinant proteins induced both humoral and cellular immune responses in mice. Immunization with rPrn also conferred protection against pertussis in mouse infection models. Our results indicated that the recombinant proteins still retain their immunological properties and highlighted the potential of the recombinant proteins for the future development of the B. pertussis vaccines.

  13. Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes.

    Science.gov (United States)

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-03-01

    Thermodynamic studies on ligand-protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer-based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4-7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl-ligand with hexyl spacer. The selectivity in the series of dansyl-ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ΔH(0)/ΔG(0). The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design.

  14. Differential expression of type III effector BteA protein due to IS481 insertion in Bordetella pertussis.

    Directory of Open Access Journals (Sweden)

    Hyun-Ja Han

    Full Text Available BACKGROUND: Bordetella pertussis is the primary etiologic agent of the disease pertussis. Universal immunization programs have contributed to a significant reduction in morbidity and mortality of pertussis; however, incidence of the disease, especially in adolescents and adults, has increased in several countries despite high vaccination coverage. During the last three decades, strains of Bordetella pertussis in circulation have shifted from the vaccine-type to the nonvaccine-type in many countries. A comparative proteomic analysis of the strains was performed to identify protein(s involved in the type shift. METHODOLOGY/PRINCIPAL FINDING: Proteomic analysis identified one differentially expressed protein in the B. pertussis strains: the type III cytotoxic effector protein BteA, which is responsible for host cell death in Bordetella bronchiseptica infections. Immunoblot analysis confirmed the prominent expression of BteA protein in the nonvaccine-type strains but not in the vaccine-type strains. Sequence analysis of the vaccine-type strains revealed an IS481 insertion in the 5' untranslated region of bteA, -136 bp upstream of the bteA start codon. A high level of bteA transcripts from the IS481 promoter was detected in the vaccine-type strains, indicating that the transcript might be an untranslatable form. Furthermore, BteA mutant studies demonstrated that BteA expression in the vaccine-type strains is down-regulated by the IS481 insertion. CONCLUSION/SIGNIFICANCE: The cytotoxic effector BteA protein is expressed at higher levels in B. pertussis nonvaccine-type strains than in vaccine-type strains. This type-dependent expression is due to an insertion of IS481 in B. pertussis clinical strains, suggesting that augmented expression of BteA protein might play a key role in the type shift of B. pertussis.

  15. Studies on adenosine triphosphate transphosphorylases. Human isoenzymes of adenylate kinase: isolation and physicochemical comparison of the crystalline human ATP-AMP transphosphorylases from muscle and liver.

    Science.gov (United States)

    Kuby, S A; Fleming, G; Frischat, A; Cress, M C; Hamada, M

    1983-02-10

    Procedures are described for the isolation, in crystalline form, of the adenylate kinases from autopsy samples of human muscle and from human liver. Weight average molecular weights were determined by sedimentation equilibrium to be 22,000 (+/- 700) and 25,450 (+/- 160) for the human muscle and liver isoenzymes, respectively. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, their molecular weights were estimated to be 21,700 and 26,500 for the muscle and liver enzymes, respectively. Both isoenzymes are accordingly monomeric proteins in their native state. Amino acid analyses are reported here for the normal human liver, calf liver, and rabbit liver adenylate kinases and compared with the normal human muscle, calf muscle, and rabbit muscle myokinases. The liver types as a group and the muscle types as a group show a great deal of homology, but some distinct differences are evident between the liver and muscle enzyme groups, especially in the number of residues of His, Pro, half-cystine, and the presence of tryptophan in the liver enzymes. The normal human liver adenylate kinase, as isolated in this report, has proved to be similar in its properties, if not identical, to the adenylate kinase isolated directly from human liver mitochondria (Hamada, M., Sumida, M., Okuda, H., Watanabe, T., Nojima, M., and Kuby, S. A. (1982) J. Biol. Chem. 257, 13120-13128). Therefore, the liver-type adenylate kinase may be considered a mitochondrial type.

  16. Combinatorial effects of genistein and sex-steroids on the level of cystic fibrosis transmembrane regulator (CFTR), adenylate cyclase (AC) and cAMP in the cervix of ovariectomised rats.

    Science.gov (United States)

    Salleh, Naguib; Ismail, Nurain; Muniandy, Sekaran; Korla, Praveen Kumar; Giribabu, Nelli

    2015-12-01

    The combinatorial effects of genistein and estrogen (E) or estrogen plus progesterone (E+P) on CFTR, AC and cAMP levels in cervix were investigated. Ovariectomised adult female rats received 50 or 100mg/kg/day genistein with E or E followed by E+P [E+(E+P)] for seven consecutive days. Cervixes were harvested and analyzed for CFTR mRNA levels by Real-time PCR. Distribution of AC and CFTR proteins in endocervix were observed by immunohistochemistry. Levels of cAMP were measured by enzyme-immunoassay. Molecular docking predicted interaction between genistein and AC. Our results indicate that levels of CFTR, AC and cAMP in cervix of rats receiving genistein plus E were higher than E-only treatment (pCFTR, AC and cAMP in cervix of E and E+(E+P)-treated rats by genistein could affect the cervical secretory function which could influence the female reproductive processes.

  17. 希金斯炭疽菌腺苷酸环化酶相关蛋白生物信息学分析%Bioinformatics analysis of adenylate cyclase associated protein in Colletotrichum higginsianum

    Institute of Scientific and Technical Information of China (English)

    韩长志

    2014-01-01

    [目的]希金斯炭疽菌可引起菜心、萝卜等十字花科植物的炭疽病,给经济产生巨大损失.目前,炭疽病菌对苯并咪唑类杀菌剂所产生的抗性问题引起了学者广泛关注,有待于开发新的作用靶标的化学药剂.腺苷酸环化酶(AC)在G蛋白信号传导途径上发挥着重要作用.[方法]基于酿酒酵母中Srv2序列,通过Blastp比对及关键词搜索,并利用SMART进行保守结构域分析,同时,通过对该菌中AC相关蛋白序列进行理化性质、信号肽、跨膜结构域等分析.[结果]明确该菌含有2个与Srv2同源的AC相关蛋白CgCap1、CgCap2,就理化性质、二级结构等特征方面而言,CgCap1、CgCap2与Srv2有着较大的差异.此外,通过对Srv2与CgCap1、CgCap2及其同源序列进行比对分析,发现CgCap1、CgCap2序列分别与其同源序列及Srv2的C端、N端具有较大的相似性,推测上述序列分别为希金斯炭疽菌AC的C端和N端.[结论]该研究为深入开展该菌AC的研究打下坚实的理论基础.

  18. Bioinformatics Analysis of Adenylate Cyclase (AC)in Col letotrichum graminicola%禾谷炭疽菌腺苷酸环化酶的生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    韩长志

    2014-01-01

    The typical AC sequence was compared with on-line C.protein databank by Blastp comparison,then the bioinformatics of conserved domain,physicochemical property,cell signal peptide, structure of transmembrane domain and secondary structure was analyzed by SMART and the genetic relationships between typical AC sequence in C.graminicola and the homologous sequence of other species were compared to provide a reference for development and utilization of new medicines with drug target of C.graminicola.The results showed that CgCap1in C.graminicola is a homologous protein with Srv2 in S. cerevisiae.CgCap 1 located in the plasma membrane with conserved CARP domain and isoeletric point with 5~6 range belongs to the sequence of hydrophily,instable protein and without signal peptide.The proportion of βfold is low in the secondary structure.The genetic relationship between CgCap 1 and Colletoreichum is close.%为了给禾谷炭疽菌新靶标药物的研究开发提供参考,以酿酒酵母的典型腺苷酸环化酶(AC)序列为基础,利用炭疽菌属蛋白数据库在线对其进行 Blastp 比对及关键词搜索,通过 SMART 对该菌典型AC 蛋白的保守结构域、理化性质、细胞信号肽、跨膜区结构以及二级结构等生物信息学进行分析,同时比较禾谷炭疽菌中典型 AC 氨基酸序列与其他物种同源序列的遗传关系。结果表明:禾谷炭疽菌中存在一个与酿酒酵母 Srv2同源的序列,命名为 CgCap1腺苷酸环化酶蛋白,该酶蛋白包含有530个氨基酸,基因序列长1906 bp 具有保守 CARP 结构域,等电点蛋白在5~6范围,属亲水性、不稳定蛋白,不含信号肽序列,定位于质膜上,二级结构中的β折叠所占比例较低,与同属于炭疽菌属真菌胶孢炭疽菌、西瓜炭疽菌的亲缘关系较近。

  19. sigE facilitates the adaptation of Bordetella bronchiseptica to stress conditions and lethal infection in immunocompromised mice

    Directory of Open Access Journals (Sweden)

    Barchinger Sarah E

    2012-08-01

    Full Text Available Abstract Background The cell envelope of a bacterial pathogen can be damaged by harsh conditions in the environment outside a host and by immune factors during infection. Cell envelope stress responses preserve the integrity of this essential compartment and are often required for virulence. Bordetella species are important respiratory pathogens that possess a large number of putative transcription factors. However, no cell envelope stress responses have been described in these species. Among the putative Bordetella transcription factors are a number of genes belonging to the extracytoplasmic function (ECF group of alternative sigma factors, some of which are known to mediate cell envelope stress responses in other bacteria. Here we investigate the role of one such gene, sigE, in stress survival and pathogenesis of Bordetella bronchiseptica. Results We demonstrate that sigE encodes a functional sigma factor that mediates a cell envelope stress response. Mutants of B. bronchiseptica strain RB50 lacking sigE are more sensitive to high temperature, ethanol, and perturbation of the envelope by SDS-EDTA and certain β-lactam antibiotics. Using a series of immunocompromised mice deficient in different components of the innate and adaptive immune responses, we show that SigE plays an important role in evading the innate immune response during lethal infections of mice lacking B cells and T cells. SigE is not required, however, for colonization of the respiratory tract of immunocompetent mice. The sigE mutant is more efficiently phagocytosed and killed by peripheral blood polymorphonuclear leukocytes (PMNs than RB50, and exhibits decreased cytotoxicity toward macrophages. These altered interactions with phagocytes could contribute to the defects observed during lethal infection. Conclusions Much of the work on transcriptional regulation during infection in B. bronchiseptica has focused on the BvgAS two-component system. This study reveals that the Sig

  20. Construction of Bordetella pertussis strains with enhanced production of genetically-inactivated Pertussis Toxin and Pertactin by unmarked allelic exchange

    Directory of Open Access Journals (Sweden)

    Buasri Wasin

    2012-04-01

    Full Text Available Abstract Background Acellular Pertussis vaccines against whooping cough caused by Bordetella pertussis present a much-improved safety profile compared to the original vaccine of killed whole cells. The principal antigen of acellular Pertussis vaccine, Pertussis Toxin (PT, must be chemically inactivated to obtain the corresponding toxoid (PTd. This process, however, results in extensive denaturation of the antigen. The development of acellular Pertussis vaccines containing PTd or recombinant PT (rPT with inactivated S1, Filamentous Hemagglutinin (FHA, and Pertactin (PRN has shown that the yield of PRN was limiting, whereas FHA was overproduced. To improve antigen yields and process economics, we have constructed strains of Bordetella pertussis that produce enhanced levels of both rPT and PRN. Results Three recombinant strains of Bordetella pertussis were obtained by homologous recombination using an allelic exchange vector, pSS4245. In the first construct, the segment encoding PT subunit S1 was replaced by two mutations (R9K and E129G that removed PT toxicity and Bp-WWC strain was obtained. In the second construct, a second copy of the whole cluster of PT structural genes containing the above mutations was inserted elsewhere into the chromosome of Bp-WWC and the Bp-WWD strain was obtained. This strain generated increased amounts of rPT (3.77 ± 0.53 μg/mL compared to Bp-WWC (2.61 ± 0.16 μg/mL and wild type strain (2.2 μg/mL. In the third construct, a second copy of the prn gene was inserted into the chromosome of Bp-WWD to obtain Bp-WWE. Strain Bp-WWE produced PRN at 4.18 ± 1.02 μg/mL in the cell extract which was about two-fold higher than Bp-WWC (2.48 ± 0.10 μg/mL and Bp-WWD (2.31 ± 0.17 μg/mL. Purified PTd from Bp-WWD at 0.8-1.6 μg/well did not show any toxicity against Chinese hamster ovary (CHO cell whereas purified PT from WT demonstrated a cell clustering endpoint at 2.6 pg/well. Conclusions We have constructed Bordetella

  1. Molecular evolution of the two-component system BvgAS involved in virulence regulation in Bordetella.

    Directory of Open Access Journals (Sweden)

    Julien Herrou

    Full Text Available The whooping cough agent Bordetella pertussis is closely related to Bordetella bronchiseptica, which is responsible for chronic respiratory infections in various mammals and is occasionally found in humans, and to Bordetella parapertussis, one lineage of which causes mild whooping cough in humans and the other ovine respiratory infections. All three species produce similar sets of virulence factors that are co-regulated by the two-component system BvgAS. We characterized the molecular diversity of BvgAS in Bordetella by sequencing the two genes from a large number of diverse isolates. The response regulator BvgA is virtually invariant, indicating strong functional constraints. In contrast, the multi-domain sensor kinase BvgS has evolved into two different types. The pertussis type is found in B. pertussis and in a lineage of essentially human-associated B. bronchiseptica, while the bronchiseptica type is associated with the majority of B. bronchiseptica and both ovine and human B. parapertussis. BvgS is monomorphic in B. pertussis, suggesting optimal adaptation or a recent population bottleneck. The degree of diversity of the bronchiseptica type BvgS is markedly different between domains, indicating distinct evolutionary pressures. Thus, absolute conservation of the putative solute-binding cavities of the two periplasmic Venus Fly Trap (VFT domains suggests that common signals are perceived in all three species, while the external surfaces of these domains vary more extensively. Co-evolution of the surfaces of the two VFT domains in each type and domain swapping experiments indicate that signal transduction in the periplasmic region may be type-specific. The two distinct evolutionary solutions for BvgS confirm that B. pertussis has emerged from a specific B. bronchiseptica lineage. The invariant regions of BvgS point to essential parts for its molecular mechanism, while the variable regions may indicate adaptations to different lifestyles. The

  2. Bordetella bronchiseptica como un riesgo importante de salud publica. Estudio clínico patológico en conejos

    OpenAIRE

    Valladares-Carranza B.; Ortega-Santana C; Velazquez-Ordoñez V; Zamora-Espinosa J.L.; Peñuelas-Rivas C.G.; Castro-Maruri J.; Talavera-Rojas M.; Alonso-Fresan M.U.; Zaragoza-Bastida A.

    2011-01-01

    B. bronchiseptica es reconocida como un patógeno primario inicial del tracto respiratorio en animales domésticos, puede provocar tos de las perreras (perro), respiración ruidosa (en conejos) y rinitis atrófica (en el cerdo). Conel objeto de enfatizar la importancia que representa en salud pública la infección ocasionada por Bordetella bronchiseptica se presenta un caso clínico ocurrido en una unidad de producción cúnicola en el Estado de México, México. Por la mortalidad observada en la gran...

  3. Identification of the chlE gene encoding oxygen-independent Mg-protoporphyrin IX monomethyl ester cyclase in cyanobacteria.

    Science.gov (United States)

    Yamanashi, Kaori; Minamizaki, Kei; Fujita, Yuichi

    2015-08-07

    The fifth ring (E-ring) of chlorophyll (Chl) a is produced by Mg-protoporphyrin IX monomethyl ester (MPE) cyclase. There are two evolutionarily unrelated MPE cyclases: oxygen-independent (BchE) and oxygen-dependent (ChlA/AcsF) MPE cyclases. Although ChlA is the sole MPE cyclase in Synechocystis PCC 6803, it is yet unclear whether BchE exists in cyanobacteria. A BLAST search suggests that only few cyanobacteria possess bchE. Here, we report that two bchE candidate genes from Cyanothece strains PCC 7425 and PCC 7822 restore the photosynthetic growth and bacteriochlorophyll production in a bchE-lacking mutant of Rhodobacter capsulatus. We termed these cyanobacterial bchE orthologs "chlE."

  4. Overexpression of guanylate cyclase activating protein 2 in rod photoreceptors in vivo leads to morphological changes at the synaptic ribbon

    OpenAIRE

    Natalia López-del Hoyo; Lucrezia Fazioli; Santiago López-Begines; Laura Fernández-Sánchez; Nicolás Cuenca; Jordi Llorens; Pedro de la Villa; Ana Méndez

    2012-01-01

    Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based o...

  5. Complete Genome Sequence of Bordetella pertussis Strain VA-190 Isolated from a Vaccinated 10-Year-Old Patient with Whooping Cough

    Science.gov (United States)

    Eby, Joshua C.; Turner, Lauren; Nguyen, Bryan; Kang, June; Neville, Carly

    2016-01-01

    The number of cases of pertussis has increased in the United States despite vaccination. We present the genome of an isolate of Bordetella pertussis from a vaccinated patient from Virginia. The genome was sequenced by long-read methodology and compared to that of a clinical isolate used for laboratory studies, D420. PMID:27634997

  6. Expression of bvg-repressed genes in Bordetella pertussis is controlled by RisA through a novel c-di-GMP signaling pathway

    Science.gov (United States)

    The BvgAS two component system of Bordetella pertussis controls virulence factor expression. In addition, BvgAS controls expression of the bvg-repressed genes through the action of the repressor, BvgR. The transcription factor RisA is inhibited by BvgR, and when BvgR is not expressed RisA induces th...

  7. Cyclic di-GMP regulation of the bvg-repressed genes and the orphan response regulator RisA in Bordetella pertussis

    Science.gov (United States)

    Expression of Bordetella pertussis virulence factors is activated by the BvgAS two-component system. Under modulating growth conditions BvgAS indirectly represses another set of genes through the action of BvgR, a bvg-activated protein. BvgR blocks activation of the response regulator RisA which is ...

  8. Complete Genome Sequence of Bordetella pertussis Strain VA-190 Isolated from a Vaccinated 10-Year-Old Patient with Whooping Cough.

    Science.gov (United States)

    Eby, Joshua C; Turner, Lauren; Nguyen, Bryan; Kang, June; Neville, Carly; Temple, Louise

    2016-09-15

    The number of cases of pertussis has increased in the United States despite vaccination. We present the genome of an isolate of Bordetella pertussis from a vaccinated patient from Virginia. The genome was sequenced by long-read methodology and compared to that of a clinical isolate used for laboratory studies, D420.

  9. The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein

    Science.gov (United States)

    Ramos-Espiritu, Lavoisier; Diaz, Ana; Nardin, Charlee; Saviola, Anthony J.; Shaw, Fiona; Plitt, Tamar; Yang, Xia; Wolchok, Jedd; Pirog, Edyta C.; Desman, Garrett; Sboner, Andrea; Zhang, Tuo; Xiang, Jenny; Merghoub, Taha; Levin, Lonny R.; Buck, Jochen; Zippin, Jonathan H.

    2016-01-01

    cAMP signaling pathways can both stimulate and inhibit the development of cancer; however, the sources of cAMP important for tumorigenesis remain poorly understood. Soluble adenylyl cyclase (sAC) is a non-canonical, evolutionarily conserved, nutrient- and pH-sensing source of cAMP. sAC has been implicated in the metastatic potential of certain cancers, and it is differentially localized in human cancers as compared to benign tissues. We now show that sAC expression is reduced in many human cancers. Loss of sAC increases cellular transformation in vitro and malignant progression in vivo. These data identify the metabolic/pH sensor soluble adenylyl cyclase as a previously unappreciated tumor suppressor protein. PMID:27323809

  10. Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans.

    Science.gov (United States)

    Hallem, Elissa A; Spencer, W Clay; McWhirter, Rebecca D; Zeller, Georg; Henz, Stefan R; Rätsch, Gunnar; Miller, David M; Horvitz, H Robert; Sternberg, Paul W; Ringstad, Niels

    2011-01-04

    CO(2) is both a critical regulator of animal physiology and an important sensory cue for many animals for host detection, food location, and mate finding. The free-living soil nematode Caenorhabditis elegans shows CO(2) avoidance behavior, which requires a pair of ciliated sensory neurons, the BAG neurons. Using in vivo calcium imaging, we show that CO(2) specifically activates the BAG neurons and that the CO(2)-sensing function of BAG neurons requires TAX-2/TAX-4 cyclic nucleotide-gated ion channels and the receptor-type guanylate cyclase GCY-9. Our results delineate a molecular pathway for CO(2) sensing and suggest that activation of a receptor-type guanylate cyclase is an evolutionarily conserved mechanism by which animals detect environmental CO(2).

  11. Genomic content of Bordetella pertussis clinical isolates circulating in areas of intensive children vaccination.

    Directory of Open Access Journals (Sweden)

    Valérie Bouchez

    Full Text Available BACKGROUND: The objective of the study was to analyse the evolution of Bordetella pertussis population and the influence of herd immunity in different areas of the world where newborns and infants are highly vaccinated. METHODOLOGY: The analysis was performed using DNA microarray on 15 isolates, PCR on 111 isolates as well as GS-FLX sequencing technology on 3 isolates and the B. pertussis reference strain, Tohama I. PRINCIPAL FINDINGS: Our analyses demonstrate that the current circulating isolates are continuing to lose genetic material as compared to isolates circulating during the pre-vaccine era whatever the area of the world considered. The lost genetic material does not seem to be important for virulence. Our study confirms that the use of whole cell vaccines has led to the control of isolates that were similar to vaccine strains. GS-FLX sequencing technology shows that current isolates did not acquire any additional material when compared with vaccine strains or with isolates of the pre-vaccine era and that the sequenced strain Tohama I is not representative of the isolates. Furthermore, this technology allowed us to observe that the number of Insertion Sequence elements contained in the genome of the isolates is temporally increasing or varying between isolates. CONCLUSIONS: B. pertussis adaptation to humans is still in progress by losing genetic material via Insertion Sequence elements. Furthermore, recent isolates did not acquire any additional material when compared with vaccine strains or with isolates of the pre-vaccine era. Herd immunity, following intensive vaccination of infants and children with whole cell vaccines, has controlled isolates similar to the vaccine strains without modifying significantly the virulence of the isolates. With the replacement of whole cell vaccines by subunit vaccines, containing only few bacterial antigens targeting the virulence of the bacterium, one could hypothesize the circulation of isolates

  12. Prevalence and molecular characterization of pertactin-deficient Bordetella pertussis in the United States.

    Science.gov (United States)

    Pawloski, L C; Queenan, A M; Cassiday, P K; Lynch, A S; Harrison, M J; Shang, W; Williams, M M; Bowden, K E; Burgos-Rivera, B; Qin, X; Messonnier, N; Tondella, M L

    2014-02-01

    Pertussis has shown a striking resurgence in the United States, with a return to record numbers of reported cases as last observed in the 1950s. Bordetella pertussis isolates lacking pertactin, a key antigen component of the acellular pertussis vaccine, have been observed, suggesting that B. pertussis is losing pertactin in response to vaccine immunity. Screening of 1,300 isolates from outbreak and surveillance studies (historical isolates collected from 1935 up to 2009, isolates from the 2010 California pertussis outbreak, U.S. isolates from routine surveillance between 2010-2012, and isolates from the 2012 Washington pertussis outbreak) by conventional PCR and later by Western blotting and prn sequencing analyses ultimately identified 306 pertactin-deficient isolates. Of these pertactin-deficient strains, 276 were identified as having an IS481 in the prn gene (prnIS481 positive). The first prnIS481-positive isolate was found in 1994, and the next prnIS481-positive isolates were not detected until 2010. The prevalence of pertactin-deficient isolates increased substantially to more than 50% of collected isolates in 2012. Sequence analysis of pertactin-deficient isolates revealed various types of mutations in the prn gene, including two deletions, single nucleotide substitutions resulting in a stop codon, an inversion in the promoter, and a single nucleotide insertion resulting in a frameshift mutation. All but one mutation type were found in prn2 alleles. CDC 013 was a predominant pulsed-field gel electrophoresis (PFGE) profile in the pertactin-positive isolates (203/994) but was found in only 5% (16/306) of the pertactin-deficient isolates. Interestingly, PFGE profiles CDC 002 and CDC 237 represented 55% (167/306) of the identified pertactin-deficient isolates. These results indicate that there has been a recent dramatic increase in pertactin-deficient B. pertussis isolates throughout the United States.

  13. Immunological Signatures after Bordetella pertussis Infection Demonstrate Importance of Pulmonary Innate Immune Cells

    Science.gov (United States)

    Brummelman, Jolanda; van der Maas, Larissa; Tilstra, Wichard; Pennings, Jeroen L. A.; Han, Wanda G. H.; van Els, Cécile A. C. M.; van Riet, Elly; Kersten, Gideon F. A.; Metz, Bernard

    2016-01-01

    Effective immunity against Bordetella pertussis is currently under discussion following the stacking evidence of pertussis resurgence in the vaccinated population. Natural immunity is more effective than vaccine-induced immunity indicating that knowledge on infection-induced responses may contribute to improve vaccination strategies. We applied a systems biology approach comprising microarray, flow cytometry and multiplex immunoassays to unravel the molecular and cellular signatures in unprotected mice and protected mice with infection-induced immunity, around a B. pertussis challenge. Pre-existing systemic memory Th1/Th17 cells, memory B-cells, and mucosal IgA specific for Ptx, Vag8, Fim2/3 were detected in the protected mice 56 days after an experimental infection. In addition, pre-existing high activity and reactivation of pulmonary innate cells such as alveolar macrophages, M-cells and goblet cells was detected. The pro-inflammatory responses in the lungs and serum, and neutrophil recruitment in the spleen upon an infectious challenge of unprotected mice were absent in protected mice. Instead, fast pulmonary immune responses in protected mice led to efficient bacterial clearance and harbored potential new gene markers that contribute to immunity against B. pertussis. These responses comprised of innate makers, such as Clca3, Retlna, Glycam1, Gp2, and Umod, next to adaptive markers, such as CCR6+ B-cells, CCR6+ Th17 cells and CXCR6+ T-cells as demonstrated by transcriptome analysis. In conclusion, besides effective Th1/Th17 and mucosal IgA responses, the primary infection-induced immunity benefits from activation of pulmonary resident innate immune cells, achieved by local pathogen-recognition. These molecular signatures of primary infection-induced immunity provided potential markers to improve vaccine-induced immunity against B. pertussis. PMID:27711188

  14. The stimulated innate resistance event in Bordetella pertussis infection is dependent on reactive oxygen species production.

    Science.gov (United States)

    Zurita, E; Moreno, G; Errea, A; Ormazabal, M; Rumbo, M; Hozbor, D

    2013-07-01

    The exacerbated induction of innate immune responses in airways can abrogate diverse lung infections by a phenomenon known as stimulated innate resistance (StIR). We recently demonstrated that the enhancement of innate response activation can efficiently impair Bordetella pertussis colonization in a Toll-like receptor 4 (TLR4)-dependent manner. The aim of this work was to further characterize the effect of lipopolysaccharide (LPS) on StIR and to identify the mechanisms that mediate this process. Our results showed that bacterial infection was completely abrogated in treated mice when the LPS of B. pertussis (1 μg) was added before (48 h or 24 h), after (24 h), or simultaneously with the B. pertussis challenge (10(7) CFU). Moreover, we detected that LPS completely cleared bacterial infection as soon as 2 h posttreatment. This timing suggests that the observed StIR phenomenon should be mediated by fast-acting antimicrobial mechanisms. Although neutrophil recruitment was already evident at this time point, depletion assays using an anti-GR1 antibody showed that B. pertussis clearance was achieved even in the absence of neutrophils. To evaluate the possible role of free radicals in StIR, we performed animal assays using the antioxidant N-acetyl cysteine (NAC), which is known to inactivate oxidant species. NAC administration blocked the B. pertussis clearance induced by LPS. Nitrite concentrations were also increased in the LPS-treated mice; however, the inhibition of nitric oxide synthetases did not suppress the LPS-induced bacterial clearance. Taken together, our results show that reactive oxygen species (ROS) play an essential role in the TLR4-dependent innate clearance of B. pertussis.

  15. Bordetella pertussis naturally occurring isolates with altered lipooligosaccharide structure fail to fully mature human dendritic cells.

    Science.gov (United States)

    Brummelman, Jolanda; Veerman, Rosanne E; Hamstra, Hendrik Jan; Deuss, Anna J M; Schuijt, Tim J; Sloots, Arjen; Kuipers, Betsy; van Els, Cécile A C M; van der Ley, Peter; Mooi, Frits R; Han, Wanda G H; Pinelli, Elena

    2015-01-01

    Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Despite high vaccination coverage, outbreaks are being increasingly reported worldwide. Possible explanations include adaptation of this pathogen, which may interfere with recognition by the innate immune system. Here, we describe innate immune recognition and responses to different B. pertussis clinical isolates. By using HEK-Blue cells transfected with different pattern recognition receptors, we found that 3 out of 19 clinical isolates failed to activate Toll-like receptor 4 (TLR4). These findings were confirmed by using the monocytic MM6 cell line. Although incubation with high concentrations of these 3 strains resulted in significant activation of the MM6 cells, it was found to occur mainly through interaction with TLR2 and not through TLR4. When using live bacteria, these 3 strains also failed to activate TLR4 on HEK-Blue cells, and activation of MM6 cells or human monocyte-derived dendritic cells was significantly lower than activation induced by the other 16 strains. Mass spectrum analysis of the lipid A moieties from these 3 strains indicated an altered structure of this molecule. Gene sequence analysis revealed mutations in genes involved in lipid A synthesis. Findings from this study indicate that B. pertussis isolates that do not activate TLR4 occur naturally and that this phenotype may give this bacterium an advantage in tempering the innate immune response and establishing infection. Knowledge on the strategies used by this pathogen in evading the host immune response is essential for the improvement of current vaccines or for the development of new ones.

  16. Comparative genomics of Bordetella pertussis reveals progressive gene loss in Finnish strains.

    Directory of Open Access Journals (Sweden)

    Eriikka Heikkinen

    Full Text Available BACKGROUND: Bordetella pertussis is a gram-negative bacterium that infects the human respiratory tract and causes pertussis or whooping cough. The disease has resurged in many countries including Finland where the whole-cell pertussis vaccine has been used for more than 50 years. Antigenic divergence has been observed between vaccine strains and clinical isolates in Finland. To better understand genome evolution in B. pertussis circulating in the immunized population, we developed an oligonucleotide-based microarray for comparative genomic analysis of Finnish strains isolated during the period of 50 years. METHODOLOGY/PRINCIPAL FINDINGS: The microarray consisted of 3,582 oligonucleotides (70-mer and covered 94% of 3,816 ORFs of Tohama I, the strain of which the genome has been sequenced. Twenty isolates from 1953 to 2004 were studied together with two Finnish vaccine strains and two international reference strains. The isolates were selected according to their characteristics, e.g. the year and place of isolation and pulsed-field gel electrophoresis profiles. Genomic DNA of the tested strains, along with reference DNA of Tohama I strain, was labelled and hybridized. The absence of genes as established with microarrays, was confirmed by PCR. Compared with the Tohama I strain, Finnish isolates lost 7 (8.6 kb to 49 (55.3 kb genes, clustered in one to four distinct loci. The number of lost genes increased with time, and one third of lost genes had functions related to inorganic ion transport and metabolism, or energy production and conversion. All four loci of lost genes were flanked by the insertion sequence element IS481. CONCLUSION/SIGNIFICANCE: Our results showed that the progressive gene loss occurred in Finnish B. pertussis strains isolated during a period of 50 years and confirmed that B. pertussis is dynamic and is continuously evolving, suggesting that the bacterium may use gene loss as one strategy to adapt to highly immunized populations.

  17. Correlation of Real Time PCR Cycle Threshold Cut-Off with Bordetella pertussis Clinical Severity.

    Directory of Open Access Journals (Sweden)

    Shelly Bolotin

    Full Text Available Bordetella pertussis testing performed using real-time polymerase chain reaction (RT-PCR is interpreted based on a cycle threshold (Ct value. At Public Health Ontario Laboratories (PHOL, a Ct value <36 is reported as positive, and Ct values ≥36 and <40 are reported as indeterminate. PHOL reported indeterminate results to physicians and public health units until May 2012, after which these results were only reported to physicians. We investigated the association between Ct value and disease symptom and severity to examine the significance of indeterminate results clinically, epidemiologically and for public health reporting. B. pertussis positive and indeterminate RT-PCR results were linked to pertussis cases reported in the provincial Integrated Public Health Information System (iPHIS, using deterministic linkage. Patients with positive RT-PCR results had a lower median age of 10.8 years compared to 12.0 years for patients with indeterminate results (p = 0.24. Hospitalized patients had significantly lower Ct values than non-hospitalized patients (median Ct values of 20.7 vs. 31.6, p<0.001. The proportion of patients reporting the most indicative symptoms of pertussis did not differ between patients with positive vs. indeterminate RT-PCR results. Taking the most indicative symptoms of pertussis as the gold-standard, the positive predictive value of the RT-PCR test was 68.1%. RT-PCR test results should be interpreted in the context of the clinical symptoms, age, vaccination status, prevalence, and other factors. Further information on interpretation of indeterminate RT-PCR results may be needed, and the utility of reporting to public health practitioners should be re-evaluated.

  18. SNP-based typing: a useful tool to study Bordetella pertussis populations.

    Directory of Open Access Journals (Sweden)

    Marjolein van Gent

    Full Text Available To monitor changes in Bordetella pertussis populations, mainly two typing methods are used; Pulsed-Field Gel Electrophoresis (PFGE and Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA. In this study, a single nucleotide polymorphism (SNP typing method, based on 87 SNPs, was developed and compared with PFGE and MLVA. The discriminatory indices of SNP typing, PFGE and MLVA were found to be 0.85, 0.95 and 0.83, respectively. Phylogenetic analysis, using SNP typing as Gold Standard, revealed false homoplasies in the PFGE and MLVA trees. Further, in contrast to the SNP-based tree, the PFGE- and MLVA-based trees did not reveal a positive correlation between root-to-tip distance and the isolation year of strains. Thus PFGE and MLVA do not allow an estimation of the relative age of the selected strains. In conclusion, SNP typing was found to be phylogenetically more informative than PFGE and more discriminative than MLVA. Further, in contrast to PFGE, it is readily standardized allowing interlaboratory comparisons. We applied SNP typing to study strains with a novel allele for the pertussis toxin promoter, ptxP3, which have a worldwide distribution and which have replaced the resident ptxP1 strains in the last 20 years. Previously, we showed that ptxP3 strains showed increased pertussis toxin expression and that their emergence was associated with increased notification in The Netherlands. SNP typing showed that the ptxP3 strains isolated in the Americas, Asia, Australia and Europe formed a monophyletic branch which recently diverged from ptxP1 strains. Two predominant ptxP3 SNP types were identified which spread worldwide. The widespread use of SNP typing will enhance our understanding of the evolution and global epidemiology of B. pertussis.

  19. High prevalence of erythromycin-resistant Bordetella pertussis in Xi'an, China.

    Science.gov (United States)

    Wang, Z; Cui, Z; Li, Y; Hou, T; Liu, X; Xi, Y; Liu, Y; Li, H; He, Q

    2014-11-01

    Resistance of Bordetella pertussis, the causative agent of pertussis, to erythromycin is rare. Recently, several Chinese isolates were found to be erythromycin resistant. This study aimed to investigate the occurrence of pertussis in children suffering persistent cough and the prevalence of B. pertussis resistance to erythromycin in Xi'an, China. Three hundred and thirteen patients with suspected pertussis admitted to Xi'an Children's Hospital from January 2012 through to December 2013 were included and their nasopharyngeal (NP) swabs were taken for culture and PCRs (targeting IS481 and ptx-Pr). PCR-based sequencing was used to identify the A2047G mutation of B. pertussis 23S rRNA directly from the NP samples. Sixteen (5.1%) and 168 (53.7%) patients were positive for culture and IS481 PCR. Of the 168 samples positive for IS481 PCR, 122 (72.6%) and 100 (59.5%) were positive for ptx-Pr and 23S rRNA PCRs, respectively. All culture-positive samples were also positive for the three PCRs. Fourteen (87.5%) of the 16 B. pertussis isolates were found to be resistant to erythromycin (MICs>256 mg/L). All the 14 isolates were confirmed to have a homogeneous A2047G mutation of 23S rRNA. Of the 100 samples positive for 23S rRNA PCR, 85 (85.0%) were found to have the A2047G mutation by sequencing. Our results indicate that in Xi'an, China, pertussis remains endemic in young children, and the circulating B. pertussis strains are mostly erythromycin resistant.

  20. Direct molecular typing of Bordetella pertussis from nasopharyngeal specimens in China in 2012-2013.

    Science.gov (United States)

    Du, Q; Wang, X; Liu, Y; Luan, Y; Zhang, J; Li, Y; Liu, X; Ma, C; Li, H; Wang, Z; He, Q

    2016-07-01

    Data on the molecular epidemiology of Bordetella pertussis are limited in developing countries where whole-cell pertussis vaccines (WCVs) have been used. The aim of this study was to determine the genotypes of circulating B. pertussis in China by direct molecular typing of clinical specimens. DNA extracts of 122 nasopharyngeal swabs (NPs) positive for B. pertussis by polymerase chain reaction (PCR) (targeting IS481 and ptx-Pr) from 2012 to 2013 were used for typing using the multiple-locus variable number tandem repeat analysis (MLVA) and also by PCR-based multilocus sequence typing (MLST) of B. pertussis virulence genes (ptxP, prn, and fim3). One hundred and eight DNA extracts (89 %) generated a complete MLVA type (MT). Among the 18 MTs obtained, MT55 (52 %) and MT104 (13 %) were the most common. MT27, which is linked to the ptxP3 allele and is prevalent in many developed countries using acellular pertussis vaccines (ACVs), was only found in 7 (6 %) DNA extracts. Eighty-seven DNA extracts (71 %) produced a complete multiantigen sequence typing (MAST) type. Of them, 77 (89 %) had the ptxP1/prn1/fim3-1 allele profile. Four DNA extracts (5 %) had the ptxP3/prn2/fim3-2 profile and 3 (4 %) had the ptxP3/prn1/fim3-2 allele profile. These seven DNA extracts also harbored MT27. Our result shows that B. pertussis circulating in China was different from those found in countries where ACVs have been in use, supporting the notion that selection pressure induced by WCVs and ACVs on the bacterial population differs.

  1. Antimicrobial Susceptibility of Bordetella bronchiseptica Isolates from Swine and Companion Animals and Detection of Resistance Genes.

    Directory of Open Access Journals (Sweden)

    Sandra Prüller

    Full Text Available Bordetella bronchiseptica causes infections of the respiratory tract in swine and other mammals and is a precursor for secondary infections with Pasteurella multocida. Treatment of B. bronchiseptica infections is conducted primarily with antimicrobial agents. Therefore it is essential to get an overview of the susceptibility status of these bacteria. The aim of this study was to comparatively analyse broth microdilution susceptibility testing according to CLSI recommendations with an incubation time of 16 to 20 hours and a longer incubation time of 24 hours, as recently proposed to obtain more homogenous MICs. Susceptibility testing against a panel of 22 antimicrobial agents and two fixed combinations was performed with 107 porcine isolates from different farms and regions in Germany and 43 isolates obtained from companion animals in Germany and other European countries. Isolates with increased MICs were investigated by PCR assays for the presence of resistance genes. For ampicillin, all 107 porcine isolates were classified as resistant, whereas only a single isolate was resistant to florfenicol. All isolates obtained from companion animals showed elevated MICs for β-lactam antibiotics and demonstrated an overall low susceptibility to cephalosporines. Extension of the incubation time resulted in 1-2 dilution steps higher MIC50 values of porcine isolates for seven antimicrobial agents tested, while isolates from companion animals exhibited twofold higher MIC50/90 values only for tetracycline and cefotaxime. For three antimicrobial agents, lower MIC50 and MIC90 values were detected for both, porcine and companion animal isolates. Among the 150 isolates tested, the resistance genes blaBOR-1 (n = 147, blaOXA-2, (n = 4, strA and strB (n = 17, sul1 (n = 10, sul2 (n = 73, dfrA7 (n = 3 and tet(A (n = 8 were detected and a plasmid localisation was identified for several of the resistance genes.

  2. Development of live attenuated Bordetella pertussis strains expressing the universal influenza vaccine candidate M2e.

    Science.gov (United States)

    Li, Rui; Lim, Annabelle; Ow, Stephanie T L; Phoon, Meng Chee; Locht, Camille; Chow, Vincent T; Alonso, Sylvie

    2011-07-26

    The attenuated Bordetella pertussis BPZE1 vaccine strain represents an attractive platform for the delivery of heterologous vaccine candidates via the nasal route. The filamentous hemagglutinin (FHA) has been used to secrete or expose the foreign antigens at the bacterial surface. In this study, one, two and three copies of the Cys-containing ectodomain of matrix protein 2 (M2e) from influenza A virus were genetically fused to full length FHA and expressed in BPZE1. The secretion efficacy of the FHA-(M2e)(1,2,3) chimera in the extracellular milieu and the ability of the recombinant bacteria to colonize the mouse lungs inversely correlated with the number of M2e copies fused to FHA. Nevertheless FHA-(M2e)(3)-producing bacteria (BPLR3) triggered the highest systemic anti-M2e antibody response upon nasal administration to BALB/c mice. Nasal immunization with BPLR3 bacteria resulted in a significant reduction in the viral loads upon challenge with H1N1/PR8 influenza A virus, but did not improve the survival rate compared to BPZE1-immunized mice. Furthermore, since previous work reported that disulfide bond formation in Cys-containing passenger antigens affects the secretion efficacy of the FHA chimera, the dsbA gene encoding a periplasmic disulfide isomerase was deleted in the FHA-(M2e)(3)-producing strain. Despite improving significantly the secretion efficacy of the FHA-(M2e)(3) chimera, the dsbA deletion did not result in higher anti-M2e antibody titers in mice, due to impaired bacterial fitness and colonization ability.

  3. Performance of commercial enzyme-linked immunosorbent assays for detection of antibodies to Bordetella pertussis.

    Science.gov (United States)

    Riffelmann, M; Thiel, K; Schmetz, J; Wirsing von Koenig, C H

    2010-12-01

    Measuring antibodies to Bordetella pertussis antigens is mostly done by enzyme-linked immunosorbent assays (ELISAs). We compared the performance of ELISA kits that were commercially available in Germany. Eleven measured IgG antibodies, and nine measured IgA antibodies. An in-house ELISA with purified antigens served as a reference method. Samples included two WHO reference preparations, the former Food and Drug Administration (FDA)/Center for Biologics Evaluation and Research (CBER) reference preparations, serum samples from patients with clinically suspected pertussis, and serum samples from patients having received a combined tetanus, diphtheria, and pertussis (Tdap) vaccination. Kits using pertussis toxin (PT) as an antigen showed linearity compared to the WHO Reference preparation (r2 between 0.82 and 0.99), and these kits could quantify antibodies according to the reference preparation. ELISA kits using mixed antigens showed no linear correlation to the reference preparations. Patient results were compared to results of in-house ELISAs using a dual cutoff of either ≥100 IU/ml anti-PT IgG or ≥40 IU/ml anti-PT IgG together with ≥12 IU/ml anti-PT IgA. The sensitivities of kits measuring IgG antibodies ranged between 0.84 and 1.00. The specificities of kits using PT as an antigen were between 0.81 and 0.93. The specificities of kits using mixed antigens were between 0.51 and 0.59 and were thus not acceptable. The sensitivities of kits measuring IgA antibodies ranged between 0.53 and 0.73, and the specificities were between 0.67 and 0.94, indicating that IgA antibodies may be of limited diagnostic value. Our data suggest that ELISAs should use purified PT as an antigen and be standardized to the 1st International Reference preparation.

  4. Research on pharmacological mechanism of the treatment of Asthma by oral Bordetella pertussis

    Institute of Scientific and Technical Information of China (English)

    CHI Shen; SUN Yun; ZHANG Bao-yuan

    2008-01-01

    Objective To examine the effect of oral Bordetella pertussis on the asthma mice sensitized by ovalbumin (OVA), and explore the possible mechanism. Methods Culture the B. pertussis in Bordet-Gengou agar containing 25 % rabbit blood. Collect the bacteria and inactive them at 80 ℃ for 30 min to get whole killed B. pertussis. 32 BALB/C mice were randomly divided into control group, model-control group, model group and treatment group. The mice were sensitized and challenged with OVA to establish asthma model. Asthma mice in treatment group were orally administrated with B. pertussis 7 days before sensitization. The mice in control group and model-control group were challenged with saline. After 24 hours of last challenge, bronchoaveolar lavage fluid (BALF) and peripheral blood were collected. The total cells and eosinophils were counted in BALF. Results Compared with the control group (2.03±0.42, 0.33±0.82)× 105 mL-1 and model-control group (2.16±0.48,0.16±0.41)×105 mL-1, the total cells (10.13±1.33) ×105mL-1 and eosinophils (11.83±4.573)×105 mL-1 in BALF were more in asthma mice (P<0.01). The number of total cells (5.50±1.55)×105 mL-1 and eosinophils(0.66±0.82)×105 mL-1 in BALF were reduced in asthma mice treated with B. pertussis compared with asthma mice(P<0.01 ). Conclusions Oral B. pertussis can inhabit airway inflammation of asthma mice and has the potential of treating asthma.

  5. Prevalence and genetic characterization of pertactin-deficient Bordetella pertussis in Japan.

    Directory of Open Access Journals (Sweden)

    Nao Otsuka

    Full Text Available The adhesin pertactin (Prn is one of the major virulence factors of Bordetella pertussis, the etiological agent of whooping cough. However, a significant prevalence of Prn-deficient (Prn(- B. pertussis was observed in Japan. The Prn(- isolate was first discovered in 1997, and 33 (27% Prn(- isolates were identified among 121 B. pertussis isolates collected from 1990 to 2009. Sequence analysis revealed that all the Prn(- isolates harbor exclusively the vaccine-type prn1 allele and that loss of Prn expression is caused by 2 different mutations: an 84-bp deletion of the prn signal sequence (prn1ΔSS, n = 24 and an IS481 insertion in prn1 (prn1::IS481, n = 9. The frequency of Prn(- isolates, notably those harboring prn1ΔSS, significantly increased since the early 2000s, and Prn(- isolates were subsequently found nationwide. Multilocus variable-number tandem repeat analysis (MLVA revealed that 24 (73% of 33 Prn(- isolates belong to MLVA-186, and 6 and 3 Prn(- isolates belong to MLVA-194 and MLVA-226, respectively. The 3 MLVA types are phylogenetically closely related, suggesting that the 2 Prn(- clinical strains (harboring prn1ΔSS and prn1::IS481 have clonally expanded in Japan. Growth competition assays in vitro also demonstrated that Prn(- isolates have a higher growth potential than the Prn(+ back-mutants from which they were derived. Our observations suggested that human host factors (genetic factors and immune status that select for Prn(- strains have arisen and that Prn expression is not essential for fitness under these conditions.

  6. Bordetella pertussis infection exacerbates influenza virus infection through pertussis toxin-mediated suppression of innate immunity.

    Directory of Open Access Journals (Sweden)

    Victor I Ayala

    Full Text Available Pertussis (whooping cough is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8 infection in mouse models and the role of pertussis toxin (PT in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT and subsequently (up to 14 days later infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (ΔPT and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1β, IL-12, IFN-γ, IL-6, KC, MCP-1 and TNF-α in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers.

  7. Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain

    Science.gov (United States)

    Zippin, Jonathan H.; Farrell, Jeanne; Huron, David; Kamenetsky, Margarita; Hess, Kenneth C.; Fischman, Donald A.; Levin, Lonny R.; Buck, Jochen

    2004-01-01

    Bicarbonate-responsive “soluble” adenylyl cyclase resides, in part, inside the mammalian cell nucleus where it stimulates the activity of nuclear protein kinase A to phosphorylate the cAMP response element binding protein (CREB). The existence of this complete and functional, nuclear-localized cAMP pathway establishes that cAMP signals in intracellular microdomains and identifies an alternate pathway leading to CREB activation. PMID:14769862

  8. Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain

    OpenAIRE

    2004-01-01

    Bicarbonate-responsive “soluble” adenylyl cyclase resides, in part, inside the mammalian cell nucleus where it stimulates the activity of nuclear protein kinase A to phosphorylate the cAMP response element binding protein (CREB). The existence of this complete and functional, nuclear-localized cAMP pathway establishes that cAMP signals in intracellular microdomains and identifies an alternate pathway leading to CREB activation.

  9. Elevation of lutein content in tomato: a biochemical tug-of-war between lycopene cyclases.

    Science.gov (United States)

    Giorio, Giovanni; Yildirim, Arzu; Stigliani, Adriana Lucia; D'Ambrosio, Caterina

    2013-11-01

    Lutein is becoming increasingly important in preventive medicine due to its possible role in maintaining good vision and in preventing age-related maculopathy. Average daily lutein intake in developed countries is often below suggested daily consumption levels, and lutein supplementation could be beneficial. Lutein is also valuable in the food and feed industries and is emerging in nutraceutical and pharmaceutical markets. Currently, lutein is obtained at high cost from marigold petals, and synthesis alternatives are thus desirable. Tomato constitutes a promising starting system for production as it naturally accumulates high levels of lycopene. To develop tomato for lutein synthesis, the tomato Red Setter cultivar was transformed with the tomato lycopene ε-cyclase-encoding gene under the control of a constitutive promoter, and the HighDelta (HD) line, characterised by elevated lutein and δ-carotene content in ripe fruits, was selected. HD was crossed to the transgenic HC line and to RS(B) with the aim of converting all residual fruit δ-carotene to lutein. Fruits of both crosses were enriched in lutein and presented unusual carotenoid profiles. The unique genetic background of the crosses used in this study permitted an unprecedented analysis of the role and regulation of the lycopene cyclase enzymes in tomato. A new defined biochemical index, the relative cyclase activity ratio, was used to discern post-transcriptional regulation of cyclases, and will help in the study of carotenoid biosynthesis in photosynthetic plant species and particularly in those, like tomato, that have been domesticated for the production of food, feed or useful by-products.

  10. Interaction of Bordetella pertussis filamentous hemagglutinin with human TLR2: identification of the TLR2-binding domain.

    Science.gov (United States)

    Asgarian-Omran, Hossein; Amirzargar, Ali Akbar; Zeerleder, Sacha; Mahdavi, Marzieh; van Mierlo, Gerard; Solati, Shabnam; Jeddi-Tehrani, Mahmood; Rabbani, Hodjatallah; Aarden, Leucien; Shokri, Fazel

    2015-02-01

    Filamentous hemagglutinin (FHA) is a major adhesion and virulence factor of Bordetella pertussis and also a main component of acellular pertussis vaccines. Interaction of FHA with different receptors on human epithelial and immune cells facilitates entrance and colonization of bacteria as well as immunomodulation of the host immune response. Three overlapping segments of the FHA gene were cloned in a prokaryotic expression vector and the recombinant proteins were purified. These recombinant fragments along with the native FHA protein were employed to assess their potential Toll-like receptor (TLR) stimulatory effects and to localize the TLR binding region. TLR stimulation was monitored by applying HEK293-Blue cell lines cotransfected with TLR2, 4, or 5 and a NF-κB reporter gene. Culture supernatants were checked for secretion of the reporter gene product and IL-8 as indicators of TLR stimulation. Native FHA was found to strongly stimulate TLR2, but not TLR4 or TLR5 transfected cells. Among recombinant FHA fragments only the fragment spanning amino acid residues 1544-1917 was able to exhibit the TLR2 stimulating property of FHA. Interaction of FHA with TLR2 suggests its involvement in induction of the innate immune system against Bordetella pertussis. The TLR2-binding domain of FHA may contribute to immunoprotection against pertussis infection.

  11. Cell envelope of Bordetella pertussis: immunological and biochemical analyses and characterization of a major outer membrane porin protein

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, S.K.

    1986-01-01

    Surface molecules of Bordetella pertussis which may be important in metabolism, pathogenesis, and immunity to whooping cough were examined using cell fractionation and /sup 125/I cell surface labeling. Antigenic envelope proteins were examined by immunofluorescence microscopy and Western blotting procedures using monoclonal antibodies and convalescent sera. A surface protein with a high M/sub r/, missing in a mutant lacking the filamentous hemagglutinin, was identified in virulent Bordetella pertussis but was absent in virulent B. pertussis strains. At least three envelope proteins were found only in virulent B. pertussis strains and were absent or diminished in avirulent and most phenotypically modulated strains. Transposon-induced mutants unable to produce hemolysin, dermonecrotic toxin, pertussis toxin, and filamentous hemagglutinin also lacked these three envelope proteins, confirming that virulence-associated envelope proteins were genetically regulated with other virulence-associated traits. Two dimensional gel electrophoresis revealed at least five heat modifiable proteins which migrated as higher or lower M/sub r/ moieties if solubilized at 25/sup 0/C instead of 100/sup 0/C.

  12. Strong inhibition of fimbrial 3 subunit gene transcription by a novel downstream repressive element in Bordetella pertussis.

    Science.gov (United States)

    Chen, Qing; Boulanger, Alice; Hinton, Deborah M; Stibitz, Scott

    2014-08-01

    The Bvg-regulated promoters for the fimbrial subunit genes fim2 and fim3 of Bordetella pertussis behave differently from each other both in vivo and in vitro. In vivo Pfim2 is significantly stronger than Pfim3 , even though predictions based on the DNA sequences of BvgA-binding motifs and core promoter elements would indicate the opposite. In vitro Pfim3 demonstrated robust BvgA∼P-dependent transcriptional activation, while none was seen with Pfim2 . This apparent contradiction was investigated further. By swapping sequence elements we created a number of hybrid promoters and assayed their strength in vivo. We found that, while Pfim3 promoter elements upstream of the +1 transcriptional start site do indeed direct Bvg-activated transcription more efficiently than those of Pfim2 , the overall promoter strength of Pfim3  in vivo is reduced due to sequences downstream of +1 that inhibit transcription more than 250-fold. This element, the DRE (downstream repressive element), was mapped to the 15 bp immediately downstream of the Pfim3 +1. Placing the DRE in different promoter contexts indicated that its activity was not specific to fim promoters, or even to Bvg-regulated promoters. However it does appear to be specific to Bordetella species in that it did not function in Escherichia coli.

  13. Expresión episomal de toxina de pertussis genéticamente inactivada en Bordetella pertussis

    Directory of Open Access Journals (Sweden)

    Ernesto Marcos

    2010-01-01

    Full Text Available Bordetella pertussis es una bacteria Gram negativa, la cual constituye el agente etiologico de la tos ferina. La enfermedad se desencadena por el efecto conjunto de una serie de factores de virulencia expresados por la bacteria, los cuales se encuentran regulados por el sistema bvg. Uno de los factores de virulencia mas importantes es la toxina de pertussis, razon por la cual, se emplea de forma inactivada como el componente principal de las vacunas acelulares contra la enfermedad. La toxina de pertussis posee una estructura del tipo A-B compuesta por seis polipeptidos codificados en un operon unico. El polipeptido S1 constituye la subunidad enzimaticamente activa, la cual cataliza la transferencia de ADP-ribosa del NAD a la subunidad ALPHA de las proteinas G en celulas eucariotas, lo cual genera una serie de efectos biologicos dentro de los que se incluye: sensibilizacion a histamina, incremento de la secrecion de insulina y efectos inmunoestimuladores e inmunosupresores. El presente trabajo describe los procedimientos realizados para la obtencion de cepas de Bordetella pertussis productoras de elevadas concentraciones de toxina pertusica atenuada geneticamente. Para esto, se realizaron las sustituciones aminoacidicas Arg9 por Lys y Glu129 por Gly de la subunidad S1. El operon de la toxina de pertussis mutada se clono en un vector de amplio rango de hospedero bajo la regulacion de un promotor de expresion temprana (fhaB. Los clones obtenidos pudieran ser empleados como sistemas de expresion para produccion de vacunas acelulares en Cuba.

  14. Cyclase-associated proteins: CAPacity for linking signal transduction and actin polymerization.

    Science.gov (United States)

    Hubberstey, Andrew V; Mottillo, Emilio P

    2002-04-01

    Many extracellular signals elicit changes in the actin cytoskeleton, which are mediated through an array of signaling proteins and pathways. One family of proteins that plays a role in regulating actin remodeling in response to cellular signals are the cyclase-associated proteins (CAPs). CAPs are highly conserved monomeric actin binding proteins present in a wide range of organisms including yeast, fly, plants, and mammals. The original CAP was isolated as a component of the Saccharomyces cerevisiae adenylyl cyclase complex that serves as an effector of Ras during nutritional signaling. CAPs are multifunctional molecules that contain domains involved in actin binding, adenylyl cyclase association in yeast, SH3 binding, and oligomerization. Genetic studies in yeast have implicated CAPs in vesicle trafficking and endocytosis. CAPs play a developmental role in multicellular organisms, and studies of Drosophila have illuminated the importance of the actin cytoskeleton during eye development and in establishing oocyte polarity. This review will highlight the critical structural and functional domains of CAPs, describe recent studies that have implied important roles for these proteins in linking cell signaling with actin polymerization, and highlight their roles in vesicle trafficking and development.

  15. The first structure of a bacterial diterpene cyclase: CotB2.

    Science.gov (United States)

    Janke, Ronja; Görner, Christian; Hirte, Max; Brück, Thomas; Loll, Bernhard

    2014-06-01

    Sesquiterpenes and diterpenes are a diverse class of secondary metabolites that are predominantly derived from plants and some prokaryotes. The properties of these natural products encompass antitumor, antibiotic and even insecticidal activities. Therefore, they are interesting commercial targets for the chemical and pharmaceutical industries. Owing to their structural complexity, these compounds are more efficiently accessed by metabolic engineering of microbial systems than by chemical synthesis. This work presents the first crystal structure of a bacterial diterpene cyclase, CotB2 from the soil bacterium Streptomyces melanosporofaciens, at 1.64 Å resolution. CotB2 is a diterpene cyclase that catalyzes the cyclization of the linear geranylgeranyl diphosphate to the tricyclic cyclooctat-9-en-7-ol. The subsequent oxidation of cyclooctat-9-en-7-ol by two cytochrome P450 monooxygenases leads to bioactive cyclooctatin. Plasticity residues that decorate the active site of CotB2 have been mutated, resulting in alternative monocyclic, dicyclic and tricyclic compounds that show bioactivity. These new compounds shed new light on diterpene cyclase reaction mechanisms. Furthermore, the product of mutant CotB2(W288G) produced the new antibiotic compound (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene, which acts specifically against multidrug-resistant Staphylococcus aureus. This opens a sustainable route for the industrial-scale production of this bioactive compound.

  16. Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications for tumor antigen specific immunotherapy

    Directory of Open Access Journals (Sweden)

    Gillis John

    2006-07-01

    Full Text Available Abstract Background In recent years encouraging progress has been made in developing vaccine treatments for cancer, particularly with melanoma. However, the overall rate of clinically significant results has remained low. The present research used microarray datasets from previous investigations to examine gene expression patterns in cancer cell lines with the goal of better understanding the tumor microenvironment. Methods Principal Components Analyses with Promax rotational transformations were carried out with 90 cancer cell lines from 3 microarray datasets, which had been made available on the internet as supplementary information from prior publications. Results In each of the analyses a well defined melanoma component was identified that contained a gene coding for the enzyme, glutaminyl cyclase, which was as highly expressed as genes from a variety of well established biomarkers for melanoma, such as MAGE-3 and MART-1, which have frequently been used in clinical trials of melanoma vaccines. Conclusion Since glutaminyl cyclase converts glutamine and glutamic acid into a pyroglutamic form, it may interfere with the tumor destructive process of vaccines using peptides having glutamine or glutamic acid at their N-terminals. Finding ways of inhibiting the activity of glutaminyl cyclase in the tumor microenvironment may help to increase the effectiveness of some melanoma vaccines.

  17. Soluble guanylate cyclase α1-deficient mice: a novel murine model for primary open angle glaucoma.

    Directory of Open Access Journals (Sweden)

    Emmanuel S Buys

    Full Text Available Primary open angle glaucoma (POAG is a leading cause of blindness worldwide. The molecular signaling involved in the pathogenesis of POAG remains unknown. Here, we report that mice lacking the α1 subunit of the nitric oxide receptor soluble guanylate cyclase represent a novel and translatable animal model of POAG, characterized by thinning of the retinal nerve fiber layer and loss of optic nerve axons in the context of an open iridocorneal angle. The optic neuropathy associated with soluble guanylate cyclase α1-deficiency was accompanied by modestly increased intraocular pressure and retinal vascular dysfunction. Moreover, data from a candidate gene association study suggests that a variant in the locus containing the genes encoding for the α1 and β1 subunits of soluble guanylate cyclase is associated with POAG in patients presenting with initial paracentral vision loss, a disease subtype thought to be associated with vascular dysregulation. These findings provide new insights into the pathogenesis and genetics of POAG and suggest new therapeutic strategies for POAG.

  18. Crystallization and preliminary X-ray diffraction studies of the glutaminyl cyclase from Carica papaya latex

    Energy Technology Data Exchange (ETDEWEB)

    Azarkan, Mohamed [Laboratoire de Chimie Générale I, Faculté de Médecine-ULB CP609, 808 Route de Lennik, B-1070 Brussels (Belgium); Clantin, Bernard; Bompard, Coralie [CNRS-UMR 8525, Institut de Biologie de Lille, BP 477, 1 Rue du Professeur Calmette, F-59021 Lille (France); Belrhali, Hassan [EMBL Grenoble Outstation, 6 Rue Jules Horowitz, BP 181, F-38042 Grenoble CEDEX 9 (France); Baeyens-Volant, Danielle [Laboratoire de Chimie Générale I, Faculté de Médecine-ULB CP609, 808 Route de Lennik, B-1070 Brussels (Belgium); Looze, Yvan [Laboratoire de Chimie Générale, Institut de Pharmacie-ULB CP206/04, Boulevard du Triomphe, B-1050 Brussels (Belgium); Villeret, Vincent, E-mail: vincent.villeret@ibl.fr [CNRS-UMR 8525, Institut de Biologie de Lille, BP 477, 1 Rue du Professeur Calmette, F-59021 Lille (France); Wintjens, René, E-mail: vincent.villeret@ibl.fr [Laboratoire de Chimie Générale, Institut de Pharmacie-ULB CP206/04, Boulevard du Triomphe, B-1050 Brussels (Belgium); Laboratoire de Chimie Générale I, Faculté de Médecine-ULB CP609, 808 Route de Lennik, B-1070 Brussels (Belgium)

    2005-01-01

    The glutaminyl cyclase isolated from C. papaya latex has been crystallized using the hanging-drop method. Diffraction data have been collected at ESRF beamline BM14 and processed to 1.7 Å resolution. In living systems, the intramolecular cyclization of N-terminal glutamine residues is accomplished by glutaminyl cyclase enzymes (EC 2.3.2.5). While in mammals these enzymes are involved in the synthesis of hormonal and neurotransmitter peptides, the physiological role played by the corresponding plant enzymes still remains to be unravelled. Papaya glutaminyl cyclase (PQC), a 33 kDa enzyme found in the latex of the tropical tree Carica papaya, displays an exceptional resistance to chemical and thermal denaturation as well as to proteolysis. In order to elucidate its enzymatic mechanism and to gain insights into the structural determinants underlying its remarkable stability, PQC was isolated from papaya latex, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.82, b = 81.23, c = 108.17 Å and two molecules per asymmetric unit. Diffraction data have been collected at ESRF beamline BM14 and processed to a resolution of 1.7 Å.

  19. Identification of photoactivated adenylyl cyclases in Naegleria australiensis and BLUF-containing protein in Naegleria fowleri.

    Science.gov (United States)

    Yasukawa, Hiro; Sato, Aya; Kita, Ayaka; Kodaira, Ken-Ichi; Iseki, Mineo; Takahashi, Tetsuo; Shibusawa, Mami; Watanabe, Masakatsu; Yagita, Kenji

    2013-01-01

    Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light.

  20. H2S induces vasoconstriction of rat cerebral arteries via cAMP/adenylyl cyclase pathway.

    Science.gov (United States)

    Li, Sen; Ping, Na-Na; Cao, Lei; Mi, Yan-Ni; Cao, Yong-Xiao

    2015-12-15

    Hydrogen sulfide (H2S), traditionally known for its toxic effects, is now involved in regulating vascular tone. Here we investigated the vasoconstrictive effect of H2S on cerebral artery and the underlying mechanism. Sodium hydrosulfide (NaHS), a donor of H2S, concentration-dependently induced vasoconstriction on basilar artery, which was enhanced in the presence of isoprenaline, a β-adrenoceptor agonist or forskolin, an adenylyl cyclase activator. Administration of NaHS attenuated the vasorelaxant effects of isoprenaline or forskolin. Meanwhile, the NaHS-induced vasoconstriction was diminished in the presence of 8B-cAMP, an analog of cAMP, but was not affected by Bay K-8644, a selective L-type Ca(2+) channel agonist. These results could be explained by the revised effects of NaHS on isoprenaline-induced cAMP elevation and forskolin-stimulated adenylyl cyclase activity. Additionally, NaHS-induced vasoconstriction was enhanced by removing the endothelium or in the presence of L-NAME, an inhibitor of nitric oxide synthase. L-NAME only partially attenuated the effect of NaHS which was given together with forskolin on the pre-contracted artery. In conclusion, H2S induces vasoconstriction of cerebral artery via, at least in part, cAMP/adenylyl cyclase pathway.

  1. Effects of dopamine on adenylyl cyclase activity and amylase secretion in rat parotid tissue.

    Science.gov (United States)

    Hatta, S; Amemiya, N; Takemura, H; Ohshika, H

    1995-06-01

    Several previous studies have shown that dopamine causes amylase secretion from rat parotid tissue. However, the mechanism of this dopamine action is still unclear. The present study was designed to characterize dopamine action in rat parotid gland tissue by examining the effects of dopamine on cyclic AMP accumulation, adenylyl cyclase activity, and amylase release. Dopamine significantly enhanced accumulation of cyclic AMP in parotid slices and stimulated adenylyl cyclase activity in parotid membrane preparations. It also significantly stimulated amylase release from parotid slices. The stimulatory effects of dopamine on cyclic AMP accumulation, adenylyl cyclase activity, and amylase release were effectively blocked with propranolol, a beta-adrenergic antagonist, but not by either SCH 23390, a preferential D1 antagonist, or butaclamol, a preferential D2 antagonist. No substantial specific binding sites for D1 receptors were detectable by [3H]SCH 23390 binding in parotid membranes. These results suggest that the stimulatory effect of dopamine on amylase secretion in rat parotid tissue is not mediated through specific D1 dopamine receptors but rather through beta-adrenergic receptors.

  2. Comparative effect of methioninyl adenylate on the growth of Salmonella typhimurium and Pseudomonas aeruginosa.

    Science.gov (United States)

    Enouf, J; Laurence, F; Farrugia, G; Blanchard, P; Robert-Gero, M

    1976-10-11

    The bacteriostatic effect of methioninyl adenylate(MAMP)--a specific inhibitor of the enzyme methionyl-tRNA synthetase--was investigated on Salmonella typhimurium and Pseudomonas aeruginosa. 0.1 mM of this molecule added to the culture, inhibits the growth of S. typhimurium. The inhibition is specifically reversible by 0.1 mM L-methionine. In the same conditions even 1-2 mM MAMP has a very slight effect on the growth rate of P. aeruginosa and only during the first two generations. The same observation was made with the two other members of the fluorescens group P.fluorescens and P.putida. The growth rate of P. testosteroni with 1 mM MAMP in the medium is similar to the growth rate of P. aeruginosa but the other member of the acidovorans group P. acidovorans is much more affected by the smae concentration of the inhibitor. --P. multivorans is inhibited by MAMP like P. acidovorans but with a somewhat higher yield at the end of the culture. --MAMP has no effect on P. alcaligenes. The possible reasons for the weak bacteriostatic effect of MAMP on P. aeruginosa were investigated. It was established that the inhibitor enters the cells and is not used as a carbon and energy source. The intracellular methionine concentration in S. typhimurium and in P. aeruginosa is about the same and does not increase when bacteria are cultivated with MAMP. The MTS of the two microorganisms is inhibited by MAMP in vitro to about the same extent. Furthermore the tRNAmet from P. aeruginosa are fully acylated after 3 to 4 generations with this compound. Nevertheless MAMP elicits higher MTS activity in P. aeruginosa and in P. acidovorans after 1 h of incubation. The most striking difference between S. typhimurium and P. aeruginosa is that the intra and extracellular level of 5'phosphodiesterase which degrades MAMP is 10-20 fold higher in the second than in the first species.

  3. Characterization of the acyl-adenylate linked metabolite of mefenamic Acid.

    Science.gov (United States)

    Horng, Howard; Benet, Leslie Z

    2013-03-18

    Mefenamic acid, (MFA), a carboxylic acid-containing nonsteroidal anti-inflammatory drug (NSAID), is metabolized into the chemically reactive conjugates MFA-1-O-acyl-glucuronide (MFA-1-O-G) and MFA-S-acyl-CoA (MFA-CoA), which are both implicated in the formation of MFA-S-acyl-glutathione (MFA-GSH) conjugates, protein-adduct formation, and thus the potential toxicity of the drug. However, current studies suggest that an additional acyl-linked metabolite may be implicated in the formation of MFA-GSH. In the present study, we investigated the ability of MFA to become bioactivated into the acyl-linked metabolite, mefenamyl-adenylate (MFA-AMP). In vitro incubations in rat hepatocytes with MFA (100 μM), followed by LC-MS/MS analyses of extracts, led to the detection of MFA-AMP. In these incubations, the initial rate of MFA-AMP formation was rapid, leveling off at a maximum concentration of 90.1 nM (20 s), while MFA-GSH formation increased linearly, reaching a concentration of 1.7 μM after 60 min of incubation. In comparison, MFA-CoA was undetectable in incubation extracts until the 4 min time point, achieving a concentration of 45.6 nM at the 60 min time point, and MFA-1-O-G formation was linear, attaining a concentration of 42.2 μM after 60 min of incubation. In vitro incubation in buffer with the model nucleophile glutathione (GSH) under physiological conditions showed MFA-AMP to be reactive toward GSH, but 11-fold less reactive than MFA-CoA, while MFA-1-O-G exhibited little reactivity. However, in the presence of glutathione-S-transferase (GST), MFA-AMP mediated formation of MFA-GSH increased 6-fold, while MFA-CoA mediated formation of MFA-GSH only increased 1.4-fold. Collectively, in addition to the MFA-1-O-G, these results demonstrate that mefenamic acid does become bioactivated by acyl-CoA synthetase enzyme(s) in vitro in rat hepatocytes into the reactive transacylating derivatives MFA-AMP and MFA-CoA, both of which contribute to the transacylation of GSH and may

  4. Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface.

    Science.gov (United States)

    Williamson, Adele; Rothweiler, Ulli; Leiros, Hanna Kirsti Schrøder

    2014-11-01

    DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme-adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.

  5. Comparison of the Genome Sequence of the Poultry Pathogen Bordetella avium with Those of B. bronchiseptica, B. pertussis, and B. parapertussis Reveals Extensive Diversity in Surface Structures Associated with Host Interaction

    Science.gov (United States)

    Sebaihia, Mohammed; Preston, Andrew; Maskell, Duncan J.; Kuzmiak, Holly; Connell, Terry D.; King, Natalie D.; Orndorff, Paul E.; Miyamoto, David M.; Thomson, Nicholas R.; Harris, David; Goble, Arlette; Lord, Angela; Murphy, Lee; Quail, Michael A.; Rutter, Simon; Squares, Robert; Squares, Steven; Woodward, John; Parkhill, Julian; Temple, Louise M.

    2006-01-01

    Bordetella avium is a pathogen of poultry and is phylogenetically distinct from Bordetella bronchiseptica, Bordetella pertussis, and Bordetella parapertussis, which are other species in the Bordetella genus that infect mammals. In order to understand the evolutionary relatedness of Bordetella species and further the understanding of pathogenesis, we obtained the complete genome sequence of B. avium strain 197N, a pathogenic strain that has been extensively studied. With 3,732,255 base pairs of DNA and 3,417 predicted coding sequences, it has the smallest genome and gene complement of the sequenced bordetellae. In this study, the presence or absence of previously reported virulence factors from B. avium was confirmed, and the genetic bases for growth characteristics were elucidated. Over 1,100 genes present in B. avium but not in B. bronchiseptica were identified, and most were predicted to encode surface or secreted proteins that are likely to define an organism adapted to the avian rather than the mammalian respiratory tracts. These include genes coding for the synthesis of a polysaccharide capsule, hemagglutinins, a type I secretion system adjacent to two very large genes for secreted proteins, and unique genes for both lipopolysaccharide and fimbrial biogenesis. Three apparently complete prophages are also present. The BvgAS virulence regulatory system appears to have polymorphisms at a poly(C) tract that is involved in phase variation in other bordetellae. A number of putative iron-regulated outer membrane proteins were predicted from the sequence, and this regulation was confirmed experimentally for five of these. PMID:16885469

  6. Analysis of Bordetella pertussis pertactin and pertussis toxin types from Queensland, Australia, 1999–2003

    Directory of Open Access Journals (Sweden)

    Slack Andrew T

    2006-03-01

    Full Text Available Abstract Background In Australia two acellular Bordetella pertussis vaccines have replaced the use of a whole cell vaccine. Both of the licensed acellular vaccines contain the following three components; pertussis toxoid, pertussis filamentous haemagglutinin and the 69 kDa pertactin adhesin. One vaccine also contains pertussis fimbriae 2 and 3. Various researchers have postulated that herd immunity due to high levels of pertussis vaccination might be influencing the makeup of endemic B. pertussis populations by selective pressure for strains possessing variants of these genes, in particular the pertactin gene type. Some publications have suggested that B. pertussis variants may be contributing to a reduced efficacy of the existing vaccines and a concomitant re-emergence of pertussis within vaccinated populations. This study was conducted to survey the pertactin and pertussis toxin subunit 1 types from B. pertussis isolates in Queensland, Australia following the introduction of acellular vaccines. Methods Forty-six B. pertussis isolates recovered from Queensland patients between 1999 and 2003 were examined by both DNA sequencing and LightCycler™ real time PCR to determine their pertactin and pertussis toxin subunit 1 genotypes. Results Pertactin typing showed that 38 isolates possessed the prn1 allele, 3 possessed the prn2 allele and 5 possessed the prn3 allele. All forty-six isolates possessed the pertussis toxin ptxS1A genotype. Amongst the circulating B. pertussis population in Queensland, 82.5% of the recovered clinical isolates therefore possessed the prn1/ptxS1A genotype. Conclusion The results of this study compared to historical research on Queensland isolates suggest that B. pertussis pertactin and pertussis toxin variants are not becoming more prevalent in Queensland since the introduction of the acellular vaccines. Current prevalences of pertactin variants are significantly different to that described in a number of other countries

  7. Comparative gene expression profiling in two congenic mouse strains following Bordetella pertussis infection

    Directory of Open Access Journals (Sweden)

    Demant Peter

    2007-10-01

    Full Text Available Abstract Background Susceptibility to Bordetella pertussis infection varies widely. These differences can partly be explained by genetic host factors. HcB-28 mice are more resistant to B. pertussis infection than C3H mice, which could partially be ascribed to the B. pertussis susceptibility locus-1 (Bps1 on chromosome 12. The presence of C57BL/10 genome on this locus instead of C3H genome resulted in a decreased number of bacteria in the lung. To further elucidate the role of host genetic factors, in particular in the Bps1 locus, in B. pertussis infection, and to identify candidate genes within in this region, we compared expression profiles in the lungs of the C3H and HcB-28 mouse strains following B. pertussis inoculation. Twelve and a half percent of the genomes of these mice are from a different genetic background. Results Upon B. pertussis inoculation 2,353 genes were differentially expressed in the lungs of both mouse strains. Two hundred and six genes were differentially expressed between the two mouse strains, but, remarkably, none of these were up- or down-regulated upon B. pertussis infection. Of these 206 genes, 17 were located in the Bps1 region. Eight of these genes, which showed a strong difference in gene expression between the two mouse strains, map to the immunoglobulin heavy chain complex (Igh. Conclusion Gene expression changes upon B. pertussis infection are highly identical between the two mouse strains despite the differences in the course of B. pertussis infection. Because the genes that were differentially regulated between the mouse strains only showed differences in expression before infection, it appears likely that such intrinsic differences in gene regulation are involved in determining differences in susceptibility to B. pertussis infection. Alternatively, such genetic differences in susceptibility may be explained by genes that are not differentially regulated between these two mouse strains. Genes in the Igh

  8. Laboratory Evaluation of Adenylate Energy Charge as a Test for Stress in Mytilus edulis and Nephtys incisa Treated with Dredged Material.

    Science.gov (United States)

    1985-02-01

    concentrations of three adenine nucleotides, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP), which are...that all trace metals but iron were eliminated and the concentration of the vitamins thiamin and B12 were doubled. Adenylate Extraction 13. The adductor

  9. Adenylyl cyclase 3/adenylyl cyclase-associated protein 1 (CAP1) complex mediates the anti-migratory effect of forskolin in pancreatic cancer cells.

    Science.gov (United States)

    Quinn, Sierra N; Graves, Sarai H; Dains-McGahee, Clayton; Friedman, Emilee M; Hassan, Humma; Witkowski, Piotr; Sabbatini, Maria E

    2017-04-01

    Pancreatic cancer is one of the most lethal human malignancies. A better understanding of the intracellular mechanism of migration and invasion is urgently needed to develop treatment that will suppress metastases and improve overall survival. Cyclic adenosine monophosphate (cyclic AMP) is a second messenger that has shown to regulate migration and invasion of pancreatic cancer cells. The rise of cyclic AMP suppressed migration and invasion of pancreatic ductal adenocarcinoma cells. Cyclic AMP is formed from cytosolic ATP by the enzyme adenylyl cyclase (AC). There are ten isoforms of ACs; nine are anchored in the plasma membrane and one is soluble. What remains unknown is the extent to which the expression of transmembrane AC isoforms is both modified in pancreatic cancer and mediates the inhibitory effect of forskolin on cell motility. Using real-time PCR analysis, ADCY3 was found to be highly expressed in pancreatic tumor tissues, resulting in a constitutive increase in cyclic AMP levels. On the other hand, ADCY2 was down-regulated. Migration, invasion, and filopodia formation in two different pancreatic adenocarcinoma cell lines, HPAC and PANC-1 deficient in AC1 or AC3, were studied. We found that AC3, upon stimulation with forskolin, enhanced cyclic AMP levels and inhibited cell migration and invasion. Unlikely to be due to a cytotoxic effect, the inhibitory effects of forskolin involved the quick formation of AC3/adenylyl cyclase-associated protein 1 (CAP1)/G-actin complex, which inhibited filopodia formation and cell motility. Using Western blotting analysis, forskolin, through AC3 activation, caused phosphorylation of CREB, but not ERK. The effect of CREB phosphorylation is likely to be associated with long-term signaling changes. © 2016 Wiley Periodicals, Inc.

  10. Association of yeast adenylyl cyclase with cyclase-associated protein CAP forms a second Ras-binding site which mediates its Ras-dependent activation.

    Science.gov (United States)

    Shima, F; Okada, T; Kido, M; Sen, H; Tanaka, Y; Tamada, M; Hu, C D; Yamawaki-Kataoka, Y; Kariya, K; Kataoka, T

    2000-01-01

    Posttranslational modification, in particular farnesylation, of Ras is crucial for activation of Saccharomyces cerevisiae adenylyl cyclase (CYR1). Based on the previous observation that association of CYR1 with cyclase-associated protein (CAP) is essential for its activation by posttranslationally modified Ras, we postulated that the associated CAP might contribute to the formation of a Ras-binding site of CYR1, which mediates CYR1 activation, other than the primary Ras-binding site, the leucine-rich repeat domain. Here, we observed a posttranslational modification-dependent association of Ras with a complex between CAP and CYR1 C-terminal region. When CAP mutants defective in Ras signaling but retaining the CYR1-binding activity were isolated by screening of a pool of randomly mutagenized CAP, CYR1 complexed with two of the obtained three mutants failed to be activated efficiently by modified Ras and exhibited a severely impaired ability to bind Ras, providing a genetic evidence for the importance of the physical association with Ras at the second Ras-binding site. On the other hand, CYR1, complexed with the other CAP mutant, failed to be activated by Ras but exhibited a greatly enhanced binding to Ras. Conversely, a Ras mutant E31K, which exhibits a greatly enhanced binding to the CYR1-CAP complex, failed to activate CYR1 efficiently. Thus, the strength of interaction at the second Ras-binding site appears to be a critical determinant of CYR1 regulation by Ras: too-weak and too-strong interactions are both detrimental to CYR1 activation. These results, taken together with those obtained with mammalian Raf, suggest the importance of the second Ras-binding site in effector regulation.

  11. The cyclase-associated protein CAP as regulator of cell polarity and cAMP signaling in Dictyostelium.

    Science.gov (United States)

    Noegel, Angelika A; Blau-Wasser, Rosemarie; Sultana, Hameeda; Müller, Rolf; Israel, Lars; Schleicher, Michael; Patel, Hitesh; Weijer, Cornelis J

    2004-02-01

    Cyclase-associated protein (CAP) is an evolutionarily conserved regulator of the G-actin/F-actin ratio and, in yeast, is involved in regulating the adenylyl cyclase activity. We show that cell polarization, F-actin organization, and phototaxis are altered in a Dictyostelium CAP knockout mutant. Furthermore, in complementation assays we determined the roles of the individual domains in signaling and regulation of the actin cytoskeleton. We studied in detail the adenylyl cyclase activity and found that the mutant cells have normal levels of the aggregation phase-specific adenylyl cyclase and that receptor-mediated activation is intact. However, cAMP relay that is responsible for the generation of propagating cAMP waves that control the chemotactic aggregation of starving Dictyostelium cells was altered, and the cAMP-induced cGMP production was significantly reduced. The data suggest an interaction of CAP with adenylyl cyclase in Dictyostelium and an influence on signaling pathways directly as well as through its function as a regulatory component of the cytoskeleton.

  12. Infección por Bordetella pertussis: Una causa emergente de tos prolongada en adolescentes y adultos Bordetella pertussis infection: An emerging cause of prolonged cough illness in adolescents and adults

    Directory of Open Access Journals (Sweden)

    RODRIGO OSSES A

    2010-03-01

    Full Text Available La tos convulsiva o coqueluche está siendo reconocida cada vez con mayor frecuencia como causa de tos prolongada en adolescentes y adultos. La vacunación sistemática de la población pediátrica ha determinado un cambio en el perfl epidemiológico de la enfermedad, aumentando su prevalencia en la población adulta. Se presenta el caso clínico de una paciente de 45 años, fumadora, enfermera de unidad de hemodiálisis, que consulta por malestar general y tos seca de seis semanas de evolución. La radiografía de tórax era normal y la inmunofuorescencia directa de hisopado nasofaríngeo fue positiva para Bordetella pertussis. A propósito de este caso clínico, revisamos las principales causas de tos crónica: asma bronquial, enfermedad rinosinusal y refujo gastroesofágico; el cuadro clínico, evaluación diagnóstica y tratamiento de la infección por B. pertussis en población adulta.Whooping cough is increasingly recognized as a cause of prolonged cough illness in adolescents and adults. Systematic vaccination has changed its epidemiology, with the majority of cases now primarily affecting adolescents and adults. A 45-year-old female, active smoker, nurse, who works in a dialysis service, presented with a 6-week history of bothersome cough and malaise. Thorax x-ray was normal and direct immunofuorescence of nasopharyngeal swab was positive for Bordetella pertussis. This case illustrates pertussis infection in adulthood. We review the main causes of chronic cough in adults: asthma, chronic rhinosinusitis and gastroesophageal refux; the clinical features, prevalence, diagnostic tools, and management of adult patients with B. pertussis infection to increase awareness of this highly contagious disease.

  13. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates.

    Science.gov (United States)

    Izac, Marie; Garnier, Dominique; Speck, Denis; Lindley, Nic D

    2015-01-01

    It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium's growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB) and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports.

  14. Changes in Predominance of Pulsed-Field Gel Electrophoresis Profiles of Bordetella pertussis Isolates, United States, 2000-2012.

    Science.gov (United States)

    Cassiday, Pamela K; Skoff, Tami H; Jawahir, Selina; Tondella, M Lucia

    2016-03-01

    To clarify the characteristics of circulating Bordetella pertussis isolates, we used pulsed-field gel electrophoresis (PFGE) to analyze 5,262 isolates collected in the United States during 2000-2012. We found 199 PFGE profiles; 5 profiles accounted for 72% of isolates. The most common profile, CDC013, accounted for 35%-46% of isolates tested from 2000-2009; however, the proportion of isolates of this profile rapidly decreased in 2010. Profile CDC237, first seen in 2009, increased rapidly and accounted for 29% of 2012 isolates. No location bias was observed among profiles during 2000-2010, but differences were observed among isolates from different states during 2012. Predominant profiles match those observed in recent European PFGE studies. PFGE profile changes are concurrent with other recent molecular changes in B. pertussis and may be contributing to the reemergence of pertussis in the United States. Continued PFGE monitoring is critical for understanding the changing epidemiology of pertussis.

  15. Detection of Bordetella pertussis from Clinical Samples by Culture and End-Point PCR in Malaysian Patients

    Directory of Open Access Journals (Sweden)

    Tan Xue Ting

    2013-01-01

    Full Text Available Pertussis or whooping cough is a highly infectious respiratory disease caused by Bordetella pertussis. In vaccinating countries, infants, adolescents, and adults are relevant patients groups. A total of 707 clinical specimens were received from major hospitals in Malaysia in year 2011. These specimens were cultured on Regan-Lowe charcoal agar and subjected to end-point PCR, which amplified the repetitive insertion sequence IS481 and pertussis toxin promoter gene. Out of these specimens, 275 were positive: 4 by culture only, 6 by both end-point PCR and culture, and 265 by end-point PCR only. The majority of the positive cases were from ≤3 months old patients (77.1% (. There was no significant association between type of samples collected and end-point PCR results (. Our study showed that the end-point PCR technique was able to pick up more positive cases compared to culture method.

  16. Attenuated Bordetella pertussis BPZE1 as a live vehicle for heterologous vaccine antigens delivery through the nasal route.

    Science.gov (United States)

    Li, Rui; Lim, Annabelle; Alonso, Sylvie

    2011-01-01

    Whereas the great majority of the current vaccines are delivered through the parenteral route, mucosal administration has been increasingly considered for controlling infection and preventing disease. Mucosal vaccination can trigger both humoral and cell-mediated protection, not only at the targeted mucosal surface, but also systemically. In this regard, nasal vaccination has shown great potential. The live attenuated strain of Bordetella pertussis, BPZE1, is particularly attractive and promising as a nasal vaccine delivery vector of heterologous antigen vaccine candidates. BPZE1 was originally developed as a live nasal pertussis vaccine candidate, and is currently undergoing phase I clinical trial in human (http://www.child-innovac.org). Highly adapted to the human respiratory tract and offering several potential protein carriers for presentation of the heterologous antigen vaccine candidates, BPZE1 represents an appealing platform for the development of live recombinant vaccines delivered via the nasal route that would confer simultaneous protection against pertussis and the targeted infectious disease(s).

  17. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates.

    Directory of Open Access Journals (Sweden)

    Marie Izac

    Full Text Available It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium's growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports.

  18. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    Science.gov (United States)

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis.

  19. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    Energy Technology Data Exchange (ETDEWEB)

    Misono, K. S.; Philo, J. S.; Arakawa, T.; Ogata, C. M.; Qiu, Y.; Ogawa, H.; Young, H. S. (Biosciences Division); (Univ. of Nevada); (Alliance Protein Labs.)

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.

  20. Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes

    Science.gov (United States)

    Wu, Vincent W.; Dana, Craig M.; Iavarone, Anthony T.; Clark, Douglas S.

    2017-01-01

    ABSTRACT The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identified two genes (qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability. PMID:28096492

  1. Inhibition of adenylyl and guanylyl cyclase isoforms by the antiviral drug foscarnet.

    Science.gov (United States)

    Kudlacek, O; Mitterauer, T; Nanoff, C; Hohenegger, M; Tang, W J; Freissmuth, M; Kleuss, C

    2001-02-02

    The pyrophosphate (PP(i)) analog foscarnet inhibits viral DNA-polymerases and is used to treat cytomegalovirus and human immunodeficiency vius infections. Nucleotide cyclases and DNA-polymerases catalyze analogous reactions, i.e. a phosphodiester bond formation, and have similar topologies in their active sites. Inhibition by foscarnet of adenylyl cyclase isoforms was therefore tested with (i) purified catalytic domains C1 and C2 of types I and VII (IC1 and VIIC1) and of type II (IIC2) and (ii) membrane-bound holoenzymes (from mammalian tissues and types I, II, and V heterologously expressed in Sf9 cell membranes). Foscarnet was more potent than PP(i) in suppressing forskolin-stimulated catalysis by both, IC1/IIC2 and VIIC1/IIC2. Stimulation of VIIC1/IIC2 by Galpha(s) relieved the inhibition by foscarnet but not that by PP(i). The IC(50) of foscarnet on membrane-bound adenylyl cyclases also depended on their mode of regulation. These findings predict that receptor-dependent cAMP formation is sensitive to inhibition by foscarnet in some, but not all, cells. This was verified with two cell lines; foscarnet blocked cAMP accumulation after A(2A)-adenosine receptor stimulation in PC12 but not in HEK-A(2A) cells. Foscarnet also inhibited soluble and, to a lesser extent, particulate guanylyl cylase. Thus, foscarnet interferes with the generation of cyclic nucleotides, an effect which may give rise to clinical side effects. The extent of inhibition varies with the enzyme isoform and with the regulatory input.

  2. 百日咳流行病学研究进展%Update on bordetella pertussis epidemiology

    Institute of Scientific and Technical Information of China (English)

    张婉芳(综述); 陆敏(审校)

    2014-01-01

    百日咳主要是由百日咳杆菌、副百日咳杆菌引起的一种传染性强的急性呼吸系统疾病,人群普遍易患,小婴儿病情最重。尽管疫苗覆盖率较高,但是全球百日咳仍未完全根除。相反,过去20年,全球百日咳的发病率较之前升高,出现局部地区小流行,称百日咳再现,因此有必要对国内外百日咳发病现状做出评估,为更好地监测和控制百日咳提供依据。该文对百日咳的流行病学变化及其相关原因分析和免疫策略作一综述。%Pertussis or whooping cough is an acute infectious disease of the respiratory system,which is mainly caused by Bordetella pertussis and Bordetella parapertussis. It can occur at any age,but is most serious in young infants. Despite widespread use of vaccination, pertussis has not been eliminated. On the contrary, increased incidence rates have been reported worldwide during the last two decades,also called reemergence of pertussis. So it is necessary to evaluate current state on pertussis research,in order to better provide basis for mo-nitoring and control pertussis. This paper reviews the pertussis epidemiological changes and the related cause analysis and immunization strategy.

  3. Immunization with the Recombinant Cholera Toxin B Fused to Fimbria 2 Protein Protects against Bordetella pertussis Infection

    Directory of Open Access Journals (Sweden)

    Noelia Olivera

    2014-01-01

    Full Text Available This study examined the immunogenic properties of the fusion protein fimbria 2 of Bordetella pertussis (Fim2—cholera toxin B subunit (CTB in the intranasal murine model of infection. To this end B. pertussis Fim2 coding sequence was cloned downstream of the cholera toxin B subunit coding sequence. The expression and assembly of the fusion protein into pentameric structures (CTB-Fim2 were evaluated by SDS-PAGE and monosialotetrahexosylgaglioside (GM1-ganglioside enzyme-linked immunosorbent assay (ELISA. To evaluate the protective capacity of CTB-Fim2, an intraperitoneal or intranasal mouse immunization schedule was performed with 50 μg of CTB-Fim2. Recombinant (rFim2 or purified (BpFim2 Fim2, CTB, and phosphate-buffered saline (PBS were used as controls. The results showed that mice immunized with BpFim2 or CTB-Fim2 intraperitoneally or intranasally presented a significant reduction in bacterial lung counts compared to control groups (P<0.01 or P<0.001, resp.. Moreover, intranasal immunization with CTB-Fim2 induced significant levels of Fim2-specific IgG in serum and bronchoalveolar lavage (BAL and Fim2-specific IgA in BAL. Analysis of IgG isotypes and cytokines mRNA levels showed that CTB-Fim2 results in a mixed Th1/Th2 (T-helper response. The data presented here provide support for CTB-Fim2 as a promising recombinant antigen against Bordetella pertussis infection.

  4. Forskolin photoaffinity labels with specificity for adenylyl cyclase and the glucose transporter

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.I.; Robbins, J.D.; Ruoho, A.E.; Sutkowski, E.M.; Seamon, K.B. (Division of Biochemistry and Biophysics, Food and Drug Administration, Bethesda, MD (USA))

    1991-07-15

    Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of (3H)forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited (3H)forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP {gamma} S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolin but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP {gamma} S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.

  5. From Kinase to Cyclase: An Unusual Example of Catalytic Promiscuity Modulated by Metal Switching

    OpenAIRE

    Sánchez-Moreno, Israel; Iturrate Montoya, Laura; Martín-Hoyos, Rocio; Jimeno, M. Luisa; Mena, Montaña; Bastida, Ágatha; García-Junceda, Eduardo

    2009-01-01

    “This is the pre-peer reviewed version of the following article: Sánchez-Moreno, I., Iturrate, L., Martín-Hoyos, R., Jimeno, M. L., Mena, M., Bastida, A. and García-Junceda, E. (2009) From Kinase to Cyclase: An Unusual Example of Catalytic Promiscuity Modulated by Metal Switching. ChemBioChem. 10, 225-229, which has been published in final form at http://www3.interscience.wiley.com/journal/121544668/abstract?CRETRY=1&SRETRY=0.”

  6. Adenylyl Cyclase-Associated Protein 1 in the Development of Head and Neck Squamous Cell Carcinomas.

    Science.gov (United States)

    Kakurina, G V; Kondakova, I V; Cheremisina, O V; Shishkin, D A; Choinzonov, E L

    2016-03-01

    We compared the content of adenylyl cyclase-associated protein 1 (CAP1) in the blood and tissues of patients with head and neck squamous cell carcinomas (with and without regional metastases), patients with chronic inflammatory diseases aggravated by laryngeal and laryngopharyngeal dysplasia, and healthy individuals. The data suggest that serum CAP1 concentration correlated with the depth of primary tumor invasion and the presence of regional metastases. In cancer patients, the serum level of CAP1 was lower than in patients with laryngeal and laryngopharyngeal dysplasia, which can be of importance for differential and timely diagnostics of malignant tumors.

  7. Overexpression of functional human oxidosqualene cyclase in Escherichia coli

    DEFF Research Database (Denmark)

    Kürten, Charlotte; Uhlén, Mathias; Syrén, Per-Olof

    2015-01-01

    of the tetracyclic steroidal backbone, a key step in cholesterol biosynthesis. Protein expression of hOSC and other eukaryotic oxidosqualene cyclases has traditionally been performed in yeast and insect cells, which has resulted in protein yields of 2.7mg protein/g cells (hOSC in Pichia pastoris) after 48h...... of expression. Herein we present, to the best of our knowledge, the first functional expression of hOSC in the model organism Escherichia coli. Using a codon-optimized gene and a membrane extraction procedure for which detergent is immediately added after cell lysis, a protein yield of 2.9mg/g bacterial cells...

  8. A kinase-anchoring proteins and adenylyl cyclase in cardiovascular physiology and pathology.

    Science.gov (United States)

    Efendiev, Riad; Dessauer, Carmen W

    2011-10-01

    3'-5'-Cyclic adenosine monophosphate (cAMP), generated by adenylyl cyclase (AC), serves as a second messenger in signaling pathways regulating many aspects of cardiac physiology, including contraction rate and action potential duration, and in the pathophysiology of hypertrophy and heart failure. A kinase-anchoring proteins localize the effect of cAMP in space and time by organizing receptors, AC, protein kinase A, and other components of the cAMP cascade into multiprotein complexes. In this review, we discuss how the interaction of A kinase-anchoring proteins with distinct AC isoforms affects cardiovascular physiology.

  9. Detection of somatic coliphages through a bioluminescence assay measuring phage mediated release of adenylate kinase and adenosine 5'-triphosphate.

    Science.gov (United States)

    Guzmán Luna, Carolina; Costán-Longares, Ana; Lucena, Francisco; Jofre, Joan

    2009-10-01

    The feasibility of detecting somatic coliphages by phage infection of Escherichia coli WG5 and measurement of phage propagation by the lysis mediated release of the bacterial host adenylate kinase (AK) and adenosine 5'-triphosphate (ATP) detected by a bioluminescent signal was evaluated. After 2h of incubation, all cultures infected with reference bacteriophage phiX174 showed a significant increase in the bioluminescent signal, even with number of phages as low as less of 10 plaque forming units (PFU). Naturally occurring somatic coliphages ensured a significant bioluminescent signal after 3h of infection when >10 PFU were inoculated. These results indicate that an easy and reliable method to detect low numbers of coliphages in less than 3h is feasible.

  10. Enzymatic 13C Labeling and Multidimensional NMR Analysis of Miltiradiene Synthesized by Bifunctional Diterpene Cyclase in Selaginella moellendorffii*

    Science.gov (United States)

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-01-01

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-13C6]mevalonate, all carbons were labeled with 13C stable isotope (>99%). The fully 13C-labeled product was subjected to 13C-13C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and

  11. High-resolution melting analysis for the detection of two erythromycin-resistant Bordetella pertussis strains carried by healthy schoolchildren in China.

    Science.gov (United States)

    Zhang, Q; Li, M; Wang, L; Xin, T; He, Q

    2013-06-01

    Two erythromycin-resistant strains of Bordetella pertussis were isolated from nasopharyngeal specimens of two asymptomatic schoolchildren in China. High-resolution melting and sequencing analyses confirmed the homogeneous A2047G mutation in 23S rRNA genes of the two isolates. High-resolution melting (HRM) analysis is a useful assay for the rapid detection of erythromycin-resistant B. pertussis. The appearance of erythromycin-resistant B. pertussis strains in China is alarming.

  12. Factors associated with upper respiratory tract disease caused by feline herpesvirus, feline calicivirus, Chlamydophila felis and Bordetella bronchiseptica in cats: experience from 218 European catteries

    OpenAIRE

    Helps, C. R.; Lait, P.; Damhuis, A.; Björnehammar, U.; Bolta, D.; Brovida, C.; Chabanne, L.; Egberink, H; Ferrand, G.; Fontbonne, A.; Pennisi, M G; Gruffydd-Jones, T.; Gunn-Moore, D.; Hartmann, K.; Lutz, H

    2005-01-01

    A full history of the management practices and the prevalence of upper respiratory tract disease (URTD) at 218 rescue shelters, breeding establishments and private households with five or more cats was recorded. Oropharyngeal and conjunctival swabs and blood samples were taken from 1748 cats. The prevalences of feline herpesvirus (FHV), feline calicivirus (FCV), Chlamydophila felis and Bordetella bronchiseptica were determined by PCR on swab samples. An ELISA was applied to determine the prev...

  13. [Serological evaluation of Bordetella pertussis infection in adults with prolonged cough].

    Science.gov (United States)

    Sönmez, Cemile; Çöplü, Nilay; Gözalan, Ayşegül; Yılmaz, Ülkü; Bilekli, Selen; Demirci, Nilgün Yılmaz; Biber, Çiğdem; Erdoğan, Yurdanur; Esen, Berrin; Çöplü, Lütfi

    2016-07-01

    Pertussis is a vaccine-preventable disease that is transmitted from infected to susceptible individuals by respiratory route. Bordetella pertussis infection may occur at any age as neither vaccine nor natural infection induced immunity lasts life-long. This study was planned to demonstrate the serological evidence of infection among adults, to raise awareness among clinicians and to provide data for the development of strategies to protect vulnerable infants. A total of 538 patients (345 female, 193 male) ages between 18-87 years who had a complain of prolonged cough for more than two weeks were included in the study. Anti-pertussis toxin (PT) IgG and anti-filamentous hemagglutinin (FH) IgG levels from single serum samples were measured by an in-house ELISA test which was standardized and shown to be efficient previously. Anti-PT IgG antibody levels of ≥ 100 EU/ml were considered as acute/recent infection with B.pertussis. In our study, 9.7% (52/538) of the patients had high levels of anti-PT IgG (≥ 100 EU/ml) and among those patients 43 (43/52; 82.7%) also had high (≥ 100 EU/ml) anti-FHA IgG levels. There were no statistically significant differences in terms of age, gender, education level, DPT (diphtheria-pertussis-tetanus) vaccination history, smoking history or average daily cigarette consumption (p> 0.05) between the cases with high antibody levels (n= 52). When the symptoms and the presence of cases with high antibody levels were evaluated, it was detected that no one parameter was significantly different from others, except that 24.1% of the cases with inspiratory whooping had high anti-PT levels. There was also no statistically significant difference between high anti-PT levels ≥ 100 EU/ml and the patients with risk factors [smoking (21/200; 10.5%), presence of disease that cause chronic cough and/or drug usage (19/171; %11.1), and whole factors which cause chronic cough (32/306; %10.5)] and without risk factors (p= 0.581; p= 0.357; p= 0

  14. Phosphorylation-independent regulation of the diguanylate cyclase WspR.

    Directory of Open Access Journals (Sweden)

    Nabanita De

    2008-03-01

    Full Text Available Environmental signals that trigger bacterial pathogenesis and biofilm formation are mediated by changes in the level of cyclic dimeric guanosine monophosphate (c-di-GMP, a unique eubacterial second messenger. Tight regulation of cellular c-di-GMP concentration is governed by diguanylate cyclases and phosphodiesterases, which are responsible for its production and degradation, respectively. Here, we present the crystal structure of the diguanylate cyclase WspR, a conserved GGDEF domain-containing response regulator in Gram-negative bacteria, bound to c-di-GMP at an inhibitory site. Biochemical analyses revealed that feedback regulation involves the formation of at least three distinct oligomeric states. By switching from an active to a product-inhibited dimer via a tetrameric assembly, WspR utilizes a novel mechanism for modulation of its activity through oligomerization. Moreover, our data suggest that these enzymes can be activated by phosphodiesterases. Thus, in addition to the canonical pathways via phosphorylation of the regulatory domains, both product and enzyme concentration contribute to the coordination of c-di-GMP signaling. A structural comparison reveals resemblance of the oligomeric states to assemblies of GAF domains, widely used regulatory domains in signaling molecules conserved from archaea to mammals, suggesting a similar mechanism of regulation.

  15. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    Science.gov (United States)

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology.

  16. Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis.

    Science.gov (United States)

    Tresguerres, Martin; Parks, Scott K; Salazar, Eric; Levin, Lonny R; Goss, Greg G; Buck, Jochen

    2010-01-05

    pH homeostasis is essential for life, yet it remains unclear how animals sense their systemic acid/base (A/B) status. Soluble adenylyl cyclase (sAC) is an evolutionary conserved signaling enzyme that produces the second messenger cAMP in response to bicarbonate ions (HCO(3)(-)). We cloned the sAC ortholog from the dogfish, a shark that regulates blood A/B by absorbing and secreting protons (H(+)) and HCO(3)(-) at its gills. Similar to mammalian sAC, dogfish soluble adenylyl cyclase (dfsAC) is activated by HCO(3)(-) and can be inhibited by two structurally and mechanistically distinct small molecule inhibitors. dfsAC is expressed in the gill epithelium, where the subset of base-secreting cells resides. Injection of inhibitors into animals under alkaline stress confirmed that dfsAC is essential for maintaining systemic pH and HCO(3)(-) levels in the whole organism. One of the downstream effects of dfsAC is to promote the insertion of vacuolar proton pumps into the basolateral membrane to absorb H(+) into the blood. sAC orthologs are present throughout metazoans, and mammalian sAC is expressed in A/B regulatory organs, suggesting that systemic A/B sensing via sAC is widespread in the animal kingdom.

  17. G protein β1γ2 subunits purification and their interaction with adenylyl cyclase

    Institute of Scientific and Technical Information of China (English)

    CHEN; Julian; (陈巨莲); NI; Hanxiang; (倪汉祥); SUN; Jingrui; (孙京瑞); WENG; Gezhi

    2003-01-01

    A preliminary study on the interaction of G protein (guanine triphosphate binding pro- tein) β1γ2 subunits and their coupled components in cell signal transduction was conducted in vitro. The insect cell lines, Sf9 (Spodoptera frugiperda) and H5 (Trichoplusia ni) were used to express the recombinant protein Gβ1γ2. The cell membrane containing Gβ1γ2 was isolated through affinity chromatography column with Ni-NTA agarose by FPLC method, and the highly purified protein was obtained. The adenylyl cyclase 2 (AC2) activity assay showed that the purified Gβ1γ2 could significantly stimulate AC2 activity. The interaction of β1γ2 subunits of G protein with the cytoplasmic tail of various mammalian adenylyl cyclases was monitored by BIAcore technology using NTA sensor chip, which relies on the phenomenon of surface plasmon resonance (SPR). The experiments showed the direct binding of Gβ1γ2 to the cytoplasmic tail C2 domain of AC2. The specific binding domain of AC2 with Gβ1γ2 was the same as AC2 activity domain which was stimulated by β1γ2.

  18. Adenylyl cyclase 3 haploinsufficiency confers susceptibility to diet-induced obesity and insulin resistance in mice

    Science.gov (United States)

    Tong, Tao; Shen, Ying; Lee, Han-Woong; Yu, Rina; Park, Taesun

    2016-01-01

    Adenylyl cyclase 3 (Adcy3), a member of the mammalian adenylyl cyclase family responsible for generating the second messenger cAMP, has long been known to play an essential role in olfactory signal transduction. Here, we demonstrated that Adcy3 heterozygous null mice displayed increased visceral adiposity in the absence of hyperphagia and developed abnormal metabolic features characterized by impaired insulin sensitivity, dyslipidemia, and increased plasma levels of proinflammatory cytokines on both chow and high-fat diet (HFD). Of note, HFD decreased the Adcy3 expression in white adipose tissue, liver, and muscle. We also report for the first time that Adcy3 haploinsufficiency resulted in reduced expression of genes involved in thermogenesis, fatty acid oxidation, and insulin signaling, with enhanced expression of genes related to adipogenesis in peripheral tissues of mice. In conclusion, these findings suggest that cAMP signals generated by Adcy3 in peripheral tissues may play a pivotal role in modulating obesity and insulin sensitivity. PMID:27678003

  19. Expression, purification and crystallization of a plant polyketide cyclase from Cannabis sativa.

    Science.gov (United States)

    Yang, Xinmei; Matsui, Takashi; Mori, Takahiro; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki

    2015-12-01

    Plant polyketides are a structurally diverse family of natural products. In the biosynthesis of plant polyketides, the construction of the carbocyclic scaffold is a key step in diversifying the polyketide structure. Olivetolic acid cyclase (OAC) from Cannabis sativa L. is the only known plant polyketide cyclase that catalyzes the C2-C7 intramolecular aldol cyclization of linear pentyl tetra-β-ketide-CoA to generate olivetolic acid in the biosynthesis of cannabinoids. The enzyme is also thought to belong to the dimeric α+β barrel (DABB) protein family. However, because of a lack of functional analysis of other plant DABB proteins and low sequence identity with the functionally distinct bacterial DABB proteins, the catalytic mechanism of OAC has remained unclear. To clarify the intimate catalytic mechanism of OAC, the enzyme was overexpressed in Escherichia coli and crystallized using the vapour-diffusion method. The crystals diffracted X-rays to 1.40 Å resolution and belonged to space group P3121 or P3221, with unit-cell parameters a = b = 47.3, c = 176.0 Å. Further crystallographic analysis will provide valuable insights into the structure-function relationship and catalytic mechanism of OAC.

  20. Characterization of Plasmodium falciparum adenylyl