WorldWideScience

Sample records for bootstrap fraction tokamak

  1. Aspect Ratio Scaling of Ideal No-wall Stability Limits in High Bootstrap Fraction Tokamak Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, M.G.; Bell, R.E.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Maingi, R.; Sabbagh, S.A.; Soukhanovskii, V.; Stutman, D.

    2003-01-01

    Recent experiments in the low aspect ratio National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 (2000) 557] have achieved normalized beta values twice the conventional tokamak limit at low internal inductance and with significant bootstrap current. These experimental results have motivated a computational re-examination of the plasma aspect ratio dependence of ideal no-wall magnetohydrodynamic stability limits. These calculations find that the profile-optimized no-wall stability limit in high bootstrap fraction regimes is well described by a nearly aspect ratio invariant normalized beta parameter utilizing the total magnetic field energy density inside the plasma. However, the scaling of normalized beta with internal inductance is found to be strongly aspect ratio dependent at sufficiently low aspect ratio. These calculations and detailed stability analyses of experimental equilibria indicate that the nonrotating plasma no-wall stability limit has been exceeded by as much as 30% in NSTX in a high bootstrap fraction regime

  2. Analytic description of tokamak equilibrium sustained by high fraction bootstrap current

    International Nuclear Information System (INIS)

    Shi Bingren

    2002-01-01

    Recently, to save the current drive power and to obtain more favorable confinement merit for tokamak reactor, large faction bootstrap current sustained equilibrium has attracted great interests both theoretically and experimentally. An powerful expanding technique and the tokamak ordering are used to expand the Grad-Shafranov equation to obtain a series of ordinary differential equations which allow for different sets of input parameters. The fully bootstrap current sustained tokamak equilibria are then solved analytically

  3. Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime

    Science.gov (United States)

    Ren, Q.

    2015-11-01

    Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA

  4. The Local Fractional Bootstrap

    DEFF Research Database (Denmark)

    Bennedsen, Mikkel; Hounyo, Ulrich; Lunde, Asger

    We introduce a bootstrap procedure for high-frequency statistics of Brownian semistationary processes. More specifically, we focus on a hypothesis test on the roughness of sample paths of Brownian semistationary processes, which uses an estimator based on a ratio of realized power variations. Our...... new resampling method, the local fractional bootstrap, relies on simulating an auxiliary fractional Brownian motion that mimics the fine properties of high frequency differences of the Brownian semistationary process under the null hypothesis. We prove the first order validity of the bootstrap method...... and in simulations we observe that the bootstrap-based hypothesis test provides considerable finite-sample improvements over an existing test that is based on a central limit theorem. This is important when studying the roughness properties of time series data; we illustrate this by applying the bootstrap method...

  5. Definition of total bootstrap current in tokamaks

    International Nuclear Information System (INIS)

    Ross, D.W.

    1995-01-01

    Alternative definitions of the total bootstrap current are compared. An analogous comparison is given for the ohmic and auxiliary currents. It is argued that different definitions than those usually employed lead to simpler analyses of tokamak operating scenarios

  6. Transport Barriers in Bootstrap Driven Tokamaks

    Science.gov (United States)

    Staebler, Gary

    2017-10-01

    Maximizing the bootstrap current in a tokamak, so that it drives a high fraction of the total current, reduces the external power required to drive current by other means. Improved energy confinement, relative to empirical scaling laws, enables a reactor to more fully take advantage of the bootstrap driven tokamak. Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is due to the suppression of turbulence primarily due to the large Shafranov shift. ExB velocity shear does not play a significant role in the transport barrier due to the high safety factor. It will be shown, that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift driven barrier formation. The ion energy transport is reduced to neoclassical and electron energy and particle transport is reduced, but still turbulent, within the barrier. Deeper into the plasma, very large levels of electron transport are observed. The observed electron temperature profile is shown to be close to the threshold for the electron temperature gradient (ETG) mode. A large ETG driven energy transport is qualitatively consistent with recent multi-scale gyrokinetic simulations showing that reducing the ion scale turbulence can lead to large increase in the electron scale transport. A new saturation model for the quasilinear TGLF transport code, that fits these multi-scale gyrokinetic simulations, can match the data if the impact of zonal flow mixing on the ETG modes is reduced at high safety factor. This work was supported by the U.S. Department of Energy under DE-FG02-95ER54309 and DE-FC02

  7. Electric conductivity and bootstrap current in tokamak

    International Nuclear Information System (INIS)

    Mao Jianshan; Wang Maoquan

    1996-12-01

    A modified Ohm's law for the electric conductivity calculation is presented, where the modified ohmic current can be compensated by the bootstrap current. A comparison of TEXT tokamak experiment with the theories shows that the modified Ohm's law is a more close approximation to the tokamak experiments than the classical and neoclassical theories and can not lead to the absurd result of Z eff <1, and the extended neoclassical theory would be not necessary. (3 figs.)

  8. Bootstrap currents in stellarators and tokamaks

    International Nuclear Information System (INIS)

    Okamoto, Masao; Nakajima, Noriyoshi.

    1990-09-01

    The remarkable feature of the bootstrap current in stellarators is it's strong dependence on the magnetic field configuration. Neoclassical bootstrap currents in a large helical device of torsatron/heliotron type (L = 2, M = 10, R = 4 m, B = 4 T) is evaluated in the banana (1/ν) and the plateau regime. Various vacuum magnetic field configurations are studied with a view to minimizing the bootstrap current. It is found that in the banana regime, shifting of the magnetic axis and shaping of magnetic surfaces have a remarkable influence on the bootstrap current; a small outward shift of the magnetic axis and vertically elongated magnetic surfaces are favourable for a reduction of the bootstrap current. It is noted, however, that the ripple diffusion in the 1/ν regime has opposite tendency to the bootstrap current; it increases with the outward shift and increases as the plasma cross section is vertically elongated. The comparison will be made between bootstrap currents in stellarators and tokamaks. (author)

  9. Physics issues of high bootstrap current tokamaks

    International Nuclear Information System (INIS)

    Ozeki, T.; Azumi, M.; Ishii, Y.

    1997-01-01

    Physics issues of a tokamak plasma with a hollow current profile produced by a large bootstrap current are discussed based on experiments in JT-60U. An internal transport barrier for both ions and electrons was obtained just inside the radius of zero magnetic shear in JT-60U. Analysis of the toroidal ITG microinstability by toroidal particle simulation shows that weak and negative shear reduces the toroidal coupling and suppresses the ITG mode. A hard beta limit was observed in JT-60U negative shear experiments. Ideal MHD mode analysis shows that the n = 1 pressure-driven kink mode is a plausible candidate. One of the methods to improve the beta limit against the kink mode is to widen the negative shear region, which can induce a broader pressure profile resulting in a higher beta limit. The TAE mode for the hollow current profile is less unstable than that for the monotonic current profile. The reason is that the continuum gaps near the zero shear region are not aligned when the radius of q min is close to the region of high ∇n e . Finally, a method for stable start-up for a plasma with a hollow current profile is describe, and stable sustainment of a steady-state plasma with high bootstrap current is discussed. (Author)

  10. Transport barriers in bootstrap-driven tokamaks

    Science.gov (United States)

    Staebler, G. M.; Garofalo, A. M.; Pan, C.; McClenaghan, J.; Van Zeeland, M. A.; Lao, L. L.

    2018-05-01

    Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is caused by the suppression of turbulence primarily from the large Shafranov shift. It is shown that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift-driven barrier formation. Two self-organized states of the internal and edge transport barrier are observed. It is shown that these two states are controlled by the interaction of the bootstrap current with magnetic shear, and the kinetic ballooning mode instability boundary. Election scale energy transport is predicted to be dominant in the inner 60% of the profile. Evidence is presented that energetic particle-driven instabilities could be playing a role in the thermal energy transport in this region.

  11. TRANSFORMERLESS OPERATION OF DIII-D WITH HIGH BOOTSTRAP FRACTION

    International Nuclear Information System (INIS)

    POLITZER, PA; HYATT, AW; LUCE, TC; MAHDAVI, MA; MURAKAMI, M; PERKINS, FW; PRATER, R; TURNBULL, AD; CASPER, TA; FERRON, JR; JAYAKUMAR, RJ; LAHAYE, RJ; LAZARUS, EA; PETTY, CC; WADE, MR

    2003-01-01

    OAK-B135 The authors have initiated an experimental program to address some of the questions associated with operation of a tokamak with high bootstrap current fraction under high performance conditions, without assistance from a transformer. In these discharges they have maintained stationary (or slowly improving) conditions for > 2.2 s at β N ∼ β p ∼ 2.8. Significant current overdrive, with dI/dt > 50 kA/s and zero or negative voltage, is sustained for over 0.7 s. The overdrive condition is usually ended with the appearance of MHD activity, which alters the profiles and reduces the bootstrap current. Characteristically these plasmas have 65%-80% bootstrap current, 25%-30% NBCD, and 5%-10% ECCD. Fully noninductive operation is essential for steady-state tokamaks. For efficient operation, the bootstrap current fraction must be close to 100%, allowing for a small additional (∼ 10%) external current drive capability to be used for control. In such plasmas the current and pressure profiles are rightly coupled because J(r) is entirely determined by p(r) (or more accurately by the kinetic profiles). The pressure gradient in turn is determined by transport coefficients which depend on the poloidal field profile

  12. Control of bootstrap current in the pedestal region of tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Shaing, K. C. [Institute for Space and Plasma Sciences, National Cheng Kung University, Tainan City 70101, Taiwan (China); Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796 (United States); Lai, A. L. [Institute for Space and Plasma Sciences, National Cheng Kung University, Tainan City 70101, Taiwan (China)

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by the electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.

  13. Bootstrap and fast wave current drive for tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1991-09-01

    Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power ( o = 18 MA needs P FW = 15 MW, P LH = 75 MW). A computational survey of bootstrap fraction and current drive efficiency is presented. 11 refs., 8 figs

  14. Combined RF current drive and bootstrap current in tokamaks

    International Nuclear Information System (INIS)

    Schultz, S. D.; Bers, A.; Ram, A. K.

    1999-01-01

    By calculating radio frequency current drive (RFCD) and the bootstrap current in a consistent kinetic manner, we find synergistic effects in the total noninductive current density in tokamaks [1]. We include quasilinear diffusion in the Drift Kinetic Equation (DKE) in order to generalize neoclassical theory to highly non-Maxwellian electron distributions due to RFCD. The parallel plasma current is evaluated numerically with the help of the FASTEP Fokker-Planck code [2]. Current drive efficiency is found to be significantly affected by neoclassical effects, even in cases where only circulating electrons interact with the waves. Predictions of the current drive efficiency are made for lower hybrid and electron cyclotron wave current drive scenarios in the presence of bootstrap current

  15. Energy confinement of tokamak plasma with consideration of bootstrap current effect

    International Nuclear Information System (INIS)

    Yuan Ying; Gao Qingdi

    1992-01-01

    Based on the η i -mode induced anomalous transport model of Lee et al., the energy confinement of tokamak plasmas with auxiliary heating is investigated with consideration of bootstrap current effect. The results indicate that energy confinement time increases with plasma current and tokamak major radius, and decreases with heating power, toroidal field and minor radius. This is in reasonable agreement with the Kaye-Goldston empirical scaling law. Bootstrap current always leads to an improvement of energy confinement and the contraction of inversion radius. When γ, the ratio between bootstrap current and total plasma current, is small, the part of energy confinement time contributed from bootstrap current will be about γ/2

  16. Stable equilibria for bootstrap-current-driven low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Miller, R.L.; Lin-Liu, Y.R.; Turnbull, A.D.; Chan, V.S.; Pearlstein, L.D.; Sauter, O.; Villard, L.

    1997-01-01

    Low aspect ratio tokamaks (LATs) can potentially provide a high ratio of plasma pressure to magnetic pressure β and high plasma current I at a modest size. This opens up the possibility of a high-power density compact fusion power plant. For the concept to be economically feasible, bootstrap current must be a major component of the plasma current, which requires operating at high β p . A high value of the Troyon factor β N and strong shaping is required to allow simultaneous operation at a high-β and high bootstrap fraction. Ideal magnetohydrodynamic stability of a range of equilibria at aspect ratio 1.4 is systematically explored by varying the pressure profile and shape. The pressure and current profiles are constrained in such a way as to assure complete bootstrap current alignment. Both β N and β are defined in terms of the vacuum toroidal field. Equilibria with β N ≥8 and β∼35%endash 55% exist that are stable to n=∞ ballooning modes. The highest β case is shown to be stable to n=0,1,2,3 kink modes with a conducting wall. copyright 1997 American Institute of Physics

  17. Stationary, high bootstrap fraction plasmas in DIII-D without inductive current control

    International Nuclear Information System (INIS)

    Politzer, P.A.; Hyatt, A.W.; Luce, T.C.; Prater, R.; Turnbull, A.D.; Ferron, J.R.; Greenfield, C.M.; La Haye, R.J.; Petty, C.C.; Perkins, F.W.; Brennan, D.P.; Lazarus, E.A.; Jayakumar, J.; Wade, M.R.

    2005-01-01

    We have initiated an experimental program to address some of the questions associated with operation of a tokamak with high bootstrap current fraction under high performance conditions, without assistance from a transformer. In these discharges stationary (or slowly improving) conditions are maintained for > 3.7 s at β N ∼ β p ≤ 3.3. The achievable current and pressure are limited by a relaxation oscillation, involving growth and collapse of an ITB at ρ ≥ 0.6. The pressure gradually increases and the current profile broadens throughout the discharge. Eventually the plasma reaches a more stable, high confinement (H89P ∼ 3) state. Characteristically these plasmas have 65%-85% bootstrap current, 15%-30% NBCD, and 0%-10% ECCD. (author)

  18. Stationary high confinement plasmas with large bootstrap current fraction in JT-60U

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Fujita, T.; Ide, S.; Isayama, A.; Takechi, M.; Suzuki, T.; Takenaga, H.; Oyama, N.; Kamada, Y.

    2005-01-01

    This paper reports the results of the progress in stationary discharges with a large bootstrap current fraction in JT-60U towards steady-state tokamak operation. In the weak shear plasma regime, high-β p ELMy H-mode discharges have been optimized under nearly full non-inductive current drive conditions by the large bootstrap current fraction (f BS ∼ 45%) and the beam driven current fraction (f BD ∼ 50%), which was sustained for 5.8 s in the stationary condition. This duration corresponds to ∼26τ E and ∼2.8τ R , which was limited by the pulse length of negative-ion-based neutral beams. The high confinement enhancement factor H 89 ∼ 2.2 (HH 98y2 ∼ 1.0) was obtained and the profiles of current and pressure reached the stationary condition. In the reversed shear plasma regime, a large bootstrap current fraction (f BS ∼ 75%) has been sustained for 7.4 s under nearly full non-inductive current drive conditions. This duration corresponds to ∼16τ E and ∼2.7τ R . The high confinement enhancement factor H 89 ∼ 3.0 (HH 98y2 ∼ 1.7) was also sustained, and the profiles of current and pressure reached the stationary condition. The large bootstrap current and the off-axis beam driven current sustained this reversed q profile. This duration was limited only by the duration of the neutral beam injection

  19. Comparison of bootstrap current and plasma conductivity models applied in a self-consistent equilibrium calculation for Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Maria Celia Ramos; Ludwig, Gerson Otto [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: mcr@plasma.inpe.br

    2004-07-01

    Different bootstrap current formulations are implemented in a self-consistent equilibrium calculation obtained from a direct variational technique in fixed boundary tokamak plasmas. The total plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schlueter, and the neoclassical Ohmic and bootstrap currents. The Ohmic component is calculated in terms of the neoclassical conductivity, compared here among different expressions, and the loop voltage determined consistently in order to give the prescribed value of the total plasma current. A comparison among several bootstrap current models for different viscosity coefficient calculations and distinct forms for the Coulomb collision operator is performed for a variety of plasma parameters of the small aspect ratio tokamak ETE (Experimento Tokamak Esferico) at the Associated Plasma Laboratory of INPE, in Brazil. We have performed this comparison for the ETE tokamak so that the differences among all the models reported here, mainly regarding plasma collisionality, can be better illustrated. The dependence of the bootstrap current ratio upon some plasma parameters in the frame of the self-consistent calculation is also analysed. We emphasize in this paper what we call the Hirshman-Sigmar/Shaing model, valid for all collisionality regimes and aspect ratios, and a fitted formulation proposed by Sauter, which has the same range of validity but is faster to compute than the previous one. The advantages or possible limitations of all these different formulations for the bootstrap current estimate are analysed throughout this work. (author)

  20. Mass transport and the bootstrap current from Ohm's law in steady-state tokamaks

    International Nuclear Information System (INIS)

    Kim, J.-S.; Greene, J.M.

    1989-01-01

    The consequences of mass conservation and Ohm's law are examined for steady state Tokamaks. In a Tokamak, magnetofluid-dynamic waves rapidly equilibrate pressure and toroidal field along magnetic surfaces. As a result, the detailed current distribution is determined by the flux surface averaged poloidal and toroidal currents. The electrons that carry the plasma current are impeded in their motion by interactions with ions, which is resistivity and its generalizations, and by interactions with electrons, which is viscosity and its generalizations. The important viscous terms arise from the interaction between trapped and untrapped electrons, and so viscosity acts by impeding poloidal current. properly chosen, the results of neoclassical theory are The neoclassical viscous coefficient is here regarded as less likely than Spitzer conductivity to be experimentally relevant in a turbulent Tokamak. Thus, the toroidal Ohm's law is regarded as being more reliable than the poloidal Ohm's law. A combination of toroidal and poloidal Ohm's law, namely the component parallel to the magnetic field, eliminates the influence of plasma fueling, and directly relates the bootstrap current and the pressure gradient. The latter is the usual relation, but, since i

  1. Fractional power operation of tokamak reactors

    International Nuclear Information System (INIS)

    Mau, T.K.; Vold, E.L.; Conn, R.W.

    1986-01-01

    Methods to operate a tokamak fusion reactor at fractions of its rated power, identify the more effective control knobs and assess the impact of the requirements of fractional power operation on full power reactor design are explored. In particular, the role of burn control in maintaining the plasma at thermal equilibrium throughout these operations is studied. As a prerequisite to this task, the critical physics issues relevant to reactor performance predictions are examined and some insight into their impact on fractional power operation is offered. The basic tool of analysis consists of a zero-dimensional (0-D) time-dependent plasma power balance code which incorporates the most advanced data base and models in transport and burn plasma physics relevant to tokamaks. Because the plasma power balance is dominated by the transport loss and given the large uncertainty in the confinement model, the authors have studied the problem for a wide range of energy confinement scalings. The results of this analysis form the basis for studying the temporal behavior of the plasma under various thermal control mechanisms. Scenarios of thermally stable full and fractional power operations have been determined for a variety of transport models, with either passive or active feedback burn control. Important power control parameters, such as gas fueling rate, auxiliary power and other plasma quantities that affect transport losses, have also been identified. The results of these studies vary with the individual transport scaling used and, in particular, with respect to the effect of alpha heating power on confinement

  2. A simulation study on burning profile tailoring of steady state, high bootstrap current tokamaks

    International Nuclear Information System (INIS)

    Nakamura, Y.; Takei, N.; Tobita, K.; Sakamoto, Y.; Fujita, T.; Fukuyama, A.; Jardin, S.C.

    2007-01-01

    From the aspect of fusion burn control in steady state DEMO plant, the significant challenges are to maintain its high power burning state of ∝3-5 GW without burning instability, hitherto well-known as ''thermal stability'', and also to keep its desired burning profile relevant with internal transport barrier (ITB) that generates high bootstrap current. The paper presents a simulation modeling of the burning stability coupled with the self-ignited fusion burn and the structure-formation of the ITB. A self-consistent simulation, including a model for improved core energy confinement, has pointed out that in the high power fusion DEMO plant there is a close, nonlinear interplay between the fusion burnup and the current source of non-inductive, ITB-generated bootstrap current. Consequently, as much distinct from usual plasma controls under simulated burning conditions with lower power (<<1 GW), the selfignited fusion burn at a high power burning state of ∝3-5 GW becomes so strongly selforganized that any of external means except fuelling can not provide the effective control of the stable fusion burn.It is also demonstrated that externally applied, inductive current perturbations can be used to control both the location and strength of ITB in a fully noninductive tokamak discharge. We find that ITB structures formed with broad noninductive current sources such as LHCD are more readily controlled than those formed by localized sources such as ECCD. The physics of the inductive current is well known. Consequently, we believe that the controllability of the ITB is generic, and does not depend on the details of the transport model (as long as they can form an ITB for sufficiently reversed magnetic shear q-profile). Through this external control of the magnetic shear profile, we can maintain the ITB strength that is otherwise prone to deteriorate when the bootstrap current increases. These distinguishing capabilities of inductive current perturbation provide steady

  3. Axisymmetric MHD simulation of ITB crash and following disruption dynamics of Tokamak plasmas with high bootstrap current

    International Nuclear Information System (INIS)

    Takei, Nahoko; Tsutsui, Hiroaki; Tsuji-Iio, Shunji; Shimada, Ryuichi; Nakamura, Yukiharu; Kawano, Yasunori; Ozeki, Takahisa; Tobita, Kenji; Sugihara, Masayoshi

    2004-01-01

    Axisymmetric MHD simulation using the Tokamak Simulation Code demonstrated detailed disruption dynamics triggered by a crash of internal transport barrier in high bootstrap current, high β, reversed shear plasmas. Self-consistent time-evolutions of ohmic current bootstrap current and induced loop voltage profiles inside the disrupting plasma were shown from a view point of disruption characterization and mitigation. In contrast with positive shear plasmas, a particular feature of high bootstrap current reversed shear plasma disruption was computed to be a significant change of plasma current profile, which is normally caused due to resistive diffusion of the electric field induced by the crash of internal transport barrier in a region wider than the internal transport barrier. Discussion based on the simulation results was made on the fastest record of the plasma current quench observed in JT-60U reversed shear plasma disruptions. (author)

  4. Analysis of Electron Thermal Diffusivity and Bootstrap Current in Ohmically Heated Discharges after Boronization in the HT-7 Tokamak

    International Nuclear Information System (INIS)

    Zhang, X.M.; Wan, B.N.

    2005-01-01

    Significant improvements of plasma performance after ICRF boronization have been achieved in the full range of HT-7 operation parameters. Electron power balance is analyzed in the steady state ohmic discharges of the HT-7 tokamak. The ratio of the total radiation power to ohmic input power increases with increasing the central line-averaged electron density, but decreases with plasma current. It is obviously decreased after wall conditioning. Electron heat diffusivity χ e deduced from the power balance analysis is reduced throughout the main plasma after boronization. χ e decreases with increasing central line-averaged electron density in the parameter range of our study. After boronization, the plasma current profile is broadened and a higher current can be easily obtained on the HT-7 tokamak experiment. It is expected that the fact that the bootstrap current increases after boronization will explain these phenomena. After boronization, the plasma pressure gradient and the electron temperature near the boundary are larger than before, these factors influencing that the ratio of bootstrap current to total plasma current increases from several percent to above 10%

  5. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hager, Robert, E-mail: rhager@pppl.gov; Chang, C. S., E-mail: cschang@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-04-15

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.

  6. Advanced tokamak physics in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Petty, C.C.; Luce, T.C.; Politzer, P.A.; Bray, B.; Burrell, K.H.; Chu, M.S.; Ferron, J.R.; Gohil, P.; Greenfield, C.M.; Hsieh, C.-L.; Hyatt, A.W.; La Haye, R.J.; Lao, L.L.; Leonard, A.W.; Lin-Liu, Y.R.; Lohr, J.; Mahdavi, M.A.; Petrie, T.W.; Pinsker, R.I.; Prater, R.; Scoville, J.T.; Staebler, G.M.; Strait, E.J.; Taylor, T.S.; West, W.P. [General Atomics, PO Box 85608, San Diego, CA (United States); Wade, M.R.; Lazarus, E.A.; Murakami, M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Allen, S.L.; Casper, T.A.; Jayakumar, R.; Lasnier, C.J.; Makowski, M.A.; Rice, B.W.; Wolf, N.S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Austin, M.E. [University of Texas, Austin, TX (United States); Fredrickson, E.D.; Gorelov, I.; Johnson, L.C.; Okabayashi, M.; Wong, K.-L. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Garofalo, A.M.; Navratil, G.A. [Columbia University, New York (United States); Heidbrink, W. [University of California, Irvine, CA (United States); Kinsey, J.E. [Leheigh University, Bethlehem, PA (United States); McKee, G.R. [University of Wisconsin, Madison, WI (United States); Rettig, C.L.; Rhodes, T.L. [University of California, Los Angeles, CA (United States); Watkins, J.G. [Sandia National Laboratories, Albuquerque, NM (United States)

    2000-12-01

    Advanced tokamaks seek to achieve a high bootstrap current fraction without sacrificing fusion power density or fusion gain. Good progress has been made towards the DIII-D research goal of demonstrating a high-{beta} advanced tokamak plasma in steady state with a relaxed, fully non-inductive current profile and a bootstrap current fraction greater than 50%. The limiting factors for transport, stability, and current profile control in advanced operating modes are discussed in this paper. (author)

  7. Tokamak power reactor ignition and time dependent fractional power operation

    International Nuclear Information System (INIS)

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-06-01

    A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve

  8. Fractional variational problems and particle in cell gyrokinetic simulations with fuzzy logic approach for tokamaks

    Directory of Open Access Journals (Sweden)

    Rastović Danilo

    2009-01-01

    Full Text Available In earlier Rastovic's papers [1] and [2], the effort was given to analyze the stochastic control of tokamaks. In this paper, the deterministic control of tokamak turbulence is investigated via fractional variational calculus, particle in cell simulations, and fuzzy logic methods. Fractional integrals can be considered as approximations of integrals on fractals. The turbulent media could be of the fractal structure and the corresponding equations should be changed to include the fractal features of the media.

  9. Tokamak

    International Nuclear Information System (INIS)

    Wesson, John.

    1996-01-01

    This book is the first compiled collection about tokamak. At first chapter tokamak is represented from fusion point of view and also the necessary conditions for producing power. The following chapters are represent plasma physics, the specifications of tokamak, plasma heating procedures and problems related to it, equilibrium, confinement, magnetohydrodynamic stability, instabilities, plasma material interaction, plasma measurement and experiments regarding to tokamak; an addendum is also given at the end of the book

  10. Extending Bootstrap

    CERN Document Server

    Niska, Christoffer

    2014-01-01

    Practical and instruction-based, this concise book will take you from understanding what Bootstrap is, to creating your own Bootstrap theme in no time! If you are an intermediate front-end developer or designer who wants to learn the secrets of Bootstrap, this book is perfect for you.

  11. Calculation of the neoclassical conductivity of plasma and fraction of trapped particles for elongated Damavand Tokamak

    International Nuclear Information System (INIS)

    Dini, F.; Khorasani, S.

    2007-01-01

    Configuration of Tokamak plasma has a dominant effect on its parameters. In the calculation of transport, there are some transport coefficients and quantities, where the knowledge of their precise values, according to the system of equations, is essential to be realized. Tokamak has a toroidal configuration, in addition to classical effects, it is necessary to study the neoclassical effects due to the field curvature. The trapped particles in strong electromagnetic fields oscillate on banana-shaped orbits which in turn affect many other collisional transport parameters. Here, a precise estimation of trapped particles based on the standard equilibrium model for an elliptical shape of Tokamak plasma has been carried out using Lin-Liu model. It should be added that in this calculation, the profile of the averaged magnetic field on the flux surfaces has been derived using analytical integration and consideration of an elliptic shape for ellipticity function in the limit of large aspect ratio and zero shift of magnetic flux surfaces. Having the fraction of the trapped particles, by ,following the formulation and using an appropriate model in various collisional regimes, the neoclassical conductivity of plasma in Damavand Tokamak is obtained and the respective variations have been found. The presented results can exploit the computation of transport and other quantities of Damavand Tokamak

  12. Bootstrap Score Tests for Fractional Integration in Heteroskedastic ARFIMA Models, with an Application to Price Dynamics in Commodity Spot and Futures Markets

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Nielsen, Morten Ørregaard; Taylor, A.M. Robert

    Empirical evidence from time series methods which assume the usual I(0)/I(1) paradigm suggests that the efficient market hypothesis, stating that spot and futures prices of a commodity should cointegrate with a unit slope on futures prices, does not hold. However, these statistical methods...... fractionally integrated model we are able to find a body of evidence in support of the efficient market hypothesis for a number of commodities. Our new tests are wild bootstrap implementations of score-based tests for the order of integration of a fractionally integrated time series. These tests are designed...... principle do. A Monte Carlo simulation study demonstrates that very significant improvements infinite sample behaviour can be obtained by the bootstrap vis-à-vis the corresponding asymptotic tests in both heteroskedastic and homoskedastic environments....

  13. Ignition and time-dependent fractional power operation of tokamak reactors

    International Nuclear Information System (INIS)

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-01-01

    The eventual utilization of a tokamak fusion reactor for commercial power necessitates a thorough understanding of the operational requirements at full and fractional power levels and during transitions from one operating level to another. In this study we examine the role of burn control in maintaining the reactor plasma at equilibrium to avoid thermal runaway during fractional power operation. Because these requirements rely so heavily on the assumptions that govern the plasma transport, this study focuses on time-dependent analyses and a comparison of ignition requirements using a range of energy confinement

  14. Bootstrap essentials

    CERN Document Server

    Bhaumik, Snig

    2015-01-01

    If you are a web developer who designs and develops websites and pages using HTML, CSS, and JavaScript, but have very little familiarity with Bootstrap, this is the book for you. Previous experience with HTML, CSS, and JavaScript will be helpful, while knowledge of jQuery would be an extra advantage.

  15. System assessment of helical reactors in comparison with tokamaks

    International Nuclear Information System (INIS)

    Yamazaki, K.; Imagawa, S.; Muroga, T.; Sagara, A.; Okamura, S.

    2002-10-01

    A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-β N tokamak reactors. (author)

  16. Computational images of internal-transport-barrier oscillations in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bizarro, J.P S. [Inst Super Tecn, Ctr Fusao Nucl, EURATOM Assoc, P-1049001 Lisbon (Portugal); Litaudon, X.L. [CEA Cadarache, Dept Rech Fus Controlee, EURATOM Assoc, F-13108 St Paul Les Durance (France); Tala, T.J.J. [Assoc Euratom Tekes, FIN-02044 Espoo (Finland); JET EFDA Contributors [Culham Sci Ctr, Abingdon OX14 3DB, Oxon (United Kingdom)

    2008-07-01

    A well-known benchmarked code, where a Bohm-gyro-Bohm transport model is complemented with an empirical scaling for the dynamics of internal transport barriers (ITBs), is used to model the ITB oscillations that are often seen in advanced tokamak scenarios with a dominant fraction of bootstrap current. (authors)

  17. Quasi-Maximum Likelihood Estimation and Bootstrap Inference in Fractional Time Series Models with Heteroskedasticity of Unknown Form

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Nielsen, Morten Ørregaard; Taylor, Robert

    We consider the problem of conducting estimation and inference on the parameters of univariate heteroskedastic fractionally integrated time series models. We first extend existing results in the literature, developed for conditional sum-of squares estimators in the context of parametric fractional...... time series models driven by conditionally homoskedastic shocks, to allow for conditional and unconditional heteroskedasticity both of a quite general and unknown form. Global consistency and asymptotic normality are shown to still obtain; however, the covariance matrix of the limiting distribution...... of the estimator now depends on nuisance parameters derived both from the weak dependence and heteroskedasticity present in the shocks. We then investigate classical methods of inference based on the Wald, likelihood ratio and Lagrange multiplier tests for linear hypotheses on either or both of the long and short...

  18. The Bootstrap Current and Neutral Beam Current Drive in DIII-D

    International Nuclear Information System (INIS)

    Politzer, P.A.

    2005-01-01

    Noninductive current drive is an essential part of the implementation of the DIII-D Advanced Tokamak program. For an efficient steady-state tokamak reactor, the plasma must provide close to 100% bootstrap fraction (f bs ). For noninductive operation of DIII-D, current drive by injection of energetic neutral beams [neutral beam current drive (NBCD)] is also important. DIII-D experiments have reached ∼80% bootstrap current in stationary discharges without inductive current drive. The remaining current is ∼20% NBCD. This is achieved at β N [approximately equal to] β p > 3, but at relatively high q 95 (∼10). In lower q 95 Advanced Tokamak plasmas, f bs ∼ 0.6 has been reached in essentially noninductive plasmas. The phenomenology of high β p and β N plasmas without current control is being studied. These plasmas display a relaxation oscillation involving repetitive formation and collapse of an internal transport barrier. The frequency and severity of these events increase with increasing β, limiting the achievable average β and causing modulation of the total current as well as the pressure. Modeling of both bootstrap and NBCD currents is based on neoclassical theory. Measurements of the total bootstrap and NBCD current agree with calculations. A recent experiment based on the evolution of the transient voltage profile after an L-H transition shows that the more recent bootstrap current models accurately describe the plasma behavior. The profiles and the parametric dependences of the local neutral beam-driven current density have not yet been compared with theory

  19. Improvement of the tokamak concept

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, L

    1994-12-31

    Improvement of the tokamak concept is highly desirable to reduce the size and capital cost of a device able to ignite to increase the plasma pressure, i.e. the power density to reduce the cost of electricity, and to increase the fraction of bootstrap current to render the tokamak compatible with continuous operation. The most important results obtained in this field are summarized, and the options are shown which are still open and explored by the various experiments. Various effects of the plasma shaping are discussed, plasma configurations with both high {beta}{sub N} and H{sub G} are explored, and the issues of stable steady state and of the plasma edge are briefly discussed. (R.P.). 65 refs., 2 tabs.

  20. On transport and the bootstrap current in toroidal plasmas

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The recently reported observation of the bootstrap current in a tokamak plasma highlights the problem of reconciling this neoclassical effect with the anomalous (i.e., non-neoclassical) electron thermal transport. This Comment reviews the bootstrap current and considers the implications of a self-consistent modification of neoclassical theory based on an enhanced electron-electron interaction. (author)

  1. DIII-D Advanced Tokamak Research Overview

    International Nuclear Information System (INIS)

    V.S. Chan; C.M. Greenfield; L.L. Lao; T.C. Luce; C.C. Petty; G.M. Staebler

    1999-01-01

    This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously β N H of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues

  2. Mobile-first Bootstrap

    CERN Document Server

    Magno, Alexandre

    2013-01-01

    A practical, step-by-step tutorial on developing websites for mobile using Bootstrap.This book is for anyone who wants to get acquainted with the new features available in Bootstrap 3 and who wants to develop websites with the mobile-first feature of Bootstrap. The reader should have a basic knowledge of Bootstrap as a frontend framework.

  3. Self-consistent ECCD calculations with bootstrap current

    International Nuclear Information System (INIS)

    Decker, J.; Bers, A.; Ram, A. K; Peysson, Y.

    2003-01-01

    To achieve high performance, steady-state operation in tokamaks, it is increasingly important to find the appropriate means for modifying and sustaining the pressure and magnetic shear profiles in the plasma. In such advanced scenarios, especially in the vicinity of internal transport barrier, RF induced currents have to be calculated self-consistently with the bootstrap current, thus taking into account possible synergistic effects resulting from the momentum space distortion of the electron distribution function f e . Since RF waves can cause the distribution of electrons to become non-Maxwellian, the associated changes in parallel diffusion of momentum between trapped and passing particles can be expected to modify the bootstrap current fraction; conversely, the bootstrap current distribution function can enhance the current driven by RF waves. For this purpose, a new, fast and fully implicit solver has been recently developed to carry out computations including new and detailed evaluations of the interactions between bootstrap current (BC) and Electron Cyclotron current drive (ECCD). Moreover, Ohkawa current drive (OKCD) appears to be an efficient method for driving current when the fraction of trapped particles is large. OKCD in the presence of BC is also investigated. Here, results are illustrated around projected tokamak parameters in high performance scenarios of AlcatorC-MOD. It is shown that by increasing n // , the EC wave penetration into the bulk of the electron distribution is greater, and since the resonance extends up to high p // values, this situation is the usual ECCD based on the Fisch-Boozer mechanism concerning passing particles. However, because of the close vicinity of the trapped boundary at r/a=0.7, this process is counterbalanced by the Ohkawa effect, possibly leading to a negative net current. Therefore, by injecting the EC wave in the opposite toroidal direction (n // RF by OKCD may be 70% larger than that of ECCD, with a choice of EC

  4. Two-stream cyclotron radiative instabilities due to the marginally mirror-trapped fraction for fustion alphas in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Arunasalam, V.

    1995-07-01

    It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency {omega}{sub c{alpha}}. This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies {omega} {approx} m{omega}{sub c{alpha}}.

  5. Two-stream cyclotron radiative instabilities due to the marginally mirror-trapped fraction for fustion alphas in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1995-07-01

    It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency ω cα . This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies ω ∼ mω cα

  6. ACHIEVING AND SUSTAINING STEADY-STATE ADVANCED TOKAMAK CONDITIONS ON DIII-D

    International Nuclear Information System (INIS)

    WADE, MR; MURAKAMI, M; BRENNAN, DP; CASPER, TA; FERRON, JR; GAROFALO, AM; GREENFIELD, CM; HYATT, AW; JAYAKUMAR, R; KINSEY, JE; LAHAYE, RJ; LAO, LL; LAZARUS, EA; LOHR, J; LUCE, TC; PETTY, CC; POLITZER, PA; PRATER, R; STRAIT, EJ; TURNBULL, AD; WATKINS, JG; WEST, WP

    2002-01-01

    Recent experiments on the DIII-D tokamak have demonstrated the feasibility of sustaining advanced tokamak conditions that combine high fusion power density (β > 4%), high bootstrap current fraction (f BS ∼ 65%), and high non-inductive current fractions (f NI ∼ 85%) for several energy confinement times. The duration of such conditions is limited only by resistive relaxation of the current density profile. Modeling studies indicate that the application of off-axis ECCD will be able to maintain a favorable current density profile for several seconds

  7. Achieving and sustaining steady-state advanced tokamak conditions on DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Murakami, M.; Brennan, D.P.

    2003-01-01

    Recent experiments on the DIII-D tokamak have demonstrated the feasibility of sustaining advanced tokamak conditions that combine high fusion power density (β > 4%), high bootstrap current fraction (f BS ∼ 65%), and high non-inductive current fractions (f NI ∼85%) for several energy confinement times. The duration of such conditions is limited only by resistive relaxation of the current density profile. Modeling studies indicate that the application of off-axis ECCD will be able to maintain a favorable current density profile for several seconds. (author)

  8. Experimental and theoretical basis for advanced tokamaks

    International Nuclear Information System (INIS)

    Chan, V.S.

    1994-09-01

    In this paper, arguments will be presented to support the attractiveness of advanced tokamaks as fusion reactors. The premise that all improved confinement regimes obtained to date were limited by magnetohydrodynamic stability will be established from experimental results. Accessing the advanced tokamak regime, therefore, requires means to overcome and enhance the beta limit. We will describe a number of ideas involving control of the plasma internal profiles, e.g. to achieve this. These approaches will have to be compatible with the underlying mechanisms for confinement improvement, such as shear rotation suppression of turbulence. For steady-state, there is a trade-off between full bootstrap current operation and the ability to control current profiles. The coupling between current drive and stability dictates the choice of sources and suggests an optimum for the bootstrap fraction. We summarize by presenting the future plans of the US confinement devices, DIII-D, PBX-M, C-Mod, to address the advanced tokamak physics issues and provide a database for the design of next-generation experiments

  9. On the optimization of a steady-state bootstrap-reactor

    International Nuclear Information System (INIS)

    Polevoy, A.R.; Martynov, A.A.; Medvedev, S.Yu.

    1993-01-01

    A commercial fusion tokamak-reactor may be economically acceptable only for low recirculating power fraction r 0 ≡ P CD /P α BS ≡I BS /I > 0.9 to sustain the steady-state operation mode for high plasma densities > 1.5 10 20 m -3 , fulfilled the divertor conditions. This paper presents the approximate expressions for the optimal set of reactor parameters for r BS /I∼1, based on the self-consistent plasma simulations by 1.5D ASTRA code. The linear MHD stability analysis for ideal n=1 kink and ballooning modes has been carried out to determine the conditions of stabilization for bootstrap steady state tokamak reactor BSSTR configurations. (author) 10 refs., 1 tab

  10. Conceptual design of the steady state tokamak reactor (SSTR)

    International Nuclear Information System (INIS)

    Oikawa, A.; Kikuchi, M.; Seki, Y.; Nishio, S.; Ando, T.; Ohara, Y.; Takizuka, Tani, K.; Ozeki, T.; Koizumi, K.; Ikeda, B.; Suzuki, Y.; Ueda, N.; Kageyama, T.; Yamada, M.; Mizoguchi, T.; Iida, F.; Ozawa, Y.; Mori, S.; Yamazaki, S.; Kobayashi, T.; Adachi, H.J.; Shinya, K.; Ozaki, A.; Asahara, M.; Konishi, K.; Yokogawa, N.

    1992-01-01

    This paper reports that on the basis of a high bootstrap current fraction observation with JT-60, the concept of steady state tokamak reactor , the SSTR, was conceived and was evolved with the design activity of the SSTR at JAERI. Also results of ITER/FER design activities has enhanced the SSTR design. Moreover the remarkable progress of R and D for fusion reactor engineering, especially in the development of superconducting coils and negative ion based NBI at JAERI have promoted the SSTR conceptual design as a realistic power reactor. Although present fusion power reactor designs are currently considered to be too large and costly, results of the SSTR conceptual design suggest that an efficient and promising tokamak reactor will be feasible. The conceptual design of the SSTR provides a realistic reference for a demo tokamak reactor

  11. Lessons learned from the Tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-01-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety and health (ES ampersand H) characteristics of projected tokamak power plants. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances relative to present understanding in physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advanced tokamak plasmas configured in the second-stability regime that achieve both high β and bootstrap fractions near unity through strong profile control offer high promise in this regard

  12. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    International Nuclear Information System (INIS)

    Koide, Y.

    2008-01-01

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  13. Robust scaling laws for energy confinement time, including radiated fraction, in Tokamaks

    Science.gov (United States)

    Murari, A.; Peluso, E.; Gaudio, P.; Gelfusa, M.

    2017-12-01

    In recent years, the limitations of scalings in power-law form that are obtained from traditional log regression have become increasingly evident in many fields of research. Given the wide gap in operational space between present-day and next-generation devices, robustness of the obtained models in guaranteeing reasonable extrapolability is a major issue. In this paper, a new technique, called symbolic regression, is reviewed, refined, and applied to the ITPA database for extracting scaling laws of the energy-confinement time at different radiated fraction levels. The main advantage of this new methodology is its ability to determine the most appropriate mathematical form of the scaling laws to model the available databases without the restriction of their having to be power laws. In a completely new development, this technique is combined with the concept of geodesic distance on Gaussian manifolds so as to take into account the error bars in the measurements and provide more reliable models. Robust scaling laws, including radiated fractions as regressor, have been found; they are not in power-law form, and are significantly better than the traditional scalings. These scaling laws, including radiated fractions, extrapolate quite differently to ITER, and therefore they require serious consideration. On the other hand, given the limitations of the existing databases, dedicated experimental investigations will have to be carried out to fully understand the impact of radiated fractions on the confinement in metallic machines and in the next generation of devices.

  14. The effective bootstrap

    International Nuclear Information System (INIS)

    Castedo Echeverri, Alejandro; Harling, Benedict von; Serone, Marco

    2016-06-01

    We study the numerical bounds obtained using a conformal-bootstrap method where different points in the plane of conformal cross ratios z and anti z are sampled. In contrast to the most used method based on derivatives evaluated at the symmetric point z= anti z=1/2, we can consistently ''integrate out'' higher-dimensional operators and get a reduced simpler, and faster to solve, set of bootstrap equations. We test this ''effective'' bootstrap by studying the 3D Ising and O(n) vector models and bounds on generic 4D CFTs, for which extensive results are already available in the literature. We also determine the scaling dimensions of certain scalar operators in the O(n) vector models, with n=2,3,4, which have not yet been computed using bootstrap techniques.

  15. The effective bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Castedo Echeverri, Alejandro [SISSA, Trieste (Italy); INFN, Trieste (Italy); Harling, Benedict von [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Serone, Marco [SISSA, Trieste (Italy); INFN, Trieste (Italy); ICTP, Trieste (Italy)

    2016-06-15

    We study the numerical bounds obtained using a conformal-bootstrap method where different points in the plane of conformal cross ratios z and anti z are sampled. In contrast to the most used method based on derivatives evaluated at the symmetric point z= anti z=1/2, we can consistently ''integrate out'' higher-dimensional operators and get a reduced simpler, and faster to solve, set of bootstrap equations. We test this ''effective'' bootstrap by studying the 3D Ising and O(n) vector models and bounds on generic 4D CFTs, for which extensive results are already available in the literature. We also determine the scaling dimensions of certain scalar operators in the O(n) vector models, with n=2,3,4, which have not yet been computed using bootstrap techniques.

  16. Bootstrapping pronunciation models

    CSIR Research Space (South Africa)

    Davel, M

    2006-07-01

    Full Text Available -scarce language. During the procedure known as ‘bootstrapping’, a model is improved iteratively via a controlled series of increments, at each stage using the previous model to generate the next. This self- improving circularity distinguishes bootstrapping...-to-phoneme rules (the second representation) can be used to identify possible errors that require re-verification. In contrast, during the bootstrapping of acoustic models for speech recognition, both representations are amenable to automated analysis...

  17. Tokamak physics

    International Nuclear Information System (INIS)

    Haines, M.G.

    1984-01-01

    The physical conditions required for breakeven in thermonuclear fusion are derived, and the early conceptual ideas of magnetic confinement and subsequent development are followed, leading to present-day large scale tokamak experiments. Confinement and diffusion are developed in terms of particle orbits, whilst magnetohydrodynamic stability is discussed from energy considerations. From these ideas are derived the scaling laws that determine the physical size and parameters of this fusion configuration. It becomes clear that additional heating is required. However there are currently several major gaps in our understanding of experiments; the causes of anomalous electron energy loss and the major current disruption, the absence of the 'bootstrap' current and what physics determines the maximum plasma pressure consistent with stability. The understanding of these phenomena is a major challenge to plasma physicists. (author)

  18. Bootstrap current of fast ions in neutral beam injection heating

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Li Xinxia; Yu Jun

    2012-01-01

    The bootstrap current of fast ions produced by neutral beam injection (NBI) is investigated in a large-aspect-ratio tokamak with circular cross-section under specific parameters. The bootstrap current density distribution and the total bootstrap current are reported. In addition, the beam bootstrap current always accompanies the electron return current due to the parallel momentum transfer from fast ions. With the electron return current taken into consideration, the net current density obviously decreases; at the same time, the peak of the current moves towards the central plasma. Numerical results show that the value of the net current depends sensitively not only on the angle of the NBI but also on the ratio of the velocity of fast ions to the critical velocity: the value of the net current is small for neutral beam parallel injection, but increases severalfold for perpendicular injection, and increases with increasing beam energy. (paper)

  19. Bootstrap current of fast ions in neutral beam injection heating

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Yang Lei; Li Xinxia; Lu Xingqiang; Yu Jun

    2012-01-01

    The bootstrap current of fast ions produced by the neutral beam injection is investigated in a large aspect ratio tokamak with circular cross-section under specific parameters. The bootstrap current density distribution and the total bootstrap current are figured out. In addition, the beam bootstrap current always accompanies the electron return current due to the parallel momentum transfer from fast ions. With the electron return current considered, the net current density obviously decreases due to electron return current, at the same time the peak of current moves towards the centre plasma. Numerical results show that the value of the net current depends sensitively not only on the angle of the neutral beam injection but also on the ratio of the velocity of fast ions to the critical velocity: the value of net current is small for the neutral beam parallel injection but increases multipliedly for perpendicular injection, and increases with beam energy increasing. (authors)

  20. Long multiplet bootstrap

    International Nuclear Information System (INIS)

    Cornagliotto, Martina; Lemos, Madalena; Schomerus, Volker

    2017-02-01

    Applications of the bootstrap program to superconformal field theories promise unique new insights into their landscape and could even lead to the discovery of new models. Most existing results of the superconformal bootstrap were obtained form correlation functions of very special fields in short (BPS) representations of the superconformal algebra. Our main goal is to initiate a superconformal bootstrap for long multiplets, one that exploits all constraints from superprimaries and their descendants. To this end, we work out the Casimir equations for four-point correlators of long multiplets of the two-dimensional global N=2 superconformal algebra. After constructing the full set of conformal blocks we discuss two different applications. The first one concerns two-dimensional (2,0) theories. The numerical bootstrap analysis we perform serves a twofold purpose, as a feasibility study of our long multiplet bootstrap and also as an exploration of (2,0) theories. A second line of applications is directed towards four-dimensional N=3 SCFTs. In this context, our results imply a new bound c ≥ (13)/(24) for the central charge of such models. A theory that saturates this bound is not known yet.

  1. Long multiplet bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Cornagliotto, Martina; Lemos, Madalena; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2017-02-15

    Applications of the bootstrap program to superconformal field theories promise unique new insights into their landscape and could even lead to the discovery of new models. Most existing results of the superconformal bootstrap were obtained form correlation functions of very special fields in short (BPS) representations of the superconformal algebra. Our main goal is to initiate a superconformal bootstrap for long multiplets, one that exploits all constraints from superprimaries and their descendants. To this end, we work out the Casimir equations for four-point correlators of long multiplets of the two-dimensional global N=2 superconformal algebra. After constructing the full set of conformal blocks we discuss two different applications. The first one concerns two-dimensional (2,0) theories. The numerical bootstrap analysis we perform serves a twofold purpose, as a feasibility study of our long multiplet bootstrap and also as an exploration of (2,0) theories. A second line of applications is directed towards four-dimensional N=3 SCFTs. In this context, our results imply a new bound c ≥ (13)/(24) for the central charge of such models. A theory that saturates this bound is not known yet.

  2. Long multiplet bootstrap

    Science.gov (United States)

    Cornagliotto, Martina; Lemos, Madalena; Schomerus, Volker

    2017-10-01

    Applications of the bootstrap program to superconformal field theories promise unique new insights into their landscape and could even lead to the discovery of new models. Most existing results of the superconformal bootstrap were obtained form correlation functions of very special fields in short (BPS) representations of the superconformal algebra. Our main goal is to initiate a superconformal bootstrap for long multiplets, one that exploits all constraints from superprimaries and their descendants. To this end, we work out the Casimir equations for four-point correlators of long multiplets of the two-dimensional global N=2 superconformal algebra. After constructing the full set of conformal blocks we discuss two different applications. The first one concerns two-dimensional (2,0) theories. The numerical bootstrap analysis we perform serves a twofold purpose, as a feasibility study of our long multiplet bootstrap and also as an exploration of (2,0) theories. A second line of applications is directed towards four-dimensional N=3 SCFTs. In this context, our results imply a new bound c≥ 13/24 for the central charge of such models, which we argue cannot be saturated by an interacting SCFT.

  3. Plea for stellarator funding raps tokamaks

    International Nuclear Information System (INIS)

    Blake, M.

    1992-01-01

    The funding crunch in magnetic confinement fusion development has moved the editor of a largely technical publication to speak out on a policy issue. James A. Rome, who edits Stellarator News from the Fusion Energy Division at Oak Ridge National Laboratory, wrote an editorial that appeared on the front page of the May 1992 issue. It was titled open-quotes The US Stellarator Program: A Time for Renewal,close quotes and while it focused chiefly on that subject (and lamented the lack of funding for the operation of the existing ATF stellarator at Oak Ridge), it also cited some of the problems inherent in the mainline MCF approach--the tokamak--and stated that if the money can be found for further tokamak design upgrades, it should also be found for stellarators. Rome wrote, open-quotes There is growing recognition in the US, and elsewhere, that the conventional tokamak does not extrapolate to a commercially competitive energy source except with very high field coils ( 1000 MWe).close quotes He pointed up open-quotes the difficulty of simultaneously satisfying conflicting tokamak requirements for efficient current drive, high bootstrap-current fraction, complete avoidance of disruptions, adequate beta limits, and edge-plasma properties compatible with improved (H-mode) confinement and acceptable erosion of divertor plates.close quotes He then called for support for the stellarator as open-quotes the only concept that has performance comparable to that achieved in tokamaks without the plasma-current-related limitations listed above.close quotes

  4. Scalar-vector bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Rejon-Barrera, Fernando [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, 1090 GL, Amsterdam (Netherlands); Robbins, Daniel [Department of Physics, Texas A& M University,TAMU 4242, College Station, TX 77843 (United States)

    2016-01-22

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  5. The bootstrap and Bayesian bootstrap method in assessing bioequivalence

    International Nuclear Information System (INIS)

    Wan Jianping; Zhang Kongsheng; Chen Hui

    2009-01-01

    Parametric method for assessing individual bioequivalence (IBE) may concentrate on the hypothesis that the PK responses are normal. Nonparametric method for evaluating IBE would be bootstrap method. In 2001, the United States Food and Drug Administration (FDA) proposed a draft guidance. The purpose of this article is to evaluate the IBE between test drug and reference drug by bootstrap and Bayesian bootstrap method. We study the power of bootstrap test procedures and the parametric test procedures in FDA (2001). We find that the Bayesian bootstrap method is the most excellent.

  6. Bootstrapping language acquisition.

    Science.gov (United States)

    Abend, Omri; Kwiatkowski, Tom; Smith, Nathaniel J; Goldwater, Sharon; Steedman, Mark

    2017-07-01

    The semantic bootstrapping hypothesis proposes that children acquire their native language through exposure to sentences of the language paired with structured representations of their meaning, whose component substructures can be associated with words and syntactic structures used to express these concepts. The child's task is then to learn a language-specific grammar and lexicon based on (probably contextually ambiguous, possibly somewhat noisy) pairs of sentences and their meaning representations (logical forms). Starting from these assumptions, we develop a Bayesian probabilistic account of semantically bootstrapped first-language acquisition in the child, based on techniques from computational parsing and interpretation of unrestricted text. Our learner jointly models (a) word learning: the mapping between components of the given sentential meaning and lexical words (or phrases) of the language, and (b) syntax learning: the projection of lexical elements onto sentences by universal construction-free syntactic rules. Using an incremental learning algorithm, we apply the model to a dataset of real syntactically complex child-directed utterances and (pseudo) logical forms, the latter including contextually plausible but irrelevant distractors. Taking the Eve section of the CHILDES corpus as input, the model simulates several well-documented phenomena from the developmental literature. In particular, the model exhibits syntactic bootstrapping effects (in which previously learned constructions facilitate the learning of novel words), sudden jumps in learning without explicit parameter setting, acceleration of word-learning (the "vocabulary spurt"), an initial bias favoring the learning of nouns over verbs, and one-shot learning of words and their meanings. The learner thus demonstrates how statistical learning over structured representations can provide a unified account for these seemingly disparate phenomena. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Current drive and sustain experiments with the bootstrap current in JT-60

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Azumi, Masafumi; Tani, Keiji; Tsuji, Shunji; Kubo, Hirotaka

    1989-11-01

    The current drive and sustain experiments with the neoclassical bootstrap current are performed in the JT-60 tokamak. It is shown that up to 80% of total plasma current is driven by the bootstrap current in extremely high β p regime (β p = 3.2) and the current drive product I p (bootstrap) n-bar e R p up to 4.4 x 10 19 MAm -2 has been attained with the bootstrap current. The experimental resistive loop voltages are compared with the calculations using the neoclassical resistivity with and without the bootstrap current and the Spitzer resistivity for a wide range of the plasma current (I p = 0.5 -2 MA) and the poloidal beta (β p = 0.1 - 3.2). The calculated resistive loop voltage is consistent with the neoclassical prediction including the bootstrap current. Current sustain with the bootstrap current is tested by terminating the I p feedback control during the high power neutral beam heating. An enhancement of the L/R decay time than those expected from the plasma resistivity with measured T e and Zeff has been confirmed experimentally supporting the large non-inductive current in the plasma and is consistent with the neoclassical prediction. A new technique to calculate the bootstrap current in multi-collisionality regime for finite aspect ratio tokamak has bee developed. The neoclassical bootstrap current is calculated directly through the force balance equations between viscous and friction forces according to the Hirshman-Sigmar theory. The bootstrap current driven by the fast ion component is also included. Ballooning stability of the high β p plasma are analyzed using the current profiles including the bootstrap current. The plasma pressure is close to the ballooning limit in high β p discharges. (author)

  8. Bootstrapping 3D fermions

    Energy Technology Data Exchange (ETDEWEB)

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Kos, Filip; Poland, David [Department of Physics, Yale University, New Haven, CT 06520 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions 〈ψψψψ〉 in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ×ψ OPE, and also on the central charge C{sub T}. We observe features in our bounds that coincide with scaling dimensions in the Gross-Neveu models at large N. We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  9. The wild tapered block bootstrap

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    In this paper, a new resampling procedure, called the wild tapered block bootstrap, is introduced as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on dependent heterogeneous data. The method consists in tapering each overlapping block...... of the series first, the applying the standard wild bootstrap for independent and heteroscedastic distrbuted observations to overlapping tapered blocks in an appropriate way. Its perserves the favorable bias and mean squared error properties of the tapered block bootstrap, which is the state-of-the-art block......-order asymptotic validity of the tapered block bootstrap as well as the wild tapered block bootstrap approximation to the actual distribution of the sample mean is also established when data are assumed to satisfy a near epoch dependent condition. The consistency of the bootstrap variance estimator for the sample...

  10. Physics design requirements for the Tokamak Physics Experiment (TPX)

    International Nuclear Information System (INIS)

    Neilson, G.H.; Goldston, R.J.; Jardin, S.C.; Reiersen, W.T.; Porkolab, M.; Ulrickson, M.

    1993-01-01

    The design of TPX is driven by physics requirements that follow from its mission. The tokamak and heating systems provide the performance and profile controls needed to study advanced steady state tokamak operating modes. The magnetic control systems provide substantial flexibility for the study of regimes with high beta and bootstrap current. The divertor is designed for high steady state power and particle exhaust

  11. Ultrafast Approximation for Phylogenetic Bootstrap

    NARCIS (Netherlands)

    Bui Quang Minh, [No Value; Nguyen, Thi; von Haeseler, Arndt

    Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and

  12. EFFECT OF PROFILES AND SHAPE ON IDEAL STABILITY OF ADVANCED TOKAMAK EQUILIBRIA

    Energy Technology Data Exchange (ETDEWEB)

    MAKOWSKI,MA; CASPER,TA; FERRON,JR; TAYLOR,TS; TURNBULL,AD

    2003-08-01

    OAK-B135 The pressure profile and plasma shape, parameterized by elongation ({kappa}), triangularity ({delta}), and squareness ({zeta}), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P{sub 0}/

    {approx} 2.0-4.5, weak negative central shear, high q{sub min} (> 2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs.

  13. Effect of Profiles and Space on Ideal Stability of Advanced Tokamak Equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Makowski, M A; Casper, T A; Ferron, J R; Taylor, T S; Turnbull, A D

    2003-07-07

    The pressure profile and plasma shape, parameterized by elongation ({kappa}), triangularity ({delta}), and squareness ({zeta}), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P{sub 0}/{l_angle}P{r_brace} {approx} 2.0-4.5, weak negative central shear, high q{sub min} (>2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs.

  14. EFFECT OF PROFILES AND SHAPE ON IDEAL STABILITY OF ADVANCED TOKAMAK EQUILIBRIA

    International Nuclear Information System (INIS)

    MAKOWSKI, M.A.; CASPER, T.A.; FERRON, J.R.; TAYLOR, T.S.; TURNBULL, A.D.

    2003-01-01

    OAK-B135 The pressure profile and plasma shape, parameterized by elongation (κ), triangularity ((delta)), and squareness (ζ), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P 0 / ∼ 2.0-4.5, weak negative central shear, high q min (> 2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs

  15. Effect of Profiles and Space on Ideal Stability of Advanced Tokamak Equilibria

    International Nuclear Information System (INIS)

    Makowski, M A; Casper, T A; Ferron, J R; Taylor, T S; Turnbull, A D

    2003-01-01

    The pressure profile and plasma shape, parameterized by elongation (κ), triangularity ((delta)), and squareness (ζ), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P 0 /(l a ngle)P} ∼ 2.0-4.5, weak negative central shear, high q min (>2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs

  16. Research using small tokamaks

    International Nuclear Information System (INIS)

    1991-01-01

    The technical reports contained in this collection of papers on research using small tokamaks fall into four main categories, i.e., (i) experimental work (heating, stability, plasma radial profiles, fluctuations and transport, confinement, ultra-low-q tokamaks, wall physics, a.o.), (ii) diagnostics (beam probes, laser scattering, X-ray tomography, laser interferometry, electron-cyclotron absorption and emission systems), (iii) theory (strong turbulence, effects of heating on stability, plasma beta limits, wave absorption, macrostability, low-q tokamak configurations and bootstrap currents, turbulent heating, stability of vortex flows, nonlinear islands growth, plasma-drift-induced anomalous transport, ergodic divertor design, a.o.), and (iv) new technical facilities (varistors applied to establish constant current and loop voltage in HT-6M), lower-hybrid-current-drive systems for HT-6B and HT-6M, radio-frequency systems for HT-6M ICR heating experimentation, and applications of fiber optics for visible and vacuum ultraviolet radiation detection as applied to tokamaks and reversed-field pinches. A total number of 51 papers are included in the collection. Refs, figs and tabs

  17. Bootstrapping quarks and gluons

    Energy Technology Data Exchange (ETDEWEB)

    Chew, G.F.

    1979-04-01

    Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.

  18. Bootstrapping quarks and gluons

    International Nuclear Information System (INIS)

    Chew, G.F.

    1979-04-01

    Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces

  19. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  20. Accidental symmetries and the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Shai M.; Giombi, Simone; Iliesiu, Luca V.; Klebanov, Igor R.; Pufu, Silviu S.; Yacoby, Ran [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)

    2016-01-19

    We study an N=2 supersymmetric generalization of the three-dimensional critical O(N) vector model that is described by N+1 chiral superfields with superpotential W=g{sub 1}X∑{sub i}Z{sub i}{sup 2}+g{sub 2}X{sup 3}. By combining the tools of the conformal bootstrap with results obtained through supersymmetric localization, we argue that this model exhibits a symmetry enhancement at the infrared superconformal fixed point due to g{sub 2} flowing to zero. This example is special in that the existence of an infrared fixed point with g{sub 1},g{sub 2}≠0, which does not exhibit symmetry enhancement, does not generally lead to any obvious unitarity violations or other inconsistencies. We do show, however, that the F-theorem excludes the models with g{sub 1},g{sub 2}≠0 for N>5. The conformal bootstrap provides a stronger constraint and excludes such models for N>2. We provide evidence that the g{sub 2}=0 models, which have the enhanced O(N)×U(1) symmetry, come close to saturating the bootstrap bounds. We extend our analysis to fractional dimensions where we can motivate the nonexistence of the g{sub 1},g{sub 2}≠0 models by studying them perturbatively in the 4−ϵ expansion.

  1. Pronunciation modelling and bootstrapping

    CSIR Research Space (South Africa)

    Davel, MH

    2005-08-01

    Full Text Available machine learning and a human factors perspective. We find that even linguistically untrained users can use the system to create electronic pronunciation dictionaries accurately, in a fraction of the time the traditional approach requires. We create new...

  2. Bootstrapping pronunciation dictionaries: practical issues

    CSIR Research Space (South Africa)

    Davel, MH

    2005-09-01

    Full Text Available Bootstrapping techniques are an efficient way to develop electronic pronunciation dictionaries, but require fast system response to be practical for medium-to-large lexicons. In addition, user errors are inevitable during this process...

  3. Bootstrapping in language resource generation

    CSIR Research Space (South Africa)

    Davel, MH

    2003-11-01

    Full Text Available by Schultz [1]. Bootstrapping approaches are applicable to various lan- guage resource development tasks, specifically where an au- tomated mechanism can be defined to convert between vari- ous representations of the data considered. In the above ex...

  4. Synergism between profile and cross section shape optimization for negative central shear advanced tokamaks

    International Nuclear Information System (INIS)

    Turnbull, A.D.; Taylor, T.S.; Lao, L.L.

    1996-01-01

    The Advanced Tokamak (AT) concept is aimed at achieving high beta, high confinement, and a well aligned high bootstrap current fraction in a tokamak configuration consistent with steady state operation. The required improvements over the simple O-D scaling laws, normally used to predict standard, pulsed tokamak performance, axe obtained by taking into account the dependence of the stability and confinement on the 2-D equilibrium; the planned TPX experiment was designed to take full advantage of both advanced profiles and advanced cross-section shaping. Systematic stability studies of the promising Negative Central Shear (NCS) configuration have been performed for a wide variety of cross-section shapes and profile variations. The ideal MHD beta limit is found to be strongly dependent on both and, in fact, there is a clear synergistic relationship between the gains in beta from optimizing the profiles and optimizing the shape. Specifically, for a circular cross-section with highly peaked profiles, β is limited to normalized β values of β N = β/(I/aB) ∼ 2% (mT/MA). A small gain in beta can be achieved by broadening the pressure; however, the root-mean-square beta (β*) is slightly reduced. With peaked pressure profiles, a small increase in β N over that in a circular cross-section is also obtained by strong shaping. At fixed q, this translates to a much larger gain in β and β*. With both optimal profiles and strong shaping, however, the gain in all the relevant fusion performance parameters is dramatic; β and β* can be increased a factor 5 for example. Moreover, the bootstrap alignment is improved. For an optimized strongly shaped configuration, confinement, beta values, and bootstrap alignment adequate for a practical AT power plant appear to be realizable. Data from DIII-D supports these predictions and analysis of the DIII-D data will be presented

  5. Profile formation and sustainment of autonomous tokamak plasma with current hole configuration

    International Nuclear Information System (INIS)

    Hayashi, N.; Takizuka, T.; Ozeki, T.

    2005-01-01

    We have investigated the profile formation and sustainment of tokamak plasmas with the current hole (CH) configuration by using 1.5D time-dependent transport simulations. A model of the current limit inside the CH on the basis of the Axisymmetric Tri-Magnetic-Islands equilibrium is introduced into the transport simulation. We found that a transport model with the sharp reduction of anomalous transport in the reversed-shear (RS) region can reproduce the time evolution of profiles observed in JT-60U experiments. The transport becomes neoclassical-level in the RS region, which results in the formation of profiles with internal transport barrier (ITB) and CH. The CH plasma has an autonomous property because of the strong interaction between a pressure profile and a current profile through the large bootstrap current fraction. The ITB width determined by the neoclassical-level transport agrees well with that measured in JT-60U. The energy confinement inside the ITB agrees with the scaling based on the JT-60U data. The scaling means the autonomous limitation of energy confinement in the CH plasma. The plasma with the large CH is sustained with the full current drive by the bootstrap current. The plasma with the small CH and the small bootstrap current fraction shrinks due to the penetration of inductive current. This shrink is prevented and the CH size can be controlled by the appropriate external current drive (CD). The CH plasma is found to respond autonomically to the external CD. (author)

  6. Dynamics of bootstrap percolation

    Indian Academy of Sciences (India)

    precise criterion for the occurrence of a mixed transition is not very clear, and has been the subject ... ology, electronic communication, and social networks. It has also acquired a ... percolation theory is to start with a lattice with a fraction p of its sites occupied randomly, and ..... samples of a 104-node network. Probability is ...

  7. Transport and stability studies in negative central shear advanced tokamak plasmas

    International Nuclear Information System (INIS)

    Jayakumar, R.J.

    2003-01-01

    Achieving high performance for long duration is a key goal of Advanced Tokamak (AT) research around the world. To this end, tokamak experiments are focusing on obtaining (a) a high fraction of well-aligned non-inductive plasma current (b) wide internal transport barriers (ITBs) in the ion and electron transport channels to obtain high temperatures (c) control of resistive wall modes and neoclassical Tearing Modes which limit the achievable beta. A current profile that yields a negative central magnetic shear (NCS) in the core is consistent with the above focus; Negative central shear is conducive for obtaining internal transport barriers, for high degree of bootstrap current alignment and for reaching the second stability region for ideal ballooning modes, while being stable to ideal kink modes at high beta with wall stabilization. Much progress has been made in obtaining AT performance in several tokamaks through an increasing understanding of the stability and transport properties of tokamak plasmas. RF and neutral beam current drive scenarios are routinely developed and implemented in experiments to access new advanced regimes and control plasma profiles. Short duration and sustained Internal Transport Barriers (ITB) have been obtained in the ion and electron channels. The formation of an ITB is attributable to the stabilization of ion and electron temperature gradient (ITG and ETG) and trapped electron modes (TEM), enhancement of E x B flow shear rate and rarefaction of resonant surfaces near the rational q min values. (orig.)

  8. Transport and stability studies in negative central shear advanced tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, R.J. [Lawrence Livermore National Laboratory (United States)

    2003-07-01

    Achieving high performance for long duration is a key goal of Advanced Tokamak (AT) research around the world. To this end, tokamak experiments are focusing on obtaining (a) a high fraction of well-aligned non-inductive plasma current (b) wide internal transport barriers (ITBs) in the ion and electron transport channels to obtain high temperatures (c) control of resistive wall modes and neoclassical Tearing Modes which limit the achievable beta. A current profile that yields a negative central magnetic shear (NCS) in the core is consistent with the above focus; Negative central shear is conducive for obtaining internal transport barriers, for high degree of bootstrap current alignment and for reaching the second stability region for ideal ballooning modes, while being stable to ideal kink modes at high beta with wall stabilization. Much progress has been made in obtaining AT performance in several tokamaks through an increasing understanding of the stability and transport properties of tokamak plasmas. RF and neutral beam current drive scenarios are routinely developed and implemented in experiments to access new advanced regimes and control plasma profiles. Short duration and sustained Internal Transport Barriers (ITB) have been obtained in the ion and electron channels. The formation of an ITB is attributable to the stabilization of ion and electron temperature gradient (ITG and ETG) and trapped electron modes (TEM), enhancement of E x B flow shear rate and rarefaction of resonant surfaces near the rational q{sub min} values. (orig.)

  9. Bootstrapping a time series model

    International Nuclear Information System (INIS)

    Son, M.S.

    1984-01-01

    The bootstrap is a methodology for estimating standard errors. The idea is to use a Monte Carlo simulation experiment based on a nonparametric estimate of the error distribution. The main objective of this dissertation was to demonstrate the use of the bootstrap to attach standard errors to coefficient estimates and multi-period forecasts in a second-order autoregressive model fitted by least squares and maximum likelihood estimation. A secondary objective of this article was to present the bootstrap in the context of two econometric equations describing the unemployment rate and individual income tax in the state of Oklahoma. As it turns out, the conventional asymptotic formulae (both the least squares and maximum likelihood estimates) for estimating standard errors appear to overestimate the true standard errors. But there are two problems: 1) the first two observations y 1 and y 2 have been fixed, and 2) the residuals have not been inflated. After these two factors are considered in the trial and bootstrap experiment, both the conventional maximum likelihood and bootstrap estimates of the standard errors appear to be performing quite well. At present, there does not seem to be a good rule of thumb for deciding when the conventional asymptotic formulae will give acceptable results

  10. Potential minimum cost of electricity of superconducting coil tokamak power reactors

    International Nuclear Information System (INIS)

    Reid, R.L.; Peng, Y-K. M.

    1989-01-01

    The potential minimum cost of electricity (COE) for superconducting tokamak power reactors is estimated by increasing the physics (confinement, beta limit, bootstrap current fraction) and technology [neutral beam energy, toroidal field (TF) coil allowable stresses, divertor heat flux, superconducting coil critical field, critical temperature, and quench temperature rise] constraints far beyond those assumed for ITER until the point of diminishing returns is reached. A version of the TETRA systems code, calibrated with the ITER design and modified for power reactors, is used for this analysis, limiting this study to reactors with the same basic device configuration and costing algorithms as ITER. A minimum COE is reduced from >200 to about 80 mill/kWh when the allowable design constraints are raised to 2 times those of ITER. At 4 times the ITER allowables, a minimum COE of about 60 mill/kWh is obtained. The corresponding tokamak has a major radius of approximately 4 m, a plasma current close to 10 MA, an aspect ratio of 4, a confinement H- factor ≤3, a beta limit of approximately 2 times the first stability regime, a divertor heat flux of about 20 MW/m 2 , a Β max ≤ 18 T, and a TF coil average current density about 3 times that of ITER. The design constraints that bound the minimum COE are the allowable stresses in the TF coil, the neutral beam energy, and the 99% bootstrap current (essentially free current drive). 14 refs., 4 figs., 2 tabs

  11. The bootstrap and edgeworth expansion

    CERN Document Server

    Hall, Peter

    1992-01-01

    This monograph addresses two quite different topics, in the belief that each can shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. Chapter 1 is about the bootstrap, witih almost no mention of Edgeworth expansion; Chapter 2 is about Edgeworth expansion, with scarcely a word about the bootstrap; and Chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properites of the bootstrap. The book is aimed a a graduate level audience who has some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter (entitled "Details of Mathematical Rogour"), and so a mathematically able reader without knowledge of the rigorous theory of probability will have no trouble understanding the first four-fifths of the book. The book simultaneously fills two gaps in the literature; it provides a very readable graduate level account of t...

  12. Accelerator technology in tokamaks

    International Nuclear Information System (INIS)

    Kustom, R.L.

    1977-01-01

    This article presents the similarities in the technology required for high energy accelerators and tokamak fusion devices. The tokamak devices and R and D programs described in the text represent only a fraction of the total fusion program. The technological barriers to producing successful, economical tokamak fusion power plants are as many as the plasma physics problems to be overcome. With the present emphasis on energy problems in this country and elsewhere, it is very likely that fusion technology related R and D programs will vigorously continue; and since high energy accelerator technology has so much in common with fusion technology, more scientists from the accelerator community are likely to be attracted to fusion problems

  13. Contribution of the association EURATOM-CEA to the international workshop on tokamak concept improvement

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, L; Moreau, D; Tonon, G

    1994-12-31

    The ways of tokamak device improvement are discussed. The topics cover plasma pressure and power density, bootstrap currents, the feedback control of the current density profiles and current drive efficiency for steady-state tokamak reactors. Three items have been separately indexed for the INIS database. (K.A.).

  14. Contribution of the association EURATOM-CEA to the international workshop on tokamak concept improvement

    International Nuclear Information System (INIS)

    Laurent, L.; Moreau, D.; Tonon, G.

    1994-01-01

    The ways of tokamak device improvement are discussed. The topics cover plasma pressure and power density, bootstrap currents, the feedback control of the current density profiles and current drive efficiency for steady-state tokamak reactors. Three items have been separately indexed for the INIS database. (K.A.)

  15. VENUS+δf - A bootstrap current calculation module for 3D configurations

    International Nuclear Information System (INIS)

    Isaev, M.Yu.; Brunner, S.; Cooper, W.A.; Tran, T.M.; Bergmann, A.; Beidler, C.D.; Geiger, J.; Maassberg, H.; Nuehrenberg, J.; Schmidt, M.

    2005-01-01

    We present a new 3D code VENUS+δf for neoclassical transport calculations in nonaxisymmetric toroidal systems. Numerical drift orbits from the original VENUS code and the δf method for tokamak transport calculations are combined. The first results obtained with VENUS+δf are compared with neoclassical theory for different collisional regimes in a JT-60 tokamak test case with monoenergetic particles and with a Maxwellian distribution. Benchmarks with DKES code results for the bootstrap current in the W7X configuration as well as further VENUS+δf developments are discussed. (author)

  16. Coefficient Omega Bootstrap Confidence Intervals: Nonnormal Distributions

    Science.gov (United States)

    Padilla, Miguel A.; Divers, Jasmin

    2013-01-01

    The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…

  17. Bootstrapping N=3 superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Madalena; Liendo, Pedro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Meneghelli, Carlo [Stony Brook Univ., Stony Brook, NY (United States). Simons Center for Geometry and Physics; Mitev, Vladimir [Mainz Univ. (Germany). PRISMA Cluster of Excellence

    2016-12-15

    We initiate the bootstrap program for N=3 superconformal field theories (SCFTs) in four dimensions. The problem is considered from two fronts: the protected subsector described by a 2d chiral algebra, and crossing symmetry for half-BPS operators whose superconformal primaries parametrize the Coulomb branch of N=3 theories. With the goal of describing a protected subsector of a family of =3 SCFTs, we propose a new 2d chiral algebra with super Virasoro symmetry that depends on an arbitrary parameter, identified with the central charge of the theory. Turning to the crossing equations, we work out the superconformal block expansion and apply standard numerical bootstrap techniques in order to constrain the CFT data. We obtain bounds valid for any theory but also, thanks to input from the chiral algebra results, we are able to exclude solutions with N=4 supersymmetry, allowing us to zoom in on a specific N=3 SCFT.

  18. Bootstrapping N=3 superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Madalena; Liendo, Pedro [DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Meneghelli, Carlo [Simons Center for Geometry and Physics,Stony Brook University, Stony Brook, NY 11794-3636 (United States); Mitev, Vladimir [PRISMA Cluster of Excellence, Institut für Physik,JGU Mainz, Staudingerweg 7, 55128 Mainz (Germany)

    2017-04-06

    We initiate the bootstrap program for N=3 superconformal field theories (SCFTs) in four dimensions. The problem is considered from two fronts: the protected subsector described by a 2d chiral algebra, and crossing symmetry for half-BPS operators whose superconformal primaries parametrize the Coulomb branch of N=3 theories. With the goal of describing a protected subsector of a family of N=3 SCFTs, we propose a new 2d chiral algebra with super Virasoro symmetry that depends on an arbitrary parameter, identified with the central charge of the theory. Turning to the crossing equations, we work out the superconformal block expansion and apply standard numerical bootstrap techniques in order to constrain the CFT data. We obtain bounds valid for any theory but also, thanks to input from the chiral algebra results, we are able to exclude solutions with N=4 supersymmetry, allowing us to zoom in on a specific N=3 SCFT.

  19. On a generalized bootstrap principle

    International Nuclear Information System (INIS)

    Corrigan, E.; Sasaki, R.; Dorey, P.E.

    1993-01-01

    The S-matrices for non-simply-laced affine Toda field theories are considered in the context of a generalized bootstrap principle. The S-matrices, and in particular their poles, depend on a parameter whose range lies between the Coxeter numbers of dual pairs of the corresponding non-simply-laced algebras. It is proposed that only odd order poles in the physical strip with positive coefficients throughout this range should participate in the bootstrap. All other singularities have an explanation in principle in terms of a generalized Coleman-Thun mechanism. Besides the S-matrices introduced by Delius, Grisaru and Zanon, the missing case (F 4 (1) , e 6 (2) ), is also considered and provides many interesting examples of pole generation. (author)

  20. Bootstrapping N=2 chiral correlators

    Science.gov (United States)

    Lemos, Madalena; Liendo, Pedro

    2016-01-01

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  1. Bootstrapping N=2 chiral correlators

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Madalena [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Liendo, Pedro [Humboldt-Univ. Berlin (Germany). IMIP

    2015-12-15

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  2. Bootstrapping N=2 chiral correlators

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Madalena [DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Liendo, Pedro [IMIP, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany)

    2016-01-07

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  3. How to Bootstrap Anonymous Communication

    DEFF Research Database (Denmark)

    Jakobsen, Sune K.; Orlandi, Claudio

    2015-01-01

    formal study in this direction. To solve this problem, we introduce the concept of anonymous steganography: think of a leaker Lea who wants to leak a large document to Joe the journalist. Using anonymous steganography Lea can embed this document in innocent looking communication on some popular website...... anonymous steganography, { A construction showing that anonymous steganography is possible (which uses recent results in circuits obfuscation), { A lower bound on the number of bits which are needed to bootstrap anonymous communication....

  4. How to Bootstrap Anonymous Communication

    DEFF Research Database (Denmark)

    Jakobsen, Sune K.; Orlandi, Claudio

    2015-01-01

    formal study in this direction. To solve this problem, we introduce the concept of anonymous steganography: think of a leaker Lea who wants to leak a large document to Joe the journalist. Using anonymous steganography Lea can embed this document in innocent looking communication on some popular website...... defining anonymous steganography, - A construction showing that anonymous steganography is possible (which uses recent results in circuits obfuscation), - A lower bound on the number of bits which are needed to bootstrap anonymous communication....

  5. Mobile first design : using Bootstrap

    OpenAIRE

    Bhusal, Bipin

    2017-01-01

    The aim of this project was to design and build a website for a company based in Australia. The business offers remedial massage therapy to its clients. It is a small business which works on the basis of calls and message reservation. The business currently has a temporary website designed with Wix, a cloud-based web development platform. The new website was built with responsive design using Bootstrap. This website was intended for the customers using mobile internet browsers. This design is...

  6. Continuous tokamaks

    International Nuclear Information System (INIS)

    Peng, Y.K.M.

    1978-04-01

    A tokamak configuration is proposed that permits the rapid replacement of a plasma discharge in a ''burn'' chamber by another one in a time scale much shorter than the elementary thermal time constant of the chamber first wall. With respect to the chamber, the effective duty cycle factor can thus be made arbitrarily close to unity minimizing the cyclic thermal stress in the first wall. At least one plasma discharge always exists in the new tokamak configuration, hence, a continuous tokamak. By incorporating adiabatic toroidal compression, configurations of continuous tokamak compressors are introduced. To operate continuous tokamaks, it is necessary to introduce the concept of mixed poloidal field coils, which spatially groups all the poloidal field coils into three sets, all contributing simultaneously to inducing the plasma current and maintaining the proper plasma shape and position. Preliminary numerical calculations of axisymmetric MHD equilibria in continuous tokamaks indicate the feasibility of their continued plasma operation. Advanced concepts of continuous tokamaks to reduce the topological complexity and to allow the burn plasma aspect ratio to decrease for increased beta are then suggested

  7. Tokamak experiments

    International Nuclear Information System (INIS)

    Robinson, D.C.

    1987-01-01

    With the advent of the new large tokamaks JET, JT-60 and TFTR important advances in magnetic confinement have been made. These include the exploitation of radio frequency and neutral beam heating on a much larger scale than previously, the demonstration of regimes of improved confinement and the demonstration of current drive at the Megamp level. A number of small and medium sized tokamaks have also come into operation recently such as WT-3 in Japan with an emphasis on radio frequency current drive and HL-1 a medium sized tokamak in China. Each of these new tokamaks is addressing specific problems which remain for the future development of the system. Of these particular problems: β, density and q limits remain important issues for the future development of the tokamak. β limits are being addressed on the DIII-D device in the USA. The anomalous confinement that the tokamak displays is being explored in detail on the TEXT device in the USA. Two other problems are impurity control and current drive. There is significant emphasis on divertor configurations at the present time with their enhanced confinement in the so called H mode. Due to improved discharge cleaning techniques and the ability to repetitively refuel using pellets, purer plasmas can be obtained even without divertors. Current drive remains a crucial issue for quasi of near steady state operation of the tokamak in the future and many current drive schemes are being investigated. (author) [pt

  8. On the definition of Pfirsch--Schlueter and bootstrap currents in toroidal systems

    International Nuclear Information System (INIS)

    Coronado, M.; Wobig, H.

    1992-01-01

    In the plasma physics literature there appear two different definitions of Pfirsch--Schlueter current. One of them is predominantly used in equilibrium calculations and satisfies the condition I T =0. The other definition appears commonly in transport calculations and requires that the surface average of the dot product of the Pfirsch--Schlueter current density with the magnetic field vanish, i.e., left-angle J PS ·B right-angle=0. The difference between the definitions is a surface function. Within the framework of the moment equation approach, the total parallel current is completely determined through a surface average of Ohm's law; thus different definitions of Pfirsch--Schlueter current imply different expressions for the bootstrap current. Understanding the different implications of these two definitions is of particular importance when designing toroidal devices with minimized Pfirsch--Schlueter current or studying tokamaks with optimized bootstrap current. In this paper the definitions of Pfirsch--Schlueter and bootstrap current, as well as the expressions for the corresponding Pfirsch--Schlueter diffusion flux, are analyzed and discussed for the case of axisymmetric and nonaxisymmetric plasmas. Although in cases like a current-free stellarator or a large-aspect-ratio tokamak both definitions are equivalent, they are in general different, and in order to avoid misunderstandings it is therefore important to use only one. The most appropriate definition is I T =0. In this paper the equations for determining the bootstrap current within the framework of the fluid equations are also analyzed

  9. Computerized statistical analysis with bootstrap method in nuclear medicine

    International Nuclear Information System (INIS)

    Zoccarato, O.; Sardina, M.; Zatta, G.; De Agostini, A.; Barbesti, S.; Mana, O.; Tarolo, G.L.

    1988-01-01

    Statistical analysis of data samples involves some hypothesis about the features of data themselves. The accuracy of these hypotheses can influence the results of statistical inference. Among the new methods of computer-aided statistical analysis, the bootstrap method appears to be one of the most powerful, thanks to its ability to reproduce many artificial samples starting from a single original sample and because it works without hypothesis about data distribution. The authors applied the bootstrap method to two typical situation of Nuclear Medicine Department. The determination of the normal range of serum ferritin, as assessed by radioimmunoassay and defined by the mean value ±2 standard deviations, starting from an experimental sample of small dimension, shows an unacceptable lower limit (ferritin plasmatic levels below zero). On the contrary, the results obtained by elaborating 5000 bootstrap samples gives ans interval of values (10.95 ng/ml - 72.87 ng/ml) corresponding to the normal ranges commonly reported. Moreover the authors applied the bootstrap method in evaluating the possible error associated with the correlation coefficient determined between left ventricular ejection fraction (LVEF) values obtained by first pass radionuclide angiocardiography with 99m Tc and 195m Au. The results obtained indicate a high degree of statistical correlation and give the range of r 2 values to be considered acceptable for this type of studies

  10. More N =4 superconformal bootstrap

    Science.gov (United States)

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.

    2017-08-01

    In this long overdue second installment, we continue to develop the conformal bootstrap program for N =4 superconformal field theories (SCFTs) in four dimensions via an analysis of the correlation function of four stress-tensor supermultiplets. We review analytic results for this correlator and make contact with the SCFT/chiral algebra correspondence of Beem et al. [Commun. Math. Phys. 336, 1359 (2015), 10.1007/s00220-014-2272-x]. We demonstrate that the constraints of unitarity and crossing symmetry require the central charge c to be greater than or equal to 3 /4 in any interacting N =4 SCFT. We apply numerical bootstrap methods to derive upper bounds on scaling dimensions and operator product expansion coefficients for several low-lying, unprotected operators as a function of the central charge. We interpret our bounds in the context of N =4 super Yang-Mills theories, formulating a series of conjectures regarding the embedding of the conformal manifold—parametrized by the complexified gauge coupling—into the space of scaling dimensions and operator product expansion coefficients. Our conjectures assign a distinguished role to points on the conformal manifold that are self-dual under a subgroup of the S -duality group. This paper contains a more detailed exposition of a number of results previously reported in Beem et al. [Phys. Rev. Lett. 111, 071601 (2013), 10.1103/PhysRevLett.111.071601] in addition to new results.

  11. Unified Ideal Stability Limits for Advanced Tokamak and Spherical Torus Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, M.G.; Bell, R.E.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Sabbagh, S.A.; Fredrickson, E.D.; Jardin, S.C.; Maingi, R.; Manickam, J.; Mueller, D.; Ono, M.; Paoletti, F.; Peng, Y.-K.M.; Soukhanovskii, V.; Stutman, D.; Synakowski, E.J.

    2003-01-01

    Ideal magnetohydrodynamic stability limits of shaped tokamak plasmas with high bootstrap fraction are systematically determined as a function of plasma aspect ratio. For plasmas with and without wall stabilization of external kink modes, the computed limits are well described by distinct and nearly invariant values of a normalized beta parameter utilizing the total magnetic field energy density inside the plasma. Stability limit data from the low aspect ratio National Spherical Torus Experiment is compared to these theoretical limits and indicates that ideal nonrotating plasma no-wall beta limits have been exceeded in regimes with sufficiently high cylindrical safety factor. These results could impact the choice of aspect ratio in future fusion power plants

  12. Helicity content and tokamak applications of helicity

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities

  13. Interaction of bootstrap-current-driven magnetic islands

    International Nuclear Information System (INIS)

    Hegna, C.C.; Callen, J.D.

    1991-10-01

    The formation and interaction of fluctuating neoclassical pressure gradient driven magnetic islands is examined. The interaction of magnetic islands produces a stochastic region around the separatrices of the islands. This interaction causes the island pressure profile to be broadened, reducing the island bootstrap current and drive for the magnetic island. A model is presented that describes the magnetic topology as a bath of interacting magnetic islands with low to medium poloidal mode number (m congruent 3-30). The islands grow by the bootstrap current effect and damp due to the flattening of the pressure profile near the island separatrix caused by the interaction of the magnetic islands. The effect of this sporadic growth and decay of the islands (''magnetic bubbling'') is not normally addressed in theories of plasma transport due to magnetic fluctuations. The nature of the transport differs from statistical approaches to magnetic turbulence since the radial step size of the plasma transport is now given by the characteristic island width. This model suggests that tokamak experiments have relatively short-lived, coherent, long wavelength magnetic oscillations present in the steep pressure-gradient regions of the plasma. 42 refs

  14. Inverse bootstrapping conformal field theories

    Science.gov (United States)

    Li, Wenliang

    2018-01-01

    We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.

  15. The N=2 superconformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Beem, Christopher [Institute for Advanced Study, Einstein Drive,Princeton, NJ 08540 (United States); Lemos, Madalena [C. N. Yang Institute for Theoretical Physics, Stony Brook University,Stony Brook, NY 11794-3840 (United States); Liendo, Pedro [IMIP, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Rastelli, Leonardo [C. N. Yang Institute for Theoretical Physics, Stony Brook University,Stony Brook, NY 11794-3840 (United States); Rees, Balt C. van [Theory Group, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland)

    2016-03-29

    In this work we initiate the conformal bootstrap program for N=2 superconformal field theories in four dimensions. We promote an abstract operator-algebraic viewpoint in order to unify the description of Lagrangian and non-Lagrangian theories, and formulate various conjectures concerning the landscape of theories. We analyze in detail the four-point functions of flavor symmetry current multiplets and of N=2 chiral operators. For both correlation functions we review the solution of the superconformal Ward identities and describe their superconformal block decompositions. This provides the foundation for an extensive numerical analysis discussed in the second half of the paper. We find a large number of constraints for operator dimensions, OPE coefficients, and central charges that must hold for any N=2 superconformal field theory.

  16. Efficient bootstrap with weakly dependent processes

    NARCIS (Netherlands)

    Bravo, Francesco; Crudu, Federico

    The efficient bootstrap methodology is developed for overidentified moment conditions models with weakly dependent observation. The resulting bootstrap procedure is shown to be asymptotically valid and can be used to approximate the distributions of t-statistics, the J-statistic for overidentifying

  17. Tokamak COMPASS

    Czech Academy of Sciences Publication Activity Database

    Řípa, Milan; Křenek, Petr

    2011-01-01

    Roč. 17, č. 1 (2011), s. 32-34 ISSN 1210-4612 Institutional research plan: CEZ:AV0Z20430508 Keywords : fusion * tokamak * Compass * Golem * Institute of Plasma Physics AVCR v.v * NBI * diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics

  18. Tokamaks - Third Edition

    International Nuclear Information System (INIS)

    Rogister, A L

    2004-01-01

    John Wesson's well known book, now re-edited for the third time, provides an excellent introduction to fusion oriented plasma physics in tokamaks. The author's task was a very challenging one, for a confined plasma is a complex system characterised by a variety of dimensionless parameters and its properties change qualitatively when certain threshold values are reached in this multi-parameter space. As a consequence, theoretical description is required at different levels, which are complementary: particle orbits, kinetic and fluid descriptions, but also intuitive and empirical approaches. Theory must be carried out on many fronts: equilibrium, instabilities, heating, transport etc. Since the properties of the confined plasma depend on the boundary conditions, the physics of plasmas along open magnetic field lines and plasma surface interaction processes must also be accounted for. Those subjects (and others) are discussed in depth in chapters 2-9. Chapter 1 mostly deals with ignition requirements and the tokamak concept, while chapter 14 provides a list of useful relations: differential operators, collision times, characteristic lengths and frequencies, expressions for the neoclassical resistivity and heat conduction, the bootstrap current etc. The presentation is sufficiently broad and thorough that specialists within tokamak research can either pick useful and up-to-date information or find an authoritative introduction into other areas of the subject. It is also clear and concise so that it should provide an attractive and accurate initiation for those wishing to enter the field and for outsiders who would like to understand the concepts and be informed about the goals and challenges on the horizon. Validation of theoretical models requires adequately resolved experimental data for the various equilibrium profiles (clearly a challenge in the vicinity of transport barriers) and the fluctuations to which instabilities give rise. Chapter 10 is therefore devoted to

  19. Efficient bootstrap estimates for tail statistics

    Science.gov (United States)

    Breivik, Øyvind; Aarnes, Ole Johan

    2017-03-01

    Bootstrap resamples can be used to investigate the tail of empirical distributions as well as return value estimates from the extremal behaviour of the sample. Specifically, the confidence intervals on return value estimates or bounds on in-sample tail statistics can be obtained using bootstrap techniques. However, non-parametric bootstrapping from the entire sample is expensive. It is shown here that it suffices to bootstrap from a small subset consisting of the highest entries in the sequence to make estimates that are essentially identical to bootstraps from the entire sample. Similarly, bootstrap estimates of confidence intervals of threshold return estimates are found to be well approximated by using a subset consisting of the highest entries. This has practical consequences in fields such as meteorology, oceanography and hydrology where return values are calculated from very large gridded model integrations spanning decades at high temporal resolution or from large ensembles of independent and identically distributed model fields. In such cases the computational savings are substantial.

  20. Tokamak Physics Experiment (TPX) design

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    1995-01-01

    TPX is a national project involving a large number of US fusion laboratories, universities, and industries. The element of the TPX requirements that is a primary driver for the hardware design is the fact that TPX tokamak hardware is being designed to accommodate steady state operation if the external systems are upgraded from the 1,000 second initial operation. TPX not only incorporates new physics, but also pioneers new technologies to be used in ITER and other future reactors. TPX will be the first tokamak with fully superconducting magnetic field coils using advanced conductors, will have internal nuclear shielding, will use robotics for machine maintenance, and will remove the continuous, concentrated heat flow from the plasma with new dispersal techniques and with special materials that are actively cooled. The Conceptual Design for TPX was completed during Fiscal Year 1993. The Preliminary Design formally began at the beginning of Fiscal Year 1994. Industrial contracts have been awarded for the design, with options for fabrication, of the primary tokamak hardware. A large fraction of the design and R and D effort during FY94 was focused on the tokamak and in turn on the tokamak magnets. The reason for this emphasis is because the magnets require a large design and R and D effort, and are critical to the project schedule. The magnet development is focused on conductor development, quench protection, and manufacturing R and D. The Preliminary Design Review for the Magnets is planned for fall, 1995

  1. A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution

    Directory of Open Access Journals (Sweden)

    Mitsuru Kikuchi

    2010-11-01

    Full Text Available Providing a historical overview of 50 years of fusion research, a review of the fundamentals and concepts of fusion and research efforts towards the implementation of a steady state tokamak reactor is presented. In 1990, a steady-state tokamak reactor (SSTR best utilizing the bootstrap current was developed. Since then, significant efforts have been made in major tokamaks, including JT-60U, exploring advanced regimes relevant to the steady state operation of tokamaks. In this paper, the fundamentals of fusion and plasma confinement, and the concepts and research on current drive and MHD stability of advanced tokamaks towards realization of a steady-state tokamak reactor are reviewed, with an emphasis on the contributions of the JAEA. Finally, a view of fusion energy utilization in the 21st century is introduced.

  2. Energy conversion options for ARIES-III - A conceptual D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Blanchard, J.P.; Emmert, G.A.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Ghoneim, N.M.; Hasan, M.Z.; Mau, T.K.; Greenspan, E.; Herring, J.S.; Kernbichler, W.; Klein, A.C.; Miley, G.H.; Miller, R.L.; Peng, Y.K.M.

    1989-01-01

    The potential for highly efficient conversion of fusion power to electricity provides one motivation for investigating D- 3 He fusion reactors. This stems from: (1) the large fraction of D- 3 He power produced in the forms of charged particles and synchrotron radiation which are amenable to direct conversion, and (2) the low neutron fluence and lack of tritium breeding constraints, which increase design flexibility. The design team for a conceptual D- 3 He tokamak reactor, ARIES-III, has investigated numerous energy conversion options at a scoping level in attempting to realize high efficiency. The energy conversion systems have been studied in the context of their use on one or more of three versions of a D- 3 He tokamak: a first stability regime device, a second stability regime device, and a spherical torus. The set of energy conversion options investigated includes bootstrap current conversion, compression-expansion cycles, direct electrodynamic conversion, electrostatic direct conversion, internal electric generator, liquid metal heat engine blanket, liquid metal MHD, plasma MHD, radiation boiler, scrape-off layer thermoelectric, synchrotron radiation conversion by rectennas, synchrotron radiation conversion by thermal cycles, thermionic/AMTEC/thermal systems, and traveling wave conversion. The original set of options is briefly discussed, and those selected for further study are described in more detail. The four selected are liquid metal MHD, plasma MHD, rectenna conversion, and direct electrodynamic conversion. Thermionic energy conversion is being considered, and some options may require a thermal cycle in parallel or series. 17 refs., 3 figs., 1 tab

  3. Validation of neoclassical bootstrap current models in the edge of an H-mode plasma.

    Science.gov (United States)

    Wade, M R; Murakami, M; Politzer, P A

    2004-06-11

    Analysis of the parallel electric field E(parallel) evolution following an L-H transition in the DIII-D tokamak indicates the generation of a large negative pulse near the edge which propagates inward, indicative of the generation of a noninductive edge current. Modeling indicates that the observed E(parallel) evolution is consistent with a narrow current density peak generated in the plasma edge. Very good quantitative agreement is found between the measured E(parallel) evolution and that expected from neoclassical theory predictions of the bootstrap current.

  4. A conceptual design of superconducting spherical tokamak reactor

    International Nuclear Information System (INIS)

    Nagayama, Yoshio; Shinya, Kichiro; Tanaka, Yasutoshi

    2012-01-01

    This paper presents a fusion reactor concept named 'JUST (Japanese Universities' Super Tokamak reactor)'. From the plasma confinement system to the power generation system is evaluated in this work. JUST design has features as follows: the superconducting magnet, the steady state operation with high bootstrap current fraction, the easy replacement of neutron damaged first wall, the high heat flux in the divertor, and the low cost (or high β). By winding the OH solenoid over the center stack of toroidal field coil, we have the low aspect ratio and the 80cm thick neutron shield to protect the superconducting center stack. JUST is designed by using the 0-D transport code under the assumption that the energy confinement time is 1.8 times of the IPB98(y,2) scaling. Main parameters are as follows: the major radius of 4.5m, the aspect ratio of 1.8, the elongation ratio of 2.5, the toroidal field of 2.36T, the plasma current of 18MA, the toroidal beta of 22%, the central electron and ion temperature of 15keV and the fusion thermal power of 2.4GW. By using the mercury heat exchanger and the steam turbine, the heat efficiency is 33% and the electric power is 0.74GW. (author)

  5. Lower hybrid current drive in shaped tokamaks

    International Nuclear Information System (INIS)

    Kesner, J.

    1993-01-01

    A time dependent lower hybrid current drive tokamak simulation code has been developed. This code combines the BALDUR tokamak simulation code and the Bonoli/Englade lower hybrid current drive code and permits the study of the interaction of lower hybrid current drive with neutral beam heating in shaped cross-section plasmas. The code is time dependent and includes the beam driven and bootstrap currents in addition to the current driven by the lower hybrid system. Examples of simulations are shown for the PBX-M experiment which include the effect of cross section shaping on current drive, ballooning mode stabilization by current profile control and sawtooth stabilization. A critical question in current drive calculations is the radial transport of the energetic electrons. The authors have developed a response function technique to calculate radial transport in the presence of an electric field. The consequences of the combined influences of radial diffusion and electric field acceleration are discussed

  6. Varennes Tokamak

    International Nuclear Information System (INIS)

    Cumyn, P.B.

    A consortium of five organizations under the leadership of IREQ, the Institute de Recherche d'Hydro-Quebec has completed a conceptual design study for a tokamak device, and in January 1981 its construction was authorized with funding being provided principally by Hydro-Quebec and the National Research Council, as well as by the Ministre d'Education du Quebec and Natural Sciences and Engineering Research Council of Canada (NSERC). The device will form the focus of Canada's magnetic-fusion program and will be located in IREQ's laboratories in Varennes. Presently the machine layout is being finalized from the physics point of view and work has started on equipment design and specification. The Tokamak de Varennes will be an experimental device, the purpose of which is to study plasma and other fusion related phenomena. In particular it will study: 1. Plasma impurities and plasma/liner interaction; 2. Long pulse or quasi-continuous operation using plasma rampdown and eventually plasma current reversal in order to maintain the plasma; and 3. Advanced diagnostics

  7. USEFULNESS OF BOOTSTRAPPING IN PORTFOLIO MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Boris Radovanov

    2012-12-01

    Full Text Available This paper contains a comparison of in-sample and out-of-sample performances between the resampled efficiency technique, patented by Richard Michaud and Robert Michaud (1999, and traditional Mean-Variance portfolio selection, presented by Harry Markowitz (1952. Based on the Monte Carlo simulation, data (samples generation process determines the algorithms by using both, parametric and nonparametric bootstrap techniques. Resampled efficiency provides the solution to use uncertain information without the need for constrains in portfolio optimization. Parametric bootstrap process starts with a parametric model specification, where we apply Capital Asset Pricing Model. After the estimation of specified model, the series of residuals are used for resampling process. On the other hand, nonparametric bootstrap divides series of price returns into the new series of blocks containing previous determined number of consecutive price returns. This procedure enables smooth resampling process and preserves the original structure of data series.

  8. Conference on Bootstrapping and Related Techniques

    CERN Document Server

    Rothe, Günter; Sendler, Wolfgang

    1992-01-01

    This book contains 30 selected, refereed papers from an in- ternational conference on bootstrapping and related techni- ques held in Trier 1990. Thepurpose of the book is to in- form about recent research in the area of bootstrap, jack- knife and Monte Carlo Tests. Addressing the novice and the expert it covers as well theoretical as practical aspects of these statistical techniques. Potential users in different disciplines as biometry, epidemiology, computer science, economics and sociology but also theoretical researchers s- hould consult the book to be informed on the state of the art in this area.

  9. Bootstrapping Density-Weighted Average Derivatives

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael

    Employing the "small bandwidth" asymptotic framework of Cattaneo, Crump, and Jansson (2009), this paper studies the properties of a variety of bootstrap-based inference procedures associated with the kernel-based density-weighted averaged derivative estimator proposed by Powell, Stock, and Stoker...... (1989). In many cases validity of bootstrap-based inference procedures is found to depend crucially on whether the bandwidth sequence satisfies a particular (asymptotic linearity) condition. An exception to this rule occurs for inference procedures involving a studentized estimator employing a "robust...

  10. A Simple Counterexample to the Bootstrap

    OpenAIRE

    Donald W.K. Andrews

    1997-01-01

    The bootstrap of the maximum likelihood estimator of the mean of a sample of iid normal random variables with mean mu and variance one is not asymptotically correct to first order when the mean is restricted to be nonnegative. The problem occurs when the true value of the mean mu equals zero. This counterexample to the bootstrap generalizes to a wide variety of estimation problems in which the true parameter may be on the boundary of the parameter space. We provide some alternatives to the bo...

  11. Bootstrap percolation: a renormalisation group approach

    International Nuclear Information System (INIS)

    Branco, N.S.; Santos, Raimundo R. dos; Queiroz, S.L.A. de.

    1984-02-01

    In bootstrap percolation, sites are occupied at random with probability p, but each site is considered active only if at least m of its neighbours are also active. Within an approximate position-space renormalization group framework on a square lattice we obtain the behaviour of the critical concentration p (sub)c and of the critical exponents ν and β for m = 0 (ordinary percolation), 1,2 and 3. We find that the bootstrap percolation problem can be cast into different universality classes, characterized by the values of m. (author) [pt

  12. Early Stop Criterion from the Bootstrap Ensemble

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Larsen, Jan; Fog, Torben L.

    1997-01-01

    This paper addresses the problem of generalization error estimation in neural networks. A new early stop criterion based on a Bootstrap estimate of the generalization error is suggested. The estimate does not require the network to be trained to the minimum of the cost function, as required...... by other methods based on asymptotic theory. Moreover, in contrast to methods based on cross-validation which require data left out for testing, and thus biasing the estimate, the Bootstrap technique does not have this disadvantage. The potential of the suggested technique is demonstrated on various time...

  13. The economics of bootstrapping space industries - Development of an analytic computer model

    Science.gov (United States)

    Goldberg, A. H.; Criswell, D. R.

    1982-01-01

    A simple economic model of 'bootstrapping' industrial growth in space and on the Moon is presented. An initial space manufacturing facility (SMF) is assumed to consume lunar materials to enlarge the productive capacity in space. After reaching a predetermined throughput, the enlarged SMF is devoted to products which generate revenue continuously in proportion to the accumulated output mass (such as space solar power stations). Present discounted value and physical estimates for the general factors of production (transport, capital efficiency, labor, etc.) are combined to explore optimum growth in terms of maximized discounted revenues. It is found that 'bootstrapping' reduces the fractional cost to a space industry of transport off-Earth, permits more efficient use of a given transport fleet. It is concluded that more attention should be given to structuring 'bootstrapping' scenarios in which 'learning while doing' can be more fully incorporated in program analysis.

  14. Tokamak and RFP ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    A plasma model is applied to calculate numerically transport- confinement (nτ E ) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the nτ E transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab

  15. Simulation of saturated tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Nguyen, Canh N.; Bateman, Glenn; Kritz, Arnold H.

    2004-01-01

    A quasi-linear model, which includes the effect of the neoclassical bootstrap current, is developed for saturated tearing modes in order to compute magnetic island widths in axisymmetric toroidal plasmas with arbitrary aspect ratio and cross-sectional shape. The model is tested in a simple stand-alone code and is implemented in the BALDUR [C. E. Singer et al., Comput. Phys. Commun. 49, 275 (1982)] predictive modeling code. It is found that the widths of tearing mode islands increase with decreasing aspect ratio and with increasing elongation. Also, the island widths increase when the gradient of the current density increases at the edge of the islands and when the current density inside the islands is suppressed, such as the suppression caused by the near absence of the bootstrap current within the islands. In simulations of tokamak discharges, it is found that tearing mode island widths oscillate in time in response to periodic sawtooth crashes. The local enhancements in the transport produced by magnetic islands have a noticeable effect on global plasma confinement in simulations of low aspect ratio, high beta tokamaks, where saturated tearing mode islands can occur with widths that are greater than 15% of the plasma minor radius

  16. Pulling Econometrics Students up by Their Bootstraps

    Science.gov (United States)

    O'Hara, Michael E.

    2014-01-01

    Although the concept of the sampling distribution is at the core of much of what we do in econometrics, it is a concept that is often difficult for students to grasp. The thought process behind bootstrapping provides a way for students to conceptualize the sampling distribution in a way that is intuitive and visual. However, teaching students to…

  17. How to Bootstrap a Human Communication System

    Science.gov (United States)

    Fay, Nicolas; Arbib, Michael; Garrod, Simon

    2013-01-01

    How might a human communication system be bootstrapped in the absence of conventional language? We argue that motivated signs play an important role (i.e., signs that are linked to meaning by structural resemblance or by natural association). An experimental study is then reported in which participants try to communicate a range of pre-specified…

  18. Quadratic mass relations in topological bootstrap theory

    International Nuclear Information System (INIS)

    Jones, C.E.; Uschersohn, J.

    1980-01-01

    From the requirement of reality of discontinuities of scattering amplitudes at the spherical level of the topological bootstrap theory, a large number of mass relations for hadrons is derived. Quadratic mass formulas for the symmetry-breaking pattern of both mesons and baryon is obtained and their relation to conventional models of symmetry breaking is briefly discussed

  19. Bootstrapping Kernel-Based Semiparametric Estimators

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Jansson, Michael

    by accommodating a non-negligible bias. A noteworthy feature of the assumptions under which the result is obtained is that reliance on a commonly employed stochastic equicontinuity condition is avoided. The second main result shows that the bootstrap provides an automatic method of correcting for the bias even...... when it is non-negligible....

  20. A framework for bootstrapping morphological decomposition

    CSIR Research Space (South Africa)

    Joubert, LJ

    2004-11-01

    Full Text Available The need for a bootstrapping approach to the morphological decomposition of words in agglutinative languages such as isiZulu is motivated, and the complexities of such an approach are described. The authors then introduce a generic framework which...

  1. Robust block bootstrap panel predictability tests

    NARCIS (Netherlands)

    Westerlund, J.; Smeekes, S.

    2013-01-01

    Most panel data studies of the predictability of returns presume that the cross-sectional units are independent, an assumption that is not realistic. As a response to this, the current paper develops block bootstrap-based panel predictability tests that are valid under very general conditions. Some

  2. Compact toroid fueling of the TdeV tokamak

    International Nuclear Information System (INIS)

    Martin, F.; Raman, R.; Xiao, C.; Thomas, J.

    1993-01-01

    Compact toroids have been proposed as a means of centrally fueling tokamak reactors because of the high velocity to which they can be accelerated. These are cold (T e ∼ 10 eV), high density (n e > 10 20 m -3 ) spheromak plasmoids that are accelerated in a magnetized Marshall gun. As a proof of principle experiment, a compact toroid fueler (CTF) has been developed for injection into the TdeV tokamak. The engineering goals of the experiment are to measure and minimize the impurity content of the CT plasma and the neutral gas remaining after CT formation. Also of importance is the effect of CT central fueling on the tokamak density profile and bootstrap current, and the relaxation rate of the density profile providing information on the confinement time of the CT fuel

  3. Efficient generation of pronunciation dictionaries: human factors factors during bootstrapping

    CSIR Research Space (South Africa)

    Davel, MH

    2004-10-01

    Full Text Available Bootstrapping techniques have significant potential for the efficient generation of linguistic resources such as electronic pronunciation dictionaries. The authors describe a system and an approach to bootstrapping for the development...

  4. Bootstrap consistency for general semiparametric M-estimation

    KAUST Repository

    Cheng, Guang; Huang, Jianhua Z.

    2010-01-01

    , and apply to a broad class of bootstrap methods with exchangeable ootstrap weights. This paper provides a first general theoretical study of the bootstrap in semiparametric models. © Institute of Mathematical Statistics, 2010.

  5. Bootstrapping pronunciation models: a South African case study

    CSIR Research Space (South Africa)

    Davel, M

    2006-02-27

    Full Text Available Bootstrapping techniques can accelerate the development of language technology for new languages. The authors define a framework for the analysis of a general bootstrapping process whereby a model is improved through a controlled series...

  6. The cluster bootstrap consistency in generalized estimating equations

    KAUST Repository

    Cheng, Guang; Yu, Zhuqing; Huang, Jianhua Z.

    2013-01-01

    The cluster bootstrap resamples clusters or subjects instead of individual observations in order to preserve the dependence within each cluster or subject. In this paper, we provide a theoretical justification of using the cluster bootstrap

  7. PPPL tokamak program

    International Nuclear Information System (INIS)

    Furth, H.P.

    1984-10-01

    The economic prospects of the tokamak are reviewed briefly and found to be favorable - if the size of ignited tokamak plasmas can be kept small and appropriate auxiliary systems can be developed. The main objectives of the Princeton Plasma Physics Laboratory tokamak program are: (1) exploration of the physics of high-temperature toroidal confinement, in TFTR; (2) maximization of the tokamak beta value, in PBX; (3) development of reactor-relevant rf techniques, in PLT

  8. Tokamak fluidlike equations, with applications to turbulence and transport in H mode discharges

    International Nuclear Information System (INIS)

    Kim, Y.B.; Biglari, H.; Carreras, B.A.; Diamond, P.H.; Groebner, R.J.; Kwon, O.J.; Spong, D.A.; Callen, J.D.; Chang, Z.; Hollenberg, J.B.; Sundaram, A.K.; Terry, P.W.; Wang, J.F.

    1990-01-01

    Significant progress has been made in developing tokamak fluidlike equations which are valid in all collisionality regimes in toroidal devices, and their applications to turbulence and transport in tokamaks. The areas highlighted in this paper include: the rigorous derivation of tokamak fluidlike equations via a generalized Chapman-Enskog procedure in various collisionality regimes and on various time scales; their application to collisionless and collisional drift wave models in a sheared slab geometry; applications to neoclassical drift wave turbulence; i.e. neoclassical ion-temperature-gradient-driven turbulence and neoclassical electron-drift-wave turbulence; applications to neoclassical bootstrap-current-driven turbulence; numerical simulation of nonlinear bootstrap-current-driven turbulence and tearing mode turbulence; transport in Hot-Ion H mode discharges. 20 refs., 3 figs

  9. The ARIES tokamak fusion reactor study

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Beecraft, W.R.; Hogan, J.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Whitson, J.C.; Blanchard, J.P.; Emmert, G.A.; Santarius, J.F.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1989-01-01

    The ARIES study is a community effort to develop several visions of the tokamak as fusion power reactors. The aims are to determine their potential economics, safety, and environmental features and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak in 2nd stability regime and employs both potential advances in the physics and expected advances in technology and engineering; and ARIES-III is a conceptual D 3 He reactor. This paper focuses on the ARIES-I design. Parametric systems studies show that the optimum 1st stability tokamak has relatively low plasma current (∼ 12 MA), high plasma aspect ratio (∼ 4-6), and high magnetic field (∼ 24 T at the coil). ARIES-I is 1,000 MWe (net) reactor with a plasma major radius of 6.5 m, a minor radius of 1.4 m, a neutron wall loading of about 2.8 MW/m 2 , and a mass power density of about 90 kWe/ton. The ARIES-I reactor operates at steady state using ICRF fast waves to drive current in the plasma core and lower-hybrid waves for edge-plasma current drive. The current-drive system supplements a significant (∼ 57%) bootstrap current contribution. The impurity control system is based on high-recycling poloidal divertors. Because of the high field and large Lorentz forces in the toroidal-field magnets, innovative approaches with high-strength materials and support structures are used. 24 refs., 4 figs., 1 tab

  10. Status of tokamak research

    International Nuclear Information System (INIS)

    Rawls, J.M.

    1979-10-01

    An overall review of the tokamak program is given with particular emphasis upon developments over the past five years in the theoretical and experimental elements of the program. A summary of the key operating parameters for the principal tokamaks throughout the world is given. Also discussed are key issues in plasma confinement, plasma heating, and tokamak design

  11. Bootstrapping phylogenies inferred from rearrangement data

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2012-08-01

    Full Text Available Abstract Background Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. Results We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Conclusions Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its

  12. Bootstrapping phylogenies inferred from rearrangement data.

    Science.gov (United States)

    Lin, Yu; Rajan, Vaibhav; Moret, Bernard Me

    2012-08-29

    Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its support values follow a similar scale and its receiver

  13. Considerations on ECFH current drive and bootstrap current for W VII-X

    International Nuclear Information System (INIS)

    Gasparino, U.; Maassberg, H.

    1988-01-01

    Low shear is the characteristic of all proposed Wendelstein VII-X configurations. To avoid low harmonic rational numbers within the rotational transform profile, the current contribution to the rotational transform, Δt a α I/B, should be typically less than 10%. This leads to an upper limit of 50 kA (at B = 2.5 T) for the tolerable net toroidal current. A considerable net toroidal current (bootstrap current) is expected by neoclassical theory in the plateau and the low-collisionality regimes. Both radial transport as well as the bootstrap current densities depend sensitively on the magnetic configuration (see A. Montvai, this workshop). In case of an axisymmetric configuration with dimension and plasma parameters as predicted for the high- regime of WVII-X ( ∼ 5%), this current (∼ 0.5/1 MA) would dominate the rotational transform profile. This requires a reduction of magnitude of the bootstrap current to some % of the value of an equivalent tokamak. This reduction must act on the current profile itself and should not be merely obtained by having two channels of currents of different sign at different radii. Due to the possibility of controlling absorbed power and driven current profiles, electron cyclotron waves are a natural candidate for current profile control. Linear calculations show the possibility to drive a counteracting current with a profile similar to the bootstrap one. For ∼ 5% conditions, however, the optimium current drive efficiency (η ∼ 10 kA per MW) is far too low to make ECF-current drive suitable

  14. Tokamak Systems Code

    International Nuclear Information System (INIS)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  15. The use of the bootstrap in the analysis of case-control studies with missing data

    DEFF Research Database (Denmark)

    Siersma, Volkert Dirk; Johansen, Christoffer

    2004-01-01

    nonparametric bootstrap, bootstrap confidence intervals, missing values, multiple imputation, matched case-control study......nonparametric bootstrap, bootstrap confidence intervals, missing values, multiple imputation, matched case-control study...

  16. The $(2,0)$ superconformal bootstrap

    CERN Document Server

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C

    2016-01-01

    We develop the conformal bootstrap program for six-dimensional conformal field theories with $(2,0)$ supersymmetry, focusing on the universal four-point function of stress tensor multiplets. We review the solution of the superconformal Ward identities and describe the superconformal block decomposition of this correlator. We apply numerical bootstrap techniques to derive bounds on OPE coefficients and scaling dimensions from the constraints of crossing symmetry and unitarity. We also derive analytic results for the large spin spectrum using the lightcone expansion of the crossing equation. Our principal result is strong evidence that the $A_1$ theory realizes the minimal allowed central charge $(c=25)$ for any interacting $(2,0)$ theory. This implies that the full stress tensor four-point function of the $A_1$ theory is the unique unitary solution to the crossing symmetry equation at $c=25$. For this theory, we estimate the scaling dimensions of the lightest unprotected operators appearing in the stress tenso...

  17. Heptagons from the Steinmann cluster bootstrap

    International Nuclear Information System (INIS)

    Dixon, Lance J.; McLeod, Andrew J.; Drummond, James; Harrington, Thomas; Spradlin, Marcus; Papathanasiou, Georgios; Stanford Univ., CA

    2016-12-01

    We reformulate the heptagon cluster bootstrap to take advantage of the Steinmann relations, which require certain double discontinuities of any amplitude to vanish. These constraints vastly reduce the number of functions needed to bootstrap seven-point amplitudes in planar N=4 supersymmetric Yang-Mills theory, making higher-loop contributions to these amplitudes more computationally accessible. In particular, dual superconformal symmetry and well-defined collinear limits suffice to determine uniquely the symbols of the three-loop NMHV and four-loop MHV seven-point amplitudes. We also show that at three loops, relaxing the dual superconformal (anti Q) relations and imposing dihedral symmetry (and for NMHV the absence of spurious poles) leaves only a single ambiguity in the heptagon amplitudes. These results point to a strong tension between the collinear properties of the amplitudes and the Steinmann relations.

  18. Kepler Planet Detection Metrics: Statistical Bootstrap Test

    Science.gov (United States)

    Jenkins, Jon M.; Burke, Christopher J.

    2016-01-01

    This document describes the data produced by the Statistical Bootstrap Test over the final three Threshold Crossing Event (TCE) deliveries to NExScI: SOC 9.1 (Q1Q16)1 (Tenenbaum et al. 2014), SOC 9.2 (Q1Q17) aka DR242 (Seader et al. 2015), and SOC 9.3 (Q1Q17) aka DR253 (Twicken et al. 2016). The last few years have seen significant improvements in the SOC science data processing pipeline, leading to higher quality light curves and more sensitive transit searches. The statistical bootstrap analysis results presented here and the numerical results archived at NASAs Exoplanet Science Institute (NExScI) bear witness to these software improvements. This document attempts to introduce and describe the main features and differences between these three data sets as a consequence of the software changes.

  19. Heptagons from the Steinmann cluster bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; McLeod, Andrew J. [Stanford Univ., CA (United States). SLAC National Accelerator Lab.; Drummond, James [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Harrington, Thomas; Spradlin, Marcus [Brown Univ., Providence, RI (United States). Dept. of Physics; Papathanasiou, Georgios [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Stanford Univ., CA (United States). SLAC National Accelerator Lab.

    2016-12-15

    We reformulate the heptagon cluster bootstrap to take advantage of the Steinmann relations, which require certain double discontinuities of any amplitude to vanish. These constraints vastly reduce the number of functions needed to bootstrap seven-point amplitudes in planar N=4 supersymmetric Yang-Mills theory, making higher-loop contributions to these amplitudes more computationally accessible. In particular, dual superconformal symmetry and well-defined collinear limits suffice to determine uniquely the symbols of the three-loop NMHV and four-loop MHV seven-point amplitudes. We also show that at three loops, relaxing the dual superconformal (anti Q) relations and imposing dihedral symmetry (and for NMHV the absence of spurious poles) leaves only a single ambiguity in the heptagon amplitudes. These results point to a strong tension between the collinear properties of the amplitudes and the Steinmann relations.

  20. Heptagons from the Steinmann cluster bootstrap

    International Nuclear Information System (INIS)

    Dixon, Lance J.; Drummond, James; Papathanasiou, Georgios

    2017-01-01

    We reformulate the heptagon cluster bootstrap to take advantage of the Steinmann relations, which require certain double discontinuities of any amplitude to vanish. These constraints vastly reduce the number of functions needed to bootstrap seven-point amplitudes in planar N = 4 supersymmetric Yang-Mills theory, making higher-loop contributions to these amplitudes more computationally accessible. In particular, dual superconformal symmetry and well-defined collinear limits suffice to determine uniquely the symbols of the three-loop NMHV and four-loop MHV seven-point amplitudes. We also show that at three loops, relaxing the dual superconformal Q̄ relations and imposing dihedral symmetry (and for NMHV the absence of spurious poles) leaves only a single ambiguity in the heptagon amplitudes. These results point to a strong tension between the collinear properties of the amplitudes and the Steinmann relations.

  1. The cluster bootstrap consistency in generalized estimating equations

    KAUST Repository

    Cheng, Guang

    2013-03-01

    The cluster bootstrap resamples clusters or subjects instead of individual observations in order to preserve the dependence within each cluster or subject. In this paper, we provide a theoretical justification of using the cluster bootstrap for the inferences of the generalized estimating equations (GEE) for clustered/longitudinal data. Under the general exchangeable bootstrap weights, we show that the cluster bootstrap yields a consistent approximation of the distribution of the regression estimate, and a consistent approximation of the confidence sets. We also show that a computationally more efficient one-step version of the cluster bootstrap provides asymptotically equivalent inference. © 2012.

  2. Computer simulation of transport driven current in tokamaks

    International Nuclear Information System (INIS)

    Nunan, W.J.; Dawson, J.M.

    1993-01-01

    Plasma transport phenomena can drive large currents parallel to an externally applied magnetic field. The Bootstrap Current Theory accounts for the effect of Banana diffusion on toroidal current, but the effect is not confined to that transport regime. The authors' 2 1/2-D, electromagnetic, particle simulations have demonstrated that Maxwellian plasmas in static toroidal and vertical fields spontaneously develop significant toroidal current, even in the absence of the open-quotes seed currentclose quotes which the Bootstrap Theory requires. Other simulations, in both toroidal and straight cylindrical geometries, and without any externally imposed electric field, show that if the plasma column is centrally fueled, and if the particle diffusion coefficient exceeds the magnetic diffusion coefficient (as is true in most tokamaks) then the toroidal current grows steadily. The simulations indicate that such fueling, coupled with central heating due to fusion reactions may drive all of the tokamak's toroidal current. The Bootstrap and dynamo mechanisms do not drive toroidal current where the poloidal magnetic field is zero. The simulations, as well as initial theoretical work, indicate that in tokamak plasmas, various processes naturally transport current from the outer regions of the plasma to the magnetic axis. The mechanisms which cause this effective electron viscosity include conventional binary collisions, wave emission and reabsorption, and also convection associated with rvec E x rvec B vortex motion. The simulations also exhibit preferential loss of particles carrying current opposing the bulk plasma current. This preferential loss generates current even at the magnetic axis. If these self-seeding mechanisms function in experiments as they do in the simulations, then transport driven current would eliminate the need for any external current drive in tokamaks, except simple ohmic heating for initial generation of the plasma

  3. Bootstrap inference when using multiple imputation.

    Science.gov (United States)

    Schomaker, Michael; Heumann, Christian

    2018-04-16

    Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g-formula for inference, a method for which no standard errors are available. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Transport and turbulence in a magnetized plasma (application to tokamak plasmas); Transport et turbulence dans un plasma magnetise (application aux plasmas de tokamaks)

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y

    2004-03-01

    This document gathers the lectures made in the framework of a Ph.D level physics class dedicated to plasma physics. This course is made up of 3 parts : 1) collisions and transport, 2) transport and turbulence, and 3) study of a few exchange instabilities. More precisely the first part deals with the following issues: thermonuclear fusion, Coulomb collisions, particles trajectories in a tokamak, neo-classical transport in tokamaks, the bootstrap current, and ware pinch. The second part involves: particle transport in tokamaks, quasi-linear transport, resonance islands, resonance in tokamaks, from quasi to non-linear transport, and non-linear saturation of turbulence. The third part deals with: shift velocities in fluid theory, a model for inter-change instabilities, Rayleigh-Benard instability, Hasegawa-Wakatani model, and Hasegawa-Mima model. This document ends with a series of appendices dealing with: particle-wave interaction, determination of the curvature parameter G, Rossby waves.

  5. Bootstrapping Relational Affordances of Object Pairs using Transfer

    DEFF Research Database (Denmark)

    Fichtl, Severin; Kraft, Dirk; Krüger, Norbert

    2018-01-01

    leverage past knowledge to accelerate current learning (which we call bootstrapping). We learn Random Forest based affordance predictors from visual inputs and demonstrate two approaches to knowledge transfer for bootstrapping. In the first approach (direct bootstrapping), the state-space for a new...... affordance predictor is augmented with the output of previously learnt affordances. In the second approach (category based bootstrapping), we form categories that capture underlying commonalities of a pair of existing affordances and augment the state-space with this category classifier’s output. In addition......, we introduce a novel heuristic, which suggests how a large set of potential affordance categories can be pruned to leave only those categories which are most promising for bootstrapping future affordances. Our results show that both bootstrapping approaches outperform learning without bootstrapping...

  6. Tokamak devices: towards controlled fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    The Tokamak family is from Soviet Union. These devices were exclusively studied at the Kurchatov Institute in Moscow for more than ten years. The first occidental Tokamak started in 1970 at Princeton. The TFR (Tokamak Fontenay-aux-Roses) was built to be superior to the Russian T4. Tokamak future is now represented by the JET (Joint European Tokamak) [fr

  7. Neoclassical MHD equations for tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Shaing, K.C.

    1986-03-01

    The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion

  8. Tokamak engineering mechanics

    International Nuclear Information System (INIS)

    Song, Yuntao; Wu, Weiyue; Du, Shijun

    2014-01-01

    Provides a systematic introduction to tokamaks in engineering mechanics. Includes design guides based on full mechanical analysis, which makes it possible to accurately predict load capacity and temperature increases. Presents comprehensive information on important design factors involving materials. Covers the latest advances in and up-to-date references on tokamak devices. Numerous examples reinforce the understanding of concepts and provide procedures for design. Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study of mechanical/fusion engineering with a general understanding of tokamak engineering mechanics.

  9. Bootstrap procedure in the quasinuclear quark model

    International Nuclear Information System (INIS)

    Anisovich, V.V.; Gerasyuta, S.M.; Keltuyala, I.V.

    1983-01-01

    The scattering amplitude for quarks (dressed quarks of a single flavour, and three colours) is obtained by means of a bootstrap procedure with introdUction of an initial paint-wise interaction due to a heavy gluon exchange. The obtained quasi-nuclear model (effective short-range interaction in the S-wave states) has reasonable properties: there exist colourless meson states Jsup(p)=0sup(-), 1 - ; there are no bound states in coloured channels, a virtual diquark level Jsup(p)=1sup(+) appears in the coloured state anti 3sub(c)

  10. Towards bootstrapping QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Shai M.; Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)

    2016-08-02

    We initiate the conformal bootstrap study of Quantum Electrodynamics in 2+1 space-time dimensions (QED{sub 3}) with N flavors of charged fermions by focusing on the 4-point function of four monopole operators with the lowest unit of topological charge. We obtain upper bounds on the scaling dimension of the doubly-charged monopole operator, with and without assuming other gaps in the operator spectrum. Intriguingly, we find a (gap-dependent) kink in these bounds that comes reasonably close to the large N extrapolation of the scaling dimensions of the singly-charged and doubly-charged monopole operators down to N=4 and N=6.

  11. Tokamak engineering mechanics

    CERN Document Server

    Song, Yuntao; Du, Shijun

    2013-01-01

    Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study

  12. Advanced Tokamak Stability Theory

    Science.gov (United States)

    Zheng, Linjin

    2015-03-01

    The intention of this book is to introduce advanced tokamak stability theory. We start with the derivation of the Grad-Shafranov equation and the construction of various toroidal flux coordinates. An analytical tokamak equilibrium theory is presented to demonstrate the Shafranov shift and how the toroidal hoop force can be balanced by the application of a vertical magnetic field in tokamaks. In addition to advanced theories, this book also discusses the intuitive physics pictures for various experimentally observed phenomena.

  13. Tokamak confinement scaling laws

    International Nuclear Information System (INIS)

    Connor, J.

    1998-01-01

    The scaling of energy confinement with engineering parameters, such as plasma current and major radius, is important for establishing the size of an ignited fusion device. Tokamaks exhibit a variety of modes of operation with different confinement properties. At present there is no adequate first principles theory to predict tokamak energy confinement and the empirical scaling method is the preferred approach to designing next step tokamaks. This paper reviews a number of robust theoretical concepts, such as dimensional analysis and stability boundaries, which provide a framework for characterising and understanding tokamak confinement and, therefore, generate more confidence in using empirical laws for extrapolation to future devices. (author)

  14. Tokamak concept innovations

    International Nuclear Information System (INIS)

    1986-04-01

    This document contains the results of the IAEA Specialists' Meeting on Tokamak Concept Innovations held 13-17 January 1986 in Vienna. Although it is the most advanced fusion reactor concept the tokamak is not without its problems. Most of these problems should be solved within the ongoing R and D studies for the next generation of tokamaks. Emphasis for this meeting was placed on innovations that would lead to substantial improvements in a tokamak reactor, even if they involved a radical departure from present thinking

  15. Comparison of Bootstrap Confidence Intervals Using Monte Carlo Simulations

    Directory of Open Access Journals (Sweden)

    Roberto S. Flowers-Cano

    2018-02-01

    Full Text Available Design of hydraulic works requires the estimation of design hydrological events by statistical inference from a probability distribution. Using Monte Carlo simulations, we compared coverage of confidence intervals constructed with four bootstrap techniques: percentile bootstrap (BP, bias-corrected bootstrap (BC, accelerated bias-corrected bootstrap (BCA and a modified version of the standard bootstrap (MSB. Different simulation scenarios were analyzed. In some cases, the mother distribution function was fit to the random samples that were generated. In other cases, a distribution function different to the mother distribution was fit to the samples. When the fitted distribution had three parameters, and was the same as the mother distribution, the intervals constructed with the four techniques had acceptable coverage. However, the bootstrap techniques failed in several of the cases in which the fitted distribution had two parameters.

  16. Modeling, measurement, and 3-D equilibrium reconstruction of the bootstrap current in the Helically Symmetric Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J. C.; Talmadge, J. N.; Anderson, D. T. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Hanson, J. D. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2014-09-15

    The bootstrap current for three electron cyclotron resonance heated plasma scenarios in a quasihelically symmetric stellarator (the Helically Symmetric Experiment) are analyzed and compared to a neoclassical transport code PENTA. The three conditions correspond to 50 kW input power with a resonance that is off-axis, 50 kW on-axis heating and 100 kW on-axis heating. When the heating location was moved from off-axis to on-axis with 50 kW heating power, the stored energy and the extrapolated steady-state current were both observed to increase. When the on-axis heating power was increased from 50 kW to 100 kW, the stored energy continued to increase while the bootstrap current slightly decreased. This trend is qualitatively in agreement with the calculations which indicate that a large positive electric field for the 100 kW case was driving the current negative in a small region close to the magnetic axis and accounting for the decrease in the total integrated current. This trend in the calculations is only observed to occur when momentum conservation between particle species is included. Without momentum conservation, the calculated bootstrap current increases monotonically. We show that the magnitude of the bootstrap current as calculated by PENTA agrees better with the experiment when momentum conservation between plasma species is included in the calculation. The total current was observed in all cases to flow in a direction to unwind the transform, unlike in a tokamak in which the bootstrap current adds to the transform. The 3-D inductive response of the plasma is simulated to predict the evolution of the current profile during the discharge. The 3-D equilibrium reconstruction code V3FIT is used to reconstruct profiles of the plasma pressure and current constrained by measurements with a set of magnetic diagnostics. The reconstructed profiles are consistent with the measured plasma pressure profile and the simulated current profile when the

  17. A bootstrapping method for development of Treebank

    Science.gov (United States)

    Zarei, F.; Basirat, A.; Faili, H.; Mirain, M.

    2017-01-01

    Using statistical approaches beside the traditional methods of natural language processing could significantly improve both the quality and performance of several natural language processing (NLP) tasks. The effective usage of these approaches is subject to the availability of the informative, accurate and detailed corpora on which the learners are trained. This article introduces a bootstrapping method for developing annotated corpora based on a complex and rich linguistically motivated elementary structure called supertag. To this end, a hybrid method for supertagging is proposed that combines both of the generative and discriminative methods of supertagging. The method was applied on a subset of Wall Street Journal (WSJ) in order to annotate its sentences with a set of linguistically motivated elementary structures of the English XTAG grammar that is using a lexicalised tree-adjoining grammar formalism. The empirical results confirm that the bootstrapping method provides a satisfactory way for annotating the English sentences with the mentioned structures. The experiments show that the method could automatically annotate about 20% of WSJ with the accuracy of F-measure about 80% of which is particularly 12% higher than the F-measure of the XTAG Treebank automatically generated from the approach proposed by Basirat and Faili [(2013). Bridge the gap between statistical and hand-crafted grammars. Computer Speech and Language, 27, 1085-1104].

  18. How to bootstrap a human communication system.

    Science.gov (United States)

    Fay, Nicolas; Arbib, Michael; Garrod, Simon

    2013-01-01

    How might a human communication system be bootstrapped in the absence of conventional language? We argue that motivated signs play an important role (i.e., signs that are linked to meaning by structural resemblance or by natural association). An experimental study is then reported in which participants try to communicate a range of pre-specified items to a partner using repeated non-linguistic vocalization, repeated gesture, or repeated non-linguistic vocalization plus gesture (but without using their existing language system). Gesture proved more effective (measured by communication success) and more efficient (measured by the time taken to communicate) than non-linguistic vocalization across a range of item categories (emotion, object, and action). Combining gesture and vocalization did not improve performance beyond gesture alone. We experimentally demonstrate that gesture is a more effective means of bootstrapping a human communication system. We argue that gesture outperforms non-linguistic vocalization because it lends itself more naturally to the production of motivated signs. © 2013 Cognitive Science Society, Inc.

  19. Selfconsistent RF driven and bootstrap currents

    International Nuclear Information System (INIS)

    Peysson, Y.

    2002-01-01

    This important problem selfconsistent calculations of the bootstrap current with RF, taking into account possible synergistic effects, is addressed for the case of lower hybrid (LH) and electron cyclotron (EC) current drive by numerically solving the electron drift kinetic equation. Calculations are performed using a new, fast, and fully implicit code which solves the 3-D relativistic Fokker-Planck equation with quasilinear diffusion. These calculations take into account the perturbations to the electron distribution due to radial drifts induced by magnetic field gradient and curvature. While the synergism between bootstrap and LH-driven current does not seem to exceed 15%, it can reach 30-40% with the EC-driven current for some plasma parameters. In addition, considerable current can be generated by judiciously using ECCD with the Okhawa effect. This is in contrast to the usual ECCD which tries to avoid it. A detailed analysis of the numerical results is presented using a simplified analytical model which incorporates the underlying physical processes. (author)

  20. Using the bootstrap in a multivariadte data problem: An example

    International Nuclear Information System (INIS)

    Glosup, J.G.; Axelrod, M.C.

    1995-01-01

    The use of the bootstrap in the multivariate version of the paired t-test is considered and demonstrated through an example. The problem of interest involves comparing two different techniques for measuring the chemical constituents of an sample item. The bootstrap is used to form an empirical significance level for Hotelling's one-sample T-squared statistic. The bootstrap was selected to determine empirical significance levels because the implicit assumption of multivariate normality in the classic Hotelling's one-sample test night not hold. The results of both the classic and bootstrap test are presented and contrasted

  1. Application of bootstrap sampling in gamma-ray astronomy: Time variability in pulsed emission from crab pulsar

    International Nuclear Information System (INIS)

    Ozel, M.E.; Mayer-Hasselwander, H.

    1985-01-01

    This paper discusses the bootstrap scheme which fits well for many astronomical applications. It is based on the well-known sampling plan called ''sampling with replacement''. Digital computers make the method very practical for the investigation of various trends present in a limited set of data which is usually a small fraction of the total population. The authors attempt to apply the method and demonstrate its feasibility. The study indicates that the discrete nature of high energy gamma-ray data makes the bootstrap method especially attractive for gamma-ray astronomy. Present analysis shows that the ratio of pulse strengths is variable with a 99.8% confidence

  2. Tokamak control simulator

    International Nuclear Information System (INIS)

    Edelbaum, T.N.; Serben, S.; Var, R.E.

    1976-01-01

    A computer model of a tokamak experimental power reactor and its control system is being constructed. This simulator will allow the exploration of various open loop and closed loop strategies for reactor control. This paper provides a brief description of the simulator and some of the potential control problems associated with this class of tokamaks

  3. Conformal bootstrap, universality and gravitational scattering

    Directory of Open Access Journals (Sweden)

    Steven Jackson

    2015-12-01

    Full Text Available We use the conformal bootstrap equations to study the non-perturbative gravitational scattering between infalling and outgoing particles in the vicinity of a black hole horizon in AdS. We focus on irrational 2D CFTs with large c and only Virasoro symmetry. The scattering process is described by the matrix element of two light operators (particles between two heavy states (BTZ black holes. We find that the operator algebra in this regime is (i universal and identical to that of Liouville CFT, and (ii takes the form of an exchange algebra, specified by an R-matrix that exactly matches the scattering amplitude of 2+1 gravity. The R-matrix is given by a quantum 6j-symbol and the scattering phase by the volume of a hyperbolic tetrahedron. We comment on the relevance of our results to scrambling and the holographic reconstruction of the bulk physics near black hole horizons.

  4. Parameter tolerance of the SQUID bootstrap circuit

    International Nuclear Information System (INIS)

    Zhang Guofeng; Dong Hui; Xie Xiaoming; Jiang Mianheng; Zhang Yi; Krause, Hans-Joachim; Braginski, Alex I; Offenhäusser, Andreas

    2012-01-01

    We recently demonstrated and analysed the voltage-biased SQUID bootstrap circuit (SBC) conceived to suppress the preamplifier noise contribution in the absence of flux modulation readout. Our scheme contains both the additional voltage and current feedbacks. In this study, we analysed the tolerance of the SBC noise suppression performance to spreads in SQUID and SBC circuit parameters. Analytical results were confirmed by experiments. A one-time adjustable current feedback can be used to extend the tolerance to spreads such as those caused by the integrated circuit fabrication process. This should help to improve the fabrication yield of SBC devices integrated on one chip—as required for multi-channel SQUID systems.

  5. The ${\\mathcal N}=2$ superconformal bootstrap

    CERN Document Server

    Beem, Christopher; Liendo, Pedro; Rastelli, Leonardo; van Rees, Balt C

    2016-01-01

    In this work we initiate the conformal bootstrap program for ${\\mathcal N}=2$ superconformal field theories in four dimensions. We promote an abstract operator-algebraic viewpoint in order to unify the description of Lagrangian and non-Lagrangian theories, and formulate various conjectures concerning the landscape of theories. We analyze in detail the four-point functions of flavor symmetry current multiplets and of ${\\mathcal N}=2$ chiral operators. For both correlation functions we review the solution of the superconformal Ward identities and describe their superconformal block decompositions. This provides the foundation for an extensive numerical analysis discussed in the second half of the paper. We find a large number of constraints for operator dimensions, OPE coefficients, and central charges that must hold for any ${\\mathcal N}=2$ superconformal field theory.

  6. Bootstrapping the O(N) archipelago

    Energy Technology Data Exchange (ETDEWEB)

    Kos, Filip; Poland, David [Department of Physics, Yale University, New Haven, CT 06520 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Vichi, Alessandro [Theory Division, CERN, Geneva (Switzerland)

    2015-11-17

    We study 3d CFTs with an O(N) global symmetry using the conformal bootstrap for a system of mixed correlators. Specifically, we consider all nonvanishing scalar four-point functions containing the lowest dimension O(N) vector ϕ{sub i} and the lowest dimension O(N) singlet s, assumed to be the only relevant operators in their symmetry representations. The constraints of crossing symmetry and unitarity for these four-point functions force the scaling dimensions (Δ{sub ϕ},Δ{sub s}) to lie inside small islands. We also make rigorous determinations of current two-point functions in the O(2) and O(3) models, with applications to transport in condensed matter systems.

  7. Bootstrapping the O(N) Archipelago

    CERN Document Server

    Kos, Filip; Simmons-Duffin, David; Vichi, Alessandro

    2015-01-01

    We study 3d CFTs with an $O(N)$ global symmetry using the conformal bootstrap for a system of mixed correlators. Specifically, we consider all nonvanishing scalar four-point functions containing the lowest dimension $O(N)$ vector $\\phi_i$ and the lowest dimension $O(N)$ singlet $s$, assumed to be the only relevant operators in their symmetry representations. The constraints of crossing symmetry and unitarity for these four-point functions force the scaling dimensions $(\\Delta_\\phi, \\Delta_s)$ to lie inside small islands. We also make rigorous determinations of current two-point functions in the $O(2)$ and $O(3)$ models, with applications to transport in condensed matter systems.

  8. A 'bootstrapped' Teaching/Learning Procedure

    Science.gov (United States)

    Odusina Odusote, Olusogo

    1998-04-01

    Erasing preconceived antiphysics ideas by nonscience/nonmajor physics students have elicited diverse teaching methods. Introductory general physics courses at college level have been taught by a 'bootstrap' approach. A concise treatment of the syllabus by the teacher in about 1/2 of the course duration, with brief exercises and examples. Students are then introduced to real life situations - toys, home appliances, sports, disasters, etc, and the embedded physics concepts discussed. Usually this generates a feeling of deja vu, which elicits desire for more. Each application usually encompasses topics in a broad range of the syllabus. The other half of the course is used by students to work individually/groups on assigned and graded home-works and essays, with guidance from the lecture notes and the teacher/supervisor. An end of course examination shows increase in the success rate.

  9. Learning web development with Bootstrap and AngularJS

    CERN Document Server

    Radford, Stephen

    2015-01-01

    Whether you know a little about Bootstrap or AngularJS, or you're a complete beginner, this book will enhance your capabilities in both frameworks and you'll build a fully functional web app. A working knowledge of HTML, CSS, and JavaScript is required to fully get to grips with Bootstrap and AngularJS.

  10. A NONPARAMETRIC HYPOTHESIS TEST VIA THE BOOTSTRAP RESAMPLING

    OpenAIRE

    Temel, Tugrul T.

    2001-01-01

    This paper adapts an already existing nonparametric hypothesis test to the bootstrap framework. The test utilizes the nonparametric kernel regression method to estimate a measure of distance between the models stated under the null hypothesis. The bootstraped version of the test allows to approximate errors involved in the asymptotic hypothesis test. The paper also develops a Mathematica Code for the test algorithm.

  11. The nonparametric bootstrap for the current status model

    NARCIS (Netherlands)

    Groeneboom, P.; Hendrickx, K.

    2017-01-01

    It has been proved that direct bootstrapping of the nonparametric maximum likelihood estimator (MLE) of the distribution function in the current status model leads to inconsistent confidence intervals. We show that bootstrapping of functionals of the MLE can however be used to produce valid

  12. Tokamaks. 2. ed.

    International Nuclear Information System (INIS)

    Wesson, John; Campbell, D.J.; Connor, J.W.

    1997-01-01

    It is interesting to recall the state of tokamak research when the first edition of this book was written. My judgement of the level of real understanding at that time is indicated by the virtual absence of comparisons of experiment with theory in that edition. The need then was for a 'handbook' which collected in a single volume the concepts and models which form the basis of everyday tokamak research. The experimental and theoretical endeavours of the subsequent decade have left almost all of this intact, but have brought a massive development of the subject. Firstly, there are now several areas where the experimental behaviour is described in terms of accepted theory. This is particularly true of currents parallel to the magnetic field, and of the stability limitations on the plasma pressure. Next there has been the research on large tokamaks, hardly started at the writing of the first edition. Now our thinking is largely based on the results from these tokamaks and this work has led to the long awaited achievement of significant amounts of fusion power. Finally, the success of tokamak research has brought us face to face with the problems involved in designing and building a tokamak reactor. The present edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes an account of the advances outlined above. (Author)

  13. Study of a compact reversed shear Tokamak reactor

    International Nuclear Information System (INIS)

    Okano, K.; Asaoka, Y.; Tomabechi, K.; Yoshida, T.; Hiwatari, R.; Ogawa, Y.; Tokimatsu, K.; Yamamoto, T.; Inoue, N.; Murakami, Y.

    1998-01-01

    A reversed shear configuration, which was observed recently in some tokamak experiments, might have a possibility to realize compact and cost-competitive tokamak reactors. In this study, a compact (low cost) commercial reactor based on the shear reversed high beta equilibrium with β N =5.5, is considered, namely the compact reversed shear tokamak, CREST-1. The CREST-1 is designed with a moderate aspect ratio (R/a=3.4), which will allow us to experimentally develop this CREST concept by ITER. This will be very advantageous with regard to the fusion development strategy. The current profile for the reversed shear operation is sustained and controlled in steady state by bootstrap (88%), beam and r driven currents, which are calculated by a neo-classical model code in 3D geometry. The MHD stability has been checked by an ideal MHD stability analysis code (ERATO) and it has been confirmed that the ideal low n kink, ballooning and Mercier modes are stable while a closed conductive shell is required for stability. Such a compact tokamak can be cost-competitive as an electric power source in the 21st century and it is one possible scenario in realizing a commercial fusion reactor beyond the ITER project. (orig.)

  14. Core fuelling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1995-01-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. It is shown that with radially 'hollow' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles that are peaked off-axis. The fuelling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fuelling does not require Megavolt particle energies. Even with beam voltages of ∼ 200 keV, however, exceptionally good particle confinement is needed to achieve net electrical power generation. The required ratio of particle to thermal diffusivities is an order of magnitude outside the range reported for tokamaks. In a system with no power production requirement (e.g., neutron sources) neutral beam fuelling should be capable of producing peaked density profiles in devices as large as ITER. Fuelling systems with low energy cost per particle - such as cryogenic pellet injection - must be used in power producing tokamaks when τ P ∼ τ E . Simulations with pellet injection speeds of 7 km/s show that the peaking factor, n e0 / e >, approaches 2. (author). 65 refs, 8 figs

  15. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  16. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  17. Survey of Tokamak experiments

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1977-01-01

    The survey covers the following topics:- Introduction and history of tokamak research; review of tokamak apparatus, existing and planned; remarks on measurement techniques and their limitations; main results in terms of electron and ion temperatures, plasma density, containment times, etc. Empirical scaling; range of operating densities; impurities, origin, behaviour and control (including divertors); data on fluctuations and instabilities in tokamak plasmas; data on disruptive instabilities; experiments on shaped cross-sections; present experimental evidence on β limits; auxiliary heating; experimental and theoretical problems for the future. (author)

  18. Tokamak ARC damage

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  19. Bootstrap consistency for general semiparametric M-estimation

    KAUST Repository

    Cheng, Guang

    2010-10-01

    Consider M-estimation in a semiparametric model that is characterized by a Euclidean parameter of interest and an infinite-dimensional nuisance parameter. As a general purpose approach to statistical inferences, the bootstrap has found wide applications in semiparametric M-estimation and, because of its simplicity, provides an attractive alternative to the inference approach based on the asymptotic distribution theory. The purpose of this paper is to provide theoretical justifications for the use of bootstrap as a semiparametric inferential tool. We show that, under general conditions, the bootstrap is asymptotically consistent in estimating the distribution of the M-estimate of Euclidean parameter; that is, the bootstrap distribution asymptotically imitates the distribution of the M-estimate. We also show that the bootstrap confidence set has the asymptotically correct coverage probability. These general onclusions hold, in particular, when the nuisance parameter is not estimable at root-n rate, and apply to a broad class of bootstrap methods with exchangeable ootstrap weights. This paper provides a first general theoretical study of the bootstrap in semiparametric models. © Institute of Mathematical Statistics, 2010.

  20. Tokamak simulation code manual

    International Nuclear Information System (INIS)

    Chung, Moon Kyoo; Oh, Byung Hoon; Hong, Bong Keun; Lee, Kwang Won

    1995-01-01

    The method to use TSC (Tokamak Simulation Code) developed by Princeton plasma physics laboratory is illustrated. In KT-2 tokamak, time dependent simulation of axisymmetric toroidal plasma and vertical stability have to be taken into account in design phase using TSC. In this report physical modelling of TSC are described and examples of application in JAERI and SERI are illustrated, which will be useful when TSC is installed KAERI computer system. (Author) 15 refs., 6 figs., 3 tabs

  1. MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation.

    Science.gov (United States)

    Hoang, Diep Thi; Vinh, Le Sy; Flouri, Tomáš; Stamatakis, Alexandros; von Haeseler, Arndt; Minh, Bui Quang

    2018-02-02

    The nonparametric bootstrap is widely used to measure the branch support of phylogenetic trees. However, bootstrapping is computationally expensive and remains a bottleneck in phylogenetic analyses. Recently, an ultrafast bootstrap approximation (UFBoot) approach was proposed for maximum likelihood analyses. However, such an approach is still missing for maximum parsimony. To close this gap we present MPBoot, an adaptation and extension of UFBoot to compute branch supports under the maximum parsimony principle. MPBoot works for both uniform and non-uniform cost matrices. Our analyses on biological DNA and protein showed that under uniform cost matrices, MPBoot runs on average 4.7 (DNA) to 7 times (protein data) (range: 1.2-20.7) faster than the standard parsimony bootstrap implemented in PAUP*; but 1.6 (DNA) to 4.1 times (protein data) slower than the standard bootstrap with a fast search routine in TNT (fast-TNT). However, for non-uniform cost matrices MPBoot is 5 (DNA) to 13 times (protein data) (range:0.3-63.9) faster than fast-TNT. We note that MPBoot achieves better scores more frequently than PAUP* and fast-TNT. However, this effect is less pronounced if an intensive but slower search in TNT is invoked. Moreover, experiments on large-scale simulated data show that while both PAUP* and TNT bootstrap estimates are too conservative, MPBoot bootstrap estimates appear more unbiased. MPBoot provides an efficient alternative to the standard maximum parsimony bootstrap procedure. It shows favorable performance in terms of run time, the capability of finding a maximum parsimony tree, and high bootstrap accuracy on simulated as well as empirical data sets. MPBoot is easy-to-use, open-source and available at http://www.cibiv.at/software/mpboot .

  2. Academic Carelessness, Bootstrapping, and the Cybernetic Investigator

    Directory of Open Access Journals (Sweden)

    Hannah Drayson

    2017-11-01

    Full Text Available The following discussion is concerned with certain forms of poor practice in academic publishing that give rise to “academic urban legends.” It suggests that rather than simply consider phenomena such as poor citation practices and circular reporting as mistakes, misunderstandings, and evidence of lack of rigor, we might also read them as evidence of a particular kind of creativity—for which misunderstandings, assump-tions, and failures of diligence are mechanisms by which potentially influential ideas manifest. Reflecting particularly on a critique of the debate surrounding pharmaceutical cognitive enhancement and its use by university staff and students, the following will argue that investigators within the disciplines concerned with the effects or development of these technologies are themselves implicated as potential subjects. Alongside reflections from science fiction studies that offer insights into the experiential dimension of reading and misreading, this paper offers some insights regarding how we might think of mistakes and misunderstandings as a form of bootstrapping and a source of creativity in scientific and technological development.

  3. An algebraic approach to the analytic bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F. [Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Zhiboedov, Alexander [Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA 02138 (United States)

    2017-04-27

    We develop an algebraic approach to the analytic bootstrap in CFTs. By acting with the Casimir operator on the crossing equation we map the problem of doing large spin sums to any desired order to the problem of solving a set of recursion relations. We compute corrections to the anomalous dimension of large spin operators due to the exchange of a primary and its descendants in the crossed channel and show that this leads to a Borel-summable expansion. We analyse higher order corrections to the microscopic CFT data in the direct channel and its matching to infinite towers of operators in the crossed channel. We apply this method to the critical O(N) model. At large N we reproduce the first few terms in the large spin expansion of the known two-loop anomalous dimensions of higher spin currents in the traceless symmetric representation of O(N) and make further predictions. At small N we present the results for the truncated large spin expansion series of anomalous dimensions of higher spin currents.

  4. Quantum bootstrapping via compressed quantum Hamiltonian learning

    International Nuclear Information System (INIS)

    Wiebe, Nathan; Granade, Christopher; Cory, D G

    2015-01-01

    A major problem facing the development of quantum computers or large scale quantum simulators is that general methods for characterizing and controlling are intractable. We provide a new approach to this problem that uses small quantum simulators to efficiently characterize and learn control models for larger devices. Our protocol achieves this by using Bayesian inference in concert with Lieb–Robinson bounds and interactive quantum learning methods to achieve compressed simulations for characterization. We also show that the Lieb–Robinson velocity is epistemic for our protocol, meaning that information propagates at a rate that depends on the uncertainty in the system Hamiltonian. We illustrate the efficiency of our bootstrapping protocol by showing numerically that an 8 qubit Ising model simulator can be used to calibrate and control a 50 qubit Ising simulator while using only about 750 kilobits of experimental data. Finally, we provide upper bounds for the Fisher information that show that the number of experiments needed to characterize a system rapidly diverges as the duration of the experiments used in the characterization shrinks, which motivates the use of methods such as ours that do not require short evolution times. (fast track communication)

  5. Bootstrap Power of Time Series Goodness of fit tests

    Directory of Open Access Journals (Sweden)

    Sohail Chand

    2013-10-01

    Full Text Available In this article, we looked at power of various versions of Box and Pierce statistic and Cramer von Mises test. An extensive simulation study has been conducted to compare the power of these tests. Algorithms have been provided for the power calculations and comparison has also been made between the semi parametric bootstrap methods used for time series. Results show that Box-Pierce statistic and its various versions have good power against linear time series models but poor power against non linear models while situation reverses for Cramer von Mises test. Moreover, we found that dynamic bootstrap method is better than xed design bootstrap method.

  6. Bootstrapping: Una teoría explicativa del cambio conceptual Bootstrapping: A theory for conceptual change

    Directory of Open Access Journals (Sweden)

    José Antonio Castorina

    2005-12-01

    Full Text Available El presente artículo expone la teoría explicativa propuesta por Carey para el cambio conceptual. Primeramente, se plantea la cuestión de la reorganización conceptual en la psicología cognitiva y la posición de Carey. En segundo lugar, se ponen de relieve las condiciones epistémica que deben cumplir las "teorías" infantiles para que la reestructuración conceptual sea posible, así como los modos que adopta esta última. En tercer lugar, se muestran los resultados de investigaciones que verifican el cambio conceptual entre teorías infantiles de biología intuitiva. En cuarto lugar, se plantean las dificultades de otras teorías del cambio conceptual, para luego formular los rasgos del mecanismo alternativo de bootstrapping y su pertinencia para interpretrar los datos de las indagaciones mencionadas. Finalmente, se evalúan la originalidad de la teoría del bootstrpping en el escenario de los debates contemporáneos. Muy especialmente, se esboza una posible aproximación con las tesis dialécticas de Piaget.This paper examines the Carey's theory of conceptual change. First, it describes the conceptual reorganization in cognitive psychology and the author position. Second, the epistemic conditions that children "theories" should fulfil to make conceptual restructuring possible, as well as the ways adopted by the latter, are analyzed. In third place, findings of researches testing the conceptual change among biology intuitive children theories are explained. Subsequently, it discusses the difficulties other theories of conceptual change present, in order to state features of bootstrapping as an alternative mechanism and its relevance for the interpretation of abovementioned researches results. Finally, it evaluates the originality of "bootstrapping" theory in the scene of contemporary debates. It particularly outlines a possible approach to Piaget's dialectic theses.

  7. Time evolution of the bootstrap current profile in LHD plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji; Kawaoto, K.; Watanabe, K.Y.

    2008-10-01

    The direction of the bootstrap current is inverted in the outward shifted plasmas of the Large Helical Device (LHD). In order to verify the reliability of the theoretical models of the bootstrap current in helical plasmas, the rotational transform profiles are observed by the Motional Stark Effect measurement in the bootstrap current carrying plasmas of the LHD, and they are compared with the numerical simulations of the toroidal current profile including the bootstrap current. Since the toroidal current profile is not in the steady state in these plasmas, taking care of the inversely induced component of the toroidal current and finite duration of the resistive diffusion of the toroidal current are important in the numerical simulations. Reasonable agreement can be obtained between the rotational transform profiles measured in the experiments and those calculated in the numerical simulations. (author)

  8. Bootstrap-Based Inference for Cube Root Consistent Estimators

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Jansson, Michael; Nagasawa, Kenichi

    This note proposes a consistent bootstrap-based distributional approximation for cube root consistent estimators such as the maximum score estimator of Manski (1975) and the isotonic density estimator of Grenander (1956). In both cases, the standard nonparametric bootstrap is known...... to be inconsistent. Our method restores consistency of the nonparametric bootstrap by altering the shape of the criterion function defining the estimator whose distribution we seek to approximate. This modification leads to a generic and easy-to-implement resampling method for inference that is conceptually distinct...... from other available distributional approximations based on some form of modified bootstrap. We offer simulation evidence showcasing the performance of our inference method in finite samples. An extension of our methodology to general M-estimation problems is also discussed....

  9. Bootstrapping pre-averaged realized volatility under market microstructure noise

    DEFF Research Database (Denmark)

    Hounyo, Ulrich; Goncalves, Sílvia; Meddahi, Nour

    The main contribution of this paper is to propose a bootstrap method for inference on integrated volatility based on the pre-averaging approach of Jacod et al. (2009), where the pre-averaging is done over all possible overlapping blocks of consecutive observations. The overlapping nature of the pre......-averaged returns implies that these are kn-dependent with kn growing slowly with the sample size n. This motivates the application of a blockwise bootstrap method. We show that the "blocks of blocks" bootstrap method suggested by Politis and Romano (1992) (and further studied by Bühlmann and Künsch (1995......)) is valid only when volatility is constant. The failure of the blocks of blocks bootstrap is due to the heterogeneity of the squared pre-averaged returns when volatility is stochastic. To preserve both the dependence and the heterogeneity of squared pre-averaged returns, we propose a novel procedure...

  10. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Gryaznevich, M.P.; Del Bosco, E.; Malaquias, A.; Mank, G.; Oost, G. van

    2005-01-01

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive co-ordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Co-ordinated Research Project is presented. (author)

  11. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Gryaznevich, M.P.; Bosco, E. Del; Malaquias, A.; Mank, G.; Oost, G. van; He, Yexi; Hegazy, H.; Hirose, A.; Hron, M.; Kuteev, B.; Ludwig, G.O.; Nascimento, I.C.; Silva, C.; Vorobyev, G.M.

    2005-01-01

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive coordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Coordinated Research Project, is presented

  12. Bias Correction with Jackknife, Bootstrap, and Taylor Series

    OpenAIRE

    Jiao, Jiantao; Han, Yanjun; Weissman, Tsachy

    2017-01-01

    We analyze the bias correction methods using jackknife, bootstrap, and Taylor series. We focus on the binomial model, and consider the problem of bias correction for estimating $f(p)$, where $f \\in C[0,1]$ is arbitrary. We characterize the supremum norm of the bias of general jackknife and bootstrap estimators for any continuous functions, and demonstrate the in delete-$d$ jackknife, different values of $d$ may lead to drastically different behavior in jackknife. We show that in the binomial ...

  13. Neoclassical bootstrap current and transport in optimized stellarator configurations

    International Nuclear Information System (INIS)

    Maassberg, H.; Lotz, W.; Nuehrenberg, J.

    1993-01-01

    The neoclassical bootstrap current properties of optimized stellarators are analyzed in the relevant mean-free-path regimes and compared with the neoclassical transport properties. Two methods---global Monte Carlo simulation [Phys. Fluids 31, 2984 (1988)], and local analysis with the drift kinetic equation solver code [Phys. Fluids B 1, 563 (1989)]---are employed and good agreement is obtained. Full consistency with the elimination of the bootstrap current and favorable neoclassical transport are found

  14. Bootstrap prediction and Bayesian prediction under misspecified models

    OpenAIRE

    Fushiki, Tadayoshi

    2005-01-01

    We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's `bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, bo...

  15. Generalized bootstrap equations and possible implications for the NLO Odderon

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vacca, G.P. [INFN, Sezione di Bologna (Italy)

    2013-07-15

    We formulate and discuss generalized bootstrap equations in nonabelian gauge theories. They are shown to hold in the leading logarithmic approximation. Since their validity is related to the self-consistency of the Steinmann relations for inelastic production amplitudes they can be expected to be valid also in NLO. Specializing to the N=4 SYM, we show that the validity in NLO of these generalized bootstrap equations allows to find the NLO Odderon solution with intercept exactly at one.

  16. Solution of the statistical bootstrap with Bose statistics

    International Nuclear Information System (INIS)

    Engels, J.; Fabricius, K.; Schilling, K.

    1977-01-01

    A brief and transparent way to introduce Bose statistics into the statistical bootstrap of Hagedorn and Frautschi is presented. The resulting bootstrap equation is solved by a cluster expansion for the grand canonical partition function. The shift of the ultimate temperature due to Bose statistics is determined through an iteration process. We discuss two-particle spectra of the decaying fireball (with given mass) as obtained from its grand microcanonical level density

  17. Advanced commercial tokamak study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs

  18. Advanced statistics for tokamak transport colinearity and tokamak to tokamak variation

    International Nuclear Information System (INIS)

    Riedel, K.S.

    1989-03-01

    This is a compendium of three separate articles on the statistical analysis of tokamak transport. The first article is an expository introduction to advanced statistics and scaling laws. The second analyzes two important problems of tokamak data---colinearity and tokamak to tokamak variation in detail. The third article generalizes the Swamy random coefficient model to the case of degenerate matrices. Three papers have been processed separately

  19. How many bootstrap replicates are necessary?

    Science.gov (United States)

    Pattengale, Nicholas D; Alipour, Masoud; Bininda-Emonds, Olaf R P; Moret, Bernard M E; Stamatakis, Alexandros

    2010-03-01

    Phylogenetic bootstrapping (BS) is a standard technique for inferring confidence values on phylogenetic trees that is based on reconstructing many trees from minor variations of the input data, trees called replicates. BS is used with all phylogenetic reconstruction approaches, but we focus here on one of the most popular, maximum likelihood (ML). Because ML inference is so computationally demanding, it has proved too expensive to date to assess the impact of the number of replicates used in BS on the relative accuracy of the support values. For the same reason, a rather small number (typically 100) of BS replicates are computed in real-world studies. Stamatakis et al. recently introduced a BS algorithm that is 1 to 2 orders of magnitude faster than previous techniques, while yielding qualitatively comparable support values, making an experimental study possible. In this article, we propose stopping criteria--that is, thresholds computed at runtime to determine when enough replicates have been generated--and we report on the first large-scale experimental study to assess the effect of the number of replicates on the quality of support values, including the performance of our proposed criteria. We run our tests on 17 diverse real-world DNA--single-gene as well as multi-gene--datasets, which include 125-2,554 taxa. We find that our stopping criteria typically stop computations after 100-500 replicates (although the most conservative criterion may continue for several thousand replicates) while producing support values that correlate at better than 99.5% with the reference values on the best ML trees. Significantly, we also find that the stopping criteria can recommend very different numbers of replicates for different datasets of comparable sizes. Our results are thus twofold: (i) they give the first experimental assessment of the effect of the number of BS replicates on the quality of support values returned through BS, and (ii) they validate our proposals for

  20. Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. The experiment, soon to be operational, provides an opportunity to study dense plasmas heated by powers unprecedented in the electron-cyclotron frequency range required by the especially high magnetic fields used with the MTX and needed for reactors. 1 references, 5 figures, 3 tables

  1. Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported

  2. Magnetic ''islandography'' in tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Waddell, B.V.; Hicks, H.R.

    1978-09-01

    Tearing modes are shown to be responsible for most of the experimentally observed macroscopic behavior of tokamak discharges. The effects of these collective magnetic perturbations on magnetic topology and plasma transport in tokamaks are shown to provide plausible explanations for: internal disruptions (m/n = 1); Mirnov oscillations (m/n = 2,3...); and major disruptions (coupling of 2/1-3/2 modes). The nonlinear evolution of the tearing modes is followed with fully three-dimensional computer codes. The effects on plasma confinement of the magnetic islands or stochastic field lines induced by the macroscopic tearing modes are discussed and compared with experiment. Finally, microscopic magnetic perturbations are shown to provide a natural model for the microscopic anomalous transport processes in tokamaks

  3. Advanced tokamak research in DIII-D

    International Nuclear Information System (INIS)

    Greenfield, C M; Murakami, M; Ferron, J R

    2004-01-01

    Advanced tokamak (AT) research in DIII-D seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and high poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles and active magnetohydrodynamic stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization by plasma rotation and active feedback with non-axisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining inductively driven current, mostly located near the half radius, with non-inductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining inductive current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with ELMing H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. An advanced plasma control system allows integrated control of these elements. Close coupling between modelling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. This approach has resulted in fully non-inductively driven plasmas with β N ≤ 3.5 and β T ≤ 3.6% sustained for up to 1 s, which is approximately equal to one current relaxation time. Progress in this area, and its implications for next-step devices, will be illustrated by

  4. ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein

  5. Internal disruption in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    A review of results of experimental and theoretical investigations of internal disruption in tokamaks is given. Specific features of various types of saw-tooth oscillations are described and their classification is performed. Theoretical models of the process of development of internal disruption instability are discussed. Effect of internal disruption on parameters of plasma, confined in tokamak, is considered. Scalings of period and amplitude of saw-tooth oscillations, as well as version radius are presented. Different methods for stabilizing instability of internal disruption are described

  6. Overview of Tokamak Results

    International Nuclear Information System (INIS)

    Unterberg, Bernhard; Samm, Ulrich

    2004-01-01

    An overview is given of recent results obtained in tokamak devices. We introduce basic confinement scenarios as L-mode, H-mode and plasmas with an internal transport barrier and discuss methods for profile control. Important findings in DT-experiments at JET as α-particle heating are described. Methods for power exhaust like plasma regimes with a radiating mantle and radiative divertor scenarios are discussed. The overall impact of plasma edge conditions on the general plasma performance in tokamaks is illustrated by describing the impact of wall conditions on confinement and the edge operational diagram of H-mode plasmas

  7. Internal disruptions in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    Experimental and theoretical studies of the phenomenon of internal disruptions in tokamaks are reviewed. A classification scheme is introduced and the features of different types of sawtooth oscillations are described. A theoretical model for the development of the internal disruption instability is discussed. The effect of internal disruptions on the parameters of plasma confined in tokamaks is discussed. Scaling laws for the period and amplitude of sawtooth oscillations, as well as for the inversion radius, are presented. Different methods of stabilizing the internal disruption instability are described

  8. Core fueling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1994-06-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. We show that with radially ''hollow'' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles which are peaked off-axis. The fueling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fueling does not require MeV particle energy. Even with beam voltages of ∼200 keV, however, exceptionally good particle confinement, τ p much-gt τ E is required to achieve net electrical power generation. In system with no power production requirement (e.g., neutron sources) neutral beam fueling should be capable of producing peaked density profiles in devices as large as ITER. Fueling systems with low energy cost per particle (such as cryogenic pellet injection) must be used in power producing tokamaks when τ p ∼ τ E . Simulations with pellet injection speeds of 7 km/sec show the peaking factor, n eo /left-angle n e right-angle, approaching 2

  9. A bootstrap estimation scheme for chemical compositional data with nondetects

    Science.gov (United States)

    Palarea-Albaladejo, J; Martín-Fernández, J.A; Olea, Ricardo A.

    2014-01-01

    The bootstrap method is commonly used to estimate the distribution of estimators and their associated uncertainty when explicit analytic expressions are not available or are difficult to obtain. It has been widely applied in environmental and geochemical studies, where the data generated often represent parts of whole, typically chemical concentrations. This kind of constrained data is generically called compositional data, and they require specialised statistical methods to properly account for their particular covariance structure. On the other hand, it is not unusual in practice that those data contain labels denoting nondetects, that is, concentrations falling below detection limits. Nondetects impede the implementation of the bootstrap and represent an additional source of uncertainty that must be taken into account. In this work, a bootstrap scheme is devised that handles nondetects by adding an imputation step within the resampling process and conveniently propagates their associated uncertainly. In doing so, it considers the constrained relationships between chemical concentrations originated from their compositional nature. Bootstrap estimates using a range of imputation methods, including new stochastic proposals, are compared across scenarios of increasing difficulty. They are formulated to meet compositional principles following the log-ratio approach, and an adjustment is introduced in the multivariate case to deal with nonclosed samples. Results suggest that nondetect bootstrap based on model-based imputation is generally preferable. A robust approach based on isometric log-ratio transformations appears to be particularly suited in this context. Computer routines in the R statistical programming language are provided. 

  10. Locality, bulk equations of motion and the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, Daniel [Department of Physics and Astronomy, Lehman College, City University of New York,250 Bedford Park Blvd. W, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Mathematics, Faculty of Natural Science, University of Haifa,199 Aba Khoushy Ave., Haifa 31905 (Israel)

    2016-10-18

    We develop an approach to construct local bulk operators in a CFT to order 1/N{sup 2}. Since 4-point functions are not fixed by conformal invariance we use the OPE to categorize possible forms for a bulk operator. Using previous results on 3-point functions we construct a local bulk operator in each OPE channel. We then impose the condition that the bulk operators constructed in different channels agree, and hence give rise to a well-defined bulk operator. We refer to this condition as the “bulk bootstrap.” We argue and explicitly show in some examples that the bulk bootstrap leads to some of the same results as the regular conformal bootstrap. In fact the bulk bootstrap provides an easier way to determine some CFT data, since it does not require knowing the form of the conformal blocks. This analysis clarifies previous results on the relation between bulk locality and the bootstrap for theories with a 1/N expansion, and it identifies a simple and direct way in which OPE coefficients and anomalous dimensions determine the bulk equations of motion to order 1/N{sup 2}.

  11. High beta tokamaks

    International Nuclear Information System (INIS)

    Dory, R.A.; Berger, D.P.; Charlton, L.A.; Hogan, J.T.; Munro, J.K.; Nelson, D.B.; Peng, Y.K.M.; Sigmar, D.J.; Strickler, D.J.

    1978-01-01

    MHD equilibrium, stability, and transport calculations are made to study the accessibility and behavior of ''high beta'' tokamak plasmas in the range β approximately 5 to 15 percent. For next generation devices, beta values of at least 8 percent appear to be accessible and stable if there is a conducting surface nearby

  12. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1989-01-01

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  13. Reconnection in tokamaks

    International Nuclear Information System (INIS)

    Pare, V.K.

    1983-01-01

    Calculations with several different computer codes based on the resistive MHD equations have shown that (m = 1, n = 1) tearing modes in tokamak plasmas grow by magnetic reconnection. The observable behavior predicted by the codes has been confirmed in detail from the waveforms of signals from x-ray detectors and recently by x-ray tomographic imaging

  14. Research using small tokamaks

    International Nuclear Information System (INIS)

    1993-01-01

    This document consists of a collection of papers presented at the IAEA Technical Committee Meeting on Research Using Small Tokamaks. It contains 22 papers on a wide variety of research aspects, including diagnostics, design, transport, equilibrium, stability, and confinement. Some of these papers are devoted to other concepts (stellarators, compact tori). Refs, figs and tabs

  15. Compact tokamak reactors

    International Nuclear Information System (INIS)

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1997-01-01

    The possible use of tokamaks for thermonuclear power plants is discussed, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First, the existing literature is reviewed and summarized. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamaks power plant, by including the power required to drive the toroidal field and by considering two extremes of plasma current drive efficiency. Third, the analytic results are augmented by a numerical calculation that permits arbitrary plasma current drive efficiency and different confinement scaling relationships. Throughout, the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculation of electric power. The latest published reactor studies show little advantage in using low aspect ratios to obtain a more compact device (and a low cost of electricity) unless either remarkably high efficiency plasma current drive and low safety factor are combined, or unless confinement (the H factor), the permissible elongation and the permissible neutron wall loading increase as the aspect ratio is reduced. These results are reproduced with the analytic model. (author). 22 refs, 3 figs

  16. Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1990-04-01

    This paper discusses the following work on the text tokamak: data systems; particle confinement; impurity transport; plasma rotation; runaway electrons; electron cyclotron heating; FIR system; transient transport; internal turbulence; edge turbulence; ion temperature; EML experiments; impurity pellet experiments; MHD experiments and analysis; TEXT Upgrade; and Upgrade diagnostics

  17. Modelling of electron transport and of sawtooth activity in tokamaks

    International Nuclear Information System (INIS)

    Angioni, C.

    2001-10-01

    Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present thesis: first, the computation of neoclassical transport coefficients for general axisymmetric equilibria and arbitrary collisionality regime; second, the analysis of the electron temperature behaviour and transport modelling of plasma discharges in the Tokamak a configuration Variable (TCV); third, the modelling and simulation of the sawtooth activity with different plasma heating conditions. The work dedicated to neoclassical theory has been undertaken in order to first analytically identify a set of equations suited for implementation in existing Fokker-Planck codes. Modifications of these codes enabled us to compute the neoclassical transport coefficients considering different realistic magnetic equilibrium configurations and covering a large range of variation of three key parameters: aspect ratio, collisionality, and effective charge number. A comparison of the numerical results with an analytical limit has permitted the identification of two expressions for the trapped particle fraction, capable of encapsulating the geometrical effects and thus enabling each transport coefficient to be fitted with a single analytical function. This has allowed us to provide simple analytical formulae for all the neoclassical transport coefficients valid for arbitrary aspect ratio and collisionality in general realistic geometry. This work is particularly useful for a correct evaluation of the neoclassical contribution in tokamak scenarios with large bootstrap cur- rent fraction, or improved confinement regimes with low anomalous transport and for the determination of the plasma current density profile, since the plasma conductivity is usually assumed neoclassical. These results have been included in the plasma transport code

  18. Tokamaks (Second Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Stott, Peter [JET, UK (United Kingdom)

    1998-10-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  19. Tokamaks (Second Edition)

    International Nuclear Information System (INIS)

    Stott, Peter

    1998-01-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  20. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Directory of Open Access Journals (Sweden)

    Khang Jie Liew

    Full Text Available This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  1. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Science.gov (United States)

    Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  2. Statistical bootstrap approach to hadronic matter and multiparticle reactions

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.; Kripfganz, J.; Moehring, H.J.

    1977-01-01

    The authors present the main ideas behind the statistical bootstrap model and recent developments within this model related to the description of fireball cascade decay. Mathematical methods developed in this model might be useful in other phenomenological schemes of strong interaction physics; they are described in detail. The present status of applications of the model to various hadronic reactions is discussed. When discussing the relations of the statistical bootstrap model to other models of hadron physics the authors point out possibly fruitful analogies and dynamical mechanisms which are modelled by the bootstrap dynamics under definite conditions. This offers interpretations for the critical temperature typical for the model and indicates futher fields of application. (author)

  3. Present status of Tokamak research

    International Nuclear Information System (INIS)

    Basu, Jayanta

    1991-01-01

    The scenario of thermonuclear fusion research is presented, and the tokamak which is the most promising candidate as a fusion reactor is introduced. A brief survey is given of the most noteworthy tokamaks in the global context, and fusion programmes relating to Next Step devices are outlined. Supplementary heating of tokamak plasma by different methods is briefly reviewed; the latest achievements in heating to fusion temperatures are also reported. The progress towards the high value of the fusion product necessary for ignition is described. The improvement in plasma confinement brought about especially by the H-mode, is discussed. The latest situation in pushing up Β for increasing the efficiency of a tokamak is elucidated. Mention is made of the different types of wall treatment of the tokamak vessel for impurity control, which has led to a significant improvement in tokamak performance. Different methods of current drive for steady state tokamak operation are reviewed, and the issue of current drive efficiency is addressed. A short resume is given of the various diagnostic methods which are employed on a routine basis in the major tokamak centres. A few diagnostics recently developed or proposed in the context of the advanced tokamaks as well as the Next Step devices are indicated. The important role of the interplay between theory, experiment and simulation is noted, and the areas of investigation requiring concerted effort for further progress in tokamak research are identified. (author). 17 refs

  4. The Impact of Beam Deposition on Bootstrap Current of Fast Ion Produced by Neutral Beam Tangential Injection

    International Nuclear Information System (INIS)

    Huang Qian-Hong; Gong Xue-Yu; Lu Xing-Qiang; Yu Jun; Cao Jin-Jia

    2015-01-01

    The density profile of fast ions arising from a tangentially injected diffuse neutral beam in tokamak plasma is calculated. The effects of mean free paths and beam tangency radius on the density profile are discussed under typical HL-2A plasmas parameters. The results show that the profile of fast ions is strongly peaked at the center of the plasma when the mean free path at the maximum deuteron density is larger than the minor radius, while the peak value decreases when the mean free path at the maximum deuteron density is larger than twice that of the minor radius due to the beam transmission loss. Moreover, the bootstrap current of fast ions for various mean free paths at the maximum deuteron density is calculated and its density is proved to be closely related to the deposition of the neutral beam. With the electron return current considered, the net current density obviously decreases. Meanwhile, the peak central fast ion density increases when the beam tangency radius approaches the major radius, and the net bootstrap current increases rapidly with the increasing beam tangency radius. (paper)

  5. On a linear method in bootstrap confidence intervals

    Directory of Open Access Journals (Sweden)

    Andrea Pallini

    2007-10-01

    Full Text Available A linear method for the construction of asymptotic bootstrap confidence intervals is proposed. We approximate asymptotically pivotal and non-pivotal quantities, which are smooth functions of means of n independent and identically distributed random variables, by using a sum of n independent smooth functions of the same analytical form. Errors are of order Op(n-3/2 and Op(n-2, respectively. The linear method allows a straightforward approximation of bootstrap cumulants, by considering the set of n independent smooth functions as an original random sample to be resampled with replacement.

  6. Modelos alternativos de simulación Bootstrap

    OpenAIRE

    Pino Mejías, Rafael

    1992-01-01

    Se describen las características fundamentales de los métodos Bootstrap. Se analizan diversas problemáticas que presentan tales métodos, por lo que se presentan dos métodos alternativos dentro del método Bootstrap basado en la simulación de muestras (método II de Efron). En el primero se presenta un método, que a partir de un estudio de las propiedades algebraicas y estadísticas del conjunto de posibles muestras, utiliza un criterio probabilístico para detectar muestras "outliers". En el segu...

  7. Bootstrapped efficiency measures of oil blocks in Angola

    International Nuclear Information System (INIS)

    Barros, C.P.; Assaf, A.

    2009-01-01

    This paper investigates the technical efficiency of Angola oil blocks over the period 2002-2007. A double bootstrap data envelopment analysis (DEA) model is adopted composed in the first stage of a DEA-variable returns to scale (VRS) model and then followed in the second stage by a bootstrapped truncated regression. Results showed that on average, the technical efficiency has fluctuated over the period of study, but deep and ultradeep oil blocks have generally maintained a consistent efficiency level. Policy implications are derived.

  8. Overview of the ARIES-RS reversed-shear tokamak power plant study

    International Nuclear Information System (INIS)

    Najmabadi, F.; Billone, M.C.

    1997-01-01

    The ARIES-RS tokamak is a conceptual, D-T-burning 1000 MWe power plant. As with earlier ARIES design studies, the final design of ARIES-RS was obtained in a self-consistent manner using the best available physics and engineering models. Detailed analyses of individual systems together with system interfaces and interactions were incorporated into the ARIES systems code in order to assure self-consistency and to optimize towards the lowest cost system. The ARIES-RS design operates with a reversed-shear plasma and employs a moderate aspect ratio (A=4.0). The plasma current is relatively low (I p =11.32 MA) and bootstrap current fraction is high (f BC =0.88). Consequently, the auxiliary power required for RF current drive is relatively low (∝80 MW). At the same time, the average toroidal beta is high (β=5%), providing power densities near practical engineering limits (the peak neutron wall loading is 5.7 MW m -2 ). The toroidal-field (TF) coil system is designed with relatively 'conventional' materials (Nb 3 Sn and NbTi conductor with 316SS structures), and is operated at a design limit of ∝16 T at the coil in order to optimize the design point. The ARIES-RS design uses a self-cooled lithium blanket with vanadium alloy as the structural material. The V-alloy has low activation, low afterheat, high temperature capability and can handle high heat flux. A self-cooled liquid lithium blanket is simple, and with the development of an insulating coating, has low operating pressure. Also, this blanket gives excellent neutronics performance. Detailed analysis has been performed to minimize the cost and maximize the performance of the blanket and shield. (orig.)

  9. Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Mau, T.K.; Miller, R.L.; Najmabadi, F.; Chan, V.S.; Chu, M.S.; LaHaye, R.; Lao, L.L.; Petrie, T.W.; Politzer, P.; John, St. H.E.; Snyder, P.; Staebler, G.M.; Turnbull, A.D.; West, W.P.

    2003-01-01

    The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented

  10. Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT

    Energy Technology Data Exchange (ETDEWEB)

    S.C. Jardin; C.E. Kessel; T.K. Mau; R.L. Miller; F. Najmabadi; V.S. Chan; M.S. Chu; R. LaHaye; L.L. Lao; T.W. Petrie; P. Politzer; H.E. St. John; P. Snyder; G.M. Staebler; A.D. Turnbull; W.P. West

    2003-10-07

    The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.

  11. Progress on advanced tokamak and steady-state scenario development on DIII-D and NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, E J [Department of Electrical Engineering and PSTI, University of California, Los Angeles, California 90095 (United States); Garofalo, A M [Columbia University, New York, New York 10027 (United States); Greenfield, C M [General Atomics, San Diego, California 92186-5608 (United States); Kaye, S M [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Menard, J E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Murakami, M [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Sabbagh, S A [Columbia University, New York, New York 10027 (United States); Austin, M E [University of Texas-Austin, Austin, Texas 78712 (United States); Bell, R E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Burrell, K H [General Atomics, San Diego, California 92186-5608 (United States); Ferron, J R [General Atomics, San Diego, California 92186-5608 (United States); Gates, D A [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Groebner, R J; Hyatt, A W; Luce, T C; Petty, C C; Wade, M R; Waltz, R E [General Atomics, San Diego, California 92186-5608 (United States); Jayakumar, R J [Lawrence Livermore National Lab., Livermore, California 94550 (United States); Kinsey, J E [Lehigh Univ., Bethlehem, Pennsylvania 18015 (United States); LeBlanc, B P [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); McKee, G R [Univ. of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Okabayashi, M [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Peng, Y-K M [Oak Ridge National Lab., Oak Ridge, Tennessee 37831 (United States); Politzer, P A [General Atomics, San Diego, California 92186-5608 (United States); Rhodes, T L [Dept. of Electrical Engineering and PSTI, Univ. of California, Los Angeles, California 90095 (United States)

    2006-12-15

    Advanced tokamak (AT) research seeks to develop steady-state operating scenarios for ITER and other future devices from a demonstrated scientific basis. Normalized target parameters for steady-state operation on ITER are 100% non-inductive current operation with a bootstrap current fraction f{sub BS} {>=} 60%, q{sub 95} {approx} 4-5 and G {identical_to}{beta}{sub N}H{sub scaling}/q{sub 95}{sup 2} {>=}0.3. Progress in realizing such plasmas is considered in terms of the development of plasma control capabilities and scientific understanding, leading to improved AT performance. NSTX has demonstrated active resistive wall mode stabilization with low, ITER-relevant, rotation rates below the critical value required for passive stabilization. On DIII-D, experimental observations and GYRO simulations indicate that ion internal transport barrier (ITB) formation at rational-q surfaces is due to equilibrium zonal flows generating high local E ? B shear levels. In addition, stability modelling for DIII-D indicates a path to operation at {beta}{sub N} {>=} 4 with q{sub min} {>=} 2, using broad, hollow current profiles to increase the ideal wall stability limit. Both NSTX and DIII-D have optimized plasma performance and expanded AT operational limits. NSTX now has long-pulse, high performance discharges meeting the normalized targets for an spherical torus-based component test facility. DIII-D has developed sustained discharges combining high beta and ITBs, with performance approaching levels required for AT reactor concepts, e.g. {beta}{sub N} = 4, H{sub 89} = 2.5, with f{sub BS} > 60%. Most importantly, DIII-D has developed ITER steady-state demonstration discharges, simultaneously meeting the targets for steady-state Q {>=} 5 operation on ITER set out above, substantially increasing confidence in ITER meeting its steady-state performance objective.

  12. Large Aspect Ratio Tokamak Study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Wiseman, G.W.

    1980-06-01

    The Large Aspect Ratio Tokamak Study (LARTS) at Oak Ridge National Laboratory (ORNL) investigated the potential for producing a viable longburn tokamak reactor by enhancing the volt-second capability of the ohmic heating transformer through the use of high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were assessed in the context of extended burn operation. Using a one-dimensional transport code plasma startup and burn parameters were addressed. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the startup and shutdown portions of the tokamak cycle. A representative large aspect ratio tokamak with an aspect ratio of 8 was found to achieve a burn time of 3.5 h at capital cost only approx. 25% greater than that of a moderate aspect ratio design tokamak

  13. The calculation of Tritium burnup in Tokamaks

    International Nuclear Information System (INIS)

    Bittoni, E.; Haegi, M.

    1987-01-01

    In a deuterium plasma tokamak, the contained fusion-produced tritons are supposed to be decelerated down to thermalization according to classical Coulomb scattering. A fraction of these fast tritons undergoes the DT fusion reaction producing 14.1 MeV neutrons. It is thus possible to get information on the confinement of these fast tritons by comparing the measured and the calculated ratio of the 14.1 MeV to the 2.45 MeV neutron flux. This report describes the calculation of this flux ratio by means of a numerical Monte Carlo-like code

  14. Development path of low aspect ratio tokamak power plants

    International Nuclear Information System (INIS)

    Stambaugh, R.D.; Chan, V.S.; Miller, R.L.

    1997-03-01

    Recent advances in tokamak physics indicate the spherical tokamak may offer a magnetic fusion development path that can be started with a small size pilot plant and progress smoothly to larger power plants. Full calculations of stability to kink and ballooning modes show the possibility of greater than 50% beta toroidal with the normalized beta as high as 10 and fully aligned 100% bootstrap current. Such beta values coupled with 2--3 T toroidal fields imply a pilot plant about the size of the present DIII-D tokamak could produce ∼ 800 MW thermal, 160 MW net electric, and would have a ratio of gross electric power over recirculating power (Q PLANT ) of 1.9. The high beta values in the ST mean that E x B shear stabilization of turbulence should be 10 times more effective in the ST than in present tokamaks, implying that the required high quality of confinement needed to support such high beta values will be obtained. The anticipated beta values are so high that the allowable neutron flux at the blanket sets the device size, not the physics constraints. The ST has a favorable size scaling so that at 2--3 times the pilot plant size the Q PLANT rises to 4--5, an economic range and 4 GW thermal power plants result. Current drive power requirements for 10% of the plasma current are consistent with the plant efficiencies quoted. The unshielded copper centerpost should have an adequate lifetime against nuclear transmutation induced resistance change and the low voltage, high current power supplies needed for the 12 turn TF coil appear reasonable. The favorable size scaling of the ST and the high beta mean that in large sizes, if the copper TF coil is replaced with a superconducting TF coil and a shield, the advanced fuel D-He 3 could be burned in a device with Q PLANT ∼ 4

  15. Overview of JT-60U progress towards steady-state advanced tokamak

    International Nuclear Information System (INIS)

    Ide, S.

    2005-01-01

    Recent experimental results on steady state advanced tokamak (AT) research on JT-60U are presented with emphasis on longer time scale in comparison with characteristics time scales in plasmas. Towards this, modification on control in operation, heating and diagnostics systems have been done. As the results, ∼ 60 s I p flat top and an ∼ 30 s H-mode are obtained. The long pulse modification has opened a door into a new domain for JT-60U. The high normalized beta (β N ) of 2.3 is maintained for 22.3 s and 2.5 for 16.5 s in a high β p H-mode plasma. A standard ELMy H-mode plasma is also extended and change in wall recycling in such a longer time scale has been unveiled. Development and investigation of plasmas relevant to AT operation has been continued in former 15 s discharges as well in which higherNB power (≤ 10 s) is available. Higher β N ∼ 3 is maintained for 6.2 s in high β p H-mode plasmas. High bootstrap current fraction (f BS ) of ∼ 75% is sustained for 7.4 s in an RS plasma. On NTM suppression by localized ECCD, ECRF injection preceding the mode saturation is found to be more effective to suppress the mode with less power compared to the injection after the mode saturated. The domain of the NTM suppression experiments is extended to the high β N regime, and effectiveness of m/n=3/2 mode suppression by ECCD is demonstrated at β N ∼ 2.5-3. Genuine center-solenoid less tokamak plasma start up is demonstrated. In a current hole region, it is shown that no scheme drives a current in any direction. Detailed measurement in both spatial and energy spaces of energetic ions showed dynamic change in the energetic ion profile at collective instabilities. Impact of toroidal plasma rotation on ELM behaviors is clarified in grassy ELM and QH domains. (author)

  16. Overview of recent results from a Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Marmar, E.; Batishchev, O.; Acedo, P.

    1999-01-01

    limit (β N ∼ 3.7) with > 70% bootstrap fraction should be achievable. (author)

  17. Overview of recent results from the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Marmar, E.; Batishchev, O.; Acedo, P.

    2001-01-01

    limit (β N ∼ 3.7) with > 70% bootstrap fraction should be achievable. (author)

  18. Tokamak reactor startup power

    International Nuclear Information System (INIS)

    Weldon, D.M.; Murray, J.G.

    1983-01-01

    Tokamak startup with ohmic heating (OH)-induced voltages requires rather large voltages and power supplies. On present machines, with no radiofrequency (rf)-assist provisions, hundreds of volts have been specified for their designs. With the addition of electron cyclotron resonant heating (ECRH) assist, the design requirements have been lowered. To obtain information on the cost and complexity associated with this ECRH-assisted, OH-pulsed startup voltage for ignition-type machines, a trade-off study was completed. The Fusion Engineering Device (FED) configuration was selected as a model because information was available on the structure. The data obtained are applicable to all tokamaks of this general size and complexity, such as the Engineering Test Reactor

  19. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    Harrison, M.F.A.; Harbour, P.J.; Hotston, E.S.

    1981-08-01

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  20. Theory of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    White, R B [Princeton Univ., NJ (USA). Plasma Physics Lab.

    1989-01-01

    The book covers the consequences of ideal and resistive magnetohydrodynamics, these theories being responsible for most of what is well understood regarding the physics of tokamak discharges. The focus is on the description of equilibria, the linear and nonlinear theory of large scale modes, and single particle guiding center motion, including simple neoclassical effects. modern methods of general magnetic coordinates are used, and the student is introduced to the onset of chaos in Hamiltonian systems in the discussion of destruction of magnetic surfaces. Much of the book is devoted to the description of the limitations placed on tokamak operating parameters given by ideal and resistive modes, and current ideas about how to extend and optimize these parameters. (author). refs.; figs.

  1. Axisymmetric tokamak scapeoff transport

    International Nuclear Information System (INIS)

    Singer, C.E.; Langer, W.D.

    1982-08-01

    We present the first self-consistent estimate of the magnitude of each term in a fluid treatment of plasma transport for a plasma lying in regions of open field lines in an axisymmetric tokamak. The fluid consists of a pure hydrogen plasma with sources which arise from its interaction with neutral hydrogen atoms. The analysis and results are limited to the high collisionality regime, which is optimal for a gaseous neutralizer divertor, or to a cold plasma mantle in a tokamak reactor. In this regime, both classical and neoclassical transport processes are important, and loss of particles and energy by diamagnetic flow are also significant. The prospect of extending the analysis to the lower collisionality regimes encountered in many existing experiments is discussed

  2. Uncertainty Assessment of Hydrological Frequency Analysis Using Bootstrap Method

    Directory of Open Access Journals (Sweden)

    Yi-Ming Hu

    2013-01-01

    Full Text Available The hydrological frequency analysis (HFA is the foundation for the hydraulic engineering design and water resources management. Hydrological extreme observations or samples are the basis for HFA; the representativeness of a sample series to the population distribution is extremely important for the estimation reliability of the hydrological design value or quantile. However, for most of hydrological extreme data obtained in practical application, the size of the samples is usually small, for example, in China about 40~50 years. Generally, samples with small size cannot completely display the statistical properties of the population distribution, thus leading to uncertainties in the estimation of hydrological design values. In this paper, a new method based on bootstrap is put forward to analyze the impact of sampling uncertainty on the design value. By bootstrap resampling technique, a large number of bootstrap samples are constructed from the original flood extreme observations; the corresponding design value or quantile is estimated for each bootstrap sample, so that the sampling distribution of design value is constructed; based on the sampling distribution, the uncertainty of quantile estimation can be quantified. Compared with the conventional approach, this method provides not only the point estimation of a design value but also quantitative evaluation on uncertainties of the estimation.

  3. Adaptive Kernel In The Bootstrap Boosting Algorithm In KDE ...

    African Journals Online (AJOL)

    This paper proposes the use of adaptive kernel in a bootstrap boosting algorithm in kernel density estimation. The algorithm is a bias reduction scheme like other existing schemes but uses adaptive kernel instead of the regular fixed kernels. An empirical study for this scheme is conducted and the findings are comparatively ...

  4. A bootstrap invariance principle for highly nonstationary long memory processes

    OpenAIRE

    Kapetanios, George

    2004-01-01

    This paper presents an invariance principle for highly nonstationary long memory processes, defined as processes with long memory parameter lying in (1, 1.5). This principle provides the tools for showing asymptotic validity of the bootstrap in the context of such processes.

  5. Bootstrapping the energy flow in the beginning of life

    NARCIS (Netherlands)

    Hengeveld, R.; Fedonkin, M.A.

    2007-01-01

    This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in

  6. Integrable deformations of conformal theories and bootstrap trees

    International Nuclear Information System (INIS)

    Mussardo, G.

    1991-01-01

    I present recent results in the study of massive integrable quantum field theories in (1+1) dimensions considered as perturbed conformal minimal models. The on mass-shell properties of such theories, with a particular emphasis on the bootstrap principle, are investigated. (orig.)

  7. A Bootstrap Cointegration Rank Test for Panels of VAR Models

    DEFF Research Database (Denmark)

    Callot, Laurent

    functions of the individual Cointegrated VARs (CVAR) models. A bootstrap based procedure is used to compute empirical distributions of the trace test statistics for these individual models. From these empirical distributions two panel trace test statistics are constructed. The satisfying small sample...

  8. Bootstrapping the energy flow in the beginning of life.

    NARCIS (Netherlands)

    Hengeveld, R.; Fedonkin, M.A.

    2007-01-01

    This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in

  9. Generalized Bootstrap Method for Assessment of Uncertainty in Semivariogram Inference

    Science.gov (United States)

    Olea, R.A.; Pardo-Iguzquiza, E.

    2011-01-01

    The semivariogram and its related function, the covariance, play a central role in classical geostatistics for modeling the average continuity of spatially correlated attributes. Whereas all methods are formulated in terms of the true semivariogram, in practice what can be used are estimated semivariograms and models based on samples. A generalized form of the bootstrap method to properly model spatially correlated data is used to advance knowledge about the reliability of empirical semivariograms and semivariogram models based on a single sample. Among several methods available to generate spatially correlated resamples, we selected a method based on the LU decomposition and used several examples to illustrate the approach. The first one is a synthetic, isotropic, exhaustive sample following a normal distribution, the second example is also a synthetic but following a non-Gaussian random field, and a third empirical sample consists of actual raingauge measurements. Results show wider confidence intervals than those found previously by others with inadequate application of the bootstrap. Also, even for the Gaussian example, distributions for estimated semivariogram values and model parameters are positively skewed. In this sense, bootstrap percentile confidence intervals, which are not centered around the empirical semivariogram and do not require distributional assumptions for its construction, provide an achieved coverage similar to the nominal coverage. The latter cannot be achieved by symmetrical confidence intervals based on the standard error, regardless if the standard error is estimated from a parametric equation or from bootstrap. ?? 2010 International Association for Mathematical Geosciences.

  10. Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections

    NARCIS (Netherlands)

    van Enter, Aernout C. D.; Hulshof, Tim

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  11. Bootstrap confidence intervals for three-way methods

    NARCIS (Netherlands)

    Kiers, Henk A.L.

    Results from exploratory three-way analysis techniques such as CANDECOMP/PARAFAC and Tucker3 analysis are usually presented without giving insight into uncertainties due to sampling. Here a bootstrap procedure is proposed that produces percentile intervals for all output parameters. Special

  12. A Statistical Mechanics Approach to Approximate Analytical Bootstrap Averages

    DEFF Research Database (Denmark)

    Malzahn, Dorthe; Opper, Manfred

    2003-01-01

    We apply the replica method of Statistical Physics combined with a variational method to the approximate analytical computation of bootstrap averages for estimating the generalization error. We demonstrate our approach on regression with Gaussian processes and compare our results with averages...

  13. Metastability Thresholds for Anisotropic Bootstrap Percolation in Three Dimensions

    NARCIS (Netherlands)

    Enter, Aernout C.D. van; Fey, Anne

    In this paper we analyze several anisotropic bootstrap percolation models in three dimensions. We present the order of magnitude for the metastability thresholds for a fairly general class of models. In our proofs, we use an adaptation of the technique of dimensional reduction. We find that the

  14. Finite-size effects for anisotropic bootstrap percolation: logerithmic corrections

    NARCIS (Netherlands)

    Enter, van A.C.D.; Hulshof, T.

    2007-01-01

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  15. Finite-Size Effects for Some Bootstrap Percolation Models

    NARCIS (Netherlands)

    Enter, A.C.D. van; Adler, Joan; Duarte, J.A.M.S.

    The consequences of Schonmann's new proof that the critical threshold is unity for certain bootstrap percolation models are explored. It is shown that this proof provides an upper bound for the finite-size scaling in these systems. Comparison with data for one case demonstrates that this scaling

  16. Density limits in Tokamaks

    International Nuclear Information System (INIS)

    Tendler, M.

    1984-06-01

    The energy loss from a tokamak plasma due to neutral hydrogen radiation and recycling is of great importance for the energy balance at the periphery. It is shown that the requirement for thermal equilibrium implies a constraint on the maximum attainable edge density. The relation to other density limits is discussed. The average plasma density is shown to be a strong function of the refuelling deposition profile. (author)

  17. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.

    1984-05-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6MW of auxiliary neutral beam heating. Experiments have also been done with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a region may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this Z-mode of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described

  18. Modular tokamak magnetic system

    International Nuclear Information System (INIS)

    Yang, T.F.

    1988-01-01

    This patent describes a tokamak reactor including a vacuum vessel, toroidal confining magnetic field coils disposed concentrically around the minor radius of the vacuum vessel, and poloidal confining magnetic field coils, an ohmic heating coil system comprising at least one magnetic coil disposed concentrically around a toroidal field coil, wherein the magnetic coil is wound around the toroidal field coil such that the ohmic heating coil enclosed the toroidal field coil

  19. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.; California Univ., Los Angeles

    1984-01-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scrape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this 'Z-mode' of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described. (orig.)

  20. Effects of alpha populations on tokamak ballooning stability

    International Nuclear Information System (INIS)

    Spong, D.A.; Sigmar, D.J.; Tsang, K.T.; Ramos, J.J.; Hastings, D.E.; Cooper, W.A.

    1986-01-01

    Fusion product alpha populations can significantly influence tokamak stability due to coupling between the trapped alpha precessional drift and the kinetic ballooning mode frequency. This effect is of particular importance in parameter regimes where the alpha pressure gradient begins to constitute a sizable fraction of the thermal plasma pressure gradient. Careful, quantitative evaluations of these effects are necessary in burning plasma devices such as the Tokamak Fusion Test Reactor and the Joint European Torus, and we have continued systematic development of such a kinetic stability model. In this model we have considered a range of different forms for the alpha distribution function and the tokamak equilibrium. Both Maxwellian and slowing-down models have been used for the alpha energy dependence while deeply trapped and, more recently, isotropic pitch angle dependence have been examined

  1. TPX tokamak construction management

    International Nuclear Information System (INIS)

    Knutson, D.; Kungl, D.; Seidel, P.; Halfast, C.

    1995-01-01

    A construction management contract normally involves the acquisition of a construction management firm to assist in the design, planning, budget conformance, and coordination of the construction effort. In addition the construction management firm acts as an agent in the awarding of lower tier contracts. The TPX Tokamak Construction Management (TCM) approach differs in that the construction management firm is also directly responsible for the assembly and installation of the tokamak including the design and fabrication of all tooling required for assembly. The Systems Integration Support (SIS) contractor is responsible for the architect-engineering design of ancillary systems, such as heating and cooling, buildings, modifications and site improvements, and a variety of electrical requirements, including switchyards and >4kV power distribution. The TCM will be responsible for the procurement of materials and the installation of the ancillary systems, which can either be performed directly by the TCM or subcontracted to a lower tier subcontractor. Assurance that the TPX tokamak is properly assembled and ready for operation when turned over to the operations team is the primary focus of the construction management effort. To accomplish this a disciplined constructability program will be instituted. The constructability effort will involve the effective and timely integration of construction expertise into the planning, component design, and field operations. Although individual component design groups will provide liaison during the machine assembly operations, the construction management team is responsible for assembly

  2. Contour analysis of steady state tokamak reactor performance

    International Nuclear Information System (INIS)

    Devoto, R.S.; Fenstermacher, M.E.

    1990-01-01

    A new method of analysis for presenting the possible operating space for steady state, non-ignited tokamak reactors is proposed. The method uses contours of reactor performance and plasma characteristics, fusion power gain, wall neutron flux, current drive power, etc., plotted on a two-dimensional grid, the axes of which are the plasma current I p and the normalized beta, β n = β/(I p /aB 0 ), to show possible operating points. These steady state operating contour plots are called SOPCONS. This technique is illustrated in an application to a design for the International Thermonuclear Experimental Reactor (ITER) with neutral beam, lower hybrid and bootstrap current drive. The utility of the SOPCON plots for pointing out some of the non-intuitive considerations in steady state reactor design is shown. (author). Letter-to-the-editor. 16 refs, 3 figs, 1 tab

  3. The use of internal transport barriers in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Challis, C D [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2004-12-01

    Internal transport barriers (ITBs) can provide high tokamak confinement at modest plasma current. This is desirable for operation with most of the current driven non-inductively by the bootstrap mechanism, as currently envisaged for steady-state power plants. Maintaining such plasmas in steady conditions with high plasma purity is challenging, however, due to MHD instabilities and impurity transport effects. Significant progress has been made in the control of ITB plasmas: the pressure profile has been varied using the barrier location; q-profile modification has been achieved with non-inductive current drive, and means have been found to affect density peaking and impurity accumulation. All these features are, to some extent, interdependent and must be integrated self-consistently to demonstrate a sound basis for extrapolation to future devices.

  4. Start-up simulations of the PULSAR pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.

    1993-01-01

    Start-up conditions are examined for a pulsed tokamak reactor that uses only inductively driven plasma current (and bootstrap current). A zero-dimensional (profile-averaged) model containing plasma power and particle balance equations is used to study several aspects of plasma start-up, including: (1) optimization of the start-up pathway; (2) tradeoffs of auxiliary start-up heating power versus start-up time; (3) volt-second consumption; (4) thermal stability of the operating point; (5) estimates of the diverter heat flux and temperature during the start-up transient; (6) the sensitivity of the available operating space to allowed values of the H confinement factor; and (7) partial-power operations

  5. Hadronic equation of state in the statistical bootstrap model and linear graph theory

    International Nuclear Information System (INIS)

    Fre, P.; Page, R.

    1976-01-01

    Taking a statistical mechanical point og view, the statistical bootstrap model is discussed and, from a critical analysis of the bootstrap volume comcept, it is reached a physical ipothesis, which leads immediately to the hadronic equation of state provided by the bootstrap integral equation. In this context also the connection between the statistical bootstrap and the linear graph theory approach to interacting gases is analyzed

  6. Bootstrapping as a Resource Dependence Management Strategy and its Association with Startup Growth

    OpenAIRE

    T. VANACKER; S. MANIGART; M. MEULEMAN; L. SELS

    2011-01-01

    This paper studies the association between bootstrapping and startup growth. Bootstrapping reduces a startup’s dependence on financial investors, but may create new dependencies. Drawing upon resource dependence theory, we hypothesize that when bootstrapping does not create new strong dependencies it will benefit startup growth, especially when dependence from financial investors is high. However, when bootstrapping creates new strong dependencies it will constrain growth, especially when dep...

  7. Time-dependent analysis of the resistivity of post-disruption tokamak plasmas

    International Nuclear Information System (INIS)

    Bakhtiari, M.; Whyte, D. G.

    2006-01-01

    The effect of neutrals on plasma resistivity due to electron-neutral collisions is studied with respect to its effect on tokamak disruptions. The resistivity of the tokamak plasma after the thermal quench is critical in determining the current quench rate, the plasma temperature, and runaway electron generation in tokamaks through the electric field, all features which are important for mitigating the damaging effect of disruptions. It is shown that the plasma resistivity during tokamak disruptions is a time-dependent parameter which may vary with disruption time scales due to the increasing fraction of neutrals. However the effect of neutrals on resistivity is found to be small for the expected neutral fraction, mostly due to power balance considerations between radiation and Ohmic heating in the plasma

  8. Status of the tokamak program

    Science.gov (United States)

    Sheffield, J.

    1981-08-01

    For a specific configuration of magnetic field and plasma to be economically attractive as a commercial source of energy, it must contain a high-pressure plasma in a stable fashion while thermally isolating the plasma from the walls of the containment vessel. The tokamak magnetic configuration is presently the most successful in terms of reaching the considered goals. Tokamaks were developed in the USSR in a program initiated in the mid-1950s. By the early 1970s tokamaks were operating not only in the USSR but also in the U.S., Australia, Europe, and Japan. The advanced state of the tokamak program is indicated by the fact that it is used as a testbed for generic fusion development - for auxiliary heating, diagnostics, materials - as well as for specific tokamak advancement. This has occurred because it is the most economic source of a large, reproducible, hot, dense plasma. The basic tokamak is considered along with tokamak improvements, impurity control, additional heating, particle and power balance in a tokamak, aspects of microscopic transport, and macroscopic stability.

  9. Magnetic confinement experiment -- 1: Tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    1994-01-01

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization

  10. The density limit in Tokamaks

    International Nuclear Information System (INIS)

    Alladio, F.

    1985-01-01

    A short summary of the present status of experimental observations, theoretical ideas and understanding of the density limit in tokamaks is presented. It is the result of the discussion that was held on this topic at the 4th European Tokamak Workshop in Copenhagen (December 4th to 6th, 1985). 610 refs

  11. Bootstrap analysis of designed experiments for reliability improvement with a non-constant scale parameter

    International Nuclear Information System (INIS)

    Wang, Guodong; He, Zhen; Xue, Li; Cui, Qingan; Lv, Shanshan; Zhou, Panpan

    2017-01-01

    Factors which significantly affect product reliability are of great interest to reliability practitioners. This paper proposes a bootstrap-based methodology for identifying significant factors when both location and scale parameters of the smallest extreme value distribution vary over experimental factors. An industrial thermostat experiment is presented, analyzed, and discussed as an illustrative example. The analysis results show that 1) the misspecification of a constant scale parameter may lead to misidentify spurious effects; 2) the important factors identified by different bootstrap methods (i.e., percentile bootstrapping, bias-corrected percentile bootstrapping, and bias-corrected and accelerated percentile bootstrapping) are different; 3) the number of factors affecting 10th percentile lifetime significantly is less than the number of important factors identified at 63.21th percentile. - Highlights: • Product reliability is improved by design of experiments under both scale and location parameters of smallest extreme value distribution vary with experimental factors. • A bootstrap-based methodology is proposed to identify important factors which affect 100pth lifetime percentile significantly. • Bootstrapping confidence intervals associating experimental factors are obtained by using three bootstrap methods (i.e., percentile bootstrapping, bias-corrected percentile bootstrapping, and bias-corrected and accelerated percentile bootstrapping). • The important factors identified by different bootstrap methods are different. • The number of factors affecting 10th percentile significantly is less than the number of important factors identified at 63.21th percentile.

  12. RANDOM QUADRATIC-FORMS AND THE BOOTSTRAP FOR U-STATISTICS

    NARCIS (Netherlands)

    DEHLING, H; MIKOSCH, T

    We study the bootstrap distribution for U-statistics with special emphasis on the degenerate case. For the Efron bootstrap we give a short proof of the consistency using Mallows' metrics. We also study the i.i.d. weighted bootstrap [GRAPHICS] where (X(i)) and (xi(i)) are two i.i.d. sequences,

  13. The tokamak as a neutron source

    International Nuclear Information System (INIS)

    Hendel, H.W.; Jassby, D.L.

    1989-11-01

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  14. Tokamak instrumentation and controls

    International Nuclear Information System (INIS)

    Becraft, W.R.; Bettis, E.S.; Houlberg, W.A.; Onega, R.J.; Stone, R.S.

    1979-02-01

    The three areas of study emphasis to date are: (1) Physics implications for controls, (2) Computer simulation, and (3) Shutdown/aborts. This document reports on the FY 78 efforts (the first year of these studies) to address these problems. Transient scenario options for the startup of a tokamak are developed, and the implications for the control system are discussed. This document also presents a hybrid computer simulation (analog and digital) of the Impurity Study Experiment (ISX-B) which is now being used for corroborative controls investigations. The simulation will be expanded to represent a TNS/ETF machine

  15. Demonstration tokamak power plant

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  16. Maximum entropy tokamak configurations

    International Nuclear Information System (INIS)

    Minardi, E.

    1989-01-01

    The new entropy concept for the collective magnetic equilibria is applied to the description of the states of a tokamak subject to ohmic and auxiliary heating. The condition for the existence of steady state plasma states with vanishing entropy production implies, on one hand, the resilience of specific current density profiles and, on the other, severe restrictions on the scaling of the confinement time with power and current. These restrictions are consistent with Goldston scaling and with the existence of a heat pinch. (author)

  17. Conformal bootstrap: non-perturbative QFT's under siege

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    [Exceptionally in Council Chamber] Originally formulated in the 70's, the conformal bootstrap is the ambitious idea that one can use internal consistency conditions to carve out, and eventually solve, the space of conformal field theories. In this talk I will review recent developments in the field which have boosted this program to a new level. I will present a method to extract quantitative informations in strongly-interacting theories, such as 3D Ising, O(N) vector model and even systems without a Lagrangian formulation. I will explain how these techniques have led to the world record determination of several critical exponents. Finally, I will review exact analytical results obtained using bootstrap techniques.

  18. A proof of fulfillment of the strong bootstrap condition

    International Nuclear Information System (INIS)

    Fadin, V.S.; Papa, A.

    2002-01-01

    It is shown that the kernel of the BFKL equation for the octet color state of two Reggeized gluons satisfies the strong bootstrap condition in the next-to-leading order. This condition is much more restrictive than the one obtained from the requirement of the Reggeized form for the elastic scattering amplitudes in the next-to-leading approximation. It is necessary, however, for self-consistency of the assumption of the Reggeized form of the production amplitudes in multi-Regge kinematics, which are used in the derivation of the BFKL equation. The fulfillment of the strong bootstrap condition for the kernel opens the way to a rigorous proof of the BFKL equation in the next-to-leading approximation. (author)

  19. Bootstrap bound for conformal multi-flavor QCD on lattice

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yu [Department of Physics, Rikkyo University,Toshima, Tokyo 171-8501 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2016-07-08

    The recent work by Iha et al. shows an upper bound on mass anomalous dimension γ{sub m} of multi-flavor massless QCD at the renormalization group fixed point from the conformal bootstrap in SU(N{sub F}){sub V} symmetric conformal field theories under the assumption that the fixed point is realizable with the lattice regularization based on staggered fermions. We show that the almost identical but slightly stronger bound applies to the regularization based on Wilson fermions (or domain wall fermions) by studying the conformal bootstrap in SU(N{sub f}){sub L}×SU(N{sub f}){sub R} symmetric conformal field theories. For N{sub f}=8, our bound implies γ{sub m}<1.31 to avoid dangerously irrelevant operators that are not compatible with the lattice symmetry.

  20. Mirror bootstrap method for testing hypotheses of one mean

    OpenAIRE

    Varvak, Anna

    2012-01-01

    The general philosophy for bootstrap or permutation methods for testing hypotheses is to simulate the variation of the test statistic by generating the sampling distribution which assumes both that the null hypothesis is true, and that the data in the sample is somehow representative of the population. This philosophy is inapplicable for testing hypotheses for a single parameter like the population mean, since the two assumptions are contradictory (e.g., how can we assume both that the mean o...

  1. Noncritical String Liouville Theory and Geometric Bootstrap Hypothesis

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    The applications of the existing Liouville theories for the description of the longitudinal dynamics of noncritical Nambu-Goto string are analyzed. We show that the recently developed DOZZ solution to the Liouville theory leads to the cut singularities in tree string amplitudes. We propose a new version of the Polyakov geometric approach to Liouville theory and formulate its basic consistency condition — the geometric bootstrap equation. Also in this approach the tree amplitudes develop cut singularities.

  2. Uncertainty Estimation using Bootstrapped Kriging Predictions for Precipitation Isoscapes

    Science.gov (United States)

    Ma, C.; Bowen, G. J.; Vander Zanden, H.; Wunder, M.

    2017-12-01

    Isoscapes are spatial models representing the distribution of stable isotope values across landscapes. Isoscapes of hydrogen and oxygen in precipitation are now widely used in a diversity of fields, including geology, biology, hydrology, and atmospheric science. To generate isoscapes, geostatistical methods are typically applied to extend predictions from limited data measurements. Kriging is a popular method in isoscape modeling, but quantifying the uncertainty associated with the resulting isoscapes is challenging. Applications that use precipitation isoscapes to determine sample origin require estimation of uncertainty. Here we present a simple bootstrap method (SBM) to estimate the mean and uncertainty of the krigged isoscape and compare these results with a generalized bootstrap method (GBM) applied in previous studies. We used hydrogen isotopic data from IsoMAP to explore these two approaches for estimating uncertainty. We conducted 10 simulations for each bootstrap method and found that SBM results in more kriging predictions (9/10) compared to GBM (4/10). Prediction from SBM was closer to the original prediction generated without bootstrapping and had less variance than GBM. SBM was tested on different datasets from IsoMAP with different numbers of observation sites. We determined that predictions from the datasets with fewer than 40 observation sites using SBM were more variable than the original prediction. The approaches we used for estimating uncertainty will be compiled in an R package that is under development. We expect that these robust estimates of precipitation isoscape uncertainty can be applied in diagnosing the origin of samples ranging from various type of waters to migratory animals, food products, and humans.

  3. Higgs Critical Exponents and Conformal Bootstrap in Four Dimensions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Mølgaard, Esben; Sannino, Francesco

    2015-01-01

    We investigate relevant properties of composite operators emerging in nonsupersymmetric, four-dimensional gauge-Yukawa theories with interacting conformal fixed points within a precise framework. The theories investigated in this work are structurally similar to the standard model of particle int...... bootstrap results are then compared to precise four dimensional conformal field theoretical results. To accomplish this, it was necessary to calculate explicitly the crossing symmetry relations for the global symmetry group SU($N$)$\\times$SU($N$)....

  4. Concept study of the Steady State Tokamak Reactor (SSTR)

    International Nuclear Information System (INIS)

    1991-06-01

    The Steady State Tokamak Reactor (SSTR) concept has been proposed as a realistic fusion power reactor to be built in the near future. An overall concept of SSTR is introduced which is based on a small extension of the present day physics and technologies. The major feature of SSTR is the maximum utilization of a bootstrap current in order to reduce the power required for the steady state operation. This requirement leads to the choice of moderate current (12 MA), and high βp (2.0) for the device, which are achieved by selecting high aspect ratio (A=4) and high toroidal magnetic field (16.5 T). A negative-ion-based neutral beam injection system is used both for heating and central current drive. Notable engineering features of SSTR are: the use of a uniform vacuum vessel and periodical replacements of the first wall and blanket layers and significant reduction of the electromagnetic force with the use of functionally gradient material. It is shown that a tokamak machine comparable to ITER in size can become a power reactor capable of generating about 1 GW of electricity with a plant efficiency of ∼30%. (author)

  5. Neoclassical Physics for Current Drive in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Duthoit, F.X.

    2012-03-01

    The Lie transform formalism is applied to charged particle dynamics in tokamak magnetic topologies, in order to build a Fokker-Planck type operator for Coulomb collisions usable for current drive. This approach makes it possible to reduce the problem to three dimensions (two in velocity space, one in real space) while keeping the wealth of phase-space cross-term coupling effects resulting from conservation of the toroidal canonical momentum (axisymmetry). This kinetic approach makes it possible to describe physical phenomena related to the presence of strong pressure gradients in plasmas of an unspecified form, like the bootstrap current which role will be paramount for the future ITER machine. The choice of coordinates and the method used are particularly adapted to the numerical resolution of the drift kinetic equation making it possible to calculate the particle distributions, which may present a strong variation with respect to the Maxwellian under the effect of an electric field (static or produced by a radio-frequency wave). This work, mainly dedicated to plasma physics of tokamaks, was extended to those of space plasmas with a magnetic dipole configuration. (author)

  6. Stock Price Simulation Using Bootstrap and Monte Carlo

    Directory of Open Access Journals (Sweden)

    Pažický Martin

    2017-06-01

    Full Text Available In this paper, an attempt is made to assessment and comparison of bootstrap experiment and Monte Carlo experiment for stock price simulation. Since the stock price evolution in the future is extremely important for the investors, there is the attempt to find the best method how to determine the future stock price of BNP Paribas′ bank. The aim of the paper is define the value of the European and Asian option on BNP Paribas′ stock at the maturity date. There are employed four different methods for the simulation. First method is bootstrap experiment with homoscedastic error term, second method is blocked bootstrap experiment with heteroscedastic error term, third method is Monte Carlo simulation with heteroscedastic error term and the last method is Monte Carlo simulation with homoscedastic error term. In the last method there is necessary to model the volatility using econometric GARCH model. The main purpose of the paper is to compare the mentioned methods and select the most reliable. The difference between classical European option and exotic Asian option based on the experiment results is the next aim of tis paper.

  7. Soybean yield modeling using bootstrap methods for small samples

    Energy Technology Data Exchange (ETDEWEB)

    Dalposso, G.A.; Uribe-Opazo, M.A.; Johann, J.A.

    2016-11-01

    One of the problems that occur when working with regression models is regarding the sample size; once the statistical methods used in inferential analyzes are asymptotic if the sample is small the analysis may be compromised because the estimates will be biased. An alternative is to use the bootstrap methodology, which in its non-parametric version does not need to guess or know the probability distribution that generated the original sample. In this work we used a set of soybean yield data and physical and chemical soil properties formed with fewer samples to determine a multiple linear regression model. Bootstrap methods were used for variable selection, identification of influential points and for determination of confidence intervals of the model parameters. The results showed that the bootstrap methods enabled us to select the physical and chemical soil properties, which were significant in the construction of the soybean yield regression model, construct the confidence intervals of the parameters and identify the points that had great influence on the estimated parameters. (Author)

  8. Truncatable bootstrap equations in algebraic form and critical surface exponents

    Energy Technology Data Exchange (ETDEWEB)

    Gliozzi, Ferdinando [Dipartimento di Fisica, Università di Torino andIstituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1, Torino, I-10125 (Italy)

    2016-10-10

    We describe examples of drastic truncations of conformal bootstrap equations encoding much more information than that obtained by a direct numerical approach. A three-term truncation of the four point function of a free scalar in any space dimensions provides algebraic identities among conformal block derivatives which generate the exact spectrum of the infinitely many primary operators contributing to it. In boundary conformal field theories, we point out that the appearance of free parameters in the solutions of bootstrap equations is not an artifact of truncations, rather it reflects a physical property of permeable conformal interfaces which are described by the same equations. Surface transitions correspond to isolated points in the parameter space. We are able to locate them in the case of 3d Ising model, thanks to a useful algebraic form of 3d boundary bootstrap equations. It turns out that the low-lying spectra of the surface operators in the ordinary and the special transitions of 3d Ising model form two different solutions of the same polynomial equation. Their interplay yields an estimate of the surface renormalization group exponents, y{sub h}=0.72558(18) for the ordinary universality class and y{sub h}=1.646(2) for the special universality class, which compare well with the most recent Monte Carlo calculations. Estimates of other surface exponents as well as OPE coefficients are also obtained.

  9. Topology of tokamak orbits

    International Nuclear Information System (INIS)

    Rome, J.A.; Peng, Y.K.M.

    1978-09-01

    Guiding center orbits in noncircular axisymmetric tokamak plasmas are studied in the constants of motion (COM) space of (v, zeta, psi/sub m/). Here, v is the particle speed, zeta is the pitch angle with respect to the parallel equilibrium current, J/sub parallels/, and psi/sub m/ is the maximum value of the poloidal flux function (increasing from the magnetic axis) along the guiding center orbit. Two D-shaped equilibria in a flux-conserving tokamak having β's of 1.3% and 7.7% are used as examples. In this space, each confined orbit corresponds to one and only one point and different types of orbits (e.g., circulating, trapped, stagnation and pinch orbits) are represented by separate regions or surfaces in the space. It is also shown that the existence of an absolute minimum B in the higher β (7.7%) equilibrium results in a dramatically different orbit topology from that of the lower β case. The differences indicate the confinement of additional high energy (v → c, within the guiding center approximation) trapped, co- and countercirculating particles whose orbit psi/sub m/ falls within the absolute B well

  10. ITER tokamak device

    International Nuclear Information System (INIS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-01-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER; and a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fuelling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (i) magnet systems (toroidal and poloidal field coils and cryogenic systems), (ii) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (iii) first wall, (iv) divertor plate (design and materials, performance and lifetime, a.o.), (v) blanket/shield system, (vi) maintenance equipment, (vii) current drive and heating, (viii) fuel cycle system, and (ix) diagnostics. 11 refs, figs and tabs

  11. Dust Measurements in Tokamaks

    International Nuclear Information System (INIS)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-01-01

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 (micro)m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics

  12. Axisymmetric control in tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.

    1991-02-01

    Vertically elongated tokamak plasmas are intrinsically susceptible to vertical axisymmetric instabilities as a result of the quadrupole field which must be applied to produce the elongation. The present work analyzes the axisymmetric control necessary to stabilize elongated equilibria, with special application to the Alcator C-MOD tokamak. A rigid current-conserving filamentary plasma model is applied to Alcator C-MOD stability analysis, and limitations of the model are addressed. A more physically accurate nonrigid plasma model is developed using a perturbed equilibrium approach to estimate linearized plasma response to conductor current variations. This model includes novel flux conservation and vacuum vessel stabilization effects. It is found that the nonrigid model predicts significantly higher growth rates than predicted by the rigid model applied to the same equilibria. The nonrigid model is then applied to active control system design. Multivariable pole placement techniques are used to determine performance optimized control laws. Formalisms are developed for implementing and improving nominal feedback laws using the C-MOD digital-analog hybrid control system architecture. A proportional-derivative output observer which does not require solution of the nonlinear Ricatti equation is developed to help accomplish this implementation. The nonrigid flux conserving perturbed equilibrium plasma model indicates that equilibria with separatrix elongation of at least κ sep = 1.85 can be stabilized robustly with the present control architecture and conductor/sensor configuration

  13. Bootstrap Determination of the Co-integration Rank in Heteroskedastic VAR Models

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Rahbek, Anders; Taylor, A.M.Robert

    In a recent paper Cavaliere et al. (2012) develop bootstrap implementations of the (pseudo-) likelihood ratio [PLR] co-integration rank test and associated sequential rank determination procedure of Johansen (1996). The bootstrap samples are constructed using the restricted parameter estimates...... of the underlying VAR model which obtain under the reduced rank null hypothesis. They propose methods based on an i.i.d. bootstrap re-sampling scheme and establish the validity of their proposed bootstrap procedures in the context of a co-integrated VAR model with i.i.d. innovations. In this paper we investigate...... the properties of their bootstrap procedures, together with analogous procedures based on a wild bootstrap re-sampling scheme, when time-varying behaviour is present in either the conditional or unconditional variance of the innovations. We show that the bootstrap PLR tests are asymptotically correctly sized and...

  14. Bootstrap Determination of the Co-Integration Rank in Heteroskedastic VAR Models

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Rahbek, Anders; Taylor, A. M. Robert

    In a recent paper Cavaliere et al. (2012) develop bootstrap implementations of the (pseudo-) likelihood ratio [PLR] co-integration rank test and associated sequential rank determination procedure of Johansen (1996). The bootstrap samples are constructed using the restricted parameter estimates...... of the underlying VAR model which obtain under the reduced rank null hypothesis. They propose methods based on an i.i.d. bootstrap re-sampling scheme and establish the validity of their proposed bootstrap procedures in the context of a co-integrated VAR model with i.i.d. innovations. In this paper we investigate...... the properties of their bootstrap procedures, together with analogous procedures based on a wild bootstrap re-sampling scheme, when time-varying behaviour is present in either the conditional or unconditional variance of the innovations. We show that the bootstrap PLR tests are asymptotically correctly sized and...

  15. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  16. Sediment Curve Uncertainty Estimation Using GLUE and Bootstrap Methods

    Directory of Open Access Journals (Sweden)

    aboalhasan fathabadi

    2017-02-01

    Full Text Available Introduction: In order to implement watershed practices to decrease soil erosion effects it needs to estimate output sediment of watershed. Sediment rating curve is used as the most conventional tool to estimate sediment. Regarding to sampling errors and short data, there are some uncertainties in estimating sediment using sediment curve. In this research, bootstrap and the Generalized Likelihood Uncertainty Estimation (GLUE resampling techniques were used to calculate suspended sediment loads by using sediment rating curves. Materials and Methods: The total drainage area of the Sefidrood watershed is about 560000 km2. In this study uncertainty in suspended sediment rating curves was estimated in four stations including Motorkhane, Miyane Tonel Shomare 7, Stor and Glinak constructed on Ayghdamosh, Ghrangho, GHezelOzan and Shahrod rivers, respectively. Data were randomly divided into a training data set (80 percent and a test set (20 percent by Latin hypercube random sampling.Different suspended sediment rating curves equations were fitted to log-transformed values of sediment concentration and discharge and the best fit models were selected based on the lowest root mean square error (RMSE and the highest correlation of coefficient (R2. In the GLUE methodology, different parameter sets were sampled randomly from priori probability distribution. For each station using sampled parameter sets and selected suspended sediment rating curves equation suspended sediment concentration values were estimated several times (100000 to 400000 times. With respect to likelihood function and certain subjective threshold, parameter sets were divided into behavioral and non-behavioral parameter sets. Finally using behavioral parameter sets the 95% confidence intervals for suspended sediment concentration due to parameter uncertainty were estimated. In bootstrap methodology observed suspended sediment and discharge vectors were resampled with replacement B (set to

  17. Tokamak building-design considerations for a large tokamak device

    International Nuclear Information System (INIS)

    Barrett, R.J.; Thomson, S.L.

    1981-01-01

    Design and construction of a satisfactory tokamak building to support FED appears feasible. Further, a pressure vessel building does not appear necessary to meet the plant safety requirements. Some of the building functions will require safety class systems to assure reliable and safe operation. A rectangular tokamak building has been selected for FED preconceptual design which will be part of the confinement system relying on ventilation and other design features to reduce the consequences and probability of radioactivity release

  18. Research using small tokamaks

    International Nuclear Information System (INIS)

    1991-05-01

    The technical reports in this document were presented at the IAEA Technical Committee Meeting ''Research on Small Tokamaks'', September 1990, in three sessions, viz., (1) Plasma Modes, Control, and Internal Phenomena, (2) Edge Phenomena, and (3) Advanced Configurations and New Facilities. In Section (1) experiments at controlling low mode number modes, feedback control using external coils, lower-hybrid current drive for the stabilization of sawtooth activity and continuous (1,1) mode, and unmodulated and fast modulated ECRH mode stabilization experiments were reported, as well as the relation to disruptions and transport of low m,n modes and magnetic island growth; static magnetic perturbations by helical windings causing mode locking and sawtooth suppression; island widths and frequency of the m=2 tearing mode; ultra-fast cooling due to pellet injection; and, finally, some papers on advanced diagnostics, i.e., lithium-beam activated charge-exchange spectroscopy, and detection through laser scattering of discrete Alfven waves. In Section (2), experimental edge physics results from a number of machines were presented (positive biasing on HYBTOK II enhancing the radial electric field and improving confinement; lower hybrid current drive on CASTOR improving global particle confinement, good current drive efficiency in HT-6B showing stabilization of sawteeth and Mirnov oscillations), as well as diagnostic developments (multi-chord time resolved soft and ultra-soft X-ray plasma radiation detection on MT-1; measurements on electron capture cross sections in multi-charged ion-atom collisions; development of a diagnostic neutral beam on Phaedrus-T). Theoretical papers discussed the influence of sheared flow and/or active feedback on edge microstability, large edge electric fields, and two-fluid modelling of non-ambipolar scrape-off layers. Section (3) contained (i) a proposal to construct a spherical tokamak ''Proto-Eta'', (ii) an analysis of ultra-low-q and runaway

  19. Natural current profiles in tokamaks

    International Nuclear Information System (INIS)

    Biskamp, D.

    1986-01-01

    It is proposed that a certain class of equilibrium, which follow from an elementary variational principle, are the natural current profiles in tokamaks, to which actual discharge profiles tend to relax. (orig.)

  20. Alcator C-Mod Tokamak

    Data.gov (United States)

    Federal Laboratory Consortium — Alcator C-Mod at the Massachusetts Institute of Technology is operated as a DOE national user facility. Alcator C-Mod is a unique, compact tokamak facility that uses...

  1. JUST: Joint Upgraded Spherical Tokamak

    International Nuclear Information System (INIS)

    Azizov, E.A.; Dvorkin, N.Ya.; Filatov, O.G.

    1997-01-01

    The main goals, ideas and the programme of JUST, spherical tokamak (ST) for the plasma burn investigation, are presented. The place and prospects of JUST in thermonuclear investigations are discussed. (author)

  2. Preliminary Design of Alborz Tokamak

    Science.gov (United States)

    Mardani, M.; Amrollahi, R.; Saramad, S.

    2012-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. The most important part of the tokamak design is the design of TF coils. In this paper a refined design of the TF coil system for the Alborz tokamak is presented. This design is based on cooper cable conductor with 5 cm width and 6 mm thickness. The TF coil system is consist of 16 rectangular shape coils, that makes the magnetic field of 0.7 T at the plasma center. The stored energy in total is 160 kJ, and the power supply used in this system is a capacitor bank with capacity of C = 1.32 mF and V max = 14 kV.

  3. New directions in tokamak reactors

    International Nuclear Information System (INIS)

    Baker, C.C.

    1985-01-01

    New directions for tokamak research are briefly mentioned. Some of the areas for new considerations are the following: reactor size, beta ratio, current drivers, blankets, impurity control, and modular designs

  4. The Tokamak IST-TOK

    International Nuclear Information System (INIS)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1991-01-01

    A small tokamak is under construction at the Portuguese Technical Superior Institute. The main objective is to create a home based laboratory in which an independent scientific program might be developed. (L.C.J.A.). 14 refs, 6 figs

  5. Integrated modeling of plasma ramp-up in DIII-D ITER-like and high bootstrap current scenario discharges

    Science.gov (United States)

    Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team

    2018-04-01

    Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.

  6. Numerical Tokamak Project code comparison

    International Nuclear Information System (INIS)

    Waltz, R.E.; Cohen, B.I.; Beer, M.A.

    1994-01-01

    The Numerical Tokamak Project undertook a code comparison using a set of TFTR tokamak parameters. Local radial annulus codes of both gyrokinetic and gyrofluid types were compared for both slab and toroidal case limits assuming ion temperature gradient mode turbulence in a pure plasma with adiabatic electrons. The heat diffusivities were found to be in good internal agreement within ± 50% of the group average over five codes

  7. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J.; Barbosa, L.F.W.; Patire Junior, H.; The high-power microwave sources group

    2003-01-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  8. Confinement and diffusion in tokamaks

    International Nuclear Information System (INIS)

    McWilliams, R.

    1988-01-01

    The effect of electric field fluctuations on confinement and diffusion in tokamak is discussed. Based on the experimentally determined cross-field turbolent diffusion coefficient, D∼3.7*cT e /eB(δn i /n i ) rms which is also derived by a simple theory, the cross-field diffusion time, tp=a 2 /D, is calculated and compared to experimental results from 51 tokamak for standard Ohmic operation

  9. Enhancement of confinement in tokamaks

    International Nuclear Information System (INIS)

    Furth, H.P.

    1986-01-01

    The analysis begins by identifying a hypothetical model of tokamak confinement that is designed to take into account the conflict between Tsub(e)(r)-profile shapes arising from microscopic transport and J(r)-profile shapes required for gross stability. On the basis of this model, a number of hypothetical lines of advance are developed. Some TFTR experiments that may point the way to a particularly attractive type of tokamak reactor regime are discussed. (author)

  10. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)

    2003-07-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  11. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group

    2003-12-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  12. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes

    2003-01-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  13. The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1

    Energy Technology Data Exchange (ETDEWEB)

    Charles Kessel, et al

    2014-03-05

    The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

  14. High Beta Tokamak research

    International Nuclear Information System (INIS)

    Navratil, G.A.; Mauel, M.E.; Ivers, T.H.; Sankar, M.K.V.; Eisner, E.; Gates, D.; Garofalo, A.; Kombargi, R.; Maurer, D.; Nadle, D.; Xiao, Q.

    1993-01-01

    During the past 6 months, experiments have been conducted with the HBT-EP tokamak in order to (1) test and evaluate diagnostic systems, (2) establish basic machine operation, (3) document MHD behavior as a function of global discharge parameters, (4) investigate conditions leading to passive stabilization of MHD instabilities, and (5) quantify the external saddle coil current required for DC mode locking. In addition, the development and installation of new hardware systems has occurred. A prototype saddle coil was installed and tested. A five-position (n,m) = (1,2) external helical saddle coil was attached for mode-locking experiments. And, fabrication of the 32-channel UV tomography and the multipass Thomson scattering diagnostics have begun in preparation for installation later this year

  15. Anomalous transport in tokamaks

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1989-01-01

    A review is presented of what is known about anomalous transport in tokamaks. It is generally thought that this anomalous transport is the result of fluctuations in various plasma parameters. In the plasma edge detailed measurements of the quantities required to directly determine the fluctuation driven fluxes are available. The total flux of particles is well explained by the measured electrostatic fluctuation driven flux. However, a satisfactory model to explain the origin of the fluctuations has not been identified. The processes responsible for determining the edge energy flux are less clear, but electrostatic convection plays an important part. In the confinement region experimental observations are presently restricted to measurements of density and potential fluctuations and their correlations. The characteristics of the measured fluctuations are discussed and compared with the predictions of various models. Comparisons between measured particle, electron heat and ion heat fluxes, and those fluxes predicted to result from the measured fluctuations, are made. Magnetic fluctuations is discussed

  16. Tokamak hybrid study

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1976-09-01

    A report on one year of study of a tokamak hybrid reactor is presented. The plasma is maintained by both D and T beams. To obtain long burn times a poloidal field divertor is required. Both the single null and the double null style of divertor are considered. The blanket consists of a neutron multiplier region containing natural uranium followed by burner regions of molten salt (flibe) loaded with PuF 3 to enhance the energy multiplication. Economic analysis has been applied only recently to a variety of reactor sizes and plasma conditions. Early indications suggest that the most attractive hybrids will have large plasmas of major radius in excess of 8 meters

  17. Tokamak hybrid study

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1976-01-01

    A report on one year of study of a tokamak hybrid reactor is given. The plasma is maintained by both D and T beams. To obtain long burn times a poloidal field divertor is required. Both the single null and the double null style of divertor are considered. The blanket consists of a neutron multiplier region containing natural uranium followed by burner regions of molten salt (flibe) loaded with PuF 3 to enhance the energy multiplication. Economic analysis has been applied only recently to a variety of reactor sizes and plasma conditions. Early indications suggest that the most attractive hybrids will have large plasmas of major radius in excess of 8 meters

  18. The Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Schmidt, J.

    1987-01-01

    The author discusses his lab's plan for completing the Compact Ignition Tokamak (CIT) conceptual design during calendar year 1987. Around July 1 they froze the subsystem envelopes on the device to continue with the conceptual design. They did this by formalizing a general requirements document. They have been developing the management plan and submitted a version to the DOE July 10. He describes a group of management activities. They released the vacuum vessel Request For Proposals (RFP) on August 5. An RFP to do a major part of the system engineering on the device is being developed. They intend to assemble the device outside of the test cell, then move it into the the test cell, install it there, and bring to the test cell many of the auxiliary facilities from TFTR, for example, power supplies

  19. Plasma turbulence in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, Ibere L.; Heller, M.V.A.P.; Brasilio, Z.A. [Sao Paulo Univ., SP, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. In this work we summarize the results from experiments on electrostatic and magnetic fluctuations in tokamak plasmas. Spectral analyses show that these fluctuations are turbulent, having a broad spectrum of wavectors and a broad spectrum of frequencies at each wavector. The electrostatic turbulence induces unexpected anomalous particle transport that deteriorates the plasma confinement. The relationship of these fluctuations to the current state of plasma theory is still unclear. Furthermore, we describe also attempts to control this plasma turbulence with external magnetic perturbations that create chaotic magnetic configurations. Accordingly, the magnetic field lines may become chaotic and then induce a Lagrangian diffusion. Moreover, to discuss nonlinear coupling and intermittency, we present results obtained by using numerical techniques as bi spectral and wavelet analyses. (author)

  20. Disruptions in Tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.

    1987-01-01

    This paper discusses major and minor disruptions in Tokamaks. A number of models and numerical simulations of disruptions based on resistive MHD are reviewed. A discussion is given of how disruptive current profiles are correlated with the experimentally known operational limits in density and current. It is argued that the q a =2 limit is connected with stabilization of the m=2/n=1 tearing mode for a approx.< 2.7 by resistive walls and mode rotation. Experimental and theoretical observations indicate that major disruptions usually occur in at least two phases, first a 'predisruption', or loss of confinement in the region 1 < q < 2, leaving the q approx.= 1 region almost unaffected, followed by a final disruption of the central part, interpreted here as a toroidal n = 1 external kink mode. (author)

  1. Experimental investigations at the Soviet tokamaks

    International Nuclear Information System (INIS)

    Bobrovskij, G.A.; Golant, V.E.; AN SSSR, Leningrad. Fiziko-Tekhnicheskij Inst.)

    1978-01-01

    The review is devoted to the basic results obtained on the Soviet tokamaks during 1976-1977. Behaviour of impurities, tearing instability, additional methods of plasma heating, energy distribution function were investigated. A brief description of new T-7, TM-4, ''Tuman-3'' tokamaks is given. It is shown that despite inflow of impurities to the pinch periphery, no their appreciable accumulation is observed at least during the discharge time. It is shown that the helical perturbations with m=2 and 1 present the greatest danger. The suppression of the tearing instability is related with suppression of the mode with m=2. The helical perturbation prevents formation of skin configuration at the initial stage of the discharge. As a rule, the transition of an appreciable fraction of electrons to continuous acceleration does not take place, although a significant deformation of electron distribution function under the action of electric field occurs. Plasma compression by increasing magnetic field induces oscillations and improves thermal plasma isolation. It is shown experimentally that the considerable efficiency of energy contribution to the ion component at the central part of plasma may be obtained by means of HF heating under conditions of low-hybrid resonance. It is shown that the recombination has a considerable effect on concentration of neutral particles in the central region

  2. The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D 3 He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions

  3. Comparing groups randomization and bootstrap methods using R

    CERN Document Server

    Zieffler, Andrew S; Long, Jeffrey D

    2011-01-01

    A hands-on guide to using R to carry out key statistical practices in educational and behavioral sciences research Computing has become an essential part of the day-to-day practice of statistical work, broadening the types of questions that can now be addressed by research scientists applying newly derived data analytic techniques. Comparing Groups: Randomization and Bootstrap Methods Using R emphasizes the direct link between scientific research questions and data analysis. Rather than relying on mathematical calculations, this book focus on conceptual explanations and

  4. Check of the bootstrap conditions for the gluon Reggeization

    International Nuclear Information System (INIS)

    Papa, A.

    2000-01-01

    The property of gluon Reggeization plays an essential role in the derivation of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation for the cross sections at high energy √s in perturbative QCD. This property has been proved to all orders of perturbation theory in the leading logarithmic approximation and it is assumed to be valid also in the next-to-leading logarithmic approximation, where it has been checked only to the first three orders of perturbation theory. From s-channel unitarity, however, very stringent 'bootstrap' conditions can be derived which, if fulfilled, leave no doubts that gluon Reggeization holds

  5. A SQUID Bootstrap Circuit with a Large Parameter Tolerance

    International Nuclear Information System (INIS)

    Zhang Guo-Feng; Kong Xiang-Yan; Xie Xiao-Ming; Zhang Yi; Krause Hans-Joachim; Offenhäusser Andreas

    2013-01-01

    The voltage biased (SQUID) bootstrap circuit (SBC) was recently introduced as an effective means to reduce the preamplifier noise contribution. We analyze the tolerances of the SBC noise suppression performance to spreads in SQUID and SBC circuit parameters. It is found that the tolerance to spread mainly caused by the integrated circuit fabrication process could be extended by a one-time adjustable current feedback. A helium-cooled niobium SQUID with a loop inductance of 350 pH is employed to experimentally verify the analysis. From this work, design criteria for fully integrated SBC devices with a high yield can be derived

  6. Plasma profile and shape optimization for the advanced tokamak power plant, ARIES-AT

    International Nuclear Information System (INIS)

    Kessel, C.E.; Mau, T.K.; Jardin, S.C.; Najmabadi, F.

    2006-01-01

    An advanced tokamak plasma configuration is developed based on equilibrium, ideal MHD stability, bootstrap current analysis, vertical stability and control, and poloidal field coil analysis. The plasma boundaries used in the analysis are forced to coincide with the 99% flux surface from the free-boundary equilibrium. Using an accurate bootstrap current model and external current drive profiles from ray tracing calculations in combination with optimized pressure profiles, β N values above 7.0 have been obtained. The minimum current drive requirement is found to lie at a lower β N of 6.0. The external kink mode is stabilized by a tungsten shell located at 0.33 times the minor radius and a feedback system. Plasma shape optimization has led to an elongation of 2.2 and triangularity of 0.9 at the separatrix. Vertical stability could be achieved by a combination of tungsten shells located at 0.33 times the minor radius and feedback control coils located behind the shield. The poloidal field coils were optimized in location and current, providing a maximum coil current of 8.6 MA. These developments have led to a simultaneous reduction in the power plant major radius and toroidal field from those found in a previous study [S.C. Jardin, C.E. Kessel, C.G. Bathke, D.A. Ehst, T.K. Mau, F. Najmabadi, T.W. Petrie, the ARIES Team, Physics basis for a reversed shear tokamak power plant, Fusion Eng. Design 38 (1997) 27

  7. Intrinsic non-inductive current driven by ETG turbulence in tokamaks

    Science.gov (United States)

    Singh, Rameswar; Kaw, P. K.; Singh, R.; Gürcan, Ã.-. D.

    2017-10-01

    Motivated by observations and physics understanding of the phenomenon of intrinsic rotation, it is suggested that similar considerations for electron dynamics may result in intrinsic current in tokamaks. We have investigated the possibility of intrinsic non-inductive current in the turbulent plasma of tokamaks. Ohm's law is generalized to include the effect of turbulent fluctuations in the mean field approach. This clearly leads to the identification of sources and the mechanisms of non-inductive current drive by electron temperature gradient turbulence. It is found that a mean parallel electro-motive force and hence a mean parallel current can be generated by (1) the divergence of residual current flux density and (2) a non-flux like turbulent source from the density and parallel electric field correlations. Both residual flux and the non-flux source require parallel wave-number k∥ symmetry breaking for their survival which can be supplied by various means like mean E × B shear, turbulence intensity gradient, etc. Estimates of turbulence driven current are compared with the background bootstrap current in the pedestal region. It is found that turbulence driven current is nearly 10% of the bootstrap current and hence can have a significant influence on the equilibrium current density profiles and current shear driven modes.

  8. The Numerical Tokamak Project (NTP) simulation of turbulent transport in the core plasma: A grand challenge in plasma physics

    International Nuclear Information System (INIS)

    1993-12-01

    The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model's on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy's theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support

  9. Bootstrap Determination of the Co-Integration Rank in Heteroskedastic VAR Models

    DEFF Research Database (Denmark)

    Cavaliere, G.; Rahbek, Anders; Taylor, A.M.R.

    2014-01-01

    In a recent paper Cavaliere et al. (2012) develop bootstrap implementations of the (pseudo-) likelihood ratio (PLR) co-integration rank test and associated sequential rank determination procedure of Johansen (1996). The bootstrap samples are constructed using the restricted parameter estimates...... of the underlying vector autoregressive (VAR) model which obtain under the reduced rank null hypothesis. They propose methods based on an independent and individual distributed (i.i.d.) bootstrap resampling scheme and establish the validity of their proposed bootstrap procedures in the context of a co......-integrated VAR model with i.i.d. innovations. In this paper we investigate the properties of their bootstrap procedures, together with analogous procedures based on a wild bootstrap resampling scheme, when time-varying behavior is present in either the conditional or unconditional variance of the innovations. We...

  10. Bibliography of fusion product physics in tokamaks

    International Nuclear Information System (INIS)

    Hively, L.M.; Sigmar, D.J.

    1989-09-01

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category

  11. Financial bootstrapping use in new family ventures and the impact on venture growth

    OpenAIRE

    Helleboogh, David; LAVEREN, Eddy; LYBAERT, Nadine

    2010-01-01

    This paper contributes to the general knowledge of bootstrap financing among new family ventures in two ways. Firstly, this research reveals which human capital characteristics of the owner-manager has an impact on financial bootstrapping use. The empirical results indicate that the use of bootstrapping techniques does not depend upon the family's business founder's education, but that it is a skill which is absorbed from self-employed parents or during the founder's prior work and management...

  12. Financial bootstrapping use in family ventures and the impact on start-up growth

    OpenAIRE

    Helleboogh, D.; Laveren, E.; LYBAERT, Nadine

    2010-01-01

    This paper contributes to the general knowledge of bootstrap financing among new family ventures in two ways. Firstly, this research reveals which human capital characteristics of the owner-manager has an impact on financial bootstrapping use. The empirical results indicate that the use of bootstrapping techniques does not depend upon the family business founder's education, but that it is a skill which is absorbed from self-employed parents or during the founder‟s prior work and management e...

  13. A Parsimonious Bootstrap Method to Model Natural Inflow Energy Series

    Directory of Open Access Journals (Sweden)

    Fernando Luiz Cyrino Oliveira

    2014-01-01

    Full Text Available The Brazilian energy generation and transmission system is quite peculiar in its dimension and characteristics. As such, it can be considered unique in the world. It is a high dimension hydrothermal system with huge participation of hydro plants. Such strong dependency on hydrological regimes implies uncertainties related to the energetic planning, requiring adequate modeling of the hydrological time series. This is carried out via stochastic simulations of monthly inflow series using the family of Periodic Autoregressive models, PAR(p, one for each period (month of the year. In this paper it is shown the problems in fitting these models by the current system, particularly the identification of the autoregressive order “p” and the corresponding parameter estimation. It is followed by a proposal of a new approach to set both the model order and the parameters estimation of the PAR(p models, using a nonparametric computational technique, known as Bootstrap. This technique allows the estimation of reliable confidence intervals for the model parameters. The obtained results using the Parsimonious Bootstrap Method of Moments (PBMOM produced not only more parsimonious model orders but also adherent stochastic scenarios and, in the long range, lead to a better use of water resources in the energy operation planning.

  14. A Mellin space approach to the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Gopakumar, Rajesh [International Centre for Theoretical Sciences (ICTS-TIFR),Survey No. 151, Shivakote, Hesaraghatta Hobli, Bangalore North 560 089 (India); Kaviraj, Apratim [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India); Sen, Kallol [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India); Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study, Kashiwa, Chiba 277-8583 (Japan); Sinha, Aninda [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India)

    2017-05-05

    We describe in more detail our approach to the conformal bootstrap which uses the Mellin representation of CFT{sub d} four point functions and expands them in terms of crossing symmetric combinations of AdS{sub d+1} Witten exchange functions. We consider arbitrary external scalar operators and set up the conditions for consistency with the operator product expansion. Namely, we demand cancellation of spurious powers (of the cross ratios, in position space) which translate into spurious poles in Mellin space. We discuss two contexts in which we can immediately apply this method by imposing the simplest set of constraint equations. The first is the epsilon expansion. We mostly focus on the Wilson-Fisher fixed point as studied in an epsilon expansion about d=4. We reproduce Feynman diagram results for operator dimensions to O(ϵ{sup 3}) rather straightforwardly. This approach also yields new analytic predictions for OPE coefficients to the same order which fit nicely with recent numerical estimates for the Ising model (at ϵ=1). We will also mention some leading order results for scalar theories near three and six dimensions. The second context is a large spin expansion, in any dimension, where we are able to reproduce and go a bit beyond some of the results recently obtained using the (double) light cone expansion. We also have a preliminary discussion about numerical implementation of the above bootstrap scheme in the absence of a small parameter.

  15. Bootstrapping the (A1, A2) Argyres-Douglas theory

    Science.gov (United States)

    Cornagliotto, Martina; Lemos, Madalena; Liendo, Pedro

    2018-03-01

    We apply bootstrap techniques in order to constrain the CFT data of the ( A 1 , A 2) Argyres-Douglas theory, which is arguably the simplest of the Argyres-Douglas models. We study the four-point function of its single Coulomb branch chiral ring generator and put numerical bounds on the low-lying spectrum of the theory. Of particular interest is an infinite family of semi-short multiplets labeled by the spin ℓ. Although the conformal dimensions of these multiplets are protected, their three-point functions are not. Using the numerical bootstrap we impose rigorous upper and lower bounds on their values for spins up to ℓ = 20. Through a recently obtained inversion formula, we also estimate them for sufficiently large ℓ, and the comparison of both approaches shows consistent results. We also give a rigorous numerical range for the OPE coefficient of the next operator in the chiral ring, and estimates for the dimension of the first R-symmetry neutral non-protected multiplet for small spin.

  16. Comparison of parametric and bootstrap method in bioequivalence test.

    Science.gov (United States)

    Ahn, Byung-Jin; Yim, Dong-Seok

    2009-10-01

    The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.

  17. Quantifying uncertainty on sediment loads using bootstrap confidence intervals

    Science.gov (United States)

    Slaets, Johanna I. F.; Piepho, Hans-Peter; Schmitter, Petra; Hilger, Thomas; Cadisch, Georg

    2017-01-01

    Load estimates are more informative than constituent concentrations alone, as they allow quantification of on- and off-site impacts of environmental processes concerning pollutants, nutrients and sediment, such as soil fertility loss, reservoir sedimentation and irrigation channel siltation. While statistical models used to predict constituent concentrations have been developed considerably over the last few years, measures of uncertainty on constituent loads are rarely reported. Loads are the product of two predictions, constituent concentration and discharge, integrated over a time period, which does not make it straightforward to produce a standard error or a confidence interval. In this paper, a linear mixed model is used to estimate sediment concentrations. A bootstrap method is then developed that accounts for the uncertainty in the concentration and discharge predictions, allowing temporal correlation in the constituent data, and can be used when data transformations are required. The method was tested for a small watershed in Northwest Vietnam for the period 2010-2011. The results showed that confidence intervals were asymmetric, with the highest uncertainty in the upper limit, and that a load of 6262 Mg year-1 had a 95 % confidence interval of (4331, 12 267) in 2010 and a load of 5543 Mg an interval of (3593, 8975) in 2011. Additionally, the approach demonstrated that direct estimates from the data were biased downwards compared to bootstrap median estimates. These results imply that constituent loads predicted from regression-type water quality models could frequently be underestimating sediment yields and their environmental impact.

  18. Bootstrap equations for N=4 SYM with defects

    Energy Technology Data Exchange (ETDEWEB)

    Liendo, Pedro [IMIP, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Meneghelli, Carlo [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook, NY 11794-3636 (United States)

    2017-01-27

    This paper focuses on the analysis of 4dN=4 superconformal theories in the presence of a defect from the point of view of the conformal bootstrap. We will concentrate first on the case of codimension one, where the defect is a boundary that preserves half of the supersymmetry. After studying the constraints imposed by supersymmetry, we will obtain the Ward identities associated to two-point functions of (1/2)-BPS operators and write their solution as a superconformal block expansion. Due to a surprising connection between spacetime and R-symmetry conformal blocks, our results not only apply to 4dN=4 superconformal theories with a boundary, but also to three more systems that have the same symmetry algebra: 4dN=4 superconformal theories with a line defect, 3dN=4 superconformal theories with no defect, and OSP(4{sup ∗}|4) superconformal quantum mechanics. The superconformal algebra implies that all these systems possess a closed subsector of operators in which the bootstrap equations become polynomial constraints on the CFT data. We derive these truncated equations and initiate the study of their solutions.

  19. Bootstrapping non-commutative gauge theories from L∞ algebras

    Science.gov (United States)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  20. Bootstrap equations for N=4 SYM with defects

    International Nuclear Information System (INIS)

    Liendo, Pedro; Meneghelli, Carlo

    2017-01-01

    This paper focuses on the analysis of 4dN=4 superconformal theories in the presence of a defect from the point of view of the conformal bootstrap. We will concentrate first on the case of codimension one, where the defect is a boundary that preserves half of the supersymmetry. After studying the constraints imposed by supersymmetry, we will obtain the Ward identities associated to two-point functions of (1/2)-BPS operators and write their solution as a superconformal block expansion. Due to a surprising connection between spacetime and R-symmetry conformal blocks, our results not only apply to 4dN=4 superconformal theories with a boundary, but also to three more systems that have the same symmetry algebra: 4dN=4 superconformal theories with a line defect, 3dN=4 superconformal theories with no defect, and OSP(4 ∗ |4) superconformal quantum mechanics. The superconformal algebra implies that all these systems possess a closed subsector of operators in which the bootstrap equations become polynomial constraints on the CFT data. We derive these truncated equations and initiate the study of their solutions.

  1. Thermal energy and bootstrap current in fusion reactor plasmas

    International Nuclear Information System (INIS)

    Becker, G.

    1993-01-01

    For DT fusion reactors with prescribed alpha particle heating power P α , plasma volume V and burn temperature i > ∼ 10 keV specific relations for the thermal energy content, bootstrap current, central plasma pressure and other quantities are derived. It is shown that imposing P α and V makes these relations independent of the magnitudes of the density and temperature, i.e. they only depend on P α , V and shape factors or profile parameters. For model density and temperature profiles analytic expressions for these shape factors and for the factor C bs in the bootstrap current formula I bs ∼ C bs (a/R) 1/2 β p I p are given. In the design of next-step devices and fusion reactors, the fusion power is a fixed quantity. Prescription of the alpha particle heating power and plasma volume results in specific relations which can be helpful for interpreting computer simulations and for the design of fusion reactors. (author) 5 refs

  2. Bootstrap embedding: An internally consistent fragment-based method

    Energy Technology Data Exchange (ETDEWEB)

    Welborn, Matthew; Tsuchimochi, Takashi; Van Voorhis, Troy [Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2016-08-21

    Strong correlation poses a difficult problem for electronic structure theory, with computational cost scaling quickly with system size. Fragment embedding is an attractive approach to this problem. By dividing a large complicated system into smaller manageable fragments “embedded” in an approximate description of the rest of the system, we can hope to ameliorate the steep cost of correlated calculations. While appealing, these methods often converge slowly with fragment size because of small errors at the boundary between fragment and bath. We describe a new electronic embedding method, dubbed “Bootstrap Embedding,” a self-consistent wavefunction-in-wavefunction embedding theory that uses overlapping fragments to improve the description of fragment edges. We apply this method to the one dimensional Hubbard model and a translationally asymmetric variant, and find that it performs very well for energies and populations. We find Bootstrap Embedding converges rapidly with embedded fragment size, overcoming the surface-area-to-volume-ratio error typical of many embedding methods. We anticipate that this method may lead to a low-scaling, high accuracy treatment of electron correlation in large molecular systems.

  3. Tokamak engineering test reactor

    International Nuclear Information System (INIS)

    Conn, R.W.; Jassby, D.L.

    1975-07-01

    The design criteria for a tokamak engineering test reactor can be met by operating in the two-component mode with reacting ion beams, together with a new blanket-shield design based on internal neutron spectrum shaping. A conceptual reactor design achieving a neutron wall loading of about 1 MW/m 2 is presented. The tokamak has a major radius of 3.05 m, the plasma cross-section is noncircular with a 2:1 elongation, and the plasma radius in the midplane is 55 cm. The total wall area is 149 m 2 . The plasma conditions are T/sub e/ approximately T/sub i/ approximately 5 keV, and ntau approximately 8 x 10 12 cm -3 s. The plasma temperature is maintained by injection of 177 MW of 200-keV neutral deuterium beams; the resulting deuterons undergo fusion reactions with the triton-target ions. The D-shaped toroidal field coils are extended out to large major radius (7.0 m), so that the blanket-shield test modules on the outer portion of the torus can be easily removed. The TF coils are superconducting, using a cryogenically stable TiNb design that permits a field at the coil of 80 kG and an axial field of 38 kG. The blanket-shield design for the inner portion of the torus nearest the machine center line utilizes a neutron spectral shifter so that the first structural wall behind the spectral shifter zone can withstand radiation damage for the reactor lifetime. The energy attenuation in this inner blanket is 8 x 10 -6 . If necessary, a tritium breeding ratio of 0.8 can be achieved using liquid lithium cooling in the []outer blanket only. The overall power consumption of the reactor is about 340 MW(e). A neutron wall loading greater than 1 MW/m 2 can be achieved by increasing the maximum magnetic field or the plasma elongation. (auth)

  4. START: the creation of a spherical tokamak

    International Nuclear Information System (INIS)

    Sykes, Alan

    1992-01-01

    The START (Small Tight Aspect Ratio Tokamak) plasma fusion experiment is now operational at AEA Fusion's Culham Laboratory. It is the world's first experiment to explore an extreme limit of the tokamak - the Spherical Tokamak - which theoretical studies predict may have substantial advantages in the search for economic fusion power. The Head of the START project, describes the concept, some of the initial experimental results and the possibility of developing a spherical tokamak power reactor. (author)

  5. Nonparametric bootstrap analysis with applications to demographic effects in demand functions.

    Science.gov (United States)

    Gozalo, P L

    1997-12-01

    "A new bootstrap proposal, labeled smooth conditional moment (SCM) bootstrap, is introduced for independent but not necessarily identically distributed data, where the classical bootstrap procedure fails.... A good example of the benefits of using nonparametric and bootstrap methods is the area of empirical demand analysis. In particular, we will be concerned with their application to the study of two important topics: what are the most relevant effects of household demographic variables on demand behavior, and to what extent present parametric specifications capture these effects." excerpt

  6. DMSP SSM/I Daily and Monthly Polar Gridded Bootstrap Sea Ice Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — DMSP SSM/I Daily and Monthly Polar Gridded Bootstrap Sea Ice Concentrations in polar stereographic projection currently include Defense Meteorological Satellite...

  7. Optical Flow of Small Objects Using Wavelets, Bootstrap Methods, and Synthetic Discriminant Filters

    National Research Council Canada - National Science Library

    Hewer, Gary

    1997-01-01

    ...) targets in highly cluttered and noisy environments. In this paper; we present a novel wavelet detection algorithm which incorporates adaptive CFAR detection statistics using the bootstrap method...

  8. Instability threshold of neoclassical tearing mode, double tearing mode and off-axis sawteeth crash in tokamaks

    International Nuclear Information System (INIS)

    Li, D.

    2001-01-01

    The neoclassical and double tearing modes have been analyzed with related new phenomena in the reversed magnetic shear tokamak plasmas. The instability threshold, and the linear and nonlinear evolution are derived for the neoclassical tearing modes. It is found that the perturbed bootstrap current in the resistive layer has a stabilizing effect while the equilibrium bootstrap current in the outer region can destabilize the modes. The dispersion relation is derived for the double tearing mode. It is found that the onset of ''annular crash'' is due to the fast reconnection of the hot and cold islands, triggered by the interaction of both branches. The onset of ''core crash'' is mainly due to the coalescence between the hot islands, triggered by the explosive growth of the inner branch. (author)

  9. Instability threshold of neoclassical tearing mode, double tearing mode and off-axis sawteeth crash in tokamaks

    International Nuclear Information System (INIS)

    Li Ding

    1999-01-01

    The neoclassical and double tearing modes have been analyzed with related new phenomena in the reversed magnetic shear tokamak plasmas. The instability threshold, and the linear and nonlinear evolution are derived for the neoclassical tearing modes. It is found that the perturbed bootstrap current in the resistive layer has a stabilizing effect while the equilibrium bootstrap current in the outer region can destabilize the modes. The dispersion relation is derived for the double tearing mode. It is found that the onset of 'annular crash' is due to the fast reconnection of the hot and cold islands, triggered by the interaction of both branches. The onset of 'core crash' is mainly due to the coalescence between the hot islands, triggered by the explosive growth of the inner branch. (author)

  10. Moving Divertor Plates in a Tokamak

    International Nuclear Information System (INIS)

    Zweben, S.J.; Zhang, H.

    2009-01-01

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions

  11. Fusion potential for spherical and compact tokamaks

    International Nuclear Information System (INIS)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high β-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect

  12. Fusion potential for spherical and compact tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.

  13. Moving Divertor Plates in a Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  14. Optimization study of normal conductor tokamak for commercial neutron source

    Science.gov (United States)

    Fujita, T.; Sakai, R.; Okamoto, A.

    2017-05-01

    The optimum conceptual design of tokamak with normal conductor coils was studied for minimizing the cost for producing a given neutron flux by using a system code, PEC. It is assumed that the fusion neutrons are used for burning transuranics from the fission reactor spent fuel in the blanket and a fraction of the generated electric power is circulated to opearate the tokamak with moderate plasma fusion gain. The plasma performance was assumed to be moderate ones; {β\\text{N}}~∼ ~3{--}4 in the aspect ratio A~=~2{--}3 and {{H}98y2}~=~1 . The circulating power is an important factor affecting the cost. Though decreasing the aspect ratio is useful to raise the plasma beta and decrease the toroidal field, the maximum field in the coil starts to rise in the very low aspect ratio range and then the circulating power increases with decrease in the plasma aspect ratio A below A~∼ ~2 , while the construction cost increases with A . As a result, the cost per neutron has its minimum around A~∼ ~2.2 , namely, between ST and the conventional tokamak. The average circulating power fraction is expected to be ~51%.

  15. Resistive instabilities in tokamaks

    International Nuclear Information System (INIS)

    Rutherford, P.H.

    1985-10-01

    Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much more efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed

  16. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Brooks, J.N.

    1978-01-01

    A tokamak experimental power reactor has been designed that is capable of producing net electric power over a wide range of possible operating conditions. A net production of 81 MW of electricity is expected from the design reference conditions that assume a value of 0.07 for beta-toroidal, a maximum toroidal magnetic field of 9 T and a thermal conversion efficiency of 30%. Impurity control is achieved through the use of a low-Z first wall coating. This approach allows a burn time of 60 seconds without the incorporation of a divertor. The system is cooled by a dual pressurized water/steam system that could potentially provide thermal efficiencies as high as 39%. The first surface facing the plasma is a low-Z coated water cooled panel that is attached to a 20 cm thick blanket module. The vacuum boundary is removed a total of 22 cm from the plasma, thereby minimizing the amount of radiation damage in this vital component. Consideration is given in the design to the possible use of the EPR as a materials test reactor. It is estimated that the total system could be built for less than 550 million dollars

  17. Classical tokamak transport theory

    International Nuclear Information System (INIS)

    Nocentini, Aldo

    1982-01-01

    A qualitative treatment of the classical transport theory of a magnetically confined, toroidal, axisymmetric, two-species plasma is presented. The 'weakly collisional' ('banana' and 'plateau') and 'collision dominated' ('Pfirsch-Schlueter' and 'highly collisional') regimes, as well as the Ware effect are discussed. The method used to evaluate the diffusion coffieicnts of particles and heat in the weakly collisional regime is based on stochastic argument, that requires an analysis of the characteristic collision frequencies and lengths for particles moving in a tokamak-like magnetic field. The same method is used to evaluate the Ware effect. In the collision dominated regime on the other hand, the particle and heat fluxes across the magnetic field lines are dominated by macroscopic effects so that, although it is possible to present them as diffusion (in fact, the fluxes turn out to be proportional to the density and temperature gradients), a macroscopic treatment is more appropriate. Hence, fluid equations are used to inveatigate the collision dominated regime, to which particular attention is devoted, having been shown relatively recently that it is more complicated than the usual Pfirsch-Schlueter regime. The whole analysis presented here is qualitative, aiming to point out the relevant physical mechanisms involved in the various regimes more than to develop a rigorous mathematical derivation of the diffusion coefficients, for which appropriate references are given. (author)

  18. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Bertoncini, P.J.

    1976-01-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 yr. The EPR operates in a pulsed mode at a frequency of approximately 1/min, with approximately 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2 cm thick stainless steel, and has 2 cm thick detachable, beryllium-coated coolant panels mounted on the interior. A 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H 2 O. Sixteen niobium-titanium superconducting toroidal field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic heating and equilibrium field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam injectors which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-convertors

  19. The role of the spherical tokamak in clarifying tokamak physics

    International Nuclear Information System (INIS)

    Morris, A.W.; Akers, R.J.; Connor, J.W.; Counsell, G.F.; Gryaznevich, M.P.; Hender, T.C.; Maddison, G.P.; Martin, T.J.; McClements, K.G.; Roach, C.M.; Robinson, D.C.; Sykes, A.; Valovic, M.; Wilson, H.R.; Fonck, R.J.; Gusev, V.; Kaye, S.M.; Majeski, R.; Peng, Y.-K.M.; Medvedev, S.; Sharapov, S.; Walsh, M.J.

    1999-01-01

    The spherical tokamak (ST) provides a unique environment in which to perform complementary and exacting tests of the tokamak physics required for a burning plasma experiment of any aspect ratio, while also having the potential for long-term fusion applications in its own right. New experiments are coming on-line in the UK (MAST), USA (NSTX, Pegasus), Russia (Globus-M), Brazil (ETE) and elsewhere, and the status of these devices will be reported, along with newly-analysed data from START. Those physics issues where the ST provides an opportunity to remove degeneracy in the databases or clarify one's understanding will be emphasized. (author)

  20. Advanced tokamak burning plasma experiment

    International Nuclear Information System (INIS)

    Porkolab, M.; Bonoli, P.T.; Ramos, J.; Schultz, J.; Nevins, W.N.

    2001-01-01

    A new reduced size ITER-RC superconducting tokamak concept is proposed with the goals of studying burn physics either in an inductively driven standard tokamak (ST) mode of operation, or in a quasi-steady state advanced tokamak (AT) mode sustained by non-inductive means. This is achieved by reducing the radiation shield thickness protecting the superconducting magnet by 0.34 m relative to ITER and limiting the burn mode of operation to pulse lengths as allowed by the TF coil warming up to the current sharing temperature. High gain (Q≅10) burn physics studies in a reversed shear equilibrium, sustained by RF and NB current drive techniques, may be obtained. (author)

  1. Large aspect ratio tokamak study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Sardella, C.; Wiseman, G.W.

    1979-01-01

    The Large Aspect Ratio Tokamak Study (LARTS) investigated the potential for producing a viable long burn tokamak reactor through enhanced volt-second capability of the ohmic heating transformer by employing high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were accessed in the context of extended burn operation. Plasma startup and burn parameters were addressed using a one-dimensional transport code. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the field in the ohmic heating coil and the wave shape of the ohmic heating discharge. A high aspect ratio reference reactor was chosen and configured

  2. Plasma boundary phenomena in tokamaks

    International Nuclear Information System (INIS)

    Stangeby, P.C.

    1989-06-01

    The focus of this review is on processes occurring at the edge, and on the connection between boundary plasma - the scrape-off layer (SOL) and the radiating layer - and central plasma processes. Techniques used for edge diagnosis are reviewed and basic experimental information (n e and T e ) is summarized. Simple models of the SOL are summarized, and the most important effects of the boundary plasma - the influence on the fuel particles, impurities, and energy - on tokamak operation dealt with. Methods of manipulating and controlling edge conditions in tokamaks and the experimental data base for the edge during auxiliary heating of tokamaks are reviewed. Fluctuations and asymmetries at the edge are also covered. (9 tabs., 134 figs., 879 refs.)

  3. Computational studies of tokamak plasmas

    International Nuclear Information System (INIS)

    Takizuka, Tomonori; Tsunematsu, Toshihide; Tokuda, Shinji

    1981-02-01

    Computational studies of tokamak plasmas are extensively advanced. Many computational codes have been developed by using several kinds of models, i.e., the finite element formulation of MHD equations, the time dependent multidimensional fluid model, and the particle model with the Monte-Carlo method. These codes are applied to the analyses of the equilibrium of an axisymmetric toroidal plasma (SELENE), the time evolution of the high-beta tokamak plasma (APOLLO), the low-n MHD stability (ERATO-J) and high-n ballooning mode stability (BOREAS) in the INTOR tokamak, the nonlinear MHD stability, such as the positional instability (AEOLUS-P), resistive internal mode (AEOLUS-I) etc., and the divertor functions. (author)

  4. MHD stability limits in the TCV Tokamak

    International Nuclear Information System (INIS)

    Reimerdes, H.

    2001-07-01

    of this limit with elongation is also in qualitative agreement with ideal MHD theory. Edge localised modes (ELMs), occurring in TCV Ohmic high-confinement mode discharges, were observed to be preceded by coherent magnetic oscillations. The detected poloidal and toroidal mode structures are consistent with a resonant flux surface close to the plasma edge. Unlike conventional MHD modes, these precursors start at a random toroidal location and then grow in amplitude and toroidal extent until they encompass the whole toroidal circumference. Thus, the asymmetry causing and maintaining the toroidal localisation of the ELM precursor must be intrinsic to the plasma. Soft X-ray measurements show that the localised precursor always coincides with a central m = 1 mode, which can usually be associated with the sawtooth pre- or postcursor mode. A comparison of the phases indicates a correlation with the maximum of the central mode preceding the toroidal location of the ELM precursor and, therefore, a hitherto unobserved coupling between central modes and ELMs. Highly elongated plasmas promise several advantages, among them higher current and beta limits. During TCV experiments dedicated to an increasing of the plasma elongation, a new disruptive current limit, at values well below the conventional current limit corresponding to q a > 2, was encountered for κ > 2.3. This limit, which is preceded by a kink-type mode, is found to be consistent with ideal MHD stability calculations. The TCV observations, therefore, provide the first experimental confirmation of a deviation of the linear Troyon-scaling of the ideal beta limit with normalised current at high elongation, which was predicted over 10 years ago. Neoclassical tearing modes (NTMs), which have been observed to limit the achievable beta in a number of tokamaks, arise from a helical perturbation of the bootstrap current caused by an existing seed island. Neoclassical m/n = 2/1 tearing modes have been identified in TCV

  5. MHD stability limits in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-07-01

    observed decrease of this limit with elongation is also in qualitative agreement with ideal MHD theory. Edge localised modes (ELMs), occurring in TCV Ohmic high-confinement mode discharges, were observed to be preceded by coherent magnetic oscillations. The detected poloidal and toroidal mode structures are consistent with a resonant flux surface close to the plasma edge. Unlike conventional MHD modes, these precursors start at a random toroidal location and then grow in amplitude and toroidal extent until they encompass the whole toroidal circumference. Thus, the asymmetry causing and maintaining the toroidal localisation of the ELM precursor must be intrinsic to the plasma. Soft X-ray measurements show that the localised precursor always coincides with a central m = 1 mode, which can usually be associated with the sawtooth pre- or postcursor mode. A comparison of the phases indicates a correlation with the maximum of the central mode preceding the toroidal location of the ELM precursor and, therefore, a hitherto unobserved coupling between central modes and ELMs. Highly elongated plasmas promise several advantages, among them higher current and beta limits. During TCV experiments dedicated to an increasing of the plasma elongation, a new disruptive current limit, at values well below the conventional current limit corresponding to q{sub a} > 2, was encountered for {kappa} > 2.3. This limit, which is preceded by a kink-type mode, is found to be consistent with ideal MHD stability calculations. The TCV observations, therefore, provide the first experimental confirmation of a deviation of the linear Troyon-scaling of the ideal beta limit with normalised current at high elongation, which was predicted over 10 years ago. Neoclassical tearing modes (NTMs), which have been observed to limit the achievable beta in a number of tokamaks, arise from a helical perturbation of the bootstrap current caused by an existing seed island. Neoclassical m/n = 2/1 tearing modes have been

  6. HIGH PERFORMANCE ADVANCED TOKAMAK REGIMES FOR NEXT-STEP EXPERIMENTS

    International Nuclear Information System (INIS)

    GREENFIELD, C.M.; MURAKAMI, M.; FERRON, J.R.; WADE, M.R.; LUCE, T.C.; PETTY, C.C.; MENARD, J.E; PETRIE, T.W.; ALLEN, S.L.; BURRELL, K.H.; CASPER, T.A; DeBOO, J.C.; DOYLE, E.J.; GAROFALO, A.M; GORELOV, Y.A; GROEBNER, R.J.; HOBIRK, J.; HYATT, A.W; JAYAKUMAR, R.J; KESSEL, C.E; LA HAYE, R.J; JACKSON, G.L; LOHR, J.; MAKOWSKI, M.A.; PINSKER, R.I.; POLITZER, P.A.; PRATER, R.; STRAIT, E.J.; TAYLOR, T.S; WEST, W.P.

    2003-01-01

    OAK-B135 Advanced Tokamak (AT) research in DIII-D seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic (MHD) stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with non-axisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half-radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding (ELMing) H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results of recent experiment and simulation efforts

  7. Summary discussion: An integrated advanced tokamak reactor

    International Nuclear Information System (INIS)

    Sauthoff, N.R.

    1994-01-01

    The tokamak concept improvement workshop addressed a wide range of issues involved in the development of a more attractive tokamak. The agenda for the workshop progressed from a general discussion of the long-range energy context (with the objective being the identification of a set of criteria and ''figures of merit'' for measuring the attractiveness of a tokamak concept) to particular opportunities for the improvement of the tokamak concept. The discussions concluded with a compilation of research program elements leading to an improved tokamak concept

  8. STARFIRE: a commercial tokamak reactor

    International Nuclear Information System (INIS)

    1979-12-01

    The purpose of this document is to provide an interim status report on the STARFIRE project for the period of May to September 1979. The basic objective of the STARFIRE project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor

  9. LHCD experiments on tokamak CASTOR

    International Nuclear Information System (INIS)

    Zacek, F.; Badalec, J.; Jakubka, J.; Kryska, L.; Preinhaelter, J.; Stoeckel, J.; Valovic, M.; Nanobashvili, S.; Weixelbaum, L.; Wenzel, U.; Spineanu, F.; Vlad, M.

    1990-10-01

    A short survey is given of the experimental activities at the small Prague tokamak CASTOR. They concern primarily the LH current drive using multijunction waveguide grills as launching antennae. During two last years the, efforts were focused on a study of the electrostatic and magnetic fluctuations under conditions of combined inductive/LHCD regimes and of the relation of the level of these fluctuations to the anomalous particles transport in tokamak CASTOR. Results of the study are discussed in some detail. (author). 24 figs., 51 refs

  10. arXiv Bootstrapping the QCD soft anomalous dimension

    CERN Document Server

    Almelid, Øyvind; Gardi, Einan; McLeod, Andrew; White, Chris D.

    2017-09-18

    The soft anomalous dimension governs the infrared singularities of scattering amplitudes to all orders in perturbative quantum field theory, and is a crucial ingredient in both formal and phenomenological applications of non-abelian gauge theories. It has recently been computed at three-loop order for massless partons by explicit evaluation of all relevant Feynman diagrams. In this paper, we show how the same result can be obtained, up to an overall numerical factor, using a bootstrap procedure. We first give a geometrical argument for the fact that the result can be expressed in terms of single-valued harmonic polylogarithms. We then use symmetry considerations as well as known properties of scattering amplitudes in collinear and high-energy (Regge) limits to constrain an ansatz of basis functions. This is a highly non-trivial cross-check of the result, and our methods pave the way for greatly simplified higher-order calculations.

  11. Integral equations of hadronic correlation functions a functional- bootstrap approach

    CERN Document Server

    Manesis, E K

    1974-01-01

    A reasonable 'microscopic' foundation of the Feynman hadron-liquid analogy is offered, based on a class of models for hadron production. In an external field formalism, the equivalence (complementarity) of the exclusive and inclusive descriptions of hadronic reactions is specifically expressed in a functional-bootstrap form, and integral equations between inclusive and exclusive correlation functions are derived. Using the latest CERN-ISR data on the two-pion inclusive correlation function, and assuming rapidity translational invariance for the exclusive one, the simplest integral equation is solved in the 'central region' and an exclusive correlation length in rapidity predicted. An explanation is also offered for the unexpected similarity observed between pi /sup +/ pi /sup -/ and pi /sup -/ pi /sup -/ inclusive correlations. (31 refs).

  12. Boundary and interface CFTs from the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Gliozzi, Ferdinando [Dipartimento di Fisica, Università di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Liendo, Pedro [IMIP, Humboldt-Universität zu Berlin, IRIS Adelershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Meineri, Marco [Scuola Normale Superiore,Piazza dei Cavalieri 7 I-56126 Pisa (Italy); Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Largo B. Pontecorvo, 3, 56127 Pisa (Italy); Rago, Antonio [Centre for Mathematical Sciences, Plymouth University,Drake Circus, Plymouth, PL4 8AA (United Kingdom)

    2015-05-07

    We explore some consequences of the crossing symmetry for defect conformal field theories, focusing on codimension one defects like flat boundaries or interfaces. We study surface transitions of the 3d Ising and other O(N) models through numerical solutions to the crossing equations with the method of determinants. In the extraordinary transition, where the low-lying spectrum of the surface operators is known, we use the bootstrap equations to obtain information on the bulk spectrum of the theory. In the ordinary transition the knowledge of the low-lying bulk spectrum allows to calculate the scale dimension of the relevant surface operator, which compares well with known results of two-loop calculations in 3d. Estimates of various OPE coefficients are also obtained. We also analyze in 4-ϵ dimensions the renormalization group interface between the O(N) model and the free theory and check numerically the results in 3d.

  13. Performance of Bootstrap MCEWMA: Study case of Sukuk Musyarakah data

    Science.gov (United States)

    Safiih, L. Muhamad; Hila, Z. Nurul

    2014-07-01

    Sukuk Musyarakah is one of several instruments of Islamic bond investment in Malaysia, where the form of this sukuk is actually based on restructuring the conventional bond to become a Syariah compliant bond. The Syariah compliant is based on prohibition of any influence of usury, benefit or fixed return. Despite of prohibition, daily returns of sukuk are non-fixed return and in statistic, the data of sukuk returns are said to be a time series data which is dependent and autocorrelation distributed. This kind of data is a crucial problem whether in statistical and financing field. Returns of sukuk can be statistically viewed by its volatility, whether it has high volatility that describing the dramatically change of price and categorized it as risky bond or else. However, this crucial problem doesn't get serious attention among researcher compared to conventional bond. In this study, MCEWMA chart in Statistical Process Control (SPC) is mainly used to monitor autocorrelated data and its application on daily returns of securities investment data has gained widespread attention among statistician. However, this chart has always been influence by inaccurate estimation, whether on base model or its limit, due to produce large error and high of probability of signalling out-of-control process for false alarm study. To overcome this problem, a bootstrap approach used in this study, by hybridise it on MCEWMA base model to construct a new chart, i.e. Bootstrap MCEWMA (BMCEWMA) chart. The hybrid model, BMCEWMA, will be applied to daily returns of sukuk Musyarakah for Rantau Abang Capital Bhd. The performance of BMCEWMA base model showed that its more effective compare to real model, MCEWMA based on smaller error estimation, shorter the confidence interval and smaller false alarm. In other word, hybrid chart reduce the variability which shown by smaller error and false alarm. It concludes that the application of BMCEWMA is better than MCEWMA.

  14. The tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.; Rose, R.P.

    1981-01-01

    At a time when the potential benefits of various energy options are being seriously evaluated in many countries through-out the world, it is both timely and important to evaluate the practical application of fusion reactors for their economical production of nuclear fissile fuels from fertile fuels. The fusion hybrid reactor represents a concept that could assure the availability of adequate fuel supplies for a proven nuclear technology and have the potential of being an electrical energy source as opposed to an energy consumer as are the present fuel enrichment processes. Westinghouse Fusion Power Systems Department, under Contract No. EG-77-C-02-4544 with the Department of Energy, Office of Fusion Energy, has developed a preliminary conceptual design for an early twenty-first century fusion hybrid reactor called the commercial Tokamak Hybrid Reactor (CTHR). This design was developed as a first generation commercial plant producing fissile fuel to support a significant number of client Light Water Reactor (LWR) Plants. To the depth this study has been performed, no insurmountable technical problems have been identified. The study has provided a basis for reasonable cost estimates of the hybrid plants as well as the hybrid/LWR system busbar electricity costs. This energy system can be optimized to have a net cost of busbar electricity that is equivalent to the conventional LWR plant, yet is not dependent on uranium ore prices or standard enrichment costs, since the fusion hybrid can be fueled by numerous fertile fuel resources. A nearer-term concept is also defined using a beam driven fusion driver in lieu of the longer term ignited operating mode. (orig.)

  15. High-β steady-state advanced tokamak regimes for ITER and FIRE

    International Nuclear Information System (INIS)

    Meade, D.M.; Sauthoff, N.R.; Kessel, C.E.; Budny, R.V.; Gorelenkov, N.; Jardin, S.C.; Schmidt, J.A.; Navratil, G.A.; Bialek, J.; Ulrickson, M.A.; Rognlein, T.; Mandrekas, J.

    2005-01-01

    An attractive tokamak-based fusion power plant will require the development of high-β steady-state advanced tokamak regimes to produce a high-gain burning plasma with a large fraction of self-driven current and high fusion-power density. Both ITER and FIRE are being designed with the objective to address these issues by exploring and understanding burning plasma physics both in the conventional H-mode regime, and in advanced tokamak regimes with β N ∼ 3 - 4, and f bs ∼50-80%. ITER has employed conservative scenarios, as appropriate for its nuclear technology mission, while FIRE has employed more aggressive assumptions aimed at exploring the scenarios envisioned in the ARIES power-plant studies. The main characteristics of the advanced scenarios presently under study for ITER and FIRE are compared with advanced tokamak regimes envisioned for the European Power Plant Conceptual Study (PPCS-C), the US ARIES-RS Power Plant Study and the Japanese Advanced Steady-State Tokamak Reactor (ASSTR). The goal of the present work is to develop advanced tokamak scenarios that would fully exploit the capability of ITER and FIRE. This paper will summarize the status of the work and indicate critical areas where further R and D is needed. (author)

  16. Tokamak Plasmas : Mirnov coil data analysis for tokamak ADITYA

    Indian Academy of Sciences (India)

    The spatial and temporal structures of magnetic signal in the tokamak ADITYA is analysed using recently developed singular value decomposition (SVD) technique. The analysis technique is first tested with simulated data and then applied to the ADITYA Mirnov coil data to determine the structure of current peturbation as ...

  17. The ARIES-ST study: Assessment of the spherical tokamak concept as fusion power plants

    International Nuclear Information System (INIS)

    Najmabadi, F.; Tillack, M.; Miller, R.; Mau, T.K.; Jardin, S.; Stambaugh, R.; Steiner, D.; Waganer, L.

    2001-01-01

    Recent experimental achievements and theoretical studies have generated substantial interest in the spherical tokamak concept. The ARIES-ST study was undertaken as a national U.S. effort to investigate the potential of the spherical tokamak concept as a fusion power plant and as a vehicle for fusion development. The 1000-MWe ARIES-ST power plant has an aspect ratio of 1.6, a major radius of 3.2 m, a plasma elongation (at 95% flux surface) of 3.4 and triangularity of 0.64. This configuration attains a β of 54% (which is 90% of the maximum theoretical β). While the plasma current is 31 MA, the almost perfect alignment of bootstrap and equilibrium current density profiles results in a current-drive power of only 31 MW. The on-axis toroidal field is 2.1 T and the peak field at the TF coil is 7.6 T, which leads to 288 MW of Joule losses in the normal-conducting TF system. The ARIES-ST study has highlighted many areas where tradeoffs among physics and engineering systems are critical in determining the optimum regime of operation for spherical tokamaks. Many critical issues also have been identified which must be resolved in R and D programs. (author)

  18. Simulation of MHD instability effects on burning plasma transport with ITB in tokamak and helical reactors

    International Nuclear Information System (INIS)

    Yamazaki, K.; Yamada, I.; Taniguchi, S.; Oishi, T.

    2009-01-01

    Full text: The high performance plasma behavior is required to realize economic and environmental-friendly fusion reactors compatible with conventional power plant systems. To improve plasma confinement, the formation of internal transport barrier (ITB) is anticipated, and its behavior is analyzed by the simulation code TOTAL (Toroidal Transport Linkage Analysis). This TOTAL code comprises a 2- or 3-dimensional equilibrium and 1-dimensional predictive transport code for both tokamak and helical systems. In the tokamak code TOTAL-T, the external current drive, bootstrap current, sawtooth oscillation, ballooning mode and neoclassical tearing mode (NTM) analyses are included. The steady-state burning plasma operation is achieved by the feedback control of pellet injection fuelling and external heating power control. The impurity dynamics of iron and tungsten is also included in this code. The NTM effects are evaluated using the modified Rutherford Model with the stabilization of the ECCD current drive. The excitation of m=2/n=1 NTM leads to the 20 % reduction in the central temperature in ITER-like reactors. Recently, the external non-resonant helical field application is analyzed and its stabilization properties are evaluated. The pellet injection effects on ITB formation is also clarified in tokamak and helical plasmas. Relationship between sawtooth oscillation and impurity ejection is recently simulated in comparison with experimental data. In this conference, we will show above-stated new results on MHD instability effects on burning plasma transport. (author)

  19. Internal validation of risk models in clustered data: a comparison of bootstrap schemes

    NARCIS (Netherlands)

    Bouwmeester, W.; Moons, K.G.M.; Kappen, T.H.; van Klei, W.A.; Twisk, J.W.R.; Eijkemans, M.J.C.; Vergouwe, Y.

    2013-01-01

    Internal validity of a risk model can be studied efficiently with bootstrapping to assess possible optimism in model performance. Assumptions of the regular bootstrap are violated when the development data are clustered. We compared alternative resampling schemes in clustered data for the estimation

  20. EBW-Bootstrap Current Synergy in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Harvey, R.W.; Taylor, G.

    2005-01-01

    Current driven by electron Bernstein waves (EBW) and by the electron bootstrap effect are calculated separately and concurrently with a kinetic code, to determine the degree of synergy between them. A target β = 40% NSTX plasma is examined. A simple bootstrap model in the CQL3D Fokker-Planck code is used in these studies: the transiting electron distributions are connected in velocity-space at the trapped-passing boundary to trapped-electron distributions which are displaced radially by a half-banana width outwards/inwards for the co-/counter-passing regions. This model agrees well with standard bootstrap current calculations, over the outer 60% of the plasma radius. Relatively small synergy net bootstrap current is obtained for EBW power up to 4 MW. Locally, bootstrap current density increases in proportion to increased plasma pressure, and this effect can significantly affect the radial profile of driven current

  1. Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    to a gneral class of estimators of integrated covolatility. We then show the first-order asymptotic validity of this method in the multivariate context with a potential presence of jumps, dependent microsturcture noise, irregularly spaced and non-synchronous data. Due to our focus on non...... covariance estimator. As an application of our results, we also consider the bootstrap for regression coefficients. We show that the wild blocks of bootstrap, appropriately centered, is able to mimic both the dependence and heterogeneity of the scores, thus justifying the construction of bootstrap percentile...... intervals as well as variance estimates in this context. This contrasts with the traditional pairs bootstrap which is not able to mimic the score heterogeneity even in the simple case where no microsturcture noise is present. Our Monte Carlo simulations show that the wild blocks of blocks bootstrap improves...

  2. A Local Stable Bootstrap for Power Variations of Pure-Jump Semimartingales and Activity Index Estimation

    DEFF Research Database (Denmark)

    Hounyo, Ulrich; Varneskov, Rasmus T.

    We provide a new resampling procedure - the local stable bootstrap - that is able to mimic the dependence properties of realized power variations for pure-jump semimartingales observed at different frequencies. This allows us to propose a bootstrap estimator and inference procedure for the activity...... index of the underlying process, β, as well as a bootstrap test for whether it obeys a jump-diffusion or a pure-jump process, that is, of the null hypothesis H₀: β=2 against the alternative H₁: βbootstrap power variations, activity index...... estimator, and diffusion test for H0. Moreover, the finite sample size and power properties of the proposed diffusion test are compared to those of benchmark tests using Monte Carlo simulations. Unlike existing procedures, our bootstrap test is correctly sized in general settings. Finally, we illustrate use...

  3. Bootstrapping realized volatility and realized beta under a local Gaussianity assumption

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    The main contribution of this paper is to propose a new bootstrap method for statistics based on high frequency returns. The new method exploits the local Gaussianity and the local constancy of volatility of high frequency returns, two assumptions that can simplify inference in the high frequency...... context, as recently explained by Mykland and Zhang (2009). Our main contributions are as follows. First, we show that the local Gaussian bootstrap is firstorder consistent when used to estimate the distributions of realized volatility and ealized betas. Second, we show that the local Gaussian bootstrap...... matches accurately the first four cumulants of realized volatility, implying that this method provides third-order refinements. This is in contrast with the wild bootstrap of Gonçalves and Meddahi (2009), which is only second-order correct. Third, we show that the local Gaussian bootstrap is able...

  4. Neoclassical current effects in neutral-beam-heated tokamak discharges

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1981-01-01

    There is a long-standing prediction from neoclassical theory that strong contributions to the toroidal current should be driven by friction between trapped and passing particles when βsub(pol) exceeds root (R/a) in a tokamak. A number of neutral-beam heating experiments can now produce such parameters, and it is of interest to calculate the behaviour which should occur in this regime to determine the feasibility of using such a 'bootstrap' current as a steady-state tokamak current source. It is found that the neoclassical current should be large enough to reverse the external loop voltage for typical experimental parameters (ISX-B, in particular) in cases where the total current is fixed and to produce a detectable excess of total current above the pre-programmed (demand) value in cases where the loop voltage is regulated. Other manifestations of such a current should be either: a sharp rise in the central q-value (producing a cessation of internal m=1 and m=2 MHD activity), with an enhancement by two orders of magnitude of ion thermal conductivity (due to the formation of a hollow current density profile and a consequent drop in local values of the poloidal magnetic field in the central plasma region), or an enhanced tendency for disruption (arising from magnetic reconnection in hollow-profile equilibria). Since these gross manifestations are absent in a wide range of experiments on the Impurity Study Experiment (ISX-B), as reported earlier, the conclusion is that the neoclassical current, if present, can have a value no larger than 25% of its theoretically calculated value. Since the neoclassical particle (Ware) pinch is strongly related to the neoclassical current in the theory (Onsager reciprocity), the existence of the particle pinch is thus called into question. (author)

  5. Helical temperature perturbations associated with tearing modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1994-06-01

    An investigation is made into the electron temperature perturbations associated with tearing modes in tokamak plasmas, with a view to determining the mode structure using Electron Cyclotron Emission (ECE) data. It is found that there is a critical magnetic island width below which the conventional picture where the temperature is flattened inside the separatrix is invalid. This effect comes about because of the stagnation of magnetic field lines in the vicinity of the rational surface and the finite parallel thermal conductivity of the plasma. For islands whose widths lie below the critical value there is no flattening of the electron temperature inside the separatrix. Such islands have quite different ECE signatures to conventional magnetic islands. In fact the two island types could, in principle, be differentiated experimentally. It should also be possible to map out the outer ideal magnetohydrodynamical eigenfunctions using ECE data. Islands whose widths are much less than the critical value are not destabilized by the perturbed bootstrap current, unlike conventional magnetic islands. This effect is found to have a number of very interesting consequences and may, indeed, provide an explanation for some puzzling experimental results regarding error field induced magnetic reconnection. All islands whose widths are much greater than the critical width possess a boundary layer on the separatrix which enables heat to be transported from one side of the island to the other via the X-point region. The structure of this boundary layer is described in some detail. Finally, the critical island width is found to be fairly substantial in conventional tokamak plasmas, provided that the long mean free path nature of parallel heat transport and the anomalous nature of perpendicular heat transport are taken into account in the calculation

  6. Energy losses on tokamak startup

    International Nuclear Information System (INIS)

    Murray, J.G.; Rothe, K.E.; Bronner, G.

    1983-01-01

    During the startup of a tokamak reactor using poloidal field (PF) coils to induce plasma currents, the conducting structures carry induced currents. The associated energy losses in the circuits must be provided by the startup coils and the PF system. This paper provides quantitative and comparitive values for the energies required as a function of the thickness or resistivity of the torus shells

  7. Prospects for Tokamak Fusion Reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.

    1995-01-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant

  8. Integral torque balance in tokamaks

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2011-01-01

    The study is aimed at clarifying the balance between the sinks and sources in the problem of intrinsic plasma rotation in tokamaks reviewed recently by deGrassie (2009 Plasma Phys. Control. Fusion 51 124047). The integral torque on the toroidal plasma is calculated analytically using the most general magnetohydrodynamic (MHD) plasma model taking account of plasma anisotropy and viscosity. The contributions due to several mechanisms are separated and compared. It is shown that some of them, though, possibly, important in establishing the rotation velocity profile in the plasma, may give small input into the integral torque, but an important contribution can come from the magnetic field breaking the axial symmetry of the configuration. In tokamaks, this can be the error field, the toroidal field ripple or the magnetic perturbation created by the correction coils in the dedicated experiments. The estimates for the error-field-induced electromagnetic torque show that the amplitude of this torque is comparable to the typical values of torques introduced into the plasma by neutral beam injection. The obtained relations allow us to quantify the effect that can be produced by the existing correction coils in tokamaks on the plasma rotation, which can be used in experiments to study the origin and physics of intrinsic rotation in tokamaks. Several problems are proposed for theoretical studies and experimental tests.

  9. ECRH Studies on Tokamak Plasmas.

    Science.gov (United States)

    1980-10-10

    r.I*cru.Dtrtibution uUnliited 300 Unicorn Pork Drive Woburn, Massachusetts 04801 ECRH STUDIES ON TOKAMAK PLASMAS JAYCOR Project No. 6183 Final Report...up techniques now in use or being suggested, include growing the plasma from a small minor radius or applying a negative voltage spike immediately

  10. Tokamak impurity-control techniques

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    1980-01-01

    A brief review is given of the impurity-control functions in tokamaks, their relative merits and disadvantages and some prominent edge-interaction-control techniques, and there is a discussion of a new proposal, the particle scraper, and its potential advantages. (author)

  11. An enhanced tokamak startup model

    Science.gov (United States)

    Goswami, Rajiv; Artaud, Jean-François

    2017-01-01

    The startup of tokamaks has been examined in the past in varying degree of detail. This phase typically involves the burnthrough of impurities and the subsequent rampup of plasma current. A zero-dimensional (0D) model is most widely used where the time evolution of volume averaged quantities determines the detailed balance between the input and loss of particle and power. But, being a 0D setup, these studies do not take into consideration the co-evolution of plasma size and shape, and instead assume an unchanging minor and major radius. However, it is known that the plasma position and its minor radius can change appreciably as the plasma evolves in time to fill in the entire available volume. In this paper, an enhanced model for the tokamak startup is introduced, which for the first time takes into account the evolution of plasma geometry during this brief but highly dynamic period by including realistic one-dimensional (1D) effects within the broad 0D framework. In addition the effect of runaway electrons (REs) has also been incorporated. The paper demonstrates that the inclusion of plasma cross section evolution in conjunction with REs plays an important role in the formation and development of tokamak startup. The model is benchmarked against experimental results from ADITYA tokamak.

  12. Multimegawatt neutral beams for tokamaks

    International Nuclear Information System (INIS)

    Kunkel, W.B.

    1979-03-01

    Most of the large magnetic confinement experiments today and in the near future use high-power neutral-beam injectors to heat the plasma. This review briefly describes this remarkable technique and summarizes recent results as well as near term expectations. Progress has been so encouraging that it seems probable that tokamaks will achieve scientific breakeven before 1990

  13. Joint research using small tokamaks

    Czech Academy of Sciences Publication Activity Database

    Gryaznevich, M.P.; Del Bosco, E.; Malaquias, A.; Mank, G.; Van Oost, G.; He, Yexi; Hegazy, H.; Hirose, A.; Hron, Martin; Kuteev, B.; Ludwig, G.O.; Nascimento, I.C.; Silva, C.; Vorobyev, G.M.

    2005-01-01

    Roč. 45, č. 10 (2005), S245-S254 ISSN 0029-5515. [Fusion Energy Conference contributions. Vilamoura, 1.11.2004-6.11.2004] Institutional research plan: CEZ:AV0Z20430508 Keywords : small tokamaks * thermonuclear fusion Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.418, year: 2005

  14. FRACTIONAL BANKING

    OpenAIRE

    Maria Klimikova

    2010-01-01

    Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.

  15. Fractional thermoelasticity

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research.  The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators.  This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...

  16. Advanced statistics for tokamak transport colinearity and tokamak to tokamak variation

    International Nuclear Information System (INIS)

    Riedel, K.S.

    1989-01-01

    This paper is an expository introduction to advanced statistics and scaling laws and their application to tokamak devices. Topics of discussion are as follows: implicit assumptions in the standard analysis; advanced regression techniques; specialized tools in statistics and their applications in fusion physics; and improved datasets for transport studies

  17. Total hydrogen and oxygen fluxes in the edge plasma of tokamaks

    International Nuclear Information System (INIS)

    Kastelewicz, H.

    1988-01-01

    A relativistic model of the edge plasma of tokamaks is described considering the primary neutral fluxes emitted from limiter and wall. The primary neutrals, which determine essentially the particle flux balance in the plasma edge, the scrape-off layer plasma and the particles adsorbed at limiter and wall are treated as separate subsystems which are iteratively coupled through the mutual particle sinks and sources. The model is used for the calculation of total hydrogen and oxygen fluxes in edge plasma of tokamaks. The results for different fractions of and contributions to the total fluxes are illustrated and discussed

  18. Neutral pumping rates for a next step tokamak ignition device

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.; Heifetz, D.

    1985-01-01

    Neutral pumping rates are calculated for pump-limiter and divertor options of a next step tokamak ignition device using a method that accounts for the coupled effects of neutral transport and plasma transport. For both pump limiters and divertors the plasma flow into the channel surrounding the neutralizer plate is greatly reduced by the neutral recycling. The fraction of this flow that is pumped can be large (>50%) but in general is dependent on the particular geometry and plasma conditions. It is estimated that pumping speeds greater than or approximately 10 5 L/s are adequate for the exhaust requirements in the pump-limiter and the divertor cases

  19. Improved Correction of Misclassification Bias With Bootstrap Imputation.

    Science.gov (United States)

    van Walraven, Carl

    2018-07-01

    Diagnostic codes used in administrative database research can create bias due to misclassification. Quantitative bias analysis (QBA) can correct for this bias, requires only code sensitivity and specificity, but may return invalid results. Bootstrap imputation (BI) can also address misclassification bias but traditionally requires multivariate models to accurately estimate disease probability. This study compared misclassification bias correction using QBA and BI. Serum creatinine measures were used to determine severe renal failure status in 100,000 hospitalized patients. Prevalence of severe renal failure in 86 patient strata and its association with 43 covariates was determined and compared with results in which renal failure status was determined using diagnostic codes (sensitivity 71.3%, specificity 96.2%). Differences in results (misclassification bias) were then corrected with QBA or BI (using progressively more complex methods to estimate disease probability). In total, 7.4% of patients had severe renal failure. Imputing disease status with diagnostic codes exaggerated prevalence estimates [median relative change (range), 16.6% (0.8%-74.5%)] and its association with covariates [median (range) exponentiated absolute parameter estimate difference, 1.16 (1.01-2.04)]. QBA produced invalid results 9.3% of the time and increased bias in estimates of both disease prevalence and covariate associations. BI decreased misclassification bias with increasingly accurate disease probability estimates. QBA can produce invalid results and increase misclassification bias. BI avoids invalid results and can importantly decrease misclassification bias when accurate disease probability estimates are used.

  20. A voltage biased superconducting quantum interference device bootstrap circuit

    International Nuclear Information System (INIS)

    Xie Xiaoming; Wang Huiwu; Wang Yongliang; Dong Hui; Jiang Mianheng; Zhang Yi; Krause, Hans-Joachim; Braginski, Alex I; Offenhaeusser, Andreas; Mueck, Michael

    2010-01-01

    We present a dc superconducting quantum interference device (SQUID) readout circuit operating in the voltage bias mode and called a SQUID bootstrap circuit (SBC). The SBC is an alternative implementation of two existing methods for suppression of room-temperature amplifier noise: additional voltage feedback and current feedback. Two circuit branches are connected in parallel. In the dc SQUID branch, an inductively coupled coil connected in series provides the bias current feedback for enhancing the flux-to-current coefficient. The circuit branch parallel to the dc SQUID branch contains an inductively coupled voltage feedback coil with a shunt resistor in series for suppressing the preamplifier noise current by increasing the dynamic resistance. We show that the SBC effectively reduces the preamplifier noise to below the SQUID intrinsic noise. For a helium-cooled planar SQUID magnetometer with a SQUID inductance of 350 pH, a flux noise of about 3 μΦ 0 Hz -1/2 and a magnetic field resolution of less than 3 fT Hz -1/2 were obtained. The SBC leads to a convenient direct readout electronics for a dc SQUID with a wider adjustment tolerance than other feedback schemes.

  1. Smoothed Bootstrap und seine Anwendung in parametrischen Testverfahren

    Directory of Open Access Journals (Sweden)

    Handschuh, Dmitri

    2015-03-01

    Full Text Available In empirical research, the distribution of observations is usually unknown. This creates a problem if parametric methods are to be employed. The functionality of parametric methods relies on strong parametric assumptions. If these are violated the result of using classical parametric methods is questionable. Therefore, modifications of the parametric methods are required, if the appropriateness of their assumptions is in doubt. In this article, a modification of the smoothed bootstrap is presented (using the linear interpolation to approximate the distribution law suggested by the data. The application of this modification to statistical parametric methods allows taking into account deviations of the observed data distributions from the classical distribution assumptions without changing to other hypotheses, which often is implicit in using nonparametric methods. The approach is based on Monte Carlo method and is presented using one-way ANOVA as an example. The original and the modified statistical methods lead to identical outcomes when the assumptions of the original method are satisfied. For strong violations of the distributional assumptions, the modified version of the method is generally preferable. All procedures have been implemented in SAS. Test characteristics (type 1 error, the operating characteristic curve of the modified ANOVA are calculated.

  2. N=4 superconformal bootstrap of the K3 CFT

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ying-Hsuan; Shao, Shu-Heng [Jefferson Physical Laboratory, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ 08540 (United States); Wang, Yifan [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, MA 02139 (United States); Yin, Xi [Jefferson Physical Laboratory, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States)

    2017-05-23

    We study two-dimensional (4,4) superconformal field theories of central charge c=6, corresponding to nonlinear sigma models on K3 surfaces, using the superconformal bootstrap. This is made possible through a surprising relation between the BPS N=4 superconformal blocks with c=6 and bosonic Virasoro conformal blocks with c=28, and an exact result on the moduli dependence of a certain integrated BPS 4-point function. Nontrivial bounds on the non-BPS spectrum in the K3 CFT are obtained as functions of the CFT moduli, that interpolate between the free orbifold points and singular CFT points. We observe directly from the CFT perspective the signature of a continuous spectrum above a gap at the singular moduli, and find numerically an upper bound on this gap that is saturated by the A{sub 1}N=4 cigar CFT. We also derive an analytic upper bound on the first nonzero eigenvalue of the scalar Laplacian on K3 in the large volume regime, that depends on the K3 moduli data. As two byproducts, we find an exact equivalence between a class of BPS N=2 superconformal blocks and Virasoro conformal blocks in two dimensions, and an upper bound on the four-point functions of operators of sufficiently low scaling dimension in three and four dimensional CFTs.

  3. N=4 Superconformal Bootstrap of the K3 CFT

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    We study two-dimensional (4,4) superconformal field theories of central charge c=6, corresponding to nonlinear σ models on K3 surfaces, using the superconformal bootstrap. This is made possible through a surprising relation between the BPS N=4 superconformal blocks with c=6 and bosonic Virasoro conformal blocks with c=28, and an exact result on the moduli dependence of a certain integrated BPS 4-point function. Nontrivial bounds on the non-BPS spectrum in the K3 CFT are obtained as functions of the CFT moduli, that interpolate between the free orbifold points and singular CFT points. We observe directly from the CFT perspective the signature of a continuous spectrum above a gap at the singular moduli, and find numerically an upper bound on this gap that is saturated by the A1 N=4 cigar CFT. We also derive an analytic upper bound on the first nonzero eigenvalue of the scalar Laplacian on K3 in the large volume regime, that depends on the K3 moduli data. As two byproducts, we find an exact equivalence...

  4. Bootstrap-based Support of HGT Inferred by Maximum Parsimony

    Directory of Open Access Journals (Sweden)

    Nakhleh Luay

    2010-05-01

    Full Text Available Abstract Background Maximum parsimony is one of the most commonly used criteria for reconstructing phylogenetic trees. Recently, Nakhleh and co-workers extended this criterion to enable reconstruction of phylogenetic networks, and demonstrated its application to detecting reticulate evolutionary relationships. However, one of the major problems with this extension has been that it favors more complex evolutionary relationships over simpler ones, thus having the potential for overestimating the amount of reticulation in the data. An ad hoc solution to this problem that has been used entails inspecting the improvement in the parsimony length as more reticulation events are added to the model, and stopping when the improvement is below a certain threshold. Results In this paper, we address this problem in a more systematic way, by proposing a nonparametric bootstrap-based measure of support of inferred reticulation events, and using it to determine the number of those events, as well as their placements. A number of samples is generated from the given sequence alignment, and reticulation events are inferred based on each sample. Finally, the support of each reticulation event is quantified based on the inferences made over all samples. Conclusions We have implemented our method in the NEPAL software tool (available publicly at http://bioinfo.cs.rice.edu/, and studied its performance on both biological and simulated data sets. While our studies show very promising results, they also highlight issues that are inherently challenging when applying the maximum parsimony criterion to detect reticulate evolution.

  5. Bootstrap-based support of HGT inferred by maximum parsimony.

    Science.gov (United States)

    Park, Hyun Jung; Jin, Guohua; Nakhleh, Luay

    2010-05-05

    Maximum parsimony is one of the most commonly used criteria for reconstructing phylogenetic trees. Recently, Nakhleh and co-workers extended this criterion to enable reconstruction of phylogenetic networks, and demonstrated its application to detecting reticulate evolutionary relationships. However, one of the major problems with this extension has been that it favors more complex evolutionary relationships over simpler ones, thus having the potential for overestimating the amount of reticulation in the data. An ad hoc solution to this problem that has been used entails inspecting the improvement in the parsimony length as more reticulation events are added to the model, and stopping when the improvement is below a certain threshold. In this paper, we address this problem in a more systematic way, by proposing a nonparametric bootstrap-based measure of support of inferred reticulation events, and using it to determine the number of those events, as well as their placements. A number of samples is generated from the given sequence alignment, and reticulation events are inferred based on each sample. Finally, the support of each reticulation event is quantified based on the inferences made over all samples. We have implemented our method in the NEPAL software tool (available publicly at http://bioinfo.cs.rice.edu/), and studied its performance on both biological and simulated data sets. While our studies show very promising results, they also highlight issues that are inherently challenging when applying the maximum parsimony criterion to detect reticulate evolution.

  6. More on analytic bootstrap for O(N) models

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Parijat; Kaviraj, Apratim; Sen, Kallol [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India)

    2016-06-22

    This note is an extension of a recent work on the analytical bootstrapping of O(N) models. An additonal feature of the O(N) model is that the OPE contains trace and antisymmetric operators apart from the symmetric-traceless objects appearing in the OPE of the singlet sector. This in addition to the stress tensor (T{sub μν}) and the ϕ{sub i}ϕ{sup i} scalar, we also have other minimal twist operators as the spin-1 current J{sub μ} and the symmetric-traceless scalar in the case of O(N). We determine the effect of these additional objects on the anomalous dimensions of the corresponding trace, symmetric-traceless and antisymmetric operators in the large spin sector of the O(N) model, in the limit when the spin is much larger than the twist. As an observation, we also verified that the leading order results for the large spin sector from the ϵ−expansion are an exact match with our n=0 case. A plausible holographic setup for the special case when N=2 is also mentioned which mimics the calculation in the CFT.

  7. Non-abelian binding energies from the lightcone bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Li, Daliang [Department of Physics, Yale University,New Haven, CT 06511 (United States); Department of Physics and Astronomy, Johns Hopkins University,Baltimore, MD 21218 (United States); Meltzer, David [Department of Physics, Yale University,New Haven, CT 06511 (United States); Poland, David [Department of Physics, Yale University,New Haven, CT 06511 (United States); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2016-02-23

    We analytically study the lightcone limit of the conformal bootstrap for 4-point functions containing scalars charged under global symmetries. We show the existence of large spin double-twist operators in various representations of the global symmetry group. We then compute their anomalous dimensions in terms of the central charge C{sub T}, current central charge C{sub J}, and the OPE coefficients of low dimension scalars. In AdS, these results correspond to the binding energy of two-particle states arising from the exchange of gravitons, gauge bosons, and light scalar fields. Using unitarity and crossing symmetry, we show that gravity is universal and attractive among different types of two-particle states, while the gauge binding energy can have either sign as determined by the representation of the two-particle state, with universal ratios fixed by the symmetry group. We apply our results to 4D N=1 SQCD and the 3D O(N) vector models. We also show that in a unitary CFT, if the current central charge C{sub J} stays finite when the global symmetry group becomes infinitely large, such as the N→∞ limit of the O(N) vector model, then the theory must contain an infinite number of higher spin currents.

  8. Bootstrap Sequential Determination of the Co-integration Rank in VAR Models

    DEFF Research Database (Denmark)

    Guiseppe, Cavaliere; Rahbæk, Anders; Taylor, A.M. Robert

    with empirical rejection frequencies often very much in excess of the nominal level. As a consequence, bootstrap versions of these tests have been developed. To be useful, however, sequential procedures for determining the co-integrating rank based on these bootstrap tests need to be consistent, in the sense...... in the literature by proposing a bootstrap sequential algorithm which we demonstrate delivers consistent cointegration rank estimation for general I(1) processes. Finite sample Monte Carlo simulations show the proposed procedure performs well in practice....

  9. Microwave Tokamak Experiment: Overview and status

    International Nuclear Information System (INIS)

    1990-05-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. 3 figs., 3 tabs

  10. Combined confinement system applied to tokamaks

    International Nuclear Information System (INIS)

    Ohkawa, Tihiro

    1986-01-01

    From particle orbit point of view, a tokamak is a combined confinement configuration where a closed toroidal volume is surrounded by an open confinement system like a magnetic mirror. By eliminating a cold halo plasma, the energy loss from the plasma becomes convective. The H-mode in diverted tokamaks is an example. Because of the favorable scaling of the energy confinement time with temperature, the performance of the tokamak may be significantly improved by taking advantage of this effect. (author)

  11. Presheath profiles in simulated tokamak edge plasmas

    International Nuclear Information System (INIS)

    LaBombard, B.; Conn, R.W.; Hirooka, Y.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.; Tynan, G.

    1988-04-01

    The PISCES plasma surface interaction facility at UCLA generates plasmas with characteristics similar to those found in the edge plasmas of tokamaks. Steady state magnetized plasmas produced by this device are used to study plasma-wall interaction phenomena which are relevant to tokamak devices. We report here progress on some detailed investigations of the presheath region that extends from a wall surface into these /open quotes/simulated tokamak/close quotes/ edge plasma discharges along magnetic field lines

  12. Advanced commercial Tokamak optimization studies

    International Nuclear Information System (INIS)

    Whitley, R.H.; Berwald, D.H.; Gordon, J.D.

    1985-01-01

    Our recent studies have concentrated on developing optimal high beta (bean-shaped plasma) commercial tokamak configurations using TRW's Tokamak Reactor Systems Code (TRSC) with special emphasis on lower net electric power reactors that are more easily deployable. A wide range of issues were investigated in the search for the most economic configuration: fusion power, reactor size, wall load, magnet type, inboard blanket and shield thickness, plasma aspect ratio, and operational β value. The costs and configurations of both steady-state and pulsed reactors were also investigated. Optimal small and large reactor concepts were developed and compared by studying the cost of electricity from single units and from multiplexed units. Multiplexed units appear to have advantages because they share some plant equipment and have lower initial capital investment as compared to larger single units

  13. Flux driven turbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Ghendrih, P.; Ottaviani, M.; Sarazin, Y.; Beyer, P.; Benkadda, S.; Waltz, R.E.

    1999-01-01

    This work deals with tokamak plasma turbulence in the case where fluxes are fixed and profiles are allowed to fluctuate. These systems are intermittent. In particular, radially propagating fronts, are usually observed over a broad range of time and spatial scales. The existence of these fronts provide a way to understand the fast transport events sometimes observed in tokamaks. It is also shown that the confinement scaling law can still be of the gyroBohm type in spite of these large scale transport events. Some departure from the gyroBohm prediction is observed at low flux, i.e. when the gradients are close to the instability threshold. Finally, it is found that the diffusivity is not the same for a turbulence calculated at fixed flux than at fixed temperature gradient, with the same time averaged profile. (author)

  14. Options for an ignited tokamak

    International Nuclear Information System (INIS)

    Sheffield, J.

    1984-02-01

    It is expected that the next phase of the fusion program will involve a tokamak with the goals of providing an ignited plasma for pulses of hundreds of seconds. A simple model is described in this memorandum which establishes the physics conditions for such a self-sustaining plasma, for given ion and electron thermal diffusivities, in terms of R/a, b/a, I, B/q, epsilon β/sub p/, anti T/sub i/, and anti T/sub e//anti T/sub i/. The model is used to produce plots showing the wide range of tokamaks that may ignite or have a given ignition margin. The constraints that limit this range are discussed

  15. Plasma diagnostics on large tokamaks

    International Nuclear Information System (INIS)

    Orlinskij, D.V.; Magyar, G.

    1988-01-01

    The main tasks of the large tokamaks which are under construction (T-15 and Tore Supra) and of those which have already been built (TFTR, JET, JT-60 and DIII-D) together with their design features which are relevant to plasma diagnostics are briefly discussed. The structural features and principal characteristics of the diagnostic systems being developed or already being used on these devices are also examined. The different diagnostic methods are described according to the physical quantities to be measured: electric and magnetic diagnostics, measurements of electron density, electron temperature, the ion components of the plasma, radiation loss measurements, spectroscopy of impurities, edge diagnostics and study of plasma stability. The main parameters of the various diagnostic systems used on the six large tokamaks are summarized in tables. (author). 351 refs, 44 figs, 22 tabs

  16. Starfire: a commercial tokamak reactor

    International Nuclear Information System (INIS)

    Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Graumann, D.; Kokoszenski, J.

    1979-01-01

    The basic objective of the STARFIRE Project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor. The STARFIRE Project was initiated in May 1979, with the goal of completing the design study by October 1980. The purpose of this paper is to present an overview of the major parameters and design features that have been tentatively selected for STARFIRE

  17. Comprehensive numerical modelling of tokamaks

    International Nuclear Information System (INIS)

    Cohen, R.H.; Cohen, B.I.; Dubois, P.F.

    1991-01-01

    We outline a plan for the development of a comprehensive numerical model of tokamaks. The model would consist of a suite of independent, communicating packages describing the various aspects of tokamak performance (core and edge transport coefficients and profiles, heating, fueling, magnetic configuration, etc.) as well as extensive diagnostics. These codes, which may run on different computers, would be flexibly linked by a user-friendly shell which would allow run-time specification of packages and generation of pre- and post-processing functions, including workstation-based visualization of output. One package in particular, the calculation of core transport coefficients via gyrokinetic particle simulation, will become practical on the scale required for comprehensive modelling only with the advent of teraFLOP computers. Incremental effort at LLNL would be focused on gyrokinetic simulation and development of the shell

  18. Magnetic island formation in tokamaks

    International Nuclear Information System (INIS)

    Yoshikawa, S.

    1989-04-01

    The size of a magnetic island created by a perturbing helical field in a tokamak is estimated. A helical equilibrium of a current- carrying plasma is found in a helical coordinate and the helically flowing current in the cylinder that borders the plasma is calculated. From that solution, it is concluded that the helical perturbation of /approximately/10/sup /minus/4/ of the total plasma current is sufficient to cause an island width of approximately 5% of the plasma radius. 6 refs

  19. Equilibrium Reconstruction in EAST Tokamak

    International Nuclear Information System (INIS)

    Qian Jinping; Wan Baonian; Shen Biao; Sun Youwen; Liu Dongmei; Xiao Bingjia; Ren Qilong; Gong Xianzu; Li Jiangang; Lao, L. L.; Sabbagh, S. A.

    2009-01-01

    Reconstruction of experimental axisymmetric equilibria is an important part of tokamak data analysis. Fourier expansion is applied to reconstruct the vessel current distribution in EFIT code. Benchmarking and testing calculations are performed to evaluate and validate this algorithm. Two cases for circular and non-circular plasma discharges are presented. Fourier expansion used to fit the eddy current is a robust method and the real time EFIT can be introduced to the plasma control system in the coming campaign. (magnetically confined plasma)

  20. Relaxed states of tokamak plasmas

    International Nuclear Information System (INIS)

    Kucinski, M.Y.; Okano, V.

    1993-01-01

    The relaxed states of tokamak plasmas are studied. It is assumed that the plasma relaxes to a quasi-steady state which is characterized by a minimum entropy production rate, compatible with a number of prescribed conditions and pressure balance. A poloidal current arises naturally due to the anisotropic resistivity. The minimum entropy production theory is applied, assuming the pressure equilibrium as fundamental constraint on the final state. (L.C.J.A.)

  1. Runaway electrons during tokamak startup

    International Nuclear Information System (INIS)

    Sharma, A.S.; Jayakumar, R.

    1988-01-01

    Runaway electrons significantly affect the plasma and impurity evolution during tokamak startup. During its rise, a runaway pulse stores magnetic flux inductively; this is then released during the decay phase of the runaway pulse. This process affects plasma formation, current initiation and current buildup. Because of their relativistic velocities the runaway electrons have higher ionization and excitation rates than the plasma electrons. This leads to a significant modification of the impurity behaviour and consequently the plasma evolution. (author). 20 refs, 8 figs

  2. Minimum scaling laws in tokamaks

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1986-10-01

    Scaling laws governing anomalous electron transport in tokamaks with ohmic and/or auxiliary heating are derived using renormalized Vlasov-Ampere equations for low frequency electromagnetic microturbulence. It is also shown that for pure auxiliary heating (or when auxiliary heating power far exceeds the ohmic power), the energy confinement time scales as tau/sub E/ ∼ P/sub inj//sup -1/3/, where P/sub inj/ is the injected power

  3. Gyrosheath near the tokamak edge

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Xiao, H.; Valanju, P.M.

    1993-03-01

    A new model for the structure of the radial electric field profile in the edge during the H-mode is proposed. Charge separation caused by the difference between electron and ion gyromotion, or more importantly in a tokamak, the banana motion (halo effect) can self-consistently produce an electric dipole moment that causes the sheared radial electric field. The calculated results based on the model are consistent with D-III D and TEXTOR experimental results

  4. Tokamak plasma boundary layer model

    International Nuclear Information System (INIS)

    Volkov, T.F.; Kirillov, V.D.

    1983-01-01

    A model has been developed for the limiter layer and for the boundary region of the plasma column in a tokamak to facilitate analytic calculations of the thickness of the limiter layers, the profiles and boundary values of the temperature and the density under various conditions, and the difference between the electron and ion temperatures. This model can also be used to analyze the recycling of neutrals, the energy and particle losses to the wall and the limiter, and other characteristics

  5. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.

    1982-12-01

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  6. Bootstrap-after-bootstrap model averaging for reducing model uncertainty in model selection for air pollution mortality studies.

    Science.gov (United States)

    Roberts, Steven; Martin, Michael A

    2010-01-01

    Concerns have been raised about findings of associations between particulate matter (PM) air pollution and mortality that have been based on a single "best" model arising from a model selection procedure, because such a strategy may ignore model uncertainty inherently involved in searching through a set of candidate models to find the best model. Model averaging has been proposed as a method of allowing for model uncertainty in this context. To propose an extension (double BOOT) to a previously described bootstrap model-averaging procedure (BOOT) for use in time series studies of the association between PM and mortality. We compared double BOOT and BOOT with Bayesian model averaging (BMA) and a standard method of model selection [standard Akaike's information criterion (AIC)]. Actual time series data from the United States are used to conduct a simulation study to compare and contrast the performance of double BOOT, BOOT, BMA, and standard AIC. Double BOOT produced estimates of the effect of PM on mortality that have had smaller root mean squared error than did those produced by BOOT, BMA, and standard AIC. This performance boost resulted from estimates produced by double BOOT having smaller variance than those produced by BOOT and BMA. Double BOOT is a viable alternative to BOOT and BMA for producing estimates of the mortality effect of PM.

  7. Discharge cleaning for a tokamak

    International Nuclear Information System (INIS)

    Ishii, Shigeyuki

    1983-01-01

    Various methods of discharge cleaning for tokamaks are described. The material of the first walls of tokamaks is usually stainless steel, inconel, titanium and so on. Hydrogen is exclusively used as the discharge gas. Glow discharge cleaning (GDC), Taylor discharge cleaning (TDC), and electron cyclotron resonance discharge cleaning (ECR-DC) are discussed in this paper. The cleaning by GDC is made by moving a movable anode to the center of a tokamak vassel. Taylor found the good cleaning effect of induced discharge by high pressure and low power discharge. This is called TDC. When the frequency of high frequency discharge in a magnetic field is equal to that of the electron cyclotron resonance, the break down potential is lowered if the pressure is sufficiently low. The ECR-CD is made by using this effect. In TDC and ECR-DC, the electron temperature, which has a close relation to the production rate of H 0 , can be controlled by the pressure. In GDC, the operating pressure was improved by the radio frequency glow (RG) method. However, there is still the danger of arcing. In case of GDC and ECR-DC, the position of plasma can be controlled, but not in case of TDC. The TDC is accepted by most of takamak devices in the world. (Kato, T.)

  8. Magnetic confinement experiment. I: Tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    1995-08-01

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM'y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nTτ's ∼ 2.5x greater than ELM'ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices

  9. Bootstrap Prediction Intervals in Non-Parametric Regression with Applications to Anomaly Detection

    Science.gov (United States)

    Kumar, Sricharan; Srivistava, Ashok N.

    2012-01-01

    Prediction intervals provide a measure of the probable interval in which the outputs of a regression model can be expected to occur. Subsequently, these prediction intervals can be used to determine if the observed output is anomalous or not, conditioned on the input. In this paper, a procedure for determining prediction intervals for outputs of nonparametric regression models using bootstrap methods is proposed. Bootstrap methods allow for a non-parametric approach to computing prediction intervals with no specific assumptions about the sampling distribution of the noise or the data. The asymptotic fidelity of the proposed prediction intervals is theoretically proved. Subsequently, the validity of the bootstrap based prediction intervals is illustrated via simulations. Finally, the bootstrap prediction intervals are applied to the problem of anomaly detection on aviation data.

  10. On the Consistency of Bootstrap Testing for a Parameter on the Boundary of the Parameter Space

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Nielsen, Heino Bohn; Rahbek, Anders

    2017-01-01

    It is well known that with a parameter on the boundary of the parameter space, such as in the classic cases of testing for a zero location parameter or no autoregressive conditional heteroskedasticity (ARCH) effects, the classic nonparametric bootstrap – based on unrestricted parameter estimates...... – leads to inconsistent testing. In contrast, we show here that for the two aforementioned cases, a nonparametric bootstrap test based on parameter estimates obtained under the null – referred to as ‘restricted bootstrap’ – is indeed consistent. While the restricted bootstrap is simple to implement...... in practice, novel theoretical arguments are required in order to establish consistency. In particular, since the bootstrap is analysed both under the null hypothesis and under the alternative, non-standard asymptotic expansions are required to deal with parameters on the boundary. Detailed proofs...

  11. Using the Bootstrap Concept to Build an Adaptable and Compact Subversion Artifice

    National Research Council Canada - National Science Library

    Lack, Lindsey

    2003-01-01

    .... Early tiger teams recognized the possibility of this design and compared it to the two-card bootstrap loader used in mainframes since both exhibit the characteristics of compactness and adaptability...

  12. Shear flows at the tokamak edge and their interaction with edge-localized modes

    International Nuclear Information System (INIS)

    Aydemir, A. Y.

    2007-01-01

    Shear flows in the scrape-off layer (SOL) and the edge pedestal region of tokamaks are shown to arise naturally out of transport processes in a magnetohydrodynamic model. In quasi-steady-state conditions, collisional resistivity coupled with a simple bootstrap current model necessarily leads to poloidal and toroidal flows, mainly localized to the edge and SOL. The role of these flows in the grad-B drift direction dependence of the power threshold for the L (low) to H (high) transition, and their effect on core rotation, are discussed. Theoretical predictions based on symmetries of the underlying equations, coupled with computational results, are found to be in agreement with observations in Alcator C-Mod [Phys. Plasmas 12, 056111 (2005)]. The effects of these self-consistent flows on linear peeling/ballooning modes and their nonlinear consequences are also examined

  13. A poloidal non-uniformity of the collisionless parallel current in a tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Romannikov, A.; Fenzi-Bonizec, C

    2005-07-01

    The collisionless distortion of the ion (electron) distribution function at certain points on a magnetic surface is studied in the framework of a simple model of a large aspect ratio tokamak plasma. The flow velocity driven by this distortion is calculated. The possibility of an additional non-uniform collisionless parallel current density on a magnetic surface, other than the known neo-classical non-uniformity is shown. The difference between the parallel current density on the low and high field side of a magnetic surface is close to the neoclassical bootstrap current density. The first Tore-Supra experimental test indicates the possibility of the poloidal non-uniformity of the parallel current density. (authors)

  14. Saturated ideal kink/peeling formations described as three-dimensional magnetohydrodynamic tokamak equilibrium states

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W. A.; Brunetti, D.; Duval, B. P.; Faustin, J. M.; Graves, J. P.; Kleiner, A.; Patten, H.; Pfefferlé, D.; Porte, L.; Raghunathan, M.; Reimerdes, H.; Sauter, O.; Tran, T. M., E-mail: wilfred.cooper@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne (Switzerland)

    2016-04-15

    Free boundary magnetohydrodynamic equilibrium states with spontaneous three dimensional deformations of the plasma-vacuum interface are computed for the first time. The structures obtained have the appearance of saturated ideal external kink/peeling modes. High edge pressure gradients yield toroidal mode number n = 1 corrugations for a high edge bootstrap current and larger n distortions when this current is small. Deformations in the plasma boundary region induce a nonaxisymmetric Pfirsch-Schlüter current driving a field-aligned current ribbon consistent with reported experimental observations. A variation in the 3D equilibrium confirms that the n = 1 mode is a kink/peeling structure. We surmise that our calculated equilibrium structures constitute a viable model for the edge harmonic oscillations and outer modes associated with a quiescent H-mode operation in shaped tokamak plasmas.

  15. Predicting disease risk using bootstrap ranking and classification algorithms.

    Directory of Open Access Journals (Sweden)

    Ohad Manor

    Full Text Available Genome-wide association studies (GWAS are widely used to search for genetic loci that underlie human disease. Another goal is to predict disease risk for different individuals given their genetic sequence. Such predictions could either be used as a "black box" in order to promote changes in life-style and screening for early diagnosis, or as a model that can be studied to better understand the mechanism of the disease. Current methods for risk prediction typically rank single nucleotide polymorphisms (SNPs by the p-value of their association with the disease, and use the top-associated SNPs as input to a classification algorithm. However, the predictive power of such methods is relatively poor. To improve the predictive power, we devised BootRank, which uses bootstrapping in order to obtain a robust prioritization of SNPs for use in predictive models. We show that BootRank improves the ability to predict disease risk of unseen individuals in the Wellcome Trust Case Control Consortium (WTCCC data and results in a more robust set of SNPs and a larger number of enriched pathways being associated with the different diseases. Finally, we show that combining BootRank with seven different classification algorithms improves performance compared to previous studies that used the WTCCC data. Notably, diseases for which BootRank results in the largest improvements were recently shown to have more heritability than previously thought, likely due to contributions from variants with low minimum allele frequency (MAF, suggesting that BootRank can be beneficial in cases where SNPs affecting the disease are poorly tagged or have low MAF. Overall, our results show that improving disease risk prediction from genotypic information may be a tangible goal, with potential implications for personalized disease screening and treatment.

  16. Bootstrap finance: the art of start-ups.

    Science.gov (United States)

    Bhide, A

    1992-01-01

    Entrepreneurship is more popular than ever: courses are full, policymakers emphasize new ventures, managers yearn to go off on their own. Would-be founders often misplace their energies, however. Believing in a "big money" model of entrepreneurship, they spend a lot of time trying to attract investors instead of using wits and hustle to get their ideas off the ground. A study of 100 of the 1989 Inc. "500" list of fastest growing U.S. start-ups attests to the value of bootstrapping. In fact, what it takes to start a business often conflicts with what venture capitalists require. Investors prefer solid plans, well-defined markets, and track records. Entrepreneurs are heavy on energy and enthusiasm but may be short on credentials. They thrive in rapidly changing environments where uncertain prospects may scare off established companies. Rolling with the punches is often more important than formal plans. Striving to adhere to investors' criteria can diminish the flexibility--the try-it, fix-it approach--an entrepreneur needs to make a new venture work. Seven principles are basic for successful start-ups: get operational fast; look for quick break-even, cash-generating projects; offer high-value products or services that can sustain direct personal selling; don't try to hire the crack team; keep growth in check; focus on cash; and cultivate banks early. Growth and change are the start-up's natural environment. But change is also the reward for success: just as ventures grow, their founders usually have to take a fresh look at everything again: roles, organization, even the very policies that got the business up and running.

  17. Nonparametric bootstrap procedures for predictive inference based on recursive estimation schemes

    OpenAIRE

    Corradi, Valentina; Swanson, Norman R.

    2005-01-01

    Our objectives in this paper are twofold. First, we introduce block bootstrap techniques that are (first order) valid in recursive estimation frameworks. Thereafter, we present two examples where predictive accuracy tests are made operational using our new bootstrap procedures. In one application, we outline a consistent test for out-of-sample nonlinear Granger causality, and in the other we outline a test for selecting amongst multiple alternative forecasting models, all of which are possibl...

  18. A Bootstrap Neural Network Based Heterogeneous Panel Unit Root Test: Application to Exchange Rates

    OpenAIRE

    Christian de Peretti; Carole Siani; Mario Cerrato

    2010-01-01

    This paper proposes a bootstrap artificial neural network based panel unit root test in a dynamic heterogeneous panel context. An application to a panel of bilateral real exchange rate series with the US Dollar from the 20 major OECD countries is provided to investigate the Purchase Power Parity (PPP). The combination of neural network and bootstrapping significantly changes the findings of the economic study in favour of PPP.

  19. Standard Error Computations for Uncertainty Quantification in Inverse Problems: Asymptotic Theory vs. Bootstrapping.

    Science.gov (United States)

    Banks, H T; Holm, Kathleen; Robbins, Danielle

    2010-11-01

    We computationally investigate two approaches for uncertainty quantification in inverse problems for nonlinear parameter dependent dynamical systems. We compare the bootstrapping and asymptotic theory approaches for problems involving data with several noise forms and levels. We consider both constant variance absolute error data and relative error which produces non-constant variance data in our parameter estimation formulations. We compare and contrast parameter estimates, standard errors, confidence intervals, and computational times for both bootstrapping and asymptotic theory methods.

  20. A bootstrap based space-time surveillance model with an application to crime occurrences

    Science.gov (United States)

    Kim, Youngho; O'Kelly, Morton

    2008-06-01

    This study proposes a bootstrap-based space-time surveillance model. Designed to find emerging hotspots in near-real time, the bootstrap based model is characterized by its use of past occurrence information and bootstrap permutations. Many existing space-time surveillance methods, using population at risk data to generate expected values, have resulting hotspots bounded by administrative area units and are of limited use for near-real time applications because of the population data needed. However, this study generates expected values for local hotspots from past occurrences rather than population at risk. Also, bootstrap permutations of previous occurrences are used for significant tests. Consequently, the bootstrap-based model, without the requirement of population at risk data, (1) is free from administrative area restriction, (2) enables more frequent surveillance for continuously updated registry database, and (3) is readily applicable to criminology and epidemiology surveillance. The bootstrap-based model performs better for space-time surveillance than the space-time scan statistic. This is shown by means of simulations and an application to residential crime occurrences in Columbus, OH, year 2000.

  1. Visuospatial bootstrapping: implicit binding of verbal working memory to visuospatial representations in children and adults.

    Science.gov (United States)

    Darling, Stephen; Parker, Mary-Jane; Goodall, Karen E; Havelka, Jelena; Allen, Richard J

    2014-03-01

    When participants carry out visually presented digit serial recall, their performance is better if they are given the opportunity to encode extra visuospatial information at encoding-a phenomenon that has been termed visuospatial bootstrapping. This bootstrapping is the result of integration of information from different modality-specific short-term memory systems and visuospatial knowledge in long term memory, and it can be understood in the context of recent models of working memory that address multimodal binding (e.g., models incorporating an episodic buffer). Here we report a cross-sectional developmental study that demonstrated visuospatial bootstrapping in adults (n=18) and 9-year-old children (n=15) but not in 6-year-old children (n=18). This is the first developmental study addressing visuospatial bootstrapping, and results demonstrate that the developmental trajectory of bootstrapping is different from that of basic verbal and visuospatial working memory. This pattern suggests that bootstrapping (and hence integrative functions such as those associated with the episodic buffer) emerge independent of the development of basic working memory slave systems during childhood. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Computing confidence and prediction intervals of industrial equipment degradation by bootstrapped support vector regression

    International Nuclear Information System (INIS)

    Lins, Isis Didier; Droguett, Enrique López; Moura, Márcio das Chagas; Zio, Enrico; Jacinto, Carlos Magno

    2015-01-01

    Data-driven learning methods for predicting the evolution of the degradation processes affecting equipment are becoming increasingly attractive in reliability and prognostics applications. Among these, we consider here Support Vector Regression (SVR), which has provided promising results in various applications. Nevertheless, the predictions provided by SVR are point estimates whereas in order to take better informed decisions, an uncertainty assessment should be also carried out. For this, we apply bootstrap to SVR so as to obtain confidence and prediction intervals, without having to make any assumption about probability distributions and with good performance even when only a small data set is available. The bootstrapped SVR is first verified on Monte Carlo experiments and then is applied to a real case study concerning the prediction of degradation of a component from the offshore oil industry. The results obtained indicate that the bootstrapped SVR is a promising tool for providing reliable point and interval estimates, which can inform maintenance-related decisions on degrading components. - Highlights: • Bootstrap (pairs/residuals) and SVR are used as an uncertainty analysis framework. • Numerical experiments are performed to assess accuracy and coverage properties. • More bootstrap replications does not significantly improve performance. • Degradation of equipment of offshore oil wells is estimated by bootstrapped SVR. • Estimates about the scale growth rate can support maintenance-related decisions

  3. Generalized MHD for numerical stability analysis of high-performance plasmas in tokamaks

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.

    1998-01-01

    A set of generalized magnetohydrodynamic (MHD) equations is formulated to accommodate the effects associated with high ion and electron temperatures in high-performance plasmas in tokamaks. The effects of neoclassical bootstrap current, neoclassical ion viscosity, the ion finite Larmor radius effect and electron and ion drift effects are taken into account in two-fluid MHD equations together with gyroviscosity, parallel viscosity, electron parallel inertia and collisionless ion heat flux. The ion velocity is identified as the plasma velocity, while the electron velocity is expressed in terms of the plasma velocity and electric current. Ion and electron momentum equations are combined to give the plasma momentum equation. The perpendicular (with respect to the equilibrium magnetic field) ion momentum equation is used as perpendicular Ohm's law and the parallel electron momentum equation - as parallel Ohm's law. Perpendicular Ohm's law allows for the Hall and ion drift effects. Parallel Ohm's law includes the electron drift effect, collisionless skin effect and bootstrap current. In addition, both perpendicular and parallel Ohm's laws contain the resistivity. Due to the quasineutrality condition, the ions and electrons are characterized by the same number density which is described by the ion continuity equation. On the other hand, the ion and electron temperatures are allowed to be different. The ion temperature is described by the ion energy equation allowing for the oblique heat flux, in addition to the perpendicular ion heat flux. The electron temperature is determined by the condition of high parallel electron heat conductivity. The ion and electron parallel viscosities are represented in a form valid for all the collisionality regimes (Pfirsch-Schluter, plateau, and banana). An optimized form of the generalized MHD equations is then represented in terms of the toroidal coordinate system used in the JET equilibrium and stability codes. The derived equations

  4. Progress Toward Long Pulse, High Performance Plasmas in the DIII-D Tokamak

    International Nuclear Information System (INIS)

    P.A. Politzer; T.C. Luce; M.E. Austin; J.R. Ferron, A.M. Garofalo; C.M. Greenfield; A.W. Hyatt; R.J. La Haye; L.L. Lao; E.A. Lazarus; M.A. Makowski; M. Murakami; C.C. Petty; R.I. Pinsker; B.W. Rice; E.J. Strait, M.R. Wade; J.G. Watkins

    2000-01-01

    A major portion of the research program of the DIII-D tokamak collaboration is devoted to the development and demonstration of high performance advanced tokamak plasmas, with profiles as close as possible to those anticipated for steady-state operation. The work during the 1999 campaign has resulted in significant progress toward this goal. High normalized performance ((beta)(sub N)(approx) 4 and(beta)(sub N) H(sub 89)(approx) 9) discharges have been sustained for up to 2 s. These plasmas are in H-mode with rapid ELMs. The most common limiting phenomena are resistive wall modes (RWMs) rather than neoclassical tearing modes (NTMs). NTMs do occur, apparently triggered by the RWMs. The observed pressure is well above the calculated beta limit without a wall, and(beta)(sub N) and gt; 4(ell)(sub i) throughout the high performance phase. The bootstrap current is estimated to be and gt;50% of the total, and measurements of the internal loop voltage show that only about 25% of the current is inductively driven. The central q profile is flat, as is the calculated bootstrap current profile, due to the absence of any localized pressure gradients. The residual inductive current is localized around r/a(approx) 0.5. To demonstrate quasi-stationary operation, it will be necessary to replace the residual inductive current with ECCD at the same minor radius. To effectively apply ECH and ECCD to these discharges, density control will be needed. Preliminary experiments using the DIII-D cryopump have reduced the density by(approx)20%. A new EC power system and a new private flux cryopump will be available for the 2000 campaign

  5. Fractional charges

    International Nuclear Information System (INIS)

    Saminadayar, L.

    2001-01-01

    20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)

  6. Magnetic confinement by Tokamak: physical aspects

    International Nuclear Information System (INIS)

    Tachon, J.

    1980-01-01

    After describing the Tokamak configuration concept, the author provides an analysis of the principal physical aspects of this type of installation and concludes by estimating that the Tokamak concept is a 'plausible candidate' as a means of producing controlled thermonuclear fusion [fr

  7. Economic evaluation of tokamak power plants

    International Nuclear Information System (INIS)

    Reid, R.L.; Steiner, D.

    1977-01-01

    This study reports the impact of plasma operating characteristics, engineering options, and technology on the capital cost trends of tokamak power plants. Tokamak power systems are compared to other advanced energy systems and found to be economically competitive. A three-phase strategy for demonstrating commercial feasibility of fusion power, based on a common-site multiple-unit concept, is presented

  8. Simulation of a major tokamak disruption

    International Nuclear Information System (INIS)

    White, R.B.; Monticello, D.A.; Rosenbluth, M.N.

    1977-08-01

    It is known that the internal tokamak disruption leads to a current profile which is flattened inside the surface where the safety factor equals unity. It is shown that such a profile can lead to m = 2 magnetic islands which grow to fill a substantial part of the tokamak cross section in a time consistent with the observations of the major disruption

  9. Diagnostics for the Rijnhuizen Tokamak Project

    NARCIS (Netherlands)

    Donne, A. J. H.

    1994-01-01

    The research program of the Rijnhuizen Tokamak Project is concentrated on the study of plasma transport processes. The RTP tokamak is therefore equipped with an extensive set of multichannel diagnostics, including a 19-channel FIR interferometer, a 20-channel heterodyne ECE system, an 80-channel

  10. MAST: a Mega Amp Spherical Tokamak

    International Nuclear Information System (INIS)

    Darke, A.C.; Harbar, J.R.; Hay, J.H.; Hicks, J.B.; Hill, J.W.; McKenzie, J.S.; Morris, A.W.; Nightingale, M.P.S.; Todd, T.N.; Voss, G.M.; Watkins, J.R.

    1995-01-01

    The highly successful tight aspect ratio tokamak research pioneered on the START machine at Culham, together with the attractive possibilities of the concept, suggest a larger device should be considered. The design of a Mega Amp Spherical Tokamak is described, operating at much higher currents and over longer pulses than START and compatible with strong additional heating. (orig.)

  11. Mercier criterion for high-β tokamaks

    International Nuclear Information System (INIS)

    Galvao, R.M.O.

    1984-01-01

    An expression, for the application of the Mercier criterion to numerical studies of diffuse high-β tokamaks (β approximatelly Σ,q approximatelly 1), which contains only leading order contributions in the high-β tokamak approximation is derived. (L.C.) [pt

  12. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    This report contains an overview of the Aries-I tokamak reactor study. The following topics are discussed on this tokamak: Systems studies; equilibrium, stability, and transport; summary and conclusions; current drive; impurity control system; tritium systems; magnet engineering; fusion-power-core engineering; power conversion; Aries-I safety design and analysis; design layout and maintenance; and start-up and operations

  13. Engineering Design of KSTAR tokamak main structure

    International Nuclear Information System (INIS)

    Im, K.H.; Cho, S.; Her, N.I.

    2001-01-01

    The main components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak including vacuum vessel, plasma facing components, cryostat, thermal shield and magnet supporting structure are in the final stage of engineering design. Hundai Heavy Industries (HHI) has been involved in the engineering design of these components. The current configuration and the final engineering design results for the KSTAR main structure are presented. (author)

  14. The prospects for electron Bernstein wave heating of spherical tokamaks

    International Nuclear Information System (INIS)

    Cairns, R.A.; Lashmore-Davies, C.N.

    2000-02-01

    Electron Bernstein waves are analysed as possible candidates for heating spherical tokamaks. An inhomogeneous plane slab model of the plasma with a sheared magnetic field is used to calculate the linear conversion of the ordinary mode (O-mode) to the extraordinary mode (X-mode). A formula for the fraction of the incident O-mode energy which is converted to the X-mode at the O-mode cut-off is derived. This fraction is then able to propagate to the upper hybrid resonance where it is converted to the electron Bernstein mode. The damping of electron Bernstein waves at the fourth harmonic resonance, corresponding to a 60GHz source on the Mega Amp Spherical Tokamak MAST [A C Darke et al Proc 16th Symposium on Fusion Energy, Champaign- Urbana, Illinois USA IEEE, 2 p1456 (1995)], is computed. This is shown to be so strongly absorbing that the electron Bernstein wave would be totally absorbed in the outer regions of the resonance. This feature implies that electron Bernstein wave current drive (on- or off-axis) could be very efficient. (author)

  15. Summary report on tokamak confinement experiments

    International Nuclear Information System (INIS)

    1982-03-01

    There are currently five major US tokamaks being operated and one being constructed under the auspices of the Division of Toroidal Confinement Systems. The currently operating tokamaks include: Alcator C at the Massachusetts Institute of Technology, Doublet III at the General Atomic Company, the Impurity Studies Experiment (ISX-B) at the Oak Ridge National Laboratory, and the Princeton Large Torus (PLT) and the Poloidal Divertor Experiment (PDX) at the Princeton Plasma Physics Laboratory. The Tokamak Fusion Test Reactor (TFTR) is under construction at Princeton and should be completed by December 1982. There is one major tokamak being funded by the Division of Applied Plasma Physics. The Texas Experimental Tokamak (TEXT) is being operated as a user facility by the University of Texas. The TEXT facility includes a complete set of standard diagnostics and a data acquisition system available to all users

  16. Plasma Profile and Shape Optimization for the Advanced Tokamak Power Plant, ARIES-AT

    International Nuclear Information System (INIS)

    Kessel, C.E.; Mau, T.K.; Jardin, S.C.; Najmabadi, F.

    2001-01-01

    An advanced tokamak plasma configuration is developed based on equilibrium, ideal-MHD stability, bootstrap current analysis, vertical stability and control, and poloidal-field coil analysis. The plasma boundaries used in the analysis are forced to coincide with the 99% flux surface from the free-boundary equilibrium. Using an accurate bootstrap current model and external current-drive profiles from ray-tracing calculations in combination with optimized pressure profiles, beta(subscript N) values above 7.0 have been obtained. The minimum current drive requirement is found to lie at a lower beta(subscript N) of 5.4. The external kink mode is stabilized by a tungsten shell located at 0.33 times the minor radius and a feedback system. Plasma shape optimization has led to an elongation of 2.2 and triangularity of 0.9 at the separatrix. Vertical stability could be achieved by a combination of tungsten shells located at 0.33 times the minor radius and feedback control coils located behind the shield. The poloidal-field coils were optimized in location and current, providing a maximum coil current of 8.6 MA. These developments have led to a simultaneous reduction in the power plant major radius and toroidal field

  17. Fractional fermions

    International Nuclear Information System (INIS)

    Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    The theory of fermion fractionization due to topologically generated fermion ground states is presented. Applications to one-dimensional conductors, to the MIT bag, and to the Hall effect are reviewed. (author)

  18. Automated modal parameter estimation using correlation analysis and bootstrap sampling

    Science.gov (United States)

    Yaghoubi, Vahid; Vakilzadeh, Majid K.; Abrahamsson, Thomas J. S.

    2018-02-01

    The estimation of modal parameters from a set of noisy measured data is a highly judgmental task, with user expertise playing a significant role in distinguishing between estimated physical and noise modes of a test-piece. Various methods have been developed to automate this procedure. The common approach is to identify models with different orders and cluster similar modes together. However, most proposed methods based on this approach suffer from high-dimensional optimization problems in either the estimation or clustering step. To overcome this problem, this study presents an algorithm for autonomous modal parameter estimation in which the only required optimization is performed in a three-dimensional space. To this end, a subspace-based identification method is employed for the estimation and a non-iterative correlation-based method is used for the clustering. This clustering is at the heart of the paper. The keys to success are correlation metrics that are able to treat the problems of spatial eigenvector aliasing and nonunique eigenvectors of coalescent modes simultaneously. The algorithm commences by the identification of an excessively high-order model from frequency response function test data. The high number of modes of this model provides bases for two subspaces: one for likely physical modes of the tested system and one for its complement dubbed the subspace of noise modes. By employing the bootstrap resampling technique, several subsets are generated from the same basic dataset and for each of them a model is identified to form a set of models. Then, by correlation analysis with the two aforementioned subspaces, highly correlated modes of these models which appear repeatedly are clustered together and the noise modes are collected in a so-called Trashbox cluster. Stray noise modes attracted to the mode clusters are trimmed away in a second step by correlation analysis. The final step of the algorithm is a fuzzy c-means clustering procedure applied to

  19. Speeding Up Non-Parametric Bootstrap Computations for Statistics Based on Sample Moments in Small/Moderate Sample Size Applications.

    Directory of Open Access Journals (Sweden)

    Elias Chaibub Neto

    Full Text Available In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson's sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling.

  20. Cluster storage for COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Písačka, Jan; Hron, Martin; Janky, Filip; Pánek, Radomír

    2012-01-01

    Roč. 87, č. 12 (2012), s. 2238-2241 ISSN 0920-3796. [IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research/8./. San Francisco, 20.06.2011-24.06.2011] R&D Projects: GA ČR GAP205/11/2470; GA MŠk 7G10072; GA MŠk(CZ) LM2011021 Institutional research plan: CEZ:AV0Z20430508 Keywords : COMPASS * Tokamak * Codac * Cluster * GlusterFS * Storage Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.842, year: 2012 http://dx.doi.org/10.1016/j.fusengdes.2012.09.006

  1. Surface tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Takizuka, Tomonori; Kurita, Gen-ichi; Azumi, Masafumi; Takeda, Tatsuoki

    1985-10-01

    Surface tearing modes in tokamaks are studied numerically and analytically. The eigenvalue problem is solved to obtain the growth rate and the mode structure. We investigate in detail dependences of the growth rate of the m/n = 2/1 resistive MHD modes on the safety factor at the plasma surface, current profile, wall position, and resistivity. The surface tearing mode moves the plasma surface even when the wall is close to the surface. The stability diagram for these modes is presented. (author)

  2. Major disruption process in tokamak

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Azumi, Masafumi; Tuda, Takashi; Takizuka, Tomonori; Tsunematsu, Toshihide; Tokuda, Shinji; Itoh, Kimitaka; Takeda, Tatsuoki

    1981-11-01

    The major disruption in a cylindrical tokamak is investigated by using the multi-helicity code, and the destabilization of the 3/2 mode by the mode coupling with the 2/1 mode is confirmed. The evolution of the magnetic field topology caused by the major disruption is studied in detail. The effect of the internal disruption on the 2/1 magnetic island width is also studied. The 2/1 magnetic island is not enhanced by the flattening of the q-profile due to the internal disruption. (author)

  3. Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method.

    Science.gov (United States)

    Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A

    2017-06-30

    Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. ARIES-AT: An advanced tokamak, advanced technology fusion power plant

    International Nuclear Information System (INIS)

    Najmabadi, F.; Jardin, S.C.; Tillack, M.; Waganer, L.M.

    2001-01-01

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several avenues were pursued in order to arrive at plasmas with a higher β and better bootstrap alignment compared to ARIES-RS that led to plasmas with higher β N and β. Advanced technologies that are examined in detail include: (1) Possible improvements to the overall system by using high-temperature superconductors, (2) Innovative SiC blankets that lead to a high thermal cycle efficiency of ∼60%; and (3) Advanced manufacturing techniques which aim at producing near-finished products directly from raw material, resulting in low-cost, and reliable components. The 1000-MWe ARIES-AT design has a major radius of 5.4 m, minor radius of 1.3 M, a toroidal β of 9.2% (β N =6.0) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current drive power is 24 MW. The ARIES-AT study shows that the combination of advanced tokamak modes and advanced technology leads to attractive fusion power plant with excellent safety and environmental characteristics and with a cost of electricity (5c/kWh), which is competitive with those projected for other sources of energy. (author)

  5. Variations of current profiles in tokamaks. Formation mechanism and confinement property of current-hole configuration

    International Nuclear Information System (INIS)

    Takizuka, Tomonori

    2003-01-01

    The formation mechanism of the current hole in tokamak plasmas is reviewed. Experimental results of JT-60U are shown. Increase of the off-central noninductive current is a key factor for the current-hole formation. The internal Transport Barrier (ITB), which generates large bootstrap current, plays an important role. The central current density in the hole stays nearly 0. The idea of a new equilibrium for a tokamak plasma with a current hole is introduced. This equilibrium configuration called Axisymmetric Tri-Magnetic-Islands (ATMI) equilibrium', has three islands along the R direction (a central-negative-current island and side-positive-current islands). The equilibrium is stable with the elongation coils when the current in the ATMI region is limited to a small amount. The confinement properties of a current-hole configuration with box-type ITB is described. A scaling of the core poloidal beta inside the ITB, β p,core , is given as ε f β p,core approx. = 1, which suggests the equilibrium limit (ε f : inverse aspect ratio at the ITB foot). Though the core stored energy is little dependent on the heating power, the estimated heat diffusivity in the ITB region moderately correlates with a neoclassical diffusivity. (author)

  6. The MHD stability analysis of type I ELMS in ASDEX Upgrade Tokamak

    International Nuclear Information System (INIS)

    Saarelma, S.

    2000-01-01

    The ELMs or edge localized modes are plasma instabilities localized in the edge region of a tokamak plasma. They cause periodic expulsions of particles and energy. The ELMs play a significant role in the confinement of the plasma, helium exhaust and diverter erosion. These are crucial issues in tokamak operation and, thus, understanding the underlying physical mechanism behind the ELM phenomenon is very important. The ELMs are classified into three different types based on the plasma conditions, where they are observed, and, on the ELM frequency response to the heating power. In this thesis, type I ELMs which are the most intense and the most damaging to the diverters, are studied. A model for the ELMs presented by Connor et al. is tested in experimental ASDEX Upgrade plasmas. In the Connor model, the ELMs are explained as a result of two instabilities, ballooning and peeling modes. Also a phenomenon called the bootstrap current plays a significant role by being the destabilising trigger to the peeling modes. The method used to study the model is MHD or magnetohydrodynamics. The theory of the ideal MHD equilibrium and the linear stability analysis is described. Inclusion of the bootstrap current to the equilibrium construction is introduced. The equilibria are created using experimental data from plasma shots that display type I ELMs. The stability analysis indicates that the investigated ELM model is a feasible explanation for type I ELMs. The pressure gradient near the plasma edge was found to be close to the ballooning stability boundary as predicted by the model. The peeling mode stability analysis confirms the prediction of the model that as the bootstrap current increases, the plasma becomes unstable for peeling modes with low to intermediate toroidal mode numbers. The mode numbers agree with the experimental results. In the experiments with high triangularity, low ELM frequency and ELM-free periods were observed. This indicates better stability of the plasma

  7. Nuclear fusion research at Tokamak Energy Ltd

    International Nuclear Information System (INIS)

    Windridge, Melanie J.; Gryaznevich, Mikhail; Kingham, David

    2017-01-01

    Tokamak Energy's approach is close to the mainstream of nuclear fusion, and chooses a spherical tokamak, which is an economically developed form of Tokamak reactor design, as research subjects together with a high-temperature superconducting magnet. In the theoretical prediction, it is said that spherical tokamak can make tokamak reactor's scale compact compared with ITER or DEMO. The dependence of fusion energy multiplication factor on reactor size is small. According to model studies, it has been found that the center coil can be protected from heat and radiation damage even if the neutron shielding is optimized to 35 cm instead of 1 m. As a small tokamak with a high-temperature superconducting magnet, ST25 HTS, it demonstrated in 2015 continuous operation for more than 24 hours as a world record. Currently, this company is constructing a slightly larger ST40 type, and it is scheduled to start operation in 2017. ST40 is designed to demonstrate that it can realize a high magnetic field with a compact size and aims at attaining 8-10 keV (reaching the nuclear fusion reaction temperature at about 100 million degrees). This company will verify the startup and heating technology by the coalescence of spherical tokamak expected to have plasma current of 2 MA, and will also use 2 MW of neutral particle beam heating. In parallel with ST40, it is promoting a development program for high-temperature superconducting magnet. (A.O.)

  8. Enhancement of confinement in tokamaks

    International Nuclear Information System (INIS)

    Furth, H.P.

    1986-05-01

    A plausible interpretation of the experimental evidence is that energy confinement in tokamaks is governed by two separate considerations: (1) the need for resistive MHD kink-stability, which limits the permissible range of current profiles - and therefore normally also the range of temperature profiles; and (2) the presence of strongly anomalous microscopic energy transport near the plasma edge, which calibrates the amplitude of the global temperature profile, thus determining the energy confinement time tau/sub E/. Correspondingly, there are two main paths towards the enhancement of tokamak confinement: (1) Configurational optimization, to increase the MHD-stable energy content of the plasma core, can evidently be pursued by varying the cross-sectional shape of the plasma and/or finding stable radial profiles with central q-values substantially below unity - but crossing from ''first'' to ''second'' stability within the peak-pressure region would have the greatest ultimate potential. (2) Suppression of edge turbulence, so as to improve the heat insulation in the outer plasma shell, can be pursued by various local stabilizing techniques, such as use of a poloidal divertor. The present confinement model and initial TFTR pellet-injection results suggest that the introduction of a super-high-density region within the plasma core should be particularly valuable for enhancing ntau/subE/. In D-T operation, a centrally peaked plasma pressure profile could possibly lend itself to alpha-particle-driven entry into the second-stability regime

  9. CAT-D-T tokamaks

    International Nuclear Information System (INIS)

    Greenspan, E.; Blue, T.; Miley, G.H.

    1981-01-01

    The domains of plasma fuel cycles bounded by the D-T and Cat-D, and by the D-T and SCD modes of operation are examined. These domains, referred to as, respectively, the Cat-D-T and SCD-T modes of operation, are characterized by the number (γ) of tritons per fusion neutron available from external (to the plasma) sources. Two external tritium sources are considered - the blankets of the Cat-D-T (SCD-T) reactors and fission reactors supported by the Cat-D-T (SCD-T) driven hybrid reactors. It is found that by using 6 Li for the active material of the control elements of the fission reactors, it is possible to achieve γ values close to unity. Cat-D-T tokamaks could be designed to have smaller size, higher power density, lower magnetic field and even lower plasma temperature than Cat-D tokamaks; the difference becomes significant for γ greater than or equal to .75. The SCD-T mode of operation appears to be even more attractive. Promising applications identified for these Cat-D-T and SCD-T modes of operation include hybrid reactors, fusion synfuel factories and fusion reactors which have difficulty in providing all their tritium needs

  10. Model-based bootstrapping when correcting for measurement error with application to logistic regression.

    Science.gov (United States)

    Buonaccorsi, John P; Romeo, Giovanni; Thoresen, Magne

    2018-03-01

    When fitting regression models, measurement error in any of the predictors typically leads to biased coefficients and incorrect inferences. A plethora of methods have been proposed to correct for this. Obtaining standard errors and confidence intervals using the corrected estimators can be challenging and, in addition, there is concern about remaining bias in the corrected estimators. The bootstrap, which is one option to address these problems, has received limited attention in this context. It has usually been employed by simply resampling observations, which, while suitable in some situations, is not always formally justified. In addition, the simple bootstrap does not allow for estimating bias in non-linear models, including logistic regression. Model-based bootstrapping, which can potentially estimate bias in addition to being robust to the original sampling or whether the measurement error variance is constant or not, has received limited attention. However, it faces challenges that are not present in handling regression models with no measurement error. This article develops new methods for model-based bootstrapping when correcting for measurement error in logistic regression with replicate measures. The methodology is illustrated using two examples, and a series of simulations are carried out to assess and compare the simple and model-based bootstrap methods, as well as other standard methods. While not always perfect, the model-based approaches offer some distinct improvements over the other methods. © 2017, The International Biometric Society.

  11. Electron Bernstein wave-bootstrap current synergy in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Harvey, R.W.; Taylor, G.

    2005-01-01

    Current driven by electron Bernstein waves (EBW) and by the electron bootstrap effect are calculated separately and concurrently with a kinetic code to determine the degree of synergy between them. A target β=40% NSTX [M. Ono, S. Kaye, M. Peng et al., Proceedings of the 17th IAEA Fusion Energy Conference, edited by M. Spak (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135] plasma is examined. A simple bootstrap model in the collisional-quasilinear CQL3D Fokker-Planck code (National Technical Information Service document No. DE93002962) is used in these studies: the transiting electron distributions are connected in velocity space at the trapped-passing boundary to trapped-electron distributions that are displaced radially by a half-banana-width outwards/inwards for the co-passing/counter-passing regions. This model agrees well with standard bootstrap current calculations over the outer 60% of the plasma radius. Relatively small synergy net bootstrap current is obtained for EBW power up to 4 MW. Locally, bootstrap current density increases in proportion to increased plasma pressure, and this effect can significantly affect the radial profile of driven current

  12. Effect of bootstrap current on MHD equilibrium beta limit in heliotron plasmas

    International Nuclear Information System (INIS)

    Watanabe, K.Y.

    2001-01-01

    The effect of bootstrap current on the beta limit of MHD equilibria is studied systematically by an iterative calculation of MHD equilibrium and the consistent bootstrap current in high beta heliotron plasmas. The LHD machine is treated as a standard configuration heliotron with an L=2 planar axis. The effects of vacuum magnetic configurations, pressure profiles and the vertical field control method are studied. The equilibrium beta limit with consistent bootstrap current is quite sensitive to the magnetic axis location for finite beta, compared with the currentless cases. For a vacuum configuration with the magnetic axis shifted inwards in the torus, even in the high beta regimes, the bootstrap current flows to increase the rotational transform, leading to an increase in the equilibrium beta limit. On the contrary, for a vacuum configuration with the magnetic axis shifted outwards in the torus, even in the low beta regimes, the bootstrap current flows so as to reduce the rotational transform; therefore, there is an acceleration of the Shafranov shift increase as beta increases, leading to a decrease in the equilibrium beta limit. The pressure profiles and vertical field control methods influence the equilibrium beta limit through the location of the magnetic axis for finite beta. These characteristics are independent of both device parameters, such as magnetic field strength, and device size in the low collisional regime. (author)

  13. Study of the separate exposure method for bootstrap sensitometry on X-ray cine film

    International Nuclear Information System (INIS)

    Matsuda, Eiji; Sanada, Taizo; Hitomi, Go; Kakuba, Koki; Kangai, Yoshiharu; Ishii, Koushi

    1997-01-01

    We developed a new method for bootstrap sensitometry that obtained the characteristic curve from a wide range, with a smaller number of aluminum steps than the conventional bootstrap method. In this method, the density-density curve was obtained from standard and multiplied exposures to the aluminum step wedge and used for bootstrap manipulation. The curve was acquired from two regions separated and added together, e.g., lower and higher photographic density regions. In this study, we evaluated the usefulness of a new cinefluorography method in comparison with N.D. filter sensitometry. The shape of the characteristic curve and the gradient curve obtained with the new method were highly similar to that obtained with N.D. filter sensitometry. Also, the average gradient obtained with the new bootstrap sensitometry method was not significantly different from that obtained by the N.D. filter method. The study revealed that the reliability of the characteristic curve was improved by increasing the measured value used to calculate the density-density curve. This new method was useful for obtaining a characteristic curve with a sufficient density range, and the results suggested that this new method could be applied to specific systems to which the conventional bootstrap method is not applicable. (author)

  14. Plasma position control in TCABR Tokamak

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Kuznetsov, Yu. K.; Nascimento, I.C.; Fonseca, A.M.M.; Silva, R.P. da; Ruchko, L.F.; Tuszel, A.G.; Reis, A.P. dos; Sanada, E.K.

    1998-01-01

    The plasma control position in the TCABR tokamak is described. The TCA tokamak was transferred from the Centre de Recherches en Physique des Plasmas, Lausanne, to the Institute of Physics of University of Sao Paulo, renamed TCABR (α=0.18 m, R = 0.62 m, B = 1 T,I p = 100 kA). The control system was reconstructed using mainly components obtained from the TCA tokamak. A new method of plasma position determination is used in TCABR to improve its accuracy. A more detailed theoretical analysis of the feed forward and feedback control is performed as compared with. (author)

  15. Estimation of Zeff in Novillo Tokamak

    International Nuclear Information System (INIS)

    Valencia, R.; Olayo, G.; Cruz, G.; Lopez, R.; Chavez, E.; Melendez, L.; Flores, A.; Gaytan, E.

    1996-01-01

    We estimated the Z eff in the Novillo Tokamak after having applied a HeGDC process through two different methods: anomaly factor and mass spectrometry. The first one gave a Z eff value of 2.07 for a tokamak discharge of 4350 A plasma current and 3 V of loop voltage. By mass spectrometry 30 s after the discharge had finished a Z eff of 4.19 was obtained for the same discharge. By mass spectrometry we observed that the Z eff value is a time function. Furthermore this method is helpful for evaluating the level of impurities after many discharges in Novillo Tokamak. (orig.)

  16. Global gyrokinetic simulation of tokamak transport

    International Nuclear Information System (INIS)

    Furnish, G.; Horton, W.; Kishimoto, Y.; LeBrun, M.J.; Tajima, T.

    1998-10-01

    A kinetic simulation code based on the gyrokinetic ion dynamics in global general metric (including a tokamak with circular or noncircular cross-section) has been developed. This gyrokinetic simulation is capable of examining the global and semi-global driftwave structures and their associated transport in a tokamak plasma. The authors investigate the property of the ion temperature gradient (ITG) or η i (η i ≡ ∂ ell nT i /∂ ell n n i ) driven drift waves in a tokamak plasma. The emergent semi-global drift wave modes give rise to thermal transport characterized by the Bohm scaling

  17. Fast IR diodes thermometer for tokamak

    International Nuclear Information System (INIS)

    Chen Xiangbo

    2001-01-01

    A 30 channel fast IR pyrometry array has been constructed for tokamak, which has 0.5 μs time response, 10 mm diameter spatial resolution and 5 degree C temperature resolution. The temperature measuring range is from 250 degree C to 1200 degree C. The two dimensional temperature profiles of the first wall during both major and minor disruptions can be measured with an accuracy of about 1% measuring temperature, which is adequate for tokamak experiments. This gives a very useful tool for the disruption study, especially for the divertor physics and edge heat flux research on tokamak and other magnetic confinement devices

  18. Physics of the Tokamak Pedestal, and Implications for Magnetic Fusion Energy

    Science.gov (United States)

    Snyder, Philip

    2017-10-01

    High performance in tokamaks is achieved via the spontaneous formation of a transport barrier in the outer few percent of the confined plasma. This narrow insulating layer, referred to as a ``pedestal,'' typically results in a >30x increase in pressure across a 0.4-5cm layer. Predicted fusion power scales with the square of the pedestal top pressure (or ``pedestal height''), hence a fusion reactor strongly benefits from a high pedestal, provided this can be attained without large Edge Localized Modes (ELMs), which may erode plasma facing materials. The overlap of drift orbit, turbulence, and equilibrium scales across this narrow layer leads to rich and complex physics, and challenges traditional analytic and computational approaches. We review studies employing gyrokinetic, neoclassical, MHD, and other methods, which have explored how a range of instabilities, influenced by complex geometry, and strong ExB flows and bootstrap current, drive transport across the pedestal and guide its structure and dynamics. Development of high resolution diagnostics, and coordinated experiments on several tokamaks, have validated understanding of important aspects of the physics, while highlighting open issues. A predictive model (EPED) has proven capable of predicting the pedestal height and width to 20-25% accuracy in large statistical studies. This model was used to predict a new, high pedestal ``Super H-Mode'' regime, which was subsequently discovered on DIII-D, and motivated experiments on Alcator C-Mod which achieved world record, reactor relevant pedestal pressure. We review open issues including improved formalism, particle and momentum transport, the role of neutrals and impurities, ELM control, and pedestal formation. Finally we discuss coupling pedestal and core predictive models to enable more comprehensive optimization of the tokamak fusion concept. Supported by the US DOE under DE-FG02-95ER54309, FC02-06ER54873, DE-FC02-04ER54698, DE-FC02-99ER54512.

  19. Neoclassical alpha-particle losses in tokamaks allowing for large orbit widths

    International Nuclear Information System (INIS)

    Cox, M.; O'Brien, M.R.; Zaitsev, F.S.

    1994-01-01

    Alpha-particle physics is of particular importance now that research into controlled fusion has reached thermonuclear parameters and D-T fuel has been used in JET and TFTR. Here we address the important topic of α-particle transport: if transport is too low helium ash accumulates quenching the burn; if it is too high heating of the plasma by fast α-particles is insufficient to maintain the burn. We give results from simulations of α-particle distributions (f α ) which self-consistently treat α-particle birth, collisional slowing down and neoclassical radial transport. The (steady-state) f α is calculated by the FPP code as a function of speed (v), pitch-angle (θ) and flux surface radius (r). This code is based on a 3D Fokker-Planck theory of 'banana regime' neoclassical effects in tokamaks which can treat large deviations of fast ion orbits from flux surfaces and non-Maxwellian distributions. The code reproduces standard neoclassical results for Maxwellian distributions in the large aspect ratio (ε) and small orbit width (Δ) limits (e.g. radial fluxes, conductivities and bootstrap currents), but can also be used for small ε and large Δ which are difficult to treat analytically. The code is particularly useful for α-particle studies as (a) the experimental evidence is that fast ion transport is usually consistent with neoclassical theory, unlike electron or thermal ion transport, and (b) trapped fast ion orbits can deviate greatly from flux surfaces. An alternative to this Fokker-Planck treatment is Monte Carlo modelling. However, representation of the detailed structure of f α (θ,v,r) would require very large number of particles, and hence be very slow. Calculations have been made for parameters typical of TFTR, JET, SSTR (an 'advanced tokamak' reactor) and STR (a tight aspect ratio or 'spherical' tokamak reactor, though only the JET results are discussed in detail. (author) 4 refs., 4 figs

  20. Fast computational scheme for feedback control of high current fusion tokamaks

    International Nuclear Information System (INIS)

    Dong, J.Q.; Khayrutdinov, R.; Azizov, E.; Jardin, S.

    1992-01-01

    An accurate and fast numerical model of tokamak plasma evolution is presented. In this code (DINA) the equilibrium problem of plasmas with free boundaries in externally changing magnetic fields is solved simultaneously with the plasma transport equation. The circuit equations are solved for the vacuum vessel and passive and active coils. The code includes pellet injection, neutral beam heating, auxiliary heating, and alpha particle heating. Bootstrap and beam-driven plasma currents are accounted for. An inverse variable technique is utilized to obtain the coordinates of the equilibrium magnetic surfaces. This numerical algorithm permits to determine the flux coordinates very quickly and accurately. The authors show that using the fully resistive MHD analysis the region of stability (to vertical motions) is wider than using the rigid displacement model. Comparing plasma motions with the same gain, it is seen that the plasma oscillates more in the rigid analysis than in the MHD analysis. They study the influence of the pick up coil's location and the possibility of control of the plasma vertical position. They use a simple modification of the standard control law that enables the control of the plasma with pick up coils located at any position. This flexibility becomes critical in the design of future complex high current tokamak systems. The fully resistive MHD model permits to obtain accurate estimates of the plasma response. This approach yields computational time savings of one to two orders of magnitude with respect to other existing MHD models. In this sense, conventional numerical algorithms do not provide suitable models for application of modern control techniques into real time expert systems. The proposed inverse variable technique is rather suitable for incorporation in a comprehensive expert system for feedback control of fusion tokamaks in real time