WorldWideScience

Sample records for boranes

  1. Numerical Sequence of Borane Series

    OpenAIRE

    Enos Masheija Kiremire

    2014-01-01

    A table of hydroborane families has been created. The table links boranes of different families(homologous series) and members of the same family based on k number. The table is useful deducing straight away whether a borane( molecular formula) is closo, nido or arachno or something else. The table also indicates that boranes are formed according to natural periodic function (arithmetical progression). The empirical formula utilized is extremely versatile, simple and based on the principle of...

  2. Numerical Sequence of Borane Series

    Directory of Open Access Journals (Sweden)

    Enos Masheija Kiremire

    2014-09-01

    Full Text Available A table of hydroborane families has been created. The table links boranes of different families(homologous series and members of the same family based on k number. The table is useful deducing straight away whether a borane( molecular formula is closo, nido or arachno or something else. The table also indicates that boranes are formed according to natural periodic function (arithmetical progression. The empirical formula utilized is extremely versatile, simple and based on the principle of Nobel gas configuration. It could be used in both simple and complex boranes and carboranes. The closo members which portray characteristic shapes also have characteristic k1 numbers.

  3. A borane laser

    Science.gov (United States)

    Cerdán, Luis; Braborec, Jakub; Garcia-Moreno, Inmaculada; Costela, Angel; Londesborough, Michael G. S.

    2015-01-01

    Emission from electronically excited species forms the basis for an important class of light sources—lasers. So far, commercially available solution-processed blue-emitting laser materials are based on organic compounds or semiconductor nanocrystals that have significant limitations: either low solubility, low chemical- and/or photo-stability and/or uncompetitive prices. Here we report a novel and competitive alternative to these existing laser materials that is based on boron hydrides, inorganic cluster compounds with a rich and diverse chemistry. We demonstrate that solutions of the borane anti-B18H22 show, under pulsed excitation, blue laser emission at 406 nm with an efficiency (ratio of output/input energies) of 9.5%, and a photostability superior to many of the commercially available state-of-the-art blue laser dyes. This demonstration opens the doors for the development of a whole new class of laser materials based on a previously untapped resource for laser technology—the boranes.

  4. A new luminescent montmorillonite/borane nanocomposite

    Czech Academy of Sciences Publication Activity Database

    Kolská, Z.; Matoušek, J.; Čapková, P.; Braborec, Jakub; Benkocká, M.; Černá, H.; Londesborough, Michael Geoffrey Stephen

    2015-01-01

    Roč. 118, DEC (2015), s. 295-300. ISSN 0169-1317 Institutional support: RVO:61388980 Keywords : Luminophore * Montmorillonite/borane nanocomposite * X-ray photoelectron spectroscopy * X-ray diffraction * UV–Vis spectra Subject RIV: CA - Inorganic Chemistry Impact factor: 2.467, year: 2014

  5. Toward (car)borane-based molecular magnets

    Czech Academy of Sciences Publication Activity Database

    Oliva, J. M.; Alcoba, D. R.; Ona, O. B.; Torre, A.; Lain, L.; Michl, Josef

    2015-01-01

    Roč. 134, č. 2 (2015), 9/1-9/8. ISSN 1432-881X Institutional support: RVO:61388963 Keywords : car boranes * spin population * Heisenberg spin Hamiltonian * Heisenberg coupling constatns Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.233, year: 2014

  6. Catalysts for Dehydrogenation of ammonia boranes

    Energy Technology Data Exchange (ETDEWEB)

    Heinekey, Dennis M.

    2014-12-19

    Several effective homogeneous catalysts for the dehydrogenation of amine boranes have been developed. The best catalyst uses an iridium complex, and is capable of dehydrogenating H3NBH3 (AB) and CH3NH2BH3 (MeAB) at comparable rates. Thermodynamic measurements using this catalyst demonstrate that the dehydrogenation of AB and MeAB is substantially exothermic, which has important implications for regeneration.

  7. Chemical Hydrogen Storage Using Polyhedral Borane Anions and Aluminum-Ammonia-Borane Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick; Jalisatgi, Satish S.; Safronov, Alexander V.; Lee, Han Beak; Wu, Jianguo

    2010-10-01

    Phase 1. Hydrolysis of borohydride compounds offer the potential for significant hydrogen storage capacity, but most work to date has focused on one particular anion, BH4-, which requires high pH for stability. Other borohydride compounds, in particular polyhedral borane anions offer comparable hydrogen storage capacity without requiring high pH media and their long term thermal and hydrolytic stability coupled with non-toxic nature make them a very attractive alternative to NaBH4. The University of Missouri project provided the overall program focal point for the investigation of catalytic hydrolysis of polyhedral borane anions for hydrogen release. Due to their inherent stability, a transition metal catalyst was necessary for the hydrolysis of polyhedral borane anions. Transition metal ions such as cobalt, nickel, palladium and rhodium were investigated for their catalytic activity in the hydrolysis of nido-KB11H14, closo-K2B10H10, and closo-K2B12H12. The rate of hydrolysis follows first-order kinetics with respect to the concentration of the polyhedral borane anion and surface area of the rhodium catalyst. The rate of hydrolysis depends upon a) choice of polyhedral borane anion, c) concentration of polyhedral borane anion, d) surface area of the rhodium catalyst and e) temperature of the reaction. In all cases the yield of hydrogen was 100% which corresponds to ~7 wt% of hydrogen (based on material wt%). Phase 2. The phase 2 of program at the University of Missouri was focused upon developing aluminum ammonia-boranes (Al-AB) as chemical hydrogen storage materials, specifically their synthesis and studies of their dehydrogenation. The ammonia borane molecule (AB) is a demonstrated source of chemically stored hydrogen (19.6 wt%) which meets DOE performance parameters except for its regeneration from spent AB and elemental hydrogen. The presence of an aluminum center bonded to multiple AB residues might combine the efficiency of AB dehydrogenation with an aluminum

  8. "Free" boranes and heteroboranes in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Hnyk, Drahomír; Štíbr, Bohumil

    Jackson , Mississipi, 2002. s. 75. [Conference on Current Trends in Computational Chemistry /11./. 01.11.2002-02.11.2002, Jackson , Mississippi] Institutional research plan: CEZ:AV0Z4032918 Keywords : boranes * borane anions * heteroboranes Subject RIV: CA - Inorganic Chemistry

  9. Metal-Free Ammonia-Borane Dehydrogenation Catalyzed by a Bis(borane) Lewis Acid.

    Science.gov (United States)

    Lu, Zhenpin; Schweighauser, Luca; Hausmann, Heike; Wegner, Hermann A

    2015-12-14

    The storage of energy in a safe and environmentally benign way is one of the main challenges of today's society. Ammonia-borane (AB=NH3 BH3 ) has been proposed as a possible candidate for the chemical storage of hydrogen. However, the efficient release of hydrogen is still an active field of research. Herein, we present a metal-free bis(borane) Lewis acid catalyst that promotes the evolution of up to 2.5 equivalents of H2 per AB molecule. The catalyst can be reused multiple times without loss of activity. The moderate temperature of 60 °C allows for controlling the supply of H2 on demand simply by heating and cooling. Mechanistic studies give preliminary insights into the kinetics and mechanism of the catalytic reaction. PMID:26537288

  10. Regeneration of ammonia borane spent fuel

    International Nuclear Information System (INIS)

    A necessary target in realizing a hydrogen (H2) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical H2 storage has been dominated by one appealing material, ammonia borane (H3N-BH3, AB), due to its high gravimetric capacity of H2 (19.6 wt %) and low molecular weight (30.7 g mol-1). In addition, AB has both hydridic and protic moieties, yielding a material from which H2 can be readily released in contrast to the loss of H2 from C2H6 which is substantially endothermic. As such, a number of publications have described H2 release from amine boranes, yielding various rates depending on the method applied. The viability of any chemical H2 storage system is critically dependent on efficient recyclability, but reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. Our group is currently engaged in trying to find and fully demonstrate an energy efficient regeneration process for the spent fuel from H2 depleted AB with a minimum number of steps. Although spent fuel composition depends on the dehydrogenation method, we have focused our efforts on the spent fuel resulting from metal-based catalysis, which has thus far shown the most promise. Metal-based catalysts have produced the fastest rates for a single equivalent of H2 released from AB and up to 2.5 equiv. of H2 can be produced within 2 hours. While ongoing work is being carried out to tailor the composition of spent AB fuel, a method has been developed for regenerating the predominant product, polyborazylene (PB) which can be obtained readily from the decomposition of borazine or from nickel

  11. In situ Synchrotron X-ray Thermodiffraction of Boranes

    Directory of Open Access Journals (Sweden)

    Pascal G. Yot

    2016-01-01

    Full Text Available Boranes of low molecular weight are crystalline materials that have been much investigated over the past decade in the field of chemical hydrogen storage. In the present work, six of them have been selected to be studied by in situ synchrotron X-ray thermodiffraction. The selected boranes are ammonia borane NH3BH3 (AB, hydrazine borane N2H4BH3 (HB, hydrazine bisborane N2H4(BH32 (HBB, lithium LiN2H3BH3 (LiHB and sodium NaN2H3BH3 (NaHB hydrazinidoboranes, and sodium triborane NaB3H8 (STB. They are first investigated separately over a wide range of temperature (80–300 K, and subsequently compared. Differences in crystal structures, the existence of phase transition, evolutions of unit cell parameters and volumes, and variation of coefficients of thermal expansion can be observed. With respect to AB, HB and HBB, the differences are mainly explained in terms of molecule size, conformation and motion (degree of freedom of the chemical groups (NH3, N2H4, BH3. With respect to LiHB, NaHB and STB, the differences are explained by a stabilization effect favored by the alkali cations via M···H interactions with four to five borane anions. The main results are presented and discussed herein.

  12. Hydrazine Borane and Hydrazinidoboranes as Chemical Hydrogen Storage Materials

    Directory of Open Access Journals (Sweden)

    Romain Moury

    2015-04-01

    Full Text Available Hydrazine borane N2H4BH3 and alkali derivatives (i.e., lithium, sodium and potassium hydrazinidoboranes MN2H3BH3 with M = Li, Na and K have been considered as potential chemical hydrogen storage materials. They belong to the family of boron- and nitrogen-based materials and the present article aims at providing a timely review while focusing on fundamentals so that their effective potential in the field could be appreciated. It stands out that, on the one hand, hydrazine borane, in aqueous solution, would be suitable for full dehydrogenation in hydrolytic conditions; the most attractive feature is the possibility to dehydrogenate, in addition to the BH3 group, the N2H4 moiety in the presence of an active and selective metal-based catalyst but for which further improvements are still necessary. However, the thermolytic dehydrogenation of hydrazine borane should be avoided because of the evolution of significant amounts of hydrazine and the formation of a shock-sensitive solid residue upon heating at >300 °C. On the other hand, the alkali hydrazinidoboranes, obtained by reaction of hydrazine borane with alkali hydrides, would be more suitable to thermolytic dehydrogenation, with improved properties in comparison to the parent borane. All of these aspects are surveyed herein and put into perspective.

  13. Borane-catalyzed cracking of C-C bonds in coal; Boran-katalysierte C-C-Bindungungsspaltung in Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Narangerel, J.; Haenel, M.W. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-09-01

    Coal, especially coking coal, was reacted with hydrogen at comparatively mild reaction conditions (150-280 degrees centigrade, 20 MPa hydrogen pressure) in the presence of catalysts consisting of borange reagents and certain transition metal halides to obtaine more than 80 percent of pyridine-soluble products. The influence of the degree of coalification, catalyst and temperature on the borane-catalyzed hydrogenolysis of C-C bonds in coal was investigated. (orig.) [Deutsch] Steinkohlen, insbesondere im Inkohlungsbereich der Fettkohlen (Kokskohlen), werden in Gegenwart von Katalysatoren aus Boran-Reagentien und bestimmten Uebergangsmetallhalogeniden mit Wasserstoff bei vergleichsweise milden Reaktionsbedingungen (250-280 C, 20 MPa Wasserstoffdruck) in zu ueber 80% pyridinloesliche Produkte umgewandelt. Der Einfluss von Inkohlungsgrad, Katalysator und Temperatur auf die Boran-katalysierte C-C-Bindungshydrogenolyse in Kohle wurde untersucht. (orig.)

  14. Regeneration of ammonia borane spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Andrew David [Los Alamos National Laboratory; Davis, Benjamin L [Los Alamos National Laboratory; Gordon, John C [Los Alamos National Laboratory

    2009-01-01

    A necessary target in realizing a hydrogen (H{sub 2}) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical H{sub 2} storage has been dominated by one appealing material, ammonia borane (H{sub 3}N-BH{sub 3}, AB), due to its high gravimetric capacity of H{sub 2} (19.6 wt %) and low molecular weight (30.7 g mol{sup -1}). In addition, AB has both hydridic and protic moieties, yielding a material from which H{sub 2} can be readily released in contrast to the loss of H{sub 2} from C{sub 2}H{sub 6} which is substantially endothermic. As such, a number of publications have described H{sub 2} release from amine boranes, yielding various rates depending on the method applied. The viability of any chemical H{sub 2} storage system is critically dependent on efficient recyclability, but reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. Our group is currently engaged in trying to find and fully demonstrate an energy efficient regeneration process for the spent fuel from H{sub 2} depleted AB with a minimum number of steps. Although spent fuel composition depends on the dehydrogenation method, we have focused our efforts on the spent fuel resulting from metal-based catalysis, which has thus far shown the most promise. Metal-based catalysts have produced the fastest rates for a single equivalent of H{sub 2} released from AB and up to 2.5 equiv. of H{sub 2} can be produced within 2 hours. While ongoing work is being carried out to tailor the composition of spent AB fuel, a method has been developed for regenerating the predominant product

  15. Boron carbide nitride derived from amine-boranes

    International Nuclear Information System (INIS)

    This paper reports that amine-boranes such as pyridine- or piperazine-borane can be converted into infusible polymers by thermal crosslinking at temperatures up to 420 degrees C. Further rise of the temperature up to 1050 degrees C in argon results in transformation of the polymers into black residues. Microstructural (TEM/EELS, ESCA) and chemical investigations indicate the presence of single phase boron carbide nitrides which exhibit a graphite-like, turbostratic structure with a homogeneous distribution of the elements B, N, and C. Subsequent annealing at 2200 degrees C in argon gives rise to crystallization of the pyrolytic material generating the thermodynamically stable phases BN, C, and B4C. The semiconducting properties of the X-ray amorphous boron carbide nitride synthesized at 1050 degrees C depend on the B/N/C-ratio which can be influenced by the type of amine-borane-precursor and by the applied atmosphere (Ar or NH3) during pyrolysis. The amine-boranes can be converted into boron carbide nitride- and BN-monoliths at 1050 degrees C under argon or reactive gas (NH3), respectively. The monoliths are transformed into composites with 91% rel. density containing BN, C, and B4C when heated up to 2200 degrees C

  16. Polymers containing borane or carborane cage compounds and related applications

    Science.gov (United States)

    Bowen, III, Daniel E.; Eastwood, Eric A.

    2012-06-05

    Polymers comprising residues of borane and/or carborane cage compound monomers having at least one polyalkoxy silyl substituent. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Methods of making and applications for using such polymers are also disclosed.

  17. Compositions containing borane or carborane cage compounds and related applications

    Science.gov (United States)

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-05-28

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  18. Compositions containing borane or carborane cage compounds and related applications

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-11-11

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  19. Compositions containing borane or carborane cage compounds and related applications

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, III, Daniel E.; Eastwood, Eric A.

    2015-09-15

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  20. Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2015-07-01

    Full Text Available Hydrogen storage is still one of the most significant issues hindering the development of a “hydrogen energy economy”. Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based catalyst. The reaction performance depends on the morphology and/or structure of these materials. In this review, we survey the research on nanostructured materials, especially porous materials for hydrogen generation from hydrolysis of ammonia borane.

  1. Chiral separations of charged boranes and carboranes by CZE

    Czech Academy of Sciences Publication Activity Database

    Slavíček, Viktor; Vespalec, Radim

    Praha: Česká chemická společnost, 2001 - (Kašička, V.; Deyl, Z.), s. 51 ISBN 80-7080-437-8. [International Symposium Separations in the BioSciences /2./. Praha (CZ), 17.09.2002-20.09.2002] Institutional research plan: CEZ:AV0Z4031919 Keywords : deltahedral boranes * capillary zone electrophoresis * beta-cyclodextrin Subject RIV: CB - Analytical Chemistry, Separation

  2. Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane

    OpenAIRE

    Tetsuo Umegaki; Qiang Xu; Yoshiyuki Kojima

    2015-01-01

    Hydrogen storage is still one of the most significant issues hindering the development of a “hydrogen energy economy”. Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based ...

  3. Polymers containing borane or carborane cage compounds and related applications

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-04-23

    Polymers comprising residues of cage compound monomers having at least one polyalkoxy silyl substituent are provided. The cage compound monomers are selected from borane cage compound monomers comprising at least 7 cage atoms and/or carborane cage compound monomers comprising 7 to 11 cage compound monomers. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Articles of manufacture comprising such polymers are also disclosed.

  4. Borane Derivatives: A New Class as Super and Hyperhalogens

    CERN Document Server

    Pathak, Biswarup; Ahuja, Rajeev; Jena, Puru

    2011-01-01

    Super and hyperhalogens are a class of highly electronegative species whose electron affinities far exceed those of halogen atoms and are important to chemical industry as oxidizing agents, bio-catalysts, and building blocks of salts. Using Wade-Mingos rule well known for describing the stability of closo-boranes (BnHn2-) and state of the art theoretical method we show that a new class of super and hyperhalogens, guided by this rule, can be formed by tailoring the size and composition of borane derivatives. Unlike conventional superhalogens which have a metal atom at the core surrounded by halogen atoms, the superhalogens formed using the Wade-Mingos rule do not have to have either halogen or metal atoms. We demonstrate this by using B12H13 and its isoelectronic cluster, CB11H12 as examples. We also show that while conventional superhalogens containing alkali atoms require at least two halogen atoms, only one borane-like moiety is sufficient to render M(B12H12) (M=Li, Na, K, Rb, Cs) clusters superhalogen prop...

  5. DFT investigation on dihydrogen-bonded amine-borane complexes.

    Science.gov (United States)

    Yan, Shihai; Zou, Hongmei; Kang, Wukui; Sun, Lixiang

    2016-01-01

    The DFT method has been employed in the exploration on dihydrogen-bonded amine-borane complexes, with a special emphasis on the dimerization and substituent group effect. Stable dihydrogen bonded complexes can be generated from these amine-borane monomers with the appearance of NH(δ+)…H(δ-)B interactions. The binding energy decreases gradually with the increase of the steric effect of the substituents. The substituent group number mainly varies the C-N bond length. The dimerization generates close H…H and influences predominantly the N-B distance. The effect of dimerization on IR and vibrational circular dichroism (VCD) spectra is stronger than that of the number of substituent groups, which leads to distinct NBO charge variation on α-C. Both the substituent group number and dimerization enhance the chemical shift difference between hydrogen atoms covalently bonded to N and B, Δδ H-H, which can be hired as an index for structural determination. It is proposed that amine-borane complexes with more substituent groups in higher degree of polymerization are potentially interesting materials for hydrogen storage. Graphical Abstract Both the number of substituent group and dimerization enhance the chemical shift difference of hydrogen atoms covalently bonded on N and B, Δδ H-H, which can be employed as an index for the structural determination. PMID:26696542

  6. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    'Full text': Ammonia borane (NH3BH3) has been of great interest owing to its ideal combination of low molecular weight and high H2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 oC at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  7. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    Science.gov (United States)

    Yao, Qilu; Lu, Zhang-Hui; Yang, Kangkang; Chen, Xiangshu; Zhu, Meihua

    2015-10-01

    Ultrafine ruthenium nanoparticles (NPs) within the mesopores of the SBA-15 have been successfully prepared by using a “double solvents” method, in which n-hexane is used as a hydrophobic solvent and RuCl3 aqueous solution is used as a hydrophilic solvent. After the impregnation and reduction processes, the samples were characterized by XRD, TEM, EDX, XPS, N2 adsorption-desorption, and ICP techniques. The TEM images show that small sized Ru NPs with an average size of 3.0 ± 0.8 nm are uniformly dispersed in the mesopores of SBA-15. The as-synthesized Ru@SBA-15 nanocomposites (NCs) display exceptional catalytic activity for hydrogen generation by the hydrolysis of ammonia borane (NH3BH3, AB) and hydrazine borane (N2H4BH3, HB) at room temperature with the turnover frequency (TOF) value of 316 and 706 mol H2 (mol Ru min)-1, respectively, relatively high values reported so far for the same reaction. The activation energies (Ea) for the hydrolysis of AB and HB catalyzed by Ru@SBA-15 NCs are measured to be 34.8 ± 2 and 41.3 ± 2 kJ mol-1, respectively. Moreover, Ru@SBA-15 NCs also show satisfied durable stability for the hydrolytic dehydrogenation of AB and HB, respectively.

  8. The Simplest Amino-borane H2 B=NH2 Trapped on a Rhodium Dimer: Pre-Catalysts for Amine-Borane Dehydropolymerization.

    Science.gov (United States)

    Kumar, Amit; Beattie, Nicholas A; Pike, Sebastian D; Macgregor, Stuart A; Weller, Andrew S

    2016-06-01

    The μ-amino-borane complexes [Rh2 (L(R) )2 (μ-H)(μ-H2 B=NHR')][BAr(F) 4 ] (L(R) =R2 P(CH2 )3 PR2 ; R=Ph, (i) Pr; R'=H, Me) form by addition of H3 B⋅NMeR'H2 to [Rh(L(R) )(η(6) -C6 H5 F)][BAr(F) 4 ]. DFT calculations demonstrate that the amino-borane interacts with the Rh centers through strong Rh-H and Rh-B interactions. Mechanistic investigations show that these dimers can form by a boronium-mediated route, and are pre-catalysts for amine-borane dehydropolymerization, suggesting a possible role for bimetallic motifs in catalysis. PMID:27100775

  9. Electroless copper plating using dimethylamine borane as reductant

    Institute of Scientific and Technical Information of China (English)

    Yong Liao; Shengtao Zhang; Robert Dryfe

    2012-01-01

    Electroless copper plating was studied using dimethylamine borane (DMAB) as reductant and 1,5,8,12-tetraazadodecane as additive and triethanolamine (TEA) as buffer.The effects of pH,temperature and concentrations of reactants and additives on the anodic oxidation of DMAB and the cathodic reduction of copper ion were investigated.Experimental results indicate that high pH values (10-12.5) promote the oxidation of DMAB,and suppress the reduction of the copper ion,while high bath temperatures (55-70℃)accelerate both anodic oxidation and cathodic reduction.Increase of the Cu2+ and DMAB concentrations can improve the deposition rate of copper plating.Results for a dual-chelating-agent system indicate that 1,5,8,12-tetraazadodecane plays an important role in chelation,while the main effect of TEA is adsorption on copper surfaces to inhibit DMAB oxidation and to promote deposition.

  10. Dehydrogenation of ammonia borane through the third equivalent of hydrogen.

    Science.gov (United States)

    Zhang, Xingyue; Kam, Lisa; Williams, Travis J

    2016-05-01

    Ammonia borane (AB) has high hydrogen density (19.6 wt%), and can, in principle, release up to 3 equivalents of H2 under mild catalytic conditions. A limited number of catalysts are capable of non-hydrolytic dehydrogenation of AB beyond 2 equivalents of H2 under mild conditions, but none of these is shown directly to derivatise borazine, the product formed after 2 equivalents of H2 are released. We present here a high productivity ruthenium-based catalyst for non-hydrolytic AB dehydrogenation that is capable of borazine dehydrogenation, and thus exhibits among the highest H2 productivity reported to date for anhydrous AB dehydrogenation. At 1 mol% loading, (phen)Ru(OAc)2(CO)2 () effects AB dehydrogenation through 2.7 equivalents of H2 at 70 °C, is robust through multiple charges of AB, and is water and air stable. We further demonstrate that catalyst has the ability both to dehydrogenate borazine in isolation and dehydrogenate AB itself. This is important, both because borazine derivatisation is productivity-limiting in AB dehydrogenation and because borazine is a fuel cell poison that is commonly released in H2 production from this medium. PMID:27052687

  11. Ni→B Interactions in Nickel Phosphino-Alkynyl-Borane Complexes

    NARCIS (Netherlands)

    Zhao, Xiaoxi; Otten, Edwin; Song, Datong; Stephan, Douglas W.

    2010-01-01

    The Ni complexes [{tBu2PC≡CB(C6F5)2}Ni(cod)] and [({tBu2PC≡CB(C6F5)2}Ni(NCMe))2] derived from the reaction between the phosphino-alkynyl-borane tBu2PC≡CB(C6F5)2 and [Ni(cod)2] exhibit an unprecedented metal–alkyne interaction in which the borane substituent bends towards the metal affording a Ni→B d

  12. P–C-Activated Bimetallic Rhodium Xantphos Complexes: Formation and Catalytic Dehydrocoupling of Amine–Boranes**

    Science.gov (United States)

    Johnson, Heather C; Weller, Andrew S

    2015-01-01

    {Rh(xantphos)}-based phosphido dimers form by P–C activation of xantphos (4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) in the presence of amine–boranes. These dimers are active dehydrocoupling catalysts, forming polymeric [H2BNMeH]n from H3B⋅NMeH2 and dimeric [H2BNMe2]2 from H3B⋅NMe2H at low catalyst loadings (0.1 mol %). Mechanistic investigations support a dimeric active species, suggesting that bimetallic catalysis may be possible in amine–borane dehydropolymerization. PMID:26140498

  13. A Three-Stage Mechanistic Model for Ammonia Borane Dehydrogenation by Shvo’s Catalyst

    OpenAIRE

    Lu, Zhiyao; Conley, Brian L.; Williams, Travis J.

    2012-01-01

    We propose a mechanistic model for three-stage dehydrogenation of ammonia borane (AB) catalyzed by Shvo’s cyclopentadienone-ligated ruthenium complex. We provide evidence for a plausible mechanism for catalyst deactivation, the transition from fast catalysis to slow catalysis, and relate those findings to the invention of a second-generation catalyst that does not suffer from the same deactivation chemistry.

  14. A New Homogeneous Catalyst for the Dehydrogenation of Dimethylamine Borane Starting with Ruthenium(III Acetylacetonate

    Directory of Open Access Journals (Sweden)

    Ebru Ünel Barın

    2015-06-01

    Full Text Available The catalytic activity of ruthenium(III acetylacetonate was investigated for the first time in the dehydrogenation of dimethylamine borane. During catalytic reaction, a new ruthenium(II species is formed in situ from the reduction of ruthenium(III and characterized using UV-Visible, Fourier transform infrared (FTIR, 1H NMR, and mass spectroscopy. The most likely structure suggested for the ruthenium(II species is mer-[Ru(N2Me43(acacH]. Mercury poisoning experiment indicates that the catalytic dehydrogenation of dimethylamine-borane is homogeneous catalysis. The kinetics of the catalytic dehydrogenation of dimethylamine borane starting with Ru(acac3 were studied depending on the catalyst concentration, substrate concentration and temperature. The hydrogen generation was found to be first-order with respect to catalyst concentration and zero-order regarding the substrate concentration. Evaluation of the kinetic data provides the activation parameters for the dehydrogenation reaction: the activation energy Ea = 85 ± 2 kJ·mol−1, the enthalpy of activation ∆H# = 82 ± 2 kJ·mol−1 and the entropy of activation; ∆S# = −85 ± 5 J·mol−1·K−1. The ruthenium(II catalyst formed from the reduction of ruthenium(III acetylacetonate provides 1700 turnovers over 100 hours in hydrogen generation from the dehydrogenation of dimethylamine borane before deactivation at 60 °C.

  15. Amino olefin nickel(I) and nickel(0) complexes as dehydrogenation catalysts for amine boranes

    NARCIS (Netherlands)

    M. Vogt; B. de Bruin; H. Berke; M. Trincado; H. Grützmacher

    2011-01-01

    A rare paramagnetic organometallic nickel(I) olefin complex can be isolated using the ligand bis(5H-dibenzo[a,d]cyclohepten-5-yl)amine. This complex and related nickel(0) hydride complexes show very high catalytic activity in the dehydrogenation of dimethylamino borane with release of one equivalent

  16. Synthesis and Application of New Chiral Ligands for the Asymmetric Borane Reduction of Prochiral Ketones

    NARCIS (Netherlands)

    Hulst, Ron; Heres, Hero; Peper, Nathalie C.M.W.; Kellogg, Richard M.

    1996-01-01

    Two chiral nonracemic γ-amino alcohols, ephedrine thiol and the corresponding (thio)-phosphoramidates and (thio)-phosphinamides have been examined as catalysts for the reduction of propiophenone by various boranes. Up to 95% e.e. can be obtained with the phosphorus derivatives.

  17. Dihydrogen Phosphate Stabilized Ruthenium(0 Nanoparticles: Efficient Nanocatalyst for The Hydrolysis of Ammonia-Borane at Room Temperature

    Directory of Open Access Journals (Sweden)

    Feyyaz Durap

    2015-07-01

    Full Text Available Intensive efforts have been devoted to the development of new materials for safe and efficient hydrogen storage. Among them, ammonia-borane appears to be a promising candidate due to its high gravimetric hydrogen storage capacity. Ammonia-borane can release hydrogen on hydrolysis in aqueous solution under mild conditions in the presence of a suitable catalyst. Herein, we report the synthesis of ruthenium(0 nanoparticles stabilized by dihydrogenphosphate anions with an average particle size of 2.9 ± 0.9 nm acting as a water-dispersible nanocatalyst in the hydrolysis of ammonia-borane. They provide an initial turnover frequency (TOF value of 80 min−1 in hydrogen generation from the hydrolysis of ammonia-borane at room temperature. Moreover, the high stability of these ruthenium(0 nanoparticles makes them long-lived and reusable nanocatalysts for the hydrolysis of ammonia-borane. They provide 56,800 total turnovers and retain ~80% of their initial activity even at the fifth catalytic run in the hydrolysis of ammonia-borane at room temperature.

  18. Dynamic Behavior of N-Heterocyclic Carbene Boranes: Boron-Carbene Bonds in B,B-Disubstituted N,N-Dimethylimidazol-2-ylidene Boranes Have Substantial Rotation Barriers.

    Science.gov (United States)

    Damodaran, Krishnan; Li, Xiben; Pan, Xiangcheng; Curran, Dennis P

    2015-05-01

    Dynamic NMR spectroscopy has been used to measure rotation barriers in five B,B-disubstituted 1,3-dimethylimidazol-2-ylidene boranes. The barriers are attributed to the sp(2)-sp(3) bond between C(1) of the N-heterocyclic carbene ring and the boron atom. Bonds to boron atoms bearing a thexyl (1,1,2-trimethylpropyl) group show especially high barriers, ranging from 75-86 kJ mol(-1). 2-Isopropyl-1,3,5-trimethylbenzene is used as a comparable to help understand the nature and magnitude of the barriers. PMID:25843519

  19. Synthesis and comparative toxicology of a series of polyhedral borane anion-substituted tetraphenyl porphyrins.

    Science.gov (United States)

    Koo, Myoung-Seo; Ozawa, Tomoko; Santos, Raquel A; Lamborn, Kathleen R; Bollen, Andrew W; Deen, Dennis F; Kahl, Stephen B

    2007-02-22

    Three structurally similar tetraphenylporphyrins bearing polyhedral borane anions have been synthesized and their toxicological profiles obtained in rats. These conjugates were found to have quite different acute toxicities as manifested at the maximum tolerated dose (MTD). When given at the MTD and observed over 28 days, the most acutely toxic porphyrin was found to be devoid of toxicity, as measured by blood chemistry panels. The remaining two less acutely toxic compounds both elicited significant changes, characterized by moderate to severe thrombocytopenia, failure to gain weight normally and changes in liver enzymes indicative of mild hepatotoxicity. All toxic effects were transient, with platelets rebounding to above normal levels at day 28. We conclude that thrombocytopenia is the dose limiting toxicity for boronated porphyrins in mammals and suggest that these effects may be due to the porphyrin, not the borane or carborane. PMID:17253677

  20. Tris(pentafluorophenyl)borane as an efficient catalyst in the guanylation reaction of amines.

    Science.gov (United States)

    Antiñolo, Antonio; Carrillo-Hermosilla, Fernando; Fernández-Galán, Rafael; Martínez-Ferrer, Jaime; Alonso-Moreno, Carlos; Bravo, Iván; Moreno-Blázquez, Sonia; Salgado, Manuel; Villaseñor, Elena; Albaladejo, José

    2016-06-28

    Tris(pentafluorophenyl)borane, [B(C6F5)3], has been used as an efficient catalyst in the guanylation reaction of amines with carbodiimide under mild conditions. A combined approach involving NMR spectroscopy and DFT calculations was employed to gain a better insight into the mechanistic features of this process. The results allowed us to propose a new Lewis acid-assisted Brønsted acidic pathway for the guanylation reaction. The process starts with the interaction of tris(pentafluorphenyl)borane and the amine to form the corresponding adduct, [(C6F5)3B-NRH2] , followed by a straightforward proton transfer to one of the nitrogen atoms of the carbodiimide, (i)PrN[double bond, length as m-dash]C[double bond, length as m-dash]N(i)Pr, to produce, in two consequent steps, a guanidine-borane adduct, [(C6F5)3B-NRC(N(i)PrH)2] . The rupture of this adduct liberates the guanidine product RNC(N(i)PrH)2 and interaction with additional amine restarts the catalytic cycle. DFT studies have been carried out in order to study the thermodynamic characteristics of the proposed pathway. Significant borane adducts with amines and guanidines have been isolated and characterized by multinuclear NMR in order to study the N-B interaction and to propose the existence of possible Frustrated Lewis Pairs. Additionally, the molecular structures of significant components of the catalytic cycle, namely 4-tert-butylaniline-[B(C6F5)3] adduct and both free and [B(C6F5)3]-bonded 1-(phenyl)-2,3-diisopropylguanidine, and respectively, have been established by X-ray diffraction. PMID:27278089

  1. Hypolipidemic Activity of Amine-Borane Aducts of Cyclohexylamine and Toluidine in Rodents

    OpenAIRE

    Burnham, Bruce S.; Chen, S. Y.; Sood, A.; Spielvogel, Bernard F.; Hall, Iris H.

    1995-01-01

    The amine-borane adducts of cyclohexylamine and toluidine were observed to be potent hypolipidemic agents in mice, I.P. and rats orally at 8 mg/kg/day lowering both serum cholesterol and triglyceride levels after 14-16 days. These compounds were able to lower tissue lipids including the cholesterol content of the aorta wall. The agents successfully lower VLDL- and LDL-cholesterol content while elevating HDL-cholesterol content significantly. The agents also modulate lipid regulatory enzyme ac...

  2. Smallpox inoculation (variolation) in East Africa with special reference to the practice among the Boran and Gabra of Northern Kenya.

    Science.gov (United States)

    Imperato, Pascal James; Imperato, Gavin H

    2014-12-01

    Smallpox inoculation (variolation) was widely reported in sub-Sahara Africa before, during, and after the colonial era. The infective smallpox materials and techniques used, as well as the anatomical sites for inoculation, varied widely among different ethnic groups. The practice among the Boran and Gabra pastoralists of northern Kenya resembled that which was prevalent in a number of areas of Ethiopia. This is not surprising as the Boran also live in southern Ethiopia, and Gabra herdsmen frequently cross the border into this region. The Boran and Gabra technique for smallpox inoculation consisted of taking infective material from the vesicles or pustules of those with active smallpox, and scraping it into the skin on the dorsum of the lower forearm. Although the intent was to cause a local reaction and at most a mild form of smallpox, severe cases of the disease not infrequently resulted. Also, variolated individuals were capable of infecting others with smallpox, thereby augmenting outbreaks and sustaining them. The limited known reports of smallpox inoculation among the Boran and Gabra are presented in this communication. The expansion of vaccination with effective heat stable vaccines, the development of medical and public health infrastructures, and educational programs all contributed to the eventual disappearance of the practice among the Boran and Gabra. PMID:25100176

  3. Final Report for the DOE-BES Program Mechanistic Studies of Activated Hydrogen Release from Amine-Boranes

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Sneddon; R. Thomas Baker

    2013-01-13

    Effective storage of hydrogen presents one of the most significant technical gaps to successful implementation of the hydrogen economy, particularly for transportation applications. Amine boranes, such as ammonia borane H3NBH3 and ammonia triborane H3NB3H7, have been identified as promising, high-capacity chemical hydrogen storage media containing potentially readily released protic (N-H) and hydridic (B-H) hydrogens. At the outset of our studies, dehydrogenation of ammonia borane had been studied primarily in the solid state, but our DOE sponsored work clearly demonstrated that ionic liquids, base-initiators and/or metal-catalysts can each significantly increase both the rate and extent of hydrogen release from amine boranes under moderate conditions. Our studies also showed that depending upon the activation method, hydrogen release from amine boranes can occur by very different mechanistic steps and yield different types of spent-fuel materials. The fundamental understanding that was developed during this grant of the pathways and controlling factors for each of these hydrogen-release mechanisms is now enabling continuing discovery and optimization of new chemical-hydride based hydrogen storage systems.

  4. Mechanisms of generation of volatile hydrides by aqueous boranes. Clarification of most controversal aspects

    International Nuclear Information System (INIS)

    Complete text of publication follows. In analytical chemistry, aqueous borane derivatization for the generation of volatile hydrides or volatile metallic species (CHG), coupled with atomic or mass spectrometry, represents one of the most powerful and widely employed analytical tool for trace and ultra trace element determination and speciation. Fundamental aspects dealing with the mechanisms involved in CHG have scarce relevance in comparison with analytical applications and developments. Moreover, the analytical community has disregarded most of the experimental evidence relating to the chemistry of borane complexes that have been reported in the fundamental chemistry literature in the past years. These are probably the reasons for which CHG is still dominated by erroneous concepts, which have been disseminated and consolidated within the analytical scientific community over the course of many years. The overall approach to CHG has thus remained completely empirical, which hinders the possibilities for further developments. This presentation reports a discussion devoted to clarification of the most controversial aspects of CHG: - Kinetic and Mechanism of hydrolysis of THB and borane complexes. - Mechanism of CHG. - Reaction model of general validity for CHG. - Mechanism of action and role played by additives. The discussion is based on the present status of knowledge, which results from the survey of fundamental chemistry literature (1950-1985) and analytical chemistry literature (1972-to date)(IUPAC Project 2007-041-1-500; ) and it includes some recent dedicated experiments (A. D'Ulivo et al., Anal.Chem. 76 (2004) 6342-6352.; A. D'Ulivo et al., Anal.Chem. 79(2007) 3008-3015.;E. Pitzalis et al., Anal.Chem. 79 (2007) 6324-6333.).

  5. Electron transport and nonlinear optical properties of substituted aryldimesityl boranes: a DFT study.

    Directory of Open Access Journals (Sweden)

    Altaf Hussain Pandith

    Full Text Available A comprehensive theoretical study was carried out on a series of aryldimesityl borane (DMB derivatives using Density Functional theory. Optimized geometries and electronic parameters like electron affinity, reorganization energy, frontiers molecular contours, polarizability and hyperpolarizability have been calculated by employing B3PW91/6-311++G (d, p level of theory. Our results show that the Hammett function and geometrical parameters correlates well with the reorganization energies and hyperpolarizability for the series of DMB derivatives studied in this work. The orbital energy study reveals that the electron releasing substituents increase the LUMO energies and electron withdrawing substituents decrease the LUMO energies, reflecting the electron transport character of aryldimesityl borane derivatives. From frontier molecular orbitals diagram it is evident that mesityl rings act as the donor, while the phenylene and Boron atom appear as acceptors in these systems. The calculated hyperpolarizability of secondary amine derivative of DMB is 40 times higher than DMB (1. The electronic excitation contributions to the hyperpolarizability studied by using TDDFT calculation shows that hyperpolarizability correlates well with dipole moment in ground and excited state and excitation energy in terms of the two-level model. Thus the results of these calculations can be helpful in designing the DMB derivatives for efficient electron transport and nonlinear optical material by appropriate substitution with electron releasing or withdrawing substituents on phenyl ring of DMB system.

  6. New Routes to a Series of σ-Borane/Borate Complexes of Molybdenum and Ruthenium.

    Science.gov (United States)

    Ramalakshmi, Rongala; Saha, Koushik; Roy, Dipak Kumar; Varghese, Babu; Phukan, Ashwini K; Ghosh, Sundargopal

    2015-11-23

    A series of agostic σ-borane/borate complexes have been synthesized and structurally characterized from simple borane adducts. A room-temperature reaction of [Cp*Mo(CO)3 Me], 1 with Li[BH3 (EPh)] (Cp*=pentamethylcyclopentadienyl, E=S, Se, Te) yielded hydroborate complexes [Cp*Mo(CO)2 (μ-H)BH2 EPh] in good yields. With 2-mercapto-benzothiazole, an N,S-carbene-anchored σ-borate complex [Cp*Mo(CO)2 BH3 (1-benzothiazol-2-ylidene)] (5) was isolated. Further, a transmetalation of the B-agostic ruthenium complex [Cp*Ru(μ-H)BHL2 ] (6, L=C7 H4 NS2 ) with [Mn2 (CO)10 ] affords a new B-agostic complex, [Mn(CO)3 (μ-H)BHL2 ] (7) with the same structural motif in which the central metal is replaced by an isolobal and isoelectronic [Mn(CO)3 ] unit. Natural-bond-orbital analyses of 5-7 indicate significant delocalization of the electron density from the filled σBH orbital to the vacant metal orbital. PMID:26450356

  7. Bonding in transition-metal cluster compounds. 2. The metal cluster-borane analogy

    International Nuclear Information System (INIS)

    Following the detailed discussion of the transition-metal cluster moiety M6(μ3-X)8 in the preceding paper, a more general account of the importance of the d electrons in transition-metal cluster chemistry is presented. The putative analogy with borane clusters (and their derivatives) is examined critically. Although an isolobal relationship exists between, e.g., BH and appropriate ML/sub n/ fragments (e.g. conical Fe(CO)3), this does not imply that the BH and ML/sub n/ fragments behave in electronically similar ways when cluster formation occurs, even when structurally related clusters are formed. Nonidentical isolobal fragments have orbital differences that manifest themselves in interfragment resonance integrals and require a qualitative distinction to be drawn between the bonding modes and detailed electronic structures of (i) transition-metal cluster compounds and (ii) boranes, carboranes, and their metalla derivatives; an analysis developed in the electronic structure theory of transition-metal systems shows why this is the case. The isolobal principle and Wade's rule owe their generality and utility to being symmetry-based statements; the energetics and details of the electronic structure of cluster compounds however are a separate matter requiring appropriate methods of theoretical chemistry. 39 references, 3 figures

  8. Towards chiral diamines as chiral catalytic precursors for the borane-mediated enantioselective reduction of prochiral ketones

    Indian Academy of Sciences (India)

    Deevi Basavaiah; Utpal Das; Suparna Roy

    2009-11-01

    Two chiral diamines (3)-3-anilinomethyl-1,2,3,4-tetrahydroisoquinoline (1) and (2)-2-anilinomethylpiperidine (2) have been employed as chiral catalytic sources in the borane-mediated asymmetric reduction of prochiral ketones thus providing the resulting secondary alcohols in good enantiomeric purities (up to 81% ).

  9. Directed ortho-metalation of branched alkyl diphenylphosphine oxides - a simple approach to form new phospine borane complexes

    Czech Academy of Sciences Publication Activity Database

    Mahamulkar, Shraddha G.; Jahn, Ullrich

    Lisboa : -, 2015 - (Rauter, A.; Martins, A.; Matos, A.; Dias, C.; Xavier, N.; Nunes, R.; Lucas, S.; Cachatra, V.; Paiva, A.; Batista, D.). s. 295 ISBN 978-989-8124-11-1. [ESOC 2015. European Symposium on Organic Chemistry /19./. 12.07.2015-16.07.2015, Lisboa] Institutional support: RVO:61388963 Keywords : phosphine oxides * phosphine-borane complexes Subject RIV: CC - Organic Chemistry

  10. Superovulation, collection and transfer of embryos and demi-embryos from Boran(Bos indicus ) cows and heifers.

    Science.gov (United States)

    Jordt, T; Lorenzini, E

    1988-08-01

    Twenty-three Boran(Bos indicus ) cows and heifers were superovulated with pregnant mare serum gonadotropin (PMSG); a total of four embryos and 4.1 +/- 0.3 (mean +/- SEM) ova per ova-producing donor resulted. Follicle stimulating hormone (FSH-P) was then used to superovulate 49 Boran cows for a total of 106 superovulations, of which 63 (59.4%) produced an average of 3.7 +/- 0.4 (mean +/- SEM) embryos. The embryo production was not influenced by either the season or the number of times(one to five) the cows were superovulated. A higher pregnancy rate was obtained when the selection of Boran recipients was based on their plasma-progesterone values (overall 52.5%, single embryos 63.3%, twin demi-embryos 45.8%) than when they were selected by palpation per rectum only (overall 43.8%, single embryos 50%, twin demi-embryos 36.4%). The twinning rate of twin demiembryos was 62.5%, whereas only single calves were born after transfer of two embryos per recipient. No pregnancies were produced following transfer of twin demi-embryos without zonae pellucidae. Transferring single demi-embryos gave a low pregnancy rate (13.3%). Twelve donor Boran cows (21 superovulations) bred with their fathers resulted in a high rate of early embryonic death; additionally, only 20.9% (overall) of the recipients became pregnant. Estrus synchronization of Boran cows with a progesterone releasing intravaginal device (PRID) for a short period (7 d) combined with one injection of prostaglandin (Day 6) produced a larger number of good quality recipients (70.5%) than using double prostaglandin injections (60%). PMID:16726476

  11. Evidence for an Intermediate in the Methylation of CB11H12- with Methyl Triflate: Comparison of Electrophilic Substitution in Cage Boranes and in Arenes

    Czech Academy of Sciences Publication Activity Database

    Kaleta, Jiří; Akdag, Akin; Crespo, R.; Piqueras, M. C.; Michl, Josef

    2013-01-01

    Roč. 78, č. 9 (2013), s. 1174-1183. ISSN 2192-6506 Institutional support: RVO:61388963 Keywords : alkylation * boranes * carboranes * electrophilic substitution * hydrogen scrambling Subject RIV: CC - Organic Chemistry Impact factor: 3.242, year: 2013

  12. Evidence for an Intermediate in the Methylation of CB11H12- with MeOTf. Comparison of Electrophilic Substitution in Cage Boranes and in Arenes

    Czech Academy of Sciences Publication Activity Database

    Kaleta, Jiří; Akdag, Akin; Michl, Josef

    Praha : -, 2013. s. 107-107. [ESOR 2013. European Symposium on Organic Reactivity /14./. 01.09.2013-06.09.2013, Praha] Institutional support: RVO:61388963 Keywords : boranes * arenes * DFT Subject RIV: CC - Organic Chemistry

  13. The structure study of boron carbonitride films obtained by use of trimethylamine borane complex

    CERN Document Server

    Kosinova, M L; Fainer, N I; Maximovski, E A; Kuznetsov, F A

    2001-01-01

    Diffraction of synchrotron radiation (SR) was used to investigate crystalline structure and phase composition of thin films (1500-5000 A) of boron carbonitride. These films were synthesized by plasma-enhanced chemical vapor deposition using nontraditional volatile single source precursor trimethylamine borane complex (CH sub 3) sub 3 N centre dot BH sub 3 and its mixture with ammonia. The effect of the gas ratio and substrate temperature on chemical and phase composition as well as the structure of the films were investigated. The XRD peculiarities of texture films and ways of increasing sensibility of measurements were considered. A possibility of the information density rise of the thin film XRD was shown due to application of different methods for recording diffraction patterns.

  14. Ab initio spectroscopic characterization of borane, BH, in its X1Σ+ electronic state.

    Science.gov (United States)

    Koput, Jacek

    2015-11-15

    The accurate potential energy and electric dipole moment functions of borane, BH, in its X1Σ+ electronic state have been determined from ab initio calculations using the multireference averaged coupled-pair functional method in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, adiabatic, and nonadiabatic effects were discussed. Vibration-rotation energy levels of the (11)BH, (11)BD, (10)BH, and (10)BD isotopologues were predicted to near "spectroscopic" accuracy. For the main isotopologue (11)BH, the adiabatic dissociation energy D0 and the effective equilibrium internuclear distance r(e) were predicted to be 28,469 ± 10 cm(-1) and 1.23214 ± 0.0001 Å, respectively. PMID:26444679

  15. RuCu nanoparticles supported on graphene: A highly efficient catalyst for hydrolysis of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Nan; Hu, Kai [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072 (China); Luo, Wei, E-mail: wluo@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072 (China); Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123 (China); Cheng, Gongzhen, E-mail: gzcheng@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-03-25

    Graphical abstract: Well dispersed RuCu/graphene nanoparticles exerted satisfied catalytic activity and recycle stability towards the hydrolysis of ammonia borane. Highlights: • One-step in situ synthesis of graphene supported RuCu NPs. • The catalysts exhibit excellent catalytic activity toward hydrolysis of AB. • Graphene supported NPs exhibit the highest catalytic activity. -- Abstract: Well dispersed RuCu nanoparticles (NPs) supported on graphene were in situ synthesized by a one-step co-reduction of aqueous solution of ruthenium (III) chloride, cupric (II) chloride, and graphite oxide (GO) with ammonia borane (AB) under ambient condition. The nature of the NPs was fully characterized by TEM, HRTEM, XRD, energy dispersive spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The as-synthesized NPs exhibit much higher catalytic activity for hydrolytic dehydrogenation of AB than the monometallic Ru and Cu, bimetallic RuCu/graphene reduced by NaBH{sub 4}, and graphene free RuCu counterparts. Additionally, the as-synthesized NPs supported on graphene exhibit higher catalytic activity than the catalysts with other conventional supports, such as SiO{sub 2}, γ-Al{sub 2}O{sub 3}, and carbon black. The activity of Ru{sub 1}Cu{sub 7.5}/graphene NPs in terms of turnover frequency (TOF) is 135 mol H{sub 2} min{sup −1} (mol Ru){sup −1}, which is higher than Ru/graphene, and most reported Ru-based or other noble metal-based NPs for the catalytic hydrolysis of AB. The activation energy for hydrolysis of AB in the presence of Ru{sub 1}Cu{sub 7.5}/graphene NPs was determined as 30.59 kJ mol{sup −1}, which is lower than most of the reported catalysts. Furthermore, the as-prepared NPs exert satisfied durable stability for the hydrolytic dehydrogenation of AB.

  16. Evaluation of F1 calves sired by Brahman, Boran, and Tuli bulls for birth, growth, size, and carcass characteristics.

    Science.gov (United States)

    Herring, A D; Sanders, J O; Knutson, R E; Lunt, D K

    1996-05-01

    Birth (n = 308), weaning (n = 291), feedlot and carcass (n = 142), and yearling heifer traits (n = 139) were evaluated in F1 calves sired by Brahman (BR), Boran (BO), and Tuli (TU) bulls and born to multiparous Hereford and Angus cows. Calves sired by BR were heaviest (P Brahman crosses had larger (P yield grade among sire breeds. Heifers sired by BR were heaviest (P Brahman F1 heifers had larger (P yield traits, among these three breeds. PMID:8726726

  17. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube

    International Nuclear Information System (INIS)

    Hydrogen was generated from ammonia borane complex by hydrolysis using cobalt nanocluster catalyst supported on polydopamine functionalized MWCNTs (multi-walled carbon nanotubes). The impregnation-chemical reduction method was used for the preparation of the supported catalyst. The nanocluster catalyst support was formed by in-situ oxidative polymerization of dopamine on the MWCNTs in alkaline solution at room temperature. The structural and physical–chemical properties of the nanocluster catalyst were characterized by FT-IR (Fourier transform infrared spectroscopy), EDX (energy-dispersive X-ray spectroscopy), SEM (scanning electron microscope), XRD (X-ray diffraction) and TEM (transmission electron microscopy). The nanocluster catalyst showed good catalytic activity for the hydrogen generation from aqueous ammonia borane complex. A reusability test to determine the practical usage of the catalyst was also investigated. The result revealed that the catalyst maintained an appreciable catalytic performance and stability in terms of its reusability after three cycle of reuse for the hydrolysis reaction. Also, the activation energy for the hydrolysis of ammonia borane complex was estimated to be 50.41 kJmol−1, which is lower than the values of some of the reported catalyst. The catalyst can be considered as a promising candidate in developing highly efficient portable hydrogen generation systems such as PEMFC (proton exchange membrane fuel cells). - Highlights: • Co/Pdop-o-MWCNT (Pdop functionalized MWCNT supported cobalt nanocluster) catalyst was synthesized for hydrogen generation. • It is an active catalyst for hydrogen generation via hydrolysis of ammonia borane. • It showed good stability in terms of reusability for the hydrogen generation

  18. The performance of Orma Boran and Maasai Zebu crossbreeds in a trypanosomosis endemic area of Nguruman, south western Kenya

    OpenAIRE

    M.W. Maichomo; J.M. Ndungu; P.M. Ngare; I.M. Ole-Mapenay

    2005-01-01

    Studies on the trypanotolerance of Orma Boran X Maasai Zebu (Orma Zebu) crossbred cattle (F1 progeny) and pure-bred Maasai Zebu contemporaries were carried out in Nguruman, south western Kenya. The two groups were monitored from birth for a period of 2 years. The incidence of trypanosomosis, parasitaemia, packed cell volume (PCV), body mass and average daily mass gain were monitored. During the study period, overall trypanosomosis incidence was low (3 %). The crossbred cattle had a highe...

  19. Exploration of the electrophoretic behaviour of borane cluster anions and of the capability of capillary electrophoresis to separate them chirally.

    Science.gov (United States)

    Slavícek, Viktor; Grüner, Bohumír; Vespalec, Radim

    2003-01-10

    Mobilities of investigated boron cluster compounds in 3-(N-morpholino)propanesulfonic and phosphate buffers adjusted to pH 7 either with sodium hydroxide or with tris(hydroxymethyl)aminomethane depend on both buffer ions. The zone width and zone asymmetry, which are usually markedly higher than those of organic or common inorganic ions of comparable size, depend on the type of the borane cluster anion. Unusual shapes of zones of two investigated compounds have been found in tris phosphate buffer. Acetonitrile was superior to methanol as an organic additive to separation systems from the viewpoint of the zone symmetry and separation speed. Narrow trigonal zones, typical of organic ions non-interacting with the capillary wall, have been observed for some bridged sandwich cobalt complexes in run buffers with the addition of acetonitrile. The interaction of borane cluster anions with beta-cyclodextrin cavity is excessively strong in purely aqueous solutions. Methanol and acetonitrile, which generally weaken the interaction, sometimes affect the separation enantioselectivity of various compounds in different ways in addition to the weakening effect. Chiral discrimination was reached for all ten investigated anions, which belong to four different structural types of cluster boranes. Stability constants estimated for some analyte-beta-cyclodextrin complexes range between 100 and 1800 l/mol in acceptable separations. The relative difference of the constants was from 3 to 20%. PMID:12564682

  20. PVP-stabilized Ru–Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane

    International Nuclear Information System (INIS)

    Herein, the utilization of poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles (3.4 ± 1.4 nm) as highly efficient catalysts in the hydrolysis of ammonia borane for hydrogen generation is reported. They are prepared by co-reduction of ruthenium and rhodium metal ions in ethanol/water mixture by an alcohol reduction method and characterized by transmission electron microscopy-energy dispersive X-ray spectroscopy, ultraviolet–visible spectroscopy, and X-ray photoelectron spectroscopy. They are durable and highly efficient catalysts for hydrogen generation from the hydrolysis of ammonia borane even at very low concentrations and temperature, providing average turnover frequency of 386 mol H2 (mol cat)−1 min−1 and maximum hydrogen generation rate of 10,680 L H2 min−1 (mol cat)−1. Poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles also provide activation energy of 47.4 ± 2.1 kJ/mol for the hydrolysis of ammonia borane. - Highlights: • Ru-Rh@PVP NPs provide a TOF of 386 mol H2 (mol cat)−1 min−1 for hydrolysis of AB. • Maximum HG rate is 9680 L H2 min−1 (mol cat)−1 for the hydrolysis of AB. • Activation energy is 47.4 ± 2.1 kJ mol−1 for the hydrolysis of AB

  1. Influence of Pressure on Physical Property of Ammonia Borane and its Re-hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiuhua [Florida Intl Univ., Miami, FL (United States)

    2015-08-14

    The project systematically studied the high pressure behavior of ammonia borane and its derivative lithium amidoborane. Phase transitions in these materials are investigated in the pressure range up to 20 GPa and temperature range from 80 K to 400K. A number of new phase transitions are discovered in this pressure and temperature range including a second order transformation at 5 GPa and a first order transformation at 12 GPa at room temperature, and four new transitions at high pressure and low temperatures. The Clapeyron slopes for both pressure-induce tetragonal (I4mm) phase to orthorhombic (Cmc21) phase and temperature-induce tetragonal (I4mm) phase to orthorhombic (Pmn21) phase are determined to be positive, indicating these phase transitions are exothermic. This result demonstrates that the high pressure orthorhombic phase of ammonia borane has lower enthalpy than that of tetragonal phase at ambient conditions. If we assume decomposition from the orthorhombic phase yields the same products as that from the tetragonal phase, the decomposition of the orthorhombic phase will be less exothermic. Therefore rehydrogenation from the decomposed product into the orthorhombic phase at high pressure may become easier. The project also studied the influences of nanoconfinement on the phase transitions. Comparative study using Raman spectroscopy indicates that the temperature induced I4mm to Pmn21 transition is suppressed from 217 K to 195 K when the sample is confined in SBA15 (7-9 nm pore size). When the pore size is reduced from 7-9 nm to 3-4 nm, this transition is totally suppressed in the temperature down to 80 K. A similar influence of the nanoconfiement on pressure induced phase transitions is also observed using Raman spectroscopy. The phase boundary between the I4mm phase and high pressure Cmc21 phase at ambient temperature shifts from 0.9 GPa to 0.5 GPa; and that between the Cmc21 phase and higher pressure P21 phase shifts from 10.2 GPa to 9.7 GPa.

  2. Methanolysis of ammonia borane by shape-controlled mesoporous copper nanostructures for hydrogen generation.

    Science.gov (United States)

    Yao, Qilu; Huang, Ming; Lu, Zhang-Hui; Yang, Yuwen; Zhang, Yuxin; Chen, Xiangshu; Yang, Zhen

    2015-01-21

    Diverse mesoporous CuO nanostructures have been prepared by a facile and scaleable wet-chemical method and reduced to mesoporous Cu nanostructures by using the reductant ammonia borane (AB). These mesoporous Cu nanostructures have been applied as a catalyst for hydrogen generation from the methanolysis of AB. The catalytic results show that the reaction rate and the amount of hydrogen evolution significantly relied on their morphologies. Compared with the nanosheet-like, bundle-like and dandelion-like Cu, the flower-like Cu nanostructures exhibit the highest catalytic activity with a total turnover frequency (TOF) value of 2.41 mol H2 mol catalyst(-1) min(-1) and a low activation energy value of 34.2 ± 1.2 kJ mol(-1) at room temperature. Furthermore, the flower-like Cu nanostructures have also shown excellent activity in recycling tests. The low cost and high performance of Cu nanocatalysts may offer high potential for its practical application in hydrogen generation from the methanolysis of AB. PMID:25409979

  3. Interleaved mesoporous copper for the anode catalysis in direct ammonium borane fuel cells.

    Science.gov (United States)

    Auxilia, Francis M; Tanabe, Toyokazu; Ishihara, Shinsuke; Saravanan, Govindachetty; Ramesh, Gubbala V; Matsumoto, Futoshi; Ya, Xu; Ariga, Katsuhiko; Dakshanamoorthy, Arivuoli; Abe, Hideki

    2014-06-01

    Mesoporous materials with tailored microstructures are of increasing importance in practical applications particularly for energy generation and/or storage. Here we report a mesoporous copper material (MS-Cu) can be prepared in a hierarchical microstructure and exhibit high catalytic performance for the half-cell reaction of direct ammonium borane (NH3BH3) fuel cells (DABFs). Hierarchical copper oxide (CuO) nanoplates (CuO Npls) were first synthesized in a hydrothermal condition. CuO Npls were then reduced at room temperature using water solution of sodium borohydride (NaBH4) to yield the desired mesoporous copper material, MS-Cu, consisting of interleaved nanoplates with a high density of mesopores. The surface of MS-Cu comprised high-index facets, whereas a macroporous copper material (MC-Cu), which was prepared from CuO Npls at elevated temperatures in a hydrogen stream, was surrounded by low-index facets with a low density of active sites. MS-Cu exhibited a lower onset potential and improved durability for the electro-oxidation of NH3BH3 than MC-Cu or copper particles because of the catalytically active mesopores on the interleaved nanoplates. PMID:24738410

  4. Quantifying the thermodynamic interactions of polyhedral boranes in solution to guide nanocomposite fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Mutz, M. [University of Tennessee, Department of Chemistry (United States); Eastwood, Eric [Honeywell Kansas City Plant (United States); Lee, Mark E. [University of Missouri (United States); Bowen, Daniel E. [Honeywell Kansas City Plant (United States); Dadmun, M. D., E-mail: dad@utk.edu [University of Tennessee, Department of Chemistry (United States)

    2012-11-15

    The solubility of boron containing nanoparticles in a variety of solvents is quantified using static light scattering in conjunction with refractometry. Four polyhedral boranes were tested in this work, using refractometry to obtain dn/dc, while static light scattering quantifies A{sub 2}. A{sub 2} obtained from these measurements was then used to calculate {chi}, the solute-solvent interaction parameter, and the Hildebrand solubility parameter, {delta}, which provides a quantifiable method to identify good solvents. Of the nanoparticles studied, 1,3-di-o-carboranylpropane is thermodynamically stable in toluene, with a {chi} less than 0.5, a solubility limit of 2.47 mg/mL, and all solutions remaining clear with no visible particle settling. For all of the particles tested, there was good correlation between the physical observations of the solutions, {chi}, and {delta}. For instance, lower values of {chi} correspond to a smaller radius of gyration (R{sub g}). A list of suitable solvents based on {delta} is also presented.

  5. Quantifying the thermodynamic interactions of polyhedral boranes in solution to guide nanocomposite fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Mutz, M [The University of Tennessee; Eastwood, Eric Allen [ORNL; LeeJr, Mark E [University of Missouri; BowenIII, Daniel E [Honeywell, Inc.; Dadmun, Mark D [ORNL

    2012-01-01

    The solubility of boron containing nanoparticles in a variety of solvents is quantified using static light scattering in conjunction with refractometry. Four polyhedral boranes were tested in this work, using refractometry to obtain dn/dc, while static light scattering quantifies A2. A2 obtained from these measurements was then used to calculate v, the solute solvent interaction parameter, and the ildebrand solubility parameter, d, which provides a quantifiable method to identify good solvents. Of the nanoparticles studied, 1,3-di-o-carboranylpropane is thermodynamically stable in toluene, with a v less than 0.5, a solubility limit of 2.47 mg/mL, and all solutions remaining clear with no visible particle settling. For all of the particles tested, there was good correlation between the physical observations of the solutions, v, and d. For instance, lower values of v correspond to a smaller radius of gyration (Rg). A list of suitable solvents based on d is also presented.

  6. Cobalt-Nickel-Boron Supported over Polypyrrole-Derived Activated Carbon for Hydrolysis of Ammonia Borane

    Directory of Open Access Journals (Sweden)

    Yongjin Zou

    2016-07-01

    Full Text Available In this study, polypyrrole (PPy nanofibers were used to synthesize a super-activated carbon material. A highly-dispersed Co-Ni-B catalyst was supported on PPy nanofiber-derived activated carbon (PAC by chemical reduction. The Co-Ni-B/PAC hybrid catalyst exhibited excellent catalytic performance for the decomposition of ammonia borane (AB in an aqueous alkaline solution at room temperature. The size of the metal particles, morphology of Co-Ni-B/PAC, and catalytic activity of the supported catalyst were investigated. Ni-B, Co-B, and Co-Ni-B catalysts were also synthesized in the absence of PAC under similar conditions for comparison. The maximum hydrogen generation rate (1451.2 mL−1·min−1·g−1 at 25 °C was obtained with Co-Ni-B/PAC. Kinetic studies indicated that the hydrolysis reaction of AB was first order with respect to Co-Ni-B/PAC, and the activation energy was 30.2 kJ·mol−1. Even after ten recycling experiments, the catalyst showed good stability owing to the synergistic effect of Co-Ni-B and PAC.

  7. Portable ammonia-borane-based H2 power-pack for unmanned aerial vehicles

    Science.gov (United States)

    Seo, Jung-Eun; Kim, Yujong; Kim, Yongmin; Kim, Kibeom; Lee, Jin Hee; Lee, Dae Hyung; Kim, Yeongcheon; Shin, Seock Jae; Kim, Dong-Min; Kim, Sung-Yug; Kim, Taegyu; Yoon, Chang Won; Nam, Suk Woo

    2014-05-01

    An advanced ammonia borane (AB)-based H2 power-pack is designed to continually drive an unmanned aerial vehicle (UAV) for 57 min using a 200-We polymer electrolyte membrane fuel cell (PEMFC). In a flight test with the UAV platform integrated with the developed power-pack, pure hydrogen with an average flow rate of 3.8 L(H2) min-1 is generated by autothermal H2-release from AB with tetraethylene glycol dimethylether (T4EGDE) as a promoter. During take-off, a hybridized power management system (PMS) consisting of the fuel cell and an auxiliary lithium-ion battery supplies 500 We at full power simultaneously, while the fuel cell alone provides 150-200 We and further recharges the auxiliary battery upon cruising. Gaseous byproducts identified by in situ Fourier transform infrared (FT-IR) spectroscopy during AB dehydrogenation are sequestrated using a mixed absorbent in an H2 purification system. In addition, a real-time monitoring system is employed to determine the remaining filter capacity of the purifier at a ground control system for rapidly responding unpredictable circumstances during flight. Separate experiments are conducted to screen potential materials and methods for enhancing filter capacity in the current H2 refining system. A prospective reactor concept for long-term fuel cell applications is proposed based on the results.

  8. Influence of Electronic Effects on the Reactivity of Triazolylidene-Boryl Radicals: Consequences for the use of N-Heterocyclic Carbene Boranes in Organic and Polymer Synthesis.

    Science.gov (United States)

    Telitel, Sofia; Vallet, Anne-Laure; Flanigan, Darrin M; Graff, Bernadette; Morlet-Savary, Fabrice; Rovis, Tomislav; Lalevée, Jacques; Lacôte, Emmanuel

    2015-09-21

    A small library of triazolylidene-boranes that differ only in the nature of the aryl group on the external nitrogen atom was prepared. Their reactivity as hydrogen-atom donors, as well as that of the corresponding N-heterocyclic carbene (NHC)-boryl radicals toward methyl acrylate and oxygen, was investigated by laser flash photolysis, molecular orbital calculations, and ESR spin-trapping experiments, and benchmarked relative to the already known dimethyltriazolylidene-borane. The new NHC-boranes were also used as co-initiators for the Type I photopolymerization of acrylates. This allowed a structure-reactivity relationship with regard to the substitution pattern of the NHC to be established and the role of electronic effects in the reactivity of NHC-boryl radicals to be probed. Although their rate of addition to methyl acrylate depends on their electronegativity, the radicals are all nucleophilic and good initiators for photopolymerization reactions. PMID:26239157

  9. PVP-stabilized Ru–Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Rakap, Murat, E-mail: mrtrakap@gmail.com

    2015-11-15

    Herein, the utilization of poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles (3.4 ± 1.4 nm) as highly efficient catalysts in the hydrolysis of ammonia borane for hydrogen generation is reported. They are prepared by co-reduction of ruthenium and rhodium metal ions in ethanol/water mixture by an alcohol reduction method and characterized by transmission electron microscopy-energy dispersive X-ray spectroscopy, ultraviolet–visible spectroscopy, and X-ray photoelectron spectroscopy. They are durable and highly efficient catalysts for hydrogen generation from the hydrolysis of ammonia borane even at very low concentrations and temperature, providing average turnover frequency of 386 mol H{sub 2} (mol cat){sup −1} min{sup −1} and maximum hydrogen generation rate of 10,680 L H{sub 2} min{sup −1} (mol cat){sup −1}. Poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles also provide activation energy of 47.4 ± 2.1 kJ/mol for the hydrolysis of ammonia borane. - Highlights: • Ru-Rh@PVP NPs provide a TOF of 386 mol H{sub 2} (mol cat){sup −1} min{sup −1} for hydrolysis of AB. • Maximum HG rate is 9680 L H{sub 2} min{sup −1} (mol cat){sup −1} for the hydrolysis of AB. • Activation energy is 47.4 ± 2.1 kJ mol{sup −1} for the hydrolysis of AB.

  10. Bridging η2 -BO in B2(BO)3(-) and B3(BO)3(-) clusters: boronyl analogs of boranes.

    Science.gov (United States)

    Zhai, Hua-Jin; Guo, Jin-Chang; Li, Si-Dian; Wang, Lai-Sheng

    2011-10-01

    Anion photoelectron spectroscopy and theoretical calculations are combined to probe the structures and chemical bonding of two boron-rich oxide clusters, B(5)O(3)(-) and B(6)O(3)(-), which are shown to be appropriately formulated as B(2)(BO)(3)(-) and B(3)(BO)(3)(-), respectively. The anion clusters are found to each possess a bridging η(2)-BO group, as well as two terminal BO groups and are analogs of B(2)H(3)(-) and B(3)H(3)(-). This finding advances the boronyl chemistry and helps establish the isolobal analogy between boron-rich oxide clusters and boranes. PMID:21954002

  11. Zombies, the Uniformity of Nature, and Contingent Physicalism: A Sympathetic Response to Boran Berčić

    OpenAIRE

    Malatesti, Luca

    2013-01-01

    Boran Berčić, in the second volume of his recent book "Filozofija" (2012), offers two responses to David Chalmers’s conceivability or modal argument against physicalism. This latter argument aims at showing that zombies, our physical duplicates who lack consciousness, are metaphysically possible, given that they are conceivable. Berčić’s first response is based on the principle of the uniformity of nature that states that causes of a certain type will always cause effects of the same type. Hi...

  12. The significance of secondary interactions during alkaline earth-promoted dehydrogenation of dialkylamine-boranes.

    Science.gov (United States)

    Bellham, Peter; Anker, Mathew D; Hill, Michael S; Kociok-Köhn, Gabriele; Mahon, Mary F

    2016-09-21

    a modified mechanism for group 2-mediated dimethylamine borane dehydrocoupling that is dependent on the intermediacy of key derivatives of the [NMe2·BH3](-) and [NMe2BH2NMe2BH3](-) anions but does not require the formation of high energy alkaline earth hydride intermediates. Although these results are specifically focussed on the applications of alkaline earth species, this mechanistic insight may also be relevant to other redox-inactive main group element-based systems and to our understanding of hydrogen evolution from saline derivatives of ammonia borane. PMID:27529536

  13. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  14. A rationally designed amino-borane complex in a metal organic framework: A novel reusable hydrogen storage and size-selective reduction material

    KAUST Repository

    Wang, Xinbo

    2015-01-01

    A novel amino-borane complex inside a stable metal organic framework was synthesized for the first time. It releases hydrogen at a temperature of 78 °C with no volatile contaminants and can be well reused. Its application as a size-selective reduction material in organic synthesis was also demonstrated. © The Royal Society of Chemistry 2015.

  15. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane.

    Science.gov (United States)

    Akbayrak, Serdar; Tonbul, Yalçın; Özkar, Saim

    2016-07-01

    Ruthenium(0) nanoparticles supported on ceria (Ru(0)/CeO2) were in situ generated from the reduction of ruthenium(iii) ions impregnated on ceria during the hydrolysis of ammonia borane. Ru(0)/CeO2 was isolated from the reaction solution by centrifugation and characterized by ICP-OES, BET, XRD, TEM, SEM-EDS and XPS techniques. All the results reveal that ruthenium(0) nanoparticles were successfully supported on ceria and the resulting Ru(0)/CeO2 is a highly active, reusable and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia borane with a turnover frequency value of 361 min(-1). The reusability tests reveal that Ru(0)/CeO2 is still active in the subsequent runs of hydrolysis of ammonia borane preserving 60% of the initial catalytic activity even after the fifth run. Ru(0)/CeO2 provides a superior catalytic lifetime (TTO = 135 100) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 ± 0.1 °C before deactivation. The work reported here includes the formation kinetics of ruthenium(0) nanoparticles. The rate constants for the slow nucleation and autocatalytic surface growth of ruthenium(0) nanoparticles were obtained using hydrogen evolution as a reporter reaction. An evaluation of rate constants at various temperatures enabled the estimation of activation energies for both the reactions, Ea = 60 ± 7 kJ mol(-1) for the nucleation and Ea = 47 ± 2 kJ mol(-1) for the autocatalytic surface growth of ruthenium(0) nanoparticles, as well as the activation energy of Ea = 51 ± 2 kJ mol(-1) for the catalytic hydrolysis of ammonia borane. PMID:27302302

  16. Highly sensitive NH3 detection based on organic field-effect transistors with tris(pentafluorophenyl)borane as receptor.

    Science.gov (United States)

    Huang, Weiguo; Besar, Kalpana; LeCover, Rachel; Rule, Ana María; Breysse, Patrick N; Katz, Howard E

    2012-09-12

    We have increased organic field-effect transistor (OFET) NH(3) response using tris(pentafluorophenyl)borane (TPFB) as a receptor. OFETs with this additive could detect concentrations of 450 ppb v/v, with a limit of detection of 350 ppb, the highest sensitivity reported to date for semiconductor films; in comparison, when triphenylmethane (TPM) or triphenylborane (TFB) was used as an additive, no obvious improvement in the sensitivity was observed. These OFETs also showed considerable selectivity with respect to common organic vapors and stability toward storage. Furthermore, excellent memory of exposure was achieved by keeping the exposed devices in a sealed container stored at -30 °C, the first such capability demonstrated with OFETs. PMID:22934620

  17. Syntheses and structures of dimeric sodium and potassium complexes of 2,6-diisopropyl-anilidophosphine borane ligand

    Indian Academy of Sciences (India)

    Kishor Naktode; Jayeeta Bhattacharjee; Anirban Chakrabarti; Tarun K Panda

    2015-02-01

    We report here the syntheses and structural studies of dimeric sodium and potassium complexes of composition [Na(THF)2{Ph2P(BH3)N(2,6-iPr2C6H6)}]2 (2) and [K(THF)2{Ph2P(BH3)N(2,6-iPr2C6H6)}]2(3). The sodium complex 2 was readily prepared by the reaction of sodium bis(trimethylsilyl)amide with 2,6-diisopropylanilidophosphine-borane ligand [2,6-iPr2C6H3NHP(BH3)Ph2] (1-H) at ambient temperature. The potassium complex 3 was prepared by two synthetic routes: in the first method, the ligand 1-H was made to react with potassium hydride at room temperature to afford the corresponding potassium complex. The potassium bis(trimethylsilyl)amides were made to react with protic ligand 1-H in the second method to eliminate the volatile bis(trimethyl)silyl amine. Solid-state structures of both the new complexes were established by single crystal X-ray diffraction analysis. In the molecular structures of complexes 2, the sodium metal is coordinated by the anilido nitrogen (1) and borane group (1) attached to the phosphorus atom of ligand 1. In contrast, for compound 2, ligand 1 displays 6-arene interaction from 2,6-diisopopylphenyl ring with potassium atom along with 3 interaction of BH3 group due to larger ionic radius of potassium ion.

  18. Expression of trypanotolerance in N’Dama x Boran crosses under field challenge in relation to N’Dama genome content

    Directory of Open Access Journals (Sweden)

    Orenge Caleb

    2011-06-01

    Full Text Available Abstract Background Animal trypanosomosis in sub-Saharan Africa is a major obstacle to livestock based agriculture. Control relies on drugs with increasing incidence of multiple-drug resistance. A previous mapping experiment in an F2 population derived from the indigenous trypanotolerant N’Dama cattle crossed to susceptible (Kenya-Boran cattle under controlled challenge, uncovered a number of trypanotolerance QTL (T-QTL. The present study was to determine expression of N’Dama trypanotolerance in a backcross to the Boran under conditions of field challenge, and whether chromosomal regions associated with trypanotolerance in the F2 experiment showed similar effects in the BC population. Methods 192 backcross animals to the Boran were produced in six batches from June 2001 to December 2006. At one year of age animals were moved to the field and exposed to natural challenge over about one year in Southwest Kenya (Narok. The animals were individually recorded weekly for body weight, packed cell volume, parasitaemia score, and drug treatments, and were genotyped using 35 microsatellite markers spanning 5 chromosomes found in the F2 study to harbour T-QTL. Results The F1 were most trypanotolerant, Boran least, and BC intermediate. Females showed distinctly higher trypanotolerance than males. There was a positive correlation in the BC population between trypanotolerance and number of N’Dama origin marker alleles. QTL mapping revealed T-QTL distributed among all five targeted chromosomes, corresponding in part to the results obtained in the F2 experiment. Conclusions N’Dama origin trypanotolerance is expressed in a BC population under field conditions in proportion to N’Dama origin marker alleles. Consequently, marker assisted selection in such populations may be a means of increasing trypanotolerance, while retaining the desirable productive qualities of the recurrent parent.

  19. Expression of trypanotolerance in N’Dama x Boran crosses under field challenge in relation to N’Dama genome content

    OpenAIRE

    Orenge Caleb; Munga Leonard; Kimwele Charles; Kemp Steve; Korol Abraham; Gibson John; Hanotte Olivier; Soller Morris

    2011-01-01

    Abstract Background Animal trypanosomosis in sub-Saharan Africa is a major obstacle to livestock based agriculture. Control relies on drugs with increasing incidence of multiple-drug resistance. A previous mapping experiment in an F2 population derived from the indigenous trypanotolerant N’Dama cattle crossed to susceptible (Kenya)-Boran cattle under controlled challenge, uncovered a number of trypanotolerance QTL (T-QTL). The present study was to determine expression of N’Dama trypanotoleran...

  20. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane.

    Science.gov (United States)

    Akbayrak, Serdar; Ozkar, Saim

    2012-11-01

    Ruthenium(0) nanoparticles supported on multiwalled carbon nanotubes (Ru(0)@MWCNT) were in situ formed during the hydrolysis of ammonia-borane (AB) and could be isolated from the reaction solution by filtration and characterized by ICP-OES, XRD, TEM, SEM, EDX, and XPS techniques. The results reveal that ruthenium(0) nanoparticles of size in the range 1.4-3.0 nm are well-dispersed on multiwalled carbon nanotubes. They were found to be highly active catalyst in hydrogen generation from the hydrolysis of AB with a turnover frequency value of 329 min⁻¹. The reusability experiments show that Ru(0)@MWCNTs are isolable and redispersible in aqueous solution; when redispersed they are still active catalyst in the hydrolysis of AB exhibiting a release of 3.0 equivalents of H₂ per mole of NH₃BH₃ and preserving 41% of the initial catalytic activity even after the fourth run of hydrolysis. The lifetime of Ru(0)@MWCNTs was measured as 26400 turnovers over 29 h in the hydrolysis of AB at 25.0 ± 0.1 °C before deactivation. The work reported here also includes the kinetic studies depending on the temperature to determine the activation energy of the reaction (E(a) = 33 ± 2 kJ/mol) and the effect of catalyst concentration on the rate of the catalytic hydrolysis of AB, respectively. PMID:23113804

  1. Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells

    Science.gov (United States)

    Olu, Pierre-Yves; Deschamps, Fabien; Caldarella, Giuseppe; Chatenet, Marian; Job, Nathalie

    2015-11-01

    Platinum and palladium are investigated as anodic catalysts for direct borohydride and direct ammonia borane fuel cells (DBFC and DABFC). Half-cell characterizations performed at 25 °C using NH3BH3 or NaBH4 alkaline electrolytes demonstrate the lowest open-circuit potential and highest electrocatalytic activity for the NH3BH3 alkaline electrolyte for Pd and Pt rotating disk electrodes, respectively. Voltammograms performed in fuel cell configuration at 25 °C confirm this trend: the highest open circuit voltage (1.05 V) and peak power density (181 mW·cm-2) are monitored for DABFC using Pd/C and Pt/C anodes, respectively. Increasing the temperature heightens the peak power density (that reaches 420 mW·cm-2 at 60 °C for DBFC using Pt/C anodes), but strongly generates gas from the fuel hydrolysis, hindering the overall fuel cells performances. The anode texture strongly influences the fuel cell performances, highlighting: (i) that an open anode texture is required to efficiently circulate the anolyte and (ii) the difficulty to compare potential anodic catalysts characterized using different fuel cell setups within the literature. Furthermore, TEM imaging of Pt/C and Pd/C catalysts prior/post DBFC and DABFC operation shows fast degradation of the carbon-supported nanoparticles.

  2. Room temperature hydrogen generation from hydrolysis of ammonia-borane over an efficient NiAgPd/C catalyst

    KAUST Repository

    Hu, Lei

    2014-12-01

    NiAgPd nanoparticles are successfully synthesized by in-situ reduction of Ni, Ag and Pd salts on the surface of carbon. Their catalytic activity was examined in ammonia borane (NH3BH3) hydrolysis to generate hydrogen gas. This nanomaterial exhibits a higher catalytic activity than those of monometallic and bimetallic counterparts and a stoichiometric amount of hydrogen was produced at a high generation rate. Hydrogen production rates were investigated in different concentrations of NH3BH3 solutions, including in the borates saturated solution, showing little influence of the concentrations on the reaction rates. The hydrogen production rate can reach 3.6-3.8 mol H2 molcat -1 min-1 at room temperature (21 °C). The activation energy and TOF value are 38.36 kJ/mol and 93.8 mol H2 molcat -1 min-1, respectively, comparable to those of Pt based catalysts. This nanomaterial catalyst also exhibits excellent chemical stability, and no significant morphology change was observed from TEM after the reaction. Using this catalyst for continuously hydrogen generation, the hydrogen production rate can be kept after generating 6.2 L hydrogen with over 10,000 turnovers and a TOF value of 90.3 mol H2 molcat -1 min-1.

  3. The performance of Orma Boran and Maasai Zebu crossbreeds in a trypanosomosis endemic area of Nguruman, south western Kenya.

    Science.gov (United States)

    Maichomo, M W; Ndungú, J M; Ngare, P M; Ole-Mapenay, I M

    2005-03-01

    Studies on the trypanotolerance of Orma Boran X Maasai Zebu (Orma Zebu) crossbred cattle (F1 progeny) and pure-bred Maasai Zebu contemporaries were carried out in Nguruman, south western Kenya. The two groups were monitored from birth for a period of 2 years. The incidence of trypanosomosis, parasitaemia, packed cell volume (PCV), body mass and average daily mass gain were monitored. During the study period, overall trypanosomosis incidence was low (3%). The crossbred cattle had a higher incidence of infection (61% vs 39%). The mean PCV and mean mass gain for the crossbred cattle was higher than that of the Maasai Zebu. The mean calf body mass at weaning (8 months) for the Orma Zebu and Maasai Zebu was 72 kg and 64 kg, respectively, while at 18 months of age their mean body mass was 164 kg and 123 kg, respectively. During the rainy season significant differences in average daily mass gains were noted (P < 0.05). The superior mass gain of the Orma Zebu observed during the rainy season, despite higher infection rates, indicate an enhanced trypanotolerance. Moreover, the better performance of the Orma Zebu is an attribute that could be exploited in the adoption of the trypanotolerance genotype, as a sustainable trypanosomosis control strategy. PMID:15991707

  4. The performance of Orma Boran and Maasai Zebu crossbreeds in a trypanosomosis endemic area of Nguruman, south western Kenya

    Directory of Open Access Journals (Sweden)

    M.W. Maichomo

    2005-09-01

    Full Text Available Studies on the trypanotolerance of Orma Boran X Maasai Zebu (Orma Zebu crossbred cattle (F1 progeny and pure-bred Maasai Zebu contemporaries were carried out in Nguruman, south western Kenya. The two groups were monitored from birth for a period of 2 years. The incidence of trypanosomosis, parasitaemia, packed cell volume (PCV, body mass and average daily mass gain were monitored. During the study period, overall trypanosomosis incidence was low (3 %. The crossbred cattle had a higher incidence of infection (61 % vs 39 %. The mean PCV and mean mass gain for the crossbred cattle was higher than that of the Maasai Zebu. The mean calf body mass at weaning (8 months for the Orma Zebu and Maasai Zebu was 72 kg and 64 kg, respectively, while at 18 months of age their mean body mass was 164 kg and 123 kg, respectively. During the rainy season significant differences in average daily mass gains were noted (P < 0.05. The superior mass gain of the Orma Zebu observed during the rainy season, despite higher infection rates, indicate an enhanced trypanotolerance. Moreover, the better performance of the Orma Zebu is an attribute that could be exploited in the adoption of the trypanotolerance genotype, as a sustainable trypanosomosis control strategy.

  5. When is a Nanoparticle a Cluster? An Operando EXAFS Study of Amine Borane Dehydrocoupling by Rh4-6 Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, John L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Linehan, John C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Autrey, Tom [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Balasubramanian, Mahalingam [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Yongsheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szymczak, Nathaniel K. [Univ. of Oregon, Eugene, OR (United States)

    2007-09-07

    X-ray absorption fine structure (XAFS) is used to determine the structure of the rhodium cluster present during the catalyzed dehydrocoupling of amine boranes under operando conditions. Analysis of the in-situ XAFS spectra using a series of amine boranes (NH3BH3, R2NHB3 and RNH2BH3 where R = methyl, isopropyl, tert-butyl and cyclohexyl) and rhodium catalyst precursor compounds ((including chloro-(1,5-cyclooctadiene)rhodium (I) dimer, bis(1,5- cyclooctadiene)rhodium (I) trifluoromethanesulfonate, chlorodicarbonylrhodium (I) dimer, dichloro(pentamethylcylcopentadienyl) rhodium (III) dimer, hexarhodium hexadecacarbonyl, and tetrarhodium dodecacarbonyl) strongly suggest that the active catalyst species for this reaction is a homogeneous rhodium complex. Rhodium clusters containing four or six rhodium atoms (Rh4-6) bound to amine boranes are observed as the major (>98%) rhodium containing species during and after the catalyzed anaerobic dehydrocoupling. During the later stages of the reaction, a non-metallic rhodium complex precipitate forms in which individual Rh4-6 clusters likely form polymer chains ligated by the reaction products that have two or more ligating sites. The best FEFF fits of the XAFS data show that the major rhodium species (80%) has each rhodium atom directly bound to three rhodium atoms with an observed bond distance of 2.73 Å and to two boron atoms at 2.095 Å. A minor (20%) rhodium species has each rhodium atom bound to four rhodium atoms with a bond distance of about 2.73 Å and a single rhodium atom at a non-bonding distance of 3.88 Å. No metallic rhodium was observed at any time during the anaerobic reaction.

  6. Dehydrogenation of ammonia-borane by cationic Pd(II) and Ni(II) complexes in a nitromethane medium: hydrogen release and spent fuel characterization

    OpenAIRE

    Kim, Sung-Kwan; Hong, Sung-Ahn; Son, Ho-Jin; Han, Won-Sik; Michalak, Artur; Hwang, Son-Jong; Kang, Sang-Ook

    2015-01-01

    A highly electrophilic cationic PdII complex, [Pd(MeCN)_4][BF_4]_2 (1), brings about the preferential activation of the B–H bond in ammonia-borane (NH3·BH3, AB). At room temperature, the reaction between 1 in CH_3NO_2 and AB in tetraglyme leads to Pd nanoparticles and formation of spent fuels of the general formula MeNH_xBO_y as reaction byproducts, while 2 equiv. of H_2 is efficiently released per AB equiv. at room temperature within 60 seconds. For a mechanistic understanding of dehydrogena...

  7. Fabrication of hollow silica–zirconia composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Hosoya, Tatsuya; Toyama, Naoki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-09-01

    Highlights: • Hollow silica–zirconia composite spheres were fabricated on polystyrene templates by the sol–gel method. • We study the effect of preparation conditions on the activity for hydrolytic dehydrogenation of ammonia borane. • The activity of hollow silica–zirconia composite spheres depends on wall thickness. - Abstract: In this paper, we report fabrication of hollow silica–zirconia composite spheres by polystyrene (PS) template method and control of wall thickness of the hollow spheres in nanoscale. Both the hollow spheres before and after calcination were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and powder X-ray diffraction analysis (XRD). Morphology of the hollow spheres does not significantly change after calcination from the results of SEM and TEM images, while the amount of residual PS templates drastically decreases via the calcination procedure from the results of FTIR and elemental analysis. The sample after calcination mainly includes amorphous silica from the results of XRD, indicating that the hollow silica–zirconia composite spheres consist of amorphous phases and/or fine particles. Wall thicknesses of the samples after calcination are controlled by adjusting the amount of PS template suspension, and hollow silica–zirconia composite spheres with the wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm are obtained using the PS template suspension of 25.0, 33.5, 100.0, and 400.0 g, respectively. The activities of the hollow spheres for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}) were compared. The evolutions of 2.0, 3.1, 5.0, and 8.0 mL hydrogen from aqueous NH{sub 3}BH{sub 3} solution were finished in about 4, 5, 3, and 7 min in the presence of the hollow spheres with wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm, respectively. The molar ratios of the hydrolytically generated hydrogen to

  8. Core-shell structured nanospheres with mesoporous silica shell and Ni core as a stable catalyst for hydrolytic dehydrogenation of ammonia borane

    Institute of Scientific and Technical Information of China (English)

    Hua; Liu; Changyan; Cao; Ping; Li; Yu; Yu; Weiguo; Song

    2014-01-01

    Core-shell structured nanospheres with mesoporous silica shell and Ni core(denoted as Ni@meso-SiO2) are prepared through a three-step process. Monodispersed Ni precursors are first prepared, and then coated with mesoporous SiO2. Final Ni@meso-SiO2spheres are obtained after calcination. The products are characterized by X-ray powder diffraction, transmission electron microscopy and N2adsorption-desorption methods. These spheres have a high surface area and are well dispersed in water, showing a high catalytic activity with a TOF value of 18.5,and outstanding stability in hydrolytic dehydrogenation of ammonia borane at room temperature.

  9. A borane laser

    Czech Academy of Sciences Publication Activity Database

    Cerdán, L.; Braborec, Jakub; Gracia-Moreno, I.; Costela, A.; Londesborough, Michael Geoffrey Stephen

    2015-01-01

    Roč. 6, JAN (2015), s. 2-7. ISSN 2041-1723 R&D Projects: GA ČR(CZ) GAP207/11/1577 Institutional support: RVO:61388980 Keywords : Physical sciences * Optical physics * Physical chemistry * 18H22 * Cluster Subject RIV: CA - Inorganic Chemistry Impact factor: 11.470, year: 2014

  10. Efficient synthesis of 1,3,5-oxygenated synthons from dimethyl 3-oxoglutarate: first use of borane-dimethyl sulfide complex as a regioselective reducing agent of 3-oxygenated glutarate derivatives

    International Nuclear Information System (INIS)

    The selective reduction of dimethyl 3-oxoglutarate was accomplished in different levels. A high yielding sodium borohydride reduction of the keto group is fully described leading to dimethyl 3-hydroxyglutarate. When borane-dimethyl sulfide (BMS) complex was used, a diol or a triol compound can be obtained by selective or total reduction of 3-hydroxy- or 3-oxoglutarate, respectively, allowing an efficient and practical route to 1,3,5-oxygenated compounds. (author)

  11. Exo-substituent effects in halogenated icosahedral (B12H12 2 - ) and octahedral (B6H6 2 - ) closo-borane skeletons: Chemical reactivity studied by experimental and quantum chemical methods

    Czech Academy of Sciences Publication Activity Database

    Lepšík, Martin; Srnec, Martin; Hnyk, Drahomír; Grüner, Bohumír; Plešek, Jaromír; Havlas, Zdeněk; Rulíšek, Lubomír

    2009-01-01

    Roč. 74, č. 1 (2009), s. 1-27. ISSN 0010-0765 R&D Projects: GA MŠk LC523; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40320502 Keywords : boranes * boron clusters * halogenations * DFT * ab initio calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.856, year: 2009

  12. Influence of preparation conditions of hollow silica–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Seki, Ayano [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-03-05

    Highlights: • We study influence of preparation conditions on activity of hollow silica–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Si+Ni content. • The particle size distribution affects the activity and reducibility of active nickel species. • The amount of PS residue in the hollow spheres decreases by treatment of as-prepared sample in toluene. -- Abstract: In this paper, we investigated influence of preparation conditions of hollow silica–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane. In the preparation method of this study, when silica–nickel composite shells were coated on polystyrene templates by the sol–gel method using L(+)-arginine as the promoter for the reaction to form silica–nickel composite shell, the polystyrene templates were dissolved subsequently, even synchronously, in the same medium to form hollow spheres. The as-prepared silica–nickel composite spheres were characterized by transmission electron microscopy and scanning electron microscopy. The effects of Si+Ni content on the morphology were systematically evaluated. All the as-prepared hollow silica–nickel composite spheres have the similar morphology as identified by SEM and TEM measurement. Homogeneity of the hollow silica–nickel composite spheres increases with the increase in the Si+Ni content as shown by the laser diffraction particle size analysis. The catalytic activities of the hollow silica–nickel composite spheres for hydrolytic dehydrogenation of ammonia borane prepared with different Si+Ni contents were compared. The catalytic activity for the hydrogen evolution in the presence of the hollow spheres increases with the increase of Si+Ni content. The results of FTIR spectra of the hollow silica–nickel composite spheres indicate that a certain amount of residual PS templates exists in hollow silica

  13. Influence of preparation conditions of hollow silica–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    International Nuclear Information System (INIS)

    Highlights: • We study influence of preparation conditions on activity of hollow silica–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH3BH3 increases with increase of Si+Ni content. • The particle size distribution affects the activity and reducibility of active nickel species. • The amount of PS residue in the hollow spheres decreases by treatment of as-prepared sample in toluene. -- Abstract: In this paper, we investigated influence of preparation conditions of hollow silica–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane. In the preparation method of this study, when silica–nickel composite shells were coated on polystyrene templates by the sol–gel method using L(+)-arginine as the promoter for the reaction to form silica–nickel composite shell, the polystyrene templates were dissolved subsequently, even synchronously, in the same medium to form hollow spheres. The as-prepared silica–nickel composite spheres were characterized by transmission electron microscopy and scanning electron microscopy. The effects of Si+Ni content on the morphology were systematically evaluated. All the as-prepared hollow silica–nickel composite spheres have the similar morphology as identified by SEM and TEM measurement. Homogeneity of the hollow silica–nickel composite spheres increases with the increase in the Si+Ni content as shown by the laser diffraction particle size analysis. The catalytic activities of the hollow silica–nickel composite spheres for hydrolytic dehydrogenation of ammonia borane prepared with different Si+Ni contents were compared. The catalytic activity for the hydrogen evolution in the presence of the hollow spheres increases with the increase of Si+Ni content. The results of FTIR spectra of the hollow silica–nickel composite spheres indicate that a certain amount of residual PS templates exists in hollow silica–nickel composite

  14. Inorganic-organic polymer electrolytes based on poly(vinyl alcohol) and borane/poly(ethylene glycol) monomethyl ether for Li-ion batteries

    Science.gov (United States)

    Aydın, Hamide; Şenel, Mehmet; Erdemi, Hamit; Baykal, Abdülhadi; Tülü, Metin; Ata, Ali; Bozkurt, Ayhan

    In this study, poly(vinyl alcohol) (PVA) was modified with poly(ethylene glycol) monomethyl ether (PEGME) using borane-tetrahydrofuran (BH 3/THF) complex. Molecular weights of both PVA and PEGME were varied prior to reaction. Boron containing comb-branched copolymers were produced and abbreviated as PVA1PEGMEX and PVA2PEGMEX. Then polymer electrolytes were successfully prepared by doping of the host matrix with CF 3SO 3Li at several stoichiomeric ratios with respect to EO to Li. The materials were characterized via nuclear magnetic resonance (1H NMR and 11B NMR), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG) and differential scanning calorimeter (DSC). The ionic conductivity of these novel polymer electrolytes were studied by dielectric-impedance spectroscopy. Li-ion conductivity of these polymer electrolytes depends on the length of the side units as well as the doping ratio. Such electrolytes possess satisfactory ambient temperature ionic conductivity (>10 -4 S cm -1). Cyclic voltammetry results illustrated that the electrochemical stability domain extends over 4 V.

  15. Influence of preparation conditions of hollow titania–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    International Nuclear Information System (INIS)

    Highlights: • We study influence of preparation conditions on activity of hollow titania–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH3BH3 increases with increase of Ti + Ni content. • The activity depends on the amount of PS residue in the hollow spheres. - Abstract: The present work reports influence of preparation conditions of hollow titania–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane (NH3BH3). The as-prepared hollow titania–nickel composite spheres were characterized by transmission electron microscopy (TEM). Catalytic activities of the hollow spheres for hydrolytic dehydrogenation of aqueous NaBH4/NH3BH3 solution improve with the decrease of Ti + Ni content. From the results of FTIR spectra and elemental analysis, the amount of residual polystyrene (PS) templates is able to be reduced by increasing aging time for the preparation, and the catalytic activity of the hollow spheres increases when the amount of residual PS templates decreases. The carbon content in the hollow spheres prepared with aging time = 24 h is 17.3 wt.%, and the evolution of 62 mL hydrogen is finished in about 22 min in the presence of the hollow spheres from aqueous NaBH4/NH3BH3 solution. The molar ratio of the hydrolytically generated hydrogen to the initial NH3BH3 in the presence of the hollow spheres is 2.7

  16. Body composition and energy utilization by steers of diverse genotypes fed a high-concentrate diet during the finishing period: II. Angus, Boran, Brahman, Hereford, and Tuli sires.

    Science.gov (United States)

    Ferrell, C L; Jenkins, T G

    1998-02-01

    Objectives of the study were to determine the influence of Angus (A), Boran (BO), Brahman (BR), Hereford (H), or Tuli (T) sires on body composition, composition of gain, and energy utilization of crossbred steers during the finishing period. Beginning at 300 kg, 96 steers were adjusted to a high-corn diet and individual feeding. Steers were assigned, by sire breed, to be killed as an initial slaughter group or fed either a limited amount or ad libitum for 140 d then killed. Organ weights, carcass traits, and body composition were evaluated. The statistical model included sire breed (S), treatment (Trt), and the S x Trt interaction. Ad libitum feed intake was least for BO- and T-, intermediate for BR- and H-, and greatest for A-sired steers. Rates of weight, fat, and energy gains were similar for A-, H-, and BR-sired steers but less (P .12). Rates of water, fat, and protein gain increased linearly with increased rate of BW gain, but relationships differed (P < .05) among sire breeds. Linear regression analyses indicated energy requirements for maintenance and efficiency of energy use for energy gain differed (P < .05) among sire breeds. Evaluation by nonlinear regression indicated that heat production increased exponentially and energy gain increased asymptotically as feed intake increased above maintenance. PMID:9498376

  17. Macropolyhedral borane reaction chemistry: Reductive oligomerisation of (BuNC)-Bu-ter by anti-B18H22 to give the boron-coordinated {((BuNHCH)-Bu-ter) {(BuNHC)-Bu-ter)CN)}CH2:} carbene residue

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Tomáš; Kilner, C. A.; Barrett, S. A.; Štíbr, Bohumil; Thornton-Pett, M.; Kennedy, J.D.

    2005-01-01

    Roč. 8, č. 5 (2005), s. 491-494. ISSN 1387-7003 R&D Projects: GA ČR GA203/05/2646; GA ČR GA203/00/1042; GA MŠk LC523; GA AV ČR IAA4032701 Grant ostatní: EPSRC(GB) J/56929; EPSRC(GB) K/05818; EPSRC(GB) M/83360 Institutional research plan: CEZ:AV0Z40320502 Keywords : borane cluster * X-ray structure * NMR spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 1.826, year: 2005

  18. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst.

    Science.gov (United States)

    Zahmakiran, Mehmet; Ayvalı, Tuğçe; Philippot, Karine

    2012-03-20

    The development of simply prepared and effective catalytic materials for dehydrocoupling/dehydrogenation of ammonia-borane (AB; NH(3)BH(3)) under mild conditions remains a challenge in the field of hydrogen economy and material science. Reported herein is the discovery of in situ generated ruthenium nanocatalyst as a new catalytic system for this important reaction. They are formed in situ during the dehydrogenation of AB in THF at 25 °C in the absence of any stabilizing agent starting with homogeneous Ru(cod)(cot) precatalyst (cod = 1,5-η(2)-cyclooctadiene; cot = 1,3,5-η(3)-cyclooctatriene). The preliminary characterization of the reaction solutions and the products was done by using ICP-OES, ATR-IR, TEM, XPS, ZC-TEM, GC, EA, and (11)B, (15)N, and (1)H NMR, which reveal that ruthenium nanocatalyst is generated in situ during the dehydrogenation of AB from homogeneous Ru(cod)(cot) precatalyst and B-N polymers formed at the initial stage of the catalytic reaction take part in the stabilization of this ruthenium nanocatalyst. Moreover, following the recently updated approach (Bayram, E.; et al. J. Am. Chem. Soc.2011, 133, 18889) by performing Hg(0), CS(2) poisoning experiments, nanofiltration, time-dependent TEM analyses, and kinetic investigation of active catalyst formation to distinguish single metal or in the present case subnanometer Ru(n) cluster-based catalysis from polymetallic Ru(0)(n) nanoparticle catalysis reveals that in situ formed Ru(n) clusters (not Ru(0)(n) nanoparticles) are kinetically dominant catalytically active species in our catalytic system. The resulting ruthenium catalyst provides 120 total turnovers over 5 h with an initial turnover frequency (TOF) value of 35 h(-1) at room temperature with the generation of more than 1.0 equiv H(2) at the complete conversion of AB to polyaminoborane (PAB; [NH(2)BH(2)](n)) and polyborazylene (PB; [NHBH](n)) units. PMID:22356554

  19. Pharmacokinetics of diminazene aceturate (BerenilR), homidium bromide (EthidiumR) and isometamidium chloride (SamorinR) after intravenous application in Boran steers

    International Nuclear Information System (INIS)

    The trypanocides BerenilR, EthidiumR and SamorinR are routinely applied intramuscularly (i.m.), however, due to the increase in drug resistance of trypanosomes, some investigators and farmers have adopted the intravenous (i.v.) route and have claimed its superiority. This study establishes the pharmacokinetics of these trypanocides after i.v. application and compares it with the pharmacokinetics after i.m. application. 14C labelled trypanocides were administered intravenously to Boran steers and the radioactivity levels were determined in plasma, tissue fluid, urine, faeces and tissues. The peak plasma levels of BerenilR and EthidiumR, after i.v. application, were approximately three to seven times higher than after i.m. application. With SamorinR they were between 18 and 36 times higher using the intravenous route. The decline of plasma levels after i.v. treatment showed two phases with all three drugs, with the level of the second phase being similar after i.v. and i.m. treatment. The tissues fluid levels were lower than the plasma levels after i.v. treatment with Berenil and Ethidium, however, they were higher than the plasma levels following the i.v. treatment with Samorin. The excretion rates were initially higher after i.v. treatment. However, the accumulated excretion was similar already ten days post treatment with Berenil and Ethidium but ten days after i.v. treatment with Samorin, two-fold higher and still approximately 50% higher sixty days post treatment. The residue level in tissue was higher after i.v. treatment. These results show that Samorin is the only drug showing higher tissue fluid than plasma levels and that after intravenous treatment higher initial peaks are achieved, which especially with Samorin increase the curative effect in areas with resistant strains. However, the high skill required to use intravenous administration for trypanosomiasis control will limit its usage. (author)

  20. Influence of preparation conditions of hollow titania–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Ohashi, Takato [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-04-01

    Highlights: • We study influence of preparation conditions on activity of hollow titania–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Ti + Ni content. • The activity depends on the amount of PS residue in the hollow spheres. - Abstract: The present work reports influence of preparation conditions of hollow titania–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}). The as-prepared hollow titania–nickel composite spheres were characterized by transmission electron microscopy (TEM). Catalytic activities of the hollow spheres for hydrolytic dehydrogenation of aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution improve with the decrease of Ti + Ni content. From the results of FTIR spectra and elemental analysis, the amount of residual polystyrene (PS) templates is able to be reduced by increasing aging time for the preparation, and the catalytic activity of the hollow spheres increases when the amount of residual PS templates decreases. The carbon content in the hollow spheres prepared with aging time = 24 h is 17.3 wt.%, and the evolution of 62 mL hydrogen is finished in about 22 min in the presence of the hollow spheres from aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution. The molar ratio of the hydrolytically generated hydrogen to the initial NH{sub 3}BH{sub 3} in the presence of the hollow spheres is 2.7.

  1. Iron complex-catalyzed ammonia-borane dehydrogenation. A potential route toward B-N-containing polymer motifs using earth-abundant metal catalysts.

    Science.gov (United States)

    Baker, R Tom; Gordon, John C; Hamilton, Charles W; Henson, Neil J; Lin, Po-Heng; Maguire, Steven; Murugesu, Muralee; Scott, Brian L; Smythe, Nathan C

    2012-03-28

    Ammonia-borane (NH(3)BH(3), AB) has garnered interest as a hydrogen storage material due to its high weight percent hydrogen content and ease of H(2) release relative to metal hydrides. As a consequence of dehydrogenation, B-N-containing oligomeric/polymeric materials are formed. The ability to control this process and dictate the identity of the generated polymer opens up the possibility of the targeted synthesis of new materials. While precious metals have been used in this regard, the ability to construct such materials using earth-abundant metals such as Fe presents a more economical approach. Four Fe complexes containing amido and phosphine supporting ligands were synthesized, and their reactivity with AB was examined. Three-coordinate Fe(PCy(3))[N(SiMe(3))(2)](2) (1) and four-coordinate Fe(DEPE)[N(SiMe(3))(2)](2) (2) yield a mixture of (NH(2)BH(2))(n) and (NHBH)(n) products with up to 1.7 equiv of H(2) released per AB but cannot be recycled (DEPE = 1,2-bis(diethylphosphino)ethane). In contrast, Fe supported by a bidentate P-N ligand (4) can be used in a second cycle to afford a similar product mixture. Intriguingly, the symmetric analogue of 4 (Fe(N-N)(P-P), 3), only generates (NH(2)BH(2))(n) and does so in minutes at room temperature. This marked difference in reactivity may be the result of the chemistry of Fe(II) vs Fe(0). PMID:22428955

  2. Reduction of Nitroarenes into Aryl Amines and N-Aryl hydroxylamines via Activation of NaBH4 and Ammonia-Borane Complexes by Ag/TiO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Dimitrios Andreou

    2016-03-01

    Full Text Available In this study, we report the fabrication of mesoporous assemblies of silver and TiO2 nanoparticles (Ag/MTA and demonstrate their catalytic efficiency for the selective reduction of nitroarenes. The Ag/TiO2 assemblies, which show large surface areas (119–128 m2·g−1 and narrow-sized mesopores (ca. 7.1–7.4 nm, perform as highly active catalysts for the reduction of nitroarenes, giving the corresponding aryl amines and N-aryl hydroxylamines with NaBH4 and ammonia-borane (NH3BH3, respectively, in moderate to high yields, even in large scale reactions (up to 5 mmol. Kinetic studies indicate that nitroarenes substituted with electron-withdrawing groups reduced faster than those with electron-donating groups. The measured positive ρ values from the formal Hammett-type kinetic analysis of X-substituted nitroarenes are consistent with the proposed mechanism that include the formation of possible [Ag]-H hybrid species, which are responsible for the reduction process. Because of the high observed chemo selectivities and the clean reaction processes, the present catalytic systems, i.e., Ag/MTA-NaBH4 and Ag/MTA-NH3BH3, show promise for the efficient synthesis of aryl amines and N-aryl hydroxylamines at industrial levels.

  3. Construction of Potentiometric Sensor for Fluoride Anions Based on Fluorinated Borane Doped Polymeric Sensitive Membrane Electrode%基于氟代硼烷的聚合物敏感膜电位型氟离子传感器的构建

    Institute of Scientific and Technical Information of China (English)

    李龙; 商国梁; 秦伟

    2016-01-01

    As a neutral Lewis acid,tris(pentafluorophenyl)borane has a strong ability to coordinate with flu-oride anions,which can extract fluoride anions efficiently from the aqueous phase into the organic membrane phase,thus the detection of fluoride anions can be achieved.Based on that principle,using tris(pentafluorophe-nyl)borane as an ionophore and tridodecylmethylammonium chloride as an anionic site,a potentiometric sensor for fluoride anions based on polymeric sensitive membrane electrode was constructed.The proposed potentio-metric sensor could detect fluoride anions in the concentration range of 10-6.4~10-3.4 mol·L-1 with a detection limit of 10-6.7 mol·L-1 .The selectivity of the proposed electrode was superior to the ion-exchanger doped pol-ymeric membrane electrode,which indicated that tris(pentafluorophenyl)borane could be used as an effective ionophore for fluoride anions.The proposed sensor can be used to detect fluoride anions in environmental water body,and has a good application prospect.%基于三(五氟苯基)硼烷作为电中性路易斯酸可以与氟离子形成较强的配位作用,将氟离子从水相萃取到有机膜相,能实现氟离子检测的原理,以三(五氟苯基)硼烷为离子载体、阴离子交换剂三十二烷基甲基氯化铵为阴离子位点,构建了聚合物敏感膜电位型氟离子传感器。使用该传感器对氟离子进行检测的线性范围为10-6.4~10-3.4 mol·L-1,检出限为10-6.7 mol·L-1。该氟离子敏感膜电极的选择性明显优于阴离子交换剂掺杂的聚合物膜电极,表明三(五氟苯基)硼烷可以作为有效的氟离子载体。该传感器有望用于环境水体中氟离子的检测,具有较好的应用前景。

  4. Exciplex emission and decay of co-deposited 4,4′,4″-tris[3-methylphenyl(phenyl)amino]triphenylamine:tris-[3-(3-pyridyl) mesityl]borane organic light-emitting devices with different electron transporting layer thicknesses

    International Nuclear Information System (INIS)

    Highly efficient fluorescence organic light-emitting diodes (OLEDs) based on the mixed 4,4′,4″-tris[3-methylphenyl(phenyl)amino]triphenylamine:tris-[3-(3-pyridyl) mesityl]borane (1:1) system are reported. The electroluminescence due to the exciplex emission is red shifted when the thickness of the electron-transporting layer increases. The prepared OLEDs achieve a low turn-on voltage of 2.1 V, a high current efficiency of 36.79 cd/A, and a very high luminescence of 17 100 cd/m2, as well as a low efficiency roll-off. The current efficiency of the optimized OLED is maintained at more than 28.33 cd/A up to 10 000 cd m−2. The detailed recombination mechanism of the prepared OLEDs is investigated by the transient electroluminescence method. It is concluded that there are no contributions from trapped charges and annihilations of triplet-triplet excitons to the detected electroluminescence

  5. Cytotoxicity and Antineoplastic Activities of Alkylamines and Their Borane Derivatives

    OpenAIRE

    Hall, Iris H.; Tse, Elaine Y.; Muhammad, Rosallah A.

    1996-01-01

    The alkylamines and their related boron derivatives demonstrated potent cytotoxicity against the growth of murine and human tissue cultured cells. These agents did not necessarily require the boron atom to possess potent cytotoxic action in certain tumor lines. Their ability to suppress tumor cell growth was based on their inhibition of DNA and protein syntheses. DNA synthesis was reduced because purine synthesis was blocked at the enzyme site of IMP dehydrogenase by the agents. In addition r...

  6. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    OpenAIRE

    Qilu Yao; Zhang-Hui Lu; Kangkang Yang; Xiangshu Chen; Meihua Zhu

    2015-01-01

    Ultrafine ruthenium nanoparticles (NPs) within the mesopores of the SBA-15 have been successfully prepared by using a “double solvents” method, in which n-hexane is used as a hydrophobic solvent and RuCl3 aqueous solution is used as a hydrophilic solvent. After the impregnation and reduction processes, the samples were characterized by XRD, TEM, EDX, XPS, N2 adsorption-desorption, and ICP techniques. The TEM images show that small sized Ru NPs with an average size of 3.0 ± 0.8 nm are uniforml...

  7. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    OpenAIRE

    Qilu Yao; Zhang-Hui Lu; Zhujun Zhang; Xiangshu Chen; Yaqian Lan

    2014-01-01

    Ultrafine copper nanoparticles (Cu NPs) within porous silica nanospheres (Cu@SiO2) were prepared via a simple one-pot synthetic route in a reverse micelle system and characterized by SEM, TEM, EDX, XRD, N2 adsorption-desorption, CO-TPD, XPS, and ICP methods. The characterized results show that ultrafine Cu NPs with diameter of around 2 nm are effectively embedded in the center of well-proportioned spherical SiO2 NPs of about 25 nm in diameter. Compared to commercial SiO2 supported Cu NPs, SiO...

  8. Reactions of tucked-in titanocenes with tris(pentafluorophenyl)borane

    Czech Academy of Sciences Publication Activity Database

    Pinkas, Jiří; Horáček, Michal; Kubišta, Jiří; Gyepes, R.; Císařová, I.; Mach, Karel

    Rende: Centro Editoriale e Librario, 2005 - (Giordano, G.), s. 51-53 ISBN 88-7458-032-0. [Convegno Nazionale Scienza e Tecnologia Delle Zeoliti /7./ joint with Czech-Italian Workshop on Catalysis and Zeolites /1./. Camigliatello Silano (IT), 26.06.2005-30.06.2005] Institutional research plan: CEZ:AV0Z40400503 Keywords : polymerization * catalysis * zwitterionic complexes Subject RIV: CF - Physical ; Theoretical Chemistry

  9. Hydrogen isotope exchange between boranes and deuterated aromatic hydrocarbons: evidence for reversible hydroboration of benzene

    International Nuclear Information System (INIS)

    Pentaborane, B5H9, and diborane, B2H6, undergo hydrogen isotope exchange with deuterated aromatic hydrocarbons. Lewis acid catalyzed hydrogen isotope exchange occurs between benzene-d6 and the apical hydrogen atom of B5H9 to form 1-DB5H8 at ambient temperature. In uncatalyzed exchanges, B5H9 reacts with deuterated aromatic hydrocarbons to produce 1,2,3,4,5-D5B5H4 at +450C and B5D9 at +1200C. This thermally induced hydrogen isotope exchange apparently occurs via a reversible hydroboration of the aromatic ring. Diborane undergoes a similar isotope exchange with benzene-d6 under mild thermal conditions. 18 references, 6 figures, 3 tables

  10. Synthesis of Periphery-Decorated and Core-Initiated Borane Polyanionic Macromolecules.

    Science.gov (United States)

    Teixidor, Francesc; Pepiol, Ariadna; Viñas, Clara

    2015-07-20

    A new class of globular polybranched macromolecules that contain multiple anionic metallacarborane clusters at the o-carborane periphery is reported. The water soluble high boron rich containing molecules could be of interest for boron neutron capture therapy (BNCT) as well as for drug delivery. The reinforced electrostatic noncovalent interactions between anionic polyethylene glycol cobaltabisdicarbollide (PEG-COSAN) branches and the ammonium cation have been shown using ESI-MS. PMID:26096811

  11. Developing phospha-Stork chemistry induced by a borane Lewis acid.

    Science.gov (United States)

    Hasegawa, Yasuharu; Daniliuc, Constantin G; Kehr, Gerald; Erker, Gerhard

    2014-11-01

    Bulky vinyl phosphanes undergo carbon-carbon coupling with aryl aldehydes with the help of the Lewis acid B(C6F5)3 to give isolable methylene phosphonium products. Dimesityl(vinyl)phosphane undergoes a phospha-Stork reaction with bulky enones efficiently catalyzed by B(C6F5)3 to eventually yield the corresponding substituted cyclobutane products. PMID:25244052

  12. Birth and weaning traits in crossbred cattle from Hereford, Angus, Brahman, Boran, Tuli, and Belgian Blue sires

    Science.gov (United States)

    The objective of this study was to characterize breeds representing diverse biological types for birth and weaning traits in crossbred cattle. Gestation length, calving difficulty, percentage of unassisted calving, percentage of perinatal survival, percentage of survival from birth to weaning, birt...

  13. Silver and Copper Complexes with closo-Polyhedral Borane, Carborane and Metallacarborane Anions: Synthesis and X-ray Structure

    Directory of Open Access Journals (Sweden)

    Varvara V. Avdeeva

    2016-05-01

    Full Text Available Synthesis and structure of silver and copper salts and complexes with polyhedral boron hydride anions, including closo-decaborate [B10H10]2−, closo-dodecaborate [B12H12]2−, 1-carba-closo- decaborate [1-CB9H10]−, carba-closo-dodecaborate [CB11H12]−, and cobalt bis(dicarbollide [3,3′-Co(1,2-C2B9H112]− anions and their derivatives, are reviewed. The complexes demonstrate a wide variety of structural types, relating to both the metal coordination environment and coordination modes of boron hydride anions. The latter can range from strong coordination via the polyhedron triangular face including formation of 3c-2e MHB bonds in the case of the [B10H10]2− dianion, the structure of which contains two four-coordinated boron atoms, to very weak M…H interactions with the hydride atoms in the case of bulky [3,3′-Co(1,2-C2B9H112]− monoanion.

  14. Theoretical study of C−H⋯H−B dihydrogen bonded complexes between inert molecules FNgCCH (Ng = Ar and Kr) and borane-amines

    International Nuclear Information System (INIS)

    Graphical abstract: C−H⋯H−B dihydrogen bonding in inert molecules have been explored by studying FNgCCH (Ng = Ar, Kr) complexes with BH3–NH3, BH3–NH2Me and BH3–NHMe2 at MP2/6-311++G(d,p) and MP2/aug-cc-pVDZ level of theories. Further, strength of hydrogen bonding and dihydrogen bonding in inert complexes have been compared under identical condition and it has been found that strength of dihydrogen bonded complexes are ∼15% weaker as compared to hydrogen bonded complexes. Highlights: ► C–H⋯H–B dihydrogen bonding ability of rare gas inserted FNgCCH molecules. ► Comparison of strength of hydrogen bond and dihydrogen bond for inert complexes. ► Dihydrogen bonding is 15% weaker as compare to hydrogen bonding. - Abstract: C−H⋯H−B dihydrogen bonding in inert molecules have been explored by studying FNgCCH (Ng = Ar, Kr) complexes with BH3–NH3, BH3–NH2Me and BH3–NHMe2 at MP2/6-311++G(d,p) and MP2/aug-cc-pVDZ level of theories. The H⋯H contact distances are found to be less than 2.4 Å while binding energies are in the range of 15–18 kJ mol−1. Furthermore, changes in C–H and B–H stretching frequencies authenticate to the formation of C−H⋯H−B dihydrogen bonding in these complexes. Moreover, properties of C−H⋯H−B dihydrogen bonding have also been supplemented by molecular electrostatic potential derived charge, natural population, natural bond order and atoms in molecules analysis. Strength of hydrogen bonding and dihydrogen bonding in inert complexes have been compared under identical condition and it has been found that strength of dihydrogen bonded complexes are ∼15% weaker as compared to hydrogen bonded complexes.

  15. An intermediate in the methylation of CB11H11-anions with MeOTf. Comparison of electrophilic substitution in cage boranes and in arenes

    Czech Academy of Sciences Publication Activity Database

    Kaleta, Jiří; Akdag, Akin; Michl, Josef

    Praha : Czech Chemical Society, 2013. s. 102-102. [Liblice 2013. Advances in Organic, Bioorganic and Pharmaceutical Chemistry /48./. 01.11.2013-03.11.2013, Špindlerův Mlýn] EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Institutional support: RVO:61388963 Keywords : TFOCD3 * BCD3 * BCHD2 Subject RIV: CC - Organic Chemistry

  16. Growth curves of crossbred cows sired by Hereford, Angus, Belgian Blue, Brahman, Boran, and Tuli bulls, and the fraction of mature weight and height at puberty

    Science.gov (United States)

    The objective of this study was to evaluate the growth curves of females to determine if mature size and relative rates of maturing amongst breeds differed. Body weight and hip height data were fit to the nonlinear function: BW = f(t) = A – Bek(age) where A is an estimate of mature BW and k determi...

  17. Synthesis, crystal and molecular structure of 1-methyl-2-(-1-germa-tranil)-1,2-dicarba-closo-dodeca-borane, C9H25B10GeNO3

    International Nuclear Information System (INIS)

    By successive reactions, consisting in metallation of 1-methylcarborane by ethylmagnesiumbromide, interaction of the product with germanium tetrachloride and then with tris (trimethylsililoxyethyl) amine with 37% yield, a compound containing fragments of carborane and germatrane with Ge-C (carborane) bond has been synthesized for the first time. The structure of the compound prepared is studied by the methods of 1H and 11B NMR, as well as by X-ray diffraction analysis

  18. Tuning the Photophysical Properties of Anti-B18H22 [1

    Czech Academy of Sciences Publication Activity Database

    Braborec, Jakub; Černá, H.; Benkocká, M.; Kolská, Z.; Londesborough, Michael Geoffrey Stephen

    Ostrava: TANGER, 2015, s. 300-303. ISBN 978-80-87294-53-6. [NANOCON 2014. International Conference /6./. Brno (CZ), 05.11.2014-07.11.2014] Institutional support: RVO:61388980 Keywords : borane hydrides * singlet oxygen * fluorescent boranes Subject RIV: CA - Inorganic Chemistry

  19. 15th International Conference on Boron Chemistry (IMEBORON XV)

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Štíbr, Bohumil

    2015-01-01

    Roč. 87, č. 2 (2015), s. 121. ISSN 0033-4545 Institutional support: RVO:61388980 Keywords : boranes * boron * boron materials * carboranes * IMEBORON XV * medicinal chemistry Subject RIV: CA - Inorganic Chemistry

  20. Modular Attachment of Appended Boron Lewis Acids to a Ruthenium Pincer Catalyst: Metal-Ligand Cooperativity Enables Selective Alkyne Hydrogenation.

    Science.gov (United States)

    Tseng, Kuei-Nin T; Kampf, Jeff W; Szymczak, Nathaniel K

    2016-08-24

    A new series of bifunctional Ru complexes with pendent Lewis acidic boranes were prepared by late-stage modification of an active hydrogen-transfer catalyst. The appended boranes modulate the reactivity of a metal hydride as well as catalytic hydrogenations. After installing acidic auxiliary groups, the complexes become multifunctional and catalyze the cis-selective hydrogenation of alkynes with higher rates, conversions, and selectivities compared with the unmodified catalyst. PMID:27472301

  1. An Electrochemical Investigation of Electroless Deposition: the Copper-DMAB System

    OpenAIRE

    Plana, Daniela

    2010-01-01

    An electrochemical study of the copper electroless deposition process, using dimethylamine borane as a reducing agent, has been performed, in order to gain further understanding of the mechanism and kinetics of electroless deposition. An in-depth study of the electro-oxidation of dimethylamine borane (DMAB) was additionally carried out, due to its increasing relevance, not only in electroless deposition, but also in fuel cell technology.DMAB oxidation was studied using different experimental ...

  2. Synthèse de mono et diphosphines dérivées d'amino acides ou de peptides, appliquées en chimie de coordination et pour le greffage de fullerène C60

    OpenAIRE

    Minois, Pauline,

    2013-01-01

    The synthesis of secondary phosphine borane amino acids or dipeptides and their applications for the preparation of chiral ligands or for the grafting of fullerene, is described. These compounds were synthesized in good yield (up to 98%) without racemization. The principle of the synthesis is based on the alkylation of primary phosphine borane with a γ-iodo amino acid using phase transfer conditions. Tertiary diphosphine amino acids are obtained with 70% yield after a second alkylation. These...

  3. In vivo comparison of susceptibility between Bos indicus and Bos taurus cattle types to Theileria parva infection

    Directory of Open Access Journals (Sweden)

    S.G. Ndungu

    2005-09-01

    Full Text Available The objective of this study was to determine whether Bos taurus cattle differ form Bos indicus in their susceptibility to infection with the Muguga stabilate of Theileria parva and in their resistance to the resultant disease. Ten Friesians (B. taurus, ten improved Borans (B. indicus, ten unimproved Borans (B. indicus and ten Zebus (B. indicus born to dams from an East Coast fever (ECF endemic area were inoculated with an infective dose50 dilution of T. parva Muguga stabilate 147. All the animals except one Friesian and one Zebu developed schizont parasitosis. All the improved Borans, nine of the Friesians, eight of the unimproved Borans and six of the Zebus developed a febrile response. Four of the improved Borans, four of the Friesians and three of the unimproved Borans died of theileriosis. No significant difference (P > 0.05 in the prepatent period occurred between the groups, but the Zebus had a significantly shorter duration of schizont parasitosis (P > 0.05 and took a significantly shorter time to recover (P > 0.05 than the other three groups. There was no significant difference in the two parameters between the other three groups. The study showed that three B. indicus breds and a B. taurus breed are equally susceptible to T. parva infection. However, Zebus born to dams from an ECF endemic area showed a better ability to control the course of disease than cattle from ECF free areas.

  4. Synthesis and structural characterization of [kappa3-B,S,S-B(mimR)3]Ir(CO)(PPh3)H (R = Bu(t), Ph) and [kappa4-B(mim(Bu(t))3]M(PPh3)Cl (M = Rh, Ir): analysis of the bonding in metal borane compounds.

    Science.gov (United States)

    Landry, Victoria K; Melnick, Jonathan G; Buccella, Daniela; Pang, Keliang; Ulichny, Joseph C; Parkin, Gerard

    2006-03-20

    A series of iridium and rhodium complexes that feature M-->B dative bonds, namely [kappa(3)-B,S,S-B(mim(R))3]Ir(CO)(PPh3)H (R = But, Ph) and [kappa4-B(mim(Bu)t)3]M(PPh3)Cl (M = Rh, Ir), has been synthesized via (i) the reactions of Ir(PPh3)2(CO)Cl with [Tm(Bu)t]Tl and [Tm(Ph)]Li and (ii) the reactions of (COD)M(PPh3)Cl with [Tm(Bu)t]K. The complexes have been structurally characterized by X-ray diffraction, thereby demonstrating the presence of a M-->B dative bond in each complex. The nature of the M-->B interaction in these complexes has been addressed by computational methods which indicate that the metal centers possess a d(6) configuration. The d(6) configuration is in accord with the value predicted by using a method that employs the valence to determine d(n)(), but is not in accord with the d8 configuration that is predicted using the oxidation number. Thus, even though B(mim(R))3 may be regarded as a neutral closed-shell ligand, coordination to a d(n) transition metal via the boron results in the formation of a complex in which the metal center possesses a d(n-2) configuration. PMID:16529480

  5. Quantum chemical study on the mechanism of enantioselective reduction of prochiral ketones catalyzed by oxazaborolidines

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The ab initio molecular orbital study on the mechanism of enantioselective reduction of 3,3-dimethyl butanone-2 with borane catalyzed by chiral oxazaborolidine is performed. As illus trated, this enantioselective reduction is exothermic and goes mainly through the formations of the catalyst-borane adduct, the catalyst-borane-3,3-dimethyl butanone-2 adduct, and the cata lyst-alkoxyborane adduct with a B-O-B-N 4-member ring and through the decomposition of the catalyst-alkoxyborane adduct with the regeneration of the catalyst. During the hydride transfer in the catalyst-borane-3,3-dimethyl butanone-2 adduct to form the catalyst-alkoxyborane adduct, the hydride transfer and the formation of the B-O-B-N 4-member ring in the catalyst-alkoxyborane ad duct happen simultaneously. The controlling step for the reduction is the transfer of hydride from the borane moiety to the carbonyl carbon of 3,3-dimethyl butanone-2. The transition state for the hydride transfer is a twisted chair structure and the reduction leads to R-chiral alcohols.

  6. Susceptibility to trypanosomosis of three Bos indicus cattle breeds in areas of differing tsetse fly challenge.

    Science.gov (United States)

    Mwangi, E K; Stevenson, P; Gettinby, G; Reid, S W; Murray, M

    1998-09-01

    Studies to assess the differences in susceptibility to trypanosomosis among Bos indicus cattle breeds (Maasai Zebu, Orma Boran and Galana Boran) were conducted under conditions of varying tsetse fly challenge at the Nguruman escarpment in south-western Kenya, for a period of 1 year. It was found that under tsetse challenge quantified as high, Maasai Zebu and Orma Boran were less susceptible than Galana Boran to trypanosome infections, as judged by the significantly lower incidence of infection, development of less severe anaemia, fewer requirements for trypanocidal drug treatments, higher growth rates and fewer mortalities. In the area where tsetse challenge was considered low as a result of a tsetse fly control operation using odour-baited traps, only the Maasai Zebu and Orma Boran were compared. No significant differences in the incidence of infection, degree of anaemia or growth rates were observed between the two breeds, but all were significantly different from their counterparts in the high tsetse challenge area. These results suggest that there is variation in resistance to trypanosomosis among Bos indicus cattle breeds that could be exploited as part of the integrated trypanosomosis control programmes in East Africa. PMID:9777722

  7. Crystal structure of bis-(3-bromo-mesit-yl)(quino-lin-1-ium-8-yl)boron(III) tribromide.

    Science.gov (United States)

    Son, Jungho; Tamang, Sem Raj; Hoefelmeyer, James D

    2015-09-01

    The title compound, C27H26.82BBr2.18N(+)·Br3 (-), is a cationic tri-aryl-borane isolated as its tribromide salt. The aryl substituents include a protonated 8-quinolyl group and two 3-bromo-mesityl groups. The mol-ecule was prepared on combination of 3:1 Br2 and dimesit-yl(quinolin-8-yl)borane in hexa-nes. The refinement of the structure indicated a degree of 'over-bromination' (beyond two bromine atoms) for the cation. There are two tribromide ions in the asymmetric unit, both completed by crystallographic inversion symmetry. PMID:26396861

  8. Catalytic B-N Dehydrogenation Using Frustrated Lewis Pairs: Evidence for a Chain-Growth Coupling Mechanism.

    Science.gov (United States)

    Mo, Zhenbo; Rit, Arnab; Campos, Jesús; Kolychev, Eugene L; Aldridge, Simon

    2016-03-16

    The catalytic dehydrogenation of ammonia- and amine-boranes by a dimethylxanthene-derived frustrated Lewis pair is described. Turnover is facilitated on a thermodynamic basis by the ready release of H2 from the weakly basic PPh2-containing system. In situ NMR studies and the isolation of intermediates from stoichiometric reactions support a mechanism initiated by B-H activation, followed by end-growth BN coupling involving the terminal NH bond of the bound BN fragment and a BH bond of the incoming borane monomer. PMID:26918906

  9. Syntheses of Boron Nitride Nanotubes from Borazine and Decaborane Molecular Precursors by Catalytic Chemical Vapor Deposition with a Floating Nickel Catalyst

    OpenAIRE

    Chatterjee, Shahana; Kim, Myung Jong; Zakharov, Dmitri; Kim, Seung Min; Stach, Eric A.; Maruyama, Benji; Sneddon, Larry G.

    2012-01-01

    Multi- and double-walled boron nitride nanotubes (BNNTs) have been synthesized with the aid of a floating nickel catalyst via the catalytic chemical vapor deposition (CCVD) of either the amine-borane borazine (B3N3H6) or the polyhedral-borane decaborane (B10H14) molecular precursors in ammonia atmospheres. Both sets of BNNTs were crystalline with highly ordered structures. The BNNTs grown at 1200 degrees C from borazine were mainly double-walled, with lengths up to 0.2 mu m and similar to 2 n...

  10. New multigram-scale preparation of 1,10-dicarba-closo-decabora

    Czech Academy of Sciences Publication Activity Database

    Holub, Josef; Jelínek, Tomáš; Janoušek, Zbyněk

    2002-01-01

    Roč. 67, č. 7 (2002), s. 949-952. ISSN 0010-0765 R&D Projects: GA MŠk LN00A028 Institutional research plan: CEZ:AV0Z4032918 Keywords : boranes * carboranes * ten-vertex Subject RIV: CA - Inorganic Chemistry Impact factor: 0.848, year: 2002

  11. Derivatization chemistry of the double-decker dicobalt sandwich ion targeted to design biologically active substances

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Švec, Petr; Hájková, Zuzana; Císařová, I.; Pokorná, Jana; Konvalinka, Jan

    2012-01-01

    Roč. 84, č. 11 (2012), s. 2243-2262. ISSN 0033-4545 R&D Projects: GA AV ČR IAAX00320901 Institutional support: RVO:61388980 ; RVO:61388963 Keywords : AIDS treatment * boranes * canastide ion * carboranes * dicarbollides * HIV -protease Subject RIV: CA - Inorganic Chemistry Impact factor: 3.386, year: 2012

  12. Hydroboration of Graphene Oxide: Towards Stoichiometric Graphol and Hydroxygraphane

    Czech Academy of Sciences Publication Activity Database

    Poh, H. L.; Sofer, Z.; Šimek, P.; Tomandl, Ivo; Pumera, M.

    2015-01-01

    Roč. 21, č. 22 (2015), s. 8130-8136. ISSN 0947-6539 R&D Projects: GA ČR(CZ) GA15-09001S; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : boranes * electrochemistry * graphene * hydroboration * synthetic methods Subject RIV: CA - Inorganic Chemistry Impact factor: 5.731, year: 2014

  13. Electrochemistry of parent and exo-skeletally substituted icosahedral monocarba and dicarbaboranes and their derivatives at the graphite carbon electrode in aqueous phosphate buffers

    Czech Academy of Sciences Publication Activity Database

    Fojt, Lukáš; Fojta, Miroslav; Grüner, Bohumír; Vespalec, Radim

    2014-01-01

    Roč. 730, SEP15 (2014), s. 16-19. ISSN 1572-6657 R&D Projects: GA ČR(CZ) GBP206/12/G151 Institutional support: RVO:68081707 ; RVO:61388980 Keywords : Boranes * Carboranes * Glassy carbon electrode Subject RIV: BO - Biophysics; CA - Inorganic Chemistry (UACH-T) Impact factor: 2.729, year: 2014

  14. Chemistry of cobalt bis(1,2-dicarbollide) ion; the synthesis of carbon substituted alkylamino derivatives from hydroxyalkyl derivatives via methylsulfonyl or p-toluenesulfonyl esters

    Czech Academy of Sciences Publication Activity Database

    Nekvinda, Jan; Švehla, Jaroslav; Císařová, I.; Grüner, Bohumír

    2015-01-01

    Roč. 798, č. 1 (2015), s. 112-120. ISSN 0022-328X R&D Projects: GA ČR GA15-05677S Institutional support: RVO:61388980 Keywords : Boranes * Carboranes * Metallacarboranes * Dicarbollide * Building blocks Subject RIV: CA - Inorganic Chemistry Impact factor: 2.173, year: 2014

  15. A convenient enantioselective CBS-reduction of arylketones in flow-microreactor systems.

    Science.gov (United States)

    De Angelis, Sonia; De Renzo, Maddalena; Carlucci, Claudia; Degennaro, Leonardo; Luisi, Renzo

    2016-05-01

    A convenient, versatile, and green CBS-asymmetric reduction of aryl and heteroaryl ketones has been developed by using the microreactor technology. The study demonstrates that it is possible to handle borane solution safely within microreactors and that the reaction performs well using 2-MeTHF as a greener solvent. PMID:27086654

  16. The story of magnetic shielding of one boron atom. Calculations of 11B magnetic shieldings in BX3 and [BX4]-

    Czech Academy of Sciences Publication Activity Database

    Hnyk, Drahomír; Macháček, Jan

    Kyoto : JAC, 2006, C176-C176. [International Congress of Quantum Chemistry/12./. Kyoto (JP), 21.05.2006-26.05.2006] R&D Projects: GA MŠk LC523 Institutional research plan: CEZ:AV0Z40320502 Keywords : boranes * heteroboranes Subject RIV: CA - Inorganic Chemistry

  17. Synthesis of telechelic vinyl/allyl functional siloxane copolymers with structural control

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Javakhishvili, Irakli; Jensen, Rasmus Egekjær;

    2014-01-01

    Multifunctional siloxane copolymers with terminal vinyl or allyl functional groups are synthesised through the borane-catalysed polycondensation of hydrosilanes and alkoxysilanes. Copolymers of varying mole- cular weights ( M ̄ w =13200 – 70 300 g mol − 1 ), spatially well-distributed functional ...

  18. The first (tricarbollide)rhodium halide complexes

    Czech Academy of Sciences Publication Activity Database

    Loginov, D.A.; Starikova, ZA.; Petrovskii, PV.; Holub, Josef; Kudinov, AR.

    2011-01-01

    Roč. 14, č. 1 (2011), s. 313-315. ISSN 1387-7003 R&D Projects: GA MŠk LC523 Institutional research plan: CEZ:AV0Z40320502 Keywords : boranes * metallacarboranes * rhodium * tricarbollide Subject RIV: CA - Inorganic Chemistry Impact factor: 1.972, year: 2011

  19. The Zwitterion [8,8′-μ-CH2O(CH3)-(1,2-C2B9H10)2-3,3′-Co]0 as a Versatile Building Block To Introduce Cobalt Bis(Dicarbollide) Ion into Organic Molecules

    Czech Academy of Sciences Publication Activity Database

    Plešek, Jaromír; Grüner, Bohumír; Šícha, Václav; Böhmer, V.; Císařová, I.

    2012-01-01

    Roč. 31, č. 5 (2012), s. 1703-1715. ISSN 0276-7333 R&D Projects: GA MŠk LC523; GA AV ČR IAAX00320901 Institutional research plan: CEZ:AV0Z40320502 Keywords : boranes * carboranes * dicarbollides * X-ray diffraction * NMR Subject RIV: CA - Inorganic Chemistry Impact factor: 4.145, year: 2012

  20. Synthesis of Novel Derivatives of (R)-Cysteine and Their Application in Asymmetric Reduction of Prochiral Ketones

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; PEI Wei-wei; YE Wei-ping

    2005-01-01

    Novel chiral β-amino alcohols containing sulfide or sulfonyl groups were synthesized from (R)-cysteine. Their chiral induction in the asymmetric borane reduction of prochiral ketones was investigated. Optically active secondary alcohols with moderate or high e.e. values were obtained, and the causes of different enantioselectivities between these two sulfur-containing chiral β-amino alcohols were researched.

  1. Some preliminary observations on the susceptibility and resistance of different cattle breeds to Theileria parva infection

    Directory of Open Access Journals (Sweden)

    S.G. Ndungu

    2005-09-01

    Full Text Available Theileria parva-naïve Friesian (Bos taurus, Boran (Bos indicus and Maasai Zebu steers (B. indicus were infected with a T. parva sporozoite stabilate dose which had previously been shown to induce an estimated 50 % mortality rate in Boran cattle. All the cattle developed patent infections with no significant differences in the length of the prepatent period to development of macroschizonts (P > 0.05 between the three groups. Clinical theileriosis occurred in all eight the Friesians (100 %, five out of nine Borans (55.6 % and two out of five Zebus (40 %. Three of the Friesians (37.5 %, and two of the Borans (22.2 % died of theileriosis. The different cattle types were equally susceptible to the infective dose used as indicated by the length of the prepatent periods, but there was a marked difference in their development of clinical theileriosis. The gradation in resistance to disease confirms the findings of earlier less critical studies and identifies these cattle breeds as suitable for investigations into the mechanisms of resistance to theileriosis.

  2. Hydrogen storage: beyond conventional methods.

    Science.gov (United States)

    Dalebrook, Andrew F; Gan, Weijia; Grasemann, Martin; Moret, Séverine; Laurenczy, Gábor

    2013-10-01

    The efficient storage of hydrogen is one of three major hurdles towards a potential hydrogen economy. This report begins with conventional storage methods for hydrogen and broadly covers new technology, ranging from physical media involving solid adsorbents, to chemical materials including metal hydrides, ammonia borane and liquid precursors such as alcohols and formic acid. PMID:23964360

  3. Supramolecular variations based on cobalt bis(dicarbollide)(1-)ion

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Mikulášek, Libor; Báča, Jiří; Císařová, I.; Bőhmer, V.

    Průhonice, 2004, O18. [European Meeting on Boron Chemistry /3./. Průhonice (CZ), 12.09.2004-16.09.2004] R&D Projects: GA MŠk LN00A028 Institutional research plan: CEZ:AV0Z4032918 Keywords : boranes * carboranes Subject RIV: CA - Inorganic Chemistry

  4. Facile two-electron reduction of a closo-rhodathiadecaborane

    Czech Academy of Sciences Publication Activity Database

    Luaces, S.; Bould, Jonathan; Macias, R.; Sancho, R.; Lahoz, F.J.; Oro, L.A.

    2012-01-01

    Roč. 41, č. 38 (2012), s. 11627-11634. ISSN 1477-9226 R&D Projects: GA ČR(CZ) GAP207/11/1577 Institutional research plan: CEZ:AV0Z40320502 Keywords : METALLATHIABORANE CLUSTER * BORANES * METALLACARBORANES * 11-VERTEX Subject RIV: CA - Inorganic Chemistry Impact factor: 3.806, year: 2012

  5. Simple Synthesis, Halogenation, and Rearrangement of closo-1,6-C2B8H10

    Czech Academy of Sciences Publication Activity Database

    Bakardjiev, Mario; Štíbr, Bohumil; Holub, Josef; Padělková, Z.; Růžička, A.

    2015-01-01

    Roč. 34, č. 2 (2015), s. 450-454. ISSN 0276-7333 R&D Projects: GA ČR(CZ) GAP207/11/0705 Institutional support: RVO:61388980 Keywords : MAGNETIC-RESONANCE-SPECTROSCOPY * ORGANOELEMENTAL DERIVATIVES * CLOSO-BORANES * CARBORANES * 5,6-DICARBA-NIDO-DECABORANE(12) Subject RIV: CA - Inorganic Chemistry Impact factor: 4.126, year: 2014

  6. Lewis acid-base 1,2-addition reactions: synthesis of pyrylium borates from en-ynoate precursors.

    Science.gov (United States)

    Wilkins, Lewis C; Hamilton, Hugh B; Kariuki, Benson M; Hashmi, A Stephen K; Hansmann, Max M; Melen, Rebecca L

    2016-03-30

    Treatment of methyl (Z)-2-alken-4-ynoates with the strong Lewis acid tris(pentafluorophenyl) borane, B(C6F5)3, yield substituted zwitterionic pyrylium borate species via an intramolecular 6-endo-dig cyclisation reaction. PMID:26435394

  7. Anionic polymerization and polyhomologation: An ideal combination to synthesize polyethylene-based block copolymers

    KAUST Repository

    Zhang, H.

    2013-08-07

    A novel one-pot methodology combining anionic polymerization and polyhomologation, through a "bridge" molecule (BF3OEt 2), was developed for the synthesis of polyethylene (PE)-based block copolymers. The anionically synthesized macroanion reacts with the "bridge" molecule to afford a 3-arm star (trimacromolecular borane) which serves as an initiator for the polyhomologation. 2013 The Royal Society of Chemistry.

  8. Cyanoethylation and (methoxycarbonyl)ethylation of icosahedral ortho-carborane derivatives at carbon vertices via Michael additions

    Czech Academy of Sciences Publication Activity Database

    Plešek, Jaromír; Bačkovský, Jaroslav; Fusek, Jiří; Plzák, Zbyněk

    2001-01-01

    Roč. 66, č. 10 (2001), s. 1499-1507. ISSN 0010-0765 R&D Projects: GA ČR GA104/99/1096; GA MŠk LB98233 Institutional research plan: CEZ:AV0Z4032918 Keywords : boranes * carboranes * Michael additions Subject RIV: CA - Inorganic Chemistry Impact factor: 0.778, year: 2001

  9. Recent progress in design and development of efficient extractans for f-block elements based on cobalt bis(dicarbollide) bulding block

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Kvíčalová, Magdalena; Plešek, Jaromír; Šícha, Václav; Císařová, I.

    Vol. XIII. Platja d´Aro: CSIC, 2008. IL B12 . [IMEBORON /13./. 21.09.2008-25.09.2008, Platja d´Aro] R&D Projects: GA MŠk LC523 Institutional research plan: CEZ:AV0Z40320502 Keywords : boranes Subject RIV: CA - Inorganic Chemistry

  10. Reproductive traits in Ethiopian male goats

    OpenAIRE

    Mekasha Gebre, Yoseph

    2007-01-01

    This thesis characterizes reproductive traits of Ethiopian male goats raised under extensive husbandry and subjected to differential nutritional management. A total of 177 extensively-managed indigenous bucks of 5 breeds (i.e., Arsi–Bale [AB], Central Highlands [CH], Afar, Boran and Woito-Guji [WG]) were selected following stratified random sampling.The bucks were compared according to three age classes (

  11. Synthesis of the first 11-vertex arachno-dicarbathiaborane anion, [1,6,7-C2SB8H11](-). Theoretical refinement of its structure

    Czech Academy of Sciences Publication Activity Database

    Janoušek, Zbyněk; Holub, Josef; Hnyk, Drahomír; Londesborough, Michael Geoffrey Stephen; Shoemaker, R. K.

    2003-01-01

    Roč. 22, č. 27 (2003), s. 3541-3545. ISSN 0277-5387 R&D Projects: GA MŠk LN00A028 Institutional research plan: CEZ:AV0Z4032918 Keywords : boranes * heteroboranes * NMR spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 1.584, year: 2003

  12. Macropolyhedral boron-containing cluster chemistry [S2B16H17](-). A new eighteen-vertex thiaborane anion

    Czech Academy of Sciences Publication Activity Database

    Carr, MJ.; Clegg, W.; Kennedy, J.D.; Londesborough, Michael Geoffrey Stephen; Kilner, C. A.

    2010-01-01

    Roč. 75, č. 8 (2010), s. 807-812. ISSN 0010-0765 Institutional research plan: CEZ:AV0Z40320502 Keywords : borane cluster * thiaborane * macropolyhedral Subject RIV: CA - Inorganic Chemistry Impact factor: 0.853, year: 2010

  13. Alkaline earth alkyl insertion chemistry of in situ generated aminoboranes.

    Science.gov (United States)

    Bellham, Peter; Hill, Michael S; Kociok-Köhn, Gabriele; Liptrot, David J

    2013-01-21

    Reactions of equimolar quantities of secondary amine boranes, R(2)NH·BH(3), with the homoleptic group 2 alkyl compounds [M{CH(SiMe(3))(2)}(2)(THF)(2)] (M = Mg, Ca, Sr) provide the alkyl group 2 amido borane derivatives [M{CH(SiMe(3))(2)}{NR(2)BH(3)}(THF)](2). While the strontium derivatives of reactions with dimethylamine and pyrrolidine borane are stable and isolable compounds, the analogous magnesium and calcium compounds are found to be unstable at room temperature. Studies of the thermolysis of the alkylstrontium derivatives have allowed this instability to be rationalised as a result of β-hydride elimination, the facility of which varies with changing M(2+) charge density, to form the products of M-C insertion of H(2)B=NR(2). Subsequent to this process, alkylaminoboranes, [HB(NR(2)){CH(SiMe(3))(2)}], are observed to form through a further suggested β-hydride elimination reaction. This chemistry is also extended to the reaction of the primary amine borane (t)BuNH(2)·BH(3) with [Sr{CH(SiMe(3))(2)}(2)(THF)(2)]. In this case the crystal structure of a heteroleptic species, which may be considered as a tetrameric aggregate of two [Sr{CH(SiMe(3))(2)}{(NH(t)Bu)BH(3)}(2)] anions and two cationic [Sr{(NH(t)Bu)(BH(3))}(THF)(2)] components, has been determined. Kinetic studies of the reactions of [M{CH(SiMe(3))(2)}(2)(THF)(2)] (M = Mg, Ca, Sr) with dimethylamine borane have also been undertaken and describe a complex mechanism in which the barriers to formation of the various intermediate species are a consequence of M(2+) radius and resultant charge density as well as the steric demands of the coordinated amidoborane ligands. PMID:23070304

  14. Postweaning performance and carcass merit of F1 steers sired by Brahman and alternative subtropically adapted breeds.

    Science.gov (United States)

    Franke, D E

    1997-10-01

    Comparisons were made among F1 steers sired by Brahman and alternative subtropically adapted breeds of bulls for feedlot and carcass traits when steers were produced from Angus- and Hereford-type dams. Brahman-derivative breeds included Brangus, Beefmaster, and Santa Gertrudis. Brangus- and Beefmaster-sired steers weighed less at slaughter, whereas carcasses of Brangus- and Santa Gertrudis-sired steers had more marbling than those of Brahman-sired steers. Brahman-sired steer carcasses had greater longissimus muscle area than carcasses of Santa Gertrudis-sired steers. Other Zebu breeds compared to Brahman were Boran, Gir, Indu-Brazil, Nellore, Red Brahman, and Sahiwal. Steers by Brahman sires had higher slaughter weights than steers by Boran, Gir, Nellore, or Sahiwal sires. Hot carcass weights of Brahman-sired steers were also higher than those of Boran- and Sahiwal-sired steers. Steer carcasses by Brahman sires had greater longissimus muscle area than those of steers by Sahiwal sires. Non-Zebu breeds included Tuli and Senepol. Steers by Tuli sires grew slower, had lower slaughter weights, and their carcasses weighed less than those of Brahman-sired steers. Brahman-sired steer carcasses had greater longissimus muscle area but less marbling than carcasses of Tuli-sired steers. These data suggest that steers by Brahman sires have an advantage for slaughter weight over steers by Brangus, Beefmaster, Boran, Gir, Nellore, Sahiwal, and Tuli sires, but their carcasses are at a disadvantage for marbling score compared with those by Brangus, Boran, Nellore, and Tuli sires. PMID:9331861

  15. A novel route to synthesize diphenylene by the catalytic effect of GaP nanocrystals

    Institute of Scientific and Technical Information of China (English)

    CU; I; Deliang

    2001-01-01

    [1]Corey, E. J., Bakshi, R. K., Shibata, S., Highly enantioselective borane reduction ketones catalyzed by chiral oxazaborolidines, J. Am. Chem. Soc., 1987, 109:5551-5553.[2]Wallbaum, S., Martens, J., Asymmetric syntheses with chiral oxazaborolidines, Tetrahedron Asymmetry, 1992, 3: 1475-1504.[3]Deloux, L., Srebnik, M., Asymmetric borane-catalyzed reactions, Chem. Rev., 1993, 93: 763-784.[4]Togni, A., Venanzi, L. M., Nitrogen donors in organometallic chemistry and in homogeneous catalysis, Angew Chem. Int. Ed. Engl., 1994, 33: 497-562.[5]Ager, D. J., Prakash, I., Schaad, D. R., 1,2-amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis, Chem. Rev., 1996, 96: 835-875.[6]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 4. On the hydride transfer in ketone complexes of borane adducts of oxazaborolidines and regeneration of catalyst, Tetrahedron Asymmetry, 1991, 2:1133-1155.[7]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 8. On the conformational freedom of the ketone of ketone-borane complexes of oxazaborolidines used as catalysts in the enantioselective reduction of ketones, Tetrahedron Asymmetry. 1992, 3: 1563-1572.[8]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 7. On the effects controlling the coordination of borane to chiral oxazaborolidines used as catalysts in the enantioselective reduction of ketones, Tetrahedron Asymmetry,1992, 3: 1441-1453.[9]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 12. On the influence of the nature of the ring system on binding in ketone-borane complexes of chiral oxazaborolidines used as catalysts in the enantioselective reduction of ketones. Tetrahedron Asymmetry, 1993, 4: 1597-1602.[10]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 19. Strain and stability-oxazadiboretanes potentially involved in the enantioselective reduction of ketones promoted

  16. Quantum chemical study on the mechanism of enantioselective reduction of prochiral ketones catalyzed by oxazaborolidines

    Institute of Scientific and Technical Information of China (English)

    LI; Ming

    2001-01-01

    [1]Corey, E. J., Bakshi, R. K., Shibata, S., Highly enantioselective borane reduction ketones catalyzed by chiral oxazaborolidines, J. Am. Chem. Soc., 1987, 109:5551-5553.[2]Wallbaum, S., Martens, J., Asymmetric syntheses with chiral oxazaborolidines, Tetrahedron Asymmetry, 1992, 3: 1475-1504.[3]Deloux, L., Srebnik, M., Asymmetric borane-catalyzed reactions, Chem. Rev., 1993, 93: 763-784.[4]Togni, A., Venanzi, L. M., Nitrogen donors in organometallic chemistry and in homogeneous catalysis, Angew Chem. Int. Ed. Engl., 1994, 33: 497-562.[5]Ager, D. J., Prakash, I., Schaad, D. R., 1,2-amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis, Chem. Rev., 1996, 96: 835-875.[6]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 4. On the hydride transfer in ketone complexes of borane adducts of oxazaborolidines and regeneration of catalyst, Tetrahedron Asymmetry, 1991, 2:1133-1155.[7]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 8. On the conformational freedom of the ketone of ketone-borane complexes of oxazaborolidines used as catalysts in the enantioselective reduction of ketones, Tetrahedron Asymmetry. 1992, 3: 1563-1572.[8]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 7. On the effects controlling the coordination of borane to chiral oxazaborolidines used as catalysts in the enantioselective reduction of ketones, Tetrahedron Asymmetry,1992, 3: 1441-1453.[9]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 12. On the influence of the nature of the ring system on binding in ketone-borane complexes of chiral oxazaborolidines used as catalysts in the enantioselective reduction of ketones. Tetrahedron Asymmetry, 1993, 4: 1597-1602.[10]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 19. Strain and stability-oxazadiboretanes potentially involved in the enantioselective reduction of ketones promoted

  17. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  18. Tritium and deuterium labelling studies of alkali metal borohydrides and their application to simple reductions

    International Nuclear Information System (INIS)

    Simple and facile syntheses of highly deuterated and tritiated LiBH4, NaBH4 and KBH4 were achieved by hydrogen isotope exchange with deuterium or tritium gas at elevated temperatures. The exchange products were characterized by boron, proton and deuterium or tritium NMR spectroscopy. The extent of isotope (2H or 3H) incorporation was calculated from the patterns of 11B NMR spectra. Several samples of tritiated NaBH4 were treated with BF3-Et2O to produce tritiated borane-THF complex, which is an electrophilic reducing agent. The utility of both the borohydride reagents and borane-THF complex in labelling reactions was confirmed by exemplary reductions leading to specifically labelled products. The extent and orientation of labelling in the reduction products was assessed by a combination of radio-HPLC analysis, 1H, 2H or 3H NMR and mass spectrometry. (author)

  19. Preparation of polypropylene/montmorillonite nanocomposites by intercalative polymerization: Effect of in situ polymer matrix functionalization on the stability of the nanocomposite structure

    Institute of Scientific and Technical Information of China (English)

    YANG KeFang; HUANG YingJuan; DONG JinYong

    2007-01-01

    The copolymerization of propylene and 5-hexenyl-9-borabicyclo[3.3.1]nonane (5-hexenyl-9-BBN) has been conducted with an MgCl2/TiCl4 catalyst intercalated in an organically modified montmorillonite (OMMT) with triethylaluminum (AlEt3) cocatalyst and diphenyldimethoxysilane (DDS) external donor. This polymerization process simultaneously results in both the exfoliation of MMT layers to realize the preparation of polypropylene (PP)/MMT nanocomposites and the implantation of reactive borane groups in the formed PP matrix. The polymer-borne borane groups have been able to undergo an efficient hydrolysis process under very mild reaction conditions (40℃, 3 h, in THF), introducing hydroxy groups into PP without sacrificing the polymerization-formed nanocomposite structure (the exfoliation of MMT). The resultant hydroxyl-functionalized PP/MMT nanocomposites exhibit enhanced structural stability against processing compared with those based on unfunctionalized PP matrix.

  20. Stabilized borata-alkene formation: structural features, reactions and the role of the counter cation.

    Science.gov (United States)

    Kohrt, Sonja; Dachwitz, Steffen; Daniliuc, Constantin G; Kehr, Gerald; Erker, Gerhard

    2015-12-28

    Dimethylbenzofulvene adds Piers' borane [HB(C6F5)2] at the indene double bond to give a mixture of regioisomeric boranes 8a,b. Subsequent isomerization under equilibrium conditions gives the isopropyl substituted 1H and 3H borylindenes 10a,b. Their treatment with the bulky LiTMP base under frustrated Lewis pair conditions resulted in a clean deprotonation reaction to give the borata-alkene 14. Its X-ray crystal structure analysis indicated a pronounced B[double bond, length as m-dash]C double bond character and thus a borata-benzofulvene description. The borata-alkene underwent (probably stepwise) [4 + 2] cycloaddition reactions with chalcone derivatives and a formal [6 + 2] cycloaddition with phenylmethylketene. Many products and derivatives were characterized by X-ray diffraction. PMID:26584629

  1. Use of Li.sub.2[B.sub.12H.sub.12] salt to absorb water into polymers

    Energy Technology Data Exchange (ETDEWEB)

    Eastwood, Eric A.; Bowen, III, Daniel E.

    2016-08-30

    Methods of adjusting the properties of a composition are provided. The compositions comprise a polymer-containing matrix and a filler comprising a hygroscopic salt. Preferred such salts comprise a cage compound selected from the group consisting of borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer.

  2. Immigration and Unemployment Application of Game Theory on Diyarbakir: Istanbul Samples

    Science.gov (United States)

    Özgönül, Müge; Kaplan, Aslı

    The aim of this poster is to make a research about the relationship between unemployment and immigration. A mathematical model for the relationship between unemployment and immigration to İstanbul and Diyarbakır will be suggested by grade 11 International Baccalaureate Diploma Programme students, Boran Çıplak, Teoman Kenn Küçük, Emre Orhan, Meriç Tansi, Aysu Bulak, Özgün Karataş, Mavi Deniz Koçak.

  3. Boron in nuclear medicine: New synthetic approaches to PET and SPECT. Final report, May 1, 1986--April 30, 1996

    International Nuclear Information System (INIS)

    Research is described in the development of organometallic reagents in which the boron was attached to a nonreactive organic or inorganic matrix such as polystyrene, silica, or alumina. We developed the synthesis of oxygen-15 labelled butanol, which has been found to be a valuable blood flow agent in humans. We have also developed a series of polymeric borane derivatives which were used to prepare nitrogen-13 labelled amines

  4. Coaxial metal and magnetic alloy nanotubes in polycarbonate templates by electroless deposition

    OpenAIRE

    Rohan, James F.; Casey, Declan P.; Ahern, Bernadette M.; Rhen, Fernando M.F.; Roy, Saibal; Fleming, David; Lawrence, Simon E.

    2008-01-01

    We present a novel technique for the preparation of coaxial metal and magnetic alloy nanotubes, which is demonstrated for the coaxial nanotubes of Ni/Co and Ni/CoNiFe alloys deposited in activated polycarbonate templates using electroless plating. For each metal or alloy the tube wall thickness was controlled to be less than 100 nm. The process involved two consecutive deposition steps from hypophosphite and/or borane reducing agent based electroless plating solutions. We further characterise...

  5. Boron in nuclear medicine: New synthetic approaches to PET and SPECT. Final report, May 1, 1986--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G.W.

    1997-08-01

    Research is described in the development of organometallic reagents in which the boron was attached to a nonreactive organic or inorganic matrix such as polystyrene, silica, or alumina. We developed the synthesis of oxygen-15 labelled butanol, which has been found to be a valuable blood flow agent in humans. We have also developed a series of polymeric borane derivatives which were used to prepare nitrogen-13 labelled amines.

  6. Deoxyiminoalditols from Aldonolactones - V. Preparation of the Four Stereoisomers of 1,5-Dideoxy-1,5-iminopentitols. Evaluation of these Iminopentitols and Three 1,5-Dideoxy-1,5-iminoheptitols as Glycosidase Inhibitors

    DEFF Research Database (Denmark)

    Godskesen, Michael Anders; Lundt, Inge; Madsen, Robert;

    1996-01-01

    aqueous ammonia, the 5-amino-5-deoxy-1,5-lactams, 2, 8, 12 and 17, respectively. Reduction of the lactam function using sodium borohydride/acetic or trifluoroacetic acid, or borane dimethyl sulfide complex yielded the iminopentitols. The compounds 3, 9, 13 and 18, together with the three 1,5-dideoxy-1......-substituted carbon atoms, were good inhibitors of alpha-L-fucosidase. Copyright (C) 1996 Elsevier Science Ltd...

  7. Hydro- und Carboborierungs-/Oxidationsreaktionen von Tricyclo[4.1.0.02,7]heptan-Derivaten sowie Synthese und Solvolyse-Reaktionen von exo,exo-Bicyclo[1.1.0]butan-2,4-dimethanoldimethansulfonat

    OpenAIRE

    Herberth, Edith

    2003-01-01

    Die bekannte Umwandlung des Bromtricycloheptans 4 in den Homoallylalkohol 76 durch Hydroborierung/Oxidation wurde anders als früher mit einer in situ aus Natriumborhydrid und elementarem Iod erzeugten Boran-THF-Lösung bewirkt. Darüber hinaus konnten unter den gleichen Bedingungen das Chlortricycloheptan 26 und das Methyltricycloheptan 62 in den Homoallylalkohol 108 bzw. 109 überführt werden. Über 4, 26, 62 und das Phenyltricycloheptan 15 hinaus, dessen Hydroborierung/ Oxidation zum Homoallyla...

  8. Program and Abstracts, Boron Americas IX Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Feakes, Debra A.

    2006-08-09

    The Scientific and Technical Information (STI) submitted includes the final report and a collection of abstracts for the Ninth Boron in the Americas Conference which was held May 19-22, 2004, in San Marcos, Texas. The topics covered in the abstracts include: Application in Medicine, Application in Organic Synthesis and Catalysis, Boranes and Carboranes, Materials and Polymers, Metallaboranes and Metallacarboranes, Organoboron Compounds, Synthesis and Catalysis, and Theoretical Studies. Attendees represented researchers from government, industry, and academia.

  9. Derivatives of the triaminoguanidinium ion, 3. Multiple N-functionalization of the triaminoguanidinium ion with isocyanates and isothiocyanates

    OpenAIRE

    Szabo, Jan; Karger, Kerstin; Bucher, Nicolas; Maas, Gerhard

    2014-01-01

    1,2,3-Triaminoguanidinium chloride was combined with benzaldehyde and hydratropic aldehyde to furnish the corresponding tris(imines), which were converted into 1,2,3-tris(benzylamino)guanidinium salts by catalytic hydrogenation in the former, and by borane reduction in the latter case. The resulting alkyl-substituted triaminoguanidinium salts underwent a threefold carbamoylation with aryl isocyanates to furnish 1,2,3-tris(ureido)guanidinium salts, while p-toluenesulfonyl isocyanate led only t...

  10. Derivatives of the triaminoguanidinium ion, 3. Multiple N-functionalization of the triaminoguanidinium ion with isocyanates and isothiocyanates

    OpenAIRE

    Jan Szabo; Kerstin Karger; Nicolas Bucher; Gerhard Maas

    2014-01-01

    1,2,3-Triaminoguanidinium chloride was combined with benzaldehyde and hydratropic aldehyde to furnish the corresponding tris(imines), which were converted into 1,2,3-tris(benzylamino)guanidinium salts by catalytic hydrogenation in the former, and by borane reduction in the latter case. The resulting alkyl-substituted triaminoguanidinium salts underwent a threefold carbamoylation with aryl isocyanates to furnish 1,2,3-tris(ureido)guanidinium salts, while p-toluenesulfonyl isocyanate led only t...

  11. Periodic trends and easy estimation of relative stabilities in 11-vertex nido-p-block-heteroboranes and -borates

    OpenAIRE

    Kiani, Farooq A.; Hofmann, Matthias

    2005-01-01

    Density functional theory computations were carried out for 11-vertex nido-p-block-hetero(carba)boranes and -borates containing silicon, germanium, tin, arsenic, antimony, sulfur, selenium and tellurium heteroatoms. A set of quantitative values called “estimated energy penalties” was derived by comparing the energies of two reference structures that differ with respect to one structural feature only. These energy penalties behave additively, i.e., they allow us to reproduce the DFT-computed r...

  12. Skeletal Alkylcarbonation (SAC) Reactions as a Simple Design for Cluster-Carbon Insertion and Cross-Coupling: High-Yield Access to Substituted Tricarbollides from 6,9-Dicarba-arachno-decaborane(14)

    Czech Academy of Sciences Publication Activity Database

    Štíbr, Bohumil; Bakardjiev, Mario; Holub, Josef; Růžička, A.; Padělková, Z.; Olejník, R.; Švec, Petr

    2011-01-01

    Roč. 17, č. 47 (2011), s. 13156-13159. ISSN 0947-6539 R&D Projects: GA MŠk LC523; GA ČR(CZ) GAP207/11/0705 Institutional research plan: CEZ:AV0Z40320502 Keywords : acyl chlorides * boranes * carboranes * cross-coupling * synthetic method s Subject RIV: CA - Inorganic Chemistry Impact factor: 5.925, year: 2011

  13. Copper-Catalyzed Borylative Cross-Coupling of Allenes and Imines: Selective Three-Component Assembly of Branched Homoallyl Amines.

    Science.gov (United States)

    Rae, James; Yeung, Kay; McDouall, Joseph J W; Procter, David J

    2016-01-18

    A copper-catalyzed three-component coupling of allenes, bis(pinacolato)diboron, and imines allows regio-, chemo-, and diastereoselective assembly of branched α,β-substituted-γ-boryl homoallylic amines, that is, products bearing versatile amino, alkenyl, and borane functionality. Alternatively, convenient oxidative workup allows access to α-substituted-β-amino ketones. A computational study has been used to probe the stereochemical course of the cross-coupling. PMID:26632675

  14. An Organometallic Future in Green and Energy Chemistry?

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, Robert H

    2011-01-10

    The title topic is reviewed with selected examples taken from recent work, such as: the 'hydrogen borrowing' amine alkylation by alcohols; the dehydrogenative coupling of amine and alcohol to give amide; Ru complexes as solar cell photosensitizers; Ir organometallics as water oxidation catalyst precursors and as OLED emitters; as well as recent hydrogen storage strategies involving catalytic dehydrogenation of ammonia-borane and of organic heterocycles.

  15. B(C6F5)3 catalyzed one-pot three-component Biginelli reaction: An efficient and environmentally benign protocol for the synthesis of 3,4-dihydropyrimidin-2(1)-ones/thiones

    Indian Academy of Sciences (India)

    Santosh Kumar Prajapti; Keshav Kumar Gupta; Bathini Nagendra Babu

    2015-06-01

    Tris(pentafluorophenyl)borane catalyzed, one-pot, simple, efficient and environmentally benign protocol for the synthesis of dihydropyrimidinones/thiones via Biginelli reaction has been described. The main highlights of the present protocol is low catalyst loading, low toxicity, compatibility with acid-labile-protecting groups, short reaction time, consistently excellent yields and simple reaction/workup procedure. Moreover, the applicability of the present methodology for large-scale synthesis of monastrol highlights its potential for bulk synthesis.

  16. Improved synthesis of [closo-1-CB9H10 ](-) anion and new c-substituted derivatives

    Czech Academy of Sciences Publication Activity Database

    Ringstrand, B.; Bateman, D.; Shoemaker, R. K.; Janoušek, Zbyněk

    2009-01-01

    Roč. 74, č. 3 (2009), s. 419-431. ISSN 0010-0765 R&D Projects: GA MŠk LC523; GA MŠk ME 857 Grant ostatní: NSF(US) CHE-0446688; NSF(US) OISE-0532040 Institutional research plan: CEZ:AV0Z40320502 Keywords : boranes * carboranes * monocarbaborane anions Subject RIV: CA - Inorganic Chemistry Impact factor: 0.856, year: 2009

  17. Production of Nanopowders of Platinum Metals Using the Chemical Reduction Method

    Institute of Scientific and Technical Information of China (English)

    PYATAKHINA E. S.; BUSLAYEVA T. M.; VOLCHKOVA E. V.; KHRISTICH E. A.; SERGEYEVA T. Yu.

    2012-01-01

    The literary data on the application of various methods for the production of nanopowders of platinum metals and alloys have been summarized,and the selection of the method of chemical reduction from salt solutions has been substantiated as the simplest and most affordable.The optimum conditions for the production of nanoparticles of metal palladium and platinum/cobalt alloy,using the effect of boranes with various structures,have been selected.

  18. A novel method to create molecular mixtures at high pressures

    Science.gov (United States)

    Pravica, Michael; Smith, Quinlan; Sneed, Daniel; Wang, Yonggang; White, Melanie

    2015-06-01

    We have successfully created a segregated mixture of hydrogen and oxygen at high pressure in a diamond anvil cell (DAC) using useful hard x-ray photochemistry. A keyhole (two holes connected by an opening) sample chamber was created in a metallic gasket to support two segregated powders of ammonia borane and potassium perchlorate in each hole, respectively at ~ 5.0 GPa. Both holes were separately irradiated with synchrotron hard x-rays to release molecular oxygen (via KClO4 + hv --> KCl +2O2) and molecular hydrogen respectively. Upon irradiation of the first KClO4 - containing hole, solid reddish-orange O2 appeared in the irradiated region and molecular oxygen diffused throughout the entire sample region. The second ammonia borane-containing hole was then irradiated and H2 was observed to form via Raman spectroscopy. Water was observed in the ammonia borane-containing hole and possibly (in the form of ice VII) in the second hole. This unique experiment demonstrates the ability to easily create solid mixtures of simple molecular systems via x-ray irradiation and then react them via further irradiation which will aid chemistry at extreme conditions. In particular, the ability to easily determine intermolecular potentials of detonation products and better understand diffusion and molecular mixing or segregation under extreme conditions.

  19. Syntese af amino/hydroxypyrrolidines og -piperidiner fra kulhydratderivater

    DEFF Research Database (Denmark)

    Godskesen, Michael Anders

    lactams were reduced with sodium acetoxyborohydride or borane dimethyl sulfide to the 1,5-imino-1,5-pentitols.1,2,5-Trideoxy-1,5-imino-D-erythro-pentito l and 1,2,5-trideoxy-1,5-imino-D-threo-pentitol were synthesised from 2,5-difunctionalised aldonolactones by reduction of the 2-functionality with...... hydrazin. The hereby formed 5-functionalsed 2-deoxy-lactones were then reacted with ammonia to give the corresponding lactams. The lactams were reduced by borane dimethyl sulfid or lithium aluminium hydride to the 1,2,5-trideoxy-1,5-imino-pentitols.2,5-Difunctionalised aldonolactones were also used for...... synthesis of four stereoisomeric 2-amino-1,2,5-trideoxy-1,5-imino-pentitols with D-xylo-, L-xylo-, D-ribo-, D-arabino-configuration. The pentitols were obtained by reduction of the corresponding 2-amino-lactams with borane dimethyl sulfid. The lactams were formed by reaction of 2,5-difunctionalised...

  20. Communication: A novel method for generating molecular mixtures at extreme conditions: The case of hydrogen and oxygen

    International Nuclear Information System (INIS)

    We have successfully created a segregated mixture of hydrogen and oxygen at high pressure in a diamond anvil cell using hard x-ray photochemistry. A keyhole (two holes connected by an opening) sample chamber was created in a metallic gasket to support two segregated powders of ammonia borane and potassium perchlorate, respectively, in each hole at a pressure of ∼5.0 GPa. Both holes were separately irradiated with synchrotron hard x-rays to release molecular oxygen and molecular hydrogen, respectively. Upon irradiation of the first KClO4-containing hole, solid reddish-orange O2 appeared in the region of irradiation and molecular oxygen was found to diffuse throughout the entire sample region. The second ammonia borane-containing hole was then irradiated and H2 was observed to form via Raman spectroscopy. Water also was observed in the ammonia borane-containing hole and possibly (in the form of ice VII) in the second hole. This unique experiment demonstrates the ability to easily create solid mixtures of simple molecular systems via x-ray irradiation and then react them via further irradiation which will aid the study of chemistry under extreme conditions

  1. Solid-state-reaction synthesis of cotton-like CoB alloy at room temperature as a catalyst for hydrogen generation.

    Science.gov (United States)

    Wang, Xingpu; Liao, Jinyun; Li, Hao; Wang, Hui; Wang, Rongfang

    2016-08-01

    A novel room-temperature solid-state reaction is developed to synthesize cotton-like CoB alloy (CoBSSR) catalysts with a large specific surface area of 222.4m(2)g(-1). In the hydrolysis of ammonia borane catalyzed by the CoBSSR, the rate of hydrogen generation can reach 68.7mLmin(-1) with a turnover frequency (TOF) value of ca. 6.9Lhydrogenmin(-1)gcatalyst(-1) at 25°C. The TOF value is about 2 times as large as that of CoB alloy prepared by a regular solid-state reaction, which is also much higher than those of the CoB catalysts recently reported in the literature. The activation energy of the hydrolysis of ammonia borane catalyzed by the CoBSSR is as low as 22.78kJmol(-1), hinting that the CoBSSR possesses high catalytic activity, which may be attributed to the large specific surface area and the abundant porous structure. The high catalytic performance, good recoverability and low cost of the CoBSSR enable it to be a promissing catalyst condidate in the hydrolysis of ammonia borane for hydrogen production in commercial application. PMID:27163841

  2. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin

  3. Instability of the CuCl2–NH3BH3 mixture followed by TGA and DSC

    International Nuclear Information System (INIS)

    Graphical abstract: The addition of copper chloride is an efficient approach to destabilize ammonia borane. However, the destabilization is excessive. The mixture CuCl2–NH3BH3 evolves under argon atmosphere and at room temperature. This makes long-term storage of CuCl2–NH3BH3 problematic. Highlights: ► Ammonia borane NH3BH3 (AB) destabilization can be achieved by adding CuCl2. ► The stability of CuCl2–AB when stored under Ar at 20 °C over 6 months was assessed. ► CuCl2–NH3BH3 evolves with time, decomposing at slow kinetics. ► Long-term storage of CuCl2–AB is inconceivable for safety and performances reasons. - Abstract: In the field of ‘hydrogen storage and generation’, ammonia borane NH3BH3 (AB) destabilization can be achieved by adding a metal halide, here copper chloride (CuCl2). Improved dehydrogenation properties can be achieved with a fresh mixture of CuCl2–NH3BH3. Using a systematic approach, we followed the stability of the mixture using thermogravimetric analysis, differential scanning calorimetry and (micro) gas chromatography while it was stored under argon at room temperature over 6 months. The aged samples showed improved dehydrogenation properties compared to pristine AB. However, the performance deteriorated in comparison to the fresh mixture indicating that CuCl2–NH3BH3 evolves over time, decomposing with slow kinetics. This is detrimental in terms of stability during storage, making long-term storage of CuCl2 inconceivable for safety and performance reasons. This is discussed herein

  4. New Polymer and Liquid Electrolytes for Lithium Batteries

    International Nuclear Information System (INIS)

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they don't interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in PEO based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation completing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion completing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF3SO3-. The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2M LiF solutions in DME, an increase in volubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6 x 10-3 Scm-1. The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn2O4 cells

  5. Site and chirality selective chemical modifications of boron nitride nanotubes (BNNTs) via Lewis acid-base interactions.

    Science.gov (United States)

    Sundaram, Rajashabala; Scheiner, Steve; Roy, Ajit K; Kar, Tapas

    2015-02-01

    The pristine BNNTs contain both Lewis acid (boron) and Lewis base (nitrogen) centers at their surface. Interactions of ammonia and borane molecules, representatives of Lewis base and acid as adsorbates respectively, with matching sites at the surface of BNNTs, have been explored in the present DFT study. Adsorption energies suggest stronger chemisorption (about 15-20 kcal mol(-1)) of borane than ammonia (about 5-10 kcal mol(-1)) in both armchair (4,4) and zigzag (8,0) variants of the tube. NH3 favors (8,0) over the (4,4) tube, whereas BH3 exhibits the opposite preference, indicating some chirality dependence on acid-base interactions. A new feature of bonding is found in BH3/AlH3-BNNTs (at the edge site) complexes, where one hydrogen of the guest molecule is involved in three-center two-electron bonding, in addition to dative covalent bond (N: → B). This interaction causes a reversal of electron flow from borane/alane to BNNT, making the tube an electron acceptor, suggesting tailoring of electronic properties could be possible by varying strength of incoming Lewis acids. On the contrary, BNNTs always behave as electron acceptor in ammonia complexes. IR, XPS and NMR spectra show some characteristic features of complexes and can help experimentalists to identify not only structures of such complexes but also the location of the guest molecules and design second functionalizations. Interaction with several other neutral BF3, BCl3, BH2CH3 and ionic CH3(+) acids as well as amino group (CH3NH2 and NH2COOH) were also studied. The strongest interaction (>100 kcal mol(-1)) is found in BNNT-CH3(+) complexes and H-bonds are the only source of stability of NH2COOH-BNNT complexes. PMID:25559141

  6. The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics

    Czech Academy of Sciences Publication Activity Database

    Fanfrlík, Jindřich; Přáda, A.; Padělková, Z.; Pecina, Adam; Macháček, Jan; Lepšík, Martin; Holub, Josef; Růžička, A.; Hnyk, Drahomír; Hobza, Pavel

    2014-01-01

    Roč. 53, č. 38 (2014), s. 10139-10142. ISSN 1433-7851 R&D Projects: GA ČR GBP208/12/G016; GA ČR GAP208/10/2269 Grant ostatní: GA MŠk(CZ) ED2.1.00/03.0058; GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) LM2011033 Institutional support: RVO:61388963 ; RVO:61388980 Keywords : boranes * chalcogen bonds * crystal structures * sulfur * X-ray diffraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.261, year: 2014

  7. Crystal structure of bis(3-bromomesityl)(quinolin-1-ium-8-yl)boron(III) tribromide

    OpenAIRE

    Jungho Son; Sem Raj Tamang; Hoefelmeyer, James D.

    2015-01-01

    The title compound, C27H26.82BBr2.18N+·Br3−, is a cationic triarylborane isolated as its tribromide salt. The aryl substituents include a protonated 8-quinolyl group and two 3-bromomesityl groups. The molecule was prepared on combination of 3:1 Br2 and dimesityl(quinolin-8-yl)borane in hexanes. The refinement of the structure indicated a degree of `over-bromination' (beyond two bromine atoms) for the cation. There are two tribromide ions in the asymmetric unit, both completed by crystallograp...

  8. Main group redox catalysis: reversible P(III)/P(V) redox cycling at a phosphorus platform.

    Science.gov (United States)

    Dunn, Nicole L; Ha, Minji; Radosevich, Alexander T

    2012-07-18

    A planar, trivalent phosphorus compound is shown to undergo reversible two-electron redox cycling (P(III)/P(V)) enabling its use as catalyst for a transfer hydrogenation reaction. The trivalent phosphorus compound activates ammonia-borane to furnish a 10-P-5 dihydridophosphorane, which in turn is shown to transfer hydrogen cleanly to azobenzene, yielding diphenylhydrazine and regenerating the initial trivalent phosphorus species. This result constitutes a rare example of two-electron redox catalysis at a main group compound and suggests broader potential for this nonmetal platform to support bond-modifying redox catalysis of the type dominated by transition metal catalysts. PMID:22746974

  9. NaBH4/NaNO3/H2O: A Convenient System for Selective Reduction of Aldehydes VS. Ketones to their Corresponding Alcohols

    Directory of Open Access Journals (Sweden)

    Soheila Ghaderi

    2014-12-01

    Full Text Available NaBH4 (1.25 equivalents & NaNO3 (3 equivalents reduce a variety of aldehydes in the presence of ketones to their corresponding alcohols. Also, regioselectivity and exclusive 1,2-reduction enals to their corresponding allylic alcohols in high to excellent yields was achieved successfully with this reducing system. The reduction reactions were carried out in water as green solvent in high to excellent yields of the products. A nitrate-borane complex [H3B-NO3]Na is possibly the active reductant in the reaction mixture.

  10. NaBH4/Na2C2O4/H2O: An efficient System for Selective Reduction of Aldehydes in the presence of Ketones

    Directory of Open Access Journals (Sweden)

    Maghsoud Azimzadeh

    2015-06-01

    Full Text Available Selective reduction of a variety of aldehydes (1 equivalents in the presence of ketones to their corresponding alcohols has been carried out by NaBH4 (1.5 equivalents & Na2C2O4 (3 equivalents in water as green solvent in high to excellent yields of the products. An oxalate-borane complex Na2[(H3B2C2O4] is possibly the active reductant in the reaction mixture. Also, Chemoselective, regioselectivity and exclusive 1,2-reduction enals to their corresponding allylic alcohols in high to excellent yields was achieved successfully with this reducing system.

  11. Primary Alcohols from Terminal Olefins: Formal Anti-Markovnikov Hydration via Triple Relay Catalysis

    KAUST Repository

    Dong, G.

    2011-09-15

    Alcohol synthesis is critical to the chemical and pharmaceutical industries. The addition of water across olefins to form primary alcohols (anti-Markovnikov olefin hydration) would be a broadly useful reaction but has largely proven elusive; an indirect hydroboration/oxidation sequence requiring stoichiometric borane and oxidant is currently the most practical methodology. Here, we report a more direct approach with the use of a triple relay catalysis system that couples palladium-catalyzed oxidation, acid-catalyzed hydrolysis, and ruthenium-catalyzed reduction cycles. Aryl-substituted terminal olefins are converted to primary alcohols by net reaction with water in good yield and excellent regioselectivity.

  12. Reduktive Synthese zu neuartigen cyclischen und acyclischen Borverbindungen

    OpenAIRE

    Claes, Christina

    2016-01-01

    Ein Teil der hier vorliegenden Arbeit beschäftigte sich mit der Synthese und Charakterisierung neuer Boran-Addukte. Dabei wurden neben den NHCs IMe und IMeMe die Phosphane PEt3 und PMe3 als stabilisierende Lewisbasen eingesetzt. Neben dem Liganden wurde auch der borgebundene organische Rest variiert (Phenyl und n-Butyl), um deren Einfluss auf die Eigenschaften der Addukte zu untersuchen. Die NHC-stabilisierten Monoborane IMe∙B(nBu)Cl2 (99) und IMeMe∙B(Ph)Cl2 (100) konnten in guten Ausbeuten i...

  13. N2 Functionalization at Iron Metallaboratranes

    OpenAIRE

    Moret, Marc-Etienne; Peters, Jonas C.

    2011-01-01

    The reactivity of the anionic dinitrogen complex [(TPB)Fe(N_2)]^− (TPB = tris[2-(diisopropylphosphino)phenyl]borane) toward silicon electrophiles has been examined. [(TPB)Fe(N_2)]^− reacts with trimethylsilyl chloride to yield the silyldiazenido complex (TPB)Fe(NNSiMe_3), which is reduced by Na/Hg in THF to yield the corresponding sodium-bound anion [(TPB)Fe(NNSiMe_3)]Na(THF). The use of 1,2-bis(chlorodimethylsilyl)ethane in the presence of excess Na/Hg results in the disilylation of the boun...

  14. Influence of Experimental Conditions on Deposition of Silver Nanoparticles Onto Surface of Graphene Oxide / Wpływ Warunków Eksperymentalnych Na Proces Osadzania Nanocząstek Srebra Na Powierzchni Tlenku Grafenu

    Directory of Open Access Journals (Sweden)

    Wojnicki M.

    2015-12-01

    Full Text Available Present work describes the influence of silver nanoparticles precursor form as well as the impact of graphene oxide initial concentration on deposition of the silver nanoparticles onto graphene oxide. Borane dimethylamine complex (DMAB was used as the reducing agent. It was observed that application of silver ammonia complexes as the silver nanoparticles precursor as well as alkaline solution effect in higher quantity of deposited AgNPs in comparison to deposition process with the use of silver(I nitrate in acidic solution.

  15. Feed intake and production parameters of lactating crossbred cows fed maize-based diets of stover, silage or quality protein silage

    OpenAIRE

    Gebrehawariat, Efrem; Tamir, Berhan; Tegegne, Azage

    2010-01-01

    Thirty-six Boran × Friesian dairy cows (392 ± 12 kg; mean ± SD) in early parity were used in a randomised complete block design. Cows were blocked by parity into three blocks of 12 animals and offered normal maize (NM) stover (T1), NM silage (T2) or quality protein maize (QPM) silage (T3) basal diets supplemented with a similar concentrate mix. Feed intake, body weight and condition changes and milk yield and composition were assessed. The daily intake of DM, OM, NDF and ADF for cows fed the ...

  16. Chiral Borated Esters in Asymmetric Synthesis:1.The First Asymmetric Reaction Catalyzed by Chiral Spiroborated Esters with an O3BN Framework

    Institute of Scientific and Technical Information of China (English)

    LIU, De-Jun(刘德军); SHAN, Zi-Xing(单自兴); QIN, Jin-Gui(秦金贵)

    2004-01-01

    The first asymmetric reaction catalyzed by chiral spiroborated esters with an O3BN framework was reported. In the presence of 0.1 equivalent of (R,S)-1 or (S,S)-1, acetophenone was reduced by 0.6 equivalent of borane in THF at 0-5 ℃ for 2 h to give (R)-1-phenylethanol of up to 76% ee and 73% isolated yield. Influence of reaction conditions on the stereoselectivity of the reduction was investigated and a possible catalytic mechanism of the chiral spiroborated esters toward the reduction was also suggested.

  17. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  18. Increasing Hydrogen Density with the Cation-Anion Pair BH4−-NH4+ in Perovskite-Type NH4Ca(BH43

    Directory of Open Access Journals (Sweden)

    Pascal Schouwink

    2015-08-01

    Full Text Available A novel metal borohydride ammonia-borane complex Ca(BH42·NH3BH3 is characterized as the decomposition product of the recently reported perovskite-type metal borohydride NH4Ca(BH43, suggesting that ammonium-based metal borohydrides release hydrogen gas via ammonia-borane-complexes. For the first time the concept of proton-hydride interactions to promote hydrogen release is applied to a cation-anion pair in a complex metal hydride. NH4Ca(BH43 is prepared mechanochemically from Ca(BH42 and NH4Cl as well as NH4BH4 following two different protocols, where the synthesis procedures are modified in the latter to solvent-based ball-milling using diethyl ether to maximize the phase yield in chlorine-free samples. During decomposition of NH4Ca(BH43 pure H2 is released, prior to the decomposition of the complex to its constituents. As opposed to a previously reported adduct between Ca(BH42 and NH3BH3, the present complex is described as NH3BH3-stuffed α-Ca(BH42.

  19. Magnesium Catalysis for the Hydroboration of Carbodiimides.

    Science.gov (United States)

    Weetman, Catherine; Hill, Michael S; Mahon, Mary F

    2016-05-17

    A β-diketiminato magnesium alkyl complex, [CH{C(Me)NDipp}2 }MgnBu] (Dipp=2,6-iPr2 C6 H3 ), was shown to be an effective pre-catalyst for the first reported catalytic hydroboration of alkyl- and aryl-substituted carbodiimides with pinacol borane (HBpin). The catalytic reactions proceed under mild conditions to afford the corresponding N-borylated formamidine compounds in good yields. The reactions were observed to proceed through the intermediacy of magnesium amidinate and formamidinatoborate intermediates and an example of one of these latter species has been structurally characterised by an X-ray diffraction analysis. Crucially, no formation of the N-boryl formamidine products was observed in the absence of additional equivalents of the carbodiimide and HBpin substrates. This observation, supported by the evolution of a sigmoidal kinetic profile for the hydroboration of dicyclohexylcarbodiimide, has been rationalised as the consequence of an allosteric effect of the pinacol borane and carbodiimide on the magnesium formamidinatoborate intermediates. PMID:27072429

  20. A comprehensive investigation on CVD growth thermokinetics of h-BN white graphene

    Science.gov (United States)

    Song, Xiufeng; Li, Qiguang; Ji, Jianping; Yan, Zhong; Gu, Yu; Huo, Chengxue; Zou, Yousheng; Zhi, Chunyi; Zeng, Haibo

    2016-09-01

    As an isomorph of graphene, monolayer hexagonal boron nitride (h-BN), so-called white graphene, has been in the spotlight of two-dimensional materials due to its outstanding properties. However, the growth of large and uniform white graphene monocrystalline with low density of defects is still a great challenge. Here, we present a comprehensive investigation on the growth thermokinetics of white graphene monocrystalline domains via atmospheric pressure chemical vapor deposition with the solid ammonia borane as precursors, which will be more suitable for future industrial production due to the handy process and precursor. The single domain size, coverage on substrate, and thickness of white graphene were taken as targeted parameters of products. And then, their dependences on the flow rate of carrier gas, heating temperature of ammonia borane, growth temperature and time were studied in details. Finally, after optimizing the above conditions, both white graphene monocrystalline domains as large as 80 μm2 and polycrystalline ultrathin film with coverage ratio of 95%–100% can be achieved facilely without using vacuum technique. Such white graphene products would be of great significance for the tunnel barrier for the tunneling transistor and the dielectric layers for nanocapacitor with the graphene based heterostructures.

  1. Analysis of boron carbides' electronic structure

    Science.gov (United States)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  2. Low-pressure c-BN deposition - is a CVD process possible?

    International Nuclear Information System (INIS)

    Since the low-pressure diamond deposition was discovered in 1982 there is a high interest to find a similar process for the c-BN synthesis. A review about the c-BN deposition process as well as its characterization is given. Experiments with a simple chemical vapor deposition(CVD) reactor using tris(dimethylamino)borane as precursor were carried out. In a cold-wall reactor substrates were heated up by high-frequency. Argon was used as protecting and carrying the precursor, it was saturated with tris(dimethylamino)borane (precursor) according to its vapor pressure and transports the pressure to the hot substrate, where deposition occurs. WC-Co hardmetal plates containing 6 wt. % Co, Mo and Si were used as substrates. Various BN layers were deposited and characterized. X-ray diffraction, IR-spectroscopy and SIMS indicate that BN-coatings containing c-BN were deposited. However a final verification of c-BN crystallites by TEM investigations was not possible till now. (nevyjel)

  3. Soluble and meltable hyperbranched polyborosilazanes toward high-temperature stable SiBCN ceramics.

    Science.gov (United States)

    Kong, Jie; Wang, Minjun; Zou, Jianhua; An, Linan

    2015-04-01

    High-temperature stable siliconborocarbonitride (SiBCN) ceramics produced from single-source preceramic polymers have received increased attention in the last two decades. In this contribution, soluble and meltable polyborosilazanes with hyperbranched topology (hb-PBSZ) were synthesized via a convenient solvent-free, catalyst-free and one-pot A2 + B6 strategy, an aminolysis reaction of the A2 monomer of dichloromethylsilane and the B6 monomer of tris(dichloromethylsilylethyl)borane in the presence of hexamethyldisilazane. The amine transition reaction between the intermediates of dichlorotetramethyldisilazane and tri(trimethylsilylmethylchlorosilylethyl)borane led to the formation of dendritic units of aminedialkylborons rather than trialkylborons. The cross-linked hb-PBSZ precursors exhibited a ceramic yield higher 80%. The resultant SiBCN ceramics with a boron atomic composition of 6.0-8.5% and a representative formula of Si1B(0.19)C(1.21)N(0.39)O(0.08) showed high-temperature stability and retained their amorphous structure up to 1600 °C. These hyperbranched polyborosilazanes with soluble and meltable characteristics provide a new perspective for the design of preceramic polymers possessing advantages for high-temperature stable polymer-derived ceramics with complex structures/shapes. PMID:25775397

  4. ENVIRONMENTAL REACTIVITY OF SOLID-STATE HYDROGEN SYSTEMS: FUNDAMENTAL TESTING AND EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    James, C.; Cortes-Concepcion., J; Anton, D.; Tamburello, D.

    2010-12-13

    In order to enable the commercial acceptance of solid state hydrogen storage materials and systems it is important to understand the risks associated with the environmental exposure of various materials. In some instances, these materials are sensitive to the environment surrounding the material and the behavior is unique and independent to each material. The development of testing procedures to evaluate a material's behavior with different environmental exposures is a critical need. In some cases material modifications may be needed in order to reduce the risk of environmental exposure. We have redesigned two standardized UN tests for clarity and exactness; the burn rate and self-heating tests. The results of these and other UN tests are shown for ammonia borane, NH{sub 3}BH{sub 3}, and alane, AlH{sub 3}. The burn rate test showed a strong dependence on the preparation method of aluminum hydride as the particle size and trace amounts of solvent greatly influence the test results. The self-heating test for ammonia borane showed a failed test as low as 70 C in a modified cylindrical form. Finally, gas phase calorimetry was performed and resulted in an exothermic behavior within an air and 30%RH environment.

  5. Mechanistic study on exchange between labeled cyanide and nitriles

    International Nuclear Information System (INIS)

    The potential of a clean, rapid exchange between the nitrile function of mandelonitrile and cyanide was examined for the preparation of labeled mandelonitrile which could be subsequently rapidly reduced with borane to labeled phenylethanolamine (PEOH). The mandelonitrile exchange (CN-CN) was studied using [13C]-NaCN with crown ethers in THF, monitoring the results with 13C-NMR. A large increase in the intensity of the signal due to [13C]-nitrile was observed. The exchange was also carried out using [14C]-NaCN, and the exchanged nitrile was reduced to [14C]-PEOH. The chemical yield for the reduction of [14C]-mandelonitrile to [14C]-PEOH was 60% and the overall radio-chemical yield of the cyanide-exchange and borane reduction (based on [14C]-NaCN used) was 20%. Mechanisms are proposed which were found to be consistent with results of cyanide exchange of appropriately selected nitriles. (author)

  6. Some recent efforts in chemical hydrogen storage at Loa Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John C [Los Alamos National Laboratory; Davis, Benjamin L [Los Alamos National Laboratory; Burrell, Anthony K [Los Alamos National Laboratory; Nakagawa, Tessui [Los Alamos National Laboratory; Ott, Kevin C [Los Alamos National Laboratory; Smythe, Nathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Henson, Neil J [Los Alamos National Laboratory; Baker, R. Thomas [U. OTTAWA; Hamilton, Charles W [OD VISION, INC.; Dixon, David A [U. ALABAMA; Garner Ill, Edward B [U. ALABAMA; Vasiliu, Monica [U. ALABAMA

    2010-12-08

    Within the transportation sector, a necessity towards realizing the use of hydrogen (H{sub 2}) as an alternative fuel, is its storage for controlled delivery. The U.S. DOE's Centers of Excellence (CoE) in H{sub 2} storage have pursued different methodologies (metal hydrides, chemical hydrides, and sorbents), for the express purpose of supplanting gasoline's current > 300 mile driving range. Chemical H{sub 2} storage has been dominated by one material, ammonia borane (H3B-NH3, AB), due to its high gravimetric capacity of H{sub 2} (19.6 wt %) and low molecular weight (30.7 g mol{sup -1} ). As such, a number of publications have described H{sub 2} release from amine boranes, yielding various rates depending on the method applied. The viability of any storage system is also dependent on efficient recyclability. Within our CoE we have thus endeavored to find efficient base-metal catalyzed AB dehydrogenation pathways and regeneration schemes for the spent fuel from H{sub 2} depleted AB. We will present some recent results in these areas in this vein.

  7. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin

  8. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a

  9. Instability of the CuCl{sub 2}–NH{sub 3}BH{sub 3} mixture followed by TGA and DSC

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, R.; Toche, F. [Université Lyon 1, CNRS, UMR 5615, Laboratoire des Multimatériaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Demirci, U.B., E-mail: umit.demirci@um2.fr [IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095, Montpellier (France); Miele, P. [IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095, Montpellier (France)

    2013-09-10

    Graphical abstract: The addition of copper chloride is an efficient approach to destabilize ammonia borane. However, the destabilization is excessive. The mixture CuCl{sub 2}–NH{sub 3}BH{sub 3} evolves under argon atmosphere and at room temperature. This makes long-term storage of CuCl{sub 2}–NH{sub 3}BH{sub 3} problematic. Highlights: ► Ammonia borane NH{sub 3}BH{sub 3} (AB) destabilization can be achieved by adding CuCl{sub 2}. ► The stability of CuCl{sub 2}–AB when stored under Ar at 20 °C over 6 months was assessed. ► CuCl{sub 2}–NH{sub 3}BH{sub 3} evolves with time, decomposing at slow kinetics. ► Long-term storage of CuCl{sub 2}–AB is inconceivable for safety and performances reasons. - Abstract: In the field of ‘hydrogen storage and generation’, ammonia borane NH{sub 3}BH{sub 3} (AB) destabilization can be achieved by adding a metal halide, here copper chloride (CuCl{sub 2}). Improved dehydrogenation properties can be achieved with a fresh mixture of CuCl{sub 2}–NH{sub 3}BH{sub 3}. Using a systematic approach, we followed the stability of the mixture using thermogravimetric analysis, differential scanning calorimetry and (micro) gas chromatography while it was stored under argon at room temperature over 6 months. The aged samples showed improved dehydrogenation properties compared to pristine AB. However, the performance deteriorated in comparison to the fresh mixture indicating that CuCl{sub 2}–NH{sub 3}BH{sub 3} evolves over time, decomposing with slow kinetics. This is detrimental in terms of stability during storage, making long-term storage of CuCl{sub 2} inconceivable for safety and performance reasons. This is discussed herein.

  10. Catalysts for portable, solid state hydrogen genration systems

    Science.gov (United States)

    Gabl, Jason Robert

    Hydrogen and air powered proton exchange membrane fuel cells are a potential alternative to batteries. In portable power systems, the design requirements often focus on cost efficiency, energy density, storability, as well as safety. Ammonia borane (AB), a chemical hydride containing 19.6 wt. % hydrogen, has a high hydrogen capacity and is a stable and non-toxic candidate for storing hydrogen in portable systems. Throughout this work, Department of Energy guidelines for low power portable hydrogen power systems were used as a baseline and comparison with commercially available systems. In order to make this comparison, the system parameters of a system using AB hydrolysis were estimated by developing capacity and cost correlations from the commercial systems and applying them to this work. Supporting experiments were designed to evaluate a system that would use a premixed solid storage bed of AB and a catalyst. This configuration would only require a user input of water in order to initiate the hydrogen production. Using ammonia borane hydrolysis, the hydrogen yield is ˜9 wt. %, when all reactants are considered. In addition to the simplicity of initiating the reaction, hydrolysis of AB has the advantage of suppressing the production of some toxic borazines that are present when AB is thermally decomposed. However, ammonia gas will be formed and this problem must be addressed, as ammonia is damaging to PEM fuel cells. The catalyst focused on throughout this work was Amberlyst - 15; an ion exchange resin with an acid capacity of 4.7 eq/kg and ammonia adsorbent. At less than 0.30/g, this is a cost effective alternative to precious metal catalysts. The testing with this catalyst was compared to a traditional catalyst in literature, 20% platinum in carbon, costing more than 40/g. The Amberlyst catalyst was found to reduce the formation of ammonia in the gas products from ˜3.71 wt. % with the Pt/C catalyst to 90 % to < 30 % over a 70 day aging study. This results

  11. Graph theory in the study of metal cluster bonding topology: applications to metal clusters having fused polyhedra

    International Nuclear Information System (INIS)

    The energy levels in a delocalized two- or three-dimensional chemical structure are related to the eigenvalues of the graph representing the corresponding bonding topology. Such relatively crude but computationally undemanding graph theory-derived models provide a clear demonstration of the close relationship between two-dimensional aromatic systems such as benzene and three-dimensional aromatic systems such as deltahedral boranes, carboranes, and metal clusters. The basic building blocks for the three-dimensional aromatic systems are deltahedra, having no degree 3 vertices. Delocalized bonding in such systems having v vertices requires two electrons for a multicenter core bond as well as 2v electrons for pairwise surface bonding. A problem of particular interest is how metal cluster polyhedra can fuse together, leading ultimately to the infinite structures of the bulk metals. As a model for such processes the fusion of rhodium carbonyl octahedra is examined using graph theory

  12. AB INITIO STUDY ON VALENCE INDICES AND REACTIVITIES OF SOME BORAENS

    Institute of Scientific and Technical Information of China (English)

    曹阳; 王友良

    1991-01-01

    In the pressnt paper, 3-21G ab initio molecular orbital calculations arc performed on diborane B2H6 and the substituted bridged-atom species H4B2X2(X=F, C1, OH, NH2, CH3),and these geometries are optimized with the energy gradient technique. According to the quantum chemical definition of atomic valence, the valences of the bridged-atoms are calculated to studtd the characteristion of the bridging bond B-X-B. Some larger boranes B4H10, B5H9, and B5H11 are also calculated to discuss the valence indices and analyze the reactiveities of the bridged-atoms.

  13. Structure, Stability and Electron-counting Rule of [B20H18]n-(n=0,2,4,6) Anionic Isomers%[B20H18]n-(n=0,2,4,6)离子异构体的结构、稳定性与电子计数规则

    Institute of Scientific and Technical Information of China (English)

    张坚; 张明瑜; 赵媛媛; 陈保国; 孙家鍾

    2005-01-01

    对单个多面体硼烷(Polyhedral boranes)已有较多的理论研究,由多个多面体通过共用一个或多个顶点而构成的稠合型硼烷(Macropolyhedral borones),具有多种多样的结构类型,并已被大量合成出来,目前对稠合型硼烷结构及成键特性的理论研究尚不充分,它们不能再以简单的closo,nido和arachno分类,Wade规则也不再适于解释其结构,理论上各种电子计数规则已有不少报道,对预言和发现新的分子十分重要。

  14. Technical Report (Final): Development of Solid State Reagents for Preparing Radiolabeled Imaging Agents

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, George W

    2011-05-20

    The goal of this research was on the development of new, rapid, and efficient synthetic methods for incorporating short-lived radionuclides into agents of use in measuring dynamic processes. The initial project period (Year 1) was focused on the preparation of stable, solid state precursors that could be used to efficiently incorporate short-lived radioisotopes into small molecules of use in biological applications (environmental, plant, and animal). The investigation included development and evaluation of new methods for preparing carbon-carbon and carbon-halogen bonds for use in constructing the substrates to be radiolabeled. The second phase (Year 2) was focused on developing isotope incorporation techniques using the stable, boronated polymeric precursors. The final phase (Year 3), was focused on the preparation of specific radiolabeled agents and evaluation of their biodistribution using micro-PET and micro-SPECT. In addition, we began the development of a new series of polymeric borane reagents based on polyethylene glycol backbones.

  15. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Takeshi [Ames Laboratory; Gupta, Shalabh [Ames Laboratory; Caporini, Marc A [Bruker BioSpin Corporation; Pecharsky, Vitalij K [Ames Laboratory; Pruski, Marek [Ames Laboratory

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  16. Versatile coordination of a reactive P,N-ligand toward boron, aluminum and gallium and interconversion reactivity.

    Science.gov (United States)

    Devillard, M; Alvarez Lamsfus, C; Vreeken, V; Maron, L; van der Vlugt, J I

    2016-07-01

    The synthesis and reactivity of the first Group 13 complexes bearing a dearomatized phosphino-amido ligand are reported, i.e. alane AlEt2(L) , gallane GaCl2(L) and borane B(Cl)(Ph)(L) . The three complexes react very differently with Group 13 trihalogenides, providing access to zwitterionic anti-·GaCl3 and the unique bis(metalloid) ·BCl2, with the boron center part of a highly unusual anionic four-membered ring (charge on C) and Ga bound to P. The coordination chemistry and the various transformations are supported by DFT calculations, X-ray crystallography and multinuclear NMR spectroscopic data. PMID:27306040

  17. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation

    Science.gov (United States)

    Chan, Chun Wong Aaron; Mahadi, Abdul Hanif; Li, Molly Meng-Jung; Corbos, Elena Cristina; Tang, Chiu; Jones, Glenn; Kuo, Winson Chun Hsin; Cookson, James; Brown, Christopher Michael; Bishop, Peter Trenton; Tsang, Shik Chi Edman

    2014-12-01

    Lindlar catalysts comprising of palladium/calcium carbonate modified with lead acetate and quinoline are widely employed industrially for the partial hydrogenation of alkynes. However, their use is restricted, particularly for food, cosmetic and drug manufacture, due to the extremely toxic nature of lead, and the risk of its leaching from catalyst surface. In addition, the catalysts also exhibit poor selectivities in a number of cases. Here we report that a non-surface modification of palladium gives rise to the formation of an ultra-selective nanocatalyst. Boron atoms are found to take residence in palladium interstitial lattice sites with good chemical and thermal stability. This is favoured due to a strong host-guest electronic interaction when supported palladium nanoparticles are treated with a borane tetrahydrofuran solution. The adsorptive properties of palladium are modified by the subsurface boron atoms and display ultra-selectivity in a number of challenging alkyne hydrogenation reactions, which outclass the performance of Lindlar catalysts.

  18. Fundamental Differences between Group 8 Metals: Unexpected Oxidation State Preferences and Mechanisms in Ruthenium Borylene Complex Formation.

    Science.gov (United States)

    Braunschweig, Holger; Damme, Alexander; Dewhurst, Rian D; Radacki, Krzysztof; Weißenberger, Felix; Wennemann, Benedikt; Ye, Qing

    2016-06-13

    The reaction of the salts K[Ru(CO)3 (PMe3 )(SiR3 )] (R=Me, Et) with Br2 BDur or Cl2 BDur (Dur=2,3,5,6-Me4 C6 H) leads to both boryl and borylene complexes of divalent ruthenium, the former through simple salt elimination and the latter through subsequent CO loss and 1,2-halide shift. The balance of products can be altered by varying the reaction conditions; boryl complexes can be favored by the addition of CO, and borylene complexes by removal of CO under vacuum. All of these products are in competition with the corresponding (aryl)(halo)(trialkylsilyl)borane, a reductive elimination product. The Ru(II) borylene products and the mechanisms that form them are distinctly different from the analogous reactions with iron, which lead to low-valent borylene complexes, highlighting fundamental differences in oxidation state preferences between iron and ruthenium. PMID:27124888

  19. Polymethylene-based copolymers by polyhomologation or by its combination with controlled/living and living polymerizations

    KAUST Repository

    Zhang, Hefeng

    2014-01-20

    Polyhomologation, recently developed by Shea, is a borane-initiated living polymerization of ylides leading to linear polymethylenes (C1 polymerization) with controlled molecular weight, low polydispersity, and well-defined structures. In this Review, the copolyhomologation of different ylides as well as the combination of polyhomologation with controlled/living (nitroxide-mediated, atom transfer radical, reversible addition-fragmentation chain-transfer) and living (ring opening, anionic) polymerizations is discussed. Polyhomologation of ylides, in combination with living and controlled/living polymerizations, leads to a plethora novel well-defined polymethylene (polyethylene)-based polymeric materials, which are very important for understanding/improving the behavior of industrial polyethylenes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Slurry-Based Chemical Hydrogen Storage Systems for Automotive Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Semelsberger, Troy; Simmons, Kevin L.; Van Hassel, Bart A.

    2014-05-30

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80 kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE developed set of system level targets for on-board storage. While most of the DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry is majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance of plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  1. Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas.

    Science.gov (United States)

    Bepete, George; Voiry, Damien; Chhowalla, Manish; Chiguvare, Zivayi; Coville, Neil J

    2013-07-21

    Chemical doping of graphene with small boron nitride (BN) domains has been shown to be an effective way of permanently modulating the electronic properties in graphene. Herein we show a facile method of growing large area graphene doped with small BN domains on copper foils using a single step CVD route with methane, boric acid powder and nitrogen gas as the carbon, boron and nitrogen sources respectively. This facile and safe process avoids the use of boranes and ammonia. Optical microscopy confirmed that continuous films were grown and Raman spectroscopy confirmed changes in the electronic structure of the grown BN doped graphene. Using XPS studies we find that both B and N can be substituted into the graphene structure in the form of small BN domains to give a B-N-C system. A novel structure for the BN doped graphene is proposed. PMID:23759928

  2. Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas

    Science.gov (United States)

    Bepete, George; Voiry, Damien; Chhowalla, Manish; Chiguvare, Zivayi; Coville, Neil J.

    2013-06-01

    Chemical doping of graphene with small boron nitride (BN) domains has been shown to be an effective way of permanently modulating the electronic properties in graphene. Herein we show a facile method of growing large area graphene doped with small BN domains on copper foils using a single step CVD route with methane, boric acid powder and nitrogen gas as the carbon, boron and nitrogen sources respectively. This facile and safe process avoids the use of boranes and ammonia. Optical microscopy confirmed that continuous films were grown and Raman spectroscopy confirmed changes in the electronic structure of the grown BN doped graphene. Using XPS studies we find that both B and N can be substituted into the graphene structure in the form of small BN domains to give a B-N-C system. A novel structure for the BN doped graphene is proposed.

  3. Electrochemical properties of LiCoPO4-thin film electrodes in LiF-based electrolyte solution with anion receptors

    Science.gov (United States)

    Fukutsuka, Tomokazu; Nakagawa, Takuya; Miyazaki, Kohei; Abe, Takeshi

    2016-02-01

    Compatibility of LiF + anion receptors/propylene carbonate (PC) electrolyte solution with high potential positive electrode for lithium-ion batteries was examined by cyclic voltammetry. As anion receptors, tripropyl borate (TPB), tris(pentafluorophenyl) borane (TPFPB), and tris(hexafluoroisopropyl) borate (THFIPB) were used. LiCoPO4 thin-film electrodes were prepared by sol-gel method and used as both carbon- and binder-free model electrodes. From cyclic voltammograms, LiCoPO4 showed better cycleability in 0.1 mol dm-3 LiF + 0.1 mol dm-3 THFIPB/PC, however, other anion receptors did not give positive influence. It is indicated that the surface protecting layer from F--THFIPB complex and made LiCoPO4 stable. Electrochemical behavior depending on anion receptors was discussed according to reaction activity of F-.

  4. Characterization of biological types of cattle (Cycle V): carcass traits and longissimus palatability.

    Science.gov (United States)

    Wheeler, T L; Cundiff, L V; Shackelford, S D; Koohmaraie, M

    2001-05-01

    Carcass (n = 854) and longissimus thoracis palatability (n = 802) traits from F1 steers obtained from mating Hereford, Angus, and MARC III cows to Hereford or Angus (HA), Tuli (Tu), Boran (Bo), Brahman (Br), Piedmontese (Pm), or Belgian Blue (BB) sires were compared. Data were adjusted to constant age (444 d), carcass weight (333 kg), fat thickness (1.0 cm), fat trim percentage (21%), and marbling (Small00) end points. Results presented in this abstract are for age-constant data. Carcasses from BB- and HA-sired steers were heaviest (P yield grades were lowest (P yield grade and longissimus palatability, but carcasses from HA-cross steers provided the most desirable combination of quality grade and longissimus palatability. Tuli, a breed shown to be heat-tolerant, had longissimus tenderness similar to that of the non-heat-tolerant breeds and more tender longissimus than the heat-tolerant breeds in this study. PMID:11374541

  5. Benzene analogues of (quasi-)planar M@BnHn compounds (M = V−, Cr, Mn+): A theoretical investigation

    International Nuclear Information System (INIS)

    The stability of M@BnHn (M = V−, Cr, Mn+; n = 5–8) is investigated by density functional theory. For n = 6–8, the isomers possess (quasi-)planar local minima showed by geometry optimization at TPSSh/6-311+G** level. All the optimized structures are thermodynamics stable according to the large HOMO-LUMO gap, binding energy, vertical ionization potential, and vertical electron affinity analysis. The peripheral and central atomic radius fit each other best at n = 7 confirmed by the variation of the binding energy values. The availability of d atom orbitals in M for participation in the π-delocalized bonding with the peripheral ring leads to the aromaticity of the (quasi-)planar structures and makes them the benzene analogues. This work establishes firmly the metal-doped borane rings as a new type of aromatic molecule

  6. Hydrogen-rich boron-containing materials for hydrogen storage.

    Science.gov (United States)

    Wang, Ping; Kang, Xiang-Dong

    2008-10-28

    Hydrogen-rich boron-containing compounds have received extensive attention as potential hydrogen storage media for vehicular applications. The past years have seen significant progresses in material discovery, material composition/structure tailoring, catalyst identification and regeneration chemistry, which give rise to state-of-the-art hydrogen storage materials/technologies. Lithium tetrahydroborate-related materials exhibit the hitherto highest reversible hydrogen capacity via solid-gas reactions. Catalytic hydrolysis of sodium tetrahydroborate offers an on-demand hydrogen generation system for vehicular applications. Ammonia borane-related materials exhibit a satisfactory combination of material properties that are suited for on-board hydrogen sources, coupled with significant advances in spent fuels regeneration. This Perspective discusses the current progresses of these representative reversible or irreversible material systems, aiming at providing an outline of the forefront of hydrogen storage materials/technologies for transportation applications. PMID:19082020

  7. Chemical and physical solutions for hydrogen storage.

    Science.gov (United States)

    Eberle, Ulrich; Felderhoff, Michael; Schüth, Ferdi

    2009-01-01

    Hydrogen is a promising energy carrier in future energy systems. However, storage of hydrogen is a substantial challenge, especially for applications in vehicles with fuel cells that use proton-exchange membranes (PEMs). Different methods for hydrogen storage are discussed, including high-pressure and cryogenic-liquid storage, adsorptive storage on high-surface-area adsorbents, chemical storage in metal hydrides and complex hydrides, and storage in boranes. For the latter chemical solutions, reversible options and hydrolytic release of hydrogen with off-board regeneration are both possible. Reforming of liquid hydrogen-containing compounds is also a possible means of hydrogen generation. The advantages and disadvantages of the different systems are compared. PMID:19598190

  8. In situ fabrication of three-dimensional nitrogen and boron co-doped porous carbon nanofibers for high performance lithium-ion batteries

    Science.gov (United States)

    Zhang, Lijun; Xia, Guanglin; Guo, Zaiping; Sun, Dalin; Li, Xingguo; Yu, Xuebin

    2016-08-01

    This paper reports the fabrication of three-dimensional porous carbon nanofibers network with high doping level of nitrogen (N, 5.17 at.%) and boron (B, 6.87 at.%) through a general electrospinning strategy followed by a calcination process. The employed ammonia borane (NH3BH3, denote as AB) not only functions as a porogen reagent to generate porous structures but also as the heteroatoms source to induce N and B co-doping. Such highly unique nanoarchitectures offer remarkably improved Li storage performance including high reversible capacity (∼910 mAh g-1 at a current density of 100 mA g-1) with good cycling and rate performances.

  9. Autocatalytic reduction and characteristics of boron-containing coatings

    International Nuclear Information System (INIS)

    The research results of the plating conditions, chemical composition and properties of Ni-B coatings and Ni-Re-B, Ni-Mo-B and Ni-W-B alloys are given. It was shown that introduction of alloying elements (Re, Mo and W) in the composition of Ni-containing coatings modifies the catalytic activity of the alloys' surface, with regard to the parallel reactions of dimethylamino-borane(DMAB) heterogeneous hydrolysis, Ni reduction and evolving of the molecular hydrogen. It was found that with the increase in concentration of alloying element, boron contents in the coatings is decreased to the trace amounts. The effect of alloys composition on hydrogen evolving overvoltage was studied. Due to the low overvoltage of hydrogen evolving (HE) on the alloy Ni-Re-B surface (11 at.% Re), it can be used as electrode for hydrogen generation from water in the electrolytic cell with novel design and improved technical-economical indicators. (authors)

  10. Fabrication of particular structures of hexagonal boron nitride and boron-carbon-nitrogen layers by anisotropic etching

    Science.gov (United States)

    Vishwakarma, Riteshkumar; Sharma, Subash; Shinde, Sachin M.; Sharma, Kamal P.; Thangaraja, Amutha; Kalita, Golap; Tanemura, Masaki

    2016-05-01

    Anisotropic etching of hexagonal boron nitride (h-BN) and boron-carbon-nitrogen (BCN) basal plane can be an exciting platform to develop well-defined structures with interesting properties. Here, we developed an etching process of atomically thin h-BN and BCN layers to fabricate nanoribbons (NRs) and other distinct structures by annealing in H2 and Ar gas mixture. BCN and h-BN films are grown on Cu foil by chemical vapor deposition (CVD) using solid camphor and ammonia borane as carbon, nitrogen and boron source, respectively. Formation of micron size well-defined etched holes and NRs are obtained in both h-BN and BCN layers by the post growth annealing process. The etching process of h-BN and BCN basal plane to fabricate NRs and other structures with pronounced edges can open up new possibilities in 2D hybrid materials.

  11. Electroless synthesis of 3 nm wide alloy nanowires inside Tobacco mosaic virus

    International Nuclear Information System (INIS)

    We show that 3 nm wide cobalt–iron alloy nanowires can be synthesized by simple wet chemical electroless deposition inside tubular Tobacco mosaic virus particles. The method is based on adsorption of Pd(II) ions, formation of a Pd catalyst, and autocatalytic deposition of the alloy from dissolved metal salts, reduced by a borane compound. Extensive energy-filtering TEM investigations at the nanoscale revealed that the synthesized wires are alloys of Co, Fe, and Ni. We confirmed by high-resolution TEM that our alloy nanowires are at least partially crystalline, which is compatible with typical Co-rich alloys. Ni traces bestow higher stability, presumably against corrosion, as also known from bulk CoFe. Alloy nanowires, as small as the ones presented here, might be used for a variety of applications including high density data storage, imaging, sensing, and even drug delivery. (paper)

  12. Citrus bergamia Risso Elevates Intracellular Ca2+ in Human Vascular Endothelial Cells due to Release of Ca2+ from Primary Intracellular Stores

    Directory of Open Access Journals (Sweden)

    Purum Kang

    2013-01-01

    , which was partially inhibited by a nonselective Ca2+ channel blocker La3+. In Ca2+-free extracellular solutions, BEO increased [Ca2+]i in a concentration-dependent manner, suggesting that BEO mobilizes intracellular Ca2+. BEO-induced [Ca2+]i increase was partially inhibited by a Ca2+-induced Ca2+ release inhibitor dantrolene, a phospholipase C inhibitor U73122, and an inositol 1,4,5-triphosphate (IP3-gated Ca2+ channel blocker, 2-aminoethoxydiphenyl borane (2-APB. BEO also increased [Ca2+]i in the presence of carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial Ca2+ uptake. In addition, store-operated Ca2+ entry (SOC was potentiated by BEO. These results suggest that BEO mobilizes Ca2+ from primary intracellular stores via Ca2+-induced and IP3-mediated Ca2+ release and affect promotion of Ca2+ influx, likely via an SOC mechanism.

  13. Turn-On Fluorogenic and Chromogenic Detection of Small Aromatic Hydrocarbon Vapors by a Porous Supramolecular Host.

    Science.gov (United States)

    Hatanaka, Sou; Ono, Toshikazu; Hisaeda, Yoshiio

    2016-07-18

    Benzene, toluene, ethylbenzene, the isomers of xylene, and trimethylbenzene are harmful volatile organic compounds and pose risks to human health and the environment. However, there are currently no effective chemosensors for vapors of these compounds. A porous supramolecular host for turn-on fluorogenic and chromogenic detection of the vapors of small aromatic hydrocarbons is presented. The host was constructed from a naphthalenediimide derivative that was supramolecularly connected to tris(pentafluorophenyl)borane. The amorphous powder form of the host allowed for effective accommodation of vapors of small aromatic hydrocarbons, resulting in a guest-dependent fluorescence emission. Increases in the fluorescence yield of 76-, 46-, and 37-fold were observed with toluene, benzene, and m-xylene, respectively. Negligible responses were obtained with common organic solvents. This simple supramolecular host could be applied as a useful sensor of small aromatic hydrocarbon vapors. PMID:27224939

  14. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies.

    Science.gov (United States)

    Horn, Paul R; Mao, Yuezhi; Head-Gordon, Martin

    2016-03-21

    In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na(+), water-Cl(-), and the naphthalene dimer. PMID:27004862

  15. Do Organometallic CH4-Me(+p) Adducts and X4H(+) (X = P, As) Clusters Undergo Two-Electron Three-Center Interactions? Some Aspects of Discussion.

    Science.gov (United States)

    Lobayan, Rosana M; Bochicchio, Roberto C

    2015-07-01

    Most of the systems possessing true two-electron three-center interactions are electron deficient compounds like boron hydrids, closo-boranes, and some organic ions such as butonium cations. In this work, we perform a detailed study of the electron distribution for two different types of systems to which likewise interactions has been adjudicated: organometallic CH4-Me(+p) (p = 1, 2) adducts with Me, alkaline and earth alkaline metallic ions of Li, Na, K, Be, Mg, Ca in their stable gaseous phase and X4H(+) (X = P, As) simple clusters. For this purpose, topological analysis of the electron density decomposed into its effectively paired and unpaired contributions has been carried out looking for complex interactions. PMID:26061421

  16. Boron clusters in luminescent materials.

    Science.gov (United States)

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed. PMID:26574714

  17. Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters.

    Science.gov (United States)

    Ďorďovič, Vladimír; Tošner, Zdeněk; Uchman, Mariusz; Zhigunov, Alexander; Reza, Mehedi; Ruokolainen, Janne; Pramanik, Goutam; Cígler, Petr; Kalíková, Květa; Gradzielski, Michael; Matějíček, Pavel

    2016-07-01

    This is the first experimental evidence that both self-assembly and surface activity are common features of all water-soluble boron cluster compounds. The solution behavior of anionic polyhedral boranes (sodium decaborate, sodium dodecaborate, and sodium mercaptododecaborate), carboranes (potassium 1-carba-dodecaborate), and metallacarboranes {sodium [cobalt bis(1,2-dicarbollide)]} was extensively studied, and it is evident that all the anionic boron clusters form multimolecular aggregates in water. However, the mechanism of aggregation is dependent on size and polarity. The series of studied clusters spans from a small hydrophilic decaborate-resembling hydrotrope to a bulky hydrophobic cobalt bis(dicarbollide) behaving like a classical surfactant. Despite their pristine structure resembling Platonic solids, the nature of anionic boron cluster compounds is inherently amphiphilic-they are stealth amphiphiles. PMID:27287067

  18. Formation Process of Eosin Y-Adsorbing ZnO Particles by Electroless Deposition and Their Photoelectric Conversion Properties.

    Science.gov (United States)

    Nagaya, Satoshi; Nishikiori, Hiromasa; Mizusaki, Hideaki; Wagata, Hajime; Teshima, Katsuya

    2015-06-01

    The thin films consisting of crystalline ZnO particles were prepared on fluorine-doped tin oxide electrodes by electroless deposition. The particles were deposited from an aqueous solution containing zinc nitrate, dimethyamine-borane, and eosin Y at 328 K. As the Pd particles were adsorbed on the substrate, not only the eosin Y monomer but also the dimer and debrominated species were rapidly adsorbed on the spherical ZnO particles, which were aggregated and formed secondary particles. On the other hand, in the absence of the Pd particles, the monomer was adsorbed on the flake-shaped ZnO particles, which vertically grew on the substrate surface and had a high crystallinity. The photoelectric conversion efficiency was higher for the ZnO electrodes containing a higher amount of the monomer during light irradiation. PMID:25978089

  19. Synthesis of Plasmonic Cu2-x Se@ZnS Core@Shell Nanoparticles.

    Science.gov (United States)

    Wolf, Andreas; Härtling, Thomas; Hinrichs, Dominik; Dorfs, Dirk

    2016-03-01

    We report the synthesis of plasmonic Cu2-x Se@ZnS core@shell nanoparticles (NPs). We used a shell growth approach, starting from Cu2-x Se NPs that have been shown before to exhibit a localized surface plasmon resonance (LSPR). By careful synthesis planning we avoided cation exchange reactions and received core@shell nanoparticles that, after oxidation under air, exhibit a strong LSPR in the NIR. Interestingly, the crystalline, closed ZnS shell that we grew with variable thickness still allowed a slow oxidation of the core under ambient conditions, while the core was effectively protected from reduction, even in the presence of reducing agents such as borane tert-butyamine complex and diisobutylaluminum hydride, giving rise to a stable particle LSPR, also under strongly reducing conditions. PMID:26604183

  20. Occlusion and storage of krypton in solids

    International Nuclear Information System (INIS)

    The modification process in order to change in a controlled way the effective pore size of zeolites was optimized by investigating the reaction conditions such as degree of chemisorption, reaction temperature, extent of primary/secondary reactions, type of modifying agent, type of substrate, etc. Different reaction and adsorption conditions have been tested to increase the thermal stability of encapsulated krypton in modified zeolites. The possibilities for zeolite modification have been enlarged by combining boranation and silanation with a thermal treatment of sepiolite, and by the formation of boron-nitrogen compounds in zeolites. Screening experiments, on a semi-industrial scale, of the krypton removal from air were carried out. Two kinds of Kr/air separation have been tested suscessfully on modified mordenite

  1. Multiple superovulations in N'Dama heifers.

    Science.gov (United States)

    Jordt, T; Lorenzini, E

    1990-08-01

    Five N'Dama heifers were superovulated with follicle stimulating hormone (FSH-P or Folltropin) a total of six times each. The superovulations were carried out between ongoing experimental Trypanosoma congolense infections. Twenty-four (80%) of the 30 superovulations had a good ovarian response with 21 (70%) producing an average of 2.7 +/- 0.4 (mean +/- s.e.m.) embryos. The highest embryo production was achieved at the third and fourth superovulation, after which both the number of embryos and their quality declined. The overall pregnancy rate after transfer into Boran (Bos indicus) cow recipients was 50.9%. The uteri of the heifers increased considerably in size throughout the six superovulations which made it difficult to flush some of the animals after the third superovulation. Embryo transfer technology is a useful breeding tool in N'Dama heifers and multiple superovulations can be carried out with success. PMID:2120824

  2. Orbital deletion procedure and its applications

    Institute of Scientific and Technical Information of China (English)

    莫亦荣; 林梦海; 吴玮; 张乾二

    1999-01-01

    The orbital deletion procedure is introduced, which is suited to quantitatively investigating the electronic delocalization effiect in earboeations and boranes. While the routine, ab initio molecular orbital methods can generate wavefunetions for real systems where all electrons are delocalized, the present orbital deletion procedure can generate wavefunctions for hypothetical reference molecules where electronic delocalization effect is deactivated. The latter wavefunetion normlly corresponds In the most stable resonance structure in terms of the resonance theory. By comparing and analyzing the delocalized and the localized wavefunetions, one can obtain a quantitative and instinct pieture to show how electronic deloealizalion inside a molecule affects the molecular structure, energy as well as other physical properties. Two examples are detailedly discussed. The first is related to the hypercoujugation of alkyl groups in carbocations and a comparison of the order of stability of carbocations is made, T

  3. Hexaethylsubporphyrins: β-alkyl analogues in the subporphyrin family.

    Science.gov (United States)

    Chandra, Brijesh; Kumar, B Sathish; Mondal, Navendu; Samanta, Anunay; Panda, Pradeepta K

    2015-12-14

    Two new subporphyrins were synthesized for the first time from a β-substituted pyrrole i.e. 3,4-diethylpyrrole via pyridine-tri-N-(3,4-diethylpyrrolyl)borane as building blocks. These β-hexaethylsubporphyrins are true contracted congeners of β-octaethylporphyrin (OEP). While the meso-triphenyl derivative of hexaethylsubporphyrin could be synthesized by following the reported method, the meso-free analogue could only be synthesized by condensation with trioxane, in the presence of catalytic methanesulfonic acid. These contracted macrocycles display interesting absorption, and emission behaviour including substituent dependent S2 fluorescence owing to the presence of flexible electron donating ethyl groups at their β-positions. The optical response and ultrafast S2 state dynamics of these systems suggest that it may be possible to tune the properties of the subporphyrin to develop efficient systems for solar energy capture and conversion processes. PMID:26524153

  4. Reactivity of Amine/E(C6F53 (E = B, Al Lewis Pairs toward Linear and Cyclic Acrylic Monomers: Hydrogenation vs. Polymerization

    Directory of Open Access Journals (Sweden)

    Jiawei Chen

    2015-05-01

    Full Text Available This work reveals the contrasting reactivity of amine/E(C6F53 (E = B, Al Lewis pairs toward linear and cyclic acrylic monomers, methyl methacrylate (MMA and biorenewable γ-methyl-α-methylene-γ-butyrolactone (γMMBL. While mixing of 2,2,6,6-tetramethylpiperidine (TMP and B(C6F53 leads to a frustrated Lewis pair (FLP, Et3N reacts with B(C6F53 to form disproportionation products, ammonium hydridoborate ionic pair and iminium zwitterion. On the other hand, the stoichiometric reaction of either TMP or Et3N with Al(C6F53 leads to clean formation of a classic Lewis adduct (CLA. Neither TMP nor Et3N, when paired with E(C6F53, polymerizes MMA, but the Et3N/2B(C6F53 pair promotes transfer hydrogenation of MMA to form methyl isobutyrate. In contrast, the amine/E(C6F53 pairs promote rapid polymerization of γMMBL carrying the more reactive exocyclic methylene moiety, achieving full conversion in less than 3 min even at a low catalyst loading of 0.0625 mol %. TMP is more effective than Et3N for the polymerization when paired with either the borane or the alane, while the alane exhibits higher polymerization activity than the borane when paired with Et3N. Overall, the TMP/Al(C6F53 system exhibits the highest polymerization activity, achieving a maximum turn-over frequency of 96,000 h−1 at 0.125 mol % of catalyst loading, producing high molecular weight PγMMBL with Mn = 1.29 × 105 g∙mol−1.

  5. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility

    Directory of Open Access Journals (Sweden)

    Naessens Jan

    2009-05-01

    Full Text Available Abstract Background African animal trypanosomiasis (AAT caused by tsetse fly-transmitted protozoa of the genus Trypanosoma is a major constraint on livestock and agricultural production in Africa and is among the top ten global cattle diseases impacting on the poor. Here we show that a functional genomics approach can be used to identify temporal changes in host peripheral blood mononuclear cell (PBMC gene expression due to disease progression. We also show that major gene expression differences exist between cattle from trypanotolerant and trypanosusceptible breeds. Using bovine long oligonucleotide microarrays and real time quantitative reverse transcription PCR (qRT-PCR validation we analysed PBMC gene expression in naïve trypanotolerant and trypanosusceptible cattle experimentally challenged with Trypanosoma congolense across a 34-day infection time course. Results Trypanotolerant N'Dama cattle displayed a rapid and distinct transcriptional response to infection, with a ten-fold higher number of genes differentially expressed at day 14 post-infection compared to trypanosusceptible Boran cattle. These analyses identified coordinated temporal gene expression changes for both breeds in response to trypanosome infection. In addition, a panel of genes were identified that showed pronounced differences in gene expression between the two breeds, which may underlie the phenomena of trypanotolerance and trypanosusceptibility. Gene ontology (GO analysis demonstrate that the products of these genes may contribute to increased mitochondrial mRNA translational efficiency, a more pronounced B cell response, an elevated activation status and a heightened response to stress in trypanotolerant cattle. Conclusion This study has revealed an extensive and diverse range of cellular processes that are altered temporally in response to trypanosome infection in African cattle. Results indicate that the trypanotolerant N'Dama cattle respond more rapidly and with a

  6. Analysis of host genetic factors influencing African trypanosome species infection in a cohort of Tanzanian Bos indicus cattle.

    Science.gov (United States)

    Karimuribo, Esron D; Morrison, Liam J; Black, Alana; Turner, C Michael R; Kambarage, Dominic M; Ballingall, Keith T

    2011-06-30

    Trypanosomosis caused by infection with protozoan parasites of the genus Trypanosoma is a major health constraint to cattle production in many African countries. One hundred and seventy one Bos indicus cattle from traditional pastoral Maasai (87) and more intensively managed Boran (84) animals in Tanzania were screened by PCR for the presence of African animal trypanosomes (Trypanosoma congolense, Trypanosoma vivax and Trypanosoma brucei), using blood samples archived on FTA cards. All cattle screened for trypanosomes were also genotyped at the highly polymorphic major histocompatibility complex (MHC) class II DRB3 locus to investigate possible associations between host MHC and trypanosome infection. Overall, 23.4% of the 171 cattle tested positive for at least one of the three trypanosome species. The prevalence of individual trypanosome species was 8.8% (T. congolense), 4.7% (T. vivax) and 15.8% (T. brucei). The high prevalence of T. brucei compared with T. congolense and T. vivax was unexpected as this species has previously been considered to be of lesser importance in terms of African bovine trypanosomosis. Significantly higher numbers of Maasai cattle were infected with T. brucei (23.0%, p=0.009) and T. congolense (13.8%, p=0.019) compared with Boran cattle (8.3% and 3.6%, respectively). Analysis of BoLA-DRB3 diversity in this cohort identified extensive allelic diversity. Thirty-three BoLA-DRB3 PCR-RFLP defined alleles were identified. One allele (DRB3*15) was significantly associated with an increased risk (odds ratio, OR=2.71, p=0.034) of T. brucei infection and three alleles (DRB3*35, *16 and *23) were associated with increased risk of T. congolense infection. While further work is required to dissect the role of these alleles in susceptibility to T. brucei and T. congolense infections, this study demonstrates the utility of FTA archived blood samples in combined molecular analyses of both host and pathogen. PMID:21377802

  7. Graphitized boron-doped carbon foams: Performance as anodes in lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: → Because of the catalytic effect of boron, graphite-like foams were prepared. → The presence of substitutional boron in carbon foams improves their anodic performance. → The graphitized boron-doped foams provide reversible capacities of 310 mA h g-1. - Abstract: The electrochemical performance as potential anodes in lithium-ion batteries of several boron-doped and non-doped graphitic foams with different degree of structural order was investigated by galvanostatic cycling. The boron-doped foams were prepared by the co-pyrolysis of a coal and two boron sources (boron oxide and a borane-pyridine complex), followed by heat treatment in the 2400-2800 deg. C temperature interval. The extent of the graphitization process of the carbon foams depends on boron concentration and source. Because of the catalytic effect of boron, lightweight graphite-like foams were prepared. Boron in the foams was found to be present as carbide (B4C), in substitutional positions in the carbon lattice (B-C), bonded to nitrogen (B-N) and forming clusters. Larger reversible lithium storage capacities with values up to ∼310 mA h g-1 were achieved by using the boron oxide-based carbon foams. Moreover, since the electrochemical anodic performance of these boron-doped foams with different degree of structural order is similar, the beneficial effect of the presence of the B-C boron phase was inferred. However, the bonding of boron with nitrogen in the pyridine borane-based has a negative effect on lithium intercalation.

  8. Boron-nitride coated nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Guenduez, G. [Orta Dogu Teknik Univ., Ankara (Turkey); Uslu, I. [Tuerkiye Atom Enerjisi Kurumu, Ankara (Turkey); Durmazucar, H.H. [Cumhuriyet Univ., Sivas (Turkey)

    1996-10-01

    Pure urania- and urania-gadolinia-containing fuel pellets were coated with boron nitride (BN) to improve the physical and neutronic properties of the fuel. The BN coating seems to have a technological advantage over zirconium-diboride coating. The BN is chemically inert, corrosion resistant, withstands rapid temperature changes, and has a high thermal conductivity. Since gadolinia fuel has low thermal conductivity. Since gadolinia fuel has low thermal conductivity, the gadolinia content can be lowered in the fuel by coating it with BN. In fact, the existence of two burnable absorbers in a fuel introduces desired nuclear properties since gadolinia is a fast-burning and boron a slow-burning element. The BN was deposited on fuel from two different sources, (a) from the reaction of boron trichloride (BCl{sub 3}) and ammonia (NH{sub 3}) at 875 K and (b) from the decomposition of trimethylamine borate complex at 1200 K. The infrared and X-ray diffraction (XRD) spectra of BN from both precursors agreed with the available data in the literature. However BN powder from borane complex had a shifted XRD peak due to the presence of carbonaceous material in the structure. The BN powder-coated fuels were heated to 1400, 1525, and 1600 K to sinter the BN. The examination under scanning electron microscope showed that grainy, rod-shaped and layered BN coatings were achieved. Rod-shaped structures were usually seen on gadolinia fuels. The increased thickness of coating favors the formation of a glassy looking layer. The BN from a borane complex seems to form a layered structure more easily than the BN from BCl{sub 3}. The BN coated the surface of the fuels, and it did not penetrate into the fuels.

  9. Boron-nitride coated nuclear fuels

    International Nuclear Information System (INIS)

    Pure urania- and urania-gadolinia-containing fuel pellets were coated with boron nitride (BN) to improve the physical and neutronic properties of the fuel. The BN coating seems to have a technological advantage over zirconium-diboride coating. The BN is chemically inert, corrosion resistant, withstands rapid temperature changes, and has a high thermal conductivity. Since gadolinia fuel has low thermal conductivity. Since gadolinia fuel has low thermal conductivity, the gadolinia content can be lowered in the fuel by coating it with BN. In fact, the existence of two burnable absorbers in a fuel introduces desired nuclear properties since gadolinia is a fast-burning and boron a slow-burning element. The BN was deposited on fuel from two different sources, (a) from the reaction of boron trichloride (BCl3) and ammonia (NH3) at 875 K and (b) from the decomposition of trimethylamine borate complex at 1200 K. The infrared and X-ray diffraction (XRD) spectra of BN from both precursors agreed with the available data in the literature. However BN powder from borane complex had a shifted XRD peak due to the presence of carbonaceous material in the structure. The BN powder-coated fuels were heated to 1400, 1525, and 1600 K to sinter the BN. The examination under scanning electron microscope showed that grainy, rod-shaped and layered BN coatings were achieved. Rod-shaped structures were usually seen on gadolinia fuels. The increased thickness of coating favors the formation of a glassy looking layer. The BN from a borane complex seems to form a layered structure more easily than the BN from BCl3. The BN coated the surface of the fuels, and it did not penetrate into the fuels

  10. Cyanide anion binding by a triarylborane at the outer rim of a cyclometalated ruthenium(II) cationic complex.

    Science.gov (United States)

    Wade, Casey R; Gabbaï, François P

    2010-01-18

    As part of our ongoing interest in the design of boron-based cyanide anion receptors, we have synthesized a triaryl borane decorated by a cationic Ru(II) complex and have investigated its anion binding properties. This new borane, [(2,2'-bpy)Ru(kappa-C,N-2-(dimesitylborylphenyl)pyridinato)]OTf ([2]OTf), binds both fluoride and cyanide anions in organic solvents to afford 2-F and 2-CN whose crystal structures have been determined. UV-vis titrations in 9/1 CHCl(3)/DMF (vol.) afforded K((F(-))) = 1.1(+/-0.1) x 10(4) M(-1) and K((CN(-))) = 3.0(+/-1.0) x 10(6) M(-1) indicating that [2](+) has a higher affinity for cyanide than for fluoride in this solvent mixture. These elevated binding constants show that the cationic Ru(II) complex increases the anion affinity of these complexes via Coulombic and inductive effects. The UV-vis spectral changes which accompany either fluoride or cyanide binding to the boron center are similar and include a 30 nm bathochromic shift of the metal-to-ligand charge transfer band. This shift is attributed to an increase in the donor ability of the boron-substituted phenylpyridine ligand upon anion binding to the boron center. Accordingly, cyclic voltammetry revealed that the Ru(II/III) redox couple of [2]OTf (E(1/2) = +0.051 V vs Fc/Fc(+)) undergoes a cathodic shift upon F(-) (DeltaE(1/2) = -0.242 V vs Fc/Fc(+)) or CN(-) (DeltaE(1/2) = -0.198 V vs Fc/Fc(+)) binding. PMID:20000628

  11. Boronyl chemistry: the BO group as a new ligand in gas-phase clusters and synthetic compounds.

    Science.gov (United States)

    Zhai, Hua-Jin; Chen, Qiang; Bai, Hui; Li, Si-Dian; Wang, Lai-Sheng

    2014-08-19

    groups also dominate the structures and bonding of boron oxide clusters and boron boronyl complexes, in which BO groups occupy terminal, bridging, or face-capping positions. The bridging η(2)-BO groups feature three-center two-electron bonds, akin to the BHB τ bonds in boranes. A close isolobal analogy is thus established between boron oxide clusters and boranes, offering vast opportunities for the rational design of novel boron oxide clusters and compounds. Boron boronyl clusters may also serve as molecular models for mechanistic understanding of the combustion of boron and boranes. An effort to tune the B versus O composition in boron oxide clusters leads to the discovery of boronyl boroxine, D3h B3O3(BO)3, an analogue of boroxine and borazine and a new member of the "inorganic benzene" family. Furthermore, a unique concept of π and σ double conjugation is proposed for the first time to elucidate the structures and bonding in the double-chain nanoribbon boron diboronyl clusters, which appear to be inorganic analogues of polyenes, cumulenes, and polyynes. This Account concludes with a brief outlook for the future directions in this emerging and expanding research field. PMID:24915198

  12. Exploring metal hydrides using autoclave and multi-anvil hydrogenations

    Science.gov (United States)

    Puhakainen, Kati

    new metal hydrides with novel structures and properties, because of the drastically increased chemical potential of hydrogen. Pressures up to 10 GPa can be easily achieved using the multi-anvil (MA) hydrogenations while maintaining sufficient sample volume for structure and property characterization. Gigapascal MA hydrogenations using ammonia borane (BH3borane has high gravimetric volume of hydrogen, and additionally the thermally activated decomposition at high pressures lead to a complete hydrogen release at reasonably low temperature. These properties make ammonia borane a desired hydrogen source material. The missing member Li2PtH6 of the series of A2PtH6 compounds (A = Na to Cs) was accessed by employing MA technique. As the known heavier analogs, the Li2PtH6 also crystallizes in a cubic K2PtCl6-type structure with a cell edge length of 6.7681(3) Å. Further gigapascal hydrogenations afforded the compounds K2SiH6 and Rb2SiH6 which are isostructural to Li2PtH6. The cubic K2SiH6 and Rb2SiH6 are built from unique hypervalent SiH62 entities with the lattice parameters of 7.8425(9) and 8.1572(4) Å, respectively. Spectroscopic analysis of hexasilicides confirmed the presence of hypervalent bonding. The Si-H stretching frequencies at 1550 cm-1 appeared considerably decreased in comparison with a normal-valent (2e2c) Si-H stretching frequencies in SiH4 at around 2200 cm-1. However, the observed stretching modes in hypervalent hexasilicides were in a reasonable agreement with Ph3SiH2- (1520 cm-1) where the hydrogen has the axial (3e4c bonded) position in the trigoal bipyramidal environment.

  13. Amineborane Based Chemical Hydrogen Storage - Final Report

    International Nuclear Information System (INIS)

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also demonstrated

  14. Dynamics and fragmentation of van der Waals and hydrogen bonded cluster cations: (NH3)n and (NH3BH3)n ionized at 10.51 eV

    Science.gov (United States)

    Yuan, Bing; Shin, Joong-Won; Bernstein, Elliot R.

    2016-04-01

    A 118 nm laser is employed as a high energy, single photon (10.51 eV/photon) source for study of the dynamics and fragmentation of the ammonia borane (NH3BH3) cation and its cluster ions through time of flight mass spectrometry. The behavior of ammonia ion and its cluster ions is also investigated under identical conditions in order to explicate the ammonia borane results. Charge distributions, molecular orbitals, and spin densities for (NH3BH3)n and its cations are explored at both the second-order perturbation theory (MP2) and complete active space self-consistent field (CASSCF) theory levels. Initial dissociation mechanisms and potential energy surfaces for ionized NH3BH3, NH3, and their clusters are calculated at the MP2/6-311++G(d,p) level. Protonated clusters (NH3)xH+ dominate ammonia cluster mass spectra: our calculations show that formation of (NH3)n-1H+ and NH2 from the nascent (NH3)n+ has the lowest energy barrier for the system. The only common features for the (NH3)n+ and (NH3BH3)n+ mass spectra under these conditions are found to be NHy+ (y = 0,…,4) at m/z = 14-18. Molecular ions with both 11B and 10B isotopes are observed, and therefore, product ions observed for the (NH3BH3)n cluster system derive from (NH3BH3)n clusters themselves, not from the NH3 moiety of NH3BH3 alone. NH3BH2+ is the most abundant ionization product in the (NH3BH3)n+ cluster spectra: calculations support that for NH3BH3+, an H atom is lost from the BH3 moiety with an energy barrier of 0.67 eV. For (NH3BH3)2+ and (NH3BH3)3+ clusters, a Bδ+⋯Hδ-⋯δ-H⋯δ+B bond can form in the respective cluster ions, generating a lower energy, more stable ion structure. The first step in the (NH3BH3)n+ (n = 2, 3) dissociation is the breaking of the Bδ+⋯Hδ-⋯δ-H⋯δ+B moiety, leading to the subsequent release of H2 from the latter cluster ion. The overall reaction mechanisms calculated are best represented and understood employing a CASSCF natural bond orbital

  15. U.S. Department of Energy Hydrogen Storage Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  16. Performance of Beef Steers Fed Brewers Grain Ensiled With Hay or Forage

    International Nuclear Information System (INIS)

    yearling Boran beef steers were fed on brewers grain ensiled with Rhodes grass hay or sorghum silage to assess steer nutrient intake, growth and fed conversion efficiency. Forage sorghum variety 'E6518' harvested at grain milk growth stage produced young sorghum silage while that harvested beyond had dough stage made old sorghum silage. At ensiling, brewers grain was mixed with hay, young or old sorghum at ratio of 60:40, 50:50 and 50:50 to produce silage A, B and C. Thirty Boran Steers were used in the experiment where 10 steers were fed on each of the three types of silage. The initial steer group weight averaged 187.6, 188.6 and 186.2 kg for those on diet A, B and C. The steers ate silage A,B and C for 68 days, the initial 12 days being the adaptation period. The pH of A, B and C were 4.7, 4.6 and 4.7. The mean composition of A, B and C were dry matter, 27.5, 23.2 and 23.4%, organic matter, 91.4, 90.0 and 90.3%, crude protein, 12.1 11.2 and 9.8%, crude fibre,26.5, 24.2 and 25.3%. Steer dry matter intake was 3.1, 4.3 and 4.5 kg on A, B and C. Diet A caused loss in steer weight while B and C produced steady growth. Steers on A lost 243 g daily while those on B and C gained 357 and 371 g daily. Feed efficiency expressed in gain per 100 kg dry matter was negative on A but 8.28 and 8.30 kg on B and C. The steer growth rates are similar to cattle grazed on improved ley or fodder and fed a limited amount of concentrates. The three types of silage required protein supplementation to increase growth

  17. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    International Nuclear Information System (INIS)

    The system Li–A–Y–BH4 (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y3+ is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH4 both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A3Y(BH4)6 or c-A2LiY(BH4)6 (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH4)4 crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH4 (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y3+ is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH4)4 structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH4 (A=K, Rb, Cs) contains nine compounds in total. • Y3+ forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH4)4 crystallize with structure types analogous to metal oxides. • Double-perovskites decompose and form a novel borohydride-closo-borane

  18. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    Energy Technology Data Exchange (ETDEWEB)

    Sadikin, Yolanda [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Stare, Katarina [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerjeva 5, SI-1000 Ljubljana (Slovenia); Schouwink, Pascal [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Brix Ley, Morten; Jensen, Torben R. [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C (Denmark); Meden, Anton [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerjeva 5, SI-1000 Ljubljana (Slovenia); Černý, Radovan, E-mail: radovan.cerny@unige.ch [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland)

    2015-05-15

    The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y{sup 3+} is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH{sub 4} both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A{sub 3}Y(BH{sub 4}){sub 6} or c-A{sub 2}LiY(BH{sub 4}){sub 6} (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH{sub 4}){sub 4} crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y{sup 3+} is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH{sub 4}){sub 4} structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH{sub 4} (A=K, Rb, Cs) contains nine compounds in total. • Y{sup 3+} forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH{sub 4}){sub 4} crystallize with

  19. Dynamics and fragmentation of van der Waals and hydrogen bonded cluster cations: (NH3)n and (NH3BH3)n ionized at 10.51 eV.

    Science.gov (United States)

    Yuan, Bing; Shin, Joong-Won; Bernstein, Elliot R

    2016-04-14

    A 118 nm laser is employed as a high energy, single photon (10.51 eV/photon) source for study of the dynamics and fragmentation of the ammonia borane (NH3BH3) cation and its cluster ions through time of flight mass spectrometry. The behavior of ammonia ion and its cluster ions is also investigated under identical conditions in order to explicate the ammonia borane results. Charge distributions, molecular orbitals, and spin densities for (NH3BH3)n and its cations are explored at both the second-order perturbation theory (MP2) and complete active space self-consistent field (CASSCF) theory levels. Initial dissociation mechanisms and potential energy surfaces for ionized NH3BH3, NH3, and their clusters are calculated at the MP2/6-311++G(d,p) level. Protonated clusters (NH3)xH(+) dominate ammonia cluster mass spectra: our calculations show that formation of (NH3)n-1H(+) and NH2 from the nascent (NH3)n(+) has the lowest energy barrier for the system. The only common features for the (NH3)n(+) and (NH3BH3)n(+) mass spectra under these conditions are found to be NHy(+) (y = 0,…,4) at m/z = 14-18. Molecular ions with both (11)B and (10)B isotopes are observed, and therefore, product ions observed for the (NH3BH3)n cluster system derive from (NH3BH3)n clusters themselves, not from the NH3 moiety of NH3BH3 alone. NH3BH2(+) is the most abundant ionization product in the (NH3BH3)n(+) cluster spectra: calculations support that for NH3BH3(+), an H atom is lost from the BH3 moiety with an energy barrier of 0.67 eV. For (NH3BH3)2(+) and (NH3BH3)3(+) clusters, a B(δ+)⋯H(δ-)⋯(δ-)H⋯(δ+)B bond can form in the respective cluster ions, generating a lower energy, more stable ion structure. The first step in the (NH3BH3)n(+) (n = 2, 3) dissociation is the breaking of the B(δ+)⋯H(δ-)⋯(δ-)H⋯(δ+)B moiety, leading to the subsequent release of H2 from the latter cluster ion. The overall reaction mechanisms calculated are best represented and understood employing a CASSCF

  20. The Local Electronic Structure of Dicarba-closo-dodecaboranes C2B10H12

    Energy Technology Data Exchange (ETDEWEB)

    Fister, Timothy T.; Vila, Fernando D.; Seidler, Gerald T.; Svec, Lukas; Linehan, John C.; Cross, Julie O.

    2008-01-16

    We report nonresonant inelastic x-ray scattering (NRIXS) measurement of core-shell excitations from both B 1s and C 1s initial states in all three isomers of the dicarba-closo-dodecaboranes C2B10H12. First, this data yields an experimental determination of the angular-momentum-projected final local density of states (l-DOS). We find low-energy resonances with distinctive local s- or p-type character, providing a more complete experimental characterization of bond hybridization than is available from dipole-transition limited techniques, such as x-ray absorption spectroscopies. This analysis is supported by independent density functional theory and real-space full multiple scattering calculation of the l-DOS which yield a clear distinction between tangential and radial contributions. Second, we investigate the isomer-sensitivity of the NRIXS signal, and compare and contrast these results with prior electron energy loss spectroscopy measurements. This work establishes NRIXS as a valuable tool for borane chemistry, not only for the unique spectroscopic capabilities of the technique, but also through its compatibility with future studies in solution or in high pressure environments. In addition, this work also establishes the real-space full multiple scattering approach as a useful alternative to traditional approaches for the excited states calculations for aromatic polyhedral boranes and related systems. This research was supported by DOE, Basic Energy Science, Office of Science, Contract Nos. DE-FGE03-97ER45628 and W-31-109-ENG-38, ONR Grant No. N00014-05-1-0843, Grant DE-FG03-97ER5623, NIH NCRR BTP Grant RR-01209, the Leonard X. Bosack and Bette M. Kruger Foundation, the Hydrogen Fuel Cell Initiative of DOE Office of Basic Energy Sciences, and the Summer Research Institute Program at the Pacific Northwest National Lab. Battelle operates the Pacific Northwest National Lab for DOE. The operation of Sector 20 PNC-CAT/XOR is supported by DOE Basic Energy Science

  1. Magnetically modulated electroluminescence from hybrid organic/inorganic light-emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Pang, Zhiyong; Baniya, Sangita; Zhang, Chuang; Sun, Dali; Vardeny, Z. Valy

    2016-03-01

    We report room temperature magnetically modulated electroluminescence from a hybrid organic/inorganic light-emitting diode (h-OLED), in which an inorganic magnetic tunnel junction (MTJ) with large room temperature magnetoresistance is coupled to an N,N,N ',N '-Tetrakis(4-methoxyphenyl)benzidine (MeO-TPD): tris-[3-(3-pyridyl)mesityl]borane (3TPYMB) [D-A] based OLED that shows thermally activated delayed luminescence. The exciplex-based OLED provides two spin-mixing channels: upper energy channel of polaron pairs and lower energy channel of exciplexes. In operation, the large resistance mismatch between the MTJ and OLED components is suppressed due to the non-linear I-V characteristic of the OLED. This leads to enhanced giant magneto-electroluminescence (MEL) at room temperature. We measured MEL of ~ 75% at ambient conditions. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  2. A facile route to high-purity BN nanoplates with ultraviolet cathodoluminescence emissions at room temperature

    International Nuclear Information System (INIS)

    Highlights: • We present a novel and simple approach to great-scale fabrication of BN nanoplates. • The as-synthesized products are extensively characterized. • The formation mechanism of BN nanoplates are elucidated based on experimental observations. • A growth model was proposed according to our experimental observations and analysis. • BN nanoplates’ CL performance envisions its applications such as UV emitters. - Abstract: We present a novel and notably simple approach to fabricate BN nanoplates in large scale employing ammonia borane as a single-source precursor. The structure and chemical composition of the as-synthesized products are extensively characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and electron energy-loss spectroscopy (EELS). XRD analysis indicates that the products are hexagonal BN crystal. SEM images confirm that the BN nanoplates have an average diameter of about 200 nm and thickness of tens of nanometers. HRTEM results illustrate the BN nanoplates to be single-crystals. EELS result suggests the nanoplates are composed of boron and nitride elements. The formation mechanism of the BN nanoplates has been elucidated based on our experimental observations, and a growth model has been proposed accordingly. Cathodoluminescence spectroscopic analysis is performed and strong ultraviolet (UV) emissions are detected. Our method provides a simple route towards the large-scale fabrication of high-quality BN nanoplates, for which various promising applications such as compact UV emitters can be envisioned

  3. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level

    International Nuclear Information System (INIS)

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the Cs-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  4. Origin of molecular conformational stability: Perspectives from molecular orbital interactions and density functional reactivity theory

    International Nuclear Information System (INIS)

    To have a quantitative understanding about the origin of conformation stability for molecular systems is still an unaccomplished task. Frontier orbital interactions from molecular orbital theory and energy partition schemes from density functional reactivity theory are the two approaches available in the literature that can be used for this purpose. In this work, we compare the performance of these approaches for a total of 48 simple molecules. We also conduct studies to flexibly bend bond angles for water, carbon dioxide, borane, and ammonia molecules to obtain energy profiles for these systems over a wide range of conformations. We find that results from molecular orbital interactions using frontier occupied orbitals such as the highest occupied molecular orbital and its neighbors are only qualitatively, at most semi-qualitatively, trustworthy. To obtain quantitative insights into relative stability of different conformations, the energy partition approach from density functional reactivity theory is much more reliable. We also find that the electrostatic interaction is the dominant descriptor for conformational stability, and steric and quantum effects are smaller in contribution but their contributions are indispensable. Stable molecular conformations prefer to have a strong electrostatic interaction, small molecular size, and large exchange-correlation effect. This work should shed new light towards establishing a general theoretical framework for molecular stability

  5. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Su, Wenming, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Zhang, Dongyu [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China); Lin, Wenjing [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)

    2014-02-15

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ′}-N,N{sup ′}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ′})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ′}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  6. A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ashtari, Khadijeh [Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Fasihi, Javad [Department of Analytical Chemistry, Faculty of Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mollania, Nasrin [Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Khajeh, Khosro, E-mail: khajeh@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2014-02-01

    Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during the coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.

  7. DFT Predictions on Structures and Stabilities of Eleven-vertex nido-and cioso-Heteroboranes

    Institute of Scientific and Technical Information of China (English)

    LI Ping

    2009-01-01

    Based on the octadecahedron of eleven-vertex closo-borane,the eleven-vertex closo-heteroborane was suggested with nonmetallic atoms instead of the different nonequivalent boron,and the stabilities were predicted at G96PW91/6-31+G(3d,2p) level.The small heteroatoms,C,N,O,preferentially occupy vertex 2 with the absolutely lowest relative energy to form the high stabilization closo-heteroboranes.They cap four-membered rings to satisfy the geometrical demand of short B-Z bonds.The electron attractions from the vicinal boron atoms make the frameworks shrink.Differently,Si and Ge preferentially substitute for boron at vertex 1 with six tight B-Z bonds and form stabilized molecules.P,As,S,and Se tend to occupy vertex 4 and the optimized structures belong to the nido configurations,in contrast to high electronegative heteroatoms,S and Se transfer less negative charges to framework and the electropositive heteroatoms,Si and Ge transfer more negative charges to framework to form the delocalization structures.The HOMO-LUMO gaps show that most of predicted clusters possess chemical stabilities.The substitutions of heteroatoms for boron atoms in eleven-vertex closo-hcteroboranes are consistent with the topological charge stabilization rule proposed by Gimarc.

  8. Interaction of iron with boron in metal-rich metallaboranes resulting in large deshielding and rapid relaxation processes of the boron-11 nucleus

    International Nuclear Information System (INIS)

    A first-order, parameterized model for calculating 11B chemical shifts in metal-rich ferraboranes and a correlation of chemical shift with boron Mulliken populations from Fenske-Hall calculations are presented. These correlations are qualitatively different from those reported earlier for boranes and suggest that direct iron-boron interactions lead to large deshielding due to substantial increases in multiple-bond contributions to the shielding tensor. Relaxation rates have been measured for [Fe4(CO)12BH/sub 3-n/]/sup n-/ (n = 0-2) and correlated with electric field gradients at the boron nucleus estimated from Fenske-Hall calculations. These results demonstrate that formation of the boride, [Fe4(CO)12B]3-, by deprotonation is accompanied by the development of large asymmetries in the electronic charge distribution around the boron nucleus. Finally, 7Li NMR is used to probe the nature of the anions [Fe4(CO)12BH/sub 3-n/]/sup n-/ (n = 1-3), and observed line shapes suggest close association of Li+ with the trianion. 28 references, 3 figures, 4 tables

  9. Color-Controlled Ag Nanoparticles and Nanorods within Confined Mesopores: Microwave-Assisted Rapid Synthesis and Application in Plasmonic Catalysis under Visible-Light Irradiation.

    Science.gov (United States)

    Mori, Kohsuke; Verma, Priyanka; Hayashi, Ryunosuke; Fuku, Kojirou; Yamashita, Hiromi

    2015-08-10

    Color-controlled spherical Ag nanoparticles (NPs) and nanorods, with features that originate from their particle sizes and morphologies, can be synthesized within the mesoporous structure of SBA-15 by the rapid and uniform microwave (MW)-assisted alcohol reduction method in the absence or presence of surface-modifying organic ligands. The obtained several Ag catalysts exhibit different catalytic activities in the H2 production from ammonia borane (NH3 BH3 , AB) under dark conditions, and higher catalytic activity is observed by smaller yellow Ag NPs in spherical form. The catalytic activities are specifically enhanced under the light irradiation for all Ag catalysts. In particular, under light irradiation, the blue Ag nanorod shows a maximum enhancement of more than twice that observed in the dark. It should be noted that the order of increasing catalytic performance is in close agreement with the order of absorption intensity owing to the Ag localized surface plasmon resonance (LSPR) at irradiation light wavelength. Upon consideration of infrared thermal effect, wavelength dependence on catalytic activity, and effect of radical scavengers, it can be concluded that the dehydrogenation of AB is promoted by change of charge density of the Ag NP surface derived from LSPR. The LSPR-enhanced catalytic activity can be further realized in the tandem reaction consisting of dehydrogenation of AB and hydrogenation of 4-nitrophenol, in which a similar tendency in the enhancement of catalytic activity is observed. PMID:26178067

  10. Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation

    Directory of Open Access Journals (Sweden)

    John Meynard M. Tengco

    2016-06-01

    Full Text Available Carbon-supported bimetallic Pt-Co cathode catalysts have been previously identified as higher activity alternatives to conventional Pt/C catalysts for fuel cells. In this work, a series of Pt-Co/C catalysts were synthesized using electroless deposition (ED of Pt on a Co/C catalyst prepared by modified charge enhanced dry impregnation. X-ray diffraction (XRD and scanning transmission electron microscopy (STEM characterization of the base catalyst showed highly dispersed particles. A basic ED bath containing PtCl62− as the Pt precursor, dimethylamine borane as reducing agent, and ethylenediamine as stabilizing agent successfully targeted deposition of Pt on Co particles. Simultaneous action of galvanic displacement and ED resulted in Pt-Co alloy formation observed in XRD and energy dispersive X-ray spectroscopy (XEDS mapping. In addition, fast deposition kinetics resulted in hollow shell Pt-Co alloy particles while particles with Pt-rich shell and Co-rich cores formed with controlled Pt deposition. Electrochemical evaluation of the Pt-Co/C catalysts showed lower active surface but much higher mass and surface activities for oxygen reduction reaction compared to a commercial Pt/C fuel cell catalyst.

  11. Effects of destruxins on free calcium and hydrogen ions in insect hemocytes.

    Science.gov (United States)

    Chen, Xiu-Run; Hu, Qiong-Bo; Yu, Xiao-Qiang; Ren, Shun-Xiang

    2014-02-01

    Destruxins, cyclohexadepsipeptidic mycotoxins isolated from the entomopathogenic fungus Metarhizium anisopliae, inhibit innate insect immunity. However, their mechanism of action remains unclear. In this study, the effects of destruxins on changes in free calcium and hydrogen ions in the hemocytes of Exolontha serrulata, Bombyx mori and the Spodoptera litura SL-1 cell line were detected using laser scanning confocal microscopy (LSCM). An instant Ca(2+) influx of hemocytes induced by destruxins A and B (DA and DB) was recorded. The DA/DB-dependent Ca(2+) influx was not influenced by the Ca(2+) channel inhibitors 2-aminoethoxydiphenyl borane (2-APB) and U73122. It also had an apparently different LSCM profile from that of the ionomycin-dependent Ca(2+) influx. However, the instant Ca(2+) influx was not seen in the SL-1 cells; on the contrary, a slow, moderate enhancement of intracellular Ca(2+) was observed. Meanwhile, an instant intracellular free H(+) decrease aroused by DA and DB was found. DB at 20 μmol/L and DA at 690 μmol/L significantly reduced intracellular free H(+) levels. Furthermore, the vacuolar H(+)-ATPase (V-ATPase) inhibitor bafilomycin A1 had obvious effects on the decreases of intracellular free H(+) in hemocytes. These results suggest that the mechanism of DA/DB-dependent Ca(2+) influx is perhaps not related to Ca(2+) channels and ionophores; rather, the intracellular free H(+) decrease might be due to V-ATPase inhibition. PMID:23956215

  12. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Chun, Jaehun; Choi, Young Joon; Ronnebro, Ewa

    2016-01-25

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high hydrogen content of 14-16 wt% below 200°C and high volumetric density. In our previous paper, we selected AB in silicone oil as a role model for a slurry hydrogen storage system. Materials engineering properties were optimized by increasing solid loading by using an ultra-sonic process. In this paper, we proceeded to scale up to liter size batches with solid loadings up to 50 wt% (8 wt% H2) with dynamic viscosities less than 1000cP at 25°C. The use of a non-ionic surfactant, Triton X-15, shows significant promise in controlling the level of foaming produced during the thermal dehydrogenation of the AB. Through the development of new and efficient processing techniques and the ability to adequately control the foaming, stable homogenous slurries of high solid loading have been demonstrated as a viable hydrogen delivery source.

  13. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    International Nuclear Information System (INIS)

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4′-N,N′-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N′)iridium(III) (Ir(2-phq)3) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m2. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED

  14. Redox and anion exchange chemistry of a stibine-nickel complex: writing the L, X, Z ligand alphabet with a single element.

    Science.gov (United States)

    Jones, James S; Wade, Casey R; Gabbaï, François P

    2014-08-18

    According to the covalent bond classification (CBC) method, two-electron donors are defined as L-type ligands, one-electron donors as X-type ligands, and two-electron acceptors as Z-type ligands. These three ligand functions are usually associated to the nature of the ligating atom, with phosphine, alkyl, and borane groups being prototypical examples of L-, X- and Z-ligands, respectively. A new SbNi platform is reported in which the ligating Sb atom can assume all three CBC ligand functions. Using both experimental and computational data, it is shown that PhICl2 oxidation of (o-(Ph2P)C6H4)3SbNi(PPh3) (1) into [(o-(Ph2P)C6H4)3ClSb]NiCl (2) is accompanied by a conversion of the stibine L-type ligand of 1 into a stiboranyl X-type ligand in 2. Furthermore, the reaction of 2 with the catecholate dianion in the presence of cyclohexyl isocyanide results in the formation of [(o-(Ph2P)C6H4)3(o-O2C6H4Sb)]Ni(CNCy) (4), a complex featuring a nickel atom coordinated by a Lewis acidic, Z-type, stiborane ligand. PMID:24953497

  15. Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries

    Science.gov (United States)

    Li, L. F.; Xie, B.; Lee, H. S.; Li, H.; Yang, X. Q.; McBreen, J.; Huang, X. J.

    The new electrolyte systems utilizing one type of Lewis acids, the boron based anion receptors (BBARs) with LiF, Li 2O, or Li 2O 2 in carbonate solutions have been developed and reported by us. These systems open up a new approach in developing non-aqueous electrolytes with higher operating voltage and less moisture sensitivity for lithium-ion batteries. However, the formation of a stable solid electrolyte interphase (SEI) layer on the graphitized anodes is a serious problem needs to be solved for these new electrolyte systems, especially when propylene carbonate (PC) is used as a co-solvent. Using lithium bis(oxalato)borate (LiBOB) as an additives, the SEI layer formation on mesophase carbon microbeads (MCMB) anode is significantly enhanced in these new electrolytes containing boron-based anion receptors, such as tris(pentafluorophenyl) borane, and lithium salt such as LiF, or lithium oxides such as Li 2O or Li 2O 2 in PC and dimethyl carbonate (DMC) solvents. The cells using these electrolytes and MCMB anodes cycled very well and the PC co-intercalation was suppressed. Fourier transform infrared spectroscopy (FTIR) studies show that one of the electrochemical decomposition products of LiBOB, lithium carbonate (Li 2CO 3), plays a quite important role in the stablizing SEI layer formation.

  16. Synthesis, Hydrolysis, and Protonation-Promoted Intramolecular Reductive Breakdown of Potential NRTIs: Stavudine α-P-Borano-γ-P-N-l-tryptophanyltriphosphates

    Directory of Open Access Journals (Sweden)

    Zhihong Xu

    2015-10-01

    Full Text Available Phosphorus-modified prodrugs of dideoxynucleoside triphosphates (ddNTPs have shown promise as pronucleotide strategies for improving antiviral activity compared to their parent dideoxynucleosides. Borane modified NTPs offer a promising choice as nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs. However, the availability of α-P-borano-γ-P-substituted NTP analogs remains limited due to challenges with synthesis and purification. Here, we report the chemical synthesis and stability of a new potential class of NRTI prodrugs: stavudine (d4T 5′-α-P-borano-γ-P-N-L-tryptophanyltriphosphates. One-pot synthesis of these compounds was achieved via a modified cyclic trimetaphosphate approach. Pure Rp and Sp diastereomers were obtained after HPLC separation. Based on LC-MS analysis, we report degradation pathways, half-lives (5–36 days and mechanisms arising from structural differences to generate the corresponding borano tri- and di-phosphates, and H-phosphonate, via several parallel routes in buffer at physiologically relevant pH and temperature. Here, the major hydrolysis products, d4T α-P-boranotriphosphate Rp and Sp isomers, were isolated by HPLC and identified with spectral data. We first propose that one of the major degradation products, d4T H-phosphonate, was generated from the d4T pronucleotides via a protonation-promoted intramolecular reduction followed by a second step nucleophilic attack. This report could provide valuable information for pronucleotide-based drug design in terms of selective release of target nucleotides.

  17. Synthesis and Rearrangement of P-Nitroxyl-Substituted P(III) and P(V) Phosphanes: A Combined Experimental and Theoretical Case Study.

    Science.gov (United States)

    Heurich, Tobias; Qu, Zheng-Wang; Nožinović, Senada; Schnakenburg, Gregor; Matsuoka, Hideto; Grimme, Stefan; Schiemann, Olav; Streubel, Rainer

    2016-07-11

    Low-temperature generation of P-nitroxyl phosphane 2 (Ph2 POTEMP), which was obtained by the reaction of Ph2 PH (1) with two equivalents of TEMPO, is presented. Upon warming, phosphane 2 decomposed to give P-nitroxyl phosphane P-oxide 3 (Ph2 P(O)OTEMP) as one of the final products. This facile synthetic protocol also enabled access to P-sulfide and P-borane derivatives 7 and 13, respectively, by using Ph2 P(S)H (6) or Ph2 P(BH3 )H (11) and TEMPO. Phosphane sulfide 7 revealed a rearrangement to phosphane oxide 8 (Ph2 P(O)STEMP) in CDCl3 at ambient temperature, whereas in THF, thermal decomposition of sulfide 7 yielded salt 10 ([TEMP-H2 ][Ph2 P(S)O]). As well as EPR and detailed NMR kinetic studies, indepth theoretical studies provided an insight into the reaction pathways and spin-density distributions of the reactive intermediates. PMID:27283725

  18. Superhalogens as Building Blocks of Complex Hydrides for Hydrogen Storage

    CERN Document Server

    Srivastava, Ambrish Kumar

    2016-01-01

    Superhalogens are species whose electron affinity (EA) or vertical detachment energy (VDE) exceed to those of halogen. These species typically consist of a central electropositive atom with electronegative ligands. The EA or VDE of species can be further increased by using superhalogen as ligands, which are termed as hyperhalogen. Having established BH4- as a superhalogen, we have studied BH4-x(BH4)x- (x = 1 to 4) hyperhalogen anions and their Li-complexes, LiBH4-x(BH4)x using density functional theory. The VDE of these anions is larger than that of BH4-, which increases with the increase in the number of peripheral BH4 moieties (x). The hydrogen storage capacity of LiBH4-x(BH4)x complexes is higher but binding energy is smaller than that of LiBH4, a typical complex hydride. The linear correlation between dehydrogenation energy of LiBH4-x(BH4)x complexes and VDE of BH4-x(BH4)x- anions is established. These complexes are found to be thermodynamically stable against dissociation into LiBH4 and borane. This stud...

  19. Well-defined Polymethylene-Based Co/Terpolymers by Combining Anthracene/Maleimide Diels-Alder Reaction with Polyhomologation

    KAUST Repository

    Hadjichristidis, Nikolaos

    2015-05-26

    A novel strategy towards well-defined polymethylene-based co/terpolymers, by combining anthracene/maleimide Diels-Alder reaction with polyhomologation, is presented. For the synthesis of diblock copolymers the following approach was applied: a) synthesis of α-anthracene-ω-hydroxy- polymethylene by polyhomologation using tri (9-anthracene-methyl propyl ether) borane as initiator, b) synthesis of furan-protected-maleimide-terminated poly (ε-caprolactone) or polyethylene glycol and c). Diels-Alder reaction between the anthracene and maleimide-terminated polymers. In the case of triblock terpolymers the α-anthracene-ω-hydroxy-polymethylene was used as macroinitiator for the ring-opening polymerization of D, L-lactide to afford an anthracene-terminated PM-b-PLA copolymer, followed by Diels-Alder reaction with furan-protected maleimide-terminated poly (ε-caprolactone) or polyethylene glycol to give the triblock terpolymers. All intermediate and final products were characterized by SEC, 1H NMR, UV-VIS spectroscopy and DSC.

  20. B2(BO)6 0/- and B 2(BS) 6 0/- doubly bridged structures containing BO or BS as ligands.

    Science.gov (United States)

    Li, Da-Zhi; Li, Si-Dian

    2014-09-01

    The investigation on the geometrical and electronic properties of B(2)(BO)(6) (0/-) and B(2)(BS)(6) (0/-) has been performed by density functional theory (DFT) using the B3LYP and BP86 methods. The chemical bonding in B(2)A(6) (A = H, BO, and BS) series is elucidated through the recently developed adaptive natural density partitioning (AdNDP). D(2h) B(2)(BO)(6) and B(2)(BS)(6) were found to possess two bridging η (2)-BO or η (2)-BS groups, as well as four terminal BO or BS groups that are analogs of diborane B(2)H(6). D(2)h B(2)(BO)(6) (-) and B(2)(BS)(6) (-) with two bridging η (2)-BO or η (2)-BS groups which are more stable than their corresponding D(3d) structures. The binding energy of B(2)(BO)(6) and B(2)(BS)(6) with respect to B(2)(BO)(6) (D2h) → 2B(BO)(3) (D(3h)) and B(2)(BS)(6)(D(2h)) → 2B(BS)(3) (D(3h)) are estimated to be (△)E = 19.8 and 40.6 kcal mol(-1) at CCSD(T)//B3LYP level, respectively. This finding advances the boronyl chemistry and helps establish the isolobal analogy between boron-rich oxide clusters and boranes. PMID:25159274

  1. Electrochemical behavior and microstructural characterization of 1026 Ni-B coated steel

    International Nuclear Information System (INIS)

    Ni-B coatings have been deposited on the surfaces of commercial steels (SAE-1026). The depositions were carried out using the electroless plating technique employing a nickel chloride solution with borane-dimethylamine as the reducing agent. These specimens were subsequently heat treated at different temperatures (300-500 deg. C) and different periods of time. The obtained coating thickness was in the order of approximately 1.5 μm. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used to characterize the structure and superficial morphology of the coatings. Phases like Ni, Ni3B and Ni4B3 were observed through X-ray diffraction and confirmed by differential scanning calorimeter (DSC) studies. Some of the precipitated phases have been structurally characterized. The corrosion behavior of the coated surfaces was carried out by electrochemical impedance spectroscopy (EIS) using electrolytic sodium chlorine solutions with pH 2 and 7. The EIS results showed an active corrosion mechanism in acid solution while diffusion-reaction phenomena are predominant in neutral solution

  2. Heterogenized Bimetallic Pd-Pt-Fe3O4 Nanoflakes as Extremely Robust, Magnetically Recyclable Catalysts for Chemoselective Nitroarene Reduction.

    Science.gov (United States)

    Byun, Sangmoon; Song, Yeami; Kim, B Moon

    2016-06-15

    A very simple synthesis of bimetallic Pd-Pt-Fe3O4 nanoflake-shaped alloy nanoparticles (NPs) for cascade catalytic reactions such as dehydrogenation of ammonia-borane (AB) followed by the reduction of nitro compounds (R-NO2) to anilines or alkylamines (R-NH2) in methanol at ambient temperature is described. The Pd-Pt-Fe3O4 NPs were easily prepared via a solution phase hydrothermal method involving the simple one-pot coreduction of potassium tetrachloroplatinate (II) and palladium chloride (II) in polyvinylpyrrolidone with subsequent deposition on commercially available Fe3O4 NPs. The bimetallic Pd-Pt alloy NPs decorated on Fe3O4 NPs provide a unique synergistic effect for the catalysis of cascade dehydrogenation/reduction. Various nitroarene derivatives were reduced to anilines with very specific chemoselectivity in the presence of other reducible functional groups. The bimetallic Pd-Pt-Fe3O4 NPs provide a unique synergistic effect for the catalysis of cascade dehydrogenation/reduction. The nitro reduction proceeded in 5 min with nearly quantitative conversions and yields. Furthermore, the magnetically recyclable nanocatalysts were readily separated using an external magnet and reused up to 250 times without any loss of catalytic activity. A larger scale (10 mmol) reaction was also successfully performed with >99% yield. This efficient, recyclable Pd-Pt-Fe3O4 NPs system can therefore be repetitively utilized for the reduction of various nitro-containing compounds. PMID:27191706

  3. Pretreatment with buthionine sulfoximine enhanced uptake and retention of BSH in brain tumor

    International Nuclear Information System (INIS)

    To determine the influence of buthionine sulfoximine (BSO) on boron biodistribution after sulfhydryl borane (BSH) administration for boron neutron capture therapy, the effectiveness of the combination of BSO with sulfhydril- (BSH) and non-sulfhydril (B12H12 and BNH3) boron compounds, and the interval between BSO and BSH administration, the retention of boron in tissues have been evaluated using a 9L rat tumor model. Simultaneous administration of BSH and BSO showed significantly higher boron accumulation compared to that without BSO, however there was no difference in tissue boron level between B12H12 and BNH3 administration with BSO or without BSO. The longer interval (6 h) between BSH and BSO administration related to the highest boron concentration in the brain and subcutaneous tumors compared to shorter intervals (0.5, 3 h). Boron concentration in subcutaneous and brain tumors was maintained for 6 and 12 h after the administration of BSH following BSO pretreatment. - Highlights: • Coadministration of BSH and BSO showed higher tumor boron uptake than BSH only. • Higher boron uptake was not observed after B12H12 or BNH3 administration. • The increase in tumor boron accumulation might be related to SH-groups. • BSO injection 6 h before BSH showed further increase in tumor boron uptake. • High boron concentration maintained for 6 and 12 h after BSH with BSO administration

  4. Maternal grandsire, granddam, and sire breed effects on growth and carcass traits of crossbred cattle.

    Science.gov (United States)

    Casas, E; Cundiff, L V

    2003-04-01

    Postweaning growth, feed efficiency, and carcass traits were analyzed on 1,422 animals obtained by mating F1 cows to F1 (Belgian Blue x British breeds) or Charolais sires. Cows were obtained from mating Hereford, Angus, and MARC IIIHereford, 1/4 Angus, 1/4 Pinzgauer, and 1/4 Red Poll) dams to Hereford or Angus (British breeds), Tuli, Boran, Brahman, or Belgian Blue sires. Breed groups were fed in replicated pens and slaughtered serially in each of 2 yr. Postweaning average daily gain; live weight; hot carcass weight; fat depth; longissimus area; estimated kidney, pelvic, and heart fat (percentage); percentage Choice; marbling score; USDA yield grade; retail product yield (percentage); retail product weight; fat yield (percentage); fat weight; bone yield (percentage); and bone weight were analyzed in this population. Quadratic regressions of pen mean weight on days fed and of cumulative ME consumption on days fed were used to estimate gain, ME consumption and efficiency (Mcal of ME/kg of gain) over time (0 to 200 d on feed), and weight (300 to 550 kg) intervals. Maternal grandsire breed was significant (P yield grade, retail product yield, fat yield, fat weight, and bone yield. Sire breed was significant (P yield, and fat yield. Interactions between maternal grandsire and sire breed were nonexistent. Sire and grandsire breed effects can be optimized by selection and use of appropriate crossbreeding systems. PMID:12723078

  5. Novel and efficient preparation of precursor [188Re(OH2)3(CO)3]+ for the labeling of biomolecules.

    Science.gov (United States)

    Park, Sang Hyun; Seifert, Sepp; Pietzsch, Hans-Jurgen

    2006-01-01

    A novel and efficient method for preparing 188Re(I) tricarbonyl precursor [188Re(OH2)3(CO)3]+ has been developed by reacting [188Re]perrhenate with Schibli's kit in the presence of borohydride exchange resin (BER) as a reducing agent and an anion scavenger. The precursor was produced in more than 97% yield by reacting a solution of tetrahydroborate exchange resin (BER, 3 mg), borane-ammonia (BH3.NH3, 3 mg), and potassium boranocarbonate (K2[H3BCO2], 3 mg) in 0.9% saline with a solution of sodium perrhenate (Na188ReO4) with up to 50 MBq and concentrated phosphoric acid (85%, 7 microL) at 60 degrees C for 15 min. HPLC and TLC revealed 0% unreacted [188Re]perrhenate ion and <3% of colloidal 188ReO2. Since the precursor is produced with high radiochemical purity and labeling efficiency under the milder conditions than those required for the conventional reducing agents, the latter can be replaced. PMID:16417272

  6. Determination of structure and phase transition of nanophase NH3BH3 embedded in MCM-41 mesoporous silica

    Science.gov (United States)

    Kim, Hyunjeong; Karkamkar, Abhi; Autrey, Thomas; Chupas, Peter; Proffen, Thomas

    2010-03-01

    Nanocomposition of ammonia borane (AB), NH3BH3, by loading AB in a mesoporous silica has shown great improvement in the hydrogen storage properties [1]; faster hydrogen desorption was observed at reduced temperature and the formation of borazine, by-products that affects hydrogen purity, was significantly suppressed. Even though an improvement was striking, its lack of long-range structural order and relatively light composed elements hinder conventional structural analyses. We have employed the atomic pair distribution function (PDF) analysis to investigate the nanophase AB residing in mesoporous channels of MCM-41 [2]. Temperature dependent x-ray PDF study shows that the AB confined in pores does not undergo the orthorhombic to tetragonal phase transition at 225 K that was observed in the bulk molecular crystal. Instead, it stays in the high temperature tetragonal phase over a temperature range of 110-240 K and becomes amorphous above 240 K. [1] A. Gutowska et al., Angew. Chem. Int. Ed., 44, 3578-3582 (2005). [2] H. J. Kim et al., J. Am. Chem. Soc., 131, 13749-13755 (2009).

  7. Solid-state EPR strategies for the structural characterization of paramagnetic NO adducts of frustrated Lewis pairs (FLPs)

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcos de; Magon, Claudio José [Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, São Paulo (Brazil); Wiegand, Thomas [Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8049 Zürich (Switzerland); Elmer, Lisa-Maria; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard [Organisch-Chemisches Institut, WWU Münster, Corrensstraße 40, D 48149 Münster (Germany); Eckert, Hellmut, E-mail: eckerth@uni-muenster.de [Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, São Paulo (Brazil); Institut für Physikalische Chemie, WWU Münster, Corrensstrasse 30, D 48149 Münster (Germany)

    2015-03-28

    Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and {sup 11}B, {sup 14}N, and {sup 31}P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that different from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to {sup 14}N and {sup 31}P, the ESEEM and HYSCORE spectra contain important information about the {sup 11}B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.

  8. Prevalence of subclinical mastitis and associated risk factors in smallholder dairy cows in Tanzania.

    Science.gov (United States)

    Karimuribo, E D; Fitzpatrick, J L; Swai, E S; Bell, C; Bryant, M J; Ogden, N H; Kambarage, D M; French, N P

    2008-07-01

    A cross-sectional study was carried out on 200 randomly selected farms in each of the Iringa and Tanga regions of Tanzania to estimate the prevalence and risk factors for subclinical mastitis in dairy cows kept by smallholders. Subclinical mastitis was assessed using the California mastitis test (cmt), and by the bacteriological culture of 1500 milk samples collected from 434 clinically normal cows. The percentages of the cows (and quarters) with subclinical mastitis were 75.9 per cent (46.2 per cent) when assessed by the cmt and 43.8 per cent (24.3 per cent) when assessed by culture. Factors significantly associated with an increased risk of a cmt-positive quarter were Boran breed (odds radio [or]=3.51), a brought-in cow (rather than homebred) (or=2.39), peak milk yield, and age. The stripping method of hand milking was associated with a significantly lower prevalence of cmt-positive quarters (or=0.51). The cmt-positive cows were more likely to be culture positive (or=4.51), as were brought-in (or=2.10) and older cows. PMID:18603630

  9. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  10. Growth and Contrast of Hexagonal Boron Nitride: From Submonolayer Islands to Multilayer Films

    Science.gov (United States)

    Koepke, Justin; Wood, Joshua; Pop, Eric; Lyding, Joseph

    2013-03-01

    Strong interest in hexagon boron nitride (h-BN) as a substrate for graphene devices or as a template for growth of other layered compounds has motivated recent attempts to synthesize large scale h-BN by chemical vapor deposition (CVD). We synthesize h-BN by low pressure CVD on polycrystalline Cu foil in a hot wall tube furnace with a heated ammonia borane precursor carried downstream by Ar and H2 gas. Transmission electron microscopy (TEM) diffraction patterns show that the resulting growths are highly crystalline, with several layers obtained for longer growth times. Short growth times show that the h-BN nucleates in triangular islands at a higher precursor temperature than previously reported in and a lower temperature than reported in. In-air calcination of the Cu foils after partial h-BN growth allows optical contrast of the previously transparent h-BN islands on the Cu foil. This observed resistance to oxidation suggests that grown h-BN films can serve as an insulating anti-corrosion layer.

  11. Modeling studies of the chemical vapor deposition of boron films from B 2H 6

    Science.gov (United States)

    Lamborn, Daniel R.; Snyder, David W.; Xi, X. X.; Redwing, Joan M.

    2007-02-01

    The effect of growth conditions on the chemical vapor deposition of boron thin films from diborane (B 2H 6) was investigated using a combination of experimental studies and computational fluid dynamics-based reactor modeling. A multi-physics computational model was developed to simulate the thermal-fluid environment in the reactor. The proposed chemistry model incorporated into the simulations includes gas-phase decomposition and formation of B 2H 6 and surface adsorption and reaction of borane (BH 3). The model accurately predicts the experimentally measured temperature and partial pressure dependence of the boron growth rate using the sticking coefficient of BH 3 on the growth surface as the only adjustable parameter in the calculations. The results indicate that at lower growth temperatures (500 °C) the growth rate is limited by mass transfer of BH 3 to the substrate surface. The studies of boron thin film growth are relevant to the deposition of superconducting MgB 2 thin films, in which B 2H 6 is used as the boron precursor.

  12. The Indian drawings of the poet Cesare Pascarella: non-destructive analyses and conservation treatments.

    Science.gov (United States)

    Bicchieri, Marina; Monti, Michela; Piantanida, Giovanna; Pinzari, Flavia; Iannuccelli, Simonetta; Sotgiu, Silvia; Tireni, Lorena

    2012-02-01

    The Italian dialect poet Cesare Pascarella travelled all around the world, noting down in notebooks his keen and caustic observations, and drawing sketches that are a visual reportage of his journeys. The sketches were mounted as a random collage over acidic cardboards that were exposed to direct sunlight in his studio. Their poor state of conservation is related to the use of modern paper: chemical instability of raw materials caused acidification and strong oxidation of the support, with intense yellowing of the surfaces and brittleness of the paper. To ensure future preservation of the drawings, chemical stabilisation with simultaneous alcoholic treatment by deacidification (calcium propionate) and reduction (borane tert-butylamine complex) appeared necessary. To verify its applicability, it was indispensible to characterise the support and identify the nature of all the graphic media. The use of Raman, Infrared, X-ray fluorescence spectroscopies and scanning electron microscopy coupled with X-ray microanalysis allowed us to clear the problems related to the different penetration depth of each analytical technique and the different responses of pigments/dyes to each spectroscopy. The palette, how it varied along the journeys, the different supports used and preparations were completely identified showing a choice of colours compatible with the reduction treatment. PMID:21750878

  13. Hypovalency--a kinetic-energy density description of a 4c-2e bond.

    Science.gov (United States)

    Jacobsen, Heiko

    2009-06-01

    A bond descriptor based on the kinetic energy density, the localized-orbital locator (LOL), is used to characterize the nature of the chemical bond in electron deficient multi-center bonds. The boranes B(2)H(6), B(4)H(4), B(4)H(10), [B(6)H(6)](2-), and [B(6)H(7)](-) serve as prototypical examples of hypovalent 3c-2e and 4c-2e bonding. The kinetic energy density is derived from a set of Kohn-Sham orbitals obtained from pure density functional calculations (PBE/TZVP), and the topology of LOL is analyzed in terms of (3,-3) attractors (Gamma). The B-B-B and B-H-B 3c-2e, and the B-B-H-B 4c-2e bonding situations are defined by their own characteristic LOL profiles. The presence of one attractor in relation to the three or four atoms that are engaged in electron deficient bonding provides sufficient indication of the type of 3c-2e or 4c-2e bond present. For the 4c-2e bond in [B(6)H(7)](-) the LOL analysis is compared to results from an experimental QTAIM study. PMID:19452076

  14. Reproductive performance of cows mated to and preweaning performance of calves sired by Brahman vs alternative subtropically adapted breeds.

    Science.gov (United States)

    Thrift, F A

    1997-10-01

    Comparisons involving Brahman and Brahman-derivative (Brangus, Santa Gertrudis, Beef-master, Simbrah, Braford) sires indicate the following: 1) cows mated to Brangus and Santa Gertrudis bulls had a shorter gestation length than cows mated to Brahman bulls, 2) calves sired by Brangus and Beefmaster bulls were lighter at birth and weaning than calves sired by Brahman bulls, and 3) birth and weaning weights were similar for calves sired by Santa Gertrudis and Brahman bulls and for calves sired by Simbrah and Brahman bulls. Comparisons involving Brahman and other Zebu (Sahiwal, Nellore, Gir, Indu-Brazil, Boran, Romana Red) sires indicate that gestation length was slightly longer for cows mated to Sahiwal and Nellore bulls and that, relative to the Brahman, birth and weaning weights were similar to or lighter for calves sired by bulls of the other Zebu breeds. The only exception to this pattern was birth weight of Indu-Brazil-sired calves, which were heavier than calves sired by Brahman bulls. Comparisons involving Brahman and non-Zebu subtropically adapted (Tuli, Senepol) sires indicate that cows mated to Tuli bulls had a slightly shorter gestation length than cows mated to Brahman bulls and that birth and weaning weights of calves sired by Tuli and Senepol bulls were lighter than those of calves sired by Brahman bulls. PMID:9331860

  15. Synthetic approach of norbadione A: new preparation of alcohols from sulfones and boron compounds

    International Nuclear Information System (INIS)

    The synthetic approach of norbadione A, a pigment from mushrooms related to pulvinic acids, was studied. This compound has the property to complex caesium and has shown an antioxidant activity. The first strategy, based on a double Suzuki-Miyaura coupling between a naphtho-lactone with two boron functions and two pulvinic moieties with a triflate was unsuccessful and has shown a deactivating effect of the lactone. Modifications aimed to inhibit the electro-attracting character of the lactone permitted to obtain a bis(coupled) product with a poor yield. A second approach based on a the cyclization of enol aryl-acetates was studied in order to build the pulvinic moiety in several steps. The important reaction of introduction of an alkyl-acetate from a triflate was realised by a palladium-mediated coupling. The cyclization attempts carried out using a naphthalenic compound allowed us to isolate a monocyclised product. A parallel study was to first build a tetronic moiety and then to construct the exocyclic double bond by a method developed in the laboratory for the preparation of an iodated pulvinic compound. Finally, a new preparation of alcohols from sulfones and boron compounds was developed. Two known reactions in the chemistry of boron were combined. The first one is the reaction between anions of sulfones and tri-alkyl-boranes, the second one is a thermal isomerization which places the boron atom in a terminal position. A new preparation of primary alcohols was thus carried out. (author)

  16. Defense by-products production and utilization program: noble metal recovery screening experiments

    International Nuclear Information System (INIS)

    Isotopes of the platinum metals (rutheium, rhodium, and palladium) are produced during uranium fuel fission in nuclear reactors. The strategic values of these noble metals warrant considering their recovery from spent fuel should the spent fuel be processed after reactor discharge. A program to evaluate methods for ruthenium, rhodium, and palladium recovery from spent fuel reprocessing liquids was conducted at Pacific Northwest Laboratory (PNL). The purpose of the work reported in this docuent was to evaluate several recovery processes revealed in the patent and technical literature. Beaker-scale screening tests were initiated for three potential recovery processes: precipitation during sugar denitration of nitric acid reprocessing solutions after plutonium-uranium solvent extraction, adsorption using nobe metal selective chelates on active carbon, and reduction forming solid noble metal deposits on an amine-borane reductive resin. Simulated reprocessing plant solutions representing typical nitric acid liquids from defense (PUREX) or commercial fuel reprocessing facilities were formulated and used for evaluation of the three processes. 9 refs., 3 figs., 9 tabs

  17. Palladium Activated Self-Assembled Monolayer for Magnetics on Silicon Applications

    Science.gov (United States)

    Anthony, Ricky; Mathúna, Cian Ó.; Rohan, James F.

    Magnetic thin films such as Permalloy (Py) have been extensively used as core material in integrated power magnetic components (micro-inductors and transformers) for their excellent soft magnetic properties. Existing core electrodeposition technology requires sputtered permalloy seed layer. This seed layer etches slowly compared to the electroplated core during magnetic core patterning. In this work, a new electroless deposition process has been developed where samples are activated by palladium to realize a thin catalytic layer on SiO2. Up to 1 μm thick permalloy (∼22% ±3% Fe and ∼78%±3% Ni) is deposited from an in-house developed borane based bath to achieve ∼ 30-35 μOhm-cm resistivities. The magnetic properties of permalloy deposits reveal distinct hysteresis loop with coercivity (∼4.5 Oe). The electroless permalloy over-etch (12 μm) compared with sputtered permalloy seed is found to be negligible (2 μm). This demonstrates the applicability of permalloy electroless deposition as a seed for high yield batch fabrication of magnetics on silicon devices.

  18. Effects of deposition temperature and chemical composition on the ZnO crystal growth on the surface of Pd catalyst through electroless chemical reaction

    International Nuclear Information System (INIS)

    Zinc oxide (ZnO) was site-selectively grown on the palladium (Pd) catalyst through the electroless deposition process under mild conditions, and the effects of deposition temperature and chemical composition on the ZnO crystal growth were investigated. ZnO crystals were synthesized on the UV-patterned Pd catalysts in the aqueous solutions of various dimethylamine borane (DMAB)/Zn(NO3)2 ratio at 30-70 deg. C. The site-selective deposition was confirmed by X-ray photoelectron spectroscopy (XPS) data and elemental maps of Pd, Zn and oxygen in energy-filtering transmission electron microscopy (EFTEM), and the crystal morphology was observed by scanning electron microscopy (SEM). A strong near band emission at around 390 nm and a weak green emission at around 470 nm were observed in the photoluminescence (PL) spectrum. The ZnO crystals were grown in the following three steps: (1) ZnO fibrils were generated on the Pd catalysts and became sphere-like particles, (2) hexagonal wurtzite crystals initiated to grow from the sphere-like particles, and (3) the crystals grew in two directions-longitudinal and lateral growths giving rod-type or needle-type hexagonal crystals. It was found that longitudinal growth rate increased with increasing deposition temperature or DMAB/Zn(NO3)2 ratio

  19. The Concept about the Regeneration of Spent Borohydrides and Used Catalysts from Green Electricity

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Liu

    2015-06-01

    Full Text Available Currently, the Brown-Schlesinger process is still regarded as the most common and mature method for the commercial production of sodium borohydride (NaBH4. However, the metallic sodium, currently produced from the electrolysis of molten NaCl that is mass-produced by evaporation of seawater or brine, is probably the most costly raw material. Recently, several reports have demonstrated the feasibility of utilizing green electricity such as offshore wind power to produce metallic sodium through electrolysis of seawater. Based on this concept, we have made improvements and modified our previously proposed life cycle of sodium borohydride (NaBH4 and ammonia borane (NH3BH3, in order to further reduce costs in the conventional Brown-Schlesinger process. In summary, the revision in the concept combining the regeneration of the spent borohydrides and the used catalysts with the green electricity is reflected in (1 that metallic sodium could be produced from NaCl of high purity obtained from the conversion of the byproduct in the synthesis of NH3BH3 to devoid the complicated purification procedures if produced from seawater; and (2 that the recycling and the regeneration processes of the spent NaBH4 and NH3BH3 as well as the used catalysts could be simultaneously carried out and combined with the proposed life cycle of borohydrides.

  20. A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity

    International Nuclear Information System (INIS)

    Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during the coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively

  1. Characterisation of the acidity and the basicity of transition alumina by NMR and FTIR spectroscopy of adsorption of probe molecules; Caracterisation par RMN et infrarouge de molecules sondes adsorbees, de l'acidite et de la basicite d'alumines de transition

    Energy Technology Data Exchange (ETDEWEB)

    Mathonneau, E.

    2003-04-01

    This work has been devoted to characterization of the acidity and the basicity of the surface of transition alumina. Three different alumina (Alumina-{gamma}, -{delta} et -{theta} ({gamma}-Al, {delta}-Al, {theta}-Al)) have been studied by adsorption of probe molecules such trimethyl phosphine and carbon monoxide (acidity study); and tri-ethyl borane (basicity study). We emphasized that the acidity increases with an increasing pretreatment temperature where as the basicity decreases. Comparing quantitative results from the different probe molecules we could show an increasing strength acidity following: {gamma}-Al > {theta}-Al > {delta}-Al, and basicity following: {delta}-Al > {gamma}-Al > {theta}-Al. We could evaluate on a qualitative (nature and repartition) and on a quantitative point of view the impact of the transformations {gamma}-Al {yields} {delta}-Al and {gamma}-Al > {theta}-Al on the acid-basicity of the surface. We could also explain catalytic reactivity differences between alumina for the position isomerization of butene-1. (author)

  2. Quando os estudantes falam sobre os problemas de aprendizagem: um estudo psicogenético

    Directory of Open Access Journals (Sweden)

    Eliane Giachetto Saravali

    2014-01-01

    Full Text Available Teniendo en cuenta la teoría de Piaget y los estudios sobre la construcción del conocimiento social, hemos investigado las ideas de los estudiantes acerca del aprendizaje y no aprendizaje. El estudio incluyó a 40 niños entre 6 y 16 años con quejas de dificultades de aprendizaje, inscritos en escuelas públicas en el estado de São Paulo y sometidos a dos instrumentos: un dibujo que representa a una persona que aprende y outra que no se aprende; una historia que implica una situación de no aprendizaje. Los datos indican que hay creencias bastante específicas construidas por la mayoría de los participantes, correspondientes al nivel más básico de comprensión de la realidad social. Sus interpretaciones hacen caso omiso de procesos más complejos para el fenómeno investigado y consideran solamente problemas aparentes. Los resultados corro- boran los estudios evolutivos en el contexto nacional, apuntando ideas rudimentarias, incluso en estudiantes mayores. Sugerimos la necesidad de estudios sobre las causas de este retraso entre los estudiantes brasileños.

  3. Multicomponent Molecular Puzzles for Photofunction Design: Emission Color Variation in Lewis Acid-Base Pair Crystals Coupled with Guest-to-Host Charge Transfer Excitation.

    Science.gov (United States)

    Ono, Toshikazu; Sugimoto, Manabu; Hisaeda, Yoshio

    2015-08-01

    Simple yet ubiquitous multimolecular assembly systems with color-tunable emissions are realized by cooperative electron donor-acceptor interactions, such as the boron-nitrogen (B-N) dative bond as a Lewis acid-base pair and charge transfer (CT) interactions. These are ternary-component systems consisting of a naphthalenediimide derivative (NDI), tris(pentafluorophenyl)borane (TPFB), and aromatic molecules (guest) with an NDI:TPFB:guest ratio of 1:2:2. The crystal shows guest-dependent color-tunable emissions such as deep blue to orange when a guest molecule of benzene is replaced with other π-conjugated systems. A good correlation between the emission wavelength and ionization potential of the guest and electronic structure calculations indicated that the emission is due to the CT transition from the guest to the NDI. The present study suggests that a rational solution of multcomponent molecular puzzles would be useful for obtaining novel photofunctional solid-state systems. PMID:26211567

  4. Mechanism for Forming B,C,N,O Rings from NH3BH3 and CO2 via Reaction Discovery Computations.

    Science.gov (United States)

    Li, Maxwell W; Pendleton, Ian M; Nett, Alex J; Zimmerman, Paul M

    2016-03-01

    This study employs computational reaction finding tools to probe the unique biphilic reactivity between ammonia-borane (AB) and CO2. The results show that sequential reactions involving multiple equivalents of AB and CO2 can lead to the formation of stable nonplanar B,C,N,O-heterocycles (Cy-BCN). Cy-BCN is shown to emerge through boron-oxygen bond formation, hydroboration, dative bond formation, and single- or double-hydrogen transfers. The most kinetically facile reactions (computed at the coupled cluster singles and doubles with perturbative triples (CCSD(T)) level of theory) result from polarized nitrogen-boron double bonds whereas thermodynamic stability results from formation of covalent boron-oxygen bonds. An important structure, HCOOBHNH2 (DHFAB), contains both of these features and is the key intermediate involved in generation of Cy-BCN. Crucially, it is shown that favorable boron-oxygen bond formation results in production of Cy-BCN species that are more stable than polyaminoboranes. These types of reaction intermediates could serve as building blocks in the formation of B,N-codoped graphene oxide (BCN). PMID:26844585

  5. Morphosyntactic Aspects of Ocaina: Between Genetic Features (Witotoan family and Areal Influences

    Directory of Open Access Journals (Sweden)

    Doris Fagua Rincón

    2010-02-01

    Full Text Available This paper presents some morphosyntactic features of Ocaina, a seriously endangered, underdescribed language of the Colombian-Peruvian Amazon region. Ocaina has an extensive nominal classification system and number markers—dual  and plural—suffixed to both nouns and person markers on verbs. Grammatical relations follow a nominative-accusative pattern and are coded by a relatively rigid constituent order SOV (Subject-Object-Verb; by verbal prefixes (o-s-V and enclitics (o-V=s, with just one prefix for objects of monotransitive and ditransitive verbs; and by the marking of oblique objects of certain verbs by case suffixes and postpositions. Most of the Ocaina features described are shared with Uitoto of the Witotoan family; many are also shared with Bora (Boran family, whose genetic link to the Witotoan family is still hypothetical. All these languages share certain features with neighboring languages, such as those of the Vaupés region, e.g. nominal classification and nominative-accusative alignment. We suggest that some aspects of Ocaina morphosyntax are probably inherited from the Witotoan family while others are better explained by areal diffusion.

  6. Successful transfer of frozen N'Dama embryos from the Gambia to Kenya.

    Science.gov (United States)

    Jordt, T; Mahon, G D; Touray, B N; Ngulo, W K; Morrison, W I; Rawle, J; Murray, M

    1986-05-01

    Frozen embryos from N'Dama cattle were successfully transferred from The Gambia to Kenya. Of the 26 N'Dama cows used 12 were successfully programmed to superovulate and of these seven produced 30 embryos that were collected seven days after oestrus/service. Five N'Dama bulls were used for natural service. In Kenya 29 embryos were implanted into 29 Boran heifers seven days (+/- 1) after the induction of synchronised oestrus. Eleven pregnancies were established and after one abortion of unknown aetiology at seven and a half months five female and five male calves were born and subsequently reared. During programming the N'Dama cows showed prolonged anoestrus leading to the necessity of oestrus induction using intravaginal progesterone releasing coils; pregnant mare serum gonadotrophin gave better superovulation than follicle stimulating hormone. One N'Dama bull proved to be subfertile. The success of the project has demonstrated the potential of this technique to make disease-free N'Dama available for research purposes and for the promotion of livestock development programmes in tsetse-infested areas using trypanotolerant cattle. PMID:3738996

  7. Vibrational Spectra of Molecular Crystals with the Generalized Energy-Based Fragmentation Approach.

    Science.gov (United States)

    Fang, Tao; Jia, Junteng; Li, Shuhua

    2016-05-01

    The generalized energy-based fragmentation (GEBF) approach for molecular crystals with periodic boundary condition (PBC) (denoted as PBC-GEBF) is extended to allow vibrational spectra of molecular crystals to be easily computed at various theory levels. Within the PBC-GEBF approach, the vibrational frequencies of a molecular crystal can be directly evaluated from molecular quantum chemistry calculations on a series of nonperiodic molecular systems. With this approach, the vibrational spectra of molecular crystals can be calculated with much reduced computational costs at various theory levels, as compared to those required by the methods based on periodic electronic structure theory. By testing the performance of the PBC-GEBF method for two molecular crystals (CO2 and imidazole), we demonstrate that the PBC-GEBF approach can reproduce the results of the methods based on periodic electronic structure theory in predicting vibrational spectra of molecular crystals. We apply the PBC-GEBF method at second-order Møller-Plesset perturbation theory (PBC-GEBF-MP2 in short) to investigate the vibrational spectra of the urea and ammonia borane crystals. Our results show that the PBC-GEBF-MP2 method can provide quite accurate descriptions for the observed vibrational spectra of the two systems under study. PMID:27076120

  8. Plasma deposition of cubic boron nitride films from non-toxic material at low temperatures

    International Nuclear Information System (INIS)

    Boron nitride has become the focus of a considerable amount of interest because of its properties which relate closely to those of carbon. In particular, the cubic nitride phase has extreme hardness and very high thermal conductivity similar to the properties of diamond. The conventional methods of synthesis use the highly toxic and inflammable gas diborane (B2H6) as the reactant material. A study has been made of the deposition of thin films of boron nitride (BN) using non-toxic material by the plasma-assisted chemical vapour deposition technique. The source material was borane-ammonia (BH3-NH3) which is a crystalline solid at room temperature with a high vapour pressure. The BH3-NH3 vapour was decomposed in a 13.56 MHz nitrogen plasma coupled either inductively or capacitively with the system. The composition of the films was assessed by measuring their IR absorption when deposited on silicon and KBr substrates. The hexagonal (graphitic) and cubic (diamond-like) allotropes can be distinguished by their characteristic absorption bands which occur at 1365 and 780 cm-1 (hexagonal) and 1070 cm-1 (cubic). We have deposited BN films consisting of a mixture of hexagonal and cubic phases; the relative content of the cubic phase was found to be directly dependent on r.f. power and substrate bias. (orig.)

  9. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    International Nuclear Information System (INIS)

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH3BH3) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes

  10. Feed intake and production parameters of lactating crossbred cows fed maize-based diets of stover, silage or quality protein silage

    Science.gov (United States)

    Gebrehawariat, Efrem; Tegegne, Azage

    2010-01-01

    Thirty-six Boran × Friesian dairy cows (392 ± 12 kg; mean ± SD) in early parity were used in a randomised complete block design. Cows were blocked by parity into three blocks of 12 animals and offered normal maize (NM) stover (T1), NM silage (T2) or quality protein maize (QPM) silage (T3) basal diets supplemented with a similar concentrate mix. Feed intake, body weight and condition changes and milk yield and composition were assessed. The daily intake of DM, OM, NDF and ADF for cows fed the NM stover-based diet was higher (P silage and QPM silage-based diets. However, the daily intake of DOM (9.3 kg) and ME (140.8 MJ) for cows on QPM silage-based diet was higher (P silage-based diet (7.9 kg and 119.1 MJ). Body weight of cows was affected (P  0.05) on body condition score, milk yield and milk composition. The digestible organic matter in the NM stover-based diet (724 g/kg DM) was lower (P silage-based diet (762 g/kg DM). It was concluded that the performances of the cows on the NM silage and QPM silage diets were similar and were not superior to that of the NM stover-based diet. PMID:20577806

  11. Characterization of Boron Carbonitride (BCN Thin Films Deposited by Radiofrequency and Microwave Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. A. Mannan

    2008-01-01

    Full Text Available Boron carbonitride (BCN thin films with a thickness of ~4 µ­m were synthesized on Si (100 substrate by radiofrequency and microwave plasma enhanced chemical vapor deposition using trimethylamine borane [(CH33N.BH3] as a molecular precursor. The microstructures of the films were evaluated using field emission scanning electron microscopy (FE-SEM and X-ray diffractometry (XRD. Fourier transform infrared spectroscopy (FT-IR and X-ray photoelectron spectroscopy (XPS were used to analyze the chemical bonding state and composition of the films. It has been observed that the films were adhered well to the silicon substrate even after being broken mechanically. XRD and FE-SEM results showed that the films were x-ray amorphous, rough surface with inhomogeneous microstructure. The micro hardness was measured by nano-indentation tester and was found to be approximately 2~7 GPa. FT-IR suggested the formation of the hexagonal boron carbonitride (h-BCN phase in the films. Broadening of the XPS peaks revealed that B, C and N atoms have different chemical bonds such as B-N, B-C and C-N. The impurity oxygen was detected (13~15 at.% as B-O and/or N-O.

  12. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  13. Steps toward high specific activity labeling of biomolecules for therapeutic application: preparation of precursor [(188)Re(H(2)O)(3)(CO)(3)](+) and synthesis of tailor-made bifunctional ligand systems.

    Science.gov (United States)

    Schibli, Roger; Schwarzbach, Rolf; Alberto, Roger; Ortner, Kirstin; Schmalle, Helmut; Dumas, Cécile; Egli, André; Schubiger, P August

    2002-01-01

    Two kit preparations of the organometallic precursor [(188)Re(H(2)O)(3)(CO)(3)](+) in aqueous media are presented. Method A uses gaseous carbon monoxide and amine borane (BH(3).NH(3)) as the reducing agent. In method B CO(g) is replaced by K(2)[H(3)BCO(2)] that releases carbon monoxide during hydrolysis. Both procedures afford the desired precursor in yields >85% after 10 min at 60 degrees C. HPLC and TLC analyses revealed 7 +/- 3% of unreacted (188)ReO(4)(-) and 95% with [(188)Re(H(2)O)(3)(CO)(3)](+) under mild reaction conditions (PBS buffer, 60 degrees C, 60 min) at ligand concentrations between 5 x 10(-4) M and 5 x 10(-5) M. Thus, specific activities of 22-220 GBq pe micromol of ligand could be achieved. Incubation of the corresponding Re-188 complexes in human serum at 37 degrees C revealed stabilities between 80 +/- 4% and 45 +/- 10% at 24 h, respectively, and 63 +/- 3% and 34 +/- 3% at 48 h postincubation in human serum depending on the chelating system. Decomposition product was mainly (188)ReO(4)(-). The routine kit-preparation of the precursor [(188)Re(H(2)O)(3)(CO)(3)](+) in combination with tailor-made ligand systems enables the organometallic labeling of biomolecules with unprecedented high specific activities. PMID:12121130

  14. AUTOCATALYTIC REDUCTION AND CHARACTERISTICS OF BORON-CONTAINING COATINGS

    Directory of Open Access Journals (Sweden)

    V. Covaliov

    2013-06-01

    Full Text Available The research results of the plating conditions, chemical composition and properties of Ni-B coatings and Ni-Re-B, Ni-Mo-B and Ni-W-B alloys are given. It was shown that introduction of alloying elements (Re, Мо and W in the composition of Ni-containing coatings modifies the catalytic activity of the alloys’ surface, with regard to the parallel reactions of dimethylamino-borane (DMAB heterogeneous hydrolysis, Ni reduction and evolving of the molecular hydrogen. It was found that with the increase in concentration of alloying element, boron content in the coatings is decreased to the trace amounts. The effect of alloys composition on hydrogen evolving overvoltage was studied. Due to the low overvoltage of hydrogen evolving (HE on the alloy Ni-Re-B surface (11 at.% Re, it can be used as electrode for hydrogen generation from water in the electrolytic cell with novel design and improved technical-economic indicators.

  15. A diagonal approach for the catalytic transformation of carbon dioxide

    International Nuclear Information System (INIS)

    Emissions of carbon dioxide are growing with the massive utilization of hydrocarbons for the production of energy and chemicals, resulting in a threatening global warming. The development of a more sustainable economy is urging to reduce the fingerprint of our current way of life. In this perspective, the organic chemistry industry will face important challenges in the next decades to replace hydrocarbons as a feedstock and use carbon-free energy sources. To tackle this challenge, new catalytic processes have been designed to convert CO2 to high energy and value-added chemicals (formamides, N-heterocycles and methanol), using a novel diagonal approach. The energy efficiency of the new transformations is ensured by the utilization of mild reductants such as hydro-silanes and hydro-boranes. Importantly the reactions are promoted by organic catalysts, which circumvent the problems of cost, abundance and toxicity usually encountered with metal complexes. Based on theoretical and experimental studies, the understanding of the mechanisms involved in these reactions allowed the rational optimization of the catalysts as well as the reaction conditions, in order to match the requirements of sustainable chemistry. (author)

  16. Adipose tissue partitioning of limit-fed beef cattle and beef cattle with ad libitum access to feed differing in adaptation to heat.

    Science.gov (United States)

    Sprinkle, J E; Ferrell, C L; Holloway, J W; Warrington, B G; Greene, L W; Wu, G; Stuth, J W

    1998-03-01

    We compared fat distribution and lipoprotein lipase (LPL) activity in steers differing in adaptability to the subtropics. Steers were fed a grain diet (3.13 Mcal ME/kg DM) at limited (150 kcal ME x kg[-.75] x d[-1]; .23 kg ADG) or ad libitum levels for 140 d, then slaughtered. Sixteen British- (8 Angus, 8 Hereford; S), 16 Boran- (R), 16 Brahman- (B), and 16 Tuli- (T) cross steers from MARC III composite cows were used. Adipose tissue samples from perirenal, omental, and subcutaneous depots were analyzed for LPL activity. Carcass measurements including omental, external, and seam fat trim from 1/ 2 of the carcass were measured. Subcutaneous fat had greater (P .05) in fat distribution for steers fed at limited levels. Means for ADG, slaughter weights, carcass weights, yield grades, and carcass lipid weights for S and B fed for ad libitum intake were greater (P .05) for the other breeds with ad libitum intake. Factor analysis of fat depots for animals with ad libitum intake indicated that Bos taurus cattle differing in adaptation to heat deposited fat differently; S deposited greater (P < .05) proportions of carcass fat and T deposited greater (P < .05) proportions of internal fat. It seems that accumulation of internal fat is detrimental for ADG for Bos taurus cattle. PMID:9535321

  17. Postweaning growth and reproduction characteristics of heifers sired by bulls of seven breeds and raised on different levels of nutrition.

    Science.gov (United States)

    Freetly, H C; Cundiff, L V

    1997-11-01

    Heifers produced from sires of seven breeds (Hereford, Angus, Belgian Blue, Piedmontese, Brahman, Boran, and Tuli) and Angus, Hereford, and MARC III (four-breed composite) cows were evaluated. Weaned heifers were placed in three treatment groups of moderate nutrition (15.8 Mcal ME/d), 80% of moderate nutrition (12.6 Mcal ME/d), or fed as a mixed-breed group (16.3 Mcal ME/d). Average daily gain (ADG) from 228 d of age through breeding was measured. There was a sire breed x group interaction (P Angus (358 +/- 6 d) dams reached puberty at a younger age than did heifers with Hereford dams (380 +/- 9 d). Age at which puberty was expressed differed with sire breed (P < .001). The proportion of heifers that were pregnant at palpation (.90) did not differ between sire breeds (P = .24), dam breeds (P = .40), or group (P = .56). Breed differences in postweaning ADG and in the manner in which the population expresses puberty allow for selection of breed types that will optimize cow herd performance. PMID:9374295

  18. Intermediates in Isotopic Exchange Reactions Involving Diborane

    International Nuclear Information System (INIS)

    By conventional mass spectrometric analysis, the self-exchange reaction of diborane was studied by using boron and hydrogen isotopes as tracers. The ratio of deuterium to boron exchange was found to be 2.8. This suggests that the reaction is not completely proceeding by exchange of BH3's as an entity, and that the mechanism is more complicated than simply a stripping reaction between diborane and a borane. It was therefore decided to attempt to get some knowledge of the intermediates that are present in diborane dissociation since they may shed light on the mechanism of the exchange. Using a specially constructed mass spectrometer of high sensitivity coupled with a flow reactor, it was possible to make a direct detection of the intermediate involved in the diborane equilibria. The intermediates BH3 and BH2 were found to be present and their ionization potentials were measured. In addition, a small amount of B3Hn was observed but the value of n could not be determined because of the weak peaks obtained. An attempt is made to interpret the self-exchange reaction of diborane in terms of these intermediates. The results suggest that diborane is in rapid equilibrium with borane (BH3). In addition, apparently diborane can also dissociate in BH2 which was about twice as abundant as BH3. The B3Hn intermediate that was observed is believed to arise from the reaction. BH3 + B2H6 -> B3H9. In applying this information to the isotopic self-exchange in diborane, it appears that the exchange cannot be going by a stripping mechanism such as BD3 + BH3 - BH3 - BD3 - BH3 + BH3, since the deuterium-to-boron isotopic ratio then should be 3. Another possible mechanism of exchange is BD3 + B2H6 ⇌ B3D3H6; the B3 complex can be pictured as a symmetrical one. If the bonds were all exactly equivalent the D/ 10B ratio would statistically become 3; however, some isotope effect may be present in the fragmentation of the complex and the ratio could deviate from 3. Another possible way in which

  19. Synthesis of octahedral, truncated octahedral, and cubic Rh2Ni nanocrystals and their structure-activity relationship for the decomposition of hydrazine in aqueous solution to hydrogen

    Science.gov (United States)

    Li, Chun; Wang, Tao; Chu, Wei; Wu, Ping; Tong, Dong Ge

    2016-03-01

    We developed a co-reduction method to synthesize octahedral, truncated octahedral, and cubic Rh2Ni nanocrystals. The shape/size distribution, structural characteristics, and composition of the Rh2Ni nanocrystals are investigated, and their possible formation mechanism at high temperatures in margaric acid/1-aminoheptadecane solution in the presence of tetraethylgermanium and borane trimethylamine complexes is proposed. A preliminary probing of the structure-activity dependence of the surface ``clean'' Rh2Ni nanocrystals supported on carbon towards hydrazine (N2H4) in aqueous solution dehydrogenation revealed that the higher the percentage of {111} facets, the higher is the activity and H2 selectivity of the nanocrystals. This result was attributed to the {111} facets not only introducing more basic sites, but also weakening the interaction between the produced adspecies (including H2 and NHx) and surface metal atoms in comparison with those of {100} facets. Furthermore, the as-prepared Rh2Ni nanooctahedra exhibited 100% H2 selectivity and high activity at room temperature for H2 generation via N2H4 decomposition. The activation energy of the Rh2Ni nanooctahedra was 41.6 +/- 1.2 kJ mol-1. The Rh2Ni nanooctahedra were stable catalysts for the hydrolytic dehydrogenation of N2H4, providing 27 723 total turnovers in 30 h. Our work provides a new perspective concerning the possibility of constructing hydrogen-producing systems based on N2H4 and surface ``clean'' Rh2Ni nanocrystal catalysts with defined shapes supported on carbon that possess a competitive performance in comparison with NaBH4 and NH3BH3 hydrogen-producing systems for fuel cell applications.We developed a co-reduction method to synthesize octahedral, truncated octahedral, and cubic Rh2Ni nanocrystals. The shape/size distribution, structural characteristics, and composition of the Rh2Ni nanocrystals are investigated, and their possible formation mechanism at high temperatures in margaric acid/1

  20. Reactions of ketones with uranium tetraborohydride, mechanism and stereoselectivity, synthesis and structure of uranium (IV) tetrahydroborato alkoxide complexes

    International Nuclear Information System (INIS)

    The mono- and bisalkoxide uranium complexes U(BH4)3(OCHR1R2)(THF)2 1 and U(BH4)2(OCHR1R2)2(THF)2 2 were prepared successively in tetrahydrofuran (THF) by treatment of U(BH4)4 with the corresponding ketone R1R2C = O (acetone, benzophenone, cyclohexanone, 2-methylcyclohexanone, 4-tert-butylcyclohexanone, and norcamphor). The borane BH3.THF was liberated during the formation of 1 and 2, and reacted with the ketone to give the alkoxyborane species B(OCHR1R2)nH3-n. Formation of 1 also resulted from: a) reaction of U-BH4)4 with the alkoxyborane species; b) reaction of U(BH4)4 with 2; and c) reaction of 2 with BH3.THF. The alkoxide groups of 1 and 2 rapidly exchange with those of the alkoxyborane species. The uranium complexes 1 and alkoxyborane species resulting from the reaction of U(BH4)4 with the substituted cyclohexanones or norcamphor have been separated and their hydrolysis afforded the corresponding epimeric alcohols in different proportions. The monoalkoxide compounds 1 were alternatively prepared by reaction of the ketones R1R2C = O with UCl4 in the presence of LiBH4 or by treatment of U(BH4)4 with the alcohols R1R2CHOH. The octahedral crystal structures of U(BH4)3(OCHPh2)(THF)2 1b and U(BH4)2(OCHPh2)2(THF)2 2b show that in 1b, the two equatorial THF ligands (and the two equatorial BH4 groups) are in relative cis positions whereas they are trans in 2b

  1. Platinum-ruthenium bimetallic clusters on graphite: a comparison of vapor deposition and electroless deposition methods.

    Science.gov (United States)

    Galhenage, Randima P; Xie, Kangmin; Diao, Weijian; Tengco, John Meynard M; Seuser, Grant S; Monnier, John R; Chen, Donna A

    2015-11-14

    Bimetallic Pt-Ru clusters have been grown on highly ordered pyrolytic graphite (HOPG) surfaces by vapor deposition and by electroless deposition. These studies help to bridge the material gap between well-characterized vapor deposited clusters and electrolessly deposited clusters, which are better suited for industrial catalyst preparation. In the vapor deposition experiments, bimetallic clusters were formed by the sequential deposition of Pt on Ru or Ru on Pt. Seed clusters of the first metal were grown on HOPG surfaces that were sputtered with Ar(+) to introduce defects, which act as nucleation sites for Pt or Ru. On the unmodified HOPG surface, both Pt and Ru clusters preferentially nucleated at the step edges, whereas on the sputtered surface, clusters with relatively uniform sizes and spatial distributions were formed. Low energy ion scattering experiments showed that the surface compositions of the bimetallic clusters are Pt-rich, regardless of the order of deposition, indicating that the interdiffusion of metals within the clusters is facile at room temperature. Bimetallic clusters on sputtered HOPG were prepared by the electroless deposition of Pt on Ru seed clusters from a Pt(+2) solution using dimethylamine borane as the reducing agent at pH 11 and 40 °C. After exposure to the electroless deposition bath, Pt was selectively deposited on Ru, as demonstrated by the detection of Pt on the surface by XPS, and the increase in the average cluster height without an increase in the number of clusters, indicating that Pt atoms are incorporated into the Ru seed clusters. Electroless deposition of Ru on Pt seed clusters was also achieved, but it should be noted that this deposition method is extremely sensitive to the presence of other metal ions in solution that have a higher reduction potential than the metal ion targeted for deposition. PMID:26018140

  2. New Insights into Mechanism of Molybdenum(VI)-Dioxo Complex Catalyzed Hydrosilylation of Carbonyls: An Alternative Model for Activating Si-H Bond.

    Science.gov (United States)

    Ning, Xiaoshuang; Wang, Jiandi; Wei, Haiyan

    2016-06-23

    Recently, a series of oxo/nitrido-Re(V)/Mo(VI)/Ru(VI)/Mn(V) complexes were demonstrated to be efficient catalysts in activating silanes and catalyzing hydrosilylations of unsaturated organic substrates. In the present study, the high-valent molybdenum(VI)-dioxo complex MoO2Cl2 catalyzed hydrosilylations of carbonyls was reinvestigated using density functional theory method. Previous experimental and theoretical investigations suggested a [2 + 2] addition pathway for MoO2Cl2 catalyzed hydrosilylations of ketones. In the present study, we propose an ionic outer-sphere mechanistic pathway to be the most favorable pathway. The key step in the ionic outer-sphere pathway is oxygen atom of C═O bonds nucleophilically attacking the silicon atom in an η(1)-silane molybdenum adduct. The Si-H bond is then cleaved heterolytically. This process features a novel SN2@Si transition state, which then generates a loosely bound ion pair: anionic molybdenum hydride paired with silylcarbenium ion ([MoO2Cl2H](-) [SiR3(OCR'R″)](+)) in solvent. The last step is silylcarbenium ion abstracting the hydride on molybdenum hydride to yield silyl ether. The calculated activation free energy barrier of the rate-determing step was 24.1 kcal/mol for diphenylketone (PhC═OPh) and silane of PhMe2SiH. Furthermore, the ionic outer-sphere pathway is calculated to be ∼10.0 kcal/mol lower than the previously proposed [2 + 2] addition pathway for a variety of silanes and aldehyde/ketone substrates. This preference arises from stronger electrophilicity of the high-valent molybdenum(VI) metal center toward a hydride. Here, we emphasize MoO2Cl2 behaves similar to Lewis acidic trispentafluorophenyl borane B(C6F5)3 in activating Si-H bond. PMID:27243271

  3. Self-assembled platinum nanochains based on octreotide acetate

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoning; Gao, Dawei, E-mail: dwgao@ysu.edu.cn; Gao, Faming, E-mail: fmgao@ysu.edu.cn; Li, Na; Zhou, Jing [Yanshan University, Applying Chemistry Key Lab of Hebei Province (China); Hao, Jikui [Illinois Institute of Technology, Department of Chemical and Biological Engineering (United States)

    2013-09-15

    Biological scaffolds are used for the synthesis of inorganic materials due to their ability to self-assemble and nucleate crystal formation. We reported a facile method for preparing self-assembled Pt nanochains by using octreotide acetate (AOC) as bio-template in aqueous environment. The influence of solution pH was examined to define the optimal conditions for the formation of the AOC bio-templated Pt nanoparticles (PtNPs) arrays, the AOC has diameter about 55 nm at pH 2.0, for comparison, at pH 9.0, the diameter of AOC is about 25 nm. After 24-h incubation of AOC (pH 2.0) with PtCl{sub 4} and chemical reduction with borane-dimethyl-amine, uniform platinum nanoparticles (mean diameter 2.5 {+-} 0.5 nm) directed by AOC were formed. Preliminary characterizations of the synthesized PtNPs were performed using transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and selected area of electron diffraction. The cytotoxicity of Pt/octreotide acetate complexes (PtNPs-AOC) and AOC was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The results indicated that the antiproliferative effect of PtNPs-AOC is as high as AOC. In addition, the nano-design architecture of the Pt particles plays a crucial role in a strong enhancement of the biological efficiency of radiations, making PtNPs-AOC a promising material for anticancer drug delivery in the future.

  4. Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors.

    Science.gov (United States)

    Zhang, Chunli; Yin, Huanhuan; Han, Min; Dai, Zhihui; Pang, Huan; Zheng, Yulin; Lan, Ya-Qian; Bao, Jianchun; Zhu, Jianmin

    2014-04-22

    Due to their unique electronic and optoelectronic properties, tin selenide nanostructures show great promise for applications in energy storage and photovoltaic devices. Despite the great progress that has been achieved, the phase-controlled synthesis of two-dimensional (2D) tin selenide nanostructures remains a challenge, and their use in supercapacitors has not been explored. In this paper, 2D tin selenide nanostructures, including pure SnSe2 nanodisks (NDs), mixed-phase SnSe-SnSe2 NDs, and pure SnSe nanosheets (NSs), have been synthesized by reacting SnCl2 and trioctylphosphine (TOP)-Se with borane-tert-butylamine complex (BTBC) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone. Utilizing the interplay of TOP and BTBC and changing only the amount of BTBC, the phase-controlled synthesis of 2D tin selenide nanostructures is realized for the first time. Phase-dependent pseudocapacitive behavior is observed for the resulting 2D nanostructures. The specific capacitances of pure SnSe2 NDs (168 F g(-1)) and SnSe NSs (228 F g(-1)) are much higher than those of other reported materials (e.g., graphene-Mn3O4 nanorods and TiN mesoporous spheres); thus, these tin selenide materials were used to fabricate flexible, all-solid-state supercapacitors. Devices fabricated with these two tin selenide materials exhibited high areal capacitances, good cycling stabilities, excellent flexibilities, and desirable mechanical stabilities, which were comparable to or better than those reported recently for other solid-state devices based on graphene and 3D GeSe2 nanostructures. Additionally, the rate capability of the SnSe2 NDs device was much better than that of the SnSe NS device, indicating that SnSe2 NDs are promising active materials for use in high-performance, flexible, all-solid-state supercapacitors. PMID:24601530

  5. Synthesis and properties of electrodeposited Ni–B–CeO2 composite coatings

    International Nuclear Information System (INIS)

    Highlights: • Alteration of metallic luster, chemical composition and crystal structure. • Remarkable improvement in mechanical properties. • A decent improvement in corrosion behavior. - Abstract: Ni–B coatings are extremely hard and wear resistant with decent anticorrosion properties which make them suitable for automotive, aerospace, petrochemical, plastic, optics, nuclear, electronics, computer, textile, paper, food and printing industries. However, further improvement in properties is essential to address more challenging requirements and new developments. In the present study, Ni–B and novel Ni–B–CeO2 composite coatings were electrodeposited (ED) on mild steel substrates using dimethylamine borane (DMAB) as a reducing agent. A comparison of properties of Ni–B and Ni–B–CeO2 coatings is presented to elucidate the useful role of CeO2 addition. The structural analyses indicate that Ni–B coatings are amorphous in their as deposited state. However, addition of CeO2 into Ni–B matrix considerably improves the crystallinity of the deposit. The surface morphology study reveals the formation of uniform, dense and fine-grained deposit in both Ni–B and Ni–B–CeO2 composite coatings. However, Ni–B–CeO2 composite coatings exhibit high surface roughness. The nano mechanical properties show that the addition of CeO2 particles into Ni–B matrix results in remarkable improvement in mechanical properties (hardness and modulus of elasticity) which may be attributed to dispersion hardening of Ni–B matrix by CeO2 particles. The electrochemical polarization tests confirm that the addition of CeO2 improves the corrosion resistance of Ni–B coatings. This improvement in corrosion behavior may be ascribed to the reduction in active area of Ni–B coatings by the presence of inactive CeO2 particles into Ni–B matrix

  6. Nanostructured Boron Nitride: From Molecular Design to Hydrogen Storage Application

    Directory of Open Access Journals (Sweden)

    Georges Moussa

    2014-07-01

    Full Text Available The spray-pyrolysis of borazine at 1400 °C under nitrogen generates boron nitride (BN nanoparticles (NPs. The as-prepared samples form elementary blocks containing slightly agglomerated NPs with sizes ranging from 55 to 120 nm, a Brunauer-Emmett-Teller (BET-specific surface area of 34.6 m2 g−1 and a helium density of 1.95 g cm−3. They are relatively stable in air below 850 °C in which only oxidation of the NP surface proceeds, whereas under nitrogen, their lower size affects their high temperature thermal behavior in the temperature range of 1450–2000 °C. Nitrogen heat-treated nanostructures have been carefully analyzed using X-ray diffraction, electron microscopy and energy-dispersive X-ray spectroscopy. The high temperature treatment (2000 °C gives hollow-cored BN-NPs that are strongly facetted, and after ball-milling, hollow core-mesoporous shell NPs displaying a BET-specific surface area of 200.5 m2·g−1 and a total pore volume of 0.287 cm3·g−1 were produced. They have been used as host material to confine, then destabilize ammonia borane (AB, thus improving its dehydrogenation properties. The as-formed AB@BN nanocomposites liberated H2 at 40 °C, and H2 is pure in the temperature range 40–80 °C, leading to a safe and practical hydrogen storage composite material.

  7. Self-assembled platinum nanochains based on octreotide acetate

    International Nuclear Information System (INIS)

    Biological scaffolds are used for the synthesis of inorganic materials due to their ability to self-assemble and nucleate crystal formation. We reported a facile method for preparing self-assembled Pt nanochains by using octreotide acetate (AOC) as bio-template in aqueous environment. The influence of solution pH was examined to define the optimal conditions for the formation of the AOC bio-templated Pt nanoparticles (PtNPs) arrays, the AOC has diameter about 55 nm at pH 2.0, for comparison, at pH 9.0, the diameter of AOC is about 25 nm. After 24-h incubation of AOC (pH 2.0) with PtCl4 and chemical reduction with borane-dimethyl-amine, uniform platinum nanoparticles (mean diameter 2.5 ± 0.5 nm) directed by AOC were formed. Preliminary characterizations of the synthesized PtNPs were performed using transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and selected area of electron diffraction. The cytotoxicity of Pt/octreotide acetate complexes (PtNPs–AOC) and AOC was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The results indicated that the antiproliferative effect of PtNPs–AOC is as high as AOC. In addition, the nano-design architecture of the Pt particles plays a crucial role in a strong enhancement of the biological efficiency of radiations, making PtNPs–AOC a promising material for anticancer drug delivery in the future

  8. Fyn kinase controls Fc{epsilon}RI receptor-operated calcium entry necessary for full degranulation in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Miranda, Elizabeth; Ibarra-Sanchez, Alfredo [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, CP 14330 Mexico City (Mexico); Gonzalez-Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, CP 14330 Mexico City (Mexico)

    2010-01-22

    IgE-antigen-dependent crosslinking of the high affinity IgE receptor (Fc{epsilon}RI) on mast cells leads to degranulation, leukotriene synthesis and cytokine production. Calcium (Ca{sup 2+}) mobilization is a sine qua non requisite for degranulation, allowing the rapid secretion of stored pro-inflammatory mediators responsible for allergy symptoms. Fyn is a Src-family kinase that positively controls Fc{epsilon}RI-induced mast cell degranulation. However, our understanding of the mechanism connecting Fyn activation to secretion of pre-synthesized mediators is very limited. We analyzed Fc{epsilon}RI-dependent Ca{sup 2+} mobilization in bone marrow-derived mast cells (BMMCs) differentiated from WT and Fyn -/- knock out mice. Fyn -/- BMMCs showed a marked defect in extracellular Ca{sup 2+} influx after Fc{epsilon}RI crosslinking but not after thapsigargin addition. High concentrations of Gadolinium (Gd{sup 3+}) partially blocked Fc{epsilon}RI-induced Ca{sup 2+} influx in WT cells but, in contrast, completely inhibited Ca{sup 2+} mobilization in Fyn -/- cells. Low concentrations of an inhibitor of the canonical transient receptor potential (TRPC) Ca{sup 2+} channels (2-aminoethoxyphenyl-borane, 2-APB) blocked Fc{epsilon}RI-induced maximal Ca{sup 2+} rise in WT but not in Fyn -/- cells. Ca{sup 2+} entry through Fyn-controlled, 2-APB sensitive channels was found to be important for full degranulation and IL-2 mRNA accumulation in WT cells. Immunoprecipitation assays showed that Fyn kinase interacts with TRPC 3/6/7 channels after IgE-antigen stimulation, but its association is not related to protein tyrosine phosphorylation. Results indicate Fyn kinase mediates the receptor-dependent activation of TRPC channels that contribute to degranulation in Fc{epsilon}RI-stimulated mast cells.

  9. Core–shell nanospheres Pt@SiO2 for catalytic hydrogen production

    International Nuclear Information System (INIS)

    Highlights: • Pt@SiO2 core–shell NPs are synthesized via a simple one-pot synthetic route. • Ultrafine Pt NPs (∼4 nm) are embedded in well-proportioned SiO2 nanospheres. • Pt@SiO2 shows a high activity and good durability for H2 generation from AB. - Abstract: Ultrafine platinum nanoparticles (NPs) embedded in silica nanospheres (Pt@SiO2) have been synthesized in a NP-5/cyclohexane reversed-micelle system followed by NaBH4 reduction. The as-synthesized core–shell nanocatalysts Pt@SiO2 were characterized by scanning electron microscopy, transmission electron microscopes, X-ray powder diffraction analysis, energy dispersive X-ray spectrometer and nitrogen adsorption–desorption investigations. Interestingly, the as-synthesized core–shell nanocatalysts Pt@SiO2 showed an excellent catalytic performance in hydrogen generation from the hydrolysis of ammonia borane (BH3NH3, AB) at room temperature. Especially, the catalytic performance of the Pt@SiO2 remained almost unchanged after the five recycles and even after the heat treatment (673 K), because the silica shells inhibit aggregation or deformation of the metal cores. Besides, the kinetic studies showed that the catalytic hydrolysis of AB was first order with respect to the catalyst concentration and zero order with respect to the substrate concentration, respectively. The excellent catalytic activity and stability of Pt@SiO2 can make it have a bright future in the practical application

  10. Evaluation of biological, physical and chemical properties of mineral trioxide aggregate mixed with 4-META/MMA-TBB

    Directory of Open Access Journals (Sweden)

    Rudra Kaul

    2013-01-01

    Full Text Available Aim: To evaluate the change in physical, chemical and biological properties when mineral trioxide aggregate (MTA is mixed with a resin 4-methacryloxyethyl trimellitate anhydride (4-META/methyl methacrylate-tri-n-butyl-borane (MMA-TBB. Materials and Methods: For biological evaluation MTA was inoculated in Wistar rat′s subcutaneous tissue and peripheral tissue response was checked after 72 h, 7 days, 15 days and 30 days. Setting time was evaluated using Gillmore needle. The Ca++ release at the end of 24 h was checked using ethylenediaminetetraacetic acid titration method. For all the trials MTA mixed with water was kept as a control and the ratio of MTA with resin was 1:1 by weight. Results: The biological reaction was verified by two observers and their readings were matched using kappa test and there was an excellent relevance. There was no significant difference in the tissue reaction at the end of 30 days where both the groups seemed to show healing. Setting time of MTA with 4-META/MMA-TBB was coming to a mean of 26 min (approx., which is almost 6 times lesser than that of MTA with water. After applying t test, the difference in Ca++ release was found significant (P = 0.00, with mean of 0.044 and 0.031 mol/L of MTA with water and MTA with 4-META/MMA-TBB respectively. Conclusion: Under the parameters of this study, this new experimental cement has better handling, physical and chemical properties. Even its subcutaneous tissue reaction is comparable to MTA mixed with water.

  11. The information compliance indexes. The illustrative case of income taxes

    Directory of Open Access Journals (Sweden)

    Ilídio Tomás Lopes

    2014-01-01

    Full Text Available La adopción de las normas del IASB ha representado, en la Unión Europea, un importanteesfuerzo de armonización hacia la integración de los informes financieros, la confiabilidad,la relevancia y la comparabilidad. En este trabajo se pretende dar a conocer la importanciade los índices de cumplimiento de la información (ICI, con base en las normas contables,como un proxy para la presentación de informes útiles. Este enfoque se pone de manifiestoa través de un ejemplo ilustrativo acerca de las revelaciones sobre los impuestos diferidos,como requiere la NIC 12. Esta norma prescribe el tratamiento contable de los impuestoscorrientes e impuestos por activos y pasivos diferidos. Estos problemas suelen ser percibi-dos por los interesadoscomo indicadores de la continuidad de las empresas y los posiblesrendimientos futuros. Sobre la base de las empresas no financieras cotizadas en el mercadoreguladoEuronext Lisboa, con referencia a finales de los años fiscales 2008 y 2012, serealizó un índice de cumplimiento de la información, sobre la base de la norma contable.Este índice integra una regresión con un conjunto de indicadores de desempeño y control.La evidencia empírica ha proporcionado importantes conocimientos estadísticos que corro-boran los hallazgos de que los niveles de cumplimiento de la información y de divulgacióndependen de varios indicadores de desempeño y control.

  12. Fyn kinase controls FcεRI receptor-operated calcium entry necessary for full degranulation in mast cells

    International Nuclear Information System (INIS)

    IgE-antigen-dependent crosslinking of the high affinity IgE receptor (FcεRI) on mast cells leads to degranulation, leukotriene synthesis and cytokine production. Calcium (Ca2+) mobilization is a sine qua non requisite for degranulation, allowing the rapid secretion of stored pro-inflammatory mediators responsible for allergy symptoms. Fyn is a Src-family kinase that positively controls FcεRI-induced mast cell degranulation. However, our understanding of the mechanism connecting Fyn activation to secretion of pre-synthesized mediators is very limited. We analyzed FcεRI-dependent Ca2+ mobilization in bone marrow-derived mast cells (BMMCs) differentiated from WT and Fyn -/- knock out mice. Fyn -/- BMMCs showed a marked defect in extracellular Ca2+ influx after FcεRI crosslinking but not after thapsigargin addition. High concentrations of Gadolinium (Gd3+) partially blocked FcεRI-induced Ca2+ influx in WT cells but, in contrast, completely inhibited Ca2+ mobilization in Fyn -/- cells. Low concentrations of an inhibitor of the canonical transient receptor potential (TRPC) Ca2+ channels (2-aminoethoxyphenyl-borane, 2-APB) blocked FcεRI-induced maximal Ca2+ rise in WT but not in Fyn -/- cells. Ca2+ entry through Fyn-controlled, 2-APB sensitive channels was found to be important for full degranulation and IL-2 mRNA accumulation in WT cells. Immunoprecipitation assays showed that Fyn kinase interacts with TRPC 3/6/7 channels after IgE-antigen stimulation, but its association is not related to protein tyrosine phosphorylation. Results indicate Fyn kinase mediates the receptor-dependent activation of TRPC channels that contribute to degranulation in FcεRI-stimulated mast cells.

  13. Determination of structure and phase transition of light element nanocomposites in mesoporous silica: case study of NH3BH3 in MCM-41

    International Nuclear Information System (INIS)

    The structure of ammonia borane (AB), NH3BH3, infused in mesoporous silica MCM-41 and its evolution over the temperature range of 80 to 300 K was investigated using the atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data in order to understand the origin of improved dehydrogenation properties of the system. Our study shows how X-ray PDF analysis can be used to elucidate the structure of light guest species loaded in mesoporous silica materials despite of its low scattering power of composed elements (N, B, and H) compared to its host (SiO2). PDF analyses of two AB-loaded compositions with weight ratio AB:MCM-41=1:1 and 3:1 provide a strong evidence that AB aggregate, previously found in AB:MCM-41-1:1 samples, is same species as neat AB. For both of them an orthorhombic to tetragonal structural phase transition occurs at 225 K on warming. On the other hand, AB residing inside meso-pores, which is found in AB:MCM-41=1:2 sample, does not undergo such phase transition. It rather stays in tetragonal phase over a wide temperature range of 110 to 240 K and starts to lose structural correlation above 240 K. This strongly suggests that nano-confinement of AB inside meso-pores stabilizes high temperature tetragonal phase at much lower temperature. These results provide important clues to two critical questions: why nan-compositions of AB leads dehydrogenation to lower temperature and why the neat AB like properties are recovered at high AB loading samples. This work was supported by the US Department of Energy Office of Basic Energy Sciences, Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  14. Effects of pathogenic trypanosomes on the mammalian reproductive system

    International Nuclear Information System (INIS)

    The aim of the present investigation was to study the pathogenic effects of infection with Trypanosoma congolense on the ruminant reproductive system with particular emphasis on the hormonal control of oestrus. In particular, the effects of infection were monitored with specific regard to the reproduction of plasma progesterone and the sexual behaviour of the animals. Initially, experiments were carried out using goats infected by the bites of Glossina morsitans carrying T. congolense. Control, uninfected but drug-treated goats showed regular oestrous cycles during the experiments, with cycle lengths of between 19 and 23 days. In contrast, in the infected goats, three out of four animals did not show regular oestrous cycles. The periods without oestrus activity varied between 53 and 97 days. Determination of plasma progesterone levels suggested that in these animals the luteal phase of oestrus was prolonged, indicating a persistent corpus luteum. In further experiments using Boran cattle, a group of 22 animals were selected, 12 of which were infected with T. congolense IL1180. The packed cell volume in infected cattle fell to <20% and most of the animals showed loss in body weight. Two animals died and of the remainder five were treated with trypanocidal drug 60 days after infection and five 90 days after infection. In the remaining ten infected cows, nine stopped cyclical activity: in five there was a prolonged luteal phase with elevated progesterone levels and in the remainder progesterone levels fell to basal values for up to 100 days. After treatment these infected cows resumed cyclical activity and within three or four cycles were cycling normally. These results have confirmed that trypanosomes adversely affect ovarian activity but it is not known if more long-term damage might have resulted which could affect subsequent fertility

  15. Mechanistic Insights into Homogeneous and Heterogeneous Asymmetric Iron Catalysis

    Science.gov (United States)

    Sonnenberg, Jessica

    Our group has been focused on replacing toxic and expensive precious metal catalysts with iron for the synthesis of enantiopure compounds for industrial applications. During an investigation into the mechanism of asymmetric transfer hydrogenation with our first generation iron-(P-N-N-P) catalysts we found substantial evidence for zero-valent iron nanoparticles coated in chiral ligand acting as the active site. Extensive experimental and computational experiments were undertaken which included NMR, DFT, reaction profile analysis, substoichiometric poisoning, electron microscope imaging, XPS and multiphasic analysis, all of which supported the fact that NPs were the active species in catalysis. Reversibility of this asymmetric reaction on the nanoparticle surface was then probed using oxidative kinetic resolution of racemic alcohols, yielding modest enantiopurity and high turnover frequencies (TOF) for a range of aromatic alcohols. Efficient dehydrogenation of ammonia-borane for hydrogen evolution and the formation of B-N oligomers was also shown using the NP system, yielding highly active systems, with a maximum TOF of 3.66 H2/s-1 . We have also begun to focus on the development of iron catalysts for asymmetric direct hydrogenation of ketones using hydrogen gas. New chiral iron-(P-N-P) catalysts were developed and shown to be quite active and selective for a wide range of substrates. Mechanistic investigations primarily using NMR and DFT indicated that a highly active trans-dihydride species was being formed during catalyst activation. Lastly, a new library of chiral P-N-P and P-NH-P ligands were developed, as well as their corresponding iron complexes, some of which show promise for the development of future generations of active asymmetric direct hydrogenation catalysts.

  16. Identification of 2-aminothiazolobenzazepine metabolites in human, rat, dog, and monkey microsomes by ion-molecule reactions in linear quadrupole ion trap mass spectrometry.

    Science.gov (United States)

    Zhang, Minli; Eismin, Ryan; Kenttämaa, Hilkka; Xiong, Hui; Wu, Ye; Burdette, Doug; Urbanek, Rebecca

    2015-03-01

    2-Aminothiazolobenzazepine (2-ATBA), 7-[(1-methyl-1H-pyrazol-4-yl)methyl]-6,7,8,9-tetrahydro-5H-[1,3]thiazolo[4,5-h][3]benzazepin-2-amine, is a D2 partial agonist that has demonstrated antipsychotic effects in a rodent in vivo efficacy model. The metabolite profile showed that 2-ATBA is mainly metabolized by oxidation. However, identification of the oxidation site(s) in the 2-aminothiazole group presents a challenge for the traditional metabolite identification methods such as liquid chromatography/mass spectrometry and NMR due to the lack of unique tandem mass spectrometry fragmentation patterns for ions with the 2-aminothiazole group oxidized at different sites and the lack of stability for purification or reference standard synthesis. We describe the characterization of the oxidized heteroatoms of the 2-aminothiazole group via gas-phase ion-molecule reactions (GPIMR) in a modified linear quadrupole ion trap mass spectrometer. The GPIMR reagents used were dimethyl disulfide, tert-butyl peroxide, and tri(dimethylamino)borane. Each reagent was introduced into the ion trap through the helium line and was allowed to react with the protonated metabolites. The ionic ion-molecule reaction products and their fragmentation profiles were compared with the profiles of the ionic ion-molecule reaction products of protonated reference compounds that had specific heteroatom functionalities. The oxidized 2-aminothiazole metabolite of 2-ATBA showed a similar GPIMR profile to that of the reference compounds with a tertiary N-oxide functionality and distinct from the profiles of the reference compounds with N-aryl hydroxylamine, nitroso, or pyridine N-oxide functionalities. This study demonstrates the feasibility of fingerprinting the chemical nature of oxidized nitrogen functional groups via GPIMR profiling for metabolite structure elucidation. PMID:25547868

  17. A rapid preparation of O-15 labeled butanol suitable for human use

    International Nuclear Information System (INIS)

    Water labeled with 0-15 is a widely used tracer for measuring cerebral blood flow. Although the method is useful, it leads to underestimation of flow rate in areas of high flow. It has been shown that butanol labeled with 0-15 would reduce this problem while allowing rapid serial PET studies. The basic chemistry for a synthesis of [0-15] butanol from tributylborane was previously reported. The authors have used this reaction in a technique which is capable of delivering [0-15] butanol ready for injection within three minutes after end-of-bombardment. Oxygen-15 was produced by deuteron bombardment of 1% oxygen in nitrogen. The target gas was directed onto 1 mmole of tri-n-butylborane which had been prepared by evaporation of 1 ml of 1 M solution in THF. The oxygen (0.25 mmol) was trapped by nearly quantitative reaction with the borane. Immediately after trapping of activity the resulting complex was hydrolysed with 4 ml of water, passed over strong anion exchange resin to remove inorganics, and through a sterile .22 μm filter into a syringe containing sterile saline. The efficiency of oxygen conversion was measured by a comparison of the trapped butanol to trapped 0-15 water on the same system, and by measurement of the carrier butanol produced. Efficiency was found to be /sup --/90%. Half of the radioactivity remained associated with inorganic salts and was removed by the ion exchange resin. No final labeled product beside butanol was detected by radio G.C. Butyradlehyde and methylethyl ketone were therefore less than 10%. The only chemical contaminant was a very low level (<0.002M) of THF

  18. Transparent, biocompatible nanostructured surfaces for cancer cell capture and culture

    Directory of Open Access Journals (Sweden)

    Cheng BR

    2014-05-01

    Full Text Available Boran Cheng,1,* Zhaobo He,2,* Libo Zhao,2,* Yuan Fang,1 Yuanyuan Chen,1 Rongxiang He,2 Fangfang Chen,1 Haibin Song,1 Yuliang Deng,2 Xingzhong Zhao,2 Bin Xiong1 1Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, People’s Republic of China; 2Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, People’s Republic of China *These authors contributed equally to this work Abstract: Circulating tumor cells (CTCs in the blood which have detached from both the primary tumor and any metastases may be considered as a “liquid biopsy” and are expected to replace tumor biopsies in the monitoring of treatment response and determining patient prognosis. Here, we introduce a facile and efficient CTC detection material made of hydroxyapatite/chitosan (HA/CTS, which is beneficial because of its transparency and excellent biological compatibility. Atomic force microscopy images show that the roughness of the HA/CTS nanofilm (HA/CTSNF substrates can be controlled by changing the HA:CTS ratio. Enhanced local topographic interactions between nano-components on cancer cell membranes, and the antibody coated nanostructured substrate lead to improved CTC capture and separation. This remarkable nanostructured substrate has the potential for CTC culture in situ and merits further analysis. CTCs captured from artificial blood samples were observed in culture on HA/CTSNF substrates over a period of 14 days by using conventional staining methods (hematoxylin eosin and Wright’s stain. We conclude that these substrates are multifunctional materials capable of isolating and culturing CTCs for subsequent studies. Keywords: cell capture, cell culture, nanofilms, hydroxyapatite/chitosan

  19. Application of HVJ envelope system to boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) has been used clinically for the treatment of malignant tumors. Two drugs, p-boronophenylalanine (BPA) and sulfhydral borane (BSH), have been used as boron delivery agents. These drugs seem to be taken up preferentially in solid tumors, but it is uncertain whether therapeutic quantities of boron atoms are taken up by micro-invasive or distant tumor cells. High accumulation and high selective delivery of boron into tumor tissues are the most important requirements to achieve efficient BNCT for malignant tumor. The HVJ envelope (HVJ-E) vector system is a novel fusion-mediated gene delivery system based on inactivated hemagglutinating virus of Japan (HVJ; Sendai virus). Although we developed this vector system for gene transfer, it can also deliver proteins, synthetic oligonucleotides, and drugs. HVJ-liposome, which is liposome fused with HVJ-E, has higher boron trapping efficiency than HVJ-E alone. We report the boron delivery into cultured cells with HVJ-liposome systems. The cellular 10B concentration after 60 min incubation with HVJ-E containing BSH was 24.9 μg/g cell pellet for BHK-21 cells (baby hamster kidney cells) and 19.4 μg/g cell pellet for SCC VII cells (murine squamous cell carcinoma). These concentrations are higher than that of 60 min incubated cells with BSH containing (100μg 10B/ml) medium. These results indicate the HVJ-E fused with tumor cell membrane and rapidly delivered boron agents, and that the HVJ-E-mediated delivery system could be applicable to BNCT. Plans are underway to begin neutron radiation experiments in vivo and in vitro. (author)

  20. Synthesis and radiofluorination of putative NMDA receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, U.

    2011-01-15

    In the course of this work on the synthesis of radioligands for the NMDA receptor the authentic standards and labeling precursors of four compounds with an amidine structure was performed. Synthesis of the precursors followed reaction conditions given in the literature and was successful. The imidoesters used for the synthesis were obtained from their nitriles in a Pinner synthesis, while 2-hydroxybenzylamine was synthesized in a reduction of 2-hydroxybenzonitrile using borane as a reducing agent. After a coupling reaction of the amine and the imidoester in DMF using triethylamine as base the precursors were obtained in good yields and purified by crystallization from methanol. The cyclic standard compound was synthesized directly from 2-(bromomethyl)- benzonitrile and 2-hydroxybenzylamine in a ring closing reaction. Similar to the other precursors, crystallization from methanol produced a pure compound. The authentic standards were synthesized starting from salicylaldehyde. In a four step synthesis the desired ortho-fluoroethoxybenzylamine was obtained in good yield. Coupling of the amine with the respective imidoester or in the case of the cyclic compound 2-(bromomethyl)-benzonitrile gave the desired product which was then purified by column chromatography or by crystallization from ethanol and water. For the labeling procedure 1-bromo-2-[{sub 18}F]fluoroethane was synthesized following a previously published pathway starting from 1,2-dibromoethane. An alternative route of radiosynthesis for this prosthetic group was tested using ethyleneglycole- 1,2-ditosylate. The labeling reaction was performed on one of the precursors testing both DMF and DMSO as solvents and using NaOH as base. Yields of N-(2-fluoroethoxybenzyl)- cinnamamidine were about 78 % at 80 C after 30 minutes in DMSO. The desired product can now be synthesized in sufficient yields for in vitro and in vivo evaluation studies. Labeling on the cyclic precursor was attempted utilizing DMSO as solvent

  1. Capillary electrophoresis-electrospray mass spectrometry and HR-ICP-MS for the detection and quantification of 10B-boronophenylalanine (10B-BPA) used in boron neutron capture therapy.

    Science.gov (United States)

    Pitois, Aurélien; de las Heras, Laura Aldave; Zampolli, Antonella; Menichetti, Luca; Carlos, Ramon; Lazzerini, Guido; Cionini, Luca; Salvatori, Pietro Alberto; Betti, Maria

    2006-02-01

    Boron neutron capture therapy (BNCT) is a bimodal radiotherapeutic treatment based on the irradiation of neoplastic tissues with neutrons after the tissues have selectively accumulated molecules loaded with nuclides with large neutron capture cross-sections (such boron-10). Boron-10 carriers have been tested to a limited extent, and clinical trials have been conducted on sulfhydryl borane (10B-BSH) and boronophenylalanine (10B-BPA). However, precise and accurate measurements of boron-10 concentrations (0.1-100 microg/g) in specimens and samples of limited size (microg scale) are needed in order to be able to biologically characterise new compounds in predictive tissue dosimetry, toxicology and pharmacology studies as well as in clinical investigations. A new approach based on fast separation and detection of 10B-BPA performed by coupling capillary electrophoresis to electrospray mass spectrometry is reported. This method allows the quantitative analysis and characterisation of 10B-BPA in a short time with a high separation efficiency. Detection limits of 3 microM for 10B-BPA and 30 ng/mL for 10B were obtained with CE-ESI-MS. A quantification limit of 10 microM for 10B-BPA (100 ng/mL for 10B) was attained. The total boron-10 concentration was determined by high-resolution inductively coupled mass spectrometry in order to validate the method. Boron-10 isotope measurements were carried out by HR-ICP-MS at medium resolution (R=4000) due to the presence of an isobaric interference at mass 10. Good agreement was obtained between the values from CE-ESI-MS and those from HR-ICP-MS. The method has been successfully used to determine the 10B-BPA in two lines of cultured cells. PMID:16372182

  2. Synthesis and characterization of zirconium diboride precursor based on polycentric bridge bonds

    International Nuclear Information System (INIS)

    Zirconium diboride (ZrB2) is one of the most important ultrahigh temperature ceramics (UHTCs). ZrB2 precursor was synthesized with bis(cyclopentadienyl)zirconium dihydride (Cp2ZrH2) and borane-dimethyl sulfide complex (BH3·S(CH3)2). The influences of molar ratio of reactants and reaction temperature on the solubility of the as-synthesized precursors were investigated. The molecular structure of the precursor, pyrolysis behavior, and the composition of the derived ceramics were investigated by X-ray photoelectron spectroscopy (XPS), Fourier Transformed Infrared Spectroscopy (FT IR), Raman Spectroscopy (RMS), 1H Nuclear Magnetic Resonance Spectroscopy (1H NMR), 11B Nuclear Magnetic Resonance Spectroscopy (11B NMR), Thermogravimetric-Mass Spectroscopy (TG-MS), X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM), respectively. The results showed that, the precursor was an oligomer based on Zr–H–B polycentric bridge bonds with molecular weight of 750 and formula as (Cp2Zr(BH4)2)3. The precursor would probably further polymerize under vacuum or at high temperature and lead to an insoluble polymer. The ceramic yield of the precursor at 1000 °C was around 66% under N2 atmosphere. After pyrolyzed at 1800 °C, the derived ceramics were composed of h-ZrB2, ZrC, and free carbon with a formula as ZrB1.38C2.18. - Highlights: • ZrB2 precursor based on Zr–H–B polycentric bridge bonds was synthesized. • The ceramic yield of the precursor at 1000 °C was around 66% under N2 atmosphere. • After pyrolyzed at 1800 °C, the derived ceramics were composed of h-ZrB2, ZrC and free carbon with a formula as ZrB1.38C2.18

  3. Synthesis and radiofluorination of putative NMDA receptor ligands

    International Nuclear Information System (INIS)

    In the course of this work on the synthesis of radioligands for the NMDA receptor the authentic standards and labeling precursors of four compounds with an amidine structure was performed. Synthesis of the precursors followed reaction conditions given in the literature and was successful. The imidoesters used for the synthesis were obtained from their nitriles in a Pinner synthesis, while 2-hydroxybenzylamine was synthesized in a reduction of 2-hydroxybenzonitrile using borane as a reducing agent. After a coupling reaction of the amine and the imidoester in DMF using triethylamine as base the precursors were obtained in good yields and purified by crystallization from methanol. The cyclic standard compound was synthesized directly from 2-(bromomethyl)- benzonitrile and 2-hydroxybenzylamine in a ring closing reaction. Similar to the other precursors, crystallization from methanol produced a pure compound. The authentic standards were synthesized starting from salicylaldehyde. In a four step synthesis the desired ortho-fluoroethoxybenzylamine was obtained in good yield. Coupling of the amine with the respective imidoester or in the case of the cyclic compound 2-(bromomethyl)-benzonitrile gave the desired product which was then purified by column chromatography or by crystallization from ethanol and water. For the labeling procedure 1-bromo-2-[18F]fluoroethane was synthesized following a previously published pathway starting from 1,2-dibromoethane. An alternative route of radiosynthesis for this prosthetic group was tested using ethyleneglycole- 1,2-ditosylate. The labeling reaction was performed on one of the precursors testing both DMF and DMSO as solvents and using NaOH as base. Yields of N-(2-fluoroethoxybenzyl)- cinnamamidine were about 78 % at 80 C after 30 minutes in DMSO. The desired product can now be synthesized in sufficient yields for in vitro and in vivo evaluation studies. Labeling on the cyclic precursor was attempted utilizing DMSO as solvent, but no

  4. First-row transition-metal-diborane and -borylene complexes.

    Science.gov (United States)

    Sharmila, Dudekula; Mondal, Bijan; Ramalakshmi, Rongala; Kundu, Sangita; Varghese, Babu; Ghosh, Sundargopal

    2015-03-23

    A combined experimental and quantum chemical study of Group 7 borane, trimetallic triply bridged borylene and boride complexes has been undertaken. Treatment of [{Cp*CoCl}2 ] (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) with LiBH4 ⋅thf at -78 °C, followed by room-temperature reaction with three equivalents of [Mn2 (CO)10 ] yielded a manganese hexahydridodiborate compound [{(OC)4 Mn}(η(6) -B2 H6 ){Mn(CO)3 }2 (μ-H)] (1) and a triply bridged borylene complex [(μ3 -BH)(Cp*Co)2 (μ-CO)(μ-H)2 MnH(CO)3 ] (2). In a similar fashion, [Re2 (CO)10 ] generated [(μ3 -BH)(Cp*Co)2 (μ-CO)(μ-H)2 ReH(CO)3 ] (3) and [(μ3 -BH)(Cp*Co)2 (μ-CO)2 (μ-H)Co(CO)3 ] (4) in modest yields. In contrast, [Ru3 (CO)12 ] under similar reaction conditions yielded a heterometallic semi-interstitial boride cluster [(Cp*Co)(μ-H)3 Ru3 (CO)9 B] (5). The solid-state X-ray structure of compound 1 shows a significantly shorter boron-boron bond length. The detailed spectroscopic data of 1 and the unusual structural and bonding features have been described. All the complexes have been characterized by using (1) H, (11) B, (13) C NMR spectroscopy, mass spectrometry, and X-ray diffraction analysis. The DFT computations were used to shed light on the bonding and electronic structures of these new compounds. The study reveals a dominant B-H-Mn, a weak B-B-Mn interaction, and an enhanced B-B bonding in 1. PMID:25689833

  5. Investigating the Synthesis of Ligated Metal Clusters in Solution Using a Flow Reactor and Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, Astrid M.; Laskin, Julia; Johnson, Grant E.

    2014-09-18

    The scalable synthesis of subnanometer metal clusters containing an exact number of atoms is of interest due to the highly size-dependent catalytic, electronic and optical properties of these species. While significant research has been conducted on the batch preparation of clusters through reduction synthesis in solution, the processes of metal complex reduction as well as cluster nucleation, growth and post-reduction etching are still not well understood. Herein, we demonstrate a temperature-controlled flow reactor for studying cluster formation in solution at well-defined conditions. Employing this technique methanol solutions of a chloro(triphenylphosphine)gold precursor, 1,4-bis(diphenylphosphino)butane capping ligand and borane-tert-butylamine reducing agent were combined in a mixing tee and introduced into a heated capillary with an adjustable length. In this manner, the temperature dependence of the relative abundance of different ionic reactants, intermediates and products synthesized in real time was characterized using online mass spectrometry. A wide distribution of doubly and triply charged cationic gold clusters was observed as well as smaller singly charged metal-ligand complexes. The results demonstrate that temperature plays a crucial role in determining the relative population of cationic gold clusters and, in general, that higher temperature promotes the formation of doubly charged clusters and singly charged metal-ligand complexes while hindering the growth of triply charged clusters. Moreover, the distribution of clusters observed at elevated temperatures is found to be consistent with that obtained at longer reaction times at room temperature, thereby demonstrating that heating may be used to access cluster distributions characteristic of different stages of reduction synthesis in solution.

  6. Palladium(II) complexes featuring a mixed phosphine-pyridine-iminophosphorane pincer ligand: synthesis and reactivity.

    Science.gov (United States)

    Cheisson, Thibault; Auffrant, Audrey

    2016-02-01

    An original mixed ligand (labelled L) of formula PPh2-CH2-Pyr-CH2-N[double bond, length as m-dash]PPh3, combining a pyridine core with phosphine and iminophosphorane, was synthesised. Its coordination with palladium(II) centers was studied. With [Pd(COD)Cl2], a cationic complex [LPdCl](Cl) 1, where L is coordinated in the pincer mode, was obtained. Chloride abstraction with silver salt in the presence of pyridine generated the dicationic complex [LPd(py)](BF4)2 (2). When reacting with a base such as potassium hexamethyldisilazane (KHMDS), 1 gave the neutral complex 3 [L*PdCl], wherein the benzylic position alpha to phosphine was selectively deprotonated, which induced dearomatisation of the pyridine ring. A similar complex [L*Pd(CH3)] (4) was obtained upon a reaction of [Pd(CH3)2(TMEDA)] and Lvia the departure of methane. Neutral complexes with the deprotonated ligand such as 3 yielded in the presence of deuterated methanol the corresponding deuterated complex, showing that the protonation is reversible with this ligand. Finally, upon attempting to dealkylate complex 4 using B(C6F5)3, an unexpected zwitterionic borated complex 5, resulting from the formation of a C-B bond in the benzylic position with restoration of the aromatic character of the pyridine, was isolated. Interestingly, when the metal was introduced after the ligand interacted with the borane reagent, another palladium complex formed, namely, [LPdMe][MeB(C6F5)3], originating from methyl abstraction. PMID:26419539

  7. New nanomaterials for hydrogen storage. A new class of aluminum hydrides; Neue Nanomaterialien zur Wasserstoffspeicherung. Eine neue Klasse von Aluminiumhydriden

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, Joern

    2009-02-13

    In this work, Aluminum was vaporized in a PACIS cluster source, while molecular Hydrogen was also provided, thus producing Aluminum hydride clusters. These clusters were mass selected and investigated via Photoelectron Spectroscopy with anions in order to determine their electronic structure. In a cooperation with Puru Jena et al. at the Virginia Commonwealth University, electronic and geometric structures of the clusters were also calculated using Density Functional Theory. A group of clusters, specifically Al{sub 4}H{sub 4}, Al{sub 4}H{sub 6} and a series of clusters Al{sub n}H{sub n+2} (5 {<=} n {<=} 8) showed large HOMO-LUMO-Gaps and relatively small adiabatic electron affinities, hinting towards an increased stability of these clusters. The resemblance of the structures of already known and stable Boranes (BnHm) led to investigations whether ''Wade's Rules'' could also be applied to the new Alanes Al{sub n}H{sub m}. Comparison of the experimentally found values for the HOMO-LUMO-Gap, Adiabatic electron Affinity and Vertical Detachment Energy with the calculated values led to geometric structures of the ground states that, in case of the clusters Al{sub n}H{sub n+2} (5 {<=} n {<=} 8) follow Wade's (n+1) rule: They adopt hollow, cage-like closo-structures with one terminal Hydrogen atom per Aluminum atom and two additional Hydrogen atoms on bridge-sites. The clusters Al{sub 4}H{sub 4} and Al{sub 4}H{sub 6} have tetrahedron-shaped structures. While Al{sub 4}H{sub 4} is a perfect tetrahedron, Al{sub 4}H{sub 6} adopts a slightly distorted tetrahedral geometry with D{sub 2d} symmetry and two Hydrogen atoms on bridge sites. Furthermore, Al{sub 4}H{sub 6} showed the biggest HOMO-LUMO-Gap of all investigated clusters with a value of 1.9 {+-} 0.1 eV. These findings seem to contradict Wade's (n+1) rule, but can be understood in terms of the Polyhedral Skeletal Electron Pair Theory (PSEPT). The molecular orbitals predicted by the PSEPT

  8. Characterization of moisture and water content on ignition and combustion of hypergolic propellants

    Science.gov (United States)

    Zarbo, Nicholas D.

    Triethylamine borane (TEAB) and white fuming nitric acid (WFNA) is a promising hypergolic propellant combination being studied as an alternative to monomethylhydrazine (MMH) and red fuming nitric acid (RFNA) or dinitrogen tetroxide (NTO). Nitric acid and MMH are both known to be hygroscopic and their performance is affected by their water content. However, the effect of water on TEAB is yet to be determined. The goal of this research is to characterize the major consequences of water presence on the ignition and combustion performance of TEAB and to compare those results to MMH. To determine the effect of hygroscopic absorption, TEAB samples were put through accelerated aging in humid and dry environments. Along with the aged TEAB, neat TEAB and neat MMH were used in drop on pool tests with WFNA. The drop tests were conducted by controlling the relative humidity in air to either below 24% or above 94% and the water concentration in WFNA to either 0% or 10% by weight. Using the Hypertester, ignition and combustion events were recorded using a photodiode, a microphone, a high speed camera, and a UV streak camera spectrometer. A drop chamber was used to determine the time of gas production onset from the liquid phase reactions. Along with the dry and humid air environments, tests were done in a nitrogen environment in the drop chamber. MMH and RFNA drop tests in a nitrogen environment were completed to replicate the results of Forness. Statistical analysis is applied to the data to determine significant parameters and trends. While relative humidity does not appear to affect the combustion of TEAB with WFNA, water concentration in the oxidizer significantly weakens it. Relative humidity improves MMH ignition delay time and water concentration shows no effect. Water concentration in the oxidizer more than doubles the liquid induction time of both TEAB and MMH with WFNA. The ambient environment does not play a significant role in the onset time of gas production. Both

  9. Beads,Necklaces, Chains and Strings in Capping Carbonyl Clusters

    Directory of Open Access Journals (Sweden)

    Enos Masheija Kiremire

    2015-09-01

    Full Text Available The paper attempts to explain at length the close relationship between transition metal carbonyl clusters with main group clusters especially the boranes using the 14n and 4n rules. When the ‘shielding’ electrons are removed from a transition metal carbonyl cluster and becomes ‘naked’, it resembles a corresponding one in the main group elements. A an expanded table of osmium carbonyl clusters was constructed using the capping fragment Os(CO2(14n-2 and the fragment Os(CO3 (14n+0. The table reveals the fact that the known series such closo, nido and arachno are part and parcel of a wide range of series especially the capping series 14n+q, where q takes up negative multiple integers of two including 0 such as such = 0, -2,-4, -6, and so on. The linkage between capping series in transition metal carbonyl clusters has also been identified. Apart from the capping series generated in the table, there is another type of series where the skeletal cluster elements remained the same but the number of carbonyl ligands successively decreased. These types of series are referred to as stripping series. Mapping generating functions were also derived which produces any cluster formula or series required. Also the table shows that many clusters form utilizing some of its atoms as closo nucleus around which the larger ones are built and thus forming clusters within larger clusters. The table may be used to categorize a given cluster formula that falls within its range. Otherwise, using the 14n rule or 4n rule can be used for cluster classification. Furthermore, the table indicated that atoms, fragments and molecules can be classified into series. Through this approach of using series, Hoffmann’s important isolobal relationship of chemical species can splendidly be explained.Using the 14n rule and 4n rules creates a framework under which chemical species such as atoms, fragments, molecules and ions some of which may appear unrelated from main group

  10. Association of myostatin on early calf mortality, growth, and carcass composition traits in crossbred cattle.

    Science.gov (United States)

    Casas, E; Bennett, G L; Smith, T P L; Cundiff, L V

    2004-10-01

    The objective of this study was to investigate a potential association of an inactive myostatin allele with early calf mortality, and evaluate its effect on growth and carcass traits in a crossbred population. Animals were obtained by mating F1 cows to F1 (Belgian Blue x British Breed) or Charolais sires. Cows were obtained from mating Hereford, Angus, and MARC III (1/4 Hereford, 1/4 Angus, 1/4 Pinzgauer, and 1/4 Red Poll) dams to Hereford, Angus, Tuli, Boran, Brahman, or Belgian Blue sires. Belgian Blue was the source of the inactive myostatin allele. Myostatin genotypes were determined for all animals including those that died before weaning. Early calf mortality was examined in the F2 subpopulation (n = 154), derived from the F1 sires mated to F1 cows from Belgian Blue sires, to evaluate animals with zero, one, or two copies of inactive myostatin allele. An overall 1:2:1 ratio (homozygous active myostatin allele:heterozygous:homozygous inactive myostatin allele) was observed in the population; however, a comparison between calves dying before weaning and those alive at slaughter showed an unequal distribution across genotypes (P yield grade, estimated kidney, pelvic, and heart fat, retail product yield and weight, fat yield and weight, bone yield and weight, and percentage of carcasses classified as Choice. Charolais lack the inactive myostatin allele segregating in Belgian Blue; thus, in the population sired by Charolais (n = 645), only animals with zero or one copy of the inactive myostatin allele were evaluated. Animals carrying one copy were heavier at birth and at weaning, and their carcasses were leaner and more muscled. In the population sired by Belgian Blue x British Breed (n = 725), animals with two copies of inactive myostatin allele were heavier at birth, leaner, and had a higher proportion of muscle mass than animals with zero or one copies. Heterozygous animals were heaviest at weaning and had the highest live weight, whereas animals with zero

  11. Formation mechanisms, structure, solution behavior, and reactivity of aminodiborane.

    Science.gov (United States)

    Li, Huizhen; Ma, Nana; Meng, Wenjuan; Gallucci, Judith; Qiu, Yongqing; Li, Shujun; Zhao, Qianyi; Zhang, Jie; Zhao, Ji-Cheng; Chen, Xuenian

    2015-09-30

    A facile synthesis of cyclic aminodiborane (NH2B2H5, ADB) from ammonia borane (NH3·BH3, AB) and THF·BH3 has made it possible to determine its important characteristics. Ammonia diborane (NH3BH2(μ-H)BH3, AaDB) and aminoborane (NH2BH2, AoB) were identified as key intermediates in the formation of ADB. Elimination of molecular hydrogen occurred from an ion pair, [H2B(NH3) (THF)](+)[BH4](-). Protic-hydridic hydrogen scrambling was proved on the basis of analysis of the molecular hydrogen products, ADB and other reagents through (2)H NMR and MS, and it was proposed that the scrambling occurred as the ion pair reversibly formed a BH5-like intermediate, [(THF)BH2NH2](η(2)-H2)BH3. Loss of molecular hydrogen from the ion pair led to the formation of AoB, most of which was trapped by BH3 to form ADB with a small amount oligomerizing to (NH2BH2)n. Theoretical calculations showed the thermodynamic feasibility of the proposed intermediates and the activation processes. The structure of the ADB·THF complex was found from X-ray single crystal analysis to be a three-dimensional array of zigzag chains of ADB and THF, maintained by hydrogen and dihydrogen bonding. Room temperature exchange of terminal and bridge hydrogens in ADB was observed in THF solution, while such exchange was not observed in diethyl ether or toluene. Both experimental and theoretical results confirm that the B-H-B bridge in ADB is stronger than that in diborane (B2H6, DB). The B-H-B bridge is opened when ADB and NaH react to form sodium aminodiboronate, Na[NH2(BH3)2]. The structure of the sodium salt as its 18-crown-6 ether adduct was determined by X-ray single crystal analysis. PMID:26335760

  12. Clinical and subclinical mastitis in smallholder dairy farms in Tanzania: risk, intervention and knowledge transfer.

    Science.gov (United States)

    Karimuribo, E D; Fitzpatrick, J L; Bell, C E; Swai, E S; Kambarage, D M; Ogden, N H; Bryant, M J; French, N P

    2006-04-17

    In a cross-sectional study of 400 randomly selected smallholder dairy farms in the Tanga and Iringa regions of Tanzania, 14.2% (95% confidence interval (CI)=11.6-17.3) of cows had developed clinical mastitis during the previous year. The point prevalence of subclinical mastitis, defined as a quarter positive by the California Mastitis Test (CMT) or by bacteriological culture, was 46.2% (95% CI=43.6-48.8) and 24.3% (95% CI=22.2-26.6), respectively. In a longitudinal disease study in Iringa, the incidence of clinical mastitis was 31.7 cases per 100 cow-years. A randomised intervention trial indicated that intramammary antibiotics significantly reduced the proportion of bacteriologically positive quarters in the short-term (14 days post-infusion) but teat dipping had no detectable effect on bacteriological infection and CMT positive quarters. Other risk and protective factors were identified from both the cross-sectional and longitudinal included animals with Boran breeding (odds ratio (OR)=3.40, 95% CI=1.00-11.57, Pmastitis, and OR=3.51, 95% CI=1.29-9.55, PCMT positive quarter), while the practice of residual calf suckling was protective for a bacteriologically positive quarter (OR=0.63, 95% CI=0.48-0.81, PCMT positive quarter (OR=0.69, 95% CI=0.63-0.75, Pmastitis training course for farmers and extension officers was held, and the knowledge gained and use of different methods of dissemination were assessed over time. In a subsequent randomised controlled trial, there were strong associations between knowledge gained and both the individual question asked and the combination of dissemination methods (village meeting, video and handout) used. This study demonstrated that both clinical and subclinical mastitis is common in smallholder dairying in Tanzania, and that some of the risk and protective factors for mastitis can be addressed by practical management of dairy cows following effective knowledge transfer. PMID:16488030

  13. Comparison of B{sub 2}O{sub 3} and BN deposited by atomic layer deposition for forming ultrashallow dopant regions by solid state diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Consiglio, Steven, E-mail: steve.consiglio@us.tel.com; Clark, Robert D.; O' Meara, David; Wajda, Cory S.; Tapily, Kandabara; Leusink, Gert J. [TEL Technology Center, America, LLC, 255 Fuller Rd., Albany, New York 12203 (United States)

    2016-01-15

    In this study, the authors investigated atomic layer deposition (ALD) of B{sub 2}O{sub 3} and BN for conformal, ultrashallow B doping applications and compared the effect of dopant-containing overlayers on sheet resistance (R{sub s}) and B profiles for both types of films subjected to a drive-in thermal anneal. For the deposition of B{sub 2}O{sub 3}, tris(dimethylamido)borane and O{sub 3} were used as coreactants and for the deposition of BN, BCl{sub 3} and NH{sub 3} were used as coreactants. Due to the extreme air instability of B{sub 2}O{sub 3} films, physical analysis was performed on B{sub 2}O{sub 3} films, which were capped in-situ with ∼30 Å ALD grown Al{sub 2}O{sub 3} layers. For the BN films, in-situ ALD grown Si{sub 3}N{sub 4} capping layers (∼30 Å) were used for comparison. From spectroscopic ellipsometry, a thickness decrease was observed after 1000 °C, 30 s anneal for the B{sub 2}O{sub 3} containing stack with 60 ALD cycles of B{sub 2}O{sub 3}, whereas the BN containing stacks showed negligible thickness decrease after the annealing step, regardless of the number of BN cycles tested. The postanneal reduction in film thickness as well as decrease in R{sub s} for the B{sub 2}O{sub 3} containing stack suggests that the solid state diffusion dopant mechanism is effective, whereas for the BN containing stacks this phenomenon seems to be suppressed. Further clarification of the effectiveness of the B{sub 2}O{sub 3} containing layer compared to the film stacks with BN was evidenced in backside secondary ion mass spectrometry profiling of B atoms. Thus, B{sub 2}O{sub 3} formed by an ALD process and subsequently capped in-situ followed by a drive-in anneal offers promise as a dopant source for ultrashallow doping, whereas the same method using BN seems ineffective. An integrated approach for B{sub 2}O{sub 3} deposition and annealing on a clustered tool also demonstrated controllable R{sub s} reduction without the use of a capping layer.

  14. Synthesis and hydride transfer reactions of cobalt and nickel hydride complexes to BX3 compounds.

    Science.gov (United States)

    Mock, Michael T; Potter, Robert G; O'Hagan, Molly J; Camaioni, Donald M; Dougherty, William G; Kassel, W Scott; DuBois, Daniel L

    2011-12-01

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H(2) gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)(2) (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX(3) compounds having a hydride affinity (HA) greater than or equal to the HA of BEt(3). This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)(2) and [HNi(dmpe)(2)](+), to form B-H bonds. The hydride donor abilities (ΔG(H(-))°) of HCo(dmpe)(2) and [HNi(dmpe)(2)](+) were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX(3) compounds. The collective data guided our selection of BX(3) compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)(2) was observed to transfer H(-) to BX(3) compounds with X = H, OC(6)F(5), and SPh. The reaction with B(SPh)(3) is accompanied by the formation of dmpe-(BH(3))(2) and dmpe-(BH(2)(SPh))(2) products that follow from a reduction of multiple B-SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)(2) and B(SPh)(3) in the presence of triethylamine result in the formation of Et(3)N-BH(2)SPh and Et(3)N-BH(3) with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)(2)](+) with B(SPh)(3) under analogous conditions give Et(3)N-BH(2)SPh as the final product along with the nickel-thiolate complex [Ni(dmpe)(2)(SPh)](+). The synthesis and characterization of HCo(dedpe)(2) (dedpe = Et(2)PCH(2)CH(2)PPh(2)) from H(2) and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)(2)Co(dedpe)(2)][BF(4)]. PMID:22040085

  15. Melissa officinalis L. extract – an effective remedy

    Directory of Open Access Journals (Sweden)

    Karol Terlecki

    2014-04-01

    Full Text Available Lemon balm is the popular name of Melissa officinalis L. Melissa comes from the Greek word Mélissa meaning honeybee. Within the species were distinguished three subspecies: M. officinalis ssp. altissima Arcangeli, M. officinalis ssp. officinalis, and M. officinalis ssp. indora Boran. These are the plants from Lamiaceae group, native to the Mediterranean, but also widespread distributed in moderate and subtropical climate regions. M. officinalis is commonly used for nervous complaints, lower abdominal disorders and more recently in the treatment of Herpes simplex lesions. Leaves are pharmacopeia material. In the fresh herb a content of balm oil is 0.01-0.10% and in the dried leaves from 0.1% up to 0.3%. The main components of M. officinalis usually are: citronellal (approximately 40% of content of balm oil, citral, neral, linalool, flavonoids, chlorogenic, ferulic, rosmarinic (4% of content of balm oil and caffeic acid. The aim of the study was to analyze the literature date about the application of balm extract and oil in the contemporary medicine. The latest studies showed the evidence that the alcoholic lemon balm leaves extract has antihyperlipidemic and antihyperglycemic effects. Thus could be used for the treatment of diabetes mellitus type 2 or dyslipidemia by the activation of receptors PPAR playing the major role in glucose and lipids metabolism. Another importance of the lemon balm leaves extract is its antiviral activity, owes to rosmarinic acid. Melissa extract demonstrates high virucidal activity even at very low concentrations; it demonstrates low toxicity and inhibits HSV-1 attachment to host cells in vitro. The volatile oils included in lemon balm inhibit the replication of HSV-2. Moreover, the rosmarinic acid found out to be cytotoxic against Human Colon Cancer Cell Line. The substance contained in an alcoholic extract from M. officinalis turned out to be anti-proliferative and decrease in cell number neoplasmatic cell

  16. Comparison of B2O3 and BN deposited by atomic layer deposition for forming ultrashallow dopant regions by solid state diffusion

    International Nuclear Information System (INIS)

    In this study, the authors investigated atomic layer deposition (ALD) of B2O3 and BN for conformal, ultrashallow B doping applications and compared the effect of dopant-containing overlayers on sheet resistance (Rs) and B profiles for both types of films subjected to a drive-in thermal anneal. For the deposition of B2O3, tris(dimethylamido)borane and O3 were used as coreactants and for the deposition of BN, BCl3 and NH3 were used as coreactants. Due to the extreme air instability of B2O3 films, physical analysis was performed on B2O3 films, which were capped in-situ with ∼30 Å ALD grown Al2O3 layers. For the BN films, in-situ ALD grown Si3N4 capping layers (∼30 Å) were used for comparison. From spectroscopic ellipsometry, a thickness decrease was observed after 1000 °C, 30 s anneal for the B2O3 containing stack with 60 ALD cycles of B2O3, whereas the BN containing stacks showed negligible thickness decrease after the annealing step, regardless of the number of BN cycles tested. The postanneal reduction in film thickness as well as decrease in Rs for the B2O3 containing stack suggests that the solid state diffusion dopant mechanism is effective, whereas for the BN containing stacks this phenomenon seems to be suppressed. Further clarification of the effectiveness of the B2O3 containing layer compared to the film stacks with BN was evidenced in backside secondary ion mass spectrometry profiling of B atoms. Thus, B2O3 formed by an ALD process and subsequently capped in-situ followed by a drive-in anneal offers promise as a dopant source for ultrashallow doping, whereas the same method using BN seems ineffective. An integrated approach for B2O3 deposition and annealing on a clustered tool also demonstrated controllable Rs reduction without the use of a capping layer

  17. Transition metal (Rh and Fe) complexes and main-group (Se and B) adducts with N,N'-diphosphanyl NHC ligands: a study of stereoelectronic properties.

    Science.gov (United States)

    Ai, Pengfei; Danopoulos, Andreas A; Braunstein, Pierre

    2016-03-21

    Attempts to evaluate experimentally the donor characteristics of the N,N'-bis(di-tert-butylphosphanyl)-imidazole-2-ylidene (PCNHCP) hybrid ligand are described. Thus, reactions of PCNHCP with [Rh(μ-Cl)(COD)]2 and [Rh(μ-Cl)(CO)2]2 led to the formation of the mononuclear and dinuclear complexes, [Rh(PCNHCP,κP,κCNHC)2]Cl (PCNHCP-RhCl) and [Rh(CO)(PCNHC,κP,κCNHC,κN)]2 (PCNHC-RhCO), respectively, the latter resulting after in situ cleavage of one (t-Bu)2P-Nimid bond of PCNHCP. With ligands acting as a P,C-chelate, a straightforward evaluation of the Tolman electronic parameter (TEP) of the CNHC donor is problematical; the viability of dangling P- and bound CNHC-donors (i.e.κCNHC) has been observed in the trinuclear Fe(ii) chain complex [Fe3Cl2(μ-Cl)4(THF)2(PCNHCP,κCNHC)2] (PCNHCP-Fe), obtained by the reaction of PCNHCP with [Fe4Cl8(THF)6] and, recently, established on Cr(II), Co(II) and Au(I) centres. Evaluation of the π-accepting properties of the PCNHCP (and the related Dipp-PCNHC) was based on the (77)Se NMR chemical shifts of the corresponding NHC-Se adducts, PCNHCP-Se (and Dipp-PCNHC-Se), which were prepared from the free PCNHCP (and Dipp-PCNHC) and Se. The π-acidity of PCNHCP is found to be higher than that of Dipp-PCNHC but lower than that of SIPr. The donor ability of the CNHC in PCNHCP was explored by its reaction with the Lewis acids tris(pentafluorophenyl)borane (B(C6F5)3) and tris(pentafluorophenyl)boroxine ([(C6F5)BO]3), which resulted in stable donor-acceptor adducts with no FLP reactivity. The steric properties of PCNHCP and Dipp-PCNHC are conformation dependent, with the percent buried volume (%Vbur) of PCNHCP in the structurally characterised conformer calculated at 67.6, the largest value currently reported for NHC ligands. PMID:26865504

  18. Synthesis and characterization of zirconium diboride precursor based on polycentric bridge bonds

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhengfang, E-mail: xiezhengfang@163.com; Deng, Xiaojun, E-mail: dengxiaoj1314@163.com; Suo, Xingwen, E-mail: suoxw@126.com; Zhou, Ting, E-mail: ztcs51@126.com; Gou, Yanzi, E-mail: y.gou2012@hotmail.com

    2015-06-01

    Zirconium diboride (ZrB{sub 2}) is one of the most important ultrahigh temperature ceramics (UHTCs). ZrB{sub 2} precursor was synthesized with bis(cyclopentadienyl)zirconium dihydride (Cp{sub 2}ZrH{sub 2}) and borane-dimethyl sulfide complex (BH{sub 3}·S(CH{sub 3}){sub 2}). The influences of molar ratio of reactants and reaction temperature on the solubility of the as-synthesized precursors were investigated. The molecular structure of the precursor, pyrolysis behavior, and the composition of the derived ceramics were investigated by X-ray photoelectron spectroscopy (XPS), Fourier Transformed Infrared Spectroscopy (FT IR), Raman Spectroscopy (RMS), {sup 1}H Nuclear Magnetic Resonance Spectroscopy ({sup 1}H NMR), {sup 11}B Nuclear Magnetic Resonance Spectroscopy ({sup 11}B NMR), Thermogravimetric-Mass Spectroscopy (TG-MS), X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM), respectively. The results showed that, the precursor was an oligomer based on Zr–H–B polycentric bridge bonds with molecular weight of 750 and formula as (Cp{sub 2}Zr(BH{sub 4}){sub 2}){sub 3}. The precursor would probably further polymerize under vacuum or at high temperature and lead to an insoluble polymer. The ceramic yield of the precursor at 1000 °C was around 66% under N{sub 2} atmosphere. After pyrolyzed at 1800 °C, the derived ceramics were composed of h-ZrB{sub 2}, ZrC, and free carbon with a formula as ZrB{sub 1.38}C{sub 2.18}. - Highlights: • ZrB{sub 2} precursor based on Zr–H–B polycentric bridge bonds was synthesized. • The ceramic yield of the precursor at 1000 °C was around 66% under N{sub 2} atmosphere. • After pyrolyzed at 1800 °C, the derived ceramics were composed of h-ZrB{sub 2}, ZrC and free carbon with a formula as ZrB{sub 1.38}C{sub 2.18}.

  19. Low-Cost Precursors to Novel Hydrogen Storage Materials

    International Nuclear Information System (INIS)

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH4), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH4 from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H2) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH4 as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH4 is a key building block to most boron-based fuels, and the ability to produce NaBH4 in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering-guided R

  20. Low-Cost Precursors to Novel Hydrogen Storage Materials

    Energy Technology Data Exchange (ETDEWEB)

    Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

    2010-12-31

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This

  1. Transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates: Catalysts for asymmetric olefin hydroamination and acceptorless alcohol decarbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal [Ames Lab., Ames, IA (United States)

    2012-12-17

    The research presented and discussed in this dissertation involves the synthesis of transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates, and their application in catalytic enantioselective olefin hydroamination and acceptorless alcohol decarbonylation. Neutral oxazolinylboranes are excellent synthetic intermediates for preparing new borate ligands and also developing organometallic complexes. Achiral and optically active bis(oxazolinyl)phenylboranes are synthesized by reaction of 2-lithio-2-oxazolide and 0.50 equiv of dichlorophenylborane. These bis(oxazolinyl)phenylboranes are oligomeric species in solid state resulting from the coordination of an oxazoline to the boron center of another borane monomer. The treatment of chiral bis(oxazolinyl)phenylboranes with sodium cyclopentadienide provide optically active cyclopentadienyl-bis(oxazolinyl)borates H[PhB(C5H5)(OxR)2] [OxR = Ox4S-iPr,Me2, Ox4R-iPr,Me2, Ox4S-tBu]. These optically active proligands react with an equivalent of M(NMe2)4 (M = Ti, Zr, Hf) to afford corresponding cyclopentadienyl-bis(oxazolinyl)borato group 4 complexes {PhB(C5H4)(OxR)2}M(NMe2)2 in high yields. These group 4 compounds catalyze cyclization of aminoalkenes at room temperature or below, providing pyrrolidine, piperidine, and azepane with enantiomeric excesses up to 99%. Our mechanistic investigations suggest a non-insertive mechanism involving concerted C-N/C-H bond formation in the turnover limiting step of the catalytic cycle. Among cyclopentadienyl-bis(oxazolinyl)borato group 4 catalysts, the zirconium complex {PhB(C5H4)(Ox4S-iPr,Me2)2}Zr(NMe2)2 ({S-2}Zr(NMe2)2) displays highest activity and enantioselectivity. Interestingly, S-2

  2. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    van Hassel, Bart A. [United Technologies Research Center, East Hartford, CT (United States)

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the

  3. Structural and Electronic Investigations of Complex Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Hyunjin [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    structures of these and related materials. Such calculations allow us to examine various interactions at the atomic scale, interactions which include orbital overlap, two-electron interactions, and Madelung terms. Moreover, these electronic studies also provide links between the angstrom-scale atomic interactions and the macro-scale physical properties, such as magnetism. Over the past few decades, there have been many significant developments toward understanding structure-bonding-property relationships in extended solids in terms of variables including atomic size, valence electron concentration, and electronegativity. However, many simple approaches based on electron counting, e.g., the octet rule, the 18-electron rule, or Wade's rules for boranes, cannot be applied adequately or universally to many of the more complex intermetallic compounds. For intermetallic phases that include late transition metals and post transition main group elements as their constituents, one classification scheme has been developed and effectively applied by using their valence electron count per atom (vec). These compounds are known as Hume-Rothery electron phases, and they have a variety of structure types with vec < 2.0 as shown in Table 1.

  4. From Fundamental Understanding To Predicting New Nanomaterials For High Capacity Hydrogen/Methane Storage and Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Taner [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-03-03

    On-board hydrogen/methane storage in fuel cell-powered vehicles is a major component of the national need to achieve energy independence and protect the environment. The main obstacles in hydrogen storage are slow kinetics, poor reversibility and high dehydrogenation temperatures for the chemical hydrides; and very low desorption temperatures/energies for the physisorption materials (MOF’s, porous carbons). Similarly, the current methane storage technologies are mainly based on physisorption in porous materials but the gravimetric and volumetric storage capacities are below the target values. Finally, carbon capture, a critical component of the mitigation of CO2 emissions from industrial plants, also suffers from similar problems. The solid-absorbers such as MOFs are either not stable against real flue-gas conditions and/or do not have large enough CO2 capture capacity to be practical and cost effective. In this project, we addressed these challenges using a unique combination of computational, synthetic and experimental methods. The main scope of our research was to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. We studied the effect of scaffolding and doping of the candidate materials on their storage and dynamics properties. We reviewed current progress, challenges and prospect in closely related fields of hydrogen/methane storage and carbon capture.[1-5] For example, for physisorption based storage materials, we show that tap-densities or simply pressing MOFs into pellet forms reduce the uptake capacities by half and therefore packing MOFs is one of the most important challenges going forward. For room temperature hydrogen storage application of MOFs, we argue that MOFs are the most promising scaffold materials for Ammonia-Borane (AB) because of their unique interior active metal-centers for AB binding and well

  5. B═B and B≡E (E = N and o) multiple bonds in the coordination sphere of late transition metals.

    Science.gov (United States)

    Brand, Johannes; Braunschweig, Holger; Sen, Sakya S

    2014-01-21

    Because of their unusual structural and bonding motifs, multiply bonded boron compounds are fundamentally important to chemists, leading to enormous research interest. To access these compounds, researchers have introduced sterically demanding ligands that provide kinetic as well as electronic stability. A conceptually different approach to the synthesis of such compounds involves the use of an electron-rich, coordinatively unsaturated transition metal fragment. To isolate the plethora of borane, boryl, and borylene complexes, chemists have also used the coordination sphere of transition metals to stabilize reactive motifs in these molecules. In this Account, we summarize our results showing that increasingly synthetically challenging targets such as iminoboryl (B≡N), oxoboryl (B≡O), and diborene (B═B) fragments can be stabilized in the coordination sphere of late transition metals. This journey began with the isolation of two new iminoboryl ligands trans-[(Cy3P)2(Br)M(B≡N(SiMe3))] (M = Pd, Pt) attached to palladium and platinum fragments. The synthesis involved oxidative addition of the B-Br bond in (Me3Si)2N═BBr2 to [M(PCy3)2] (M = Pt, Pd) and the subsequent elimination of Me3SiBr at room temperature. Variation of the metal, the metal-bound coligands, and the substituent at the nitrogen atom afforded a series of analogous iminoboryl complexes. Following the same synthetic strategy, we also synthesized the first oxoboryl complex trans-[(Cy3P)2BrPt(BO)]. The labile bromide ligand adjacent to platinum makes the complex a viable candidate for further substitution reactions, which led to a number of new oxoboryl complexes. In addition to allowing us to isolate these fundamental compounds, the synthetic strategy is very convenient and minimizes byproducts. We also discuss the reaction chemistry of these types of compounds. In addition to facilitating the isolation of compounds with B≡E (E = N, O) triple bonds, the platinum fragment can also stabilize a

  6. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    Science.gov (United States)

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late

  7. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic

  8. Variance components and genetic parameters for milk production and lactation pattern in an ethiopian multibreed dairy cattle population.

    Science.gov (United States)

    Gebreyohannes, Gebregziabher; Koonawootrittriron, Skorn; Elzo, Mauricio A; Suwanasopee, Thanathip

    2013-09-01

    The objective of this study was to estimate variance components and genetic parameters for lactation milk yield (LY), lactation length (LL), average milk yield per day (YD), initial milk yield (IY), peak milk yield (PY), days to peak (DP) and parameters (ln(a) and c) of the modified incomplete gamma function (MIG) in an Ethiopian multibreed dairy cattle population. The dataset was composed of 5,507 lactation records collected from 1,639 cows in three locations (Bako, Debre Zeit and Holetta) in Ethiopia from 1977 to 2010. Parameters for MIG were obtained from regression analysis of monthly test-day milk data on days in milk. The cows were purebred (Bos indicus) Boran (B) and Horro (H) and their crosses with different fractions of Friesian (F), Jersey (J) and Simmental (S). There were 23 breed groups (B, H, and their crossbreds with F, J, and S) in the population. Fixed and mixed models were used to analyse the data. The fixed model considered herd-year-season, parity and breed group as fixed effects, and residual as random. The single and two-traits mixed animal repeatability models, considered the fixed effects of herd-year-season and parity subclasses, breed as a function of cow H, F, J, and S breed fractions and general heterosis as a function of heterozygosity, and the random additive animal, permanent environment, and residual effects. For the analysis of LY, LL was added as a fixed covariate to all models. Variance components and genetic parameters were estimated using average information restricted maximum likelihood procedures. The results indicated that all traits were affected (p<0.001) by the considered fixed effects. High grade B×F cows (3/16B 13/16F) had the highest least squares means (LSM) for LY (2,490±178.9 kg), IY (10.5±0.8 kg), PY (12.7±0.9 kg), YD (7.6±0.55 kg) and LL (361.4±31.2 d), while B cows had the lowest LSM values for these traits. The LSM of LY, IY, YD, and PY tended to increase from the first to the fifth parity. Single

  9. Ferrocene-fused derivatives of acenes, tropones and thiepins

    Science.gov (United States)

    Maharjan, Bidhya Laxmi

    This research project is concentrated on tuning the properties of small organic molecules, namely polyacenes, tropones and thiepins, by incorporating redox-active transition metal centers pi-bonded to terminal cyclopentadienyl ligands. Organometallicfused acenequinones, tropones, thiepins and cyclopentadiene-capped polyacenes were synthesized and characterized. This work was divided into three parts: first, the synthesis of ferrocene-fused acenequinones, cyclopentadiene-capped acenequinones and their subsequent aromatization to polyacenes; second, the synthesis of ferrocene-fused tropones, thiotropones and tropone oxime; and third, the synthesis of ferrocene-fused thiepins. Ferrocene-fused quinones are the precursors to our target complexes. Our synthetic route to ferrocenequinones involved two-fold aldol condensation between 1,2- diformylferrocene and naphthalene-1,4-diol or anthracene-1,4-diol, and four-fold condensation between 1,2-diformylferrocene and 1,4-cyclohexanedione. Reduction of ferrocene-fused quinones with borane in THF resulted in ferrocene-fused dihydroacenes. Attempts to reduce ferrocene-fused acenequinones with sodium dithionite led to metalfree cyclopentadiene- (Cp-) capped acenequinones. Cp-capped acenequinones were aromatized to bis(triisopropylsilyl)ethynyl polyacenes by using lithium (triisopropylsilyl)acetylide (TIPSC≡CLi) with subsequent dehydroxylation by stannous chloride. The compounds were characterized by using spectroscopic methods and X-ray crystallography. Further, the electronic properties of these compounds were studied by using cyclic voltammetry and UV-visible spectroscopy. Cyclic voltammetry showed oxidation potentials of Cp-capped TIPS-tetracene and bis-Cp-capped TIPS-anthracene as 0.49 V and 0.61 V, respectively (vs. ferrocene/ferrocenium). The electrochemical band gaps were 2.15 eV and 2.58 eV, respectively. Organic thin-film transistor device performance of Cp-capped polyacenes was studied using solution deposition

  10. One-Step PCR Sequencing. Final Technical Progress Report for February 15, 1997 - November 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, B. R.

    2004-04-16

    We investigated new chemistries and alternate approaches for direct gene sequencing and detection based on the properties of boron-substituted nucleotides as chain delimiters in lieu of conventional chain terminators. Chain terminators, such as the widely used Sanger dideoxynucleotide truncators, stop DNA synthesis during replication and hence are incompatible with further PCR amplification. Chain delimiters, on the other hand, are chemically-modified, ''stealth'' nucleotides that act like normal nucleotides in DNA synthesis and PCR amplification, but can be unmasked following chain extension and exponential amplification. Specifically, chain delimiters give rise to an alternative sequencing strategy based on selective degradation of DNA chains generated by PCR amplification with modified nucleotides. The method as originally devised employed template-directed enzymatic, random incorporation of small amounts of boron-modified nucleotides (e.g., 2'-deoxynucleoside 5'-alpha-[P-borano]- triphosphates) during PCR amplification. Rather than incorporation of dideoxy chain terminators, which are less efficiently incorporated in PCR-based amplification than natural deoxynucleotides, our method is based on selective incorporation and exonuclease degradation of DNA chains generated by efficient PCR amplification of chemically-modified ''stealth'' nucleotides. The stealth nucleotides have a boranophosphate group instead of a normal phosphate, yet behave like normal nucleotides during PCR-amplification. The unique feature of our method is that the position of the stealth nucleotide, and hence DNA sequencing fragments, are revealed at the desired, appropriate moment following PCR amplification. During the current grant period, a variety of new boron-modified nucleotides were synthesized, and new chemistries and enzymatic methods and combinations thereof were explored to improve the method and study the effects of borane modified

  11. Development of group IV molecular catalysts for high temperature ethylene-α-olefin copolymerization reactions.

    Science.gov (United States)

    Klosin, Jerzy; Fontaine, Philip P; Figueroa, Ruth

    2015-07-21

    polymerization reactions were conducted in the presence of diethylzinc, an essential requirement for use in the production of olefin block copolymers via chain shuttling polymerization. Overall, the excellent characteristics of imino-amido-type catalysts, including high catalytic activities and ultrahigh molecular weight capabilities, make them good candidates for high temperature syntheses of block and random ethylene-α-olefin copolymers. Additionally, trialkyl imino-enamido complexes react quickly with various protic and unsaturated organic fragments, leading to a library of dialkyl precatalysts that, in several instances, resulted in superior catalysts. In conjunction with the development of transition metal catalysts, we also synthesized and evaluated activators for olefin polymerization. We found, for example, that, when conducted in coordinating solvents, the reaction between aluminum alkyls and tris(pentafluorophenyl)borane leads to the exclusive formation of alumenium borates, which are excellent activators for CGC complexes. Additionally, we developed a series of highly effective new activators featuring a very weakly coordinating anion composed of two Lewis acids coordinated to an imidazole fragment. PMID:26151395

  12. Hydrogen storage materials at INCDTIM Cluj - Napoca. Achievements and outlook

    International Nuclear Information System (INIS)

    Introducing hydrogen fuel to the transportation area poses key challenges for research on hydrogen storage materials. As one of the most promising alternative fuels for transport, hydrogen offers the long-term potential for an energy system that produces near-zero emissions and can be based on renewable energy sources. The Joint Research Centre (JRC), a Directorate-General of the European Commission fosters research for safe methods for storing hydrogen, for use in fuel cells or modified combustion engines in cars and other road vehicles. Hydrogen storage materials focused, in the last 30 years, the attention of the research programs in the many countries. Due to the fast development of the fuel cell technologies, the subject is much more stringent now. For mobile applications to fuel cell powered vehicles, on-board storage materials with hydrogen absorption/desorption capacities of at least 6.5%H are needed. For an efficient storage system the goal is to pack hydrogen as close as possible. Hydrogen storage implies the reduction of an enormous volume of H2 gas (1 kg of gas has a volume of 11 m3 at ambient temperature and pressure). To reach the high volumetric and gravimetric density suitable for mobile applications, basically six reversible storage methods are known today according to A. Zuettel: 1) high-pressure gas cylinders, 2) liquid in cryogenic tanks, 3) physisorbed on a solid surface e.g. carbon-nanotubes 4) metal hydrides of the metals or intermetallic compounds. 5) complex hydrides of light elements such as alanates and boranates, 6) storage via chemical reactions. Recently, the storage as hydrogen hydrates at 50 bar using promoters has been reported by F. Peetom. The paper discusses the feasibility of each of these storing alternatives. The authors presents their experience and results of the work in the field of metal hydrides and application obtained since 1975. All classes of hydrogen absorbing intermetallic compounds were studied: LaNi5, FeTi, Ti

  13. Materials with engineered mesoporosity for programmed mass transport

    Science.gov (United States)

    Gough, Dara V.

    relative to the unswollen template. Electroless plating and cation exchange were explored as methods to vary the shell material of MHS. Mesoporous Ni MHS were obtained by the reduction of Ni2+ with dimethylamine borane onto a CML latex core. However, the resultant MHS were damaged due to core swelling during etch. To successfully obtain undeformed MHS, a silica core must be utilized; one possible route to explore, in order to reach this goal, is the surface chemistry/ligand effects on Ni2+. Cation exchange was performed in order to obtain CuS MHS; however, it proved an unsuccessful route to PbS, S and HgS. CdS-ZnS, Bi2S3 and Ag2S MHS were obtained only with significant defects. A novel hierarchically structured material, porous opal, was prepared using a colloidal crystal template and the dealloying of silver from gold and possed porosity on length scales range from 10s of nanometers (due to the colloidal crystal template) down to ca. 10 nm (due to dealloying). The transport properties of the material were studied using cyclic voltammetry and electrochemical impedance spectroscopy. The porous opal was found to posses enhanced charge transport properties relative to a unimodal porous gold film and a higher surface area than a gold opal. An equivalent circuit model was presented to explain the enhanced charge transport properties. A biomimetic system for studying the translocation of polymers through a channel and into a spherical cavity was developed based on inspiration from the gamma-bacteriophage. The nanocavity system was synthesized using two template length scales: 250 nm and 1.2 mum. Fabrication challenges that arose when using 1.2 mum colloidal templates were addressed, and the system was optimized for confinement studies of plasmid dsDNA.

  14. Coverage Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-selected Ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-11-29

    The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2. Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state

  15. Preparation and imaging of rhenium-188 labeled human serum albumin microsphere in orthotopic hepatoma rats

    International Nuclear Information System (INIS)

    Objective: The present study relates to a method for preparing 188Re-labeled human serum albumin microspheres (HSAM) by 188Re(I)-tricarbonyl ion(188Re(OH2)3(CO)3)+). This radioactive particle can be subjected to radioembolization for liver tumor. Methods: The particle sizes and conformations of HSA microspheres were analyzed by Particle sizes-Malvern mastersizer and Scanning Electron Microscope (SEM). For preparing 188Re(I)-tricarbonyl ion, the 188ReO4- was eluted from a 188W/188Re generator with saline. The radio labeling efficiency was analyzed with high-performance liquid chromatography (HPLC). Amino borane-reduced 188ReO4-was interacted with carbon oxide to form (188Re(OH2)3(CO)3]+). For preparing 188Re-HSA microspheres, the 188Re(I)-tricarbonyl ion was added into a vial with HSA microspheres. The in vitro stability was investigated. The rat was injected with 188Re-HSA microspheres via hepatic artery route. Nano-SPECT/CT Imaging was acquired after injection of 188Re-HSA microspheres. Results: The shape of HSA microsphere was rough surfaced sphere or oval-shaped. The particle size was distributed between 20 and 35 μm. In the RP-HPLC-UV chromatography, the yield of 188Re(I)-tricarbonyl ion was 75–80%. The labeling efficiency of 188Re-HSA microspheres in this method was more than 85%. After incubation, the 188Re(I)-tricarbonyl ion labeled HSA microspheres were found to be stable in vitro in normal saline and rat plasma. The result of Nano-SPECT/CT Imaging quantification analysis indicated that the percentage of injection dose %ID was maintained at 95% ID-88% ID from 2 to 72 h after injection with 188Re- HSA microspheres. Conclusions: The method of 188Re(I)-tricarbonyl ion labeled HSA microspheres can proceed with high labeling yield. Furthermore, this method provided a convenient method for radio-labeling of HSA microspheres with 188Re as well as a kit for manufacturing. - Highlights: • The present study relates to a method for preparing 188Re-labeled human

  16. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick [Univ. of California, Los Angeles, CA (United States)

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are

  17. An analysis of Socio-economic and physical aspects of Slum areas in Ahar city

    Directory of Open Access Journals (Sweden)

    N. Zali

    2013-01-01

    these districts shows that economic, social and physical situation of these districts aren’t in a good condition. Due to poor sanitary condition and free flow of sewages, keeping animals in some residential units, the possibility of infectious diseases and their development to other parts of the city are increasing. 4– ConclusionThe results show that more than 90% of the residents of these neighborhoods immigrated from near villages which in Shileh-boran involves nearly 95% of residents. Furthermore, more than 80% of the immigrations are of familial form and individual immigration is rare in these areas. Considering the occupational status of these immigrants, 45% are workers with the average salary of 100-150 thousands tomans. In addition, results show that Shileh-boran and Nirougah neighborhoods have poorer economic, social and physical conditions. The problems of ownership, poor housing situation, sewage system and access can be regarded as the important problems in these areas.The analysis of the results of the SWOT show that despite the serious threats and fundamental weaknesses such as high percentage of workers in primary jobs, hidden and seasonal unemployment, high dependency ratio, limited role of women in economy of the family, poor intensity, lack of financial facilities in improving neighborhoods, disorder of streets margin space, lack of balance in void and solid spaces, narrow passages, compression of texture, inefficiency of network access, weak and inappropriate studding, facade and form, low educated ratio, migration of majority of residents, bad sanitary condition, high rate of crime between young people, there are some opportunities for empowerment of the residents and improvement in neighborhood. These opportunities can be the inclination of the municipality in improving neighborhood, government's attention to organizing the informal habitat, international aids for empowerment activities, the existence of the sense of public participation of the

  18. FERRIC ION-SPECIFIC SEQUESTERING AGENTS. 7. SYNTHESIS, IRON EXCHANGE KINETICS, AND STABILITY CONSTANTS OF N-SUBSTITUTED, SULFONATED CATECHOYLAMIDE ANALOGUES OF ENTEROBACTIN.

    Energy Technology Data Exchange (ETDEWEB)

    Pecoraro, Vincent L.; Weitl, Frederick L.; Raymond, Kenneth N.

    1980-10-01

    attached to the amide nitrogen through a methylene group, with amide formation with an acetyl group. In N,N',N"-triacetyl-N,N' ,N"-tris(2,3- dihydroxysulfobenzoyl) -N,N',N"-triaminomethylbenzene [NAcMECAMS, 111... and its unsulfonated precursor, the amide linkage of the catechoyl amides such as Me{sub 3}MECAMS (6) has been shifted from an endo position relative to the benzene and catechol rings to an exo position in which the amide carbonyl is not conjugated with the catechol ring and cannot form a stable chelate ring in conjunction with a catechol oxygen. The preparation of 11 and 10 proceeded from the previously described precursor of TRIMCAM, 7. borane reduction to the tri.amine 8, and amide formation with acetyl chloride to 9, followed by deprotection of the catechol oxygens with BBr{sub 3}/CH{sub 2}Cl{sub 2} to give 10. Sulfonation of 10 to NAcMECAMS, 11, is carried out in fuming sulfuric acid. In comparison with Me{sub 3}MECAMS, the protonation of NAcMECAMS (11) proceeds by an initial two-proton step in contrast to the one-proton reactions typical of the catechoyl amides, which can form a salicylate mode of coordination involving the amide carbonyl group. Also as a result of the removal of the carbonyl group from conjugation with the catechol ring, the acidity of NAcMECAMS (11) is less than Me{sub 3}MECAMS (6). While the estimated log {beta{sub 110} is approximately the same as for Me{sub 3}MECAMS (40). the effective formation constant (log K*) and pM.(- log [Fe{sub aq}{sup 3+}] ) values are lower (4.0 and 25.0, respectively).

  19. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    between alkaline metal hydrides (AmH), Alkaline earth metal hydrides (AeH2), alane (AlH3), transition metal (Tm) hydrides (TmHz, where z=1-3) and molecular hydrogen (H2). The effort started first with variations of known alanates and subsequently extended the search to unknown compounds. In this stage, the FPM techniques were developed and validated on known alanate materials such as NaAlH4 and Na2LiAlH6. The coupled predictive methodologies were used to survey over 200 proposed phases in six quaternary spaces, formed from various combinations of Na, Li Mg and/or Ti with Al and H. A wide range of alanate compounds was examined using SSP having additions of Ti, Cr, Co, Ni and Fe. A number of compositions and reaction paths were identified having H weight fractions up to 5.6 wt %, but none meeting the 7.5 wt%H reversible goal. Similarly, MSP of alanates produced a number of interesting compounds and general conclusions regarding reaction behavior of mixtures during processing, but no alanate based candidates meeting the 7.5 wt% goal. A novel alanate, LiMg(AlH4)3, was synthesized using SBP that demonstrated a 7.0 wt% capacity with a desorption temperature of 150°C. The deuteride form was synthesized and characterized by the Institute for Energy (IFE) in Norway to determine its crystalline structure for related FPM studies. However, the reaction exhibited exothermicity and therefore was not reversible under acceptable hydrogen gas pressures for on-board recharging. After the extensive studies of alanates, the material class of emphasis was shifted to borohydrides. Through SBP, several ligand-stabilized Mg(BH4)2 complexes were synthesized. The Mg(BH4)2*2NH3 complex was found to change behavior with slightly different synthesis conditions and/or aging. One of the two mechanisms was an amine-borane (NH3BH3) like dissociation reaction which released up to 16 wt %H and more conservatively 9 wt%H when not including H2 released from the NH3. From FPM, the stability of the Mg(BH4

  20. Application of molecular calcium compounds in catalysis and hydrogen storage; Anwendung von molekularen Calcium-Verbindungen in der Katalyse und der Wasserstoffspeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Spielmann, Jan

    2010-07-20

    structurally characterized. Depending on the metal and the sterical bulk of the substituent R the decomposition resulted in the clean formation of complexes with either a central dianionic [N(R)-BH-N(R)-BH3]2--unit (R = H, Me, i-Pr), a compound containing a borylamide [N(R)=BH2]- (R = 2,6-(i Pr)-C6H3) or a metal hydride complex. For the observed products mechanisms of their formation have been proposed and experimentally confirmed. In these mechanisms metal hydride species play a key role. The favoured decomposition pathway leads to formation of compounds with the central dianionic [N(R)-BH-N(R)-BH3]2--unit. Additionally a magnesium-catalyzed synthetic route to a bis(amino)borane HB[NH(DIPP)]2 has been developed which can form a novel boramidinate ligand {l_brace}HB[N(2,6-(i-Pr)-C6H3)]2{r_brace}2- by double deprotonation. Furthermore a preparative useful synthetic route to zinc and aluminium hydride complexes based on the use of amidoborane compounds has been described. By using novel bis({beta}-diketiminate) ligands it has been possible to prepare dinuclear magnesium amidoborane complexes. The investigation of their thermal decomposition gave important information on aggregation effects of the complexes during the dehydrogenation. As a decomposition product of a N-substituted, dinuclear magnesium amidoborane complex a tetranuclear magnesium hydride complex has been isolated in low yields. Alternatively such compounds have been prepared in good yields by reaction of a n butylmagnesium precursor with phenylsilane. This synthetic approach allowed also the preparation of an octanuclear magnesium hydride complex with a central paddle-wheel shaped [Mg8H10]-unit. These multinuclear magnesium hydride complexes could be considered as ligand-stabilized forms of MgH2 and could be valuable model systems for investigations on MgxHy-hydrogen storage materials. (orig.)

  1. Obituary: Hakki Ogelman (1940-2011)

    Science.gov (United States)

    Orio, Marina

    2011-12-01

    Hakki Boran Ögelman died in Austin, Texas, on September 4, 2011, after battling esophageal cancer for several months. Hakki was born in Ankara, Turkey, on July 8, 1940, and was the son of Salehettin Ögelman, a lawyer, and Vedya Özlem Ögelman, a schoolteacher. He had a sister, older by three years, the late Esen Yerliçi. Soon after his birth, the family moved to Istanbul, where Hakki attended the Robert College from sixth grade and obtained an international baccalaureate at age 17. In the same year, he moved to the United States to further his education at DePaw University in Indiana, where he obtained a Bachelor's Degree in three years and developed a strong passion for physics. He was accepted as a graduate student in physics at Cornell University, where he was fortunate to have such professors as Hans Bethe and Ed Salpeter, among others. Hakki's advisor, Kenneth Greisen, had worked on the Manhattan Project and was a leading expert in the study of charged particles from space and gamma rays from astronomical sources. For his Ph.D., Hakki flew a balloon experiment to measure gamma rays at the highest energy, deriving from the radioactive decay of elementary particles from space. Hakki received his Ph.D. from Cornell in February of 1966. After a postdoctoral year working on gamma ray astrophysics at the University of Sydney in Australia, Hakki accepted a fellowship at NASA's Goddard Space Flight Center where he became an expert on pulsars and wrote a series of articles published by Nature on astronomical sources of gamma rays. At age 30, Hakki declined the offer of a civil service position at NASA and left for Turkey, feeling he wanted to give back to his home country, which had given him a strong education and instilled in him core values. After a period in the military as an officer, he was offered a position at the Middle East Technical University (METU) of Ankara, an English speaking university. After becoming a full professor at METU and spending a