WorldWideScience

Sample records for bootstrap current density

  1. Bootstrap current of fast ions in neutral beam injection heating

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Li Xinxia; Yu Jun

    2012-01-01

    The bootstrap current of fast ions produced by neutral beam injection (NBI) is investigated in a large-aspect-ratio tokamak with circular cross-section under specific parameters. The bootstrap current density distribution and the total bootstrap current are reported. In addition, the beam bootstrap current always accompanies the electron return current due to the parallel momentum transfer from fast ions. With the electron return current taken into consideration, the net current density obviously decreases; at the same time, the peak of the current moves towards the central plasma. Numerical results show that the value of the net current depends sensitively not only on the angle of the NBI but also on the ratio of the velocity of fast ions to the critical velocity: the value of the net current is small for neutral beam parallel injection, but increases severalfold for perpendicular injection, and increases with increasing beam energy. (paper)

  2. Combined RF current drive and bootstrap current in tokamaks

    International Nuclear Information System (INIS)

    Schultz, S. D.; Bers, A.; Ram, A. K.

    1999-01-01

    By calculating radio frequency current drive (RFCD) and the bootstrap current in a consistent kinetic manner, we find synergistic effects in the total noninductive current density in tokamaks [1]. We include quasilinear diffusion in the Drift Kinetic Equation (DKE) in order to generalize neoclassical theory to highly non-Maxwellian electron distributions due to RFCD. The parallel plasma current is evaluated numerically with the help of the FASTEP Fokker-Planck code [2]. Current drive efficiency is found to be significantly affected by neoclassical effects, even in cases where only circulating electrons interact with the waves. Predictions of the current drive efficiency are made for lower hybrid and electron cyclotron wave current drive scenarios in the presence of bootstrap current

  3. Bootstrap current of fast ions in neutral beam injection heating

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Yang Lei; Li Xinxia; Lu Xingqiang; Yu Jun

    2012-01-01

    The bootstrap current of fast ions produced by the neutral beam injection is investigated in a large aspect ratio tokamak with circular cross-section under specific parameters. The bootstrap current density distribution and the total bootstrap current are figured out. In addition, the beam bootstrap current always accompanies the electron return current due to the parallel momentum transfer from fast ions. With the electron return current considered, the net current density obviously decreases due to electron return current, at the same time the peak of current moves towards the centre plasma. Numerical results show that the value of the net current depends sensitively not only on the angle of the neutral beam injection but also on the ratio of the velocity of fast ions to the critical velocity: the value of net current is small for the neutral beam parallel injection but increases multipliedly for perpendicular injection, and increases with beam energy increasing. (authors)

  4. Bootstrap and fast wave current drive for tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1991-09-01

    Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power ( o = 18 MA needs P FW = 15 MW, P LH = 75 MW). A computational survey of bootstrap fraction and current drive efficiency is presented. 11 refs., 8 figs

  5. Self-consistent ECCD calculations with bootstrap current

    International Nuclear Information System (INIS)

    Decker, J.; Bers, A.; Ram, A. K; Peysson, Y.

    2003-01-01

    wave parameters that optimizes the RF driven current. Taking into account neoclassical corrections, the difference decreases down to 40%, since the synergism with bootstrap current is more favorable for the ECCD case in the example here considered. Beyond the enhanced figure of merit, the main advantage of OKCD in the present case is the large absorption abs >, as compared to ECCD, which would allow a large current drive in a single pass. The figure of merit for ECCD and OKCD has been investigated for various EC wave parameters. When the EC wave is launched so that the resonance condition takes place on the low field side, the presence of trapped electrons make OKCD more favorable for controlling locally the current density. The synergy between RF and bootstrap currents is found to be dominated by kinetic effects, the rise of the electron temperature due to the absorbed EC power leading only to a modest enhancement, less than 10% of the synergism found in our calculations. Numerical simulations show that synergistic effects scale linearly with the bootstrap current. Therefore, maximizing the bootstrap fraction contributes to reduce the recycled power in a reactor for current profile control, at a given current density level

  6. The Bootstrap Current and Neutral Beam Current Drive in DIII-D

    International Nuclear Information System (INIS)

    Politzer, P.A.

    2005-01-01

    Noninductive current drive is an essential part of the implementation of the DIII-D Advanced Tokamak program. For an efficient steady-state tokamak reactor, the plasma must provide close to 100% bootstrap fraction (f bs ). For noninductive operation of DIII-D, current drive by injection of energetic neutral beams [neutral beam current drive (NBCD)] is also important. DIII-D experiments have reached ∼80% bootstrap current in stationary discharges without inductive current drive. The remaining current is ∼20% NBCD. This is achieved at β N [approximately equal to] β p > 3, but at relatively high q 95 (∼10). In lower q 95 Advanced Tokamak plasmas, f bs ∼ 0.6 has been reached in essentially noninductive plasmas. The phenomenology of high β p and β N plasmas without current control is being studied. These plasmas display a relaxation oscillation involving repetitive formation and collapse of an internal transport barrier. The frequency and severity of these events increase with increasing β, limiting the achievable average β and causing modulation of the total current as well as the pressure. Modeling of both bootstrap and NBCD currents is based on neoclassical theory. Measurements of the total bootstrap and NBCD current agree with calculations. A recent experiment based on the evolution of the transient voltage profile after an L-H transition shows that the more recent bootstrap current models accurately describe the plasma behavior. The profiles and the parametric dependences of the local neutral beam-driven current density have not yet been compared with theory

  7. Collisionality dependence of Mercier stability in LHD equilibria with bootstrap currents

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji.

    1997-02-01

    The Mercier stability of the plasmas carrying bootstrap currents with different plasma collisionality is studied in the Large Helical Device (LHD). In the LHD configuration, the direction of the bootstrap current depends on the collisionality of the plasma through the change in the sign of the geometrical factor. When the beta value is raised by increasing the density of the plasma with a fixed low temperature, the plasma becomes more collisional and the collisionality approaches the plateau regime. In this case, the bootstrap current can flow in the direction so as to decrease the rotational transform. Then, the large Shafranov shift enhances the magnetic well and the magnetic shear, and therefore, the Mercier stability is improved. On the other hand, when the beta value is raised by increasing the temperature of the plasma with a fixed low density, the plasma collisionality becomes reduced to enter the 1/ν collisionality regime and the bootstrap current flows so that the rotational transform should be increased, which is unfavorable for the Mercier stability. Hence, the beta value should be raised by increasing the density rather than the temperature in order to obtain a high beta plasma. (author)

  8. Bootstrap currents in stellarators and tokamaks

    International Nuclear Information System (INIS)

    Okamoto, Masao; Nakajima, Noriyoshi.

    1990-09-01

    The remarkable feature of the bootstrap current in stellarators is it's strong dependence on the magnetic field configuration. Neoclassical bootstrap currents in a large helical device of torsatron/heliotron type (L = 2, M = 10, R = 4 m, B = 4 T) is evaluated in the banana (1/ν) and the plateau regime. Various vacuum magnetic field configurations are studied with a view to minimizing the bootstrap current. It is found that in the banana regime, shifting of the magnetic axis and shaping of magnetic surfaces have a remarkable influence on the bootstrap current; a small outward shift of the magnetic axis and vertically elongated magnetic surfaces are favourable for a reduction of the bootstrap current. It is noted, however, that the ripple diffusion in the 1/ν regime has opposite tendency to the bootstrap current; it increases with the outward shift and increases as the plasma cross section is vertically elongated. The comparison will be made between bootstrap currents in stellarators and tokamaks. (author)

  9. On Current Drive and Wave Induced Bootstrap Current in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Hellsten, T.; Johnson, T.

    2008-01-01

    A comprehensive treatment of wave-particle interactions in toroidal plasmas including collisional relaxation, applicable to heating or anomalous wave induced transport, has been obtained by using Monte Carlo operators satisfying quasi-neutrality. This approach enables a self-consistent treatment of wave-particle interactions applicable to the banana regime in the neoclassical theory. It allows an extension into a regime with large temperature and density gradients, losses and transport of particles by wave-particle interactions making the method applicable to transport barriers. It is found that at large gradients the relationship between radial electric field, parallel velocity, temperature and density gradient in the neoclassical theory is modified such that coefficient in front of the logarithmic ion temperature gradient, which in the standard neoclassical theory is small and counteracts the electric field caused by the density gradient, now changes sign and contributes to the built up of the radial electric field. The possibility to drive current by absorbing the waves on trapped particles has been studied and how the wave-particle interactions affect the bootstrap current. Two new current drive mechanisms are studied: current drive by wave induced bootstrap current and selective detrapping into passing orbits by directed waves.

  10. EBW-Bootstrap Current Synergy in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Harvey, R.W.; Taylor, G.

    2005-01-01

    Current driven by electron Bernstein waves (EBW) and by the electron bootstrap effect are calculated separately and concurrently with a kinetic code, to determine the degree of synergy between them. A target β = 40% NSTX plasma is examined. A simple bootstrap model in the CQL3D Fokker-Planck code is used in these studies: the transiting electron distributions are connected in velocity-space at the trapped-passing boundary to trapped-electron distributions which are displaced radially by a half-banana width outwards/inwards for the co-/counter-passing regions. This model agrees well with standard bootstrap current calculations, over the outer 60% of the plasma radius. Relatively small synergy net bootstrap current is obtained for EBW power up to 4 MW. Locally, bootstrap current density increases in proportion to increased plasma pressure, and this effect can significantly affect the radial profile of driven current

  11. Considerations on ECFH current drive and bootstrap current for W VII-X

    International Nuclear Information System (INIS)

    Gasparino, U.; Maassberg, H.

    1988-01-01

    Low shear is the characteristic of all proposed Wendelstein VII-X configurations. To avoid low harmonic rational numbers within the rotational transform profile, the current contribution to the rotational transform, Δt a α I/B, should be typically less than 10%. This leads to an upper limit of 50 kA (at B = 2.5 T) for the tolerable net toroidal current. A considerable net toroidal current (bootstrap current) is expected by neoclassical theory in the plateau and the low-collisionality regimes. Both radial transport as well as the bootstrap current densities depend sensitively on the magnetic configuration (see A. Montvai, this workshop). In case of an axisymmetric configuration with dimension and plasma parameters as predicted for the high- regime of WVII-X ( ∼ 5%), this current (∼ 0.5/1 MA) would dominate the rotational transform profile. This requires a reduction of magnitude of the bootstrap current to some % of the value of an equivalent tokamak. This reduction must act on the current profile itself and should not be merely obtained by having two channels of currents of different sign at different radii. Due to the possibility of controlling absorbed power and driven current profiles, electron cyclotron waves are a natural candidate for current profile control. Linear calculations show the possibility to drive a counteracting current with a profile similar to the bootstrap one. For ∼ 5% conditions, however, the optimium current drive efficiency (η ∼ 10 kA per MW) is far too low to make ECF-current drive suitable

  12. Bootstrapping Density-Weighted Average Derivatives

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael

    Employing the "small bandwidth" asymptotic framework of Cattaneo, Crump, and Jansson (2009), this paper studies the properties of a variety of bootstrap-based inference procedures associated with the kernel-based density-weighted averaged derivative estimator proposed by Powell, Stock, and Stoker...... (1989). In many cases validity of bootstrap-based inference procedures is found to depend crucially on whether the bandwidth sequence satisfies a particular (asymptotic linearity) condition. An exception to this rule occurs for inference procedures involving a studentized estimator employing a "robust...

  13. Current drive and sustain experiments with the bootstrap current in JT-60

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Azumi, Masafumi; Tani, Keiji; Tsuji, Shunji; Kubo, Hirotaka

    1989-11-01

    The current drive and sustain experiments with the neoclassical bootstrap current are performed in the JT-60 tokamak. It is shown that up to 80% of total plasma current is driven by the bootstrap current in extremely high β p regime (β p = 3.2) and the current drive product I p (bootstrap) n-bar e R p up to 4.4 x 10 19 MAm -2 has been attained with the bootstrap current. The experimental resistive loop voltages are compared with the calculations using the neoclassical resistivity with and without the bootstrap current and the Spitzer resistivity for a wide range of the plasma current (I p = 0.5 -2 MA) and the poloidal beta (β p = 0.1 - 3.2). The calculated resistive loop voltage is consistent with the neoclassical prediction including the bootstrap current. Current sustain with the bootstrap current is tested by terminating the I p feedback control during the high power neutral beam heating. An enhancement of the L/R decay time than those expected from the plasma resistivity with measured T e and Zeff has been confirmed experimentally supporting the large non-inductive current in the plasma and is consistent with the neoclassical prediction. A new technique to calculate the bootstrap current in multi-collisionality regime for finite aspect ratio tokamak has bee developed. The neoclassical bootstrap current is calculated directly through the force balance equations between viscous and friction forces according to the Hirshman-Sigmar theory. The bootstrap current driven by the fast ion component is also included. Ballooning stability of the high β p plasma are analyzed using the current profiles including the bootstrap current. The plasma pressure is close to the ballooning limit in high β p discharges. (author)

  14. Electron Bernstein wave-bootstrap current synergy in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Harvey, R.W.; Taylor, G.

    2005-01-01

    Current driven by electron Bernstein waves (EBW) and by the electron bootstrap effect are calculated separately and concurrently with a kinetic code to determine the degree of synergy between them. A target β=40% NSTX [M. Ono, S. Kaye, M. Peng et al., Proceedings of the 17th IAEA Fusion Energy Conference, edited by M. Spak (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135] plasma is examined. A simple bootstrap model in the collisional-quasilinear CQL3D Fokker-Planck code (National Technical Information Service document No. DE93002962) is used in these studies: the transiting electron distributions are connected in velocity space at the trapped-passing boundary to trapped-electron distributions that are displaced radially by a half-banana-width outwards/inwards for the co-passing/counter-passing regions. This model agrees well with standard bootstrap current calculations over the outer 60% of the plasma radius. Relatively small synergy net bootstrap current is obtained for EBW power up to 4 MW. Locally, bootstrap current density increases in proportion to increased plasma pressure, and this effect can significantly affect the radial profile of driven current

  15. Thermal energy and bootstrap current in fusion reactor plasmas

    International Nuclear Information System (INIS)

    Becker, G.

    1993-01-01

    For DT fusion reactors with prescribed alpha particle heating power P α , plasma volume V and burn temperature i > ∼ 10 keV specific relations for the thermal energy content, bootstrap current, central plasma pressure and other quantities are derived. It is shown that imposing P α and V makes these relations independent of the magnitudes of the density and temperature, i.e. they only depend on P α , V and shape factors or profile parameters. For model density and temperature profiles analytic expressions for these shape factors and for the factor C bs in the bootstrap current formula I bs ∼ C bs (a/R) 1/2 β p I p are given. In the design of next-step devices and fusion reactors, the fusion power is a fixed quantity. Prescription of the alpha particle heating power and plasma volume results in specific relations which can be helpful for interpreting computer simulations and for the design of fusion reactors. (author) 5 refs

  16. Introduction of Bootstrap Current Reduction in the Stellarator Optimization Using the Algorithm DAB

    International Nuclear Information System (INIS)

    Castejón, F.; Gómez-Iglesias, A.; Velasco, J. L.

    2015-01-01

    This work is devoted to introduce new optimization criterion in the DAB (Distributed Asynchronous Bees) code. With this new criterion, we have now in DAB the equilibrium and Mercier stability criteria, the minimization of Bxgrad(B) criterion, which ensures the reduction of neoclassical transport and the improvement of the confinement of fast particles, and the reduction of bootstrap current. We have started from a neoclassically optimised configuration of the helias type and imposed the reduction of bootstrap current. The obtained configuration only presents a modest reduction of total bootstrap current, but the local current density is reduced along the minor radii. Further investigations are developed to understand the reason of this modest improvement.

  17. Observation of the bootstrap current reduction at magnetic island in a neoclassical tearing mode plasma

    International Nuclear Information System (INIS)

    Oikawa, T.; Suzuki, T.; Isayama, A.; Hayashi, N.; Fujita, T.; Naito, O.; Tuda, T.; Kurita, G.

    2005-01-01

    Evolution of the current density profile associated with magnetic island formation in a neoclassical tearing mode plasma is measured for the first time in JT-60U by using a motional Stark effect diagnostic. As the island grows, the current density profile turns flat at the radial region of the island and a hollow structure appears at the rational surface. As the island shrinks the deformed region becomes narrower and finally diminishes after the disappearance of the island. In a quiescent plasma without magnetohydrodynamic instabilities, on the other hand, no deformation is observed. The observed deformation in the current density profile associated with the tearing mode is reproduced in a time dependent transport simulation assuming the reduction of the bootstrap current in the radial region of the island. Comparison of the measurement with a calculated steady-state solution also shows that the reduction and recovery of the bootstrap current at the island explains the temporal behaviours of the current density and safety factor profiles. From the experimental observation and simulations, we reach the conclusion that the bootstrap current decreases within the island O-point

  18. Stable equilibria for bootstrap-current-driven low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Miller, R.L.; Lin-Liu, Y.R.; Turnbull, A.D.; Chan, V.S.; Pearlstein, L.D.; Sauter, O.; Villard, L.

    1997-01-01

    Low aspect ratio tokamaks (LATs) can potentially provide a high ratio of plasma pressure to magnetic pressure β and high plasma current I at a modest size. This opens up the possibility of a high-power density compact fusion power plant. For the concept to be economically feasible, bootstrap current must be a major component of the plasma current, which requires operating at high β p . A high value of the Troyon factor β N and strong shaping is required to allow simultaneous operation at a high-β and high bootstrap fraction. Ideal magnetohydrodynamic stability of a range of equilibria at aspect ratio 1.4 is systematically explored by varying the pressure profile and shape. The pressure and current profiles are constrained in such a way as to assure complete bootstrap current alignment. Both β N and β are defined in terms of the vacuum toroidal field. Equilibria with β N ≥8 and β∼35%endash 55% exist that are stable to n=∞ ballooning modes. The highest β case is shown to be stable to n=0,1,2,3 kink modes with a conducting wall. copyright 1997 American Institute of Physics

  19. On the definition of Pfirsch--Schlueter and bootstrap currents in toroidal systems

    International Nuclear Information System (INIS)

    Coronado, M.; Wobig, H.

    1992-01-01

    In the plasma physics literature there appear two different definitions of Pfirsch--Schlueter current. One of them is predominantly used in equilibrium calculations and satisfies the condition I T =0. The other definition appears commonly in transport calculations and requires that the surface average of the dot product of the Pfirsch--Schlueter current density with the magnetic field vanish, i.e., left-angle J PS ·B right-angle=0. The difference between the definitions is a surface function. Within the framework of the moment equation approach, the total parallel current is completely determined through a surface average of Ohm's law; thus different definitions of Pfirsch--Schlueter current imply different expressions for the bootstrap current. Understanding the different implications of these two definitions is of particular importance when designing toroidal devices with minimized Pfirsch--Schlueter current or studying tokamaks with optimized bootstrap current. In this paper the definitions of Pfirsch--Schlueter and bootstrap current, as well as the expressions for the corresponding Pfirsch--Schlueter diffusion flux, are analyzed and discussed for the case of axisymmetric and nonaxisymmetric plasmas. Although in cases like a current-free stellarator or a large-aspect-ratio tokamak both definitions are equivalent, they are in general different, and in order to avoid misunderstandings it is therefore important to use only one. The most appropriate definition is I T =0. In this paper the equations for determining the bootstrap current within the framework of the fluid equations are also analyzed

  20. Current density profile evolution in JET

    International Nuclear Information System (INIS)

    Stubberfield, P.M.; Balet, B.; Campbell, D.; Challis, C.D.; Cordey, J.G.; O'Rourke, J.; Hammett, G.; Schmidt, G.L.

    1989-01-01

    Simulation studies have been made of the current density profile evolution in discharges where the bootstrap current is expected to be significant. The changes predicted in the total current profile have been confirmed by comparison with experimental results. (author) 8 refs., 6 figs

  1. Time evolution of the bootstrap current profile in LHD plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji; Kawaoto, K.; Watanabe, K.Y.

    2008-10-01

    The direction of the bootstrap current is inverted in the outward shifted plasmas of the Large Helical Device (LHD). In order to verify the reliability of the theoretical models of the bootstrap current in helical plasmas, the rotational transform profiles are observed by the Motional Stark Effect measurement in the bootstrap current carrying plasmas of the LHD, and they are compared with the numerical simulations of the toroidal current profile including the bootstrap current. Since the toroidal current profile is not in the steady state in these plasmas, taking care of the inversely induced component of the toroidal current and finite duration of the resistive diffusion of the toroidal current are important in the numerical simulations. Reasonable agreement can be obtained between the rotational transform profiles measured in the experiments and those calculated in the numerical simulations. (author)

  2. Selfconsistent RF driven and bootstrap currents

    International Nuclear Information System (INIS)

    Peysson, Y.

    2002-01-01

    This important problem selfconsistent calculations of the bootstrap current with RF, taking into account possible synergistic effects, is addressed for the case of lower hybrid (LH) and electron cyclotron (EC) current drive by numerically solving the electron drift kinetic equation. Calculations are performed using a new, fast, and fully implicit code which solves the 3-D relativistic Fokker-Planck equation with quasilinear diffusion. These calculations take into account the perturbations to the electron distribution due to radial drifts induced by magnetic field gradient and curvature. While the synergism between bootstrap and LH-driven current does not seem to exceed 15%, it can reach 30-40% with the EC-driven current for some plasma parameters. In addition, considerable current can be generated by judiciously using ECCD with the Okhawa effect. This is in contrast to the usual ECCD which tries to avoid it. A detailed analysis of the numerical results is presented using a simplified analytical model which incorporates the underlying physical processes. (author)

  3. The nonparametric bootstrap for the current status model

    NARCIS (Netherlands)

    Groeneboom, P.; Hendrickx, K.

    2017-01-01

    It has been proved that direct bootstrapping of the nonparametric maximum likelihood estimator (MLE) of the distribution function in the current status model leads to inconsistent confidence intervals. We show that bootstrapping of functionals of the MLE can however be used to produce valid

  4. The Impact of Beam Deposition on Bootstrap Current of Fast Ion Produced by Neutral Beam Tangential Injection

    International Nuclear Information System (INIS)

    Huang Qian-Hong; Gong Xue-Yu; Lu Xing-Qiang; Yu Jun; Cao Jin-Jia

    2015-01-01

    The density profile of fast ions arising from a tangentially injected diffuse neutral beam in tokamak plasma is calculated. The effects of mean free paths and beam tangency radius on the density profile are discussed under typical HL-2A plasmas parameters. The results show that the profile of fast ions is strongly peaked at the center of the plasma when the mean free path at the maximum deuteron density is larger than the minor radius, while the peak value decreases when the mean free path at the maximum deuteron density is larger than twice that of the minor radius due to the beam transmission loss. Moreover, the bootstrap current of fast ions for various mean free paths at the maximum deuteron density is calculated and its density is proved to be closely related to the deposition of the neutral beam. With the electron return current considered, the net current density obviously decreases. Meanwhile, the peak central fast ion density increases when the beam tangency radius approaches the major radius, and the net bootstrap current increases rapidly with the increasing beam tangency radius. (paper)

  5. Energy confinement of tokamak plasma with consideration of bootstrap current effect

    International Nuclear Information System (INIS)

    Yuan Ying; Gao Qingdi

    1992-01-01

    Based on the η i -mode induced anomalous transport model of Lee et al., the energy confinement of tokamak plasmas with auxiliary heating is investigated with consideration of bootstrap current effect. The results indicate that energy confinement time increases with plasma current and tokamak major radius, and decreases with heating power, toroidal field and minor radius. This is in reasonable agreement with the Kaye-Goldston empirical scaling law. Bootstrap current always leads to an improvement of energy confinement and the contraction of inversion radius. When γ, the ratio between bootstrap current and total plasma current, is small, the part of energy confinement time contributed from bootstrap current will be about γ/2

  6. Control of bootstrap current in the pedestal region of tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Shaing, K. C. [Institute for Space and Plasma Sciences, National Cheng Kung University, Tainan City 70101, Taiwan (China); Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796 (United States); Lai, A. L. [Institute for Space and Plasma Sciences, National Cheng Kung University, Tainan City 70101, Taiwan (China)

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by the electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.

  7. On transport and the bootstrap current in toroidal plasmas

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The recently reported observation of the bootstrap current in a tokamak plasma highlights the problem of reconciling this neoclassical effect with the anomalous (i.e., non-neoclassical) electron thermal transport. This Comment reviews the bootstrap current and considers the implications of a self-consistent modification of neoclassical theory based on an enhanced electron-electron interaction. (author)

  8. Definition of total bootstrap current in tokamaks

    International Nuclear Information System (INIS)

    Ross, D.W.

    1995-01-01

    Alternative definitions of the total bootstrap current are compared. An analogous comparison is given for the ohmic and auxiliary currents. It is argued that different definitions than those usually employed lead to simpler analyses of tokamak operating scenarios

  9. Neoclassical bootstrap current and transport in optimized stellarator configurations

    International Nuclear Information System (INIS)

    Maassberg, H.; Lotz, W.; Nuehrenberg, J.

    1993-01-01

    The neoclassical bootstrap current properties of optimized stellarators are analyzed in the relevant mean-free-path regimes and compared with the neoclassical transport properties. Two methods---global Monte Carlo simulation [Phys. Fluids 31, 2984 (1988)], and local analysis with the drift kinetic equation solver code [Phys. Fluids B 1, 563 (1989)]---are employed and good agreement is obtained. Full consistency with the elimination of the bootstrap current and favorable neoclassical transport are found

  10. Introduction of Bootstrap Current Reduction in the Stellarator Optimization Using the Algorithm DAB; Introducción de la reducción actual de bootstrap en la optimización de stellarator utilizando el algoritmo DAB

    Energy Technology Data Exchange (ETDEWEB)

    Castejón, F.; Gómez-Iglesias, A.; Velasco, J. L.

    2015-07-01

    This work is devoted to introduce new optimization criterion in the DAB (Distributed Asynchronous Bees) code. With this new criterion, we have now in DAB the equilibrium and Mercier stability criteria, the minimization of Bxgrad(B) criterion, which ensures the reduction of neoclassical transport and the improvement of the confinement of fast particles, and the reduction of bootstrap current. We have started from a neoclassically optimised configuration of the helias type and imposed the reduction of bootstrap current. The obtained configuration only presents a modest reduction of total bootstrap current, but the local current density is reduced along the minor radii. Further investigations are developed to understand the reason of this modest improvement.

  11. Validation of neoclassical bootstrap current models in the edge of an H-mode plasma.

    Science.gov (United States)

    Wade, M R; Murakami, M; Politzer, P A

    2004-06-11

    Analysis of the parallel electric field E(parallel) evolution following an L-H transition in the DIII-D tokamak indicates the generation of a large negative pulse near the edge which propagates inward, indicative of the generation of a noninductive edge current. Modeling indicates that the observed E(parallel) evolution is consistent with a narrow current density peak generated in the plasma edge. Very good quantitative agreement is found between the measured E(parallel) evolution and that expected from neoclassical theory predictions of the bootstrap current.

  12. A condition for small bootstrap current in three-dimensional toroidal configurations

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, M. I., E-mail: mikhaylov-mi@nrcki.ru [National Russian Research Center Kurchatov Institute (Russian Federation); Nührenberg, J.; Zille, R. [Max-Planck-Institut für Plasmaphysik (Germany)

    2016-11-15

    It is shown that, if the maximum of the magnetic field strength on a magnetic surface in a threedimensional magnetic confinement configuration with stellarator symmetry constitutes a line that is orthogonal to the field lines and crosses the symmetry line, then the bootstrap current density is smaller compared to that in quasi-axisymmetric (qa) [J. Nührenberg et al., in Proc. of Joint Varenna−Lausanne Int. Workshop on Theory of Fusion Plasmas, Varenna, 1994, p. 3] and quasi-helically (qh) symmetric [J. Nührenberg and R. Zille, Phys. Lett. A 129, 113 (1988)] configurations.

  13. Analytic description of tokamak equilibrium sustained by high fraction bootstrap current

    International Nuclear Information System (INIS)

    Shi Bingren

    2002-01-01

    Recently, to save the current drive power and to obtain more favorable confinement merit for tokamak reactor, large faction bootstrap current sustained equilibrium has attracted great interests both theoretically and experimentally. An powerful expanding technique and the tokamak ordering are used to expand the Grad-Shafranov equation to obtain a series of ordinary differential equations which allow for different sets of input parameters. The fully bootstrap current sustained tokamak equilibria are then solved analytically

  14. Effect of bootstrap current on MHD equilibrium beta limit in heliotron plasmas

    International Nuclear Information System (INIS)

    Watanabe, K.Y.

    2001-01-01

    The effect of bootstrap current on the beta limit of MHD equilibria is studied systematically by an iterative calculation of MHD equilibrium and the consistent bootstrap current in high beta heliotron plasmas. The LHD machine is treated as a standard configuration heliotron with an L=2 planar axis. The effects of vacuum magnetic configurations, pressure profiles and the vertical field control method are studied. The equilibrium beta limit with consistent bootstrap current is quite sensitive to the magnetic axis location for finite beta, compared with the currentless cases. For a vacuum configuration with the magnetic axis shifted inwards in the torus, even in the high beta regimes, the bootstrap current flows to increase the rotational transform, leading to an increase in the equilibrium beta limit. On the contrary, for a vacuum configuration with the magnetic axis shifted outwards in the torus, even in the low beta regimes, the bootstrap current flows so as to reduce the rotational transform; therefore, there is an acceleration of the Shafranov shift increase as beta increases, leading to a decrease in the equilibrium beta limit. The pressure profiles and vertical field control methods influence the equilibrium beta limit through the location of the magnetic axis for finite beta. These characteristics are independent of both device parameters, such as magnetic field strength, and device size in the low collisional regime. (author)

  15. Physics issues of high bootstrap current tokamaks

    International Nuclear Information System (INIS)

    Ozeki, T.; Azumi, M.; Ishii, Y.

    1997-01-01

    Physics issues of a tokamak plasma with a hollow current profile produced by a large bootstrap current are discussed based on experiments in JT-60U. An internal transport barrier for both ions and electrons was obtained just inside the radius of zero magnetic shear in JT-60U. Analysis of the toroidal ITG microinstability by toroidal particle simulation shows that weak and negative shear reduces the toroidal coupling and suppresses the ITG mode. A hard beta limit was observed in JT-60U negative shear experiments. Ideal MHD mode analysis shows that the n = 1 pressure-driven kink mode is a plausible candidate. One of the methods to improve the beta limit against the kink mode is to widen the negative shear region, which can induce a broader pressure profile resulting in a higher beta limit. The TAE mode for the hollow current profile is less unstable than that for the monotonic current profile. The reason is that the continuum gaps near the zero shear region are not aligned when the radius of q min is close to the region of high ∇n e . Finally, a method for stable start-up for a plasma with a hollow current profile is describe, and stable sustainment of a steady-state plasma with high bootstrap current is discussed. (Author)

  16. Analysis of Electron Thermal Diffusivity and Bootstrap Current in Ohmically Heated Discharges after Boronization in the HT-7 Tokamak

    International Nuclear Information System (INIS)

    Zhang, X.M.; Wan, B.N.

    2005-01-01

    Significant improvements of plasma performance after ICRF boronization have been achieved in the full range of HT-7 operation parameters. Electron power balance is analyzed in the steady state ohmic discharges of the HT-7 tokamak. The ratio of the total radiation power to ohmic input power increases with increasing the central line-averaged electron density, but decreases with plasma current. It is obviously decreased after wall conditioning. Electron heat diffusivity χ e deduced from the power balance analysis is reduced throughout the main plasma after boronization. χ e decreases with increasing central line-averaged electron density in the parameter range of our study. After boronization, the plasma current profile is broadened and a higher current can be easily obtained on the HT-7 tokamak experiment. It is expected that the fact that the bootstrap current increases after boronization will explain these phenomena. After boronization, the plasma pressure gradient and the electron temperature near the boundary are larger than before, these factors influencing that the ratio of bootstrap current to total plasma current increases from several percent to above 10%

  17. Electric conductivity and bootstrap current in tokamak

    International Nuclear Information System (INIS)

    Mao Jianshan; Wang Maoquan

    1996-12-01

    A modified Ohm's law for the electric conductivity calculation is presented, where the modified ohmic current can be compensated by the bootstrap current. A comparison of TEXT tokamak experiment with the theories shows that the modified Ohm's law is a more close approximation to the tokamak experiments than the classical and neoclassical theories and can not lead to the absurd result of Z eff <1, and the extended neoclassical theory would be not necessary. (3 figs.)

  18. Interaction of bootstrap-current-driven magnetic islands

    International Nuclear Information System (INIS)

    Hegna, C.C.; Callen, J.D.

    1991-10-01

    The formation and interaction of fluctuating neoclassical pressure gradient driven magnetic islands is examined. The interaction of magnetic islands produces a stochastic region around the separatrices of the islands. This interaction causes the island pressure profile to be broadened, reducing the island bootstrap current and drive for the magnetic island. A model is presented that describes the magnetic topology as a bath of interacting magnetic islands with low to medium poloidal mode number (m congruent 3-30). The islands grow by the bootstrap current effect and damp due to the flattening of the pressure profile near the island separatrix caused by the interaction of the magnetic islands. The effect of this sporadic growth and decay of the islands (''magnetic bubbling'') is not normally addressed in theories of plasma transport due to magnetic fluctuations. The nature of the transport differs from statistical approaches to magnetic turbulence since the radial step size of the plasma transport is now given by the characteristic island width. This model suggests that tokamak experiments have relatively short-lived, coherent, long wavelength magnetic oscillations present in the steep pressure-gradient regions of the plasma. 42 refs

  19. Stationary high confinement plasmas with large bootstrap current fraction in JT-60U

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Fujita, T.; Ide, S.; Isayama, A.; Takechi, M.; Suzuki, T.; Takenaga, H.; Oyama, N.; Kamada, Y.

    2005-01-01

    This paper reports the results of the progress in stationary discharges with a large bootstrap current fraction in JT-60U towards steady-state tokamak operation. In the weak shear plasma regime, high-β p ELMy H-mode discharges have been optimized under nearly full non-inductive current drive conditions by the large bootstrap current fraction (f BS ∼ 45%) and the beam driven current fraction (f BD ∼ 50%), which was sustained for 5.8 s in the stationary condition. This duration corresponds to ∼26τ E and ∼2.8τ R , which was limited by the pulse length of negative-ion-based neutral beams. The high confinement enhancement factor H 89 ∼ 2.2 (HH 98y2 ∼ 1.0) was obtained and the profiles of current and pressure reached the stationary condition. In the reversed shear plasma regime, a large bootstrap current fraction (f BS ∼ 75%) has been sustained for 7.4 s under nearly full non-inductive current drive conditions. This duration corresponds to ∼16τ E and ∼2.7τ R . The high confinement enhancement factor H 89 ∼ 3.0 (HH 98y2 ∼ 1.7) was also sustained, and the profiles of current and pressure reached the stationary condition. The large bootstrap current and the off-axis beam driven current sustained this reversed q profile. This duration was limited only by the duration of the neutral beam injection

  20. Stationary, high bootstrap fraction plasmas in DIII-D without inductive current control

    International Nuclear Information System (INIS)

    Politzer, P.A.; Hyatt, A.W.; Luce, T.C.; Prater, R.; Turnbull, A.D.; Ferron, J.R.; Greenfield, C.M.; La Haye, R.J.; Petty, C.C.; Perkins, F.W.; Brennan, D.P.; Lazarus, E.A.; Jayakumar, J.; Wade, M.R.

    2005-01-01

    We have initiated an experimental program to address some of the questions associated with operation of a tokamak with high bootstrap current fraction under high performance conditions, without assistance from a transformer. In these discharges stationary (or slowly improving) conditions are maintained for > 3.7 s at β N ∼ β p ≤ 3.3. The achievable current and pressure are limited by a relaxation oscillation, involving growth and collapse of an ITB at ρ ≥ 0.6. The pressure gradually increases and the current profile broadens throughout the discharge. Eventually the plasma reaches a more stable, high confinement (H89P ∼ 3) state. Characteristically these plasmas have 65%-85% bootstrap current, 15%-30% NBCD, and 0%-10% ECCD. (author)

  1. Integrated modeling of plasma ramp-up in DIII-D ITER-like and high bootstrap current scenario discharges

    Science.gov (United States)

    Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team

    2018-04-01

    Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.

  2. ELM phenomenon as an interaction between bootstrap-current driven peeling modes and pressure-driven ballooning modes

    International Nuclear Information System (INIS)

    Saarelma, S.; Kurki-Suonio, T.; Guenter, S.; Zehrfeld, H.-P.

    2000-01-01

    An ELMy ASDEX Upgrade plasma equilibrium is reconstructed taking into account the bootstrap current. The peeling mode stability of the equilibrium is numerically analysed using the GATO [1] code, and it is found that the bootstrap current can drive the plasma peeling mode unstable. A high-n ballooning mode stability analysis of the equilibria revealed that, while destabilizing the peeling modes, the bootstrap current has a stabilizing effect on the ballooning modes. A combination of these two instabilities is a possible explanation for the type I ELM phenomenon. A triangularity scan showed that increasing triangularity stabilizes the peeling modes and can produce ELM-free periods observed in the experiments. (author)

  3. The effect of plasma collisionality on pedestal current density formation in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D M; Leonard, A W; Osborne, T H; Groebner, R J; West, W P; Burrell, K H [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States)

    2006-05-15

    The evolution and performance limits for the pedestal in H-mode are dependent on the two main drive terms for instability: namely the edge pressure gradient and the edge current density. These terms are naturally coupled though neoclassical (Pfirsch-Schluter and bootstrap) effects. On DIII-D, local measurements of the edge current density are made using an injected lithium beam in conjunction with Zeeman polarimetry and compared with pressure profile measurements made with other diagnostics. These measurements have confirmed the close spatial and temporal correlation that exists between the measured current density and the edge pressure in H- and QH-mode pedestals, where substantial pressure gradients exist. In the present work we examine the changes in the measured edge current for DIII-D pedestals which have a range of values for the ion and electron collisionalities {l_brace}{upsilon}{sub i}*,{upsilon}{sub e}*{r_brace} due to fuelling effects. Such changes in the collisionality in the edge are expected to significantly alter the level of the bootstrap current from the value predicted from the collisionless limit and therefore should correspondingly alter the pedestal stability limits. We find a clear decrease in measured current as {nu} increases, even for discharges having similar edge pressure gradients.

  4. Extended theory of main ion and impurity rotation and bootstrap current in a shear layer

    International Nuclear Information System (INIS)

    Kim, Y.B.; Hinton, F.L.; St. John, H.; Taylor, T.S.; Wroblewski, D.

    1993-11-01

    In this paper, standard neoclassical theory has been extended into the shear layer. Main ion and impurity ion rotation velocity and bootstrap current within shear layer in H-mode are discussed. Inside the H-mode shear layer, standard neoclassical theory is not valid since the ion poloidal gyroradius becomes comparable to pressure gradient and electric field gradient scale length. To allow for arbitrary ratio of ρθi/L n and ρθi/L Er a new kinetic theory of main ion species within electric field shear layer has been developed with the assumption that ρθi/R o is still small. As a consequence, both impurity flows and bootstrap current have to be modified. We present modified expressions of impurity flows and bootstrap current are presented neglecting ion temperature gradient. Comparisons with DIII-D measurements are also discussed

  5. Axisymmetric MHD simulation of ITB crash and following disruption dynamics of Tokamak plasmas with high bootstrap current

    International Nuclear Information System (INIS)

    Takei, Nahoko; Tsutsui, Hiroaki; Tsuji-Iio, Shunji; Shimada, Ryuichi; Nakamura, Yukiharu; Kawano, Yasunori; Ozeki, Takahisa; Tobita, Kenji; Sugihara, Masayoshi

    2004-01-01

    Axisymmetric MHD simulation using the Tokamak Simulation Code demonstrated detailed disruption dynamics triggered by a crash of internal transport barrier in high bootstrap current, high β, reversed shear plasmas. Self-consistent time-evolutions of ohmic current bootstrap current and induced loop voltage profiles inside the disrupting plasma were shown from a view point of disruption characterization and mitigation. In contrast with positive shear plasmas, a particular feature of high bootstrap current reversed shear plasma disruption was computed to be a significant change of plasma current profile, which is normally caused due to resistive diffusion of the electric field induced by the crash of internal transport barrier in a region wider than the internal transport barrier. Discussion based on the simulation results was made on the fastest record of the plasma current quench observed in JT-60U reversed shear plasma disruptions. (author)

  6. Comparison of bootstrap current and plasma conductivity models applied in a self-consistent equilibrium calculation for Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Maria Celia Ramos; Ludwig, Gerson Otto [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: mcr@plasma.inpe.br

    2004-07-01

    Different bootstrap current formulations are implemented in a self-consistent equilibrium calculation obtained from a direct variational technique in fixed boundary tokamak plasmas. The total plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schlueter, and the neoclassical Ohmic and bootstrap currents. The Ohmic component is calculated in terms of the neoclassical conductivity, compared here among different expressions, and the loop voltage determined consistently in order to give the prescribed value of the total plasma current. A comparison among several bootstrap current models for different viscosity coefficient calculations and distinct forms for the Coulomb collision operator is performed for a variety of plasma parameters of the small aspect ratio tokamak ETE (Experimento Tokamak Esferico) at the Associated Plasma Laboratory of INPE, in Brazil. We have performed this comparison for the ETE tokamak so that the differences among all the models reported here, mainly regarding plasma collisionality, can be better illustrated. The dependence of the bootstrap current ratio upon some plasma parameters in the frame of the self-consistent calculation is also analysed. We emphasize in this paper what we call the Hirshman-Sigmar/Shaing model, valid for all collisionality regimes and aspect ratios, and a fitted formulation proposed by Sauter, which has the same range of validity but is faster to compute than the previous one. The advantages or possible limitations of all these different formulations for the bootstrap current estimate are analysed throughout this work. (author)

  7. Modeling, measurement, and 3-D equilibrium reconstruction of the bootstrap current in the Helically Symmetric Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J. C.; Talmadge, J. N.; Anderson, D. T. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Hanson, J. D. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2014-09-15

    The bootstrap current for three electron cyclotron resonance heated plasma scenarios in a quasihelically symmetric stellarator (the Helically Symmetric Experiment) are analyzed and compared to a neoclassical transport code PENTA. The three conditions correspond to 50 kW input power with a resonance that is off-axis, 50 kW on-axis heating and 100 kW on-axis heating. When the heating location was moved from off-axis to on-axis with 50 kW heating power, the stored energy and the extrapolated steady-state current were both observed to increase. When the on-axis heating power was increased from 50 kW to 100 kW, the stored energy continued to increase while the bootstrap current slightly decreased. This trend is qualitatively in agreement with the calculations which indicate that a large positive electric field for the 100 kW case was driving the current negative in a small region close to the magnetic axis and accounting for the decrease in the total integrated current. This trend in the calculations is only observed to occur when momentum conservation between particle species is included. Without momentum conservation, the calculated bootstrap current increases monotonically. We show that the magnitude of the bootstrap current as calculated by PENTA agrees better with the experiment when momentum conservation between plasma species is included in the calculation. The total current was observed in all cases to flow in a direction to unwind the transform, unlike in a tokamak in which the bootstrap current adds to the transform. The 3-D inductive response of the plasma is simulated to predict the evolution of the current profile during the discharge. The 3-D equilibrium reconstruction code V3FIT is used to reconstruct profiles of the plasma pressure and current constrained by measurements with a set of magnetic diagnostics. The reconstructed profiles are consistent with the measured plasma pressure profile and the simulated current profile when the

  8. Lower-hybrid counter current drive for edge current density modification in DIII-D

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Nevins, W.M.; Porkolab, M.; Bonoli, P.T.; Harvey, R.W.

    1994-01-01

    Each of the Advanced Tokamak operating modes in DIII-D is thought to have a distinctive current density profile. So far these modes have only been achieved transiently through experiments which ramp the plasma current and shape. Extension of these modes to steady state requires non-inductive current profile control, e.g., with lower hybrid current drive (LHCD). Calculations of LHCD have been done for DIII-D using the ACCOME and CQL3D codes, showing that counter driven current at the plasma edge can cancel some of the undesirable edge bootstrap current and potentially extend the VH-mode. Results will be presented for scenarios using 2.45 GHz LH waves launched from both the midplane and off-axis ports. The sensitivity of the results to injected power, n e and T e , and launched wave spectrum will also be shown

  9. Lower hybrid current drive at ITER-relevant high plasma densities

    International Nuclear Information System (INIS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Panaccione, L.; Pericoli-Ridolfini, V.; Tuccillo, A. A.; Tudisco, O.; Calabro, G.

    2009-01-01

    Recent experiments indicated that a further non-inductive current, besides bootstrap, should be necessary for developing advanced scenario for ITER. The lower hybrid current drive (LHCD) should provide such tool, but its effectiveness was still not proved in operations with ITER-relevant density of the plasma column periphery. Progress of the LH deposition modelling is presented, performed considering the wave physics of the edge, and different ITER-relevant edge parameters. Operations with relatively high edge electron temperatures are expected to reduce the LH || spectral broadening and, consequently, enabling the LH power to propagate also in high density plasmas ( || is the wavenumber component aligned to the confinement magnetic field). New results of FTU experiments are presented, performed by following the aforementioned modeling: they indicate that, for the first time, the LHCD conditions are established by operating at ITER-relevant high edge densities.

  10. Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime

    Science.gov (United States)

    Ren, Q.

    2015-11-01

    Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA

  11. A simulation study on burning profile tailoring of steady state, high bootstrap current tokamaks

    International Nuclear Information System (INIS)

    Nakamura, Y.; Takei, N.; Tobita, K.; Sakamoto, Y.; Fujita, T.; Fukuyama, A.; Jardin, S.C.

    2007-01-01

    From the aspect of fusion burn control in steady state DEMO plant, the significant challenges are to maintain its high power burning state of ∝3-5 GW without burning instability, hitherto well-known as ''thermal stability'', and also to keep its desired burning profile relevant with internal transport barrier (ITB) that generates high bootstrap current. The paper presents a simulation modeling of the burning stability coupled with the self-ignited fusion burn and the structure-formation of the ITB. A self-consistent simulation, including a model for improved core energy confinement, has pointed out that in the high power fusion DEMO plant there is a close, nonlinear interplay between the fusion burnup and the current source of non-inductive, ITB-generated bootstrap current. Consequently, as much distinct from usual plasma controls under simulated burning conditions with lower power (<<1 GW), the selfignited fusion burn at a high power burning state of ∝3-5 GW becomes so strongly selforganized that any of external means except fuelling can not provide the effective control of the stable fusion burn.It is also demonstrated that externally applied, inductive current perturbations can be used to control both the location and strength of ITB in a fully noninductive tokamak discharge. We find that ITB structures formed with broad noninductive current sources such as LHCD are more readily controlled than those formed by localized sources such as ECCD. The physics of the inductive current is well known. Consequently, we believe that the controllability of the ITB is generic, and does not depend on the details of the transport model (as long as they can form an ITB for sufficiently reversed magnetic shear q-profile). Through this external control of the magnetic shear profile, we can maintain the ITB strength that is otherwise prone to deteriorate when the bootstrap current increases. These distinguishing capabilities of inductive current perturbation provide steady

  12. Impurities in a non-axisymmetric plasma: Transport and effect on bootstrap current

    Energy Technology Data Exchange (ETDEWEB)

    Mollén, A., E-mail: albertm@chalmers.se [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden); Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Landreman, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Smith, H. M.; Helander, P. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Braun, S. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); German Aerospace Center, Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-11-15

    Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21, 042503 (2014)] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/ν-scaling of the inter-species radial transport coefficient at low collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We also use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Z{sub eff} of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.

  13. Full-wave simulations of current profiles for fast magnetosonic wave current drive

    International Nuclear Information System (INIS)

    Dmitrieva, M.V.; Eriksson, L.-G.; Gambier, D.J.

    1992-12-01

    Numerical simulations of current drive in tokamaks by fast waves (FWCD) have been performed in the range of the ion cyclotron and at lower frequencies via 3-Dimensional numerical code ICTOR. Trapped particles effects were taken into account in the calculation of the fast wave current drive efficiency and the bootstrap current generation. The global efficiency of FWCD if found to be γ∼ 0.1 x 10 20 AW -1 m -2 for the Joint European Torus tokamak (JET) parameters at a central electron temperature of ∼ 10 kev. The efficiency of FWCD for reactor-like plasmas is found to be γ∼0.3 x 10 20 AW -1 m -2 for ∼ 100% of FWCD and γ∼ 1 x 10 20 AW -1 m -2 for FWCD and ∼ 65% of bootstrap in a total current of ∼ 25MA at a 25kev central temperature with a density of ∼10 20 m -3 and major radius R ∼ 8m. Non-inductive current density profiles are studied. Broad FWCD current profiles are obtained for flat reactor temperature and density profiles with bootstrap current concentrated at the plasma edge. The possibility of a steady-state reactor on full wave (FW) with a large fraction of bootstrap current is discussed. It appears to be impractical to rely on such an external current driven (CD) scheme for a reactor as long a γ is less than 2 x 10 20 AW -1 m -2 . (Author)

  14. Bootstrap-Based Inference for Cube Root Consistent Estimators

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Jansson, Michael; Nagasawa, Kenichi

    This note proposes a consistent bootstrap-based distributional approximation for cube root consistent estimators such as the maximum score estimator of Manski (1975) and the isotonic density estimator of Grenander (1956). In both cases, the standard nonparametric bootstrap is known...... to be inconsistent. Our method restores consistency of the nonparametric bootstrap by altering the shape of the criterion function defining the estimator whose distribution we seek to approximate. This modification leads to a generic and easy-to-implement resampling method for inference that is conceptually distinct...... from other available distributional approximations based on some form of modified bootstrap. We offer simulation evidence showcasing the performance of our inference method in finite samples. An extension of our methodology to general M-estimation problems is also discussed....

  15. The bootstrap and Bayesian bootstrap method in assessing bioequivalence

    International Nuclear Information System (INIS)

    Wan Jianping; Zhang Kongsheng; Chen Hui

    2009-01-01

    Parametric method for assessing individual bioequivalence (IBE) may concentrate on the hypothesis that the PK responses are normal. Nonparametric method for evaluating IBE would be bootstrap method. In 2001, the United States Food and Drug Administration (FDA) proposed a draft guidance. The purpose of this article is to evaluate the IBE between test drug and reference drug by bootstrap and Bayesian bootstrap method. We study the power of bootstrap test procedures and the parametric test procedures in FDA (2001). We find that the Bayesian bootstrap method is the most excellent.

  16. Bootstrapping Relational Affordances of Object Pairs using Transfer

    DEFF Research Database (Denmark)

    Fichtl, Severin; Kraft, Dirk; Krüger, Norbert

    2018-01-01

    leverage past knowledge to accelerate current learning (which we call bootstrapping). We learn Random Forest based affordance predictors from visual inputs and demonstrate two approaches to knowledge transfer for bootstrapping. In the first approach (direct bootstrapping), the state-space for a new...... affordance predictor is augmented with the output of previously learnt affordances. In the second approach (category based bootstrapping), we form categories that capture underlying commonalities of a pair of existing affordances and augment the state-space with this category classifier’s output. In addition......, we introduce a novel heuristic, which suggests how a large set of potential affordance categories can be pruned to leave only those categories which are most promising for bootstrapping future affordances. Our results show that both bootstrapping approaches outperform learning without bootstrapping...

  17. Study of the separate exposure method for bootstrap sensitometry on X-ray cine film

    International Nuclear Information System (INIS)

    Matsuda, Eiji; Sanada, Taizo; Hitomi, Go; Kakuba, Koki; Kangai, Yoshiharu; Ishii, Koushi

    1997-01-01

    We developed a new method for bootstrap sensitometry that obtained the characteristic curve from a wide range, with a smaller number of aluminum steps than the conventional bootstrap method. In this method, the density-density curve was obtained from standard and multiplied exposures to the aluminum step wedge and used for bootstrap manipulation. The curve was acquired from two regions separated and added together, e.g., lower and higher photographic density regions. In this study, we evaluated the usefulness of a new cinefluorography method in comparison with N.D. filter sensitometry. The shape of the characteristic curve and the gradient curve obtained with the new method were highly similar to that obtained with N.D. filter sensitometry. Also, the average gradient obtained with the new bootstrap sensitometry method was not significantly different from that obtained by the N.D. filter method. The study revealed that the reliability of the characteristic curve was improved by increasing the measured value used to calculate the density-density curve. This new method was useful for obtaining a characteristic curve with a sufficient density range, and the results suggested that this new method could be applied to specific systems to which the conventional bootstrap method is not applicable. (author)

  18. Exploration of one-dimensional plasma current density profile for K-DEMO steady-state operation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J.S. [Seoul National University, Seoul 151-742 (Korea, Republic of); Jung, L. [National Fusion Research Institute, Daejeon (Korea, Republic of); Byun, C.-S.; Na, D.H.; Na, Y.-S. [Seoul National University, Seoul 151-742 (Korea, Republic of); Hwang, Y.S., E-mail: yhwang@snu.ac.kr [Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-11-01

    Highlights: • One-dimensional current density and its optimization for the K-DEMO are explored. • Plasma current density profile is calculated with an integrated simulation code. • The impact of self and external heating profiles is considered self-consistently. • Current density is identified as a reference profile by minimizing heating power. - Abstract: Concept study for Korean demonstration fusion reactor (K-DEMO) is in progress, and basic design parameters are proposed by targeting high magnetic field operation with ITER-sized machine. High magnetic field operation is a favorable approach to enlarge relative plasma performance without increasing normalized beta or plasma current. Exploration of one-dimensional current density profile and its optimization process for the K-DEMO steady-state operation are reported in this paper. Numerical analysis is conducted with an integrated plasma simulation code package incorporating a transport code with equilibrium and current drive modules. Operation regimes are addressed with zero-dimensional system analysis. One-dimensional plasma current density profile is calculated based on equilibrium, bootstrap current analysis, and thermal transport analysis. The impact of self and external heating profiles on those parameters is considered self-consistently, where thermal power balance and 100% non-inductive current drive are the main constraints during the whole exploration procedure. Current and pressure profiles are identified as a reference steady-state profile by minimizing the external heating power with desired fusion power.

  19. Solution of the statistical bootstrap with Bose statistics

    International Nuclear Information System (INIS)

    Engels, J.; Fabricius, K.; Schilling, K.

    1977-01-01

    A brief and transparent way to introduce Bose statistics into the statistical bootstrap of Hagedorn and Frautschi is presented. The resulting bootstrap equation is solved by a cluster expansion for the grand canonical partition function. The shift of the ultimate temperature due to Bose statistics is determined through an iteration process. We discuss two-particle spectra of the decaying fireball (with given mass) as obtained from its grand microcanonical level density

  20. Extending Bootstrap

    CERN Document Server

    Niska, Christoffer

    2014-01-01

    Practical and instruction-based, this concise book will take you from understanding what Bootstrap is, to creating your own Bootstrap theme in no time! If you are an intermediate front-end developer or designer who wants to learn the secrets of Bootstrap, this book is perfect for you.

  1. VENUS+δf - A bootstrap current calculation module for 3D configurations

    International Nuclear Information System (INIS)

    Isaev, M.Yu.; Brunner, S.; Cooper, W.A.; Tran, T.M.; Bergmann, A.; Beidler, C.D.; Geiger, J.; Maassberg, H.; Nuehrenberg, J.; Schmidt, M.

    2005-01-01

    We present a new 3D code VENUS+δf for neoclassical transport calculations in nonaxisymmetric toroidal systems. Numerical drift orbits from the original VENUS code and the δf method for tokamak transport calculations are combined. The first results obtained with VENUS+δf are compared with neoclassical theory for different collisional regimes in a JT-60 tokamak test case with monoenergetic particles and with a Maxwellian distribution. Benchmarks with DKES code results for the bootstrap current in the W7X configuration as well as further VENUS+δf developments are discussed. (author)

  2. Mobile-first Bootstrap

    CERN Document Server

    Magno, Alexandre

    2013-01-01

    A practical, step-by-step tutorial on developing websites for mobile using Bootstrap.This book is for anyone who wants to get acquainted with the new features available in Bootstrap 3 and who wants to develop websites with the mobile-first feature of Bootstrap. The reader should have a basic knowledge of Bootstrap as a frontend framework.

  3. Bootstrap current control studies in the Wendelstein 7-X stellarator using the free-plasma-boundary version of the SIESTA MHD equilibrium code

    Science.gov (United States)

    Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Sanchez, R.; Tribaldos, V.; Geiger, J.

    2018-02-01

    The recently developed free-plasma-boundary version of the SIESTA MHD equilibrium code (Hirshman et al 2011 Phys. Plasmas 18 062504; Peraza-Rodriguez et al 2017 Phys. Plasmas 24 082516) is used for the first time to study scenarios with considerable bootstrap currents for the Wendelstein 7-X (W7-X) stellarator. Bootstrap currents in the range of tens of kAs can lead to the formation of unwanted magnetic island chains or stochastic regions within the plasma and alter the boundary rotational transform due to the small shear in W7-X. The latter issue is of relevance since the island divertor operation of W7-X relies on a proper positioning of magnetic island chains at the plasma edge to control the particle and energy exhaust towards the divertor plates. Two scenarios are examined with the new free-plasma-boundary capabilities of SIESTA: a freely evolving bootstrap current one that illustrates the difficulties arising from the dislocation of the boundary islands, and a second one in which off-axis electron cyclotron current drive (ECCD) is applied to compensate the effects of the bootstrap current and keep the island divertor configuration intact. SIESTA finds that off-axis ECCD is indeed able to keep the location and phase of the edge magnetic island chain unchanged, but it may also lead to an undesired stochastization of parts of the confined plasma if the EC deposition radial profile becomes too narrow.

  4. TRANSFORMERLESS OPERATION OF DIII-D WITH HIGH BOOTSTRAP FRACTION

    International Nuclear Information System (INIS)

    POLITZER, PA; HYATT, AW; LUCE, TC; MAHDAVI, MA; MURAKAMI, M; PERKINS, FW; PRATER, R; TURNBULL, AD; CASPER, TA; FERRON, JR; JAYAKUMAR, RJ; LAHAYE, RJ; LAZARUS, EA; PETTY, CC; WADE, MR

    2003-01-01

    OAK-B135 The authors have initiated an experimental program to address some of the questions associated with operation of a tokamak with high bootstrap current fraction under high performance conditions, without assistance from a transformer. In these discharges they have maintained stationary (or slowly improving) conditions for > 2.2 s at β N ∼ β p ∼ 2.8. Significant current overdrive, with dI/dt > 50 kA/s and zero or negative voltage, is sustained for over 0.7 s. The overdrive condition is usually ended with the appearance of MHD activity, which alters the profiles and reduces the bootstrap current. Characteristically these plasmas have 65%-80% bootstrap current, 25%-30% NBCD, and 5%-10% ECCD. Fully noninductive operation is essential for steady-state tokamaks. For efficient operation, the bootstrap current fraction must be close to 100%, allowing for a small additional (∼ 10%) external current drive capability to be used for control. In such plasmas the current and pressure profiles are rightly coupled because J(r) is entirely determined by p(r) (or more accurately by the kinetic profiles). The pressure gradient in turn is determined by transport coefficients which depend on the poloidal field profile

  5. Electron cyclotron current drive in the Wendelstein 7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Maassberg, H [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Rome, M [I.N.F.N., I.N.F.M., Dipartimento di Fisica, Universita degli Studi, I-20133 Milan (Italy); Erckmann, V [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Geiger, J [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Laqua, H P [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Marushchenko, N B [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2005-08-01

    High power electron cyclotron current drive (ECCD) experiments in the W7-AS stellarator are analysed. In these net-current-free discharges, the ECCD and the bootstrap current are feedback controlled by an inductive current. Based on the measured density and temperature profiles, the neoclassical predictions of the bootstrap (with the ambipolar radial electric field taken into account) and the inductive current densities as well as the ECCD from the linear adjoint approach with trapped particles included are calculated. For stationary conditions, the current balance is checked. Launch-angle scans at fixed density as well as density scans at fixed launch-angle are described. Low-frequency MHD mode activity is obtained for strong co-ECCD, and for counter-ECCD a ' {iota}-bar approx.= 0 feature' with complete loss of the central confinement is found. The linear ECCD prediction is in reasonable agreement with the current balance except for low-density discharges with highly peaked on-axis deposition, where the ECCD predicted from linear theory exceeds by a factor of about 2 the one from the current balance. Since the bootstrap current is well balanced by the inductive current without ECCD, the linear ECCD overestimate is compared with nonlinear Fokker-Planck (FP) simulations, where two different power loss models are used to reach steady state. These volume-averaged FP simulations cannot describe the ECCD degradation at the low densities.

  6. Electron cyclotron current drive in the Wendelstein 7-AS stellarator

    International Nuclear Information System (INIS)

    Maassberg, H; Rome, M; Erckmann, V; Geiger, J; Laqua, H P; Marushchenko, N B

    2005-01-01

    High power electron cyclotron current drive (ECCD) experiments in the W7-AS stellarator are analysed. In these net-current-free discharges, the ECCD and the bootstrap current are feedback controlled by an inductive current. Based on the measured density and temperature profiles, the neoclassical predictions of the bootstrap (with the ambipolar radial electric field taken into account) and the inductive current densities as well as the ECCD from the linear adjoint approach with trapped particles included are calculated. For stationary conditions, the current balance is checked. Launch-angle scans at fixed density as well as density scans at fixed launch-angle are described. Low-frequency MHD mode activity is obtained for strong co-ECCD, and for counter-ECCD a ' ι-bar approx.= 0 feature' with complete loss of the central confinement is found. The linear ECCD prediction is in reasonable agreement with the current balance except for low-density discharges with highly peaked on-axis deposition, where the ECCD predicted from linear theory exceeds by a factor of about 2 the one from the current balance. Since the bootstrap current is well balanced by the inductive current without ECCD, the linear ECCD overestimate is compared with nonlinear Fokker-Planck (FP) simulations, where two different power loss models are used to reach steady state. These volume-averaged FP simulations cannot describe the ECCD degradation at the low densities

  7. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hager, Robert, E-mail: rhager@pppl.gov; Chang, C. S., E-mail: cschang@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-04-15

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.

  8. Current density tensors

    Science.gov (United States)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  9. Aspect Ratio Scaling of Ideal No-wall Stability Limits in High Bootstrap Fraction Tokamak Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, M.G.; Bell, R.E.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Maingi, R.; Sabbagh, S.A.; Soukhanovskii, V.; Stutman, D.

    2003-01-01

    Recent experiments in the low aspect ratio National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 (2000) 557] have achieved normalized beta values twice the conventional tokamak limit at low internal inductance and with significant bootstrap current. These experimental results have motivated a computational re-examination of the plasma aspect ratio dependence of ideal no-wall magnetohydrodynamic stability limits. These calculations find that the profile-optimized no-wall stability limit in high bootstrap fraction regimes is well described by a nearly aspect ratio invariant normalized beta parameter utilizing the total magnetic field energy density inside the plasma. However, the scaling of normalized beta with internal inductance is found to be strongly aspect ratio dependent at sufficiently low aspect ratio. These calculations and detailed stability analyses of experimental equilibria indicate that the nonrotating plasma no-wall stability limit has been exceeded by as much as 30% in NSTX in a high bootstrap fraction regime

  10. The effective bootstrap

    International Nuclear Information System (INIS)

    Castedo Echeverri, Alejandro; Harling, Benedict von; Serone, Marco

    2016-06-01

    We study the numerical bounds obtained using a conformal-bootstrap method where different points in the plane of conformal cross ratios z and anti z are sampled. In contrast to the most used method based on derivatives evaluated at the symmetric point z= anti z=1/2, we can consistently ''integrate out'' higher-dimensional operators and get a reduced simpler, and faster to solve, set of bootstrap equations. We test this ''effective'' bootstrap by studying the 3D Ising and O(n) vector models and bounds on generic 4D CFTs, for which extensive results are already available in the literature. We also determine the scaling dimensions of certain scalar operators in the O(n) vector models, with n=2,3,4, which have not yet been computed using bootstrap techniques.

  11. The Local Fractional Bootstrap

    DEFF Research Database (Denmark)

    Bennedsen, Mikkel; Hounyo, Ulrich; Lunde, Asger

    We introduce a bootstrap procedure for high-frequency statistics of Brownian semistationary processes. More specifically, we focus on a hypothesis test on the roughness of sample paths of Brownian semistationary processes, which uses an estimator based on a ratio of realized power variations. Our...... new resampling method, the local fractional bootstrap, relies on simulating an auxiliary fractional Brownian motion that mimics the fine properties of high frequency differences of the Brownian semistationary process under the null hypothesis. We prove the first order validity of the bootstrap method...... and in simulations we observe that the bootstrap-based hypothesis test provides considerable finite-sample improvements over an existing test that is based on a central limit theorem. This is important when studying the roughness properties of time series data; we illustrate this by applying the bootstrap method...

  12. Long multiplet bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Cornagliotto, Martina; Lemos, Madalena; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2017-02-15

    Applications of the bootstrap program to superconformal field theories promise unique new insights into their landscape and could even lead to the discovery of new models. Most existing results of the superconformal bootstrap were obtained form correlation functions of very special fields in short (BPS) representations of the superconformal algebra. Our main goal is to initiate a superconformal bootstrap for long multiplets, one that exploits all constraints from superprimaries and their descendants. To this end, we work out the Casimir equations for four-point correlators of long multiplets of the two-dimensional global N=2 superconformal algebra. After constructing the full set of conformal blocks we discuss two different applications. The first one concerns two-dimensional (2,0) theories. The numerical bootstrap analysis we perform serves a twofold purpose, as a feasibility study of our long multiplet bootstrap and also as an exploration of (2,0) theories. A second line of applications is directed towards four-dimensional N=3 SCFTs. In this context, our results imply a new bound c ≥ (13)/(24) for the central charge of such models. A theory that saturates this bound is not known yet.

  13. Long multiplet bootstrap

    International Nuclear Information System (INIS)

    Cornagliotto, Martina; Lemos, Madalena; Schomerus, Volker

    2017-02-01

    Applications of the bootstrap program to superconformal field theories promise unique new insights into their landscape and could even lead to the discovery of new models. Most existing results of the superconformal bootstrap were obtained form correlation functions of very special fields in short (BPS) representations of the superconformal algebra. Our main goal is to initiate a superconformal bootstrap for long multiplets, one that exploits all constraints from superprimaries and their descendants. To this end, we work out the Casimir equations for four-point correlators of long multiplets of the two-dimensional global N=2 superconformal algebra. After constructing the full set of conformal blocks we discuss two different applications. The first one concerns two-dimensional (2,0) theories. The numerical bootstrap analysis we perform serves a twofold purpose, as a feasibility study of our long multiplet bootstrap and also as an exploration of (2,0) theories. A second line of applications is directed towards four-dimensional N=3 SCFTs. In this context, our results imply a new bound c ≥ (13)/(24) for the central charge of such models. A theory that saturates this bound is not known yet.

  14. Long multiplet bootstrap

    Science.gov (United States)

    Cornagliotto, Martina; Lemos, Madalena; Schomerus, Volker

    2017-10-01

    Applications of the bootstrap program to superconformal field theories promise unique new insights into their landscape and could even lead to the discovery of new models. Most existing results of the superconformal bootstrap were obtained form correlation functions of very special fields in short (BPS) representations of the superconformal algebra. Our main goal is to initiate a superconformal bootstrap for long multiplets, one that exploits all constraints from superprimaries and their descendants. To this end, we work out the Casimir equations for four-point correlators of long multiplets of the two-dimensional global N=2 superconformal algebra. After constructing the full set of conformal blocks we discuss two different applications. The first one concerns two-dimensional (2,0) theories. The numerical bootstrap analysis we perform serves a twofold purpose, as a feasibility study of our long multiplet bootstrap and also as an exploration of (2,0) theories. A second line of applications is directed towards four-dimensional N=3 SCFTs. In this context, our results imply a new bound c≥ 13/24 for the central charge of such models, which we argue cannot be saturated by an interacting SCFT.

  15. The effective bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Castedo Echeverri, Alejandro [SISSA, Trieste (Italy); INFN, Trieste (Italy); Harling, Benedict von [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Serone, Marco [SISSA, Trieste (Italy); INFN, Trieste (Italy); ICTP, Trieste (Italy)

    2016-06-15

    We study the numerical bounds obtained using a conformal-bootstrap method where different points in the plane of conformal cross ratios z and anti z are sampled. In contrast to the most used method based on derivatives evaluated at the symmetric point z= anti z=1/2, we can consistently ''integrate out'' higher-dimensional operators and get a reduced simpler, and faster to solve, set of bootstrap equations. We test this ''effective'' bootstrap by studying the 3D Ising and O(n) vector models and bounds on generic 4D CFTs, for which extensive results are already available in the literature. We also determine the scaling dimensions of certain scalar operators in the O(n) vector models, with n=2,3,4, which have not yet been computed using bootstrap techniques.

  16. Mass transport and the bootstrap current from Ohm's law in steady-state tokamaks

    International Nuclear Information System (INIS)

    Kim, J.-S.; Greene, J.M.

    1989-01-01

    The consequences of mass conservation and Ohm's law are examined for steady state Tokamaks. In a Tokamak, magnetofluid-dynamic waves rapidly equilibrate pressure and toroidal field along magnetic surfaces. As a result, the detailed current distribution is determined by the flux surface averaged poloidal and toroidal currents. The electrons that carry the plasma current are impeded in their motion by interactions with ions, which is resistivity and its generalizations, and by interactions with electrons, which is viscosity and its generalizations. The important viscous terms arise from the interaction between trapped and untrapped electrons, and so viscosity acts by impeding poloidal current. properly chosen, the results of neoclassical theory are The neoclassical viscous coefficient is here regarded as less likely than Spitzer conductivity to be experimentally relevant in a turbulent Tokamak. Thus, the toroidal Ohm's law is regarded as being more reliable than the poloidal Ohm's law. A combination of toroidal and poloidal Ohm's law, namely the component parallel to the magnetic field, eliminates the influence of plasma fueling, and directly relates the bootstrap current and the pressure gradient. The latter is the usual relation, but, since i

  17. Study of neoclassical transport and bootstrap current for W7-X in the 1/upsilon regime, using results from the PIES code

    International Nuclear Information System (INIS)

    Nemov, V V; Kalyuzhnyj, V N; Kasilov, S V; Drevlak, M; Nuehrenberg, J; Kernbichler, W; Reiman, A; Monticello, D

    2004-01-01

    For the magnetic field of the Wendelstein 7-X (W7-X) standard high-mirror configuration, computed by the PIES code, taking into account real coil geometry, neoclassical transport and bootstrap current are analysed in the 1/upsilon regime using methods based on the integration along magnetic field lines in a given magnetic field. The zero beta and (beta) = 1% cases are studied. The results are compared to the corresponding results for the vacuum magnetic field directly produced by modular coils. A significant advantage of W7-X over a conventional stellarator resulting from reduced neoclassical transport and from reduced bootstrap current follows from the computations although the neoclassical transport is somewhat larger than that previously obtained for the ideal W7-X model configuration

  18. Electron Cyclotron Current Drive Compensation of the Bootstrap Current in Quasi-symmetric Reactor Devices

    International Nuclear Information System (INIS)

    Margalet, S. D.; Cooper, W. A.; Volpe, F.; Castejon, F.

    2005-01-01

    In magnetic confinement devices, the inhomogeneity of the confining magnetic field along a magnetic field line generates the trapping of particles within local magnetic wells. One of the consequences of the trapped particles is the generation of a current, known as the bootstrap current (BC), whose direction depends on the nature of the magnetic trapping. The BC provides an extra contribution to the poloidal component of the confining magnetic field. The variation of the poloidal component produces the alteration of the winding of the magnetic field lines around the flux surfaces quantified by the rotational transform. When reaches low rational values, it can trigger the generation of ideal MHD instabilities. Therefore, the BC may be responsible for the destabilisation of the configuration [1]. Having established the potentially dangerous implication of the BC, principally, in reactor prototypes, a method to compensate its harmful effects is proposed. It consists of the modelling of the current driven by externally launched ECWs within the plasma to compensate the effects of the BC. This method is flexible enough to allow the identification of the appropriate scenarios in which to generate the required CD depending on the nature of the confining magnetic field and the specific plasma parameters of the configuration. Both the BC and the CD calculations are included in a self-consistent scheme which leads to the computation of a stable BC+CD-consistent MHD equilibrium. This procedure is applied in this paper to simulate the required CD to stabilise a QAS and a QHS reactor prototypes. The estimation of the input power required and the effect of the driven current on the final equilibrium of the system is performed for several relevant scenarios and wave polarisations providing various options of stabilising driven currents. (Author)

  19. The wild tapered block bootstrap

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    In this paper, a new resampling procedure, called the wild tapered block bootstrap, is introduced as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on dependent heterogeneous data. The method consists in tapering each overlapping block...... of the series first, the applying the standard wild bootstrap for independent and heteroscedastic distrbuted observations to overlapping tapered blocks in an appropriate way. Its perserves the favorable bias and mean squared error properties of the tapered block bootstrap, which is the state-of-the-art block......-order asymptotic validity of the tapered block bootstrap as well as the wild tapered block bootstrap approximation to the actual distribution of the sample mean is also established when data are assumed to satisfy a near epoch dependent condition. The consistency of the bootstrap variance estimator for the sample...

  20. Robust block bootstrap panel predictability tests

    NARCIS (Netherlands)

    Westerlund, J.; Smeekes, S.

    2013-01-01

    Most panel data studies of the predictability of returns presume that the cross-sectional units are independent, an assumption that is not realistic. As a response to this, the current paper develops block bootstrap-based panel predictability tests that are valid under very general conditions. Some

  1. Sediment Curve Uncertainty Estimation Using GLUE and Bootstrap Methods

    Directory of Open Access Journals (Sweden)

    aboalhasan fathabadi

    2017-02-01

    3000 times. Sediment rating curves equation was fitted to each sampled suspended sediment and discharge data sets. Using these sediment rating curve and their residual suspended sediment concentration were calculate for test data. Finally using the 2.5 and 97.5 percentile of the B bootstrap realizations, 95% bootstrap prediction intervals were predicted. Results and Discussion: Results showed that Motorkhane and MiyaneTonelShomare 7 stations were best fitted by a sigmoid function and Stor and Glinak stations were best fitted by second order polynomial and liner function, respectively The first 50 of the B bootstrapped curves were plotted for all stations.with respect to these plots implied that bootstrapped curves more scattered whereas observed data were less. The suspended sediment curve parameters estimated more accurately where, the suspended sediments were sampled more, as a result of reduced uncertainty in estimated suspended sediment concentration due to parameter uncertainty. In addition to sampling density bootstrapped curves, uncertainty depends on the curve shape. For GLUE methodology to assess the impact of threshold values on the uncertainty results, threshold values systematically changed from 0.1 to 0.45. Study results showed that 95% confidence intervals are sensitive to the selected threshold values and higher threshold values will result in an increasing 95% confidence interval. However, the highest 95% confidence intervals obtained by GLUE method (when threshold value was set to 0.1 was little than those values obtained by Bootstrap. Conclusions: The uncertainty of sediment rating curves was addressed in this study by considering two different procedures based on the GLUE and bootstrap methods for four stations in Sefidrod watershed.Results showed that nonlinear equation fitted log-transformed values of sediment concentration and discharge better than linear equation. Uncertainty result using GLUE depend on chosen threshold values. As threshold

  2. Adaptive Kernel In The Bootstrap Boosting Algorithm In KDE ...

    African Journals Online (AJOL)

    This paper proposes the use of adaptive kernel in a bootstrap boosting algorithm in kernel density estimation. The algorithm is a bias reduction scheme like other existing schemes but uses adaptive kernel instead of the regular fixed kernels. An empirical study for this scheme is conducted and the findings are comparatively ...

  3. High beta, Long Pulse, Bootstrap Sustained Scenarios on the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Gates, D.A.

    2003-01-01

    Long-pulse, high-beta scenarios have been established on the National Spherical Torus Experiment (NSTX). Beta(sub)t(always equal to 2μ(sub)0· /B 2 (sub)t0) ∼ 35% has been achieved during transient discharges. The machine improvements that lead to these results, including error field reduction and high-temperature bakeout of plasma-facing components are described. The highest Beta(sub)t plasmas have high triangularity (delta = 0.8) and elongation (k = 2.0) at low-aspect ratio A always equal to R/a = 1.4. The strong shaping permits large values of normalized current, I(sub)N(always equal to I(sub)p /(aB(sub)t0)) approximately equal to 6 while maintaining moderate values of q(sub)95 = 4. Long-pulse discharges up to 1 sec in duration have been achieved with substantial bootstrap current. The total noninductive current drive can be as high as 60%, comprised of 50% bootstrap current and ∼10% neutral-beam current drive. The confinement enhancement factor H89P is in excess of 2.7. Beta(sub)N * H(sub)89P approximately or greater than 15 has been maintained for 8 * tau(sub)E ∼ 1.6 * tau(sub)CR, where tau(sub)CR is the relaxation time of the first radial moment of the toroidal current density. The ion temperature for these plasmas is significantly higher than that predicted by neoclassical theory

  4. Bootstrapping phylogenies inferred from rearrangement data

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2012-08-01

    Full Text Available Abstract Background Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. Results We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Conclusions Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its

  5. Bootstrapping phylogenies inferred from rearrangement data.

    Science.gov (United States)

    Lin, Yu; Rajan, Vaibhav; Moret, Bernard Me

    2012-08-29

    Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its support values follow a similar scale and its receiver

  6. Non-inductively driven currents in JET

    International Nuclear Information System (INIS)

    Challis, C.D.; Cordey, J.G.; Hamnen, H.; Stubberfield, P.M.; Christiansen, J.P.; Lazzaro, E.; Muir, D.G.; Stork, D.; Thompson, E.

    1989-01-01

    Neutral beam heating data from JET have been analysed in detail to determine what proportion of the current is driven non-inductively. It is found that in low density limiter discharges, currents of the order of 0.5 MA are driven, while in H-mode plasmas currents of the order of 0.7 MA are measured. These measured currents are found to be in reasonable agreement with theoretical predictions based on neoclassical models. In low density plasmas the beam driven current is large while the neoclassical bootstrap current dominates H-mode plasmas. (author). 19 refs, 11 figs

  7. Bootstrapping pronunciation models

    CSIR Research Space (South Africa)

    Davel, M

    2006-07-01

    Full Text Available -scarce language. During the procedure known as ‘bootstrapping’, a model is improved iteratively via a controlled series of increments, at each stage using the previous model to generate the next. This self- improving circularity distinguishes bootstrapping...-to-phoneme rules (the second representation) can be used to identify possible errors that require re-verification. In contrast, during the bootstrapping of acoustic models for speech recognition, both representations are amenable to automated analysis...

  8. Efficient bootstrap estimates for tail statistics

    Science.gov (United States)

    Breivik, Øyvind; Aarnes, Ole Johan

    2017-03-01

    Bootstrap resamples can be used to investigate the tail of empirical distributions as well as return value estimates from the extremal behaviour of the sample. Specifically, the confidence intervals on return value estimates or bounds on in-sample tail statistics can be obtained using bootstrap techniques. However, non-parametric bootstrapping from the entire sample is expensive. It is shown here that it suffices to bootstrap from a small subset consisting of the highest entries in the sequence to make estimates that are essentially identical to bootstraps from the entire sample. Similarly, bootstrap estimates of confidence intervals of threshold return estimates are found to be well approximated by using a subset consisting of the highest entries. This has practical consequences in fields such as meteorology, oceanography and hydrology where return values are calculated from very large gridded model integrations spanning decades at high temporal resolution or from large ensembles of independent and identically distributed model fields. In such cases the computational savings are substantial.

  9. Bootstrap consistency for general semiparametric M-estimation

    KAUST Repository

    Cheng, Guang

    2010-10-01

    Consider M-estimation in a semiparametric model that is characterized by a Euclidean parameter of interest and an infinite-dimensional nuisance parameter. As a general purpose approach to statistical inferences, the bootstrap has found wide applications in semiparametric M-estimation and, because of its simplicity, provides an attractive alternative to the inference approach based on the asymptotic distribution theory. The purpose of this paper is to provide theoretical justifications for the use of bootstrap as a semiparametric inferential tool. We show that, under general conditions, the bootstrap is asymptotically consistent in estimating the distribution of the M-estimate of Euclidean parameter; that is, the bootstrap distribution asymptotically imitates the distribution of the M-estimate. We also show that the bootstrap confidence set has the asymptotically correct coverage probability. These general onclusions hold, in particular, when the nuisance parameter is not estimable at root-n rate, and apply to a broad class of bootstrap methods with exchangeable ootstrap weights. This paper provides a first general theoretical study of the bootstrap in semiparametric models. © Institute of Mathematical Statistics, 2010.

  10. Intrinsic non-inductive current driven by ETG turbulence in tokamaks

    Science.gov (United States)

    Singh, Rameswar; Kaw, P. K.; Singh, R.; Gürcan, Ã.-. D.

    2017-10-01

    Motivated by observations and physics understanding of the phenomenon of intrinsic rotation, it is suggested that similar considerations for electron dynamics may result in intrinsic current in tokamaks. We have investigated the possibility of intrinsic non-inductive current in the turbulent plasma of tokamaks. Ohm's law is generalized to include the effect of turbulent fluctuations in the mean field approach. This clearly leads to the identification of sources and the mechanisms of non-inductive current drive by electron temperature gradient turbulence. It is found that a mean parallel electro-motive force and hence a mean parallel current can be generated by (1) the divergence of residual current flux density and (2) a non-flux like turbulent source from the density and parallel electric field correlations. Both residual flux and the non-flux source require parallel wave-number k∥ symmetry breaking for their survival which can be supplied by various means like mean E × B shear, turbulence intensity gradient, etc. Estimates of turbulence driven current are compared with the background bootstrap current in the pedestal region. It is found that turbulence driven current is nearly 10% of the bootstrap current and hence can have a significant influence on the equilibrium current density profiles and current shear driven modes.

  11. Transport Barriers in Bootstrap Driven Tokamaks

    Science.gov (United States)

    Staebler, Gary

    2017-10-01

    Maximizing the bootstrap current in a tokamak, so that it drives a high fraction of the total current, reduces the external power required to drive current by other means. Improved energy confinement, relative to empirical scaling laws, enables a reactor to more fully take advantage of the bootstrap driven tokamak. Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is due to the suppression of turbulence primarily due to the large Shafranov shift. ExB velocity shear does not play a significant role in the transport barrier due to the high safety factor. It will be shown, that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift driven barrier formation. The ion energy transport is reduced to neoclassical and electron energy and particle transport is reduced, but still turbulent, within the barrier. Deeper into the plasma, very large levels of electron transport are observed. The observed electron temperature profile is shown to be close to the threshold for the electron temperature gradient (ETG) mode. A large ETG driven energy transport is qualitatively consistent with recent multi-scale gyrokinetic simulations showing that reducing the ion scale turbulence can lead to large increase in the electron scale transport. A new saturation model for the quasilinear TGLF transport code, that fits these multi-scale gyrokinetic simulations, can match the data if the impact of zonal flow mixing on the ETG modes is reduced at high safety factor. This work was supported by the U.S. Department of Energy under DE-FG02-95ER54309 and DE-FC02

  12. Comparison of parametric and bootstrap method in bioequivalence test.

    Science.gov (United States)

    Ahn, Byung-Jin; Yim, Dong-Seok

    2009-10-01

    The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.

  13. Ultrafast Approximation for Phylogenetic Bootstrap

    NARCIS (Netherlands)

    Bui Quang Minh, [No Value; Nguyen, Thi; von Haeseler, Arndt

    Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and

  14. Bootstrapping a time series model

    International Nuclear Information System (INIS)

    Son, M.S.

    1984-01-01

    The bootstrap is a methodology for estimating standard errors. The idea is to use a Monte Carlo simulation experiment based on a nonparametric estimate of the error distribution. The main objective of this dissertation was to demonstrate the use of the bootstrap to attach standard errors to coefficient estimates and multi-period forecasts in a second-order autoregressive model fitted by least squares and maximum likelihood estimation. A secondary objective of this article was to present the bootstrap in the context of two econometric equations describing the unemployment rate and individual income tax in the state of Oklahoma. As it turns out, the conventional asymptotic formulae (both the least squares and maximum likelihood estimates) for estimating standard errors appear to overestimate the true standard errors. But there are two problems: 1) the first two observations y 1 and y 2 have been fixed, and 2) the residuals have not been inflated. After these two factors are considered in the trial and bootstrap experiment, both the conventional maximum likelihood and bootstrap estimates of the standard errors appear to be performing quite well. At present, there does not seem to be a good rule of thumb for deciding when the conventional asymptotic formulae will give acceptable results

  15. The bootstrap and edgeworth expansion

    CERN Document Server

    Hall, Peter

    1992-01-01

    This monograph addresses two quite different topics, in the belief that each can shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. Chapter 1 is about the bootstrap, witih almost no mention of Edgeworth expansion; Chapter 2 is about Edgeworth expansion, with scarcely a word about the bootstrap; and Chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properites of the bootstrap. The book is aimed a a graduate level audience who has some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter (entitled "Details of Mathematical Rogour"), and so a mathematically able reader without knowledge of the rigorous theory of probability will have no trouble understanding the first four-fifths of the book. The book simultaneously fills two gaps in the literature; it provides a very readable graduate level account of t...

  16. Coefficient Omega Bootstrap Confidence Intervals: Nonnormal Distributions

    Science.gov (United States)

    Padilla, Miguel A.; Divers, Jasmin

    2013-01-01

    The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…

  17. Mobile first design : using Bootstrap

    OpenAIRE

    Bhusal, Bipin

    2017-01-01

    The aim of this project was to design and build a website for a company based in Australia. The business offers remedial massage therapy to its clients. It is a small business which works on the basis of calls and message reservation. The business currently has a temporary website designed with Wix, a cloud-based web development platform. The new website was built with responsive design using Bootstrap. This website was intended for the customers using mobile internet browsers. This design is...

  18. The cluster bootstrap consistency in generalized estimating equations

    KAUST Repository

    Cheng, Guang

    2013-03-01

    The cluster bootstrap resamples clusters or subjects instead of individual observations in order to preserve the dependence within each cluster or subject. In this paper, we provide a theoretical justification of using the cluster bootstrap for the inferences of the generalized estimating equations (GEE) for clustered/longitudinal data. Under the general exchangeable bootstrap weights, we show that the cluster bootstrap yields a consistent approximation of the distribution of the regression estimate, and a consistent approximation of the confidence sets. We also show that a computationally more efficient one-step version of the cluster bootstrap provides asymptotically equivalent inference. © 2012.

  19. Efficient bootstrap with weakly dependent processes

    NARCIS (Netherlands)

    Bravo, Francesco; Crudu, Federico

    The efficient bootstrap methodology is developed for overidentified moment conditions models with weakly dependent observation. The resulting bootstrap procedure is shown to be asymptotically valid and can be used to approximate the distributions of t-statistics, the J-statistic for overidentifying

  20. Current interruption by density depression

    International Nuclear Information System (INIS)

    Wagner, J.S.; Tajima, T.; Akasofu, S.I.

    1985-04-01

    Using a one-dimensional electrostatic particle code, we examine processes associated with current interruption in a collisionless plasma when a density depression is present along the current channel. Current interruption due to double layers was suggested by Alfven and Carlqvist (1967) as a cause of solar flares. At a local density depression, plasma instabilities caused by an electron current flow are accentuated, leading to current disruption. Our simulation study encompasses a wide range of the parameters in such a way that under appropriate conditions, both the Alfven and Carlqvist (1967) regime and the Smith and Priest (1972) regime take place. In the latter regime the density depression decays into a stationary structure (''ion-acoustic layer'') which spawns a series of ion-acoustic ''solitons'' and ion phase space holes travelling upstream. A large inductance of the current circuit tends to enhance the plasma instabilities

  1. Scalar-vector bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Rejon-Barrera, Fernando [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, 1090 GL, Amsterdam (Netherlands); Robbins, Daniel [Department of Physics, Texas A& M University,TAMU 4242, College Station, TX 77843 (United States)

    2016-01-22

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  2. The effect of plasma parameter on the bootstrap current of fast ions in neutral beam injection

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Cao Jinjia; Yang Lei

    2014-01-01

    The effect of plasma parameters on the distribution of net current density of fast ions produced by neutral beam injection is investigated in a large-aspect-ratio Tokamak with circular cross-section under specific parameters. Numerical results show that the value of net current density increases with the temperature of plasma increasing and decreases with the density of plasma increasing. The value of net current density is weakly affected by the effective charge number, but the peak of net current density moves towards edge plasma with effective charge number increasing. (authors)

  3. Transport barriers in bootstrap-driven tokamaks

    Science.gov (United States)

    Staebler, G. M.; Garofalo, A. M.; Pan, C.; McClenaghan, J.; Van Zeeland, M. A.; Lao, L. L.

    2018-05-01

    Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is caused by the suppression of turbulence primarily from the large Shafranov shift. It is shown that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift-driven barrier formation. Two self-organized states of the internal and edge transport barrier are observed. It is shown that these two states are controlled by the interaction of the bootstrap current with magnetic shear, and the kinetic ballooning mode instability boundary. Election scale energy transport is predicted to be dominant in the inner 60% of the profile. Evidence is presented that energetic particle-driven instabilities could be playing a role in the thermal energy transport in this region.

  4. Current control by ECCD for W7-X

    International Nuclear Information System (INIS)

    Turkin, Yu.; Maassberg, H.; Beidler, C.D.; Geiger, J.; Marushchenko, N.B.

    2005-01-01

    One of the optimization criteria for the stellarator W7-X is the minimization of the bootstrap current. The plasma current changes the magnetic configuration, especially near the plasma edge, where X-points and islands are located. It was shown that the plasma parameter distributions in the divertor region and the particle and energy depositions on the divertor plates depend strongly on the island geometry. An estimation of the tolerable plasma current obtained from the shift of the island structure close to the target plates shows that the plasma current should be controlled within a range of about 10 kA. The bootstrap current even for the standard configuration can easily exceed this value. The W7-X is not equipped with an Ohmic transformer, so the only means for compensating this current is electron cyclotron current drive (ECCD) and/or neutral beam current drive (NBCD). In this report we study the compensation of residual bootstrap current by using ECCD. To model the control of the toroidal current we use a predictive 1D transport code, which is under development. For evaluation of the bootstrap current and neoclassical transport coefficients we use results from an international collaboration on neoclassical transport in stellarators. Power deposition and current drive profiles due to electron cyclotron resonance heating are calculated by a new ray tracing code. The modeling showed that the loop voltage induced by ECCD leads to a redistribution of the current density with the diffusion time of about two seconds. The relaxation time of the total current is much longer than this time - for a typical ECRH-plasma the total toroidal current reaches steady state after several L/R-time that is about hundreds of seconds. In order to keep current in an acceptable range and to avoid long relaxation times we propose Feed-forward or Predictive control using ECCD as actuator, the steps are as follows: - calculate the bootstrap current distribution using measured plasma

  5. DMSP SSM/I Daily and Monthly Polar Gridded Bootstrap Sea Ice Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — DMSP SSM/I Daily and Monthly Polar Gridded Bootstrap Sea Ice Concentrations in polar stereographic projection currently include Defense Meteorological Satellite...

  6. Current distribution tomography for determination of internal current density distributions

    International Nuclear Information System (INIS)

    Gailey, P.C.

    1993-01-01

    A method is presented for determination of current densities inside a cylindrical object using measurements of the magnetic fields outside the object. The cross section of the object is discretized with the current assumed constant over each defined region. Magnetic fields outside the object are related to the internal current densities through a geometry matrix which can be inverted to yield a solution for the current densities in terms of the measured fields. The primary limitation of this technique results from singularities in the geometry matrix that arise due to cylindrical symmetry of the problem. Methods for circumventing the singularities to obtain information about the distribution of current densities are discussed. This process of current distribution tomography is designed to determine internal body current densities using measurements of the external magnetic field distribution. It is non-invasive, and relatively simple to implement. Although related to a more general study of magnetic imaging which has been used to investigate endogenous currents in the brain and other parts of the body, it is restricted to currents either applied directly or induced by exposure to an external field. The research is related to public concern about the possibility of health effects resulting from exposure to power frequency electric and magnetic fields

  7. Bootstrap consistency for general semiparametric M-estimation

    KAUST Repository

    Cheng, Guang; Huang, Jianhua Z.

    2010-01-01

    , and apply to a broad class of bootstrap methods with exchangeable ootstrap weights. This paper provides a first general theoretical study of the bootstrap in semiparametric models. © Institute of Mathematical Statistics, 2010.

  8. Comparison of Bootstrap Confidence Intervals Using Monte Carlo Simulations

    Directory of Open Access Journals (Sweden)

    Roberto S. Flowers-Cano

    2018-02-01

    Full Text Available Design of hydraulic works requires the estimation of design hydrological events by statistical inference from a probability distribution. Using Monte Carlo simulations, we compared coverage of confidence intervals constructed with four bootstrap techniques: percentile bootstrap (BP, bias-corrected bootstrap (BC, accelerated bias-corrected bootstrap (BCA and a modified version of the standard bootstrap (MSB. Different simulation scenarios were analyzed. In some cases, the mother distribution function was fit to the random samples that were generated. In other cases, a distribution function different to the mother distribution was fit to the samples. When the fitted distribution had three parameters, and was the same as the mother distribution, the intervals constructed with the four techniques had acceptable coverage. However, the bootstrap techniques failed in several of the cases in which the fitted distribution had two parameters.

  9. Bootstrap essentials

    CERN Document Server

    Bhaumik, Snig

    2015-01-01

    If you are a web developer who designs and develops websites and pages using HTML, CSS, and JavaScript, but have very little familiarity with Bootstrap, this is the book for you. Previous experience with HTML, CSS, and JavaScript will be helpful, while knowledge of jQuery would be an extra advantage.

  10. Bootstrapping the O(N) Archipelago

    CERN Document Server

    Kos, Filip; Simmons-Duffin, David; Vichi, Alessandro

    2015-01-01

    We study 3d CFTs with an $O(N)$ global symmetry using the conformal bootstrap for a system of mixed correlators. Specifically, we consider all nonvanishing scalar four-point functions containing the lowest dimension $O(N)$ vector $\\phi_i$ and the lowest dimension $O(N)$ singlet $s$, assumed to be the only relevant operators in their symmetry representations. The constraints of crossing symmetry and unitarity for these four-point functions force the scaling dimensions $(\\Delta_\\phi, \\Delta_s)$ to lie inside small islands. We also make rigorous determinations of current two-point functions in the $O(2)$ and $O(3)$ models, with applications to transport in condensed matter systems.

  11. Requirements on localized current drive for the suppression of neoclassical tearing modes

    NARCIS (Netherlands)

    Bertelli, N.; De Lazzari, D.; Westerhof, E.

    2011-01-01

    A heuristic criterion for the full suppression of an NTM was formulated as eta(NTM) = j(CD,max)/j(BS) >= 1.2 (Zohm et al 2005 J. Phys. Conf. Ser. 25 234), where j(CD,max) is the maximum in the driven current density profile applied to stabilize the mode and j(BS) is the local bootstrap current

  12. A poloidal non-uniformity of the collisionless parallel current in a tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Romannikov, A.; Fenzi-Bonizec, C

    2005-07-01

    The collisionless distortion of the ion (electron) distribution function at certain points on a magnetic surface is studied in the framework of a simple model of a large aspect ratio tokamak plasma. The flow velocity driven by this distortion is calculated. The possibility of an additional non-uniform collisionless parallel current density on a magnetic surface, other than the known neo-classical non-uniformity is shown. The difference between the parallel current density on the low and high field side of a magnetic surface is close to the neoclassical bootstrap current density. The first Tore-Supra experimental test indicates the possibility of the poloidal non-uniformity of the parallel current density. (authors)

  13. RANDOM QUADRATIC-FORMS AND THE BOOTSTRAP FOR U-STATISTICS

    NARCIS (Netherlands)

    DEHLING, H; MIKOSCH, T

    We study the bootstrap distribution for U-statistics with special emphasis on the degenerate case. For the Efron bootstrap we give a short proof of the consistency using Mallows' metrics. We also study the i.i.d. weighted bootstrap [GRAPHICS] where (X(i)) and (xi(i)) are two i.i.d. sequences,

  14. Parameter tolerance of the SQUID bootstrap circuit

    International Nuclear Information System (INIS)

    Zhang Guofeng; Dong Hui; Xie Xiaoming; Jiang Mianheng; Zhang Yi; Krause, Hans-Joachim; Braginski, Alex I; Offenhäusser, Andreas

    2012-01-01

    We recently demonstrated and analysed the voltage-biased SQUID bootstrap circuit (SBC) conceived to suppress the preamplifier noise contribution in the absence of flux modulation readout. Our scheme contains both the additional voltage and current feedbacks. In this study, we analysed the tolerance of the SBC noise suppression performance to spreads in SQUID and SBC circuit parameters. Analytical results were confirmed by experiments. A one-time adjustable current feedback can be used to extend the tolerance to spreads such as those caused by the integrated circuit fabrication process. This should help to improve the fabrication yield of SBC devices integrated on one chip—as required for multi-channel SQUID systems.

  15. The cluster bootstrap consistency in generalized estimating equations

    KAUST Repository

    Cheng, Guang; Yu, Zhuqing; Huang, Jianhua Z.

    2013-01-01

    The cluster bootstrap resamples clusters or subjects instead of individual observations in order to preserve the dependence within each cluster or subject. In this paper, we provide a theoretical justification of using the cluster bootstrap

  16. Bootstrap Determination of the Co-integration Rank in Heteroskedastic VAR Models

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Rahbek, Anders; Taylor, A.M.Robert

    In a recent paper Cavaliere et al. (2012) develop bootstrap implementations of the (pseudo-) likelihood ratio [PLR] co-integration rank test and associated sequential rank determination procedure of Johansen (1996). The bootstrap samples are constructed using the restricted parameter estimates...... of the underlying VAR model which obtain under the reduced rank null hypothesis. They propose methods based on an i.i.d. bootstrap re-sampling scheme and establish the validity of their proposed bootstrap procedures in the context of a co-integrated VAR model with i.i.d. innovations. In this paper we investigate...... the properties of their bootstrap procedures, together with analogous procedures based on a wild bootstrap re-sampling scheme, when time-varying behaviour is present in either the conditional or unconditional variance of the innovations. We show that the bootstrap PLR tests are asymptotically correctly sized and...

  17. Bootstrap Determination of the Co-Integration Rank in Heteroskedastic VAR Models

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Rahbek, Anders; Taylor, A. M. Robert

    In a recent paper Cavaliere et al. (2012) develop bootstrap implementations of the (pseudo-) likelihood ratio [PLR] co-integration rank test and associated sequential rank determination procedure of Johansen (1996). The bootstrap samples are constructed using the restricted parameter estimates...... of the underlying VAR model which obtain under the reduced rank null hypothesis. They propose methods based on an i.i.d. bootstrap re-sampling scheme and establish the validity of their proposed bootstrap procedures in the context of a co-integrated VAR model with i.i.d. innovations. In this paper we investigate...... the properties of their bootstrap procedures, together with analogous procedures based on a wild bootstrap re-sampling scheme, when time-varying behaviour is present in either the conditional or unconditional variance of the innovations. We show that the bootstrap PLR tests are asymptotically correctly sized and...

  18. Bootstrapping pronunciation models: a South African case study

    CSIR Research Space (South Africa)

    Davel, M

    2006-02-27

    Full Text Available Bootstrapping techniques can accelerate the development of language technology for new languages. The authors define a framework for the analysis of a general bootstrapping process whereby a model is improved through a controlled series...

  19. Bootstrapping the O(N) archipelago

    Energy Technology Data Exchange (ETDEWEB)

    Kos, Filip; Poland, David [Department of Physics, Yale University, New Haven, CT 06520 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Vichi, Alessandro [Theory Division, CERN, Geneva (Switzerland)

    2015-11-17

    We study 3d CFTs with an O(N) global symmetry using the conformal bootstrap for a system of mixed correlators. Specifically, we consider all nonvanishing scalar four-point functions containing the lowest dimension O(N) vector ϕ{sub i} and the lowest dimension O(N) singlet s, assumed to be the only relevant operators in their symmetry representations. The constraints of crossing symmetry and unitarity for these four-point functions force the scaling dimensions (Δ{sub ϕ},Δ{sub s}) to lie inside small islands. We also make rigorous determinations of current two-point functions in the O(2) and O(3) models, with applications to transport in condensed matter systems.

  20. Simulations of ICRF-fast wave current drive on DIIID

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1990-06-01

    Self-consistent calculations of MHD equilibria, generated by fast wave current drive and including the bootstrap effect, were done to guide and anticipate the results of upcoming experiments on the DIIID tokamak. The simulations predict that 2 MW of ICRF power is more than adequate to create several hundred kiloamperes in steady state; the total current increases with the temperature and density of the target plasma. 12 refs., 12 figs., 1 tab

  1. Bootstrapping language acquisition.

    Science.gov (United States)

    Abend, Omri; Kwiatkowski, Tom; Smith, Nathaniel J; Goldwater, Sharon; Steedman, Mark

    2017-07-01

    The semantic bootstrapping hypothesis proposes that children acquire their native language through exposure to sentences of the language paired with structured representations of their meaning, whose component substructures can be associated with words and syntactic structures used to express these concepts. The child's task is then to learn a language-specific grammar and lexicon based on (probably contextually ambiguous, possibly somewhat noisy) pairs of sentences and their meaning representations (logical forms). Starting from these assumptions, we develop a Bayesian probabilistic account of semantically bootstrapped first-language acquisition in the child, based on techniques from computational parsing and interpretation of unrestricted text. Our learner jointly models (a) word learning: the mapping between components of the given sentential meaning and lexical words (or phrases) of the language, and (b) syntax learning: the projection of lexical elements onto sentences by universal construction-free syntactic rules. Using an incremental learning algorithm, we apply the model to a dataset of real syntactically complex child-directed utterances and (pseudo) logical forms, the latter including contextually plausible but irrelevant distractors. Taking the Eve section of the CHILDES corpus as input, the model simulates several well-documented phenomena from the developmental literature. In particular, the model exhibits syntactic bootstrapping effects (in which previously learned constructions facilitate the learning of novel words), sudden jumps in learning without explicit parameter setting, acceleration of word-learning (the "vocabulary spurt"), an initial bias favoring the learning of nouns over verbs, and one-shot learning of words and their meanings. The learner thus demonstrates how statistical learning over structured representations can provide a unified account for these seemingly disparate phenomena. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. USEFULNESS OF BOOTSTRAPPING IN PORTFOLIO MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Boris Radovanov

    2012-12-01

    Full Text Available This paper contains a comparison of in-sample and out-of-sample performances between the resampled efficiency technique, patented by Richard Michaud and Robert Michaud (1999, and traditional Mean-Variance portfolio selection, presented by Harry Markowitz (1952. Based on the Monte Carlo simulation, data (samples generation process determines the algorithms by using both, parametric and nonparametric bootstrap techniques. Resampled efficiency provides the solution to use uncertain information without the need for constrains in portfolio optimization. Parametric bootstrap process starts with a parametric model specification, where we apply Capital Asset Pricing Model. After the estimation of specified model, the series of residuals are used for resampling process. On the other hand, nonparametric bootstrap divides series of price returns into the new series of blocks containing previous determined number of consecutive price returns. This procedure enables smooth resampling process and preserves the original structure of data series.

  3. Stellarator fields with small PS current at small rotational transform

    International Nuclear Information System (INIS)

    Herrnegger, F.

    2001-01-01

    One aspect of the optimization concept of stellarators is the reduction of the normalized Pfirsch-Schlueter current density p arallel 2 / j p erpendikular 2 > 1/2 to a reasonable level but obeying other side conditions, e.g., concerning small bootstrap currents, good stability properties, reasonable aspect ratio, etc. This problem is addressed in the present work. Various stellarator vacuum field are given analytically for M 2, 3, 5, 10, 12 (M is the number of field period around the torus) where the PS-current density is reduced by more than a factor of ten to rather small values around 0.3 even at small i-values

  4. Using the bootstrap in a multivariadte data problem: An example

    International Nuclear Information System (INIS)

    Glosup, J.G.; Axelrod, M.C.

    1995-01-01

    The use of the bootstrap in the multivariate version of the paired t-test is considered and demonstrated through an example. The problem of interest involves comparing two different techniques for measuring the chemical constituents of an sample item. The bootstrap is used to form an empirical significance level for Hotelling's one-sample T-squared statistic. The bootstrap was selected to determine empirical significance levels because the implicit assumption of multivariate normality in the classic Hotelling's one-sample test night not hold. The results of both the classic and bootstrap test are presented and contrasted

  5. Bootstrap Determination of the Co-Integration Rank in Heteroskedastic VAR Models

    DEFF Research Database (Denmark)

    Cavaliere, G.; Rahbek, Anders; Taylor, A.M.R.

    2014-01-01

    In a recent paper Cavaliere et al. (2012) develop bootstrap implementations of the (pseudo-) likelihood ratio (PLR) co-integration rank test and associated sequential rank determination procedure of Johansen (1996). The bootstrap samples are constructed using the restricted parameter estimates...... of the underlying vector autoregressive (VAR) model which obtain under the reduced rank null hypothesis. They propose methods based on an independent and individual distributed (i.i.d.) bootstrap resampling scheme and establish the validity of their proposed bootstrap procedures in the context of a co......-integrated VAR model with i.i.d. innovations. In this paper we investigate the properties of their bootstrap procedures, together with analogous procedures based on a wild bootstrap resampling scheme, when time-varying behavior is present in either the conditional or unconditional variance of the innovations. We...

  6. MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation.

    Science.gov (United States)

    Hoang, Diep Thi; Vinh, Le Sy; Flouri, Tomáš; Stamatakis, Alexandros; von Haeseler, Arndt; Minh, Bui Quang

    2018-02-02

    The nonparametric bootstrap is widely used to measure the branch support of phylogenetic trees. However, bootstrapping is computationally expensive and remains a bottleneck in phylogenetic analyses. Recently, an ultrafast bootstrap approximation (UFBoot) approach was proposed for maximum likelihood analyses. However, such an approach is still missing for maximum parsimony. To close this gap we present MPBoot, an adaptation and extension of UFBoot to compute branch supports under the maximum parsimony principle. MPBoot works for both uniform and non-uniform cost matrices. Our analyses on biological DNA and protein showed that under uniform cost matrices, MPBoot runs on average 4.7 (DNA) to 7 times (protein data) (range: 1.2-20.7) faster than the standard parsimony bootstrap implemented in PAUP*; but 1.6 (DNA) to 4.1 times (protein data) slower than the standard bootstrap with a fast search routine in TNT (fast-TNT). However, for non-uniform cost matrices MPBoot is 5 (DNA) to 13 times (protein data) (range:0.3-63.9) faster than fast-TNT. We note that MPBoot achieves better scores more frequently than PAUP* and fast-TNT. However, this effect is less pronounced if an intensive but slower search in TNT is invoked. Moreover, experiments on large-scale simulated data show that while both PAUP* and TNT bootstrap estimates are too conservative, MPBoot bootstrap estimates appear more unbiased. MPBoot provides an efficient alternative to the standard maximum parsimony bootstrap procedure. It shows favorable performance in terms of run time, the capability of finding a maximum parsimony tree, and high bootstrap accuracy on simulated as well as empirical data sets. MPBoot is easy-to-use, open-source and available at http://www.cibiv.at/software/mpboot .

  7. Ballooning mode stability for self-consistent pressure and current profiles at the H-mode edge

    International Nuclear Information System (INIS)

    Miller, R.L.; Lin-Liu, Y.R.; Osborne, T.H.; Taylor, T.S.

    1997-11-01

    The edge pressure gradient (H-mode pedestal) for computed equilibria in which the current density profile is consistent with the bootstrap current may not be limited by the first regime ballooning limit. The transition to second stability is easier for: higher elongation, intermediate triangularity, larger ratio, pedestal at larger radius, narrower pedestal width, higher q 95 , and lower collisionality

  8. The N=2 superconformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Beem, Christopher [Institute for Advanced Study, Einstein Drive,Princeton, NJ 08540 (United States); Lemos, Madalena [C. N. Yang Institute for Theoretical Physics, Stony Brook University,Stony Brook, NY 11794-3840 (United States); Liendo, Pedro [IMIP, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Rastelli, Leonardo [C. N. Yang Institute for Theoretical Physics, Stony Brook University,Stony Brook, NY 11794-3840 (United States); Rees, Balt C. van [Theory Group, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland)

    2016-03-29

    In this work we initiate the conformal bootstrap program for N=2 superconformal field theories in four dimensions. We promote an abstract operator-algebraic viewpoint in order to unify the description of Lagrangian and non-Lagrangian theories, and formulate various conjectures concerning the landscape of theories. We analyze in detail the four-point functions of flavor symmetry current multiplets and of N=2 chiral operators. For both correlation functions we review the solution of the superconformal Ward identities and describe their superconformal block decompositions. This provides the foundation for an extensive numerical analysis discussed in the second half of the paper. We find a large number of constraints for operator dimensions, OPE coefficients, and central charges that must hold for any N=2 superconformal field theory.

  9. A Simple Counterexample to the Bootstrap

    OpenAIRE

    Donald W.K. Andrews

    1997-01-01

    The bootstrap of the maximum likelihood estimator of the mean of a sample of iid normal random variables with mean mu and variance one is not asymptotically correct to first order when the mean is restricted to be nonnegative. The problem occurs when the true value of the mean mu equals zero. This counterexample to the bootstrap generalizes to a wide variety of estimation problems in which the true parameter may be on the boundary of the parameter space. We provide some alternatives to the bo...

  10. Bootstrap percolation: a renormalisation group approach

    International Nuclear Information System (INIS)

    Branco, N.S.; Santos, Raimundo R. dos; Queiroz, S.L.A. de.

    1984-02-01

    In bootstrap percolation, sites are occupied at random with probability p, but each site is considered active only if at least m of its neighbours are also active. Within an approximate position-space renormalization group framework on a square lattice we obtain the behaviour of the critical concentration p (sub)c and of the critical exponents ν and β for m = 0 (ordinary percolation), 1,2 and 3. We find that the bootstrap percolation problem can be cast into different universality classes, characterized by the values of m. (author) [pt

  11. Bootstrapping N=2 chiral correlators

    Science.gov (United States)

    Lemos, Madalena; Liendo, Pedro

    2016-01-01

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  12. Bootstrapping N=2 chiral correlators

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Madalena [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Liendo, Pedro [Humboldt-Univ. Berlin (Germany). IMIP

    2015-12-15

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  13. Bootstrapping N=2 chiral correlators

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Madalena [DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Liendo, Pedro [IMIP, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany)

    2016-01-07

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  14. Benchmarking the efficiency of the Chilean water and sewerage companies: a double-bootstrap approach.

    Science.gov (United States)

    Molinos-Senante, María; Donoso, Guillermo; Sala-Garrido, Ramon; Villegas, Andrés

    2018-03-01

    Benchmarking the efficiency of water companies is essential to set water tariffs and to promote their sustainability. In doing so, most of the previous studies have applied conventional data envelopment analysis (DEA) models. However, it is a deterministic method that does not allow to identify environmental factors influencing efficiency scores. To overcome this limitation, this paper evaluates the efficiency of a sample of Chilean water and sewerage companies applying a double-bootstrap DEA model. Results evidenced that the ranking of water and sewerage companies changes notably whether efficiency scores are computed applying conventional or double-bootstrap DEA models. Moreover, it was found that the percentage of non-revenue water and customer density are factors influencing the efficiency of Chilean water and sewerage companies. This paper illustrates the importance of using a robust and reliable method to increase the relevance of benchmarking tools.

  15. Locality, bulk equations of motion and the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, Daniel [Department of Physics and Astronomy, Lehman College, City University of New York,250 Bedford Park Blvd. W, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Mathematics, Faculty of Natural Science, University of Haifa,199 Aba Khoushy Ave., Haifa 31905 (Israel)

    2016-10-18

    We develop an approach to construct local bulk operators in a CFT to order 1/N{sup 2}. Since 4-point functions are not fixed by conformal invariance we use the OPE to categorize possible forms for a bulk operator. Using previous results on 3-point functions we construct a local bulk operator in each OPE channel. We then impose the condition that the bulk operators constructed in different channels agree, and hence give rise to a well-defined bulk operator. We refer to this condition as the “bulk bootstrap.” We argue and explicitly show in some examples that the bulk bootstrap leads to some of the same results as the regular conformal bootstrap. In fact the bulk bootstrap provides an easier way to determine some CFT data, since it does not require knowing the form of the conformal blocks. This analysis clarifies previous results on the relation between bulk locality and the bootstrap for theories with a 1/N expansion, and it identifies a simple and direct way in which OPE coefficients and anomalous dimensions determine the bulk equations of motion to order 1/N{sup 2}.

  16. Nonparametric bootstrap analysis with applications to demographic effects in demand functions.

    Science.gov (United States)

    Gozalo, P L

    1997-12-01

    "A new bootstrap proposal, labeled smooth conditional moment (SCM) bootstrap, is introduced for independent but not necessarily identically distributed data, where the classical bootstrap procedure fails.... A good example of the benefits of using nonparametric and bootstrap methods is the area of empirical demand analysis. In particular, we will be concerned with their application to the study of two important topics: what are the most relevant effects of household demographic variables on demand behavior, and to what extent present parametric specifications capture these effects." excerpt

  17. Bootstrap inference when using multiple imputation.

    Science.gov (United States)

    Schomaker, Michael; Heumann, Christian

    2018-04-16

    Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g-formula for inference, a method for which no standard errors are available. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Learning web development with Bootstrap and AngularJS

    CERN Document Server

    Radford, Stephen

    2015-01-01

    Whether you know a little about Bootstrap or AngularJS, or you're a complete beginner, this book will enhance your capabilities in both frameworks and you'll build a fully functional web app. A working knowledge of HTML, CSS, and JavaScript is required to fully get to grips with Bootstrap and AngularJS.

  19. On a generalized bootstrap principle

    International Nuclear Information System (INIS)

    Corrigan, E.; Sasaki, R.; Dorey, P.E.

    1993-01-01

    The S-matrices for non-simply-laced affine Toda field theories are considered in the context of a generalized bootstrap principle. The S-matrices, and in particular their poles, depend on a parameter whose range lies between the Coxeter numbers of dual pairs of the corresponding non-simply-laced algebras. It is proposed that only odd order poles in the physical strip with positive coefficients throughout this range should participate in the bootstrap. All other singularities have an explanation in principle in terms of a generalized Coleman-Thun mechanism. Besides the S-matrices introduced by Delius, Grisaru and Zanon, the missing case (F 4 (1) , e 6 (2) ), is also considered and provides many interesting examples of pole generation. (author)

  20. Conference on Bootstrapping and Related Techniques

    CERN Document Server

    Rothe, Günter; Sendler, Wolfgang

    1992-01-01

    This book contains 30 selected, refereed papers from an in- ternational conference on bootstrapping and related techni- ques held in Trier 1990. Thepurpose of the book is to in- form about recent research in the area of bootstrap, jack- knife and Monte Carlo Tests. Addressing the novice and the expert it covers as well theoretical as practical aspects of these statistical techniques. Potential users in different disciplines as biometry, epidemiology, computer science, economics and sociology but also theoretical researchers s- hould consult the book to be informed on the state of the art in this area.

  1. Bootstrapping pre-averaged realized volatility under market microstructure noise

    DEFF Research Database (Denmark)

    Hounyo, Ulrich; Goncalves, Sílvia; Meddahi, Nour

    The main contribution of this paper is to propose a bootstrap method for inference on integrated volatility based on the pre-averaging approach of Jacod et al. (2009), where the pre-averaging is done over all possible overlapping blocks of consecutive observations. The overlapping nature of the pre......-averaged returns implies that these are kn-dependent with kn growing slowly with the sample size n. This motivates the application of a blockwise bootstrap method. We show that the "blocks of blocks" bootstrap method suggested by Politis and Romano (1992) (and further studied by Bühlmann and Künsch (1995......)) is valid only when volatility is constant. The failure of the blocks of blocks bootstrap is due to the heterogeneity of the squared pre-averaged returns when volatility is stochastic. To preserve both the dependence and the heterogeneity of squared pre-averaged returns, we propose a novel procedure...

  2. High current density ion source

    International Nuclear Information System (INIS)

    King, H.J.

    1977-01-01

    A high-current-density ion source with high total current is achieved by individually directing the beamlets from an electron bombardment ion source through screen and accelerator electrodes. The openings in these screen and accelerator electrodes are oriented and positioned to direct the individual beamlets substantially toward a focus point. 3 figures, 1 table

  3. Bootstrap analysis of designed experiments for reliability improvement with a non-constant scale parameter

    International Nuclear Information System (INIS)

    Wang, Guodong; He, Zhen; Xue, Li; Cui, Qingan; Lv, Shanshan; Zhou, Panpan

    2017-01-01

    Factors which significantly affect product reliability are of great interest to reliability practitioners. This paper proposes a bootstrap-based methodology for identifying significant factors when both location and scale parameters of the smallest extreme value distribution vary over experimental factors. An industrial thermostat experiment is presented, analyzed, and discussed as an illustrative example. The analysis results show that 1) the misspecification of a constant scale parameter may lead to misidentify spurious effects; 2) the important factors identified by different bootstrap methods (i.e., percentile bootstrapping, bias-corrected percentile bootstrapping, and bias-corrected and accelerated percentile bootstrapping) are different; 3) the number of factors affecting 10th percentile lifetime significantly is less than the number of important factors identified at 63.21th percentile. - Highlights: • Product reliability is improved by design of experiments under both scale and location parameters of smallest extreme value distribution vary with experimental factors. • A bootstrap-based methodology is proposed to identify important factors which affect 100pth lifetime percentile significantly. • Bootstrapping confidence intervals associating experimental factors are obtained by using three bootstrap methods (i.e., percentile bootstrapping, bias-corrected percentile bootstrapping, and bias-corrected and accelerated percentile bootstrapping). • The important factors identified by different bootstrap methods are different. • The number of factors affecting 10th percentile significantly is less than the number of important factors identified at 63.21th percentile.

  4. From current-driven to neoclassically driven tearing modes.

    Science.gov (United States)

    Reimerdes, H; Sauter, O; Goodman, T; Pochelon, A

    2002-03-11

    In the TCV tokamak, the m/n = 2/1 island is observed in low-density discharges with central electron-cyclotron current drive. The evolution of its width has two distinct growth phases, one of which can be linked to a "conventional" tearing mode driven unstable by the current profile and the other to a neoclassical tearing mode driven by a perturbation of the bootstrap current. The TCV results provide the first clear observation of such a destabilization mechanism and reconcile the theory of conventional and neoclassical tearing modes, which differ only in the dominant driving term.

  5. A NONPARAMETRIC HYPOTHESIS TEST VIA THE BOOTSTRAP RESAMPLING

    OpenAIRE

    Temel, Tugrul T.

    2001-01-01

    This paper adapts an already existing nonparametric hypothesis test to the bootstrap framework. The test utilizes the nonparametric kernel regression method to estimate a measure of distance between the models stated under the null hypothesis. The bootstraped version of the test allows to approximate errors involved in the asymptotic hypothesis test. The paper also develops a Mathematica Code for the test algorithm.

  6. Enhancing critical current density of cuprate superconductors

    Science.gov (United States)

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  7. Bootstrapping realized volatility and realized beta under a local Gaussianity assumption

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    The main contribution of this paper is to propose a new bootstrap method for statistics based on high frequency returns. The new method exploits the local Gaussianity and the local constancy of volatility of high frequency returns, two assumptions that can simplify inference in the high frequency...... context, as recently explained by Mykland and Zhang (2009). Our main contributions are as follows. First, we show that the local Gaussian bootstrap is firstorder consistent when used to estimate the distributions of realized volatility and ealized betas. Second, we show that the local Gaussian bootstrap...... matches accurately the first four cumulants of realized volatility, implying that this method provides third-order refinements. This is in contrast with the wild bootstrap of Gonçalves and Meddahi (2009), which is only second-order correct. Third, we show that the local Gaussian bootstrap is able...

  8. Diameter dependent failure current density of gold nanowires

    International Nuclear Information System (INIS)

    Karim, S; Maaz, K; Ali, G; Ensinger, W

    2009-01-01

    Failure current density of single gold nanowires is investigated in this paper. Single wires with diameters ranging from 80 to 720 nm and length 30 μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density was investigated while keeping the wires embedded in the polymer matrix and ramping up the current until failure occurred. The current density is found to increase with diminishing diameter and the wires with a diameter of 80 nm withstand 1.2 x 10 12 A m -2 before undergoing failure. Possible reasons for these results are discussed in this paper.

  9. Effect of current density on the anodization of zircaloy-2

    International Nuclear Information System (INIS)

    Bhaskar Reddy, P.; Panasa Reddy, A.

    2005-01-01

    The effect of current density on the kinetics of anodization of Zircaloy-2 in 0.1 M potassium tartarate have been studied at various constant current densities ranging from 2 to 10 mA.cm -2 and at room temperature to investigate the exponential dependence of ionic current density on the field across the oxide. The rate of anodic film formation (dV/dt), the current efficiency the differential field of formation (F) and the ionic current density (i i ) were calculated. It was found that all these parameters were increased with increase of current density. The induction period was decreased with the increase of current density. It was also found that the plot of log (ionic current density) vs differential field gave fairly a linear relationship. The kinetic parameters, half jump distance (a) and height of the energy barrier (W) were calculated. (author)

  10. Efficient generation of pronunciation dictionaries: human factors factors during bootstrapping

    CSIR Research Space (South Africa)

    Davel, MH

    2004-10-01

    Full Text Available Bootstrapping techniques have significant potential for the efficient generation of linguistic resources such as electronic pronunciation dictionaries. The authors describe a system and an approach to bootstrapping for the development...

  11. On the optimization of a steady-state bootstrap-reactor

    International Nuclear Information System (INIS)

    Polevoy, A.R.; Martynov, A.A.; Medvedev, S.Yu.

    1993-01-01

    A commercial fusion tokamak-reactor may be economically acceptable only for low recirculating power fraction r 0 ≡ P CD /P α BS ≡I BS /I > 0.9 to sustain the steady-state operation mode for high plasma densities > 1.5 10 20 m -3 , fulfilled the divertor conditions. This paper presents the approximate expressions for the optimal set of reactor parameters for r BS /I∼1, based on the self-consistent plasma simulations by 1.5D ASTRA code. The linear MHD stability analysis for ideal n=1 kink and ballooning modes has been carried out to determine the conditions of stabilization for bootstrap steady state tokamak reactor BSSTR configurations. (author) 10 refs., 1 tab

  12. The use of the bootstrap in the analysis of case-control studies with missing data

    DEFF Research Database (Denmark)

    Siersma, Volkert Dirk; Johansen, Christoffer

    2004-01-01

    nonparametric bootstrap, bootstrap confidence intervals, missing values, multiple imputation, matched case-control study......nonparametric bootstrap, bootstrap confidence intervals, missing values, multiple imputation, matched case-control study...

  13. Bootstrapping pronunciation dictionaries: practical issues

    CSIR Research Space (South Africa)

    Davel, MH

    2005-09-01

    Full Text Available Bootstrapping techniques are an efficient way to develop electronic pronunciation dictionaries, but require fast system response to be practical for medium-to-large lexicons. In addition, user errors are inevitable during this process...

  14. Bootstrap Power of Time Series Goodness of fit tests

    Directory of Open Access Journals (Sweden)

    Sohail Chand

    2013-10-01

    Full Text Available In this article, we looked at power of various versions of Box and Pierce statistic and Cramer von Mises test. An extensive simulation study has been conducted to compare the power of these tests. Algorithms have been provided for the power calculations and comparison has also been made between the semi parametric bootstrap methods used for time series. Results show that Box-Pierce statistic and its various versions have good power against linear time series models but poor power against non linear models while situation reverses for Cramer von Mises test. Moreover, we found that dynamic bootstrap method is better than xed design bootstrap method.

  15. Bootstrap inversion for Pn wave velocity in North-Western Italy

    Directory of Open Access Journals (Sweden)

    C. Eva

    1997-06-01

    Full Text Available An inversion of Pn arrival times from regional distance earthquakes (180-800 km, recorded by 94 seismic stations operating in North-Western Italy and surrounding areas, was carried out to image lateral variations of P-wave velocity at the crust-mantle boundary, and to estimate the static delay time at each station. The reliability of the obtained results was assessed using both synthetic tests and the bootstrap Monte Carlo resampling technique. Numerical simulations demonstrated the existence of a trade-off between cell velocities and estimated station delay times along the edge of the model. Bootstrap inversions were carried out to determine the standard deviation of velocities and time terms. Low Pn velocity anomalies are detected beneath the outer side of the Alps (-6% and the Western Po plain (-4% in correspondence with two regions of strong crustal thickening and negative Bouguer anomaly. In contrast, high Pn velocities are imaged beneath the inner side of the Alps (+4% indicating the presence of high velocity and density lower crust-upper mantle. The Ligurian sea shows high Pn velocities close to the Ligurian coastlines (+3% and low Pn velocities (-1.5% in the middle of the basin in agreement with the upper mantle velocity structure revealed by seismic refraction profiles.

  16. Bootstrapping as a Resource Dependence Management Strategy and its Association with Startup Growth

    OpenAIRE

    T. VANACKER; S. MANIGART; M. MEULEMAN; L. SELS

    2011-01-01

    This paper studies the association between bootstrapping and startup growth. Bootstrapping reduces a startup’s dependence on financial investors, but may create new dependencies. Drawing upon resource dependence theory, we hypothesize that when bootstrapping does not create new strong dependencies it will benefit startup growth, especially when dependence from financial investors is high. However, when bootstrapping creates new strong dependencies it will constrain growth, especially when dep...

  17. Hadronic equation of state in the statistical bootstrap model and linear graph theory

    International Nuclear Information System (INIS)

    Fre, P.; Page, R.

    1976-01-01

    Taking a statistical mechanical point og view, the statistical bootstrap model is discussed and, from a critical analysis of the bootstrap volume comcept, it is reached a physical ipothesis, which leads immediately to the hadronic equation of state provided by the bootstrap integral equation. In this context also the connection between the statistical bootstrap and the linear graph theory approach to interacting gases is analyzed

  18. Early Stop Criterion from the Bootstrap Ensemble

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Larsen, Jan; Fog, Torben L.

    1997-01-01

    This paper addresses the problem of generalization error estimation in neural networks. A new early stop criterion based on a Bootstrap estimate of the generalization error is suggested. The estimate does not require the network to be trained to the minimum of the cost function, as required...... by other methods based on asymptotic theory. Moreover, in contrast to methods based on cross-validation which require data left out for testing, and thus biasing the estimate, the Bootstrap technique does not have this disadvantage. The potential of the suggested technique is demonstrated on various time...

  19. Statistical bootstrap approach to hadronic matter and multiparticle reactions

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.; Kripfganz, J.; Moehring, H.J.

    1977-01-01

    The authors present the main ideas behind the statistical bootstrap model and recent developments within this model related to the description of fireball cascade decay. Mathematical methods developed in this model might be useful in other phenomenological schemes of strong interaction physics; they are described in detail. The present status of applications of the model to various hadronic reactions is discussed. When discussing the relations of the statistical bootstrap model to other models of hadron physics the authors point out possibly fruitful analogies and dynamical mechanisms which are modelled by the bootstrap dynamics under definite conditions. This offers interpretations for the critical temperature typical for the model and indicates futher fields of application. (author)

  20. Bootstrapping in language resource generation

    CSIR Research Space (South Africa)

    Davel, MH

    2003-11-01

    Full Text Available by Schultz [1]. Bootstrapping approaches are applicable to various lan- guage resource development tasks, specifically where an au- tomated mechanism can be defined to convert between vari- ous representations of the data considered. In the above ex...

  1. Bootstrap prediction and Bayesian prediction under misspecified models

    OpenAIRE

    Fushiki, Tadayoshi

    2005-01-01

    We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's `bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, bo...

  2. Neoclassical MHD equilibria with ohmic current

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Takeda, Tatsuoki; Okamoto, Masao.

    1989-01-01

    MHD equilibria of tokamak plasmas with neoclassical current effects (neoclassical conductivity and bootstrap current) were calculated self-consistently. Neoclassical effects on JFT-2M tokamak plasmas, sustained by ohmic currents, were studied. Bootstrap currents flow little for L-mode type equilibria because of low attainable values of poloidal beta, β J . H-mode type equilibria give bootstrap currents of 30% ohmic currents for β J attained by JFT-2M and 100% for β J ≥ 1.5, both of which are sufficient to change the current profiles and the resultant MHD equilibria. Neoclassical conductivity which has roughly half value of the classical Spitzer conductivity brings peaked ohmic current profiles to yield low safety factor at the magnetic axis. Neoclassical conductivity reduces the value of effective Z(Z eff ) which is necessary to give the observed one-turn voltage but it needs impurities accumulating at the center when such peaked current profiles are not observed. (author)

  3. Superconducting toroidal field coil current densities for the TFCX

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Hooper, R.J.

    1985-04-01

    A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm 2 with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm 3 for the nominal design and 50 MW/cm 3 for an advanced design. This study developed justification for these current density and nuclear heat load limits

  4. Current Density and Plasma Displacement Near Perturbed Rational Surface

    International Nuclear Information System (INIS)

    Boozer, A.H.; Pomphrey, N.

    2010-01-01

    The current density in the vicinity of a rational surface of a force-free magnetic field subjected to an ideal perturbation is shown to be the sum of both a smooth and a delta-function distribution, which give comparable currents. The maximum perturbation to the smooth current density is comparable to a typical equilibrium current density and the width of the layer in which the current flows is shown to be proportional to the perturbation amplitude. In the standard linearized theory, the plasma displacement has an unphysical jump across the rational surface, but the full theory gives a continuous displacement.

  5. Modelos alternativos de simulación Bootstrap

    OpenAIRE

    Pino Mejías, Rafael

    1992-01-01

    Se describen las características fundamentales de los métodos Bootstrap. Se analizan diversas problemáticas que presentan tales métodos, por lo que se presentan dos métodos alternativos dentro del método Bootstrap basado en la simulación de muestras (método II de Efron). En el primero se presenta un método, que a partir de un estudio de las propiedades algebraicas y estadísticas del conjunto de posibles muestras, utiliza un criterio probabilístico para detectar muestras "outliers". En el segu...

  6. Electromagnetic considerations for RF current density imaging [MRI technique].

    Science.gov (United States)

    Scott, G C; Joy, M G; Armstrong, R L; Henkelman, R M

    1995-01-01

    Radio frequency current density imaging (RF-CDI) is a recent MRI technique that can image a Larmor frequency current density component parallel to B(0). Because the feasibility of the technique was demonstrated only for homogeneous media, the authors' goal here is to clarify the electromagnetic assumptions and field theory to allow imaging RF currents in heterogeneous media. The complete RF field and current density imaging problem is posed. General solutions are given for measuring lab frame magnetic fields from the rotating frame magnetic field measurements. For the general case of elliptically polarized fields, in which current and magnetic field components are not in phase, one can obtain a modified single rotation approximation. Sufficient information exists to image the amplitude and phase of the RF current density parallel to B(0) if the partial derivative in the B(0) direction of the RF magnetic field (amplitude and phase) parallel to B(0) is much smaller than the corresponding current density component. The heterogeneous extension was verified by imaging conduction and displacement currents in a phantom containing saline and pure water compartments. Finally, the issues required to image eddy currents are presented. Eddy currents within a sample will distort both the transmitter coil reference system, and create measurable rotating frame magnetic fields. However, a three-dimensional electro-magnetic analysis will be required to determine how the reference system distortion affects computed eddy current images.

  7. The ${\\mathcal N}=2$ superconformal bootstrap

    CERN Document Server

    Beem, Christopher; Liendo, Pedro; Rastelli, Leonardo; van Rees, Balt C

    2016-01-01

    In this work we initiate the conformal bootstrap program for ${\\mathcal N}=2$ superconformal field theories in four dimensions. We promote an abstract operator-algebraic viewpoint in order to unify the description of Lagrangian and non-Lagrangian theories, and formulate various conjectures concerning the landscape of theories. We analyze in detail the four-point functions of flavor symmetry current multiplets and of ${\\mathcal N}=2$ chiral operators. For both correlation functions we review the solution of the superconformal Ward identities and describe their superconformal block decompositions. This provides the foundation for an extensive numerical analysis discussed in the second half of the paper. We find a large number of constraints for operator dimensions, OPE coefficients, and central charges that must hold for any ${\\mathcal N}=2$ superconformal field theory.

  8. Bootstrap Sequential Determination of the Co-integration Rank in VAR Models

    DEFF Research Database (Denmark)

    Guiseppe, Cavaliere; Rahbæk, Anders; Taylor, A.M. Robert

    with empirical rejection frequencies often very much in excess of the nominal level. As a consequence, bootstrap versions of these tests have been developed. To be useful, however, sequential procedures for determining the co-integrating rank based on these bootstrap tests need to be consistent, in the sense...... in the literature by proposing a bootstrap sequential algorithm which we demonstrate delivers consistent cointegration rank estimation for general I(1) processes. Finite sample Monte Carlo simulations show the proposed procedure performs well in practice....

  9. Bias Correction with Jackknife, Bootstrap, and Taylor Series

    OpenAIRE

    Jiao, Jiantao; Han, Yanjun; Weissman, Tsachy

    2017-01-01

    We analyze the bias correction methods using jackknife, bootstrap, and Taylor series. We focus on the binomial model, and consider the problem of bias correction for estimating $f(p)$, where $f \\in C[0,1]$ is arbitrary. We characterize the supremum norm of the bias of general jackknife and bootstrap estimators for any continuous functions, and demonstrate the in delete-$d$ jackknife, different values of $d$ may lead to drastically different behavior in jackknife. We show that in the binomial ...

  10. Bootstrapped efficiency measures of oil blocks in Angola

    International Nuclear Information System (INIS)

    Barros, C.P.; Assaf, A.

    2009-01-01

    This paper investigates the technical efficiency of Angola oil blocks over the period 2002-2007. A double bootstrap data envelopment analysis (DEA) model is adopted composed in the first stage of a DEA-variable returns to scale (VRS) model and then followed in the second stage by a bootstrapped truncated regression. Results showed that on average, the technical efficiency has fluctuated over the period of study, but deep and ultradeep oil blocks have generally maintained a consistent efficiency level. Policy implications are derived.

  11. Spin-Density Functionals from Current-Density Functional Theory and Vice Versa: A Road towards New Approximations

    International Nuclear Information System (INIS)

    Capelle, K.; Gross, E.

    1997-01-01

    It is shown that the exchange-correlation functional of spin-density functional theory is identical, on a certain set of densities, with the exchange-correlation functional of current-density functional theory. This rigorous connection is used to construct new approximations of the exchange-correlation functionals. These include a conceptually new generalized-gradient spin-density functional and a nonlocal current-density functional. copyright 1997 The American Physical Society

  12. Accidental symmetries and the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Shai M.; Giombi, Simone; Iliesiu, Luca V.; Klebanov, Igor R.; Pufu, Silviu S.; Yacoby, Ran [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)

    2016-01-19

    We study an N=2 supersymmetric generalization of the three-dimensional critical O(N) vector model that is described by N+1 chiral superfields with superpotential W=g{sub 1}X∑{sub i}Z{sub i}{sup 2}+g{sub 2}X{sup 3}. By combining the tools of the conformal bootstrap with results obtained through supersymmetric localization, we argue that this model exhibits a symmetry enhancement at the infrared superconformal fixed point due to g{sub 2} flowing to zero. This example is special in that the existence of an infrared fixed point with g{sub 1},g{sub 2}≠0, which does not exhibit symmetry enhancement, does not generally lead to any obvious unitarity violations or other inconsistencies. We do show, however, that the F-theorem excludes the models with g{sub 1},g{sub 2}≠0 for N>5. The conformal bootstrap provides a stronger constraint and excludes such models for N>2. We provide evidence that the g{sub 2}=0 models, which have the enhanced O(N)×U(1) symmetry, come close to saturating the bootstrap bounds. We extend our analysis to fractional dimensions where we can motivate the nonexistence of the g{sub 1},g{sub 2}≠0 models by studying them perturbatively in the 4−ϵ expansion.

  13. Bootstrapping N=3 superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Madalena; Liendo, Pedro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Meneghelli, Carlo [Stony Brook Univ., Stony Brook, NY (United States). Simons Center for Geometry and Physics; Mitev, Vladimir [Mainz Univ. (Germany). PRISMA Cluster of Excellence

    2016-12-15

    We initiate the bootstrap program for N=3 superconformal field theories (SCFTs) in four dimensions. The problem is considered from two fronts: the protected subsector described by a 2d chiral algebra, and crossing symmetry for half-BPS operators whose superconformal primaries parametrize the Coulomb branch of N=3 theories. With the goal of describing a protected subsector of a family of =3 SCFTs, we propose a new 2d chiral algebra with super Virasoro symmetry that depends on an arbitrary parameter, identified with the central charge of the theory. Turning to the crossing equations, we work out the superconformal block expansion and apply standard numerical bootstrap techniques in order to constrain the CFT data. We obtain bounds valid for any theory but also, thanks to input from the chiral algebra results, we are able to exclude solutions with N=4 supersymmetry, allowing us to zoom in on a specific N=3 SCFT.

  14. Bootstrapping N=3 superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Madalena; Liendo, Pedro [DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Meneghelli, Carlo [Simons Center for Geometry and Physics,Stony Brook University, Stony Brook, NY 11794-3636 (United States); Mitev, Vladimir [PRISMA Cluster of Excellence, Institut für Physik,JGU Mainz, Staudingerweg 7, 55128 Mainz (Germany)

    2017-04-06

    We initiate the bootstrap program for N=3 superconformal field theories (SCFTs) in four dimensions. The problem is considered from two fronts: the protected subsector described by a 2d chiral algebra, and crossing symmetry for half-BPS operators whose superconformal primaries parametrize the Coulomb branch of N=3 theories. With the goal of describing a protected subsector of a family of N=3 SCFTs, we propose a new 2d chiral algebra with super Virasoro symmetry that depends on an arbitrary parameter, identified with the central charge of the theory. Turning to the crossing equations, we work out the superconformal block expansion and apply standard numerical bootstrap techniques in order to constrain the CFT data. We obtain bounds valid for any theory but also, thanks to input from the chiral algebra results, we are able to exclude solutions with N=4 supersymmetry, allowing us to zoom in on a specific N=3 SCFT.

  15. The $(2,0)$ superconformal bootstrap

    CERN Document Server

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C

    2016-01-01

    We develop the conformal bootstrap program for six-dimensional conformal field theories with $(2,0)$ supersymmetry, focusing on the universal four-point function of stress tensor multiplets. We review the solution of the superconformal Ward identities and describe the superconformal block decomposition of this correlator. We apply numerical bootstrap techniques to derive bounds on OPE coefficients and scaling dimensions from the constraints of crossing symmetry and unitarity. We also derive analytic results for the large spin spectrum using the lightcone expansion of the crossing equation. Our principal result is strong evidence that the $A_1$ theory realizes the minimal allowed central charge $(c=25)$ for any interacting $(2,0)$ theory. This implies that the full stress tensor four-point function of the $A_1$ theory is the unique unitary solution to the crossing symmetry equation at $c=25$. For this theory, we estimate the scaling dimensions of the lightest unprotected operators appearing in the stress tenso...

  16. Heptagons from the Steinmann cluster bootstrap

    International Nuclear Information System (INIS)

    Dixon, Lance J.; Drummond, James; Papathanasiou, Georgios

    2017-01-01

    We reformulate the heptagon cluster bootstrap to take advantage of the Steinmann relations, which require certain double discontinuities of any amplitude to vanish. These constraints vastly reduce the number of functions needed to bootstrap seven-point amplitudes in planar N = 4 supersymmetric Yang-Mills theory, making higher-loop contributions to these amplitudes more computationally accessible. In particular, dual superconformal symmetry and well-defined collinear limits suffice to determine uniquely the symbols of the three-loop NMHV and four-loop MHV seven-point amplitudes. We also show that at three loops, relaxing the dual superconformal Q̄ relations and imposing dihedral symmetry (and for NMHV the absence of spurious poles) leaves only a single ambiguity in the heptagon amplitudes. These results point to a strong tension between the collinear properties of the amplitudes and the Steinmann relations.

  17. The efficiency of different search strategies in estimating parsimony jackknife, bootstrap, and Bremer support

    Directory of Open Access Journals (Sweden)

    Müller Kai F

    2005-10-01

    constrained node, at least not for datasets that fall within the size range found in the current literature. Conclusion In view of these results, calculating bootstrap or jackknife proportions with narrow confidence intervals even for very large datasets can be achieved with less expense than often thought. In particular, iterated bootstrap methods that aim at reducing statistical bias inherent to these proportions are more feasible when the individual bootstrap searches require less time.

  18. A bootstrap based space-time surveillance model with an application to crime occurrences

    Science.gov (United States)

    Kim, Youngho; O'Kelly, Morton

    2008-06-01

    This study proposes a bootstrap-based space-time surveillance model. Designed to find emerging hotspots in near-real time, the bootstrap based model is characterized by its use of past occurrence information and bootstrap permutations. Many existing space-time surveillance methods, using population at risk data to generate expected values, have resulting hotspots bounded by administrative area units and are of limited use for near-real time applications because of the population data needed. However, this study generates expected values for local hotspots from past occurrences rather than population at risk. Also, bootstrap permutations of previous occurrences are used for significant tests. Consequently, the bootstrap-based model, without the requirement of population at risk data, (1) is free from administrative area restriction, (2) enables more frequent surveillance for continuously updated registry database, and (3) is readily applicable to criminology and epidemiology surveillance. The bootstrap-based model performs better for space-time surveillance than the space-time scan statistic. This is shown by means of simulations and an application to residential crime occurrences in Columbus, OH, year 2000.

  19. On a linear method in bootstrap confidence intervals

    Directory of Open Access Journals (Sweden)

    Andrea Pallini

    2007-10-01

    Full Text Available A linear method for the construction of asymptotic bootstrap confidence intervals is proposed. We approximate asymptotically pivotal and non-pivotal quantities, which are smooth functions of means of n independent and identically distributed random variables, by using a sum of n independent smooth functions of the same analytical form. Errors are of order Op(n-3/2 and Op(n-2, respectively. The linear method allows a straightforward approximation of bootstrap cumulants, by considering the set of n independent smooth functions as an original random sample to be resampled with replacement.

  20. Uncertainty Assessment of Hydrological Frequency Analysis Using Bootstrap Method

    Directory of Open Access Journals (Sweden)

    Yi-Ming Hu

    2013-01-01

    Full Text Available The hydrological frequency analysis (HFA is the foundation for the hydraulic engineering design and water resources management. Hydrological extreme observations or samples are the basis for HFA; the representativeness of a sample series to the population distribution is extremely important for the estimation reliability of the hydrological design value or quantile. However, for most of hydrological extreme data obtained in practical application, the size of the samples is usually small, for example, in China about 40~50 years. Generally, samples with small size cannot completely display the statistical properties of the population distribution, thus leading to uncertainties in the estimation of hydrological design values. In this paper, a new method based on bootstrap is put forward to analyze the impact of sampling uncertainty on the design value. By bootstrap resampling technique, a large number of bootstrap samples are constructed from the original flood extreme observations; the corresponding design value or quantile is estimated for each bootstrap sample, so that the sampling distribution of design value is constructed; based on the sampling distribution, the uncertainty of quantile estimation can be quantified. Compared with the conventional approach, this method provides not only the point estimation of a design value but also quantitative evaluation on uncertainties of the estimation.

  1. A SQUID Bootstrap Circuit with a Large Parameter Tolerance

    International Nuclear Information System (INIS)

    Zhang Guo-Feng; Kong Xiang-Yan; Xie Xiao-Ming; Zhang Yi; Krause Hans-Joachim; Offenhäusser Andreas

    2013-01-01

    The voltage biased (SQUID) bootstrap circuit (SBC) was recently introduced as an effective means to reduce the preamplifier noise contribution. We analyze the tolerances of the SBC noise suppression performance to spreads in SQUID and SBC circuit parameters. It is found that the tolerance to spread mainly caused by the integrated circuit fabrication process could be extended by a one-time adjustable current feedback. A helium-cooled niobium SQUID with a loop inductance of 350 pH is employed to experimentally verify the analysis. From this work, design criteria for fully integrated SBC devices with a high yield can be derived

  2. Bootstrapping Kernel-Based Semiparametric Estimators

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Jansson, Michael

    by accommodating a non-negligible bias. A noteworthy feature of the assumptions under which the result is obtained is that reliance on a commonly employed stochastic equicontinuity condition is avoided. The second main result shows that the bootstrap provides an automatic method of correcting for the bias even...... when it is non-negligible....

  3. A bootstrap estimation scheme for chemical compositional data with nondetects

    Science.gov (United States)

    Palarea-Albaladejo, J; Martín-Fernández, J.A; Olea, Ricardo A.

    2014-01-01

    The bootstrap method is commonly used to estimate the distribution of estimators and their associated uncertainty when explicit analytic expressions are not available or are difficult to obtain. It has been widely applied in environmental and geochemical studies, where the data generated often represent parts of whole, typically chemical concentrations. This kind of constrained data is generically called compositional data, and they require specialised statistical methods to properly account for their particular covariance structure. On the other hand, it is not unusual in practice that those data contain labels denoting nondetects, that is, concentrations falling below detection limits. Nondetects impede the implementation of the bootstrap and represent an additional source of uncertainty that must be taken into account. In this work, a bootstrap scheme is devised that handles nondetects by adding an imputation step within the resampling process and conveniently propagates their associated uncertainly. In doing so, it considers the constrained relationships between chemical concentrations originated from their compositional nature. Bootstrap estimates using a range of imputation methods, including new stochastic proposals, are compared across scenarios of increasing difficulty. They are formulated to meet compositional principles following the log-ratio approach, and an adjustment is introduced in the multivariate case to deal with nonclosed samples. Results suggest that nondetect bootstrap based on model-based imputation is generally preferable. A robust approach based on isometric log-ratio transformations appears to be particularly suited in this context. Computer routines in the R statistical programming language are provided. 

  4. Conformal bootstrap: non-perturbative QFT's under siege

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    [Exceptionally in Council Chamber] Originally formulated in the 70's, the conformal bootstrap is the ambitious idea that one can use internal consistency conditions to carve out, and eventually solve, the space of conformal field theories. In this talk I will review recent developments in the field which have boosted this program to a new level. I will present a method to extract quantitative informations in strongly-interacting theories, such as 3D Ising, O(N) vector model and even systems without a Lagrangian formulation. I will explain how these techniques have led to the world record determination of several critical exponents. Finally, I will review exact analytical results obtained using bootstrap techniques.

  5. Heptagons from the Steinmann cluster bootstrap

    International Nuclear Information System (INIS)

    Dixon, Lance J.; McLeod, Andrew J.; Drummond, James; Harrington, Thomas; Spradlin, Marcus; Papathanasiou, Georgios; Stanford Univ., CA

    2016-12-01

    We reformulate the heptagon cluster bootstrap to take advantage of the Steinmann relations, which require certain double discontinuities of any amplitude to vanish. These constraints vastly reduce the number of functions needed to bootstrap seven-point amplitudes in planar N=4 supersymmetric Yang-Mills theory, making higher-loop contributions to these amplitudes more computationally accessible. In particular, dual superconformal symmetry and well-defined collinear limits suffice to determine uniquely the symbols of the three-loop NMHV and four-loop MHV seven-point amplitudes. We also show that at three loops, relaxing the dual superconformal (anti Q) relations and imposing dihedral symmetry (and for NMHV the absence of spurious poles) leaves only a single ambiguity in the heptagon amplitudes. These results point to a strong tension between the collinear properties of the amplitudes and the Steinmann relations.

  6. Heptagons from the Steinmann cluster bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; McLeod, Andrew J. [Stanford Univ., CA (United States). SLAC National Accelerator Lab.; Drummond, James [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Harrington, Thomas; Spradlin, Marcus [Brown Univ., Providence, RI (United States). Dept. of Physics; Papathanasiou, Georgios [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Stanford Univ., CA (United States). SLAC National Accelerator Lab.

    2016-12-15

    We reformulate the heptagon cluster bootstrap to take advantage of the Steinmann relations, which require certain double discontinuities of any amplitude to vanish. These constraints vastly reduce the number of functions needed to bootstrap seven-point amplitudes in planar N=4 supersymmetric Yang-Mills theory, making higher-loop contributions to these amplitudes more computationally accessible. In particular, dual superconformal symmetry and well-defined collinear limits suffice to determine uniquely the symbols of the three-loop NMHV and four-loop MHV seven-point amplitudes. We also show that at three loops, relaxing the dual superconformal (anti Q) relations and imposing dihedral symmetry (and for NMHV the absence of spurious poles) leaves only a single ambiguity in the heptagon amplitudes. These results point to a strong tension between the collinear properties of the amplitudes and the Steinmann relations.

  7. A framework for bootstrapping morphological decomposition

    CSIR Research Space (South Africa)

    Joubert, LJ

    2004-11-01

    Full Text Available The need for a bootstrapping approach to the morphological decomposition of words in agglutinative languages such as isiZulu is motivated, and the complexities of such an approach are described. The authors then introduce a generic framework which...

  8. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Science.gov (United States)

    Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  9. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    Science.gov (United States)

    Dunne, M. G.; McCarthy, P. J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.; the ASDEX Upgrade Team

    2012-12-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications.

  10. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Dunne, M.G.; McCarthy, P.J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.

    2012-01-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications. (paper)

  11. Density currents as a desert dust mobilization mechanism

    Directory of Open Access Journals (Sweden)

    S. Solomos

    2012-11-01

    Full Text Available The formation and propagation of density currents are well studied processes in fluid dynamics with many applications in other science fields. In the atmosphere, density currents are usually meso-β/γ phenomena and are often associated with storm downdrafts. These storms are responsible for the formation of severe dust episodes (haboobs over desert areas. In the present study, the formation of a convective cool pool and the associated dust mobilization are examined for a representative event over the western part of Sahara desert. The physical processes involved in the mobilization of dust are described with the use of the integrated atmospheric-air quality RAMS/ICLAMS model. Dust is effectively produced due to the development of near surface vortices and increased turbulent mixing along the frontal line. Increased dust emissions and recirculation of the elevated particles inside the head of the density current result in the formation of a moving "dust wall". Transport of the dust particles in higher layers – outside of the density current – occurs mainly in three ways: (1 Uplifting of preexisting dust over the frontal line with the aid of the strong updraft (2 Entrainment at the upper part of the density current head due to turbulent mixing (3 Vertical mixing after the dilution of the system. The role of the dust in the associated convective cloud system was found to be limited. Proper representation of convective processes and dust mobilization requires the use of high resolution (cloud resolving model configuration and online parameterization of dust production. Haboob-type dust storms are effective dust sources and should be treated accordingly in dust modeling applications.

  12. Bootstrap Prediction Intervals in Non-Parametric Regression with Applications to Anomaly Detection

    Science.gov (United States)

    Kumar, Sricharan; Srivistava, Ashok N.

    2012-01-01

    Prediction intervals provide a measure of the probable interval in which the outputs of a regression model can be expected to occur. Subsequently, these prediction intervals can be used to determine if the observed output is anomalous or not, conditioned on the input. In this paper, a procedure for determining prediction intervals for outputs of nonparametric regression models using bootstrap methods is proposed. Bootstrap methods allow for a non-parametric approach to computing prediction intervals with no specific assumptions about the sampling distribution of the noise or the data. The asymptotic fidelity of the proposed prediction intervals is theoretically proved. Subsequently, the validity of the bootstrap based prediction intervals is illustrated via simulations. Finally, the bootstrap prediction intervals are applied to the problem of anomaly detection on aviation data.

  13. Rf Gun with High-Current Density Field Emission Cathode

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  14. Magnetic Method to Characterize the Current Densities in Breaker Arc

    International Nuclear Information System (INIS)

    Machkour, Nadia

    2005-01-01

    The purpose of this research was to use magnetic induction measurements from a low voltage breaker arc, to reconstruct the arc's current density. The measurements were made using Hall effect sensors, which were placed close to, but outside the breaking device. The arc was modelled as a rectangular current sheet, composed of a mix of threadlike current segments and with a current density varying across the propagation direction. We found the magnetic induction of the arc is a convolution product of the current density, and a function depending on the breaker geometry and arc model. Using deconvolution methods, the current density in the electric arc was determined.The method is used to study the arc behavior into the breaker device. Notably, position, arc size, and electric conductivity could all be determined, and then used to characterize the arc mode, diffuse or concentrated, and study the condition of its mode changing

  15. Comparison of exact-exchange calculations for solids in current-spin-density- and spin-density-functional theory

    DEFF Research Database (Denmark)

    Sharma, S.; Pittalis, S.; Kurth, S.

    2007-01-01

    The relative merits of current-spin-density- and spin-density-functional theory are investigated for solids treated within the exact-exchange-only approximation. Spin-orbit splittings and orbital magnetic moments are determined at zero external magnetic field. We find that for magnetic (Fe, Co......, and Ni) and nonmagnetic (Si and Ge) solids, the exact-exchange current-spin-density functional approach does not significantly improve the accuracy of the corresponding spin-density functional results....

  16. Computerized statistical analysis with bootstrap method in nuclear medicine

    International Nuclear Information System (INIS)

    Zoccarato, O.; Sardina, M.; Zatta, G.; De Agostini, A.; Barbesti, S.; Mana, O.; Tarolo, G.L.

    1988-01-01

    Statistical analysis of data samples involves some hypothesis about the features of data themselves. The accuracy of these hypotheses can influence the results of statistical inference. Among the new methods of computer-aided statistical analysis, the bootstrap method appears to be one of the most powerful, thanks to its ability to reproduce many artificial samples starting from a single original sample and because it works without hypothesis about data distribution. The authors applied the bootstrap method to two typical situation of Nuclear Medicine Department. The determination of the normal range of serum ferritin, as assessed by radioimmunoassay and defined by the mean value ±2 standard deviations, starting from an experimental sample of small dimension, shows an unacceptable lower limit (ferritin plasmatic levels below zero). On the contrary, the results obtained by elaborating 5000 bootstrap samples gives ans interval of values (10.95 ng/ml - 72.87 ng/ml) corresponding to the normal ranges commonly reported. Moreover the authors applied the bootstrap method in evaluating the possible error associated with the correlation coefficient determined between left ventricular ejection fraction (LVEF) values obtained by first pass radionuclide angiocardiography with 99m Tc and 195m Au. The results obtained indicate a high degree of statistical correlation and give the range of r 2 values to be considered acceptable for this type of studies

  17. Bootstrapping: Una teoría explicativa del cambio conceptual Bootstrapping: A theory for conceptual change

    Directory of Open Access Journals (Sweden)

    José Antonio Castorina

    2005-12-01

    Full Text Available El presente artículo expone la teoría explicativa propuesta por Carey para el cambio conceptual. Primeramente, se plantea la cuestión de la reorganización conceptual en la psicología cognitiva y la posición de Carey. En segundo lugar, se ponen de relieve las condiciones epistémica que deben cumplir las "teorías" infantiles para que la reestructuración conceptual sea posible, así como los modos que adopta esta última. En tercer lugar, se muestran los resultados de investigaciones que verifican el cambio conceptual entre teorías infantiles de biología intuitiva. En cuarto lugar, se plantean las dificultades de otras teorías del cambio conceptual, para luego formular los rasgos del mecanismo alternativo de bootstrapping y su pertinencia para interpretrar los datos de las indagaciones mencionadas. Finalmente, se evalúan la originalidad de la teoría del bootstrpping en el escenario de los debates contemporáneos. Muy especialmente, se esboza una posible aproximación con las tesis dialécticas de Piaget.This paper examines the Carey's theory of conceptual change. First, it describes the conceptual reorganization in cognitive psychology and the author position. Second, the epistemic conditions that children "theories" should fulfil to make conceptual restructuring possible, as well as the ways adopted by the latter, are analyzed. In third place, findings of researches testing the conceptual change among biology intuitive children theories are explained. Subsequently, it discusses the difficulties other theories of conceptual change present, in order to state features of bootstrapping as an alternative mechanism and its relevance for the interpretation of abovementioned researches results. Finally, it evaluates the originality of "bootstrapping" theory in the scene of contemporary debates. It particularly outlines a possible approach to Piaget's dialectic theses.

  18. Lightweight CoAP-Based Bootstrapping Service for the Internet of Things

    Directory of Open Access Journals (Sweden)

    Dan Garcia-Carrillo

    2016-03-01

    Full Text Available The Internet of Things (IoT is becoming increasingly important in several fields of industrial applications and personal applications, such as medical e-health, smart cities, etc. The research into protocols and security aspects related to this area is continuously advancing in making these networks more reliable and secure, taking into account these aspects by design. Bootstrapping is a procedure by which a user obtains key material and configuration information, among other parameters, to operate as an authenticated party in a security domain. Until now solutions have focused on re-using security protocols that were not developed for IoT constraints. For this reason, in this work we propose a design and implementation of a lightweight bootstrapping service for IoT networks that leverages one of the application protocols used in IoT : Constrained Application Protocol (CoAP. Additionally, in order to provide flexibility, scalability, support for large scale deployment, accountability and identity federation, our design uses technologies such as the Extensible Authentication Protocol (EAP and Authentication Authorization and Accounting (AAA. We have named this service CoAP-EAP. First, we review the state of the art in the field of bootstrapping and specifically for IoT. Second, we detail the bootstrapping service: the architecture with entities and interfaces and the flow operation. Third, we obtain performance measurements of CoAP-EAP (bootstrapping time, memory footprint, message processing time, message length and energy consumption and compare them with PANATIKI. The most significant and constrained representative of the bootstrapping solutions related with CoAP-EAP. As we will show, our solution provides significant improvements, mainly due to an important reduction of the message length.

  19. Lightweight CoAP-Based Bootstrapping Service for the Internet of Things.

    Science.gov (United States)

    Garcia-Carrillo, Dan; Marin-Lopez, Rafael

    2016-03-11

    The Internet of Things (IoT) is becoming increasingly important in several fields of industrial applications and personal applications, such as medical e-health, smart cities, etc. The research into protocols and security aspects related to this area is continuously advancing in making these networks more reliable and secure, taking into account these aspects by design. Bootstrapping is a procedure by which a user obtains key material and configuration information, among other parameters, to operate as an authenticated party in a security domain. Until now solutions have focused on re-using security protocols that were not developed for IoT constraints. For this reason, in this work we propose a design and implementation of a lightweight bootstrapping service for IoT networks that leverages one of the application protocols used in IoT : Constrained Application Protocol (CoAP). Additionally, in order to provide flexibility, scalability, support for large scale deployment, accountability and identity federation, our design uses technologies such as the Extensible Authentication Protocol (EAP) and Authentication Authorization and Accounting (AAA). We have named this service CoAP-EAP. First, we review the state of the art in the field of bootstrapping and specifically for IoT. Second, we detail the bootstrapping service: the architecture with entities and interfaces and the flow operation. Third, we obtain performance measurements of CoAP-EAP (bootstrapping time, memory footprint, message processing time, message length and energy consumption) and compare them with PANATIKI. The most significant and constrained representative of the bootstrapping solutions related with CoAP-EAP. As we will show, our solution provides significant improvements, mainly due to an important reduction of the message length.

  20. Confinement properties of JET plasmas with different temperature and density profiles

    International Nuclear Information System (INIS)

    Watkins, M.L.; Balet, B.; Bhatnagar, V.P.

    1989-01-01

    The confinement properties of plasmas with substantially different temperature and density profiles have been analysed. The effects of fast particles and energy pedestals on the overall confinement of plasma energy in limiter (L-mode) and X-point (L- and H-modes) discharges heated by NBI or ICRF or both are determined. The importance of the bootstrap current when such energy pedestals are formed is noted. Using sets of consistent experimental data, including ion temperature profile measurements, the local transport properties are compared in the L- and H-phases of a single null X-point medium density NBI heated discharge, the ''enhanced'' confinement phase of a limiter high density pellet-fuelled and ICRF heated discharge, the hot-ion phase of a double null X-point low density NBI heated discharge and the hot-ion and H-phases of a double null X-point low density high temperature NBI heated discharge. (author)

  1. Resistive evolution of current profile in tokamaks, application to the optimization of Tore-supra plasma discharges; Evolution resistive du profil de courant dans les Tokamaks, application a l'optimisation des decharges de Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Bregeon, R

    1999-03-01

    In Tokamak plasma physics, current profile shaping has now become a key issue to improve the confinement properties of the plasma discharge. The objective of this work is to study the processes governing the current diffusion when non-inductive current are playing a major role in the discharge. Ultimately, this study aims to identify the key parameters to control the plasma current density profile with external current drive heating systems such as Lower Hybrid Current drive (LHCD) or self generated current drive such as the bootstrap current. Principles of non inductive current drive and heating systems are introduced as well as bootstrap current mechanisms. Then we present the experimental study of plasma parallel electric conductivity to validate existing models. Using these results, the poloidal magnetic field flux diffusion is modelled, using toroidal co-ordinates in order to give an accurate description of the current density profiles evolution. The initial and boundary conditions required for numerical resolution of the diffusion equation are also presented. Finally, we conclude this work with the simulations of two discharges: one with Fast Wave Electron Heating and the second using Lower Hybrid Current Drive. These simulations have multiples aims: validity test of our numerical tool and to show some limits of cylindrical models. Test of electric conductivity and bootstrap current models. To identify the key parameters involved in the current diffusion processes of a high performance plasma discharge on Tore Supra. Such simulations are crucial to determine the amount of non-inductive current required to control and sustain long plasma discharges in steady state. (author)

  2. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Directory of Open Access Journals (Sweden)

    Khang Jie Liew

    Full Text Available This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  3. Fast wave current drive above the slow wave density limit

    International Nuclear Information System (INIS)

    McWilliams, R.; Sheehan, D.P.; Wolf, N.S.; Edrich, D.

    1989-01-01

    Fast wave and slow wave current drive near the mean gyrofrequency were compared in the Irvine Torus using distinct phased array antennae of similar principal wavelengths, frequencies, and input powers. The slow wave current drive density limit was measured for 50ω ci ≤ω≤500ω ci and found to agree with trends in tokamaks. Fast wave current drive was observed at densities up to the operating limit of the torus, demonstrably above the slow wave density limit

  4. Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    to a gneral class of estimators of integrated covolatility. We then show the first-order asymptotic validity of this method in the multivariate context with a potential presence of jumps, dependent microsturcture noise, irregularly spaced and non-synchronous data. Due to our focus on non...... covariance estimator. As an application of our results, we also consider the bootstrap for regression coefficients. We show that the wild blocks of bootstrap, appropriately centered, is able to mimic both the dependence and heterogeneity of the scores, thus justifying the construction of bootstrap percentile...... intervals as well as variance estimates in this context. This contrasts with the traditional pairs bootstrap which is not able to mimic the score heterogeneity even in the simple case where no microsturcture noise is present. Our Monte Carlo simulations show that the wild blocks of blocks bootstrap improves...

  5. Stock Price Simulation Using Bootstrap and Monte Carlo

    Directory of Open Access Journals (Sweden)

    Pažický Martin

    2017-06-01

    Full Text Available In this paper, an attempt is made to assessment and comparison of bootstrap experiment and Monte Carlo experiment for stock price simulation. Since the stock price evolution in the future is extremely important for the investors, there is the attempt to find the best method how to determine the future stock price of BNP Paribas′ bank. The aim of the paper is define the value of the European and Asian option on BNP Paribas′ stock at the maturity date. There are employed four different methods for the simulation. First method is bootstrap experiment with homoscedastic error term, second method is blocked bootstrap experiment with heteroscedastic error term, third method is Monte Carlo simulation with heteroscedastic error term and the last method is Monte Carlo simulation with homoscedastic error term. In the last method there is necessary to model the volatility using econometric GARCH model. The main purpose of the paper is to compare the mentioned methods and select the most reliable. The difference between classical European option and exotic Asian option based on the experiment results is the next aim of tis paper.

  6. An algebraic approach to the analytic bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F. [Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Zhiboedov, Alexander [Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA 02138 (United States)

    2017-04-27

    We develop an algebraic approach to the analytic bootstrap in CFTs. By acting with the Casimir operator on the crossing equation we map the problem of doing large spin sums to any desired order to the problem of solving a set of recursion relations. We compute corrections to the anomalous dimension of large spin operators due to the exchange of a primary and its descendants in the crossed channel and show that this leads to a Borel-summable expansion. We analyse higher order corrections to the microscopic CFT data in the direct channel and its matching to infinite towers of operators in the crossed channel. We apply this method to the critical O(N) model. At large N we reproduce the first few terms in the large spin expansion of the known two-loop anomalous dimensions of higher spin currents in the traceless symmetric representation of O(N) and make further predictions. At small N we present the results for the truncated large spin expansion series of anomalous dimensions of higher spin currents.

  7. Financial bootstrapping use in new family ventures and the impact on venture growth

    OpenAIRE

    Helleboogh, David; LAVEREN, Eddy; LYBAERT, Nadine

    2010-01-01

    This paper contributes to the general knowledge of bootstrap financing among new family ventures in two ways. Firstly, this research reveals which human capital characteristics of the owner-manager has an impact on financial bootstrapping use. The empirical results indicate that the use of bootstrapping techniques does not depend upon the family's business founder's education, but that it is a skill which is absorbed from self-employed parents or during the founder's prior work and management...

  8. Financial bootstrapping use in family ventures and the impact on start-up growth

    OpenAIRE

    Helleboogh, D.; Laveren, E.; LYBAERT, Nadine

    2010-01-01

    This paper contributes to the general knowledge of bootstrap financing among new family ventures in two ways. Firstly, this research reveals which human capital characteristics of the owner-manager has an impact on financial bootstrapping use. The empirical results indicate that the use of bootstrapping techniques does not depend upon the family business founder's education, but that it is a skill which is absorbed from self-employed parents or during the founder‟s prior work and management e...

  9. A Parsimonious Bootstrap Method to Model Natural Inflow Energy Series

    Directory of Open Access Journals (Sweden)

    Fernando Luiz Cyrino Oliveira

    2014-01-01

    Full Text Available The Brazilian energy generation and transmission system is quite peculiar in its dimension and characteristics. As such, it can be considered unique in the world. It is a high dimension hydrothermal system with huge participation of hydro plants. Such strong dependency on hydrological regimes implies uncertainties related to the energetic planning, requiring adequate modeling of the hydrological time series. This is carried out via stochastic simulations of monthly inflow series using the family of Periodic Autoregressive models, PAR(p, one for each period (month of the year. In this paper it is shown the problems in fitting these models by the current system, particularly the identification of the autoregressive order “p” and the corresponding parameter estimation. It is followed by a proposal of a new approach to set both the model order and the parameters estimation of the PAR(p models, using a nonparametric computational technique, known as Bootstrap. This technique allows the estimation of reliable confidence intervals for the model parameters. The obtained results using the Parsimonious Bootstrap Method of Moments (PBMOM produced not only more parsimonious model orders but also adherent stochastic scenarios and, in the long range, lead to a better use of water resources in the energy operation planning.

  10. Core fueling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1994-06-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. We show that with radially ''hollow'' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles which are peaked off-axis. The fueling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fueling does not require MeV particle energy. Even with beam voltages of ∼200 keV, however, exceptionally good particle confinement, τ p much-gt τ E is required to achieve net electrical power generation. In system with no power production requirement (e.g., neutron sources) neutral beam fueling should be capable of producing peaked density profiles in devices as large as ITER. Fueling systems with low energy cost per particle (such as cryogenic pellet injection) must be used in power producing tokamaks when τ p ∼ τ E . Simulations with pellet injection speeds of 7 km/sec show the peaking factor, n eo /left-angle n e right-angle, approaching 2

  11. High current density magnets for INTOR and TIBER

    International Nuclear Information System (INIS)

    Miller, J.R.; Henning, C.D.; Kerns, J.A.; Slack, D.S.; Summers, L.T.; Zbasnik, J.P.

    1986-12-01

    The adoption of high current density, high field, superconducting magnets for INTOR and TIBER would prove beneficial. When combined with improved radiation tolerance of the magnets to minimize the inner leg shielding, a substantial reduction in machine dimensions and capital costs can be achieved. Fortunately, cable-in-conduit conductors (CICC) which are capable of the desired enhancements are being developed. Because conductor stability in a CICC depends more on the trapped helium enthalpy, rather than the copper resistivity, higher current densities of the order of 40 A/mm 2 at 12 T are possible. Radiation damage to the copper stabilizer is less important because the growth in resistance is a second-order effect on stability. Such CICC conductors lend themselves naturally to niobium-tin utilization, with the benefits of the high current-sharing temperature of this material being taken to advantage in absorbing radiation heating. When the helium coolant is injected at near the critical pressure, Joule-Thompson expansion in the flow path tends to stabilize the fluid temperature at under 6 K. Thus, higher fields, as well as higher current densities, can be considered for INTOR or TIBER

  12. Regional absolute conductivity reconstruction using projected current density in MREIT

    International Nuclear Information System (INIS)

    Sajib, Saurav Z K; Kim, Hyung Joong; Woo, Eung Je; Kwon, Oh In

    2012-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a non-invasive technique for imaging the internal conductivity distribution in tissue within an MRI scanner, utilizing the magnetic flux density, which is introduced when a current is injected into the tissue from external electrodes. This magnetic flux alters the MRI signal, so that appropriate reconstruction can provide a map of the additional z-component of the magnetic field (B z ) as well as the internal current density distribution that created it. To extract the internal electrical properties of the subject, including the conductivity and/or the current density distribution, MREIT techniques use the relationship between the external injection current and the z-component of the magnetic flux density B = (B x , B y , B z ). The tissue studied typically contains defective regions, regions with a low MRI signal and/or low MRI signal-to-noise-ratio, due to the low density of nuclear magnetic resonance spins, short T 2 or T* 2 relaxation times, as well as regions with very low electrical conductivity, through which very little current traverses. These defective regions provide noisy B z data, which can severely degrade the overall reconstructed conductivity distribution. Injecting two independent currents through surface electrodes, this paper proposes a new direct method to reconstruct a regional absolute isotropic conductivity distribution in a region of interest (ROI) while avoiding the defective regions. First, the proposed method reconstructs the contrast of conductivity using the transversal J-substitution algorithm, which blocks the propagation of severe accumulated noise from the defective region to the ROI. Second, the proposed method reconstructs the regional projected current density using the relationships between the internal current density, which stems from a current injection on the surface, and the measured B z data. Combining the contrast conductivity distribution in the entire imaging

  13. High current density M-type cathodes for vacuum electron devices

    International Nuclear Information System (INIS)

    Li Ji; Yu Zhiqiang; Shao Wensheng; Zhang Ke; Gao Yujuan; Yuan Haiqing; Wang Hui; Huang Kaizhi; Chen Qilue; Yan Suqiu; Cai Shaolun

    2005-01-01

    We investigated high current density emission capabilities of M-type cathodes used for vacuum electron devices (VEDs). The experimental results of emission and lifetime evaluating in both close-spaced diode structure and electron gun testing vehicles are given. Emission current densities measured in the diode structure at 1020 deg. C Br in the CW mode were above 10 A/cm 2 ; while in electron gun testing vehicles, emission current densities were above 8 A/cm 2 in CW mode and above 32 A/cm 2 in pulsed mode, respectively. The current density above 94 A/cm 2 has been acquired in no. 0306 electron gun vehicle while the practical temperature is 1060 deg. C Br . For a comparison some of the data from I-scandate cathodes are presented. Finally, several application examples in practical travelling wave tubes (TWTs) and multi beam klystrons (MBKs) are also reported

  14. The heat current density correlation function: sum rules and thermal conductivity

    International Nuclear Information System (INIS)

    Singh, Shaminder; Tankeshwar, K; Pathak, K N; Ranganathan, S

    2006-01-01

    Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed

  15. The heat current density correlation function: sum rules and thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shaminder [Department of Physics, Panjab University, Chandigarh-160 014 (India); Tankeshwar, K [Department of Physics, Panjab University, Chandigarh-160 014 (India); Pathak, K N [Department of Physics, Panjab University, Chandigarh-160 014 (India); Ranganathan, S [Department of Physics, Royal Military College, Kingston, ON, K7K 7B4 (Canada)

    2006-02-01

    Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed.

  16. Soybean yield modeling using bootstrap methods for small samples

    Energy Technology Data Exchange (ETDEWEB)

    Dalposso, G.A.; Uribe-Opazo, M.A.; Johann, J.A.

    2016-11-01

    One of the problems that occur when working with regression models is regarding the sample size; once the statistical methods used in inferential analyzes are asymptotic if the sample is small the analysis may be compromised because the estimates will be biased. An alternative is to use the bootstrap methodology, which in its non-parametric version does not need to guess or know the probability distribution that generated the original sample. In this work we used a set of soybean yield data and physical and chemical soil properties formed with fewer samples to determine a multiple linear regression model. Bootstrap methods were used for variable selection, identification of influential points and for determination of confidence intervals of the model parameters. The results showed that the bootstrap methods enabled us to select the physical and chemical soil properties, which were significant in the construction of the soybean yield regression model, construct the confidence intervals of the parameters and identify the points that had great influence on the estimated parameters. (Author)

  17. Variation of magnetoimpedance of electrodeposited NiFe/Cu with deposition current density

    Science.gov (United States)

    Mishra, A. C.; Jha, A. K.

    2017-12-01

    An investigation about influence of deposition current density on electrodeposited magnetic film is reported in this paper. Ferromagnetic NiFe thin films were electrodeposited on copper wires of 100 μm diameter for various electrdepostion current densities ranging from 10 to 60 mA/cm2 maintaining equal thickness in all films. The composition of deposited film varied with deposition current density and in particular, a composition of Ni79Fe21 was achieved for a current density of 20 mA/cm2. The surface microstructure of the film deposited at the current density of 20 mA/cm2 was found to have excellent smoothness. The coercivity of the film was lowest and highest value of magnetoimpedance was measured for this film. The influence of current density on film composition and hence magnetic properties was attributed to the change of deposition mechanism.

  18. A Local Stable Bootstrap for Power Variations of Pure-Jump Semimartingales and Activity Index Estimation

    DEFF Research Database (Denmark)

    Hounyo, Ulrich; Varneskov, Rasmus T.

    We provide a new resampling procedure - the local stable bootstrap - that is able to mimic the dependence properties of realized power variations for pure-jump semimartingales observed at different frequencies. This allows us to propose a bootstrap estimator and inference procedure for the activity...... index of the underlying process, β, as well as a bootstrap test for whether it obeys a jump-diffusion or a pure-jump process, that is, of the null hypothesis H₀: β=2 against the alternative H₁: βbootstrap power variations, activity index...... estimator, and diffusion test for H0. Moreover, the finite sample size and power properties of the proposed diffusion test are compared to those of benchmark tests using Monte Carlo simulations. Unlike existing procedures, our bootstrap test is correctly sized in general settings. Finally, we illustrate use...

  19. Generalized bootstrap equations and possible implications for the NLO Odderon

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vacca, G.P. [INFN, Sezione di Bologna (Italy)

    2013-07-15

    We formulate and discuss generalized bootstrap equations in nonabelian gauge theories. They are shown to hold in the leading logarithmic approximation. Since their validity is related to the self-consistency of the Steinmann relations for inelastic production amplitudes they can be expected to be valid also in NLO. Specializing to the N=4 SYM, we show that the validity in NLO of these generalized bootstrap equations allows to find the NLO Odderon solution with intercept exactly at one.

  20. Visuospatial bootstrapping: implicit binding of verbal working memory to visuospatial representations in children and adults.

    Science.gov (United States)

    Darling, Stephen; Parker, Mary-Jane; Goodall, Karen E; Havelka, Jelena; Allen, Richard J

    2014-03-01

    When participants carry out visually presented digit serial recall, their performance is better if they are given the opportunity to encode extra visuospatial information at encoding-a phenomenon that has been termed visuospatial bootstrapping. This bootstrapping is the result of integration of information from different modality-specific short-term memory systems and visuospatial knowledge in long term memory, and it can be understood in the context of recent models of working memory that address multimodal binding (e.g., models incorporating an episodic buffer). Here we report a cross-sectional developmental study that demonstrated visuospatial bootstrapping in adults (n=18) and 9-year-old children (n=15) but not in 6-year-old children (n=18). This is the first developmental study addressing visuospatial bootstrapping, and results demonstrate that the developmental trajectory of bootstrapping is different from that of basic verbal and visuospatial working memory. This pattern suggests that bootstrapping (and hence integrative functions such as those associated with the episodic buffer) emerge independent of the development of basic working memory slave systems during childhood. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Kepler Planet Detection Metrics: Statistical Bootstrap Test

    Science.gov (United States)

    Jenkins, Jon M.; Burke, Christopher J.

    2016-01-01

    This document describes the data produced by the Statistical Bootstrap Test over the final three Threshold Crossing Event (TCE) deliveries to NExScI: SOC 9.1 (Q1Q16)1 (Tenenbaum et al. 2014), SOC 9.2 (Q1Q17) aka DR242 (Seader et al. 2015), and SOC 9.3 (Q1Q17) aka DR253 (Twicken et al. 2016). The last few years have seen significant improvements in the SOC science data processing pipeline, leading to higher quality light curves and more sensitive transit searches. The statistical bootstrap analysis results presented here and the numerical results archived at NASAs Exoplanet Science Institute (NExScI) bear witness to these software improvements. This document attempts to introduce and describe the main features and differences between these three data sets as a consequence of the software changes.

  2. Uncertainty Estimation using Bootstrapped Kriging Predictions for Precipitation Isoscapes

    Science.gov (United States)

    Ma, C.; Bowen, G. J.; Vander Zanden, H.; Wunder, M.

    2017-12-01

    Isoscapes are spatial models representing the distribution of stable isotope values across landscapes. Isoscapes of hydrogen and oxygen in precipitation are now widely used in a diversity of fields, including geology, biology, hydrology, and atmospheric science. To generate isoscapes, geostatistical methods are typically applied to extend predictions from limited data measurements. Kriging is a popular method in isoscape modeling, but quantifying the uncertainty associated with the resulting isoscapes is challenging. Applications that use precipitation isoscapes to determine sample origin require estimation of uncertainty. Here we present a simple bootstrap method (SBM) to estimate the mean and uncertainty of the krigged isoscape and compare these results with a generalized bootstrap method (GBM) applied in previous studies. We used hydrogen isotopic data from IsoMAP to explore these two approaches for estimating uncertainty. We conducted 10 simulations for each bootstrap method and found that SBM results in more kriging predictions (9/10) compared to GBM (4/10). Prediction from SBM was closer to the original prediction generated without bootstrapping and had less variance than GBM. SBM was tested on different datasets from IsoMAP with different numbers of observation sites. We determined that predictions from the datasets with fewer than 40 observation sites using SBM were more variable than the original prediction. The approaches we used for estimating uncertainty will be compiled in an R package that is under development. We expect that these robust estimates of precipitation isoscape uncertainty can be applied in diagnosing the origin of samples ranging from various type of waters to migratory animals, food products, and humans.

  3. Computation of the current density in nonlinear materials subjected to large current pulses

    International Nuclear Information System (INIS)

    Hodgdon, M.L.; Hixson, R.S.; Parsons, W.M.

    1991-01-01

    This paper reports that the finite element method and the finite difference method are used to calculate the current distribution in two nonlinear conductors. The first conductor is a small ferromagnetic wire subjected to a current pulse that rises to 10,000 Amperes in 10 microseconds. Results from the transient thermal and transient magnetic solvers of the finite element code FLUX2D are used to compute the current density in the wire. The second conductor is a metal oxide varistor. Maxwell's equations, Ohm's law and the varistor relation for the resistivity and the current density of p = αj -β are used to derive a nonlinear differential equation. The solutions of the differential equation are obtained by a finite difference approximation and a shooting method. The behavior predicted by these calculations is in agreement with experiments

  4. Response functions of cold neutron matter: density, spin and current fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet, Frankfurt am Main (Germany)

    2014-07-01

    We study the response of a single-component pair-correlated baryonic Fermi-liquid to density, spin, and their current perturbations. A complete set of response functions is calculated in the low-temperature regime. We derive the spectral functions of collective excitations associated with the density, density-current, spin, and spin-current perturbations. The dispersion relations of density and spin fluctuations are determined and it is shown that the density fluctuations lead to exciton-like undamped bound states, whereas the spin excitations correspond to diffusive modes above the pair-breaking threshold. The contribution of the collective pair-breaking modes to the specific heat of neutron matter at subnuclear densities is computed and is shown to be comparable to that of the degenerate electron gas at not too low temperatures.

  5. Numerical prediction of a dip effect in the critical current density

    International Nuclear Information System (INIS)

    Al Khawaja, U.; Benkraouda, M.; Obaidat, I.M.

    2007-01-01

    We have conducted extensive series of molecular dynamic simulations on the properties of the critical current density in systems with periodic square arrays of pinning sites. The density of the pinning sites was kept fixed while the density of vortices, pinning strength, and temperature were varied several times. At zero temperature, we have observed a substantial dip in the critical current density that occurs only at a fixed value of the vortex density and for specific values of pinning strength. We have found that the occurrence of the dip depends mainly on the initial positions of the vortices with respect to the positions of the pinning sites. At the dip, we have found that the interstitial vortices form moving channels leading to the observed drop in the critical current density

  6. Determining the Limiting Current Density of Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Jen-Yu Chen

    2014-09-01

    Full Text Available All-vanadium redox flow batteries (VRFBs are used as energy storage systems for intermittent renewable power sources. The performance of VRFBs depends on materials of key components and operating conditions, such as current density, electrolyte flow rate and electrolyte composition. Mass transfer overpotential is affected by the electrolyte flow rate and electrolyte composition, which is related to the limiting current density. In order to investigate the effect of operating conditions on mass transport overpotential, this study established a relationship between the limiting current density and operating conditions. First, electrolyte solutions with different states of charge were prepared and used for a single cell to obtain discharging polarization curves under various operating conditions. The experimental results were then analyzed and are discussed in this paper. Finally, this paper proposes a limiting current density as a function of operating conditions. The result helps predict the effect of operating condition on the cell performance in a mathematical model.

  7. Surface current density K: an introduction

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The author discusses the vector surface of current density K used in electrical insulation studies. K is related to the vector tangential electric field Kt at the surface of a body by the vector equation K=ΓE t where Γ represents the surface conductivity. The author derives a surface continuity...

  8. Bootstrap confidence intervals for three-way methods

    NARCIS (Netherlands)

    Kiers, Henk A.L.

    Results from exploratory three-way analysis techniques such as CANDECOMP/PARAFAC and Tucker3 analysis are usually presented without giving insight into uncertainties due to sampling. Here a bootstrap procedure is proposed that produces percentile intervals for all output parameters. Special

  9. High density internal transport barriers for burning plasma operation

    International Nuclear Information System (INIS)

    Pericoli Ridolfini, V.

    2005-01-01

    One of the proposed ITER scenarios foresees the creation and sustainment of an internal transport barrier (ITB) in order to improve the confinement properties of the hot core plasma. The more stringent requests are: the ITB must be sustained with electron heating only with no or very small external momentum source, the strong collisional coupling at the envisaged density (line average >1.0 1020 m-3) must not prevent the barrier existence, the bootstrap current created by the large induced gradients must have a radial profile consistent with that requested by the barrier creation and sustainment. To all these items the studies carried out in FTU in the same density range (ne0 ?1.5 1020 m-3) provide encouraging prospects. With pure electron heating and current drive (LH+ECH) steady electron barrier are generated and maintained with central e- temperature >5.0 keV. Almost full CD conditions are established with a bootstrap current close to 25% of the total and well aligned with that driven by the LH waves and responsible for the barrier building. The clear change in the density fluctuations close to the ITB radius, observed by reflectometry, indicates stabilization of turbulence that is consistent with the drop of the thermal electron diffusivity inside the ITB to very low values, ?e<0.5 m2/s estimated by the transport analysis. The 10 fold neutron rate increase testifies a significant collisional ion heating, even though usually ?Ti0/Ti0 does not exceed 40%, because the e--i + equipartition time, always 4-5 times longer than the energy confinement time, does not allow thermal equilibrium with electrons to be attained. The ion thermal diffusivity inside the barrier must be lowered to the neoclassical level to account for the observed Ti(r) profiles, clearly indicating at least a non-degraded ion transport. The global confinement in turn improves by 1.6 times above the FTU L-scaling. The ITB radius can be controlled by varying the LH power deposition profile that is

  10. Bootstrap-based confidence estimation in PCA and multivariate statistical process control

    DEFF Research Database (Denmark)

    Babamoradi, Hamid

    be used to detect outliers in the data since the outliers can distort the bootstrap estimates. Bootstrap-based confidence limits were suggested as alternative to the asymptotic limits for control charts and contribution plots in MSPC (Paper II). The results showed that in case of the Q-statistic......Traditional/Asymptotic confidence estimation has limited applicability since it needs statistical theories to estimate the confidences, which are not available for all indicators/parameters. Furthermore, in case the theories are available for a specific indicator/parameter, the theories are based....... The goal was to improve process monitoring by improving the quality of MSPC charts and contribution plots. Bootstrapping algorithm to build confidence limits was illustrated in a case study format (Paper I). The main steps in the algorithm were discussed where a set of sensible choices (plus...

  11. Inference for Local Distributions at High Sampling Frequencies: A Bootstrap Approach

    DEFF Research Database (Denmark)

    Hounyo, Ulrich; Varneskov, Rasmus T.

    of "large" jumps. Our locally dependent wild bootstrap (LDWB) accommodate issues related to the stochastic scale and jumps as well as account for a special block-wise dependence structure induced by sampling errors. We show that the LDWB replicates first and second-order limit theory from the usual...... empirical process and the stochastic scale estimate, respectively, as well as an asymptotic bias. Moreover, we design the LDWB sufficiently general to establish asymptotic equivalence between it and and a nonparametric local block bootstrap, also introduced here, up to second-order distribution theory....... Finally, we introduce LDWB-aided Kolmogorov-Smirnov tests for local Gaussianity as well as local von-Mises statistics, with and without bootstrap inference, and establish their asymptotic validity using the second-order distribution theory. The finite sample performance of CLT and LDWB-aided local...

  12. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate

    KAUST Repository

    Ren, Lijiao

    2014-08-05

    © 2014 Wiley Periodicals, Inc. Chemical oxygen demand (COD) removal rates could be described by first-order kinetics with respect to COD concentration at different current densities, even under open circuit conditions with no current generation. The COD concentration was reduced more quickly with current generation due to the greater consumption of substrate by exoelectrogens, and less substrate was lost to aerobic heterotrophs. Higher current densities enabled exoelectrogens to outcompete aerobic heterotrophs for substrate, allowing for increased coulombic efficiencies with current densities. © 2014 Wiley Periodicals, Inc. In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14±0.01h-1). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33±0.02h-1) obtained at the lowest external resistance (100Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic

  13. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate

    KAUST Repository

    Ren, Lijiao; Zhang, Xiaoyuan; He, Weihua; Logan, Bruce E.

    2014-01-01

    © 2014 Wiley Periodicals, Inc. Chemical oxygen demand (COD) removal rates could be described by first-order kinetics with respect to COD concentration at different current densities, even under open circuit conditions with no current generation. The COD concentration was reduced more quickly with current generation due to the greater consumption of substrate by exoelectrogens, and less substrate was lost to aerobic heterotrophs. Higher current densities enabled exoelectrogens to outcompete aerobic heterotrophs for substrate, allowing for increased coulombic efficiencies with current densities. © 2014 Wiley Periodicals, Inc. In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14±0.01h-1). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33±0.02h-1) obtained at the lowest external resistance (100Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic

  14. Estimation of current density distribution under electrodes for external defibrillation

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2002-12-01

    Full Text Available Abstract Background Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. Method and Results Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. Conclusion The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise.

  15. Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2009-01-01

    An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.

  16. Quench protection and design of large high-current-density superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.

    1981-03-01

    Although most large superconducting magnets have been designed using the concept of cryostability, there is increased need for large magnets which operate at current densities above the cryostable limit (greater than 10 8 Am -2 ). Large high current density superconducting magnets are chosen for the following reasons: reduced mass, reduced coil thickness or size, and reduced cost. The design of large high current density, adiabatically stable, superconducting magnets requires a very different set of design rules than either large cryostable superconducting magnets or small self-protected high current density magnets. The problems associated with large high current density superconducting magnets fall into three categories; (a) quench protection, (b) stress and training, and (c) cryogenic design. The three categories must be considered simultaneously. The paper discusses quench protection and its implication for magnets of large stored energies (this includes strings of smaller magnets). Training and its relationship to quench protection and magnetic strain are discussed. Examples of magnets, built at the Lawrence Berkeley Laboratory and elsewhere using the design guidelines given in this report, are presented

  17. Internal validation of risk models in clustered data: a comparison of bootstrap schemes

    NARCIS (Netherlands)

    Bouwmeester, W.; Moons, K.G.M.; Kappen, T.H.; van Klei, W.A.; Twisk, J.W.R.; Eijkemans, M.J.C.; Vergouwe, Y.

    2013-01-01

    Internal validity of a risk model can be studied efficiently with bootstrapping to assess possible optimism in model performance. Assumptions of the regular bootstrap are violated when the development data are clustered. We compared alternative resampling schemes in clustered data for the estimation

  18. Computing confidence and prediction intervals of industrial equipment degradation by bootstrapped support vector regression

    International Nuclear Information System (INIS)

    Lins, Isis Didier; Droguett, Enrique López; Moura, Márcio das Chagas; Zio, Enrico; Jacinto, Carlos Magno

    2015-01-01

    Data-driven learning methods for predicting the evolution of the degradation processes affecting equipment are becoming increasingly attractive in reliability and prognostics applications. Among these, we consider here Support Vector Regression (SVR), which has provided promising results in various applications. Nevertheless, the predictions provided by SVR are point estimates whereas in order to take better informed decisions, an uncertainty assessment should be also carried out. For this, we apply bootstrap to SVR so as to obtain confidence and prediction intervals, without having to make any assumption about probability distributions and with good performance even when only a small data set is available. The bootstrapped SVR is first verified on Monte Carlo experiments and then is applied to a real case study concerning the prediction of degradation of a component from the offshore oil industry. The results obtained indicate that the bootstrapped SVR is a promising tool for providing reliable point and interval estimates, which can inform maintenance-related decisions on degrading components. - Highlights: • Bootstrap (pairs/residuals) and SVR are used as an uncertainty analysis framework. • Numerical experiments are performed to assess accuracy and coverage properties. • More bootstrap replications does not significantly improve performance. • Degradation of equipment of offshore oil wells is estimated by bootstrapped SVR. • Estimates about the scale growth rate can support maintenance-related decisions

  19. Model for ICRF fast wave current drive in self-consistent MHD equilibria

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Englade, R.C.; Porkolab, M.; Fenstermacher, M.E.

    1993-01-01

    Recently, a model for fast wave current drive in the ion cyclotron radio frequency (ICRF) range was incorporated into the current drive and MHD equilibrium code ACCOME. The ACCOME model combines a free boundary solution of the Grad Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid (LH) waves, bootstrap effects, and ICRF fast waves. The equilibrium and current drive packages iterate between each other to obtain an MHD equilibrium which is consistent with the profiles of driven current density. The ICRF current drive package combines a toroidal full-wave code (FISIC) with a parameterization of the current drive efficiency obtained from an adjoint solution of the Fokker Planck equation. The electron absorption calculation in the full-wave code properly accounts for the combined effects of electron Landau damping (ELD) and transit time magnetic pumping (TTMP), assuming a Maxwellian (or bi-Maxwellian) electron distribution function. Furthermore, the current drive efficiency includes the effects of particle trapping, momentum conserving corrections to the background Fokker Planck collision operator, and toroidally induced variations in the parallel wavenumbers of the injected ICRF waves. This model has been used to carry out detailed studies of advanced physics scenarios in the proposed Tokamak Physics Experiment (TPX). Results are shown, for example, which demonstrate the possibility of achieving stable equilibria at high beta and high bootstrap current fraction in TPX. Model results are also shown for the proposed ITER device

  20. A voltage biased superconducting quantum interference device bootstrap circuit

    International Nuclear Information System (INIS)

    Xie Xiaoming; Wang Huiwu; Wang Yongliang; Dong Hui; Jiang Mianheng; Zhang Yi; Krause, Hans-Joachim; Braginski, Alex I; Offenhaeusser, Andreas; Mueck, Michael

    2010-01-01

    We present a dc superconducting quantum interference device (SQUID) readout circuit operating in the voltage bias mode and called a SQUID bootstrap circuit (SBC). The SBC is an alternative implementation of two existing methods for suppression of room-temperature amplifier noise: additional voltage feedback and current feedback. Two circuit branches are connected in parallel. In the dc SQUID branch, an inductively coupled coil connected in series provides the bias current feedback for enhancing the flux-to-current coefficient. The circuit branch parallel to the dc SQUID branch contains an inductively coupled voltage feedback coil with a shunt resistor in series for suppressing the preamplifier noise current by increasing the dynamic resistance. We show that the SBC effectively reduces the preamplifier noise to below the SQUID intrinsic noise. For a helium-cooled planar SQUID magnetometer with a SQUID inductance of 350 pH, a flux noise of about 3 μΦ 0 Hz -1/2 and a magnetic field resolution of less than 3 fT Hz -1/2 were obtained. The SBC leads to a convenient direct readout electronics for a dc SQUID with a wider adjustment tolerance than other feedback schemes.

  1. Orbital functionals in density-matrix- and current-density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, N

    2006-05-15

    Density-Functional Theory (DFT), although widely used and very successful in the calculation of several observables, fails to correctly describe strongly correlated materials. In the first part of this work we, therefore, introduce reduced-densitymatrix- functional theory (RDMFT) which is one possible way to treat electron correlation beyond DFT. Within this theory the one-body reduced density matrix (1- RDM) is used as the basic variable. Our main interest is the calculation of the fundamental gap which proves very problematic within DFT. In order to calculate the fundamental gap we generalize RDMFT to fractional particle numbers M by describing the system as an ensemble of an N and an N+1 particle system (with N{<=}M{<=}N+1). For each fixed particle number, M, the total energy is minimized with respect to the natural orbitals and their occupation numbers. This leads to the total energy as a function of M. The derivative of this function with respect to the particle number has a discontinuity at integer particle number which is identical to the gap. In addition, we investigate the necessary and sufficient conditions for the 1- RDM of a system with fractional particle number to be N-representable. Numerical results are presented for alkali atoms, small molecules, and periodic systems. Another problem within DFT is the description of non-relativistic many-electron systems in the presence of magnetic fields. It requires the paramagnetic current density and the spin magnetization to be used as basic variables besides the electron density. However, electron-gas-based functionals of current-spin-density-functional Theory (CSDFT) exhibit derivative discontinuities as a function of the magnetic field whenever a new Landau level is occupied, which makes them difficult to use in practice. Since the appearance of Landau levels is, intrinsically, an orbital effect it is appealing to use orbital-dependent functionals. We have developed a CSDFT version of the optimized

  2. Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method.

    Science.gov (United States)

    Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A

    2017-06-30

    Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  4. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a

  5. Genetic divergence among cupuaçu accessions by multiscale bootstrap resampling

    Directory of Open Access Journals (Sweden)

    Vinicius Silva dos Santos

    2015-06-01

    Full Text Available This study aimed at investigating the genetic divergence of eighteen accessions of cupuaçu trees based on fruit morphometric traits and comparing usual methods of cluster analysis with the proposed multiscale bootstrap resampling methodology. The data were obtained from an experiment conducted in Tomé-Açu city (PA, Brazil, arranged in a completely randomized design with eighteen cupuaçu accessions and 10 repetitions, from 2004 to 2011. Genetic parameters were estimated by restricted maximum likelihood/best linear unbiased prediction (REML/BLUP methodology. The predicted breeding values were used in the study on genetic divergence through Unweighted Pair Cluster Method with Arithmetic Mean (UPGMA hierarchical clustering and Tocher’s optimization method based on standardized Euclidean distance. Clustering consistency and optimal number of clusters in the UPGMA method were verified by the cophenetic correlation coefficient (CCC and Mojena’s criterion, respectively, besides the multiscale bootstrap resampling technique. The use of the clustering UPGMA method in situations with and without multiscale bootstrap resulted in four and five clusters, respectively, while the Tocher’s method resulted in seven clusters. The multiscale bootstrap resampling technique proves to be efficient to assess the consistency of clustering in hierarchical methods and, consequently, the optimal number of clusters.

  6. Speeding Up Non-Parametric Bootstrap Computations for Statistics Based on Sample Moments in Small/Moderate Sample Size Applications.

    Directory of Open Access Journals (Sweden)

    Elias Chaibub Neto

    Full Text Available In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson's sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling.

  7. arXiv The S-matrix Bootstrap I: QFT in AdS

    CERN Document Server

    Paulos, Miguel F.; Toledo, Jonathan; van Rees, Balt C.; Vieira, Pedro

    2017-11-21

    We propose a strategy to study massive Quantum Field Theory (QFT) using conformal bootstrap methods. The idea is to consider QFT in hyperbolic space and study correlation functions of its boundary operators. We show that these are solutions of the crossing equations in one lower dimension. By sending the curvature radius of the background hyperbolic space to infinity we expect to recover flat-space physics. We explain that this regime corresponds to large scaling dimensions of the boundary operators, and discuss how to obtain the flat-space scattering amplitudes from the corresponding limit of the boundary correlators. We implement this strategy to obtain universal bounds on the strength of cubic couplings in 2D flat-space QFTs using 1D conformal bootstrap techniques. Our numerical results match precisely the analytic bounds obtained in our companion paper using S-matrix bootstrap techniques.

  8. Generalized Bootstrap Method for Assessment of Uncertainty in Semivariogram Inference

    Science.gov (United States)

    Olea, R.A.; Pardo-Iguzquiza, E.

    2011-01-01

    The semivariogram and its related function, the covariance, play a central role in classical geostatistics for modeling the average continuity of spatially correlated attributes. Whereas all methods are formulated in terms of the true semivariogram, in practice what can be used are estimated semivariograms and models based on samples. A generalized form of the bootstrap method to properly model spatially correlated data is used to advance knowledge about the reliability of empirical semivariograms and semivariogram models based on a single sample. Among several methods available to generate spatially correlated resamples, we selected a method based on the LU decomposition and used several examples to illustrate the approach. The first one is a synthetic, isotropic, exhaustive sample following a normal distribution, the second example is also a synthetic but following a non-Gaussian random field, and a third empirical sample consists of actual raingauge measurements. Results show wider confidence intervals than those found previously by others with inadequate application of the bootstrap. Also, even for the Gaussian example, distributions for estimated semivariogram values and model parameters are positively skewed. In this sense, bootstrap percentile confidence intervals, which are not centered around the empirical semivariogram and do not require distributional assumptions for its construction, provide an achieved coverage similar to the nominal coverage. The latter cannot be achieved by symmetrical confidence intervals based on the standard error, regardless if the standard error is estimated from a parametric equation or from bootstrap. ?? 2010 International Association for Mathematical Geosciences.

  9. High power ECCD experiments at W7-AS

    International Nuclear Information System (INIS)

    Maassberg, H.; Geiger, J.; Laqua, H.; Marushchenko, N.B.; Wendland, C.; Rome, M.

    2001-01-01

    At the W7-AS stellarator, high power electron cyclotron current drive (ECCD) experiments are analyzed. In these net-current-free discharges, the ECCD as well as the bootstrap current are feedback controlled by an inductive current. Based on measured profiles, the neoclassical predictions for the bootstrap and the inductive current densities as well as the ECCD from the linear adjoint approach with trapped particles included are calculated, and the current balance is checked. Launch-angle scans at fixed density as well as density scans at fixed launch-angle are described. (author)

  10. Nonparametric bootstrap procedures for predictive inference based on recursive estimation schemes

    OpenAIRE

    Corradi, Valentina; Swanson, Norman R.

    2005-01-01

    Our objectives in this paper are twofold. First, we introduce block bootstrap techniques that are (first order) valid in recursive estimation frameworks. Thereafter, we present two examples where predictive accuracy tests are made operational using our new bootstrap procedures. In one application, we outline a consistent test for out-of-sample nonlinear Granger causality, and in the other we outline a test for selecting amongst multiple alternative forecasting models, all of which are possibl...

  11. Orbital currents and charge density waves in a generalized Hubbard ladder

    International Nuclear Information System (INIS)

    Fjaerestad, J.O.; Marston, J.B.; Schollwoeck, U.

    2006-01-01

    We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping δ away from half-filling, finite-system density-matrix renormalization-group (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/δ and 1/δ, respectively, corresponding to ordering wavevectors 2k F and 4k F for the currents and densities, where 2k F = π (1 - δ). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/δ, the DMRG results are consistent with a true long-range order scenario for the currents and densities

  12. Estimating negative likelihood ratio confidence when test sensitivity is 100%: A bootstrapping approach.

    Science.gov (United States)

    Marill, Keith A; Chang, Yuchiao; Wong, Kim F; Friedman, Ari B

    2017-08-01

    Objectives Assessing high-sensitivity tests for mortal illness is crucial in emergency and critical care medicine. Estimating the 95% confidence interval (CI) of the likelihood ratio (LR) can be challenging when sample sensitivity is 100%. We aimed to develop, compare, and automate a bootstrapping method to estimate the negative LR CI when sample sensitivity is 100%. Methods The lowest population sensitivity that is most likely to yield sample sensitivity 100% is located using the binomial distribution. Random binomial samples generated using this population sensitivity are then used in the LR bootstrap. A free R program, "bootLR," automates the process. Extensive simulations were performed to determine how often the LR bootstrap and comparator method 95% CIs cover the true population negative LR value. Finally, the 95% CI was compared for theoretical sample sizes and sensitivities approaching and including 100% using: (1) a technique of individual extremes, (2) SAS software based on the technique of Gart and Nam, (3) the Score CI (as implemented in the StatXact, SAS, and R PropCI package), and (4) the bootstrapping technique. Results The bootstrapping approach demonstrates appropriate coverage of the nominal 95% CI over a spectrum of populations and sample sizes. Considering a study of sample size 200 with 100 patients with disease, and specificity 60%, the lowest population sensitivity with median sample sensitivity 100% is 99.31%. When all 100 patients with disease test positive, the negative LR 95% CIs are: individual extremes technique (0,0.073), StatXact (0,0.064), SAS Score method (0,0.057), R PropCI (0,0.062), and bootstrap (0,0.048). Similar trends were observed for other sample sizes. Conclusions When study samples demonstrate 100% sensitivity, available methods may yield inappropriately wide negative LR CIs. An alternative bootstrapping approach and accompanying free open-source R package were developed to yield realistic estimates easily. This

  13. Microstructure and critical current density in high-Tc metal oxide superconductors

    International Nuclear Information System (INIS)

    Johnson, S.M.; Gusman, M.I.

    1992-03-01

    Superconductor powders in the U-Ba-Cu-O (YBCO) and Bi-Pb-Sr-Ca-Cu-O (BSCCO) systems were synthesized by freeze-drying. Powders were characterized, and processed into samples for evaluation of superconducting behavior. Freeze-drying is attractive because the powders have high purity, are homogeneous, have a small size and are active. YBCO powders can be sintered to high density at 890 degrees C. Many compositions, processing approaches and heat treatments were explored in an effort to understand relations between microstructure and critical density, and to improve the critical current density. Powders were also formed into sputtering targets for coating preparation at Stanford University. The highest critical current density achieved with the YBCO powders was ∼15,000 A/cm 2 at 4.2K and 0.5T using powders treated to prevent carbon contamination. The BSCCO materials with the highest critical current density, ∼30,000 A/cm 2 at the same conditions were formed by heat treating melted and quenched samples. All critical current density measurements were made by Stanford University, a subcontractor to this effort. Stanford University also prepared coatings by off-axis magnetron sputtering

  14. Core fuelling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1995-01-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. It is shown that with radially 'hollow' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles that are peaked off-axis. The fuelling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fuelling does not require Megavolt particle energies. Even with beam voltages of ∼ 200 keV, however, exceptionally good particle confinement is needed to achieve net electrical power generation. The required ratio of particle to thermal diffusivities is an order of magnitude outside the range reported for tokamaks. In a system with no power production requirement (e.g., neutron sources) neutral beam fuelling should be capable of producing peaked density profiles in devices as large as ITER. Fuelling systems with low energy cost per particle - such as cryogenic pellet injection - must be used in power producing tokamaks when τ P ∼ τ E . Simulations with pellet injection speeds of 7 km/s show that the peaking factor, n e0 / e >, approaches 2. (author). 65 refs, 8 figs

  15. Bootstrapping quarks and gluons

    Energy Technology Data Exchange (ETDEWEB)

    Chew, G.F.

    1979-04-01

    Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.

  16. Bootstrapping quarks and gluons

    International Nuclear Information System (INIS)

    Chew, G.F.

    1979-04-01

    Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces

  17. How to bootstrap a human communication system.

    Science.gov (United States)

    Fay, Nicolas; Arbib, Michael; Garrod, Simon

    2013-01-01

    How might a human communication system be bootstrapped in the absence of conventional language? We argue that motivated signs play an important role (i.e., signs that are linked to meaning by structural resemblance or by natural association). An experimental study is then reported in which participants try to communicate a range of pre-specified items to a partner using repeated non-linguistic vocalization, repeated gesture, or repeated non-linguistic vocalization plus gesture (but without using their existing language system). Gesture proved more effective (measured by communication success) and more efficient (measured by the time taken to communicate) than non-linguistic vocalization across a range of item categories (emotion, object, and action). Combining gesture and vocalization did not improve performance beyond gesture alone. We experimentally demonstrate that gesture is a more effective means of bootstrapping a human communication system. We argue that gesture outperforms non-linguistic vocalization because it lends itself more naturally to the production of motivated signs. © 2013 Cognitive Science Society, Inc.

  18. Microstructural factors influencing critical-current densities of high-temperature superconductors

    International Nuclear Information System (INIS)

    Suenaga, M.

    1992-01-01

    Microstructural defects are the primary determining factors for the values of critical current densities in superconductors. A review is made to assess, (1) what would be the maximum achievable critical-current density in the oxide superconductors if nearly ideal pinning sites were introduced? and (2) what types of pinning defects are currently introduced in these superconductors and how effective are these in pinning the vortices? Only the case where the applied field is parallel to the c-axis is considered here

  19. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    Science.gov (United States)

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes

  20. ELMs and the role of current-driven instabilities in the edge

    International Nuclear Information System (INIS)

    Snyder, P.B.; Wilson, H.R.

    2001-01-01

    Edge localized modes (ELMs) can limit tokamak performance both directly, via large transient heat loads, and indirectly, through constraints placed on the H-mode pedestal height which impact global confinement. Theoretical understanding of the physics of ELMs should allow optimisation of existing experiments, and lead to greater confidence in projections for Next Step devices. However, understanding ELMs has proved challenging, in part because the sharp edge pressure gradients and consequent large bootstrap currents in the pedestal region provide drive for a variety of modes over a wide range of toroidal mode numbers (n). Here we present a brief discussion of ELM phenomenology, focussing primarily on ELMs whose frequency increases with input power. Theories of ELMs will be reviewed, emphasizing those which incorporate current-driven instabilities such as kink or 'peeling' modes. Parallel current plays a dual role in the edge, enhancing second stability access for ballooning modes while providing drive for peeling modes. The strong collisionality dependence of the edge bootstrap current introduces separate density and temperature dependence into pedestal MHD stability. We give a detailed description of recent work on coupled peeling-ballooning modes, including a model for ELM characteristics and temperature pedestal limits. Peeling-ballooning stability analysis of experimental discharges will be discussed, emphasising comparisons of different ELM regimes, such as the comparison between 'giant' and 'grassy' ELM shots on JT-60U. (orig.)

  1. Critical current density in railgrun accelerators with composite electrodes

    International Nuclear Information System (INIS)

    Stankevich, S.V.; Shvetsov, G.A.

    1995-01-01

    The present paper is intended to study the possibilities of increasing the critical current density in railgun accelerators using composite electrodes of various structure. Before proceeding to the analysis this way, it should be noted that the requirements for materials selected for the rails go beyond the values of the current density. In real practice account should be taken of the technological problems concerned with the production of the electrodes, as well as of those concerned with the railgun performance, including the multishot life

  2. Current density distribution during disruptions and sawteeth in a simple model of plasma current in a tokamak

    International Nuclear Information System (INIS)

    Stefanovskii, A. M.

    2011-01-01

    The processes that are likely to accompany discharge disruptions and sawteeth in a tokamak are considered in a simple plasma current model. The redistribution of the current density in plasma is supposed to be primarily governed by the onset of the MHD-instability-driven turbulent plasma mixing in a finite region of the current column. For different disruption conditions, the variation in the total plasma current (the appearance of a characteristic spike) is also calculated. It is found that the numerical shape and amplitude of the total current spikes during disruptions approximately coincide with those measured in some tokamak experiments. Under the assumptions adopted in the model, the physical mechanism for the formation of the spikes is determined. The mechanism is attributed to the diffusion of the negative current density at the column edge into the zero-conductivity region. The numerical current density distributions in the plasma during the sawteeth differ from the literature data.

  3. High-current discharge channel contraction in high density gas

    International Nuclear Information System (INIS)

    Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Pozubenkov, A. A.

    2011-01-01

    Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of ∼10 10 A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 μs. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where the channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.

  4. Definition of current density in the presence of a non-local potential.

    Science.gov (United States)

    Li, Changsheng; Wan, Langhui; Wei, Yadong; Wang, Jian

    2008-04-16

    In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J(c) = (e/2m)([(p-eA)ψ](*)ψ-ψ(*)[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., [Formula: see text] in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Büttiker formula. Examples are given to demonstrate our results.

  5. Definition of current density in the presence of a non-local potential

    International Nuclear Information System (INIS)

    Li Changsheng; Wan Langhui; Wei Yadong; Wang Jian

    2008-01-01

    In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J c = (e/2m)([(p-eA)ψ]*ψ-ψ*[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., ∇ . J c ≠ 0 in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Buettiker formula. Examples are given to demonstrate our results

  6. A proof of fulfillment of the strong bootstrap condition

    International Nuclear Information System (INIS)

    Fadin, V.S.; Papa, A.

    2002-01-01

    It is shown that the kernel of the BFKL equation for the octet color state of two Reggeized gluons satisfies the strong bootstrap condition in the next-to-leading order. This condition is much more restrictive than the one obtained from the requirement of the Reggeized form for the elastic scattering amplitudes in the next-to-leading approximation. It is necessary, however, for self-consistency of the assumption of the Reggeized form of the production amplitudes in multi-Regge kinematics, which are used in the derivation of the BFKL equation. The fulfillment of the strong bootstrap condition for the kernel opens the way to a rigorous proof of the BFKL equation in the next-to-leading approximation. (author)

  7. How to Bootstrap Anonymous Communication

    DEFF Research Database (Denmark)

    Jakobsen, Sune K.; Orlandi, Claudio

    2015-01-01

    formal study in this direction. To solve this problem, we introduce the concept of anonymous steganography: think of a leaker Lea who wants to leak a large document to Joe the journalist. Using anonymous steganography Lea can embed this document in innocent looking communication on some popular website...... anonymous steganography, { A construction showing that anonymous steganography is possible (which uses recent results in circuits obfuscation), { A lower bound on the number of bits which are needed to bootstrap anonymous communication....

  8. How to Bootstrap Anonymous Communication

    DEFF Research Database (Denmark)

    Jakobsen, Sune K.; Orlandi, Claudio

    2015-01-01

    formal study in this direction. To solve this problem, we introduce the concept of anonymous steganography: think of a leaker Lea who wants to leak a large document to Joe the journalist. Using anonymous steganography Lea can embed this document in innocent looking communication on some popular website...... defining anonymous steganography, - A construction showing that anonymous steganography is possible (which uses recent results in circuits obfuscation), - A lower bound on the number of bits which are needed to bootstrap anonymous communication....

  9. Morphodynamics of supercritical high-density turbidity currents

    NARCIS (Netherlands)

    Cartigny, M.

    2012-01-01

    Seafloor and outcrop observations combined with numerical and physical experiments show that turbidity currents are likely 1) to be in a supercritical flow state and 2) to carry high sediment concentrations (being of high-density). The thesis starts with an experimental study of bedforms

  10. Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns

    DEFF Research Database (Denmark)

    Gonçalves, Sílvia; Hounyo, Ulrich; Meddahi, Nour

    The main contribution of this paper is to propose bootstrap methods for realized volatility-like estimators defined on pre-averaged returns. In particular, we focus on the pre-averaged realized volatility estimator proposed by Podolskij and Vetter (2009). This statistic can be written (up to a bias......-overlapping nature of the pre-averaged returns implies that these are asymptotically independent, but possibly heteroskedastic. This motivates the application of the wild bootstrap in this context. We provide a proof of the first order asymptotic validity of this method for percentile and percentile-t intervals. Our...... Monte Carlo simulations show that the wild bootstrap can improve the finite sample properties of the existing first order asymptotic theory provided we choose the external random variable appropriately. We use empirical work to illustrate its use in practice....

  11. The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.

    Science.gov (United States)

    Warton, David I; Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.

  12. Non-abelian binding energies from the lightcone bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Li, Daliang [Department of Physics, Yale University,New Haven, CT 06511 (United States); Department of Physics and Astronomy, Johns Hopkins University,Baltimore, MD 21218 (United States); Meltzer, David [Department of Physics, Yale University,New Haven, CT 06511 (United States); Poland, David [Department of Physics, Yale University,New Haven, CT 06511 (United States); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2016-02-23

    We analytically study the lightcone limit of the conformal bootstrap for 4-point functions containing scalars charged under global symmetries. We show the existence of large spin double-twist operators in various representations of the global symmetry group. We then compute their anomalous dimensions in terms of the central charge C{sub T}, current central charge C{sub J}, and the OPE coefficients of low dimension scalars. In AdS, these results correspond to the binding energy of two-particle states arising from the exchange of gravitons, gauge bosons, and light scalar fields. Using unitarity and crossing symmetry, we show that gravity is universal and attractive among different types of two-particle states, while the gauge binding energy can have either sign as determined by the representation of the two-particle state, with universal ratios fixed by the symmetry group. We apply our results to 4D N=1 SQCD and the 3D O(N) vector models. We also show that in a unitary CFT, if the current central charge C{sub J} stays finite when the global symmetry group becomes infinitely large, such as the N→∞ limit of the O(N) vector model, then the theory must contain an infinite number of higher spin currents.

  13. Breaking the current density threshold in spin-orbit-torque magnetic random access memory

    Science.gov (United States)

    Zhang, Yin; Yuan, H. Y.; Wang, X. S.; Wang, X. R.

    2018-04-01

    Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising technology for the next generation of data storage devices. The main bottleneck of this technology is the high reversal current density threshold. This outstanding problem is now solved by a new strategy in which the magnitude of the driven current density is fixed while the current direction varies with time. The theoretical limit of minimal reversal current density is only a fraction (the Gilbert damping coefficient) of the threshold current density of the conventional strategy. The Euler-Lagrange equation for the fastest magnetization reversal path and the optimal current pulse is derived for an arbitrary magnetic cell and arbitrary spin-orbit torque. The theoretical limit of minimal reversal current density and current density for a GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are, respectively, of the order of 105 A/cm 2 and 106 A/cm 2 far below 107 A/cm 2 and 108 A/cm 2 in the conventional strategy. Furthermore, no external magnetic field is needed for a deterministic reversal in the new strategy.

  14. Closure of the operator product expansion in the non-unitary bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Esterlis, Ilya [Stanford Institute for Theoretical Physics, Stanford University,Via Pueblo, Stanford, CA 94305 (United States); Fitzpatrick, A. Liam [Department of Physics, Boston University,Commonwealth Ave, Boston, MA, 02215 (United States); Ramirez, David M. [Stanford Institute for Theoretical Physics, Stanford University,Via Pueblo, Stanford, CA 94305 (United States)

    2016-11-07

    We use the numerical conformal bootstrap in two dimensions to search for finite, closed sub-algebras of the operator product expansion (OPE), without assuming unitarity. We find the minimal models as special cases, as well as additional lines of solutions that can be understood in the Coulomb gas formalism. All the solutions we find that contain the vacuum in the operator algebra are cases where the external operators of the bootstrap equation are degenerate operators, and we argue that this follows analytically from the expressions in http://arxiv.org/abs/1202.4698 for the crossing matrices of Virasoro conformal blocks. Our numerical analysis is a special case of the “Gliozzi” bootstrap method, and provides a simpler setting in which to study technical challenges with the method. In the supplementary material, we provide a Mathematica notebook that automates the calculation of the crossing matrices and OPE coefficients for degenerate operators using the formulae of Dotsenko and Fateev.

  15. Off-critical statistical models: factorized scattering theories and bootstrap program

    International Nuclear Information System (INIS)

    Mussardo, G.

    1992-01-01

    We analyze those integrable statistical systems which originate from some relevant perturbations of the minimal models of conformal field theories. When only massive excitations are present, the systems can be efficiently characterized in terms of the relativistic scattering data. We review the general properties of the factorizable S-matrix in two dimensions with particular emphasis on the bootstrap principle. The classification program of the allowed spins of conserved currents and of the non-degenerate S-matrices is discussed and illustrated by means of some significant examples. The scattering theories of several massive perturbations of the minimal models are fully discussed. Among them are the Ising model, the tricritical Ising model, the Potts models, the series of the non-unitary minimal models M 2,2n+3 , the non-unitary model M 3,5 and the scaling limit of the polymer system. The ultraviolet limit of these massive integrable theories can be exploited by the thermodynamics Bethe ansatz, in particular the central charge of the original conformal theories can be recovered from the scattering data. We also consider the numerical method based on the so-called conformal space truncated approach which confirms the theoretical results and allows a direct measurement of the scattering data, i.e. the masses and the S-matrix of the particles in bootstrap interaction. The problem of computing the off-critical correlation functions is discussed in terms of the form-factor approach

  16. Bootstrapping 3D fermions

    Energy Technology Data Exchange (ETDEWEB)

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Kos, Filip; Poland, David [Department of Physics, Yale University, New Haven, CT 06520 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions 〈ψψψψ〉 in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ×ψ OPE, and also on the central charge C{sub T}. We observe features in our bounds that coincide with scaling dimensions in the Gross-Neveu models at large N. We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  17. Model-based bootstrapping when correcting for measurement error with application to logistic regression.

    Science.gov (United States)

    Buonaccorsi, John P; Romeo, Giovanni; Thoresen, Magne

    2018-03-01

    When fitting regression models, measurement error in any of the predictors typically leads to biased coefficients and incorrect inferences. A plethora of methods have been proposed to correct for this. Obtaining standard errors and confidence intervals using the corrected estimators can be challenging and, in addition, there is concern about remaining bias in the corrected estimators. The bootstrap, which is one option to address these problems, has received limited attention in this context. It has usually been employed by simply resampling observations, which, while suitable in some situations, is not always formally justified. In addition, the simple bootstrap does not allow for estimating bias in non-linear models, including logistic regression. Model-based bootstrapping, which can potentially estimate bias in addition to being robust to the original sampling or whether the measurement error variance is constant or not, has received limited attention. However, it faces challenges that are not present in handling regression models with no measurement error. This article develops new methods for model-based bootstrapping when correcting for measurement error in logistic regression with replicate measures. The methodology is illustrated using two examples, and a series of simulations are carried out to assess and compare the simple and model-based bootstrap methods, as well as other standard methods. While not always perfect, the model-based approaches offer some distinct improvements over the other methods. © 2017, The International Biometric Society.

  18. Control of the current density profile with lower hybrid current drive on PBX-M

    International Nuclear Information System (INIS)

    Bell, R.E.; Bernabei, S.; Chu, T.K.; Gettelfinger, G.; Greenough, N.; Hatcher, R.; Ignat, D.; Jardin, S.; Kaita, R.; Kaye, S.; Kozub, T.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Sauthoff, N.; Sesnic, S.; Sun, Y.; Takahashi, H.; Tighe, W.; Valeo, E.; von Goeler, S.; Jones, S.; Kesner, J.; Luckhardt, S.; Paoletti, F.; Levinton, F.; Timini, F.

    1993-07-01

    Lower hybrid current drive (LHCD) is being explored as a means to control the current density profile on PBX-M with the goal of raising the central safety factor q(O) to values of 1.5-2 to facilitate access to a full-volume second stable regime. Initial experiments have been conducted with up to 400 kW of 4.6 GHz LH power in circular and indented plasmas with modest parameters. A tangential-viewing two-dimensional hard x-ray imaging diagnostic has been used to observe the bremsstrahlung emission from the suprathermal electrons generated during LHCD. Hollow hard x-ray images have indicated off-axis localization of the driven current. A serious obstacle to the control of the current density profile with LHCD is the concomitant generation of MHD activity, which can seriously degrade the confinement of suprathermal electrons. By combining neutral beam injection with LHCD, an MHD-free condition has been obtained where q(O) is raised above 1

  19. How to Bootstrap a Human Communication System

    Science.gov (United States)

    Fay, Nicolas; Arbib, Michael; Garrod, Simon

    2013-01-01

    How might a human communication system be bootstrapped in the absence of conventional language? We argue that motivated signs play an important role (i.e., signs that are linked to meaning by structural resemblance or by natural association). An experimental study is then reported in which participants try to communicate a range of pre-specified…

  20. Integrable deformations of conformal theories and bootstrap trees

    International Nuclear Information System (INIS)

    Mussardo, G.

    1991-01-01

    I present recent results in the study of massive integrable quantum field theories in (1+1) dimensions considered as perturbed conformal minimal models. The on mass-shell properties of such theories, with a particular emphasis on the bootstrap principle, are investigated. (orig.)

  1. More N =4 superconformal bootstrap

    Science.gov (United States)

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.

    2017-08-01

    In this long overdue second installment, we continue to develop the conformal bootstrap program for N =4 superconformal field theories (SCFTs) in four dimensions via an analysis of the correlation function of four stress-tensor supermultiplets. We review analytic results for this correlator and make contact with the SCFT/chiral algebra correspondence of Beem et al. [Commun. Math. Phys. 336, 1359 (2015), 10.1007/s00220-014-2272-x]. We demonstrate that the constraints of unitarity and crossing symmetry require the central charge c to be greater than or equal to 3 /4 in any interacting N =4 SCFT. We apply numerical bootstrap methods to derive upper bounds on scaling dimensions and operator product expansion coefficients for several low-lying, unprotected operators as a function of the central charge. We interpret our bounds in the context of N =4 super Yang-Mills theories, formulating a series of conjectures regarding the embedding of the conformal manifold—parametrized by the complexified gauge coupling—into the space of scaling dimensions and operator product expansion coefficients. Our conjectures assign a distinguished role to points on the conformal manifold that are self-dual under a subgroup of the S -duality group. This paper contains a more detailed exposition of a number of results previously reported in Beem et al. [Phys. Rev. Lett. 111, 071601 (2013), 10.1103/PhysRevLett.111.071601] in addition to new results.

  2. Stable existence of central current hole in the JT-60U tokamak

    International Nuclear Information System (INIS)

    Miura, Y.; Fujita, T.; Oikawa, T.

    2003-01-01

    In an extreme state of a reversed magnetic shear configuration, it was found in JT-60U that there is almost no plasma current in the central region (called Current Hole). The Current Hole region extends to 40% of the plasma minor radius and it exists stably for several seconds. The Current Hole is formed by the growth of the bootstrap current and it is impossible to drive current in either positive or negative direction by ECH or N-NB inside the Current Hole. In that region, there is almost no gradient of density, temperature and toroidal rotation velocity. It means that there is almost no confinement in the Current Hole and the large energy in that region is sustained only by an internal transport barrier (ITB). The effects of the Current Hole on particle orbits and the effects on an error field on the Current Hole are also discussed. (author)

  3. Current density profile inside q=1 on Tore Supra

    International Nuclear Information System (INIS)

    Joffrin, E.; Desgranges, C.; Sabot, R.; Dubois, M.A.

    1995-01-01

    The Tore Supra polarimeter used to measure the poloidal field distribution is described. The current density profiles are computed in two different ways using the interferometric and polarimetric data in conjunction with the magnetic data and the location of the inversion radius determined by the soft X-ray camera. The current density inside the q=1 surface is investigated for normal and monster sawteeth. Its variation are also measured by the polarimeter and compared with that predicted by the current diffusion equation assuming complete reconnection. Finally, the safety factor profile is compared with that obtained with the striation data of the pellet ablation. The results of the evolution of the q profile during sawteeth are in good agreement with those obtained in other devices. (author) 9 refs.; 4 figs

  4. Variations of current profiles in tokamaks. Formation mechanism and confinement property of current-hole configuration

    International Nuclear Information System (INIS)

    Takizuka, Tomonori

    2003-01-01

    The formation mechanism of the current hole in tokamak plasmas is reviewed. Experimental results of JT-60U are shown. Increase of the off-central noninductive current is a key factor for the current-hole formation. The internal Transport Barrier (ITB), which generates large bootstrap current, plays an important role. The central current density in the hole stays nearly 0. The idea of a new equilibrium for a tokamak plasma with a current hole is introduced. This equilibrium configuration called Axisymmetric Tri-Magnetic-Islands (ATMI) equilibrium', has three islands along the R direction (a central-negative-current island and side-positive-current islands). The equilibrium is stable with the elongation coils when the current in the ATMI region is limited to a small amount. The confinement properties of a current-hole configuration with box-type ITB is described. A scaling of the core poloidal beta inside the ITB, β p,core , is given as ε f β p,core approx. = 1, which suggests the equilibrium limit (ε f : inverse aspect ratio at the ITB foot). Though the core stored energy is little dependent on the heating power, the estimated heat diffusivity in the ITB region moderately correlates with a neoclassical diffusivity. (author)

  5. BootGraph: probabilistic fiber tractography using bootstrap algorithms and graph theory.

    Science.gov (United States)

    Vorburger, Robert S; Reischauer, Carolin; Boesiger, Peter

    2013-02-01

    Bootstrap methods have recently been introduced to diffusion-weighted magnetic resonance imaging to estimate the measurement uncertainty of ensuing diffusion parameters directly from the acquired data without the necessity to assume a noise model. These methods have been previously combined with deterministic streamline tractography algorithms to allow for the assessment of connection probabilities in the human brain. Thereby, the local noise induced disturbance in the diffusion data is accumulated additively due to the incremental progression of streamline tractography algorithms. Graph based approaches have been proposed to overcome this drawback of streamline techniques. For this reason, the bootstrap method is in the present work incorporated into a graph setup to derive a new probabilistic fiber tractography method, called BootGraph. The acquired data set is thereby converted into a weighted, undirected graph by defining a vertex in each voxel and edges between adjacent vertices. By means of the cone of uncertainty, which is derived using the wild bootstrap, a weight is thereafter assigned to each edge. Two path finding algorithms are subsequently applied to derive connection probabilities. While the first algorithm is based on the shortest path approach, the second algorithm takes all existing paths between two vertices into consideration. Tracking results are compared to an established algorithm based on the bootstrap method in combination with streamline fiber tractography and to another graph based algorithm. The BootGraph shows a very good performance in crossing situations with respect to false negatives and permits incorporating additional constraints, such as a curvature threshold. By inheriting the advantages of the bootstrap method and graph theory, the BootGraph method provides a computationally efficient and flexible probabilistic tractography setup to compute connection probability maps and virtual fiber pathways without the drawbacks of

  6. Quadratic mass relations in topological bootstrap theory

    International Nuclear Information System (INIS)

    Jones, C.E.; Uschersohn, J.

    1980-01-01

    From the requirement of reality of discontinuities of scattering amplitudes at the spherical level of the topological bootstrap theory, a large number of mass relations for hadrons is derived. Quadratic mass formulas for the symmetry-breaking pattern of both mesons and baryon is obtained and their relation to conventional models of symmetry breaking is briefly discussed

  7. Pulling Econometrics Students up by Their Bootstraps

    Science.gov (United States)

    O'Hara, Michael E.

    2014-01-01

    Although the concept of the sampling distribution is at the core of much of what we do in econometrics, it is a concept that is often difficult for students to grasp. The thought process behind bootstrapping provides a way for students to conceptualize the sampling distribution in a way that is intuitive and visual. However, teaching students to…

  8. Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak

    International Nuclear Information System (INIS)

    Dunne, Michael G.

    2014-01-01

    The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.

  9. Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, Michael G.

    2014-02-15

    The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.

  10. The economics of bootstrapping space industries - Development of an analytic computer model

    Science.gov (United States)

    Goldberg, A. H.; Criswell, D. R.

    1982-01-01

    A simple economic model of 'bootstrapping' industrial growth in space and on the Moon is presented. An initial space manufacturing facility (SMF) is assumed to consume lunar materials to enlarge the productive capacity in space. After reaching a predetermined throughput, the enlarged SMF is devoted to products which generate revenue continuously in proportion to the accumulated output mass (such as space solar power stations). Present discounted value and physical estimates for the general factors of production (transport, capital efficiency, labor, etc.) are combined to explore optimum growth in terms of maximized discounted revenues. It is found that 'bootstrapping' reduces the fractional cost to a space industry of transport off-Earth, permits more efficient use of a given transport fleet. It is concluded that more attention should be given to structuring 'bootstrapping' scenarios in which 'learning while doing' can be more fully incorporated in program analysis.

  11. Method for controlling low-energy high current density electron beams

    International Nuclear Information System (INIS)

    Lee, J.N.; Oswald, R.B. Jr.

    1977-01-01

    A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams

  12. Bootstrap bound for conformal multi-flavor QCD on lattice

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yu [Department of Physics, Rikkyo University,Toshima, Tokyo 171-8501 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2016-07-08

    The recent work by Iha et al. shows an upper bound on mass anomalous dimension γ{sub m} of multi-flavor massless QCD at the renormalization group fixed point from the conformal bootstrap in SU(N{sub F}){sub V} symmetric conformal field theories under the assumption that the fixed point is realizable with the lattice regularization based on staggered fermions. We show that the almost identical but slightly stronger bound applies to the regularization based on Wilson fermions (or domain wall fermions) by studying the conformal bootstrap in SU(N{sub f}){sub L}×SU(N{sub f}){sub R} symmetric conformal field theories. For N{sub f}=8, our bound implies γ{sub m}<1.31 to avoid dangerously irrelevant operators that are not compatible with the lattice symmetry.

  13. Operation of a semiconductor opening switch at ultrahigh current densities

    International Nuclear Information System (INIS)

    Lyubutin, S. K.; Rukin, S. N.; Slovikovsky, B. G.; Tsyranov, S. N.

    2012-01-01

    The operation of a semiconductor opening switch (SOS diode) at cutoff current densities of tens of kA/cm 2 is studied. In experiments, the maximum reverse current density reached 43 kA/cm 2 for ∼40 ns. Experimental data on SOS diodes with a p + -p-n-n + structure and a p-n junction depth from 145 to 180 μm are presented. The dynamics of electron-hole plasma in the diode at pumping and current cutoff stages is studied by numerical simulation methods. It is shown that current cutoff is associated with the formation of an electric field region in a thin (∼45 μm) layer of the structure’s heavily doped p-region, in which the acceptor concentration exceeds 10 16 cm −3 , and the current cutoff process depends weakly on the p-n junction depth.

  14. Finite-Size Effects for Some Bootstrap Percolation Models

    NARCIS (Netherlands)

    Enter, A.C.D. van; Adler, Joan; Duarte, J.A.M.S.

    The consequences of Schonmann's new proof that the critical threshold is unity for certain bootstrap percolation models are explored. It is shown that this proof provides an upper bound for the finite-size scaling in these systems. Comparison with data for one case demonstrates that this scaling

  15. Current density and continuity in discretized models

    International Nuclear Information System (INIS)

    Boykin, Timothy B; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schroedinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying discrete models, students can encounter conceptual difficulties with the representation of the current and its divergence because different finite-difference expressions, all of which reduce to the current density in the continuous limit, measure different physical quantities. Understanding these different discrete currents is essential and requires a careful analysis of the current operator, the divergence of the current and the continuity equation. Here we develop point forms of the current and its divergence valid for an arbitrary mesh and basis. We show that in discrete models currents exist only along lines joining atomic sites (or mesh points). Using these results, we derive a discrete analogue of the divergence theorem and demonstrate probability conservation in a purely localized-basis approach.

  16. Technique of Critical Current Density Measurement of Bulk Superconductor with Linear Extrapolation Method

    International Nuclear Information System (INIS)

    Adi, Wisnu Ari; Sukirman, Engkir; Winatapura, Didin S.

    2000-01-01

    Technique of critical current density measurement (Jc) of HTc bulk ceramic superconductor has been performed by using linear extrapolation with four-point probes method. The measurement of critical current density HTc bulk ceramic superconductor usually causes damage in contact resistance. In order to decrease this damage factor, we introduce extrapolation method. The extrapolating data show that the critical current density Jc for YBCO (123) and BSCCO (2212) at 77 K are 10,85(6) Amp.cm - 2 and 14,46(6) Amp.cm - 2, respectively. This technique is easier, simpler, and the use of the current flow is low, so it will not damage the contact resistance of the sample. We expect that the method can give a better solution for bulk superconductor application. Key words. : superconductor, critical temperature, and critical current density

  17. Current distribution and enhancement of the engineering critical current density in multifilament Bi-2223 tapes

    DEFF Research Database (Denmark)

    Wang, W.G.; Jensen, M.B.; Kindl, B.

    2000-01-01

    The spatial distribution of the critical current density (Jc) and engineering critical current density (Je) along the tape width direction was studied by a cutting technique on Bi-2223 multifilamentary tapes. In general, an increase of Jc towards the centre of the tape was measured. We attribute...... microstructure with a great amount of secondary phases. Local variation of Jc was measured within the centre segment of the tape. This indicates the influence of other factors on Jc, such as filament shape, connectivity of the filaments, and sausaging. Enhancement of Je has been pursued in which average Je of 12...

  18. Ionospheric midlatitude electric current density inferred from multiple magnetic satellites

    DEFF Research Database (Denmark)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.

    2013-01-01

    A method for inferring zonal electric current density in the mid-to-low latitude F region ionosphere is presented. We describe a method of using near-simultaneous overflights of the Ørsted and CHAMP satellites to define a closed circuit for an application of Ampère's integral law to magnetic data...... for estimates of main and crustal magnetic fields. Current density in the range ±0.1 μA/m2 is resolved, with the distribution of electric current largely matching known features such as the Appleton anomaly. The currents appear unmodulated at times of either high-negative Dst or high F10.7, which has...... implications for any future efforts to model their effects. We resolve persistent current intensifications between geomagnetic latitudes of 30 and 50° in the postmidnight, predawn sector, a region typically thought to be relatively free of electric currents. The cause of these unexpected intensifications...

  19. On the Consistency of Bootstrap Testing for a Parameter on the Boundary of the Parameter Space

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Nielsen, Heino Bohn; Rahbek, Anders

    2017-01-01

    It is well known that with a parameter on the boundary of the parameter space, such as in the classic cases of testing for a zero location parameter or no autoregressive conditional heteroskedasticity (ARCH) effects, the classic nonparametric bootstrap – based on unrestricted parameter estimates...... – leads to inconsistent testing. In contrast, we show here that for the two aforementioned cases, a nonparametric bootstrap test based on parameter estimates obtained under the null – referred to as ‘restricted bootstrap’ – is indeed consistent. While the restricted bootstrap is simple to implement...... in practice, novel theoretical arguments are required in order to establish consistency. In particular, since the bootstrap is analysed both under the null hypothesis and under the alternative, non-standard asymptotic expansions are required to deal with parameters on the boundary. Detailed proofs...

  20. Current density monitor for intense relativistic electron beams

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.

    1986-01-01

    We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment

  1. Critical current density for spin transfer torque switching with composite free layer structure

    OpenAIRE

    You, Chun-Yeol

    2009-01-01

    Critical current density of composite free layer (CFL) in magnetic tunneling junction is investigated. CFL consists of two exchange coupled ferromagnetic layers, where the coupling is parallel or anti-parallel. Instability condition of the CFL under the spin transfer torque, which is related with critical current density, is obtained by analytic spin wave excitation model and confirmed by macro-spin Landau-Lifshitz-Gilbert equation. The critical current densities for the coupled two identical...

  2. Magneto-optical imaging of transport current densities in superconductors

    International Nuclear Information System (INIS)

    Crabtree, G.W.; Welp, U.; Gunter, D.O.; Zhong, W.; Balachandran, U.; Haldar, P.; Sokolowski, R.S.; Vlasko-Vlasov, V.K.; Nikitenko, V.I.

    1995-01-01

    Direct imaging of the paths of transport currents in superconductors creates many new possibilities for exploring the basic features of vortex pinning mechanisms and for improving the performance of superconducting materials. A technique for imaging the path and magnitude of the transport current density flowing in superconductors is described. Results are given for a 37-filament BSCCO 2223 powder-in-tube wire, showing a highly inhomogeneous current path within the filaments

  3. Numerical Simulation of Density Current Evolution in a Diverging Channel

    Directory of Open Access Journals (Sweden)

    Mitra Javan

    2012-01-01

    Full Text Available When a buoyant inflow of higher density enters a reservoir, it sinks below the ambient water and forms an underflow. Downstream of the plunge point, the flow becomes progressively diluted due to the fluid entrainment. This study seeks to explore the ability of 2D width-averaged unsteady Reynolds-averaged Navier-Stokes (RANS simulation approach for resolving density currents in an inclined diverging channel. 2D width-averaged unsteady RANS equations closed by a buoyancy-modified − turbulence model are integrated in time with a second-order fractional step approach coupled with a direct implicit method and discretized in space on a staggered mesh using a second-order accurate finite volume approach incorporating a high-resolution semi-Lagrangian technique for the convective terms. A series of 2D width-averaged unsteady simulations is carried out for density currents. Comparisons with the experimental measurements and the other numerical simulations show that the predictions of velocity and density field are with reasonable accuracy.

  4. A bootstrap based analysis pipeline for efficient classification of phylogenetically related animal miRNAs

    Directory of Open Access Journals (Sweden)

    Gu Xun

    2007-03-01

    Full Text Available Abstract Background Phylogenetically related miRNAs (miRNA families convey important information of the function and evolution of miRNAs. Due to the special sequence features of miRNAs, pair-wise sequence identity between miRNA precursors alone is often inadequate for unequivocally judging the phylogenetic relationships between miRNAs. Most of the current methods for miRNA classification rely heavily on manual inspection and lack measurements of the reliability of the results. Results In this study, we designed an analysis pipeline (the Phylogeny-Bootstrap-Cluster (PBC pipeline to identify miRNA families based on branch stability in the bootstrap trees derived from overlapping genome-wide miRNA sequence sets. We tested the PBC analysis pipeline with the miRNAs from six animal species, H. sapiens, M. musculus, G. gallus, D. rerio, D. melanogaster, and C. elegans. The resulting classification was compared with the miRNA families defined in miRBase. The two classifications were largely consistent. Conclusion The PBC analysis pipeline is an efficient method for classifying large numbers of heterogeneous miRNA sequences. It requires minimum human involvement and provides measurements of the reliability of the classification results.

  5. Highly efficient red electrophosphorescent devices at high current densities

    International Nuclear Information System (INIS)

    Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong

    2007-01-01

    Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence

  6. Current density fluctuations and ambipolarity of transport

    International Nuclear Information System (INIS)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f r >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range

  7. The effect of electrodeposition process parameters on the current density distribution in an electrochemical cell

    Directory of Open Access Journals (Sweden)

    R. M. STEVANOVIC

    2001-02-01

    Full Text Available Cell voltage – current density dependences for a model electrochemical cell of fixed geometry were calculated for different electrolyte conductivities, Tafel slopes and cathodic exchange current densities. The ratio between the current density at the part of the cathode nearest to the anode and the one furthest away were taken as a measure for the estimation of the current density distribution. The calculations reveal that increasing the conductivity of the electrolyte, as well as increasing the cathodic Tafel slope should both improve the current density distribution. Also, the distribution should be better under total activation control or total diffusion control rather than at mixed activation-diffusion-Ohmic control of the deposition process. On the contrary, changes in the exchange current density should not affect it. These results, being in agreement with common knowledge about the influence of different parameters on the current distribution in an electrochemical cell, demonstrate that a quick estimation of the current distribution can be performed by a simple comparison of the current density at the point of the cathode closest to anode with that at furthest point.

  8. Induced critical current density limit of Ag sheathed Bi-2223 tape conductor

    International Nuclear Information System (INIS)

    Ogiwara, H.; Satou, M.; Yamada, Y.; Kitamura, T.; Hasegawa, T.

    1994-01-01

    The authors have already reported the best critical current density of 66,000 A/cm 2 with an Ag sheathed Bi-2223 tape conductor. The Brick-wall model is for explaining the current transport mechanism of this conductor. The model has its roots in the fact that the Bi-2223 tape core is a complicated stack of crystals which have a mica-flake structure. The orientation of the crystals which have a mica-flake structure. The orientation of the crystals seriously affects the current transport capability. Moreover, the contacts between the stacking crystals are very important. The transport current flows dividing into many branch paths. Under high magnetic field, the different paths experienced different electromagnetic forces. Differences between the electromagnetic forces on the different crystals can affect the contacts so as to increase resistivity and decrease overall critical current density of the tape. This effect can foretell the limit of the critical current density obtainable with these kinds of conductors

  9. The study of dynamics of electrons in the presence of large current densities

    International Nuclear Information System (INIS)

    Garcia, G.

    2007-11-01

    The runaway electron effect is considered in different fields: nuclear fusion, or the heating of the solar corona. In this thesis, we are interested in runaway electrons in the ionosphere. We consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a parallel electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. A computational example is given illustrating the approach to equilibrium and the impact of the different terms. Then, a static electric field is applied in a new sample run. In this run, the electrons move in the z direction, parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density up to 20% of the total current density. Nevertheless, we note that the divergence free of the current density is not conserved. We introduce major changes in order to take into account the variation of the different moments of the ion distribution functions. We observe that the electron distribution functions are still non-Maxwellian. Runaway electrons are created and carry the current density. The core distribution stay at rest. As these electrons undergo less collisions, they increase the plasma conductivity. We make a parametric study. We fit the electron distribution function by two Maxwellian. We show that the time to reach the maximal current density is a key point. Thus, when we increase this time, we modify the temperatures. The current density plays a primary role. When the current density increases, all the moments of the distributions increase: electron density and mean velocity of the suprathermal distribution and the electron temperature of the core and

  10. Semantic Drift in Espresso-style Bootstrapping: Graph-theoretic Analysis and Evaluation in Word Sense Disambiguation

    Science.gov (United States)

    Komachi, Mamoru; Kudo, Taku; Shimbo, Masashi; Matsumoto, Yuji

    Bootstrapping has a tendency, called semantic drift, to select instances unrelated to the seed instances as the iteration proceeds. We demonstrate the semantic drift of Espresso-style bootstrapping has the same root as the topic drift of Kleinberg's HITS, using a simplified graph-based reformulation of bootstrapping. We confirm that two graph-based algorithms, the von Neumann kernels and the regularized Laplacian, can reduce the effect of semantic drift in the task of word sense disambiguation (WSD) on Senseval-3 English Lexical Sample Task. Proposed algorithms achieve superior performance to Espresso and previous graph-based WSD methods, even though the proposed algorithms have less parameters and are easy to calibrate.

  11. Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections

    NARCIS (Netherlands)

    van Enter, Aernout C. D.; Hulshof, Tim

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  12. A Statistical Mechanics Approach to Approximate Analytical Bootstrap Averages

    DEFF Research Database (Denmark)

    Malzahn, Dorthe; Opper, Manfred

    2003-01-01

    We apply the replica method of Statistical Physics combined with a variational method to the approximate analytical computation of bootstrap averages for estimating the generalization error. We demonstrate our approach on regression with Gaussian processes and compare our results with averages...

  13. Finite-size effects for anisotropic bootstrap percolation: logerithmic corrections

    NARCIS (Netherlands)

    Enter, van A.C.D.; Hulshof, T.

    2007-01-01

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  14. Electron and current density measurements on tokamak plasmas

    International Nuclear Information System (INIS)

    Lammeren, A.C.A.P. van.

    1991-01-01

    The first part of this thesis describes the Thomson-scattering diagnostic as it was present at the TORTUR tokamak. For the first time with this diagnostic a complete tangential scattering spectrum was recorded during one single laser pulse. From this scattering spectrum the local current density was derived. Small deviations from the expected gaussian scattering spectrum were observed indicating the non-Maxwellian character of the electron-velocity distribution. The second part of this thesis describes the multi-channel interferometer/ polarimeter diagnostic which was constructed, build and operated on the Rijnhuizen Tokamak Project (RTP) tokamak. The diagnostic was operated routinely, yielding the development of the density profiles for every discharge. When ECRH (Electron Cyclotron Resonance Heating) is switched on the density profile broadens, the central density decreases and the total density increases, the opposite takes place when ECRH is switched off. The influence of MHD (magnetohydrodynamics) activity on the density was clearly observable. In the central region of the plasma it was measured that in hydrogen discharges the so-called sawtooth collapse is preceded by an m=1 instability which grows rapidly. An increase in radius of this m=1 mode of 1.5 cm just before the crash is observed. In hydrogen discharges the sawtooth induced density pulse shows an asymmetry for the high- and low-field side propagation. This asymmetry disappeared for helium discharges. From the location of the maximum density variations during an m=2 mode the position of the q=2 surface is derived. The density profiles are measured during the energy quench phase of a plasma disruption. A fast flattening and broadening of the density profile is observed. (author). 95 refs.; 66 figs.; 7 tabs

  15. Effects of Electron Flow Current Density on Flow Impedance of Magnetically Insulated Transmission Lines

    International Nuclear Information System (INIS)

    He Yong; Zou Wen-Kang; Song Sheng-Yi

    2011-01-01

    In modern pulsed power systems, magnetically insulated transmission lines (MITLs) are used to couple power between the driver and the load. The circuit parameters of MITLs are well understood by employing the concept of flow impedance derived from Maxwell's equations and pressure balance across the flow. However, the electron density in an MITL is always taken as constant in the application of flow impedance. Thus effects of electron flow current density (product of electron density and drift velocity) in an MITL are neglected. We calculate the flow impedances of an MITL and compare them under three classical MITL theories, in which the electron density profile and electron flow current density are different from each other. It is found that the assumption of constant electron density profile in the calculation of the flow impedance is not always valid. The electron density profile and the electron flow current density have significant effects on flow impedance of the MITL. The details of the electron flow current density and its effects on the operation impedance of the MITL should be addressed more explicitly by experiments and theories in the future. (nuclear physics)

  16. Large Eddy Simulations of Compositional Density Currents Flowing Over a Mobile Bed

    Science.gov (United States)

    Kyrousi, Foteini; Zordan, Jessica; Leonardi, Alessandro; Juez, Carmelo; Zanello, Francesca; Armenio, Vincenzo; Franca, Mário J.

    2017-04-01

    Density currents are a ubiquitous phenomenon caused by natural events or anthropogenic activities, and play an important role in the global sediment cycle; they are agents of long distance sediment transport in lakes, seas and oceans. Density gradients induced by salinity, temperature differences, or by the presence of suspended material are all possible triggers of a current. Such flows can travel long distances while eroding or depositing bed materials. This can provoke rapid topological changes, which makes the estimation of their transport capacity of prime interest for environmental engineering. Despite their relevance, field data regarding their dynamics is limited due to density currents scattered and unpredictable occurrence in nature. For this reason, laboratory experiments and numerical simulations have been a preferred way to investigate sediment transport processes associated to density currents. The study of entrainment and deposition processes requires detailed data of velocities spatial and temporal distributions in the boundary layer and bed shear stress, which are troublesome to obtain in laboratory. Motivated by this, we present 3D wall-resolved Large Eddy Simulations (LES) of density currents generated by lock-exchange. The currents travel over a smooth flat bed, which includes a section composed by erodible fine sediment susceptible of eroding. Several sediment sizes and initial density gradients are considered. The grid is set to resolve the velocity field within the boundary layer of the current (a tiny fraction of the total height), which in turn allows to obtain predictions of the bed shear stress. The numerical outcomes are compared with experimental data obtained with an analogous laboratory setting. In laboratory experiments salinity was chosen for generating the initial density gradient in order to facilitate the identification of entrained particles, since salt does not hinder the possibility to track suspended particles. Under these

  17. Standard Error Computations for Uncertainty Quantification in Inverse Problems: Asymptotic Theory vs. Bootstrapping.

    Science.gov (United States)

    Banks, H T; Holm, Kathleen; Robbins, Danielle

    2010-11-01

    We computationally investigate two approaches for uncertainty quantification in inverse problems for nonlinear parameter dependent dynamical systems. We compare the bootstrapping and asymptotic theory approaches for problems involving data with several noise forms and levels. We consider both constant variance absolute error data and relative error which produces non-constant variance data in our parameter estimation formulations. We compare and contrast parameter estimates, standard errors, confidence intervals, and computational times for both bootstrapping and asymptotic theory methods.

  18. Blue functions: probability and current density propagators in non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Withers, L P Jr

    2011-01-01

    Like a Green function to propagate a particle's wavefunction in time, a Blue function is introduced to propagate the particle's probability and current density. Accordingly, the complete Blue function has four components. They are constructed from path integrals involving a quantity like the action that we call the motion. The Blue function acts on the displaced probability density as the kernel of an integral operator. As a result, we find that the Wigner density occurs as an expression for physical propagation. We also show that, in quantum mechanics, the displaced current density is conserved bilocally (in two places at one time), as expressed by a generalized continuity equation. (paper)

  19. Engineering Critical Current Density Improvement in Ag- Bi-2223 Tapes

    DEFF Research Database (Denmark)

    Wang, W. G.; Seifi, Behrouz; Eriksen, Morten

    2000-01-01

    Ag alloy sheathed Bi-2223 multifilament tapes were produced by the powder-in-tube method. Engineering critical current density improvement has been achieved through both enhancement of critical current density by control of the thermal behavior of oxide powder and by an increase of the filling...... factor of the tapes. Phase evolution at initial sintering stage has been studied by a quench experiment in Ag-Bi-2223 tapes. The content, texture, and microstructure of various phases were determined by XRD and SEM. A novel process approach has been invented in which square wire was chosen rather than...

  20. Truncatable bootstrap equations in algebraic form and critical surface exponents

    Energy Technology Data Exchange (ETDEWEB)

    Gliozzi, Ferdinando [Dipartimento di Fisica, Università di Torino andIstituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1, Torino, I-10125 (Italy)

    2016-10-10

    We describe examples of drastic truncations of conformal bootstrap equations encoding much more information than that obtained by a direct numerical approach. A three-term truncation of the four point function of a free scalar in any space dimensions provides algebraic identities among conformal block derivatives which generate the exact spectrum of the infinitely many primary operators contributing to it. In boundary conformal field theories, we point out that the appearance of free parameters in the solutions of bootstrap equations is not an artifact of truncations, rather it reflects a physical property of permeable conformal interfaces which are described by the same equations. Surface transitions correspond to isolated points in the parameter space. We are able to locate them in the case of 3d Ising model, thanks to a useful algebraic form of 3d boundary bootstrap equations. It turns out that the low-lying spectra of the surface operators in the ordinary and the special transitions of 3d Ising model form two different solutions of the same polynomial equation. Their interplay yields an estimate of the surface renormalization group exponents, y{sub h}=0.72558(18) for the ordinary universality class and y{sub h}=1.646(2) for the special universality class, which compare well with the most recent Monte Carlo calculations. Estimates of other surface exponents as well as OPE coefficients are also obtained.

  1. Bootstrapping non-commutative gauge theories from L∞ algebras

    Science.gov (United States)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  2. Bootstrap embedding: An internally consistent fragment-based method

    Energy Technology Data Exchange (ETDEWEB)

    Welborn, Matthew; Tsuchimochi, Takashi; Van Voorhis, Troy [Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2016-08-21

    Strong correlation poses a difficult problem for electronic structure theory, with computational cost scaling quickly with system size. Fragment embedding is an attractive approach to this problem. By dividing a large complicated system into smaller manageable fragments “embedded” in an approximate description of the rest of the system, we can hope to ameliorate the steep cost of correlated calculations. While appealing, these methods often converge slowly with fragment size because of small errors at the boundary between fragment and bath. We describe a new electronic embedding method, dubbed “Bootstrap Embedding,” a self-consistent wavefunction-in-wavefunction embedding theory that uses overlapping fragments to improve the description of fragment edges. We apply this method to the one dimensional Hubbard model and a translationally asymmetric variant, and find that it performs very well for energies and populations. We find Bootstrap Embedding converges rapidly with embedded fragment size, overcoming the surface-area-to-volume-ratio error typical of many embedding methods. We anticipate that this method may lead to a low-scaling, high accuracy treatment of electron correlation in large molecular systems.

  3. Statistical error estimation of the Feynman-α method using the bootstrap method

    International Nuclear Information System (INIS)

    Endo, Tomohiro; Yamamoto, Akio; Yagi, Takahiro; Pyeon, Cheol Ho

    2016-01-01

    Applicability of the bootstrap method is investigated to estimate the statistical error of the Feynman-α method, which is one of the subcritical measurement techniques on the basis of reactor noise analysis. In the Feynman-α method, the statistical error can be simply estimated from multiple measurements of reactor noise, however it requires additional measurement time to repeat the multiple times of measurements. Using a resampling technique called 'bootstrap method' standard deviation and confidence interval of measurement results obtained by the Feynman-α method can be estimated as the statistical error, using only a single measurement of reactor noise. In order to validate our proposed technique, we carried out a passive measurement of reactor noise without any external source, i.e. with only inherent neutron source by spontaneous fission and (α,n) reactions in nuclear fuels at the Kyoto University Criticality Assembly. Through the actual measurement, it is confirmed that the bootstrap method is applicable to approximately estimate the statistical error of measurement results obtained by the Feynman-α method. (author)

  4. Differential modulation of corticospinal excitability by different current densities of anodal transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Andisheh Bastani

    Full Text Available BACKGROUND: Novel non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS have been developed in recent years. TDCS-induced corticospinal excitability changes depend on two important factors current intensity and stimulation duration. Despite clinical success with existing tDCS parameters, optimal protocols are still not entirely set. OBJECTIVE/HYPOTHESIS: The current study aimed to investigate the effects of four different anodal tDCS (a-tDCS current densities on corticospinal excitability. METHODS: Four current intensities of 0.3, 0.7, 1.4 and 2 mA resulting in current densities (CDs of 0.013, 0.029, 0.058 and 0.083 mA/cm(2 were applied on twelve right-handed (mean age 34.5±10.32 yrs healthy individuals in different sessions at least 48 hours apart. a-tDCS was applied continuously for 10 minute, with constant active and reference electrode sizes of 24 and 35 cm(2 respectively. The corticospinal excitability of the extensor carpi radialis muscle (ECR was measured before and immediately after the intervention and at 10, 20 and 30 minutes thereafter. RESULTS: Post hoc comparisons showed significant differences in corticospinal excitability changes for CDs of 0.013 mA/cm(2 and 0.029 mA/cm(2 (P = 0.003. There were no significant differences between excitability changes for the 0.013 mA/cm(2 and 0.058 mA/cm(2 (P = 0.080 or 0.013 mA/cm(2 and 0.083 mA/cm(2 (P = 0.484 conditions. CONCLUSION: This study found that a-tDCS with a current density of 0.013 mA/cm(2 induces significantly larger corticospinal excitability changes than CDs of 0.029 mA/cm(2. The implication is that might help to avoid applying unwanted amount of current to the cortical areas.

  5. Towards bootstrapping QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Shai M.; Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)

    2016-08-02

    We initiate the conformal bootstrap study of Quantum Electrodynamics in 2+1 space-time dimensions (QED{sub 3}) with N flavors of charged fermions by focusing on the 4-point function of four monopole operators with the lowest unit of topological charge. We obtain upper bounds on the scaling dimension of the doubly-charged monopole operator, with and without assuming other gaps in the operator spectrum. Intriguingly, we find a (gap-dependent) kink in these bounds that comes reasonably close to the large N extrapolation of the scaling dimensions of the singly-charged and doubly-charged monopole operators down to N=4 and N=6.

  6. Prospects for Edge Current Density Determination Using LIBEAM on DIII-D

    International Nuclear Information System (INIS)

    D.M. Thomas; A.S. Bozek; T.N. Carlstrom; D.K. Finkenthal; R. Jayakumar; M.A. Makowski; D.G. Nilson; T.H. Osborne; B.W. Rice; R.T. Snider

    2000-01-01

    The specific size and structure of the edge current profile has important effects on the MHD stability and ultimate performance of many advanced tokamak (AT) operating modes. This is true for both bootstrap and externally driven currents that may be used to tailor the edge shear. Absent a direct local measurement of j(r), the best alternative is a determination of the poloidal field. Measurements of the precision (0.1-0.01 o in magnetic pitch angle and 1-10 ms) necessary to address issues of stability and control and provide constraints for EFIT are difficult to do in the region of interest (ρ = 0.9-1.1). Using Zeeman polarization spectroscopy of the 2S-2P lithium resonance line emission from the DIII-D LIBEAM, measurements of the various field components may be made to the necessary precision in exactly the region of interest to these studies. Because of the negligible Stark mixing of the relevant atomic levels, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to Motional Stark Effect (MSE) measurements of B. Key issues for utilizing this technique include good beam quality, an optimum viewing geometry, and a suitable optical pre-filter to isolate the polarized emission line. A prospective diagnostic system for the DIII-D AT program will be described

  7. Syntactic bootstrapping in children with Down syndrome: the impact of bilingualism.

    Science.gov (United States)

    Cleave, Patricia L; Kay-Raining Bird, Elizabeth; Trudeau, Natacha; Sutton, Ann

    2014-01-01

    The purpose of the study was to add to our knowledge of bilingual learning in children with Down syndrome (DS) using a syntactic bootstrapping task. Four groups of children and youth matched on non-verbal mental age participated. There were 14 bilingual participants with DS (DS-B, mean age 12;5), 12 monolingual participants with DS (DS-M, mean age 10;10), 9 bilingual typically developing children (TD-B; mean age 4;1) and 11 monolingual typically developing children (TD-M; mean age 4;1). The participants completed a computerized syntactic bootstrapping task involving unfamiliar nouns and verbs. The syntactic cues employed were a for the nouns and ing for the verbs. Performance was better on nouns than verbs. There was also a main effect for group. Follow-up t-tests revealed that there were no significant differences between the TD-M and TD-B or between the DS-M and DS-B groups. However, the DS-M group performed more poorly than the TD-M group with a large effect size. Analyses at the individual level revealed a similar pattern of results. There was evidence that Down syndrome impacted performance; there was no evidence that bilingualism negatively affected the syntactic bootstrapping skills of individuals with DS. These results from a dynamic language task are consistent with those of previous studies that used static or product measures. Thus, the results are consistent with the position that parents should be supported in their decision to provide bilingual input to their children with DS. Readers of this article will identify (1) research evidence regarding bilingual development in children with Down syndrome and (2) syntactic bootstrapping skills in monolingual and bilingual children who are typically developing or who have Down syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A Bootstrap Neural Network Based Heterogeneous Panel Unit Root Test: Application to Exchange Rates

    OpenAIRE

    Christian de Peretti; Carole Siani; Mario Cerrato

    2010-01-01

    This paper proposes a bootstrap artificial neural network based panel unit root test in a dynamic heterogeneous panel context. An application to a panel of bilateral real exchange rate series with the US Dollar from the 20 major OECD countries is provided to investigate the Purchase Power Parity (PPP). The combination of neural network and bootstrapping significantly changes the findings of the economic study in favour of PPP.

  9. Diagnostic development for current density profile control at KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); University of Science and Technology, Daejeon 34113 (Korea, Republic of); Chung, J. [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Messmer, M.C.C. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands)

    2016-11-01

    Highlights: • The motional Stark effect (MSE) diagnostic installed at KSTAR. • Engineering challenges and solutions on the design and fabrication of the front optics housing and filter modules. • Characterization of the bandpass filters and the responses to polarized light. - Abstract: The current density profile diagnostics are critical for the control of the steady-state burning plasma operations. A multi-channel motional Stark effect (MSE) diagnostic system has been implemented for the measurements of the internal magnetic field structures that constrain the magnetic equilibrium reconstruction to accurately produce the tokamak safety factor and current density profiles for the Korea Superconducting Tokamak Advanced Research (KSTAR). This work presents the design and fabrication of the front optics and the filter modules and the calibration activities for the MSE diagnostic at KSTAR.

  10. Particle-bearing currents in uniform density and two-layer fluids

    Science.gov (United States)

    Sutherland, Bruce R.; Gingras, Murray K.; Knudson, Calla; Steverango, Luke; Surma, Christopher

    2018-02-01

    Lock-release gravity current experiments are performed to examine the evolution of a particle bearing flow that propagates either in a uniform-density fluid or in a two-layer fluid. In all cases, the current is composed of fresh water plus micrometer-scale particles, the ambient fluid is saline, and the current advances initially either over the surface as a hypopycnal current or at the interface of the two-layer fluid as a mesopycnal current. In most cases the tank is tilted so that the ambient fluid becomes deeper with distance from the lock. For hypopycnal currents advancing in a uniform density fluid, the current typically slows as particles rain out of the current. While the loss of particles alone from the current should increase the current's buoyancy and speed, in practice the current's speed decreases because the particles carry with them interstitial fluid from the current. Meanwhile, rather than settling on the sloping bottom of the tank, the particles form a hyperpycnal (turbidity) current that advances until enough particles rain out that the relatively less dense interstitial fluid returns to the surface, carrying some particles back upward. When a hypopycnal current runs over the surface of a two-layer fluid, the particles that rain out temporarily halt their descent as they reach the interface, eventually passing through it and again forming a hyperpycnal current. Dramatically, a mesopycnal current in a two-layer fluid first advances along the interface and then reverses direction as particles rain out below and fresh interstitial fluid rises above.

  11. Metastability Thresholds for Anisotropic Bootstrap Percolation in Three Dimensions

    NARCIS (Netherlands)

    Enter, Aernout C.D. van; Fey, Anne

    In this paper we analyze several anisotropic bootstrap percolation models in three dimensions. We present the order of magnitude for the metastability thresholds for a fairly general class of models. In our proofs, we use an adaptation of the technique of dimensional reduction. We find that the

  12. Bootstrapping the (A1, A2) Argyres-Douglas theory

    Science.gov (United States)

    Cornagliotto, Martina; Lemos, Madalena; Liendo, Pedro

    2018-03-01

    We apply bootstrap techniques in order to constrain the CFT data of the ( A 1 , A 2) Argyres-Douglas theory, which is arguably the simplest of the Argyres-Douglas models. We study the four-point function of its single Coulomb branch chiral ring generator and put numerical bounds on the low-lying spectrum of the theory. Of particular interest is an infinite family of semi-short multiplets labeled by the spin ℓ. Although the conformal dimensions of these multiplets are protected, their three-point functions are not. Using the numerical bootstrap we impose rigorous upper and lower bounds on their values for spins up to ℓ = 20. Through a recently obtained inversion formula, we also estimate them for sufficiently large ℓ, and the comparison of both approaches shows consistent results. We also give a rigorous numerical range for the OPE coefficient of the next operator in the chiral ring, and estimates for the dimension of the first R-symmetry neutral non-protected multiplet for small spin.

  13. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  14. The sound symbolism bootstrapping hypothesis for language acquisition and language evolution.

    Science.gov (United States)

    Imai, Mutsumi; Kita, Sotaro

    2014-09-19

    Sound symbolism is a non-arbitrary relationship between speech sounds and meaning. We review evidence that, contrary to the traditional view in linguistics, sound symbolism is an important design feature of language, which affects online processing of language, and most importantly, language acquisition. We propose the sound symbolism bootstrapping hypothesis, claiming that (i) pre-verbal infants are sensitive to sound symbolism, due to a biologically endowed ability to map and integrate multi-modal input, (ii) sound symbolism helps infants gain referential insight for speech sounds, (iii) sound symbolism helps infants and toddlers associate speech sounds with their referents to establish a lexical representation and (iv) sound symbolism helps toddlers learn words by allowing them to focus on referents embedded in a complex scene, alleviating Quine's problem. We further explore the possibility that sound symbolism is deeply related to language evolution, drawing the parallel between historical development of language across generations and ontogenetic development within individuals. Finally, we suggest that sound symbolism bootstrapping is a part of a more general phenomenon of bootstrapping by means of iconic representations, drawing on similarities and close behavioural links between sound symbolism and speech-accompanying iconic gesture. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Comparison between numerical and analytical results on the required rf current for stabilizing neoclassical tearing modes

    Science.gov (United States)

    Wang, Xiaojing; Yu, Qingquan; Zhang, Xiaodong; Zhang, Yang; Zhu, Sizheng; Wang, Xiaoguang; Wu, Bin

    2018-04-01

    Numerical studies on the stabilization of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) have been carried out based on reduced MHD equations, focusing on the amount of the required driven current for mode stabilization and the comparison with analytical results. The dependence of the minimum driven current required for NTM stabilization on some parameters, including the bootstrap current density, radial width of the driven current, radial deviation of the driven current from the resonant surface, and the island width when applying ECCD, are studied. By fitting the numerical results, simple expressions for these dependences are obtained. Analysis based on the modified Rutherford equation (MRE) has also been carried out, and the corresponding results have the same trend as numerical ones, while a quantitative difference between them exists. This difference becomes smaller when the applied radio frequency (rf) current is smaller.

  16. Characteristics of PEMFC operating at high current density with low external humidification

    International Nuclear Information System (INIS)

    Fan, Linhao; Zhang, Guobin; Jiao, Kui

    2017-01-01

    Highlights: • PEMFC with low humidity and high current density is studied by numerical simulation. • At high current density, water production lowers external humidification requirement. • A steady anode circulation status without external humidification is demonstrated. • The corresponding detailed internal water transfer path in the PEMFC is illustrated. • Counter-flow is superior to co-flow at low anode external humidification. - Abstract: A three-dimensional multiphase numerical model for proton exchange membrane fuel cell (PEMFC) is developed to study the fuel cell performance and water transport properties with low external humidification. The results show that the sufficient external humidification is necessary to prevent the polymer electrolyte dehydration at low current density, while at high current density, the water produced in cathode CL is enough to humidify the polymer electrolyte instead of external humidification by flowing back and forth between the anode and cathode across the membrane. Furthermore, a steady anode circulation status without external humidification is demonstrated in this study, of which the detailed internal water transfer path is also illustrated. Additionally, it is also found that the water balance under the counter-flow arrangement is superior to co-flow at low anode external humidification.

  17. Measurement Uncertainty Evaluation in Dimensional X-ray Computed Tomography Using the Bootstrap Method

    DEFF Research Database (Denmark)

    Hiller, Jochen; Genta, Gianfranco; Barbato, Giulio

    2014-01-01

    measurement processes, e.g., with tactile systems, also due to factors related to systematic errors, mainly caused by specific CT image characteristics. In this paper we propose a simulation-based framework for measurement uncertainty evaluation in dimensional CT using the bootstrap method. In a case study...... the problem concerning measurement uncertainties was addressed with bootstrap and successfully applied to ball-bar CT measurements. Results obtained enabled extension to more complex shapes such as actual industrial components as we show by tests on a hollow cylinder workpiece....

  18. Effect of via depth on the TSV filling process for different current densities

    Science.gov (United States)

    Wang, Feng; Zhao, Zhipeng; Nie, Nantian; Wang, Fuliang; Zhu, Wenhui

    2018-04-01

    Through-silicon-via (TSV) filling with optimum electrodeposition parameters is still a challenge in the industry, especially for via with different depths. Herein, the effects of via depth on optimum current density and filling patterns were investigated. It was found that the deeper the via, the lower the optimum current density. At low current density (4 mA cm-2), the via depth only affects the size of the defect, but does not change the filling pattern. However, at medium current density (7 mA cm-2), the filling pattern changes from super-conformal filling to sub-conformal filling with the increase of via depth, the pinch-off position remaining constant at a depth of about 70 µm from the top surface. Simulations of the TSV filling process using COMSOL modeling software revealed that the local concentration of additives, which is affected by the via depth, determine the morphology of the electrodeposition, matching well the experimental results.

  19. High dislocation density of tin induced by electric current

    International Nuclear Information System (INIS)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-01-01

    A dislocation density of as high as 10 17 /m 2 in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10 3 A/ cm 2 . The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining

  20. Effect of a superconducting coil as a fault current limiter on current density distribution in BSCCO tape after an over-current pulse

    International Nuclear Information System (INIS)

    Tallouli, M; Yamaguchi, S.; Shyshkin, O.

    2017-01-01

    The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of

  1. Influence of the anodic etching current density on the morphology of the porous SiC layer

    Directory of Open Access Journals (Sweden)

    Anh Tuan Cao

    2014-03-01

    Full Text Available In this report, we fabricated a porous layer in amorphous SiC thin films by using constant-current anodic etching in an electrolyte of aqueous diluted hydrofluoric acid. The morphology of the porous amorphous SiC layer changed as the anodic current density changed: At low current density, the porous layer had a low pore density and consisted of small pores that branched downward. At moderate current density, the pore size and depth increased, and the pores grew perpendicular to the surface, creating a columnar pore structure. At high current density, the porous structure remained perpendicular, the pore size increased, and the pore depth decreased. We explained the changes in pore size and depth at high current density by the growth of a silicon oxide layer during etching at the tips of the pores.

  2. Assessing the Uncertainty in QUANTEC's Dose–Response Relation of Lung and Spinal Cord With a Bootstrap Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wedenberg, Minna, E-mail: minna.wedenberg@raysearchlabs.com

    2013-11-15

    Purpose: To apply a statistical bootstrap analysis to assess the uncertainty in the dose–response relation for the endpoints pneumonitis and myelopathy reported in the QUANTEC review. Methods and Materials: The bootstrap method assesses the uncertainty of the estimated population-based dose-response relation due to sample variability, which reflects the uncertainty due to limited numbers of patients in the studies. A large number of bootstrap replicates of the original incidence data were produced by random sampling with replacement. The analysis requires only the dose, the number of patients, and the number of occurrences of the studied endpoint, for each study. Two dose–response models, a Poisson-based model and the Lyman model, were fitted to each bootstrap replicate using maximum likelihood. Results: The bootstrap analysis generates a family of curves representing the range of plausible dose–response relations, and the 95% bootstrap confidence intervals give an estimated upper and lower toxicity risk. The curve families for the 2 dose–response models overlap for doses included in the studies at hand but diverge beyond that, with the Lyman model suggesting a steeper slope. The resulting distributions of the model parameters indicate correlation and non-Gaussian distribution. For both data sets, the likelihood of the observed data was higher for the Lyman model in >90% of the bootstrap replicates. Conclusions: The bootstrap method provides a statistical analysis of the uncertainty in the estimated dose–response relation for myelopathy and pneumonitis. It suggests likely values of model parameter values, their confidence intervals, and how they interrelate for each model. Finally, it can be used to evaluate to what extent data supports one model over another. For both data sets considered here, the Lyman model was preferred over the Poisson-based model.

  3. Effect of strain on the critical-current density of Cu-Nb composites

    International Nuclear Information System (INIS)

    Klein, J.D.; Rose, R.M.

    1987-01-01

    Microfilamentary superconducting composites of Nb fibers in Cu matrices prepared by the stack and draw method were tested for tensile critical-current performance at 4.2 K. The superconducting critical-current densities increased exponentially under the influence of an applied mechanical strain until the onset of Nb fiber plastic deformation. In the elastic range, the critical-current densities conformed to log 10 J/sub c/ = m (strain)+b. In several tests the critical current was increased by more than an order of magnitude by the applied strain. This behavior is consistent with an increase in the upper critical field of the Nb fibers by the applied stress

  4. Improving Web Learning through model Optimization using Bootstrap for a Tour-Guide Robot

    Directory of Open Access Journals (Sweden)

    Rafael León

    2012-09-01

    Full Text Available We perform a review of Web Mining techniques and we describe a Bootstrap Statistics methodology applied to pattern model classifier optimization and verification for Supervised Learning for Tour-Guide Robot knowledge repository management. It is virtually impossible to test thoroughly Web Page Classifiers and many other Internet Applications with pure empirical data, due to the need for human intervention to generate training sets and test sets. We propose using the computer-based Bootstrap paradigm to design a test environment where they are checked with better reliability

  5. Maximum non-extensive entropy block bootstrap for non-stationary processes

    Czech Academy of Sciences Publication Activity Database

    Bergamelli, M.; Novotný, Jan; Urga, G.

    2015-01-01

    Roč. 91, 1/2 (2015), s. 115-139 ISSN 0001-771X R&D Projects: GA ČR(CZ) GA14-27047S Institutional support: RVO:67985998 Keywords : maximum entropy * bootstrap * Monte Carlo simulations Subject RIV: AH - Economics

  6. The actual current density of gas-evolving electrodes—Notes on the bubble coverage

    International Nuclear Information System (INIS)

    Vogt, H.

    2012-01-01

    All investigations of electrochemical reactors with gas-evolving electrodes must take account of the fact that the actual current density controlling cell operation commonly differs substantially from the nominal current density used for practical purposes. Both quantities are interrelated by the fractional bubble coverage. This parameter is shown to be affected by a large number of operational quantities. However, available relationships of the bubble coverage take account only of the nominal current density. A further essential insufficiency is their inconsistency with reality for very large values of the bubble coverage being of relevance for operation conditions leading to anode effects. An improved relationship applicable to the total range is proposed.

  7. Bootstrap equations for N=4 SYM with defects

    Energy Technology Data Exchange (ETDEWEB)

    Liendo, Pedro [IMIP, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Meneghelli, Carlo [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook, NY 11794-3636 (United States)

    2017-01-27

    This paper focuses on the analysis of 4dN=4 superconformal theories in the presence of a defect from the point of view of the conformal bootstrap. We will concentrate first on the case of codimension one, where the defect is a boundary that preserves half of the supersymmetry. After studying the constraints imposed by supersymmetry, we will obtain the Ward identities associated to two-point functions of (1/2)-BPS operators and write their solution as a superconformal block expansion. Due to a surprising connection between spacetime and R-symmetry conformal blocks, our results not only apply to 4dN=4 superconformal theories with a boundary, but also to three more systems that have the same symmetry algebra: 4dN=4 superconformal theories with a line defect, 3dN=4 superconformal theories with no defect, and OSP(4{sup ∗}|4) superconformal quantum mechanics. The superconformal algebra implies that all these systems possess a closed subsector of operators in which the bootstrap equations become polynomial constraints on the CFT data. We derive these truncated equations and initiate the study of their solutions.

  8. Bootstrap equations for N=4 SYM with defects

    International Nuclear Information System (INIS)

    Liendo, Pedro; Meneghelli, Carlo

    2017-01-01

    This paper focuses on the analysis of 4dN=4 superconformal theories in the presence of a defect from the point of view of the conformal bootstrap. We will concentrate first on the case of codimension one, where the defect is a boundary that preserves half of the supersymmetry. After studying the constraints imposed by supersymmetry, we will obtain the Ward identities associated to two-point functions of (1/2)-BPS operators and write their solution as a superconformal block expansion. Due to a surprising connection between spacetime and R-symmetry conformal blocks, our results not only apply to 4dN=4 superconformal theories with a boundary, but also to three more systems that have the same symmetry algebra: 4dN=4 superconformal theories with a line defect, 3dN=4 superconformal theories with no defect, and OSP(4 ∗ |4) superconformal quantum mechanics. The superconformal algebra implies that all these systems possess a closed subsector of operators in which the bootstrap equations become polynomial constraints on the CFT data. We derive these truncated equations and initiate the study of their solutions.

  9. Kinetic effects on the currents determining the stability of a magnetic island in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Poli, E., E-mail: emanuele.poli@ipp.mpg.de; Bergmann, A.; Casson, F. J.; Hornsby, W. A. [Max-Planck-Institut für Plasmaphysik (Germany); Peeters, A. G. [University of Bayreuth, Department of Physics (Germany); Siccinio, M.; Zarzoso, D. [Max-Planck-Institut für Plasmaphysik (Germany)

    2016-05-15

    The role of the bootstrap and polarization currents for the stability of neoclassical tearing modes is investigated employing both a drift kinetic and a gyrokinetic approach. The adiabatic response of the ions around the island separatrix implies, for island widths below or around the ion thermal banana width, density flattening for islands rotating at the ion diamagnetic frequency, while for islands rotating at the electron diamagnetic frequency the density is unperturbed and the only contribution to the neoclassical drive arises from electron temperature flattening. As for the polarization current, the full inclusion of finite orbit width effects in the calculation of the potential developing in a rotating island leads to a smoothing of the discontinuous derivatives exhibited by the analytic potential on which the polarization term used in the modeling is based. This leads to a reduction of the polarization-current contribution with respect to the analytic estimate, in line with other studies. Other contributions to the perpendicular ion current, related to the response of the particles around the island separatrix, are found to compete or even dominate the polarization-current term for realistic island rotation frequencies.

  10. Online diagnoses of high current-density beams

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.

    1994-01-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for production of tritium or transmutation of nuclear waste with beam-current densities greater than 5 mA/mm 2 . The primary beam-diagnostics-instrumentation requirement for these facilities is provision of sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam-diagnostics instrumentation must measure beam parameters such as the centroids and profiles, total integrated current, and particle loss. Noninterceptive techniques must be used for diagnosis of high-intensity CW beam at low energies due to the large quantity of power deposited in an interceptive diagnostic device by the beam. Transverse and longitudinal centroid measurements have been developed for bunched beams by measuring and processing image currents on the accelerator walls. Transverse beam-profile measurement-techniques have also been developed using the interaction of the particle beam with the background gases near the beam region. This paper will discuss these noninterceptive diagnostic Techniques

  11. Measurement of the absolute tunneling current density in field emission from tungsten(110)

    International Nuclear Information System (INIS)

    Ehrlich, C.D.; Plummer, E.W.

    1978-01-01

    The phenomenon of quantum-mechanical tunneling of an electron through a barrier in the potential energy has been well established in a variety of experiments. The quantity which is usually measured in these experiments is the rate of change of tunneling current and not the absolute current density. This paper reports on a direct measurement of the tunneling current density, which is found to be in good agreement with free-electron theory for W

  12. Anisotropy and intergrain current density in oriented grained bulk YBa2Cu3Ox superconductor

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Salama, K.

    1990-01-01

    The intergrain transport current density and its anisotropy have been studied in oriented grained bulk YBa 2 Cu 3 O x superconductors fabricated by the liquid phase processing method. Current density measurements were performed on oriented grained samples with the transport current aligned at different angles to the a-b plane. In these measurements, the transport current passed through several oriented grain boundaries. The results indicate that the critical current density drops rapidly when the transport current flows at small angles to the a-b plane and then decreases slowly at larger angles. At 77 K and zero magnetic field, an anisotropy ratio of about 25 is observed between J c along a-b plane and that perpendicular to the plane. Further, the critical current density in these samples is found to depend weakly on magnetic field even though the current crosses grain boundaries. These results support the notion that grain boundaries of these superconductors are different in nature from those of solid-state sintered samples.

  13. A bootstrapping method for development of Treebank

    Science.gov (United States)

    Zarei, F.; Basirat, A.; Faili, H.; Mirain, M.

    2017-01-01

    Using statistical approaches beside the traditional methods of natural language processing could significantly improve both the quality and performance of several natural language processing (NLP) tasks. The effective usage of these approaches is subject to the availability of the informative, accurate and detailed corpora on which the learners are trained. This article introduces a bootstrapping method for developing annotated corpora based on a complex and rich linguistically motivated elementary structure called supertag. To this end, a hybrid method for supertagging is proposed that combines both of the generative and discriminative methods of supertagging. The method was applied on a subset of Wall Street Journal (WSJ) in order to annotate its sentences with a set of linguistically motivated elementary structures of the English XTAG grammar that is using a lexicalised tree-adjoining grammar formalism. The empirical results confirm that the bootstrapping method provides a satisfactory way for annotating the English sentences with the mentioned structures. The experiments show that the method could automatically annotate about 20% of WSJ with the accuracy of F-measure about 80% of which is particularly 12% higher than the F-measure of the XTAG Treebank automatically generated from the approach proposed by Basirat and Faili [(2013). Bridge the gap between statistical and hand-crafted grammars. Computer Speech and Language, 27, 1085-1104].

  14. Effect of current density on the anodic behaviour of zircaloy-4 and niobium: a comparative study

    International Nuclear Information System (INIS)

    Raghunath Reddy, G.; Lavanya, A.; Ch Anjaneyulu

    2004-01-01

    The kinetics of anodic oxidation of zircaloy-4 and niobium have been studied at current densities ranging from 2 to 14 mA.cm -2 at room temperature in order to investigate the dependence of ionic current density on the field across the oxide film. Thickness of the anodic films were estimated from capacitance data. The formation rate, current efficiency and differential field were found to increase with increase in the ionic current density for both zircaloy-4 and niobium. Plots of the logarithm of formation rate vs. logarithm of the current density are fairly linear. From linear plots of logarithm of ionic current density vs. differential field, and applying the Cabrera-Mott theory, the half-jump distance and the height of the energy barrier are deduced and compared. (author)

  15. Fabrication of multi-emitter array of CNT for enhancement of current density

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, Vijay, E-mail: vchouhan@post.kek.jp [Department of Accelerator Science, Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki (Japan); Noguchi, Tsuneyuki [High Energy Accelerator Research Organization-KEK, 1-1 Oho, Tsukuba, Ibaraki (Japan); Kato, Shigeki [Department of Accelerator Science, Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki (Japan); High Energy Accelerator Research Organization-KEK, 1-1 Oho, Tsukuba, Ibaraki (Japan)

    2011-11-11

    We studied and compared field emission properties of two kinds of emitters of randomly oriented multi-wall carbon nanotubes (MWNTs), viz. continuous film emitter (CFE) and multi-emitter array (MEA). The CFE has a continuous film of MWNTs while the MEA consists of many equidistant small circular emitters. Both types of emitters were prepared by dispersing MWNTs over a titanium (Ti) film (for CFEs) or Ti circular islands (for MEAs) deposited on tantalum (Ta) followed by rooting of MWNTs into the Ti film or the Ti islands at high temperature. Emission properties of both types of emitters were analyzed with changing their emission areas. In case of the CFEs, current density decreased with an increase in emission area whereas consistent current densities were achieved from MEAs with different emission areas. In other words, the total emission current was achieved in proportion to the emission area in the case of MEAs. Additionally a high current density of 22 A/cm{sup 2} was achieved at an electric field of 8 V/{mu}m from MEAs, which was far better than that obtained from CFEs. The high current density in MEAs was attributed to edge effect, in which higher emission current is achieved from the edge of film emitter. The results indicate that the field emission characteristics can be greatly improved if a cathode contains many small equidistant circular emitters instead of a continuous film. The outstanding stability of the CFE and the MEA has been demonstrated for 2100 and 1007 h, respectively.

  16. Bootstrapping the energy flow in the beginning of life

    NARCIS (Netherlands)

    Hengeveld, R.; Fedonkin, M.A.

    2007-01-01

    This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in

  17. Bootstrapping the energy flow in the beginning of life.

    NARCIS (Netherlands)

    Hengeveld, R.; Fedonkin, M.A.

    2007-01-01

    This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in

  18. Two-dimensional electron density characterisation of arc interruption phenomenon in current-zero phase

    Science.gov (United States)

    Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko

    2018-01-01

    Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.

  19. Computer simulation of transport driven current in tokamaks

    International Nuclear Information System (INIS)

    Nunan, W.J.; Dawson, J.M.

    1993-01-01

    Plasma transport phenomena can drive large currents parallel to an externally applied magnetic field. The Bootstrap Current Theory accounts for the effect of Banana diffusion on toroidal current, but the effect is not confined to that transport regime. The authors' 2 1/2-D, electromagnetic, particle simulations have demonstrated that Maxwellian plasmas in static toroidal and vertical fields spontaneously develop significant toroidal current, even in the absence of the open-quotes seed currentclose quotes which the Bootstrap Theory requires. Other simulations, in both toroidal and straight cylindrical geometries, and without any externally imposed electric field, show that if the plasma column is centrally fueled, and if the particle diffusion coefficient exceeds the magnetic diffusion coefficient (as is true in most tokamaks) then the toroidal current grows steadily. The simulations indicate that such fueling, coupled with central heating due to fusion reactions may drive all of the tokamak's toroidal current. The Bootstrap and dynamo mechanisms do not drive toroidal current where the poloidal magnetic field is zero. The simulations, as well as initial theoretical work, indicate that in tokamak plasmas, various processes naturally transport current from the outer regions of the plasma to the magnetic axis. The mechanisms which cause this effective electron viscosity include conventional binary collisions, wave emission and reabsorption, and also convection associated with rvec E x rvec B vortex motion. The simulations also exhibit preferential loss of particles carrying current opposing the bulk plasma current. This preferential loss generates current even at the magnetic axis. If these self-seeding mechanisms function in experiments as they do in the simulations, then transport driven current would eliminate the need for any external current drive in tokamaks, except simple ohmic heating for initial generation of the plasma

  20. A bootstrap invariance principle for highly nonstationary long memory processes

    OpenAIRE

    Kapetanios, George

    2004-01-01

    This paper presents an invariance principle for highly nonstationary long memory processes, defined as processes with long memory parameter lying in (1, 1.5). This principle provides the tools for showing asymptotic validity of the bootstrap in the context of such processes.

  1. A Bootstrap Cointegration Rank Test for Panels of VAR Models

    DEFF Research Database (Denmark)

    Callot, Laurent

    functions of the individual Cointegrated VARs (CVAR) models. A bootstrap based procedure is used to compute empirical distributions of the trace test statistics for these individual models. From these empirical distributions two panel trace test statistics are constructed. The satisfying small sample...

  2. Responsivity Dependent Anodization Current Density of Nanoporous Silicon Based MSM Photodetector

    Directory of Open Access Journals (Sweden)

    Batool Eneaze B. Al-Jumaili

    2016-01-01

    Full Text Available Achieving a cheap and ultrafast metal-semiconductor-metal (MSM photodetector (PD for very high-speed communications is ever-demanding. We report the influence of anodization current density variation on the response of nanoporous silicon (NPSi based MSM PD with platinum (Pt contact electrodes. Such NPSi samples are grown from n-type Si (100 wafer using photoelectrochemical etching with three different anodization current densities. FESEM images of as-prepared samples revealed the existence of discrete pores with spherical and square-like shapes. XRD pattern displayed the growth of nanocrystals with (311 lattice orientation. The nanocrystallite sizes obtained using Scherrer formula are found to be between 20.8 nm and 28.6 nm. The observed rectifying behavior in the I-V characteristics is ascribed to the Pt/PSi/n-Si Schottky barrier formation, where the barrier height at the Pt/PSi interface is estimated to be 0.69 eV. Furthermore, this Pt/PSi/Pt MSM PD achieved maximum responsivity of 0.17 A/W and quantum efficiency as much as 39.3%. The photoresponse of this NPSi based MSM PD demonstrated excellent repeatability, fast response, and enhanced saturation current with increasing anodization current density.

  3. Determining the significance of associations between two series of discrete events : bootstrap methods /

    Energy Technology Data Exchange (ETDEWEB)

    Niehof, Jonathan T.; Morley, Steven K.

    2012-01-01

    We review and develop techniques to determine associations between series of discrete events. The bootstrap, a nonparametric statistical method, allows the determination of the significance of associations with minimal assumptions about the underlying processes. We find the key requirement for this method: one of the series must be widely spaced in time to guarantee the theoretical applicability of the bootstrap. If this condition is met, the calculated significance passes a reasonableness test. We conclude with some potential future extensions and caveats on the applicability of these methods. The techniques presented have been implemented in a Python-based software toolkit.

  4. Remarks on time-dependent [current]-density functional theory for open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Aspuru-Guzik, Alán

    2013-08-14

    Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.

  5. GSD: An SPSS extension command for sub-sampling and bootstrapping datasets

    Directory of Open Access Journals (Sweden)

    Harding, Bradley

    2016-09-01

    Full Text Available Statistical analyses have grown immensely since the inception of computational methods. However, many quantitative methods classes teach sampling and sub-sampling at a very abstract level despite the fact that, with the faster computers of today, these notions could be demonstrated live to the students. For this reason, we have created a simple extension module for SPSS that can sub-sample and Bootstrap data, GSD (Generator of Sub-sampled Data. In this paper, we describe and show how to use the GSD module as well as provide short descriptions of both the sub-sampling and Bootstrap methods. In addition, as this article aims to inspire instructors to introduce these concepts in their statistics classes of all levels, we provide three short exercises that are ready for curriculum implementation.

  6. Transition from Fowler-Nordheim field emission to space charge limited current density

    International Nuclear Information System (INIS)

    Feng, Y.; Verboncoeur, J. P.

    2006-01-01

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response

  7. The Properties of the Space-Charge and Net Current Density in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Hatami, M. M.

    2013-01-01

    A hydrodynamic model is used to investigate the properties of positive space-charge and net current density in the sheath region of magnetized, collisional plasmas with warm positive ions. It is shown that an increase in the ion-neutral collision frequency, as well as the magnitude of the external magnetic field, leads to an increase in the net current density across the sheath region. The results also show that the accumulation of positive ions in the sheath region increases by increasing the ion-neutral collision frequency and the magnitude of the magnetic field. In addition, it is seen that an increase in the positive ion temperatures causes a decrease in the accumulation of positive ions and the net current density in the sheath region. (basic plasma phenomena)

  8. LORETA current source density for duration mismatch negativity and neuropsychological assessment in early schizophrenia.

    Directory of Open Access Journals (Sweden)

    Tomohiro Miyanishi

    Full Text Available INTRODUCTION: Patients with schizophrenia elicit cognitive decline from the early phase of the illness. Mismatch negativity (MMN has been shown to be associated with cognitive function. We investigated the current source density of duration mismatch negativity (dMMN, by using low-resolution brain electromagnetic tomography (LORETA, and neuropsychological performance in subjects with early schizophrenia. METHODS: Data were obtained from 20 patients meeting DSM-IV criteria for schizophrenia or schizophreniform disorder, and 20 healthy control (HC subjects. An auditory odd-ball paradigm was used to measure dMMN. Neuropsychological performance was evaluated by the brief assessment of cognition in schizophrenia Japanese version (BACS-J. RESULTS: Patients showed smaller dMMN amplitudes than those in the HC subjects. LORETA current density for dMMN was significantly lower in patients compared to HC subjects, especially in the temporal lobes. dMMN current density in the frontal lobe was positively correlated with working memory performance in patients. CONCLUSIONS: This is the first study to identify brain regions showing smaller dMMN current density in early schizophrenia. Further, poor working memory was associated with decreased dMMN current density in patients. These results are likely to help understand the neural basis for cognitive impairment of schizophrenia.

  9. Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

    International Nuclear Information System (INIS)

    Seo, Jin Keun; Kwon, Ohin; Woo, Eung Je

    2005-01-01

    This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological events, electromagnetic source imaging and electromagnetic stimulations. We briefly summarize the related technique of Electrical Impedance Tomography (EIT) that deals with cross-sectional image reconstructions of conductivity distributions from boundary measurements of current-voltage data. Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem, we introduce MREIT as a new conductivity imaging modality providing images with better spatial resolution and accuracy. MREIT utilizes internal information on the induced magnetic field in addition to the boundary current-voltage measurements to produce three-dimensional images of conductivity and current density distributions. Mathematical theory, algorithms, and experimental methods of current MREIT research are described. With numerous potential applications in mind, future research directions in MREIT are proposed

  10. Towards the definition of AMS facies in the deposits of pyroclastic density currents

    Science.gov (United States)

    Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.; Ort, M.H.; Porreca, Massimiliano; Geissman, J.W.

    2014-01-01

    Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate–strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation.

  11. Preparation and characterization of high-Tc superconducting thin films with high critical current densities

    International Nuclear Information System (INIS)

    Vase, P.

    1991-08-01

    The project was carried out in relation to possible cable and electronics applications of high-T c materials. Laser ablation was used as the deposition technique because of its stoichiometry conservation. Films were made in the YBa 2 Cu 3 O 7 compound due to its relatively simple stoichiometry compared to other High-T c compounds. Much attention was paid to the critical current density. A very high critical current density was reached. By using texture analysis by X-ray diffraction, it was found that films with high critical current densities were epitaxial, while films with low critical current densities contained several crystalline orientations. Four techniques for patterning the films were used - photo lithography and wet etch, laser ablation lithography, laser writing and electron beam lithography and ion milling. Sub-micron patterning has been demonstrated without degradation of the superconducting properties. The achieved patterning resolution is sufficient for preparation of many superconducting components. (AB)

  12. Modeling of LH current drive in self-consistent elongated tokamak MHD equilibria

    International Nuclear Information System (INIS)

    Blackfield, D.T.; Devoto, R.S.; Fenstermacher, M.E.; Bonoli, P.T.; Porkolab, M.; Yugo, J.

    1989-01-01

    Calculations of non-inductive current drive typically have been used with model MHD equilibria which are independently generated from an assumed toroidal current profile or from a fit to an experiment. Such a method can lead to serious errors since the driven current can dramatically alter the equilibrium and changes in the equilibrium B-fields can dramatically alter the current drive. The latter effect is quite pronounced in LH current drive where the ray trajectories are sensitive to the local values of the magnetic shear and the density gradient. In order to overcome these problems, we have modified a LH simulation code to accommodate elongated plasmas with numerically generated equilibria. The new LH module has been added to the ACCOME code which solves for current drive by neutral beams, electric fields, and bootstrap effects in a self-consistent 2-D equilibrium. We briefly describe the model in the next section and then present results of a study of LH current drive in ITER. 2 refs., 6 figs., 2 tabs

  13. Degradation of Solid Oxide Electrolysis Cells Operated at High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    In this work the durability of solid oxide cells for co-electrolysis of steam and carbon dioxide (45 % H2O + 45 % CO2 + 10 % H2) at high current densities was investigated. The tested cells are Ni-YSZ electrode supported, with a YSZ electrolyte and either a LSM-YSZ or LSCF-CGO oxygen electrode....... A current density of -1.5 and -2.0 A/cm2 was applied to the cell and the gas conversion was 45 % and 60 %, respectively. The cells were operated for a period of up to 700 hours. The electrochemical analysis revealed significant performance degradation for the ohmic process, oxygen ion interfacial transfer...

  14. Reflectometry observations of density fluctuations in Wendelstein VII-AS stellarator

    International Nuclear Information System (INIS)

    Sanchez, J.; Hartfuss, H.J.; Anabitarte, E.; Navarro, A.P.

    1991-01-01

    In the almost shearless stellarator Wendelstein VII-AS strong correlation between the confinement properties and the rotational transform iota has been found. Reduced confinement was observed for the low order rational values 1/2 and 1/3. In their vicinity best confinement is observed. In general optimum confinement is obtained in the low shear configuration if the 'resonant' iota values can be excluded from the plasma column. The iota profile inside the plasma is affected by toroidal currents and beta effects. Although the global net current can be kept at zero level using a small OH induced current opposed to the gradient driven bootstrap current, the different currents flow at different radial positions affecting the iota profile. Tools for configuration control inside the plasma are besides OH current vertical fields and the currents driven by the NBI and most promising the ECH heating systems. In this context experimental information on the iota profile is highly needed. The localization of rational surfaces by reflectometry seems possible. Radially resolved density fluctuation measurements have been carried out by means of a simple microwave reflectometry system. The method is based on the reflection of microwave radiation in the millimeter range at the plasma cutoff layer. (orig./AH)

  15. Magnetic field dependence of the critical current density in YBa2Cu3Ox ceramics

    International Nuclear Information System (INIS)

    Zhukov, A.A.; Moshchalkov, V.V.; Komarkov, D.A.; Shabatin, V.P.; Gordeev, S.N.; Shelomov, D.V.

    1989-01-01

    Three magnetic field ranges corresponding to different critical current density j c behavior have been found out. They correlate with grain magnetization changes. The inverse critical current density is shown to depend linearly on the sample cross-section due to the magnetic field induced by the flowing current

  16. More on analytic bootstrap for O(N) models

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Parijat; Kaviraj, Apratim; Sen, Kallol [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India)

    2016-06-22

    This note is an extension of a recent work on the analytical bootstrapping of O(N) models. An additonal feature of the O(N) model is that the OPE contains trace and antisymmetric operators apart from the symmetric-traceless objects appearing in the OPE of the singlet sector. This in addition to the stress tensor (T{sub μν}) and the ϕ{sub i}ϕ{sup i} scalar, we also have other minimal twist operators as the spin-1 current J{sub μ} and the symmetric-traceless scalar in the case of O(N). We determine the effect of these additional objects on the anomalous dimensions of the corresponding trace, symmetric-traceless and antisymmetric operators in the large spin sector of the O(N) model, in the limit when the spin is much larger than the twist. As an observation, we also verified that the leading order results for the large spin sector from the ϵ−expansion are an exact match with our n=0 case. A plausible holographic setup for the special case when N=2 is also mentioned which mimics the calculation in the CFT.

  17. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, PengFei; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Hu, Yang; Yang, HaiLiang; Sun, Jiang; Wang, Liangping; Cong, Peitian [State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-03-15

    The design of high-current density magnetically insulated transmission line (MITL) is a difficult problem of current large-scale Z-pinch device. In particular, a thorough understanding of the MITL electrode surface evolution process under high current density is lacking. On the “QiangGuang-I” accelerator, the load area possesses a low inductance short-circuit structure with a diameter of 2.85 mm at the cathode, and three reflux columns with a diameter of 3 mm and uniformly distributed circumference at the anode. The length of the high density MITL area is 20 mm. A laser interferometer is used to assess and analyze the state of the MITL cathode and anode gap, and their evolution process under high current density. Experimental results indicate that evident current loss is not observed in the current density area at pulse leading edge, and peak when the surface current density reaches MA/cm. Analysis on electrode surface working conditions indicates that when the current leading edge is at 71.5% of the peak, the total evaporation of MITL cathode structure can be realized by energy deposition caused by ohmic heating. The electrode state changes, and diffusion conditions are reflected in the laser interferometer image. The MITL cathode area mainly exists in metal vapor form. The metal vapor density in the cathode central region is higher than the upper limit of laser penetration density (∼4 × 10{sup 21}/cm{sup 3}), with an expansion velocity of ∼0.96 km/s. The metal vapor density in the electrode outer area may lead to evident distortion of fringes, and its expansion velocity is faster than that in the center area (1.53 km/s).

  18. Using the Bootstrap Concept to Build an Adaptable and Compact Subversion Artifice

    National Research Council Canada - National Science Library

    Lack, Lindsey

    2003-01-01

    .... Early tiger teams recognized the possibility of this design and compared it to the two-card bootstrap loader used in mainframes since both exhibit the characteristics of compactness and adaptability...

  19. Coal consumption and economic growth nexus: Evidence from bootstrap panel Granger causality test

    Directory of Open Access Journals (Sweden)

    Anoruo Emmanuel

    2017-01-01

    Full Text Available This paper explores the causal relationship between coal consumption and economic growth for a panel of 15 African countries using bootstrap panel Granger causality test. Specifically, this paper uses the Phillips-Perron unit root test to ascertain the order of integration for the coal consumption and economic growth series. A bootstrap panel Granger causality test is employed to determine the direction of causality between coal consumption and economic growth. The results provide evidence of unidirectional causality from economic growth to coal consumption. This finding implies that coal conservation measures may be implemented with little or no adverse impact on economic growth for the sample countries as a group.

  20. A method for measuring the inductive electric field profile and noninductive current profiles on DIII-D

    International Nuclear Information System (INIS)

    Forest, C.B.; Luce, T.C.; Politzer, P.A.; Lao, L.L.; Kupfer, K.; Wroblewski, D.

    1994-07-01

    A new technique for determining the parallel electric field profile and noninductive current profile in tokamak plasmas has been developed and applied to two DIII-D tokamak discharges. Central to this technique is the determination of the current density profile, J(ρ), and poloidal flux, ψ(ρ), from equilibrium reconstructions. From time sequences of the reconstructions, the flux surface averaged, parallel electric field can be estimated from appropriate derivatives of the poloidal flux. With a model for the conductivity and measurements of T e and Z eff , the noninductive fraction of the current can be determined. Such a technique gives the possibility of measuring directly the bootstrap current profile and the noninductively driven current from auxiliary heating such as neutral beam injection or fast wave current drive. Furthermore, if the noninductively driven current is small or if the noninductive current profile is assumed to be known, this measurement provides a local test of the conductivity model under various conditions

  1. Bootstrap procedure in the quasinuclear quark model

    International Nuclear Information System (INIS)

    Anisovich, V.V.; Gerasyuta, S.M.; Keltuyala, I.V.

    1983-01-01

    The scattering amplitude for quarks (dressed quarks of a single flavour, and three colours) is obtained by means of a bootstrap procedure with introdUction of an initial paint-wise interaction due to a heavy gluon exchange. The obtained quasi-nuclear model (effective short-range interaction in the S-wave states) has reasonable properties: there exist colourless meson states Jsup(p)=0sup(-), 1 - ; there are no bound states in coloured channels, a virtual diquark level Jsup(p)=1sup(+) appears in the coloured state anti 3sub(c)

  2. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    International Nuclear Information System (INIS)

    Vasina, P; Hytkova, T; Elias, M

    2009-01-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  3. Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications

    Science.gov (United States)

    Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.

    2017-10-01

    We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.

  4. Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade

    Science.gov (United States)

    Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team

    2015-01-01

    ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the

  5. Neutral beam current drive scaling in DIII-D

    International Nuclear Information System (INIS)

    Porter, G.D.; Bhadra, D.K.; Burrell, K.H.

    1989-03-01

    Neutral beam current drive scaling experiments have been carried out on the DIII-D tokamak at General Atomics. These experiments were performed using up to 10 MW of 80 keV hydrogen beams. Previous current drive experiments on DIII-D have demonstrated beam driven currents up to 340 kA. In the experiments reported here we achieved beam driven currents of at least 500 kA, and have obtained operation with record values of poloidal beta (εβ/sub p/ = 1.4). The beam driven current reported here is obtained from the total plasma current by subtracting an estimate of the residual Ohmic current determined from the measured loop voltage. In this report we discuss the scaling of the current drive efficiency with plasma conditions. Using hydrogen neutral beams, we find the current drive efficiency is similar in Deuterium and Helium target plasmas. Experiments have been performed with plasma electron temperatures up to T/sub e/ = 3 keV, and densities in the range 2 /times/ 10 19 m/sup /minus/3/ 19 m/sup /minus/3/. The current drive efficiency (nIR/P) is observed to scale linearly with the energy confinement time on DIII-D to a maximum of 0.05 /times/ 10 20 m/sup /minus/2/ A/W. The measured efficiency is consistent with a 0-D theoretical model. In addition to comparison with this simple model, detailed analysis of several shots using the time dependent transport code ONETWO is discussed. This analysis indicates that bootstrap current contributes approximately 10--20% of the the total current. Our estimates of this effect are somewhat uncertain due to limited measurements of the radial profile of the density and temperatures. 4 refs., 1 fig., 1 tab

  6. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior

    Science.gov (United States)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani

    2017-06-01

    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  7. Effect of coating current density on the wettability of electrodeposited copper thin film on aluminum substrate

    Directory of Open Access Journals (Sweden)

    Arun Augustin

    2016-09-01

    Full Text Available Copper is the only one solid metal registered by the US Environmental Protection Agency as an antimicrobial touch surface. In touch surface applications, wettability of the surface has high significance. The killing rate of the harmful microbes depends on the wetting of pathogenic solution. Compared to the bulk copper, coated one on aluminum has the advantage of economic competitiveness and the possibility of manufacturing complex shapes. In the present work, the copper coating on the aluminum surface has successfully carried out by electrodeposition using non cyanide alkaline bath. To ensure good adhesion strength, the substrate has been pre-zincated prior to copper deposition. The coating current density is one of the important parameters which determine the nucleation density of the copper on the substrate. To understand the effect of current density on wettability, the coating has done at different current densities in the range of 3 A dm−2 to 9 A dm−2 for fixed time interval. The grain size has been measured from TEM micrographs and showed that as current density increases, grain size reduces from 62 nm to 35 nm. Since the grain size reduces, grain boundary volume has increases. As a result the value of strain energy (calculated by Williamson–Hall method has increased. The density of nodular morphology observed in SEM analysis has been increased with coating current density. Further, wettability studies with respect to double distilled water on the electrodeposited copper coatings which are coated at different current densities are carried out. At higher current density the coating is more wettable by water because at these conditions grain size of the coating decreases and morphology of grain changes to a favorable dense nodularity.

  8. Y-90 PET imaging for radiation theragnosis using bootstrap event re sampling

    International Nuclear Information System (INIS)

    Nam, Taewon; Woo, Sangkeun; Min, Gyungju; Kim, Jimin; Kang, Joohyun; Lim, Sangmoo; Kim, Kyeongmin

    2013-01-01

    Surgical resection is the most effective method to recover the liver function. However, Yttrium-90 (Y-90) has been used as a new treatment due to the fact that it can be delivered to the tumors and results in greater radiation exposure to the tumors than using external radiation nowadays since most treatment is palliative in case of unresectable stage of hepatocellular carcinoma (HCC). Recently, Y-90 has been received much interest and studied by many researchers. Imaging of Y-90 has been conducted using most commonly gamma camera but PET imaging is required due to low sensitivity and resolution. The purpose of this study was to assess statistical characteristics and to improve count rate of image for enhancing image quality by using nonparametric bootstrap method. PET data was able to be improved using non-parametric bootstrap method and it was verified with showing improved uniformity and SNR. Uniformity showed more improvement under the condition of low count rate, i.e. Y-90, in case of phantom and also uniformity and SNR showed improvement of 15.6% and 33.8% in case of mouse, respectively. Bootstrap method performed in this study for PET data increased count rate of PET image and consequentially time for acquisition time can be reduced. It will be expected to improve performance for diagnosis

  9. Noncritical String Liouville Theory and Geometric Bootstrap Hypothesis

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    The applications of the existing Liouville theories for the description of the longitudinal dynamics of noncritical Nambu-Goto string are analyzed. We show that the recently developed DOZZ solution to the Liouville theory leads to the cut singularities in tree string amplitudes. We propose a new version of the Polyakov geometric approach to Liouville theory and formulate its basic consistency condition — the geometric bootstrap equation. Also in this approach the tree amplitudes develop cut singularities.

  10. Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell

    Directory of Open Access Journals (Sweden)

    Ravichandra S. Jupudi

    2009-12-01

    Full Text Available The effect of bubbles on the current density distribution over the electrodes of an alkaline electrolyzer cell is studied using a two-dimensional computational fluid dynamics model. Model includes Eulerian-Eulerian two-phase flow methodology to model the multiphase flow of Hydrogen and Oxygen with water and the behavior of each phase is accounted for using first principle. Hydrogen/Oxygen evolution, flow field and current density distribution are incorporated in the model to account for the complicated physics involved in the process. Fluent 6.2 is used to solve two-phase flow and electrochemistry is incorporated using UDF (User Defined Function feature of Fluent. Model is validated with mesh refinement study and by comparison with experimental measurements. Model is found to replicate the effect of cell voltage and inter-electrode gap (distance between the electrodes on current density accurately. Further, model is found to capture the existence of optimum cell height. The validated model is expected to be a very useful tool in the design and optimization of alkaline electrolyzer cells.

  11. Dynamics of low density coronal plasma in low current x-pinches

    International Nuclear Information System (INIS)

    Haas, D; Bott, S C; Vikhrev, V; Eshaq, Y; Ueda, U; Zhang, T; Baranova, E; Krasheninnikov, S I; Beg, F N

    2007-01-01

    Experiments were performed on an x-pinch using a pulsed power current generator capable of producing an 80 kA current with a rise time of 50 ns. Molybdenum wires with and without gold coating were employed to study the effect of high z coating on the low-density ( 18 cm -3 ) coronal plasma dynamics. A comparison of images from XUV frames and optical probing shows that the low density coronal plasma from the wires initially converges at the mid-plane immediately above and below the cross-point. A central jet is formed which moves with a velocity of 6 x 10 4 ms -1 towards both electrodes forming a z-pinch column before the current maximum. A marked change in the low density coronal plasma dynamics was observed when molybdenum wires coated with ∼ 0.09 μm of gold were used. The processes forming the jet structure were delayed relative to bare Mo x-pinches, and the time-resolved x-ray emission also showed differences. An m = 0 instability was observed in the coronal plasma along the x-pinch legs, which were consistent with x-ray PIN diode signals in which x-ray pulses were observed before x-ray spot formation. These early time x-ray pulses were not observed with pure molybdenum x-pinches. These observations indicate that a thin layer of gold coating significantly changes the coronal plasma behaviour. Two dimensional MHD simulations were performed and qualitatively agree with experimental observations of low density coronal plasma

  12. Scanning Hall-probe microscopy system for two-dimensional imaging of critical current density in RE-123 coated conductors

    International Nuclear Information System (INIS)

    Higashikawa, K.; Inoue, M.; Kawaguchi, T.; Shiohara, K.; Imamura, K.; Kiss, T.; Iijima, Y.; Kakimoto, K.; Saitoh, T.; Izumi, T.

    2011-01-01

    Nondestructive characterization method of in-plane distribution of critical current density for coated conductors. Current distribution in a coated conductor compared with that from theoretical analysis. Relationship between local critical current density and local magnetic field. We have developed a characterization method for two-dimensional imaging of critical current density in coated conductors (CCs) based on scanning Hall-probe microscopy (SHPM). The distributions of the magnetic field around a sample were measured for several different conditions of external magnetic fields, and then were converted to those of the sheet current density which flowed to shield the external magnetic field or to trap the penetrated magnetic field. As a result, it was found that the amplitude of the sheet current density corresponded to that of critical current density almost in all the area of the sample except for the region where current direction changed. This indicates that we could obtain an in-plane distribution of the critical current density with a spatial resolution of around 100 μm in non-destructive manner by this method. We believe that this measurement will be a multifunctional and comprehensive characterization method for coated conductors.

  13. Advanced tokamak physics in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Petty, C.C.; Luce, T.C.; Politzer, P.A.; Bray, B.; Burrell, K.H.; Chu, M.S.; Ferron, J.R.; Gohil, P.; Greenfield, C.M.; Hsieh, C.-L.; Hyatt, A.W.; La Haye, R.J.; Lao, L.L.; Leonard, A.W.; Lin-Liu, Y.R.; Lohr, J.; Mahdavi, M.A.; Petrie, T.W.; Pinsker, R.I.; Prater, R.; Scoville, J.T.; Staebler, G.M.; Strait, E.J.; Taylor, T.S.; West, W.P. [General Atomics, PO Box 85608, San Diego, CA (United States); Wade, M.R.; Lazarus, E.A.; Murakami, M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Allen, S.L.; Casper, T.A.; Jayakumar, R.; Lasnier, C.J.; Makowski, M.A.; Rice, B.W.; Wolf, N.S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Austin, M.E. [University of Texas, Austin, TX (United States); Fredrickson, E.D.; Gorelov, I.; Johnson, L.C.; Okabayashi, M.; Wong, K.-L. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Garofalo, A.M.; Navratil, G.A. [Columbia University, New York (United States); Heidbrink, W. [University of California, Irvine, CA (United States); Kinsey, J.E. [Leheigh University, Bethlehem, PA (United States); McKee, G.R. [University of Wisconsin, Madison, WI (United States); Rettig, C.L.; Rhodes, T.L. [University of California, Los Angeles, CA (United States); Watkins, J.G. [Sandia National Laboratories, Albuquerque, NM (United States)

    2000-12-01

    Advanced tokamaks seek to achieve a high bootstrap current fraction without sacrificing fusion power density or fusion gain. Good progress has been made towards the DIII-D research goal of demonstrating a high-{beta} advanced tokamak plasma in steady state with a relaxed, fully non-inductive current profile and a bootstrap current fraction greater than 50%. The limiting factors for transport, stability, and current profile control in advanced operating modes are discussed in this paper. (author)

  14. Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Glowacz, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Jablonski, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Parys, P [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Hora, H [Department of Theoretical Physics, University of New South Wales, Sydney (Australia); Krasa, J [Institute of Physics, ASCR, Prague (Czech Republic); Laska, L [Institute of Physics, ASCR, Prague (Czech Republic); Rohlena, K [Institute of Physics, ASCR, Prague (Czech Republic)

    2004-12-01

    Some applications of fast ions driven by a short ({<=}1 ps) laser pulse (e.g. fast ignition of ICF targets, x-ray laser pumping, laboratory astrophysics research or some nuclear physics experiments) require ion beams of picosecond (or shorter) time durations and of very high ion current densities ({approx}10{sup 10} A cm{sup -2} or higher). A possible way of producing ion beams with such extreme parameters is ballistic focusing of fast ions generated by a target normal sheath acceleration (TNSA) mechanism at relativistic laser intensities. In this paper we discuss another method, where the production of short-pulse ion beams of ultrahigh current densities is possible in a planar geometry at subrelativistic laser intensities and at a low energy ({<=}1 J) of the laser pulse. This method-referred to as skin-layer ponderomotive acceleration (S-LPA)-uses strong ponderomotive forces induced at the skin-layer interaction of a short laser pulse with a proper preplasma layer in front of a solid target. The basic features of the high-current ion generation by S-LPA were investigated using a simplified theory, numerical hydrodynamic simulations and measurements. The experiments were performed with subjoule 1 ps laser pulses interacting with massive or thin foil targets at intensities of up to 2 x 10{sup 17} W cm{sup -2}. It was found that both in the backward and forward directions highly collimated high-density ion beams (plasma blocks) with current densities at the ion source (close to the target) approaching 10{sup 10} A cm{sup -2} are produced, in accordance with the theory and numerical calculations. These ion current densities were found to be comparable to (or even higher than) those estimated from recent short-pulse TNSA experiments with relativistic laser intensities. Apart from the simpler physics of the laser-plasma interaction, the advantage of the considered method is the low energy of the driving laser pulses allowing the production of ultrahigh-current-density

  15. 3-D time-domain induced polarization tomography: a new approach based on a source current density formulation

    Science.gov (United States)

    Soueid Ahmed, A.; Revil, A.

    2018-04-01

    Induced polarization (IP) of porous rocks can be associated with a secondary source current density, which is proportional to both the intrinsic chargeability and the primary (applied) current density. This gives the possibility of reformulating the time domain induced polarization (TDIP) problem as a time-dependent self-potential-type problem. This new approach implies a change of strategy regarding data acquisition and inversion, allowing major time savings for both. For inverting TDIP data, we first retrieve the electrical resistivity distribution. Then, we use this electrical resistivity distribution to reconstruct the primary current density during the injection/retrieval of the (primary) current between the current electrodes A and B. The time-lapse secondary source current density distribution is determined given the primary source current density and a distribution of chargeability (forward modelling step). The inverse problem is linear between the secondary voltages (measured at all the electrodes) and the computed secondary source current density. A kernel matrix relating the secondary observed voltages data to the source current density model is computed once (using the electrical conductivity distribution), and then used throughout the inversion process. This recovered source current density model is in turn used to estimate the time-dependent chargeability (normalized voltages) in each cell of the domain of interest. Assuming a Cole-Cole model for simplicity, we can reconstruct the 3-D distributions of the relaxation time τ and the Cole-Cole exponent c by fitting the intrinsic chargeability decay curve to a Cole-Cole relaxation model for each cell. Two simple cases are studied in details to explain this new approach. In the first case, we estimate the Cole-Cole parameters as well as the source current density field from a synthetic TDIP data set. Our approach is successfully able to reveal the presence of the anomaly and to invert its Cole

  16. Method of measuring the current density distribution and emittance of pulsed electron beams

    International Nuclear Information System (INIS)

    Schilling, H.B.

    1979-07-01

    This method of current density measurement employs an array of many Faraday cups, each cup being terminated by an integrating capacitor. The voltages of the capacitors are subsequently displayed on a scope, thus giving the complete current density distribution with one shot. In the case of emittance measurements, a moveable small-diameter aperture is inserted at some distance in front of the cup array. Typical results with a two-cathode, two-energy electron source are presented. (orig.)

  17. A quasilinear formulation of turbulence driven current

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-15

    Non-inductive current drive mechanisms, such as the familiar neoclassical bootstrap current correspond to an essential component to the realization of steady state tokamak operation. In this work, we discuss a novel collisionless mechanism through which a mean plasma current may be driven in the presence of microturbulence. In analogy with the traditional neoclassical bootstrap current drive mechanism, in which the collisional equilibrium established between trapped and passing electrons results in the formation of a steady state plasma current, here we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons. The resulting collisionless equilibrium is shown to result in the formation of an equilibrium current whose magnitude is a function of the thermodynamic forces. A mean field formulation is utilized to incorporate the above components into a unified framework through which both collisional as well as collisionless current drive mechanisms may be self-consistently treated. Utilizing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions as well as turbulent stresses is computed, allowing for the relative strength of these two mechanisms to be quantified as a function of collisionality and fluctuation amplitude.

  18. A quasilinear formulation of turbulence driven current

    International Nuclear Information System (INIS)

    McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua

    2014-01-01

    Non-inductive current drive mechanisms, such as the familiar neoclassical bootstrap current correspond to an essential component to the realization of steady state tokamak operation. In this work, we discuss a novel collisionless mechanism through which a mean plasma current may be driven in the presence of microturbulence. In analogy with the traditional neoclassical bootstrap current drive mechanism, in which the collisional equilibrium established between trapped and passing electrons results in the formation of a steady state plasma current, here we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons. The resulting collisionless equilibrium is shown to result in the formation of an equilibrium current whose magnitude is a function of the thermodynamic forces. A mean field formulation is utilized to incorporate the above components into a unified framework through which both collisional as well as collisionless current drive mechanisms may be self-consistently treated. Utilizing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions as well as turbulent stresses is computed, allowing for the relative strength of these two mechanisms to be quantified as a function of collisionality and fluctuation amplitude

  19. Optical Flow of Small Objects Using Wavelets, Bootstrap Methods, and Synthetic Discriminant Filters

    National Research Council Canada - National Science Library

    Hewer, Gary

    1997-01-01

    ...) targets in highly cluttered and noisy environments. In this paper; we present a novel wavelet detection algorithm which incorporates adaptive CFAR detection statistics using the bootstrap method...

  20. Modeling plant density and ponding water effects on flooded rice evapotranspiration and crop coefficients: critical discussion about the concepts used in current methods

    Science.gov (United States)

    Aschonitis, Vassilis; Diamantopoulou, Maria; Papamichail, Dimitris

    2018-05-01

    The aim of the study is to propose new modeling approaches for daily estimations of crop coefficient K c for flooded rice ( Oryza sativa L., ssp. indica) under various plant densities. Non-linear regression (NLR) and artificial neural networks (ANN) were used to predict K c based on leaf area index LAI, crop height, wind speed, water albedo, and ponding water depth. Two years of evapotranspiration ET c measurements from lysimeters located in a Mediterranean environment were used in this study. The NLR approach combines bootstrapping and Bayesian sensitivity analysis based on a semi-empirical formula. This approach provided significant information about the hidden role of the same predictor variables in the Levenberg-Marquardt ANN approach, which improved K c predictions. Relationships of production versus ET c were also built and verified by data obtained from Australia. The results of the study showed that the daily K c values, under extremely high plant densities (e.g., for LAI max > 10), can reach extremely high values ( K c > 3) during the reproductive stage. Justifications given in the discussion question both the K c values given by FAO and the energy budget approaches, which assume that ET c cannot exceed a specific threshold defined by the net radiation. These approaches can no longer explain the continuous increase of global rice yields (currently are more than double in comparison to the 1960s) due to the improvement of cultivars and agriculture intensification. The study suggests that the safest method to verify predefined or modeled K c values is through preconstructed relationships of production versus ET c using field measurements.

  1. A 'bootstrapped' Teaching/Learning Procedure

    Science.gov (United States)

    Odusina Odusote, Olusogo

    1998-04-01

    Erasing preconceived antiphysics ideas by nonscience/nonmajor physics students have elicited diverse teaching methods. Introductory general physics courses at college level have been taught by a 'bootstrap' approach. A concise treatment of the syllabus by the teacher in about 1/2 of the course duration, with brief exercises and examples. Students are then introduced to real life situations - toys, home appliances, sports, disasters, etc, and the embedded physics concepts discussed. Usually this generates a feeling of deja vu, which elicits desire for more. Each application usually encompasses topics in a broad range of the syllabus. The other half of the course is used by students to work individually/groups on assigned and graded home-works and essays, with guidance from the lecture notes and the teacher/supervisor. An end of course examination shows increase in the success rate.

  2. Contribution of the association EURATOM-CEA to the international workshop on tokamak concept improvement

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, L; Moreau, D; Tonon, G

    1994-12-31

    The ways of tokamak device improvement are discussed. The topics cover plasma pressure and power density, bootstrap currents, the feedback control of the current density profiles and current drive efficiency for steady-state tokamak reactors. Three items have been separately indexed for the INIS database. (K.A.).

  3. Contribution of the association EURATOM-CEA to the international workshop on tokamak concept improvement

    International Nuclear Information System (INIS)

    Laurent, L.; Moreau, D.; Tonon, G.

    1994-01-01

    The ways of tokamak device improvement are discussed. The topics cover plasma pressure and power density, bootstrap currents, the feedback control of the current density profiles and current drive efficiency for steady-state tokamak reactors. Three items have been separately indexed for the INIS database. (K.A.)

  4. Use of high current density superconducting coils in fusion devices

    International Nuclear Information System (INIS)

    Green, M.A.

    1979-11-01

    Superconducting magnets will play an important role in fusion research in years to come. The magnets which are currently proposed for fusion research use the concept of cryostability to insure stable operation of the superconducting coils. This paper proposes the use of adiabatically stable high current density superconducting coils in some types of fusion devices. The advantages of this approach are much lower system cold mass, enhanced cryogenic safety, increased access to the plasma and lower cost

  5. External kink mode stability of tokamaks with finite edge current density in plasma outside separatrix

    International Nuclear Information System (INIS)

    Degtyarev, L.; Martynov, A.; Medvedev, S.; Troyon, F.; Villard, L.

    1996-01-01

    Large pressure gradients and current density at the plasma edge and accompanying edge-localized MHD instabilities are typical for H-mode discharges. Low-n external kink modes are a possible cause of the instabilities. The paper mostly deals with external kink modes driven by a finite current density at the plasma boundary (so called peeling modes). It was shown earlier that for a single axis plasma embedded into vacuum the peeling modes are stabilized when separatrix is approaching the plasma boundary. For doublet configurations a finite current density at the internal separatrix does not necessarily lead to external kink instability when the current density vanishes at the boundary. However, a finite current density at the plasma boundary outside the separatrix can drive outer peeling modes. The stability properties and structure of these modes depend on the plasma equilibrium outside the separatrix. The influence of plasma shear and pressure gradient at the boundary on the stability of the outer peeling modes in doublets is studied. The stability of kink modes in divertor configurations with plasma outside the separatrix is very sensitive to the boundary conditions set at open field lines. The choice of the boundary conditions and kink mode stability calculations for the divertor configurations are discussed. (author) 4 figs., 5 refs

  6. Effects of drive current rise-time and initial load density distribution on Z-pinch characteristics

    Institute of Scientific and Technical Information of China (English)

    Duan Yao-Yong; Guo Yong-Hui; Wang Wen-Sheng; Qiu Ai-Ci

    2005-01-01

    A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z-pinch on the Qiangguang-Ⅰ generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power.

  7. Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes

    Science.gov (United States)

    Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.

    1991-01-01

    InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.

  8. Grain size dependence of the critical current density in YBa2Cu3Ox superconductors

    International Nuclear Information System (INIS)

    Kuwabara, M.; Shimooka, H.

    1989-01-01

    The grain size dependence of the critical current density in bulk single-phase YBa 2 Cu 3 O x ceramics was investigated. The grain size of the materials was changed to range approximately from 1.0 to 25 μm by changing the conditions of power processing and sintering, associated with an increase in the sintered density of the materials with increasing grain size. The critical current density has been found to exhibit a significant grain size dependence, changing from 880 A/cm 2 to a value of 100 A/cm 2 with a small increase in the average grain size from 1.2 to 2.0 μm. This seems to provide information about the nature of the weak link between superconducting grains which might govern the critical current density of the materials

  9. Calculation of induced current densities for humans by magnetic fields from electronic article surveillance devices

    Science.gov (United States)

    Gandhi, Om P.; Kang, Gang

    2001-11-01

    This paper illustrates the use of the impedance method to calculate the electric fields and current densities induced in millimetre resolution anatomic models of the human body, namely an adult and 10- and 5-year-old children, for exposure to nonuniform magnetic fields typical of two assumed but representative electronic article surveillance (EAS) devices at 1 and 30 kHz, respectively. The devices assumed for the calculations are a solenoid type magnetic deactivator used at store checkouts and a pass-by panel-type EAS system consisting of two overlapping rectangular current-carrying coils used at entry and exit from a store. The impedance method code is modified to obtain induced current densities averaged over a cross section of 1 cm2 perpendicular to the direction of induced currents. This is done to compare the peak current densities with the limits or the basic restrictions given in the ICNIRP safety guidelines. Because of the stronger magnetic fields at lower heights for both the assumed devices, the peak 1 cm2 area-averaged current densities for the CNS tissues such as the brain and the spinal cord are increasingly larger for smaller models and are the highest for the model of the 5-year-old child. For both the EAS devices, the maximum 1 cm2 area-averaged current densities for the brain of the model of the adult are lower than the ICNIRP safety guideline, but may approach or exceed the ICNIRP basic restrictions for models of 10- and 5-year-old children if sufficiently strong magnetic fields are used.

  10. Calculation of induced current densities for humans by magnetic fields from electronic article surveillance devices.

    Science.gov (United States)

    Gandhi, O P; Kang, G

    2001-11-01

    This paper illustrates the use of the impedance method to calculate the electric fields and current densities induced in millimetre resolution anatomic models of the human body, namely an adult and 10- and 5-year-old children, for exposure to nonuniform magnetic fields typical of two assumed but representative electronic article surveillance (EAS) devices at 1 and 30 kHz, respectively. The devices assumed for the calculations are a solenoid type magnetic deactivator used at store checkouts and a pass-by panel-type EAS system consisting of two overlapping rectangular current-carrying coils used at entry and exit from a store. The impedance method code is modified to obtain induced current densities averaged over a cross section of 1 cm2 perpendicular to the direction of induced currents. This is done to compare the peak current densities with the limits or the basic restrictions given in the ICNIRP safety guidelines. Because of the stronger magnetic fields at lower heights for both the assumed devices, the peak 1 cm2 area-averaged current densities for the CNS tissues such as the brain and the spinal cord are increasingly larger for smaller models and are the highest for the model of the 5-year-old child. For both the EAS devices, the maximum 1 cm2 area-averaged current densities for the brain of the model of the adult are lower than the ICNIRP safety guideline, but may approach or exceed the ICNIRP basic restrictions for models of 10- and 5-year-old children if sufficiently strong magnetic fields are used.

  11. Estimation of the exchange current density and comparative analysis of morphology of electrochemically produced lead and zinc deposits

    Directory of Open Access Journals (Sweden)

    Nikolić Nebojša D.

    2017-01-01

    Full Text Available The processes of lead and zinc electrodeposition from the very dilute electrolytes were compared by the analysis of polarization characteristics and by the scanning electron microscopic (SEM analysis of the morphology of the deposits obtained in the galvanostatic regime of electrolysis. The exchange current densities for lead and zinc were estimated by comparison of experimentally obtained polarization curves with the simulated ones obtained for the different the exchange current density to the limiting diffusion current density ratios. Using this way for the estimation of the exchange current density, it is shown that the exchange current density for Pb was more than 1300 times higher than the one for Zn. In this way, it is confirmed that the Pb electrodeposition processes are considerably faster than the Zn electrodeposition processes. The difference in the rate of electrochemical processes was confirmed by a comparison of morphologies of lead and zinc deposits obtained at current densities which corresponded to 0.25 and 0.50 values of the limiting diffusion current densities. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172046

  12. Field-aligned current density versus electric potential characteristics for magnetospheric flux tubes

    International Nuclear Information System (INIS)

    Lemaire, J.; Scherer, M.

    1983-01-01

    The field-aligned current density (Jsub(tot)) is a non-linear function of the applied potential difference (phi) between the ionosphere and the magnetosphere. This nonlinear function has been calculated for plasma boundary conditions typical in a dayside cusp magnetic flux tube. The J-characteristic of such a flux tube changes when the temperatures of the warm magnetospheric electrons and of the cold ionospheric electrons are modified; it changes also when the relative density of the warm plasma is modified; the presence of trapped secondary electrons changes also the J-characteristic. The partial currents contributed by the warm and cold electrons, and by warm and cold ions are illustrated. The dynamic characteristic of an electric circuit depends on the static characteristic of each component of the sytem: i.e. the resistive ionosphere, the return current region, and the region of particle precipitation whose field-aligned current/voltage characteristics have been studied in this article

  13. Crack problem in superconducting cylinder with exponential distribution of critical-current density

    Science.gov (United States)

    Zhao, Yufeng; Xu, Chi; Shi, Liang

    2018-04-01

    The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.

  14. Change of the dominant luminescent mechanism with increasing current density in molecularly doped organic light-emitting devices

    International Nuclear Information System (INIS)

    Zhou Liang; Zhang Hongjie; Meng Qingguo; Liu Fengyi; Yu Jiangbo; Deng Ruiping; Peng Zeping; Li Zhefeng; Guo Zhiyong

    2007-01-01

    We have fabricated and measured a series of electroluminescent devices with the structure of ITO/TPD/Eu(TTA) 3 phen (x):CBP/BCP/ALQ/LiF/Al, where x is the weight percentage of Eu(TTA) 3 phen (from 0% to 6%). At very low current density, carrier trapping is the dominant luminescent mechanism and the 4% doped device shows the highest electroluminescence (EL) efficiency among all these devices. With increasing current density, Foerster energy transfer participates in EL process. At the current density of 10.0 and 80.0 mA/cm 2 , 2% and 3% doped devices show the highest EL efficiency, respectively. From analysis of the EL spectra and the EL efficiency-current density characteristics, we found that the EL efficiency is manipulated by Foerster energy transfer efficiency at high current density. So we suggest that the dominant luminescent mechanism changes gradually from carrier trapping to Foerster energy transfer with increasing current density. Moreover, the conversion of dominant EL mechanism was suspected to be partly responsible for the EL efficiency roll-off because of the lower EL quantum efficiency of Foerster energy transfer compared with carrier trapping

  15. X-ray diffraction characterization of electrodeposited Ni–Al composite coatings prepared at different current densities

    International Nuclear Information System (INIS)

    Cai, Fei; Jiang, Chuanhai; Wu, Xueyan

    2014-01-01

    Highlights: • Different X-ray diffraction techniques were applied to characterize the Ni–Al composite coatings. • Al 2 O 3 formed on the coating surface after potentiostatic polarization experiments. • The relationship between corrosion and the Al content and the texture were also investigated. - Abstract: Ni–Al composite coatings were prepared at different applied current densities (1–8 A/dm 2 ) from a conventional Watt bath. The influences of current densities on the texture, grain size, microstrain, residual stress of the Ni–Al composite coating were investigated with X-ray diffraction method, which includes texture coefficients (TC) and pole figures, Voigt method, classical sin 2 ψ X-ray diffraction method and the Multi-reflection grazing incidence geometry (referred to as MGIXD) method. The morphology, composition, anti-corrosion properties and friction coefficients at 200 °C of the coating were also studied. The results showed that the texture of coating deposited at higher current densities evolved from the (2 0 0) preferred orientation with fiber texture to random orientation with reducing current density. Al particle content increased with reducing current density, grain size decreased with the reducing current density, while the microstrain and the tensile residual stresses increased. The MGIXD result showed stress gradient on the near-surface of the coating. Potentiodynamic polarization results demonstrated that the Ni–Al coating deposited at 2 A/dm 2 exhibited the best anti-corrosion which was contributed by the formation of Al 2 O 3 on the surface. The minimum friction coefficient of 0.57 was also observed for coating deposited at 4 A/dm 2

  16. Influence of current density on surface morphology and properties of pulse plated tin films from citrate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ashutosh; Bhattacharya, Sumit; Das, Siddhartha; Das, Karabi, E-mail: karabi@metal.iitkgp.ernet.in

    2014-01-30

    Bulk polycrystalline tin films have been processed by pulse electrodeposition technique from a simple solution containing triammonium citrate and stannous chloride. The cathodic investigations have been carried out by galvanostatic methods. As deposited samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD analysis of the deposited films shows microcrystalline grains having β-Sn form. The surface morphology is very rough at lower current density, but becomes smooth at higher current density, and exhibits pyramid type morphology at all the current densities. The effect of current density on microhardness, melting behavior, and electrical resistivity are also reported here.

  17. Comparing groups randomization and bootstrap methods using R

    CERN Document Server

    Zieffler, Andrew S; Long, Jeffrey D

    2011-01-01

    A hands-on guide to using R to carry out key statistical practices in educational and behavioral sciences research Computing has become an essential part of the day-to-day practice of statistical work, broadening the types of questions that can now be addressed by research scientists applying newly derived data analytic techniques. Comparing Groups: Randomization and Bootstrap Methods Using R emphasizes the direct link between scientific research questions and data analysis. Rather than relying on mathematical calculations, this book focus on conceptual explanations and

  18. High current density aluminum stabilized conductor concepts for space applications

    International Nuclear Information System (INIS)

    Huang, X.; Eyssa, Y.M.; Hilal, M.A.

    1989-01-01

    Lightweight conductors are needed for space magnets to achieve values of E/M (energy stored per unit mass) comparable to the or higher than advanced batteries. High purity aluminum stabilized NbTi composite conductors cooled by 1.8 K helium can provide a winding current density up to 15 kA/cm/sup 2/ at fields up to 10 tesla. The conductors are edge cooled with enough surface area to provide recovery following a normalizing disturbance. The conductors are designed so that current diffusion time in the high purity aluminum is smaller than thermal diffusion time in helium. Conductor design, stability and current diffusion are considered in detail

  19. Critical current densities in thick yttrium-barium cuprate (1-2-3) films

    International Nuclear Information System (INIS)

    Ryvkina, G.G.; Gorlanov, S.F.; Vedernikov, G.E.; Telegin, A.B.; Ryabin, V.A.; Khodos, M.Ya.

    1993-01-01

    The study of critical current densities j c of oxide superconductors and their thick films is a very important practical task because the value of j c is one of the main criteria for their utilization in modern cryoelectronics. For most devices based on the Josephson effect, the value of j c ∼ 10 2 - 10 3 A/cm 2 is acceptable, which is easily attainable for polycrystalline thick films obtained by stenciling. The study of the current-transport phenomenon involves a number of difficulties, especially for direct current, because both the sample itself and the lead-in contacts are resistance-heated during the measurements, which, in turn, results in lower values of the j c . Measurements with pulsed currents allow one to lower the power that is applied to the sample; the heat that is released in the sample is reduced, in comparison to measurements with direct current, by a factor of the pulsed-current duty cycle. In addition, measurements with direct current detects only the appearance of resistance; it provides no information on the rest of the transition from the normal to the superconductive state, i.e., on the so-called 'tail' of the transition. In this work, the authors studied critical current densities of thick HTSC yttrium-barium cuprate films of the 1-2-3 composition using pulsed current

  20. Poloidal polarimeter for current density measurements in ITER

    International Nuclear Information System (INIS)

    Donne, A.J.H.; Graswinckel, M.F.; Cavinato, M.; Giudicotti, L.; Zilli, E.; Gil, C.; Koslowski, H.R.; McCarthy, P.; Nyhan, C.; Prunty, S.; Spillane, M.; Walker, C.

    2004-01-01

    One of the systems envisaged for measuring the current density profile in the ITER is a 118 μm poloidal polarimeter system. The proposed system has two independent views: one fan of chords observes the plasma via an equatorial port and a second fan views down from an upper port. This article will present the status of the on-going work and will address issues as sensitivity and accuracy, refraction, Gaussian beam ray-tracing, alignment, and calibration as well as some specific design details

  1. Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.

    Science.gov (United States)

    Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta; Kodibagkar, Vikram D; Sadleir, Rosalind

    2018-01-01

    Magnetic resonance electrical impedance tomography (MREIT) sequences typically use conventional spin or gradient echo-based acquisition methods for reconstruction of conductivity and current density maps. Use of MREIT in functional and electroporation studies requires higher temporal resolution and faster sequences. Here, single and multishot echo planar imaging (EPI) based MREIT sequences were evaluated to see whether high-quality MREIT phase data could be obtained for rapid reconstruction of current density, conductivity, and electric fields. A gel phantom with an insulating inclusion was used as a test object. Ghost artifact, geometric distortion, and MREIT correction algorithms were applied to the data. The EPI-MREIT-derived phase-projected current density and conductivity images were compared with simulations and spin-echo images as a function of EPI shot number. Good agreement among measures in simulated, spin echo, and EPI data was achieved. Current density errors were stable and below 9% as the shot number decreased from 64 to 2, but increased for single-shot images. Conductivity reconstruction relative contrast ratios were stable as the shot number decreased. The derived electric fields also agreed with the simulated data. The EPI methods can be combined successfully with MREIT reconstruction algorithms to achieve fast imaging of current density, conductivity, and electric field. Magn Reson Med 79:71-82, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.

    Science.gov (United States)

    Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M

    2015-09-08

    We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.

  3. Non-inductive current drive experiments on DIII-D, and future plans

    International Nuclear Information System (INIS)

    Prater, R.; Austin, M.; Baity, F.W.; Callis, R.W.; Chiu, S.C.; DeGrassie, J.S.; Freeman, R.L.; Forest, C.B.; Goulding, R.H.; Harvey, R.W.; Hoffman, D.J.; Ikezi, H.; Lohr, J.; James, R.A.; Kupfer, K.; Lin-Liu, Y.R.; Luce, T.C.; Moeller, C.P.; Petty, C.C.; Pinsker, R.I.; Porkolab, M.; Squire, J.; Trukhin, V.

    1995-01-01

    Experiments on DIII-D (and other tokamaks) have shown that improved performance can follow from optimization of the current density profile. Increased confinement of energy and a higher limit on β have both been found in discharges in which the current density profile is modified through transient means, such as ramping of current or elongation. Peaking of the current distribution to obtain discharges with high internal inductance l i has been found to be beneficial. Alternatively, discharges with broader profiles, as in the VH mode or with high β poloidal, have shown improved performance. Non-inductive current drive is a means to access these modes of improved confinement on a steady state basis. Accordingly, experiments on non-inductive current drive are underway on the DIII-D tokamak using fast waves and electron cyclotron waves. Recent experiments on fast wave current drive have demonstrated the ability to drive up to 180kA of non-inductive current using 1.5MW of power at 60MHz, including the contribution from 1MW of ECCD and the bootstrap current. Higher power r.f. current drive systems are needed to affect strongly the current profile on DIII-D. An upgrade to the fast wave current drive system is underway to increase the total power to 6MW, using two additional antennas and two new 30-120MHz transmitters. Additionally, a 1MW prototype ECH system at 110GHz is being developed (with eventual upgrade to 10MW). With these systems, non-inductive current drive at the 1MA level will be available for experiments on profile control in DIII-D. ((orig.))

  4. Non-axisymmetric equilibrium reconstruction and suppression of density limit disruptions in a current-carrying stellarator

    Science.gov (United States)

    Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.

    2017-10-01

    Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  5. Technical and scale efficiency in public and private Irish nursing homes - a bootstrap DEA approach.

    Science.gov (United States)

    Ni Luasa, Shiovan; Dineen, Declan; Zieba, Marta

    2016-10-27

    This article provides methodological and empirical insights into the estimation of technical efficiency in the nursing home sector. Focusing on long-stay care and using primary data, we examine technical and scale efficiency in 39 public and 73 private Irish nursing homes by applying an input-oriented data envelopment analysis (DEA). We employ robust bootstrap methods to validate our nonparametric DEA scores and to integrate the effects of potential determinants in estimating the efficiencies. Both the homogenous and two-stage double bootstrap procedures are used to obtain confidence intervals for the bias-corrected DEA scores. Importantly, the application of the double bootstrap approach affords true DEA technical efficiency scores after adjusting for the effects of ownership, size, case-mix, and other determinants such as location, and quality. Based on our DEA results for variable returns to scale technology, the average technical efficiency score is 62 %, and the mean scale efficiency is 88 %, with nearly all units operating on the increasing returns to scale part of the production frontier. Moreover, based on the double bootstrap results, Irish nursing homes are less technically efficient, and more scale efficient than the conventional DEA estimates suggest. Regarding the efficiency determinants, in terms of ownership, we find that private facilities are less efficient than the public units. Furthermore, the size of the nursing home has a positive effect, and this reinforces our finding that Irish homes produce at increasing returns to scale. Also, notably, we find that a tendency towards quality improvements can lead to poorer technical efficiency performance.

  6. Profile formation and sustainment of autonomous tokamak plasma with current hole configuration

    International Nuclear Information System (INIS)

    Hayashi, N.; Takizuka, T.; Ozeki, T.

    2005-01-01

    We have investigated the profile formation and sustainment of tokamak plasmas with the current hole (CH) configuration by using 1.5D time-dependent transport simulations. A model of the current limit inside the CH on the basis of the Axisymmetric Tri-Magnetic-Islands equilibrium is introduced into the transport simulation. We found that a transport model with the sharp reduction of anomalous transport in the reversed-shear (RS) region can reproduce the time evolution of profiles observed in JT-60U experiments. The transport becomes neoclassical-level in the RS region, which results in the formation of profiles with internal transport barrier (ITB) and CH. The CH plasma has an autonomous property because of the strong interaction between a pressure profile and a current profile through the large bootstrap current fraction. The ITB width determined by the neoclassical-level transport agrees well with that measured in JT-60U. The energy confinement inside the ITB agrees with the scaling based on the JT-60U data. The scaling means the autonomous limitation of energy confinement in the CH plasma. The plasma with the large CH is sustained with the full current drive by the bootstrap current. The plasma with the small CH and the small bootstrap current fraction shrinks due to the penetration of inductive current. This shrink is prevented and the CH size can be controlled by the appropriate external current drive (CD). The CH plasma is found to respond autonomically to the external CD. (author)

  7. Field mapping measurements to determine spatial and field dependence of critical current density in YBCO tapes

    International Nuclear Information System (INIS)

    Leclerc, J.; Berger, K.; Douine, B.; Lévêque, J.

    2013-01-01

    Highlights: • A method for characterizing superconducting tapes from field mapping is presented. • A new and efficient field mapping apparatus has been setup. • This method allows the spatial characterization of superconducting tapes. • The critical current density is obtained as a function of the flux density. • This method has been experimentally tested on an YBCO tape. -- Abstract: In this paper a measurement method that allows the determination of the critical current density of superconducting tape from field mapping measurements is presented. This contact-free method allows obtaining characteristics of the superconductor as a function of the position and of the applied flux density. With some modifications, this technique can be used for reel-to-reel measurements. The determination of the critical current density is based on an inverse calculation. This involves calculating the current distribution in the tape from magnetic measurements. An YBaCuO tape has been characterized at 77 K. A defect in this superconductor has been identified. Various tests were carried out to check the efficiency of the method. The inverse calculation was tested theoretically and experimentally. Comparison with a transport current measurement was also performed

  8. High-current-density electrodeposition using pulsed and constant currents to produce thick CoPt magnetic films on silicon substrates

    Science.gov (United States)

    Ewing, Jacob; Wang, Yuzheng; Arnold, David P.

    2018-05-01

    This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.

  9. A Mellin space approach to the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Gopakumar, Rajesh [International Centre for Theoretical Sciences (ICTS-TIFR),Survey No. 151, Shivakote, Hesaraghatta Hobli, Bangalore North 560 089 (India); Kaviraj, Apratim [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India); Sen, Kallol [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India); Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study, Kashiwa, Chiba 277-8583 (Japan); Sinha, Aninda [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India)

    2017-05-05

    We describe in more detail our approach to the conformal bootstrap which uses the Mellin representation of CFT{sub d} four point functions and expands them in terms of crossing symmetric combinations of AdS{sub d+1} Witten exchange functions. We consider arbitrary external scalar operators and set up the conditions for consistency with the operator product expansion. Namely, we demand cancellation of spurious powers (of the cross ratios, in position space) which translate into spurious poles in Mellin space. We discuss two contexts in which we can immediately apply this method by imposing the simplest set of constraint equations. The first is the epsilon expansion. We mostly focus on the Wilson-Fisher fixed point as studied in an epsilon expansion about d=4. We reproduce Feynman diagram results for operator dimensions to O(ϵ{sup 3}) rather straightforwardly. This approach also yields new analytic predictions for OPE coefficients to the same order which fit nicely with recent numerical estimates for the Ising model (at ϵ=1). We will also mention some leading order results for scalar theories near three and six dimensions. The second context is a large spin expansion, in any dimension, where we are able to reproduce and go a bit beyond some of the results recently obtained using the (double) light cone expansion. We also have a preliminary discussion about numerical implementation of the above bootstrap scheme in the absence of a small parameter.

  10. Effect of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni-Co films

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C.K., E-mail: ckchung@mail.ncku.edu.t [Department of Mechanical Engineering, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701 (China); Chang, W.T. [Department of Mechanical Engineering, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701 (China)

    2009-07-01

    Effect of pulse frequency and current density on the anomalous cobalt content and nanomechanical property of the electrodeposited nickel-cobalt (Ni-Co) films has been investigated. The composition, morphology, phase and hardness of the Ni-Co alloy films were examined by scanning electron microscope with an attached energy dispersive X-ray spectroscope, X-ray diffraction and nanoindentation techniques, respectively. The different Co composition of the Ni-Co films codeposited from the fixed sulfamate-chloride bath is subject to the pulse frequencies and current densities. The frequencies varied from 0 to 100 Hz and current densities varied from 1 to 20 ASD (ampere per square decimeter). The Co composition has no significant variation in pulse electrodeposition but it is greatly influenced by current densities from 22.53% at 1 ASD decreased to 13.39% at 20 ASD under DC codeposition. The mean hardness of Ni-Co films has no eminent change at a pulse frequency of 10-100 Hz but it decreases with current densities from 8.72 GPa (1 ASD) to 7.13 GPa (20 ASD). The smoother morphology can be obtained at higher pulse frequency or lower current density. Good Ni-Co films with high hardness and smooth morphology can be obtained by reducing current density and increasing pulse frequency.

  11. First current density measurements in the ring current region using simultaneous multi-spacecraft CLUSTER-FGM data

    Directory of Open Access Journals (Sweden)

    C. Vallat

    2005-07-01

    Full Text Available The inner magnetosphere's current mapping is one of the key elements for current loop closure inside the entire magnetosphere. A method for directly computing the current is the multi-spacecraft curlometer technique, which is based on the application of Maxwell-Ampère's law. This requires the use of four-point magnetic field high resolution measurements. The FGM experiment on board the four Cluster spacecraft allows, for the first time, an instantaneous calculation of the magnetic field gradients and thus a measurement of the local current density. This technique requires, however, a careful study concerning all the factors that can affect the accuracy of the J estimate, such as the tetrahedral geometry of the four spacecraft, or the size and orientation of the current structure sampled. The first part of this paper is thus providing a detailed analysis of the method accuracy, and points out the limitations of this technique in the region of interest. The second part is an analysis of the ring current region, which reveals, for the first time, the large latitudinal extent of the ring current, for all magnetic activity levels, as well as the latitudinal evolution of the perpendicular (and parallel components of the current along the diffuse auroral zone. Our analysis also points out the sharp transition between two distinct plasma regions, with the existence of high diamagnetic currents at the interface, as well as the filamentation of the current inside the inner plasma sheet. A statistical study over multiple perigee passes of Cluster (at about 4 RE from the Earth reveals the azimuthal extent of the partial ring current. It also reveals that, at these distances and all along the evening sector, there isn't necessarily a strong dependence of the local current density value on the magnetic activity level. This is a direct consequence of the ring current morphology evolution, as well as the relative

  12. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    International Nuclear Information System (INIS)

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-01-01

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  13. Dependence of the Spin Transfer Torque Switching Current Density on the Exchange Stiffness Constant

    OpenAIRE

    You, Chun-Yeol

    2012-01-01

    We investigate the dependence of the switching current density on the exchange stiffness constant in the spin transfer torque magnetic tunneling junction structure with micromagnetic simulations. Since the widely accepted analytic expression of the switching current density is based on the macro-spin model, there is no dependence of the exchange stiffness constant. When the switching is occurred, however, the spin configuration forms C-, S-type, or complicated domain structures. Since the spi...

  14. High current density in bulk YBa2Cu3O/sub x/ superconductor

    International Nuclear Information System (INIS)

    Salama, K.; Selvamanickam, V.; Gao, L.; Sun, K.

    1989-01-01

    A liquid phase processing method for the fabrication of bulk YBa 2 Cu 3 O/sub x/ superconductors with large current carrying capacity has been developed. Slow cooling through the peritectic transformation (1030--980 degree C) has been shown to control the microstructure of these superconductors. A cooling rate of 1 degree C/h in this temperature range has yielded a microstructure with long plate type, thick grains oriented over a wide area. Current density up to 18 500 A/cm 2 has been obtained by continuous direct current measurements and in excess of 62 000 A/cm 2 with pulse current of 10 ms duration and 75 000 A/cm 2 using 1 ms pulse. The strong magnetic field dependence observed in sintered bulk 1-2-3 superconductors is also minimized to a large extent where a current density in excess of 37 000 A/cm 2 is obtained in a field of 6000 G

  15. EuroMInd-D: A Density Estimate of Monthly Gross Domestic Product for the Euro Area

    DEFF Research Database (Denmark)

    Proietti, Tommaso; Marczak, Martyna; Mazzi, Gianluigi

    EuroMInd-D is a density estimate of monthly gross domestic product (GDP) constructed according to a bottom–up approach, pooling the density estimates of eleven GDP components, by output and expenditure type. The components density estimates are obtained from a medium-size dynamic factor model...... of a set of coincident time series handling mixed frequencies of observation and ragged–edged data structures. They reflect both parameter and filtering uncertainty and are obtained by implementing a bootstrap algorithm for simulating from the distribution of the maximum likelihood estimators of the model...

  16. How Many Subjects are Needed for a Visual Field Normative Database? A Comparison of Ground Truth and Bootstrapped Statistics.

    Science.gov (United States)

    Phu, Jack; Bui, Bang V; Kalloniatis, Michael; Khuu, Sieu K

    2018-03-01

    The number of subjects needed to establish the normative limits for visual field (VF) testing is not known. Using bootstrap resampling, we determined whether the ground truth mean, distribution limits, and standard deviation (SD) could be approximated using different set size ( x ) levels, in order to provide guidance for the number of healthy subjects required to obtain robust VF normative data. We analyzed the 500 Humphrey Field Analyzer (HFA) SITA-Standard results of 116 healthy subjects and 100 HFA full threshold results of 100 psychophysically experienced healthy subjects. These VFs were resampled (bootstrapped) to determine mean sensitivity, distribution limits (5th and 95th percentiles), and SD for different ' x ' and numbers of resamples. We also used the VF results of 122 glaucoma patients to determine the performance of ground truth and bootstrapped results in identifying and quantifying VF defects. An x of 150 (for SITA-Standard) and 60 (for full threshold) produced bootstrapped descriptive statistics that were no longer different to the original distribution limits and SD. Removing outliers produced similar results. Differences between original and bootstrapped limits in detecting glaucomatous defects were minimized at x = 250. Ground truth statistics of VF sensitivities could be approximated using set sizes that are significantly smaller than the original cohort. Outlier removal facilitates the use of Gaussian statistics and does not significantly affect the distribution limits. We provide guidance for choosing the cohort size for different levels of error when performing normative comparisons with glaucoma patients.

  17. Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen

    Science.gov (United States)

    Young, Matthew Garett

    The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.

  18. Fullerene solubility-current density relationship in polymer solar cells

    International Nuclear Information System (INIS)

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  19. Simultaneous real-time control of the current and pressure profiles in JET: experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Mazon, D.; Laborde, L.; Litaudon, X.; Moreau, D.; Zabeo, L.; Joffrin, E. [Association Euratom-CEA Cadarache (DSM/DRFC), 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Murari, A. [Consorzio RFX Association Euratom-ENEA, Padova (Italy); Ariola, M.; Albanese, R.; Tommasi, G. de; Pironti, A. [Association Euratom-ENEA, CREATE, Napoly (Italy); Moreau, D. [EFDA-JET CSU, Culham Science Centre, Abingdon, OX (United Kingdom); Tala, T. [Euratom-Tekes Association, VTT Processes (Finland); Crisanti, F.; Pericoli-Ridolfini, V.; Tuccillo, A. [Association Euratom-ENEA, C.R. Frascati (Italy); Baar, M. de; Vries, P. de [Euratom-FOM Association, TEC Cluster, Nieuwegein (Netherlands); De la Luna, E. [Euratom-Ciemat Association (Spain); Felton, R.; Corrigan, G. [Euratom-UKAEA Association, Culham Science Centre, Abingdon (United Kingdom)

    2004-07-01

    Real-time control of the plasma profiles (current density, pressure and flow) is one of the major issues for sustaining internal transport barriers (ITB) in a high performance plasma, with a large bootstrap current fraction. We have recently investigated the experimental and numerical aspects of the simultaneous control of the current and pressure profiles in JET ITB discharges. The current density and the electron temperature were successfully controlled via the safety factor profile (or via its inverse the tau-profile) and the {rho}{sup *}{sub Te} profile respectively. The results of these new studies are presented. With only a limited number of actuators, the technique aims at minimizing an integral square error signal which combines the 2 profiles, rather than attempting to control plasma parameters at some given radii with great precision. The resulting fuzziness of the control scheme allows the plasma to relax towards a physically accessible non-linear state which may not be accurately known in advance, but is close enough to the requested one to provide the required plasma performance. Closed loop experiments have allow to reach different target q and {rho}{sup *}{sub Te} profiles, and to some degree, to displace the region of maximum electron temperature gradient. The control has also shown some robustness in front of rapid transients.

  20. Application of the bootstrap method to radiolabeled antibody dosimetry from planar images

    International Nuclear Information System (INIS)

    Papenfuss, T.; Saunder, T.H.; Schleyer, P.J.; O'Keefe, G.J.; Scott, A.M.

    2002-01-01

    Full text: Planar imaging dosimetry of radiolabeled antibody treatment uses the MIRD schema to compute dose to an organ from the calculated activity in that and other organs. The calculated activity in an organ is a function of the average count rates in the organ, a standard and an appropriate background measurement. The geometric mean of conjugate averages, together with an attenuation factor is used to provide an approximate attenuation correction. It is sometimes desirable to know the variance of the activity in an organ in order to apply weighted least squares regression to the data. This is particularly important when incorporating more accurate data from autoradiography of biopsied tissue into the analysis, but is also useful when some data points have low signal. While the geometric mean image can be used to calculate the variance of an organ's count rate. It is difficult to calculate the variance of the activity, since the organ in question, the standard and the background all contribute to it. Bootstrap methods are Monte Carlo techniques that can be used to estimate parameters from data and to determine the accuracy of the estimation. By bootstrapping pixel values in the organ, background and standard ROIs, it is possible to calculate many realisations of the organ activity and calculate its variance. As an example, bootstrapping is applied to the pharmacodynamic analysis of 131 I-huA33 in colon. The data includes planar whole body images, and autoradiographs and planar images of a resected colon. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  1. Impurities, temperature, and density in a miniature electrostatic plasma and current source

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.J.; Fiksel, G.; Sarff, J.S.

    1996-10-01

    We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10 19 - 10 20 m -3 ), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun via the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm 2 . The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications

  2. Mirror bootstrap method for testing hypotheses of one mean

    OpenAIRE

    Varvak, Anna

    2012-01-01

    The general philosophy for bootstrap or permutation methods for testing hypotheses is to simulate the variation of the test statistic by generating the sampling distribution which assumes both that the null hypothesis is true, and that the data in the sample is somehow representative of the population. This philosophy is inapplicable for testing hypotheses for a single parameter like the population mean, since the two assumptions are contradictory (e.g., how can we assume both that the mean o...

  3. Higgs Critical Exponents and Conformal Bootstrap in Four Dimensions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Mølgaard, Esben; Sannino, Francesco

    2015-01-01

    We investigate relevant properties of composite operators emerging in nonsupersymmetric, four-dimensional gauge-Yukawa theories with interacting conformal fixed points within a precise framework. The theories investigated in this work are structurally similar to the standard model of particle int...... bootstrap results are then compared to precise four dimensional conformal field theoretical results. To accomplish this, it was necessary to calculate explicitly the crossing symmetry relations for the global symmetry group SU($N$)$\\times$SU($N$)....

  4. Experimental study of neoclassical currents

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Prager, S.C.

    1985-05-01

    A detailed experimental study is presented of the bootstrap and Pfirsch-Schlueter currents that are predicted by neoclassical transport theory. In a toroidal octupole, on magnetic surfaces within the separatrix, the observed parallel plasma currents are in excellent quantitative agreement with neoclassical theory with regard to the spatial structure (along a magnetic surface), collisionality dependence and toroidal magnetic field dependence. On magnetic surfaces outside the separatrix, the ion portion of the parallel current is in agreement with neoclassical theory but the electron parallel current is observed to obtain a unidirectional component which deviates from and exceeds the theoretical prediction

  5. Inverse bootstrapping conformal field theories

    Science.gov (United States)

    Li, Wenliang

    2018-01-01

    We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.

  6. Bootstrapping Malmquist indices for Danish seiners in the North Sea and Skagerrak

    DEFF Research Database (Denmark)

    Hoff, Ayoe

    2006-01-01

    DEA scores or related parameters. The bootstrap method for estimating confidence intervals of deterministic parameters can however be applied to estimate confidence intervals for DEA scores. This method is applied in the present paper for assessing TFP changes between 1987 and 1999 for the fleet...

  7. Abrupt change in mean using block bootstrap and avoiding variance estimation

    Czech Academy of Sciences Publication Activity Database

    Peštová, Barbora; Pešta, M.

    2018-01-01

    Roč. 33, č. 1 (2018), s. 413-441 ISSN 0943-4062 Grant - others:GA ČR(CZ) GJ15-04774Y Institutional support: RVO:67985807 Keywords : Block bootstrap * Change in mean * Change point * Hypothesis test ing * Ratio type statistics * Robustness Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.434, year: 2016

  8. Magnetohydrodynamically stable plasma with supercritical current density at the axis

    Energy Technology Data Exchange (ETDEWEB)

    Burdakov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Avenue, 630092 Novosibirsk (Russian Federation); Postupaev, V. V., E-mail: V.V.Postupaev@inp.nsk.su; Sudnikov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)

    2014-05-15

    In this work, an analysis of magnetic perturbations in the GOL-3 experiment is given. In GOL-3, plasma is collectively heated in a multiple-mirror trap by a high-power electron beam. During the beam injection, the beam-plasma interaction maintains a high-level microturbulence. This provides an unusual radial profile of the net current (that consists of the beam current, current of the preliminary discharge, and the return current). The plasma core carries supercritical current density with the safety factor well below unity, but as a whole, the plasma is stable with q(a) ≈ 4. The net plasma current is counter-directed to the beam current; helicities of the magnetic field in the core and at the edge are of different signs. This forms a system with a strong magnetic shear that stabilizes the plasma core in good confinement regimes. We have found that the most pronounced magnetic perturbation is the well-known n = 1, m = 1 mode for both stable and disruptive regimes.

  9. Oscillometric blood pressure estimation by combining nonparametric bootstrap with Gaussian mixture model.

    Science.gov (United States)

    Lee, Soojeong; Rajan, Sreeraman; Jeon, Gwanggil; Chang, Joon-Hyuk; Dajani, Hilmi R; Groza, Voicu Z

    2017-06-01

    Blood pressure (BP) is one of the most important vital indicators and plays a key role in determining the cardiovascular activity of patients. This paper proposes a hybrid approach consisting of nonparametric bootstrap (NPB) and machine learning techniques to obtain the characteristic ratios (CR) used in the blood pressure estimation algorithm to improve the accuracy of systolic blood pressure (SBP) and diastolic blood pressure (DBP) estimates and obtain confidence intervals (CI). The NPB technique is used to circumvent the requirement for large sample set for obtaining the CI. A mixture of Gaussian densities is assumed for the CRs and Gaussian mixture model (GMM) is chosen to estimate the SBP and DBP ratios. The K-means clustering technique is used to obtain the mixture order of the Gaussian densities. The proposed approach achieves grade "A" under British Society of Hypertension testing protocol and is superior to the conventional approach based on maximum amplitude algorithm (MAA) that uses fixed CR ratios. The proposed approach also yields a lower mean error (ME) and the standard deviation of the error (SDE) in the estimates when compared to the conventional MAA method. In addition, CIs obtained through the proposed hybrid approach are also narrower with a lower SDE. The proposed approach combining the NPB technique with the GMM provides a methodology to derive individualized characteristic ratio. The results exhibit that the proposed approach enhances the accuracy of SBP and DBP estimation and provides narrower confidence intervals for the estimates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Time-dependent current-density functional theory for generalized open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán

    2009-06-14

    In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.

  11. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    ROSENTHAL, STEPHEN E.; DESJARLAIS, MICHAEL P.; SPIELMAN, RICK B.; STYGAR, WILLIAM A.; ASAY, JAMES R.; DOUGLAS, M.R.; HALL, C.A.; FRESE, M.H.; MORSE, R.L.; REISMAN, D.B.

    2000-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model

  12. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    Rosenthal, S.E.; Asay, J.R.; Desjarlais, M.P.; Douglas, M.R.; Frese, M.H.; Hall, C.A.; Morse, R.L.; Reisman, D.; Spielman, R.B.; Stygar, W.A.

    1999-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator we have revisited a problem first described in detail by Heinz Knoepfel. MITLs of previous pulsed power accelerators have been in the 1-Tesla regime. Z's disc transmission line (downstream of the current addition) is in a 100-1200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 we have been investigating conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are ( 1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into our MHD computations. Certain features are strongly dependent on the details of the conductivity model. Comparison with measurements on Z will be discussed

  13. Distribution of the Current Density in Electrolyte of the Pem Fuel Cell

    Directory of Open Access Journals (Sweden)

    Eugeniusz Kurgan

    2004-01-01

    Full Text Available In this paper water management in proton exchange membrane (PEM fuel cell is considered. Firt mass convervation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liqid water convection velocity is eliminated by the Schlogl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient. Three partial differential equations for molar water concentration Cw, electric potential ϕ and water pressure Pw are formulated. Current density vector i is derived from proton flux expression. These equations together with adequate boundary conditions were solved using finite element method. The distribution of electric potential and current density in function of geometrical parametres is investigated. At the end some illustrative example is given.

  14. Determination of plasma density from data on the ion current to cylindrical and planar probes

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, D. G., E-mail: dvoloshin@mics.msu.su; Vasil’eva, A. N.; Kovalev, A. S.; Mankelevich, Yu. A.; Rakhimova, T. V. [Moscow State University, Skobeltsyn Nuclear Physics Institute (Russian Federation)

    2016-12-15

    To improve probe methods of plasma diagnostics, special probe measurements were performed and numerical models describing ion transport to a probe with allowance for collisions were developed. The current–voltage characteristics of cylindrical and planar probes were measured in an RF capacitive discharge in argon at a frequency of 81 MHz and plasma densities of 10{sup 10}–10{sup 11} cm{sup –3}, typical of modern RF reactors. 1D and 2D numerical models based on the particle-in-cell method with Monte Carlo collisions for simulating ion motion and the Boltzmann equilibrium for electrons are developed to describe current collection by a probe. The models were used to find the plasma density from the ion part of the current–voltage characteristic, study the effect of ion collisions, and verify simplified approaches to determining the plasma density. A 1D hydrodynamic model of the ion current to a cylindrical probe with allowance for ion collisions is proposed. For a planar probe, a method to determine the plasma density from the averaged numerical results is developed. A comparative analysis of different approaches to calculating the plasma density from the ion current to a probe is performed.

  15. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)

    2016-06-15

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)

  16. Estimation of the limit of detection with a bootstrap-derived standard error by a partly non-parametric approach. Application to HPLC drug assays

    DEFF Research Database (Denmark)

    Linnet, Kristian

    2005-01-01

    Bootstrap, HPLC, limit of blank, limit of detection, non-parametric statistics, type I and II errors......Bootstrap, HPLC, limit of blank, limit of detection, non-parametric statistics, type I and II errors...

  17. Ultra-high current density thin-film Si diode

    Science.gov (United States)

    Wang, Qi [Littleton, CO

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  18. Negative-ion current density dependence of the surface potential of insulated electrode during negative-ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.

    1994-01-01

    Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)

  19. Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces

    OpenAIRE

    Barrera, Begoña Barrios; Figalli, Alessio; Valdinoci, Enrico

    2012-01-01

    We prove that $C^{1,\\alpha}$ $s$-minimal surfaces are automatically $C^\\infty$. For this, we develop a new bootstrap regularity theory for solutions of integro-differential equations of very general type, which we believe is of independent interest.

  20. 'Anomalous electron transport' with 'Giant Current Density' at room temperature observed with nanogranular materials

    International Nuclear Information System (INIS)

    Koops, Hans W.P.

    2013-01-01

    Focused electron beam induced deposition is a novel bottom up nano-structurization technology. An electron beam of high power density is used to generate nano- structures with dimensions > 20 nm, but being composed from amorphous or nanogranular materials with crystals of 2 to 5 nm diameter embedded in a Fullerene matrix. Those compounds are generated in general by secondary or low energy electrons in layers of inorganic, organic, organometallic compounds absorbed to the sample. Those are converted into nanogranular materials by the electron beam following chemical and physical laws, as given by 'Mother Nature'. Metals and amorphous mixtures of chemical compounds from metals are normal resistors, which can carry a current density J 2 . Nanogranular composites like Au/C or Pt/C with metal nanocrystals embedded in a Fullerene matrix have hopping conduction with 0-dimensional Eigen-value characteristics and show 'anomalous electron transport' and can carry 'Giant Current Densities' with values from > 1 MA/cm 2 to 0.1 GA/cm 2 without destruction of the materials. However the area connecting the nanogranular material with a metal with a 3-dimensional electron gas needs to be designed, that the flowing current is reduced to the current density values which the 3-D metal can support without segregation. The basis for a theoretical explanation of the phenomenon can be geometry quantization for Coulomb blockade, of electron surface orbitals around the nanocrystals, hopping conduction, and the limitation of the density of states for phonons in geometry confined non percolated granular materials with strong difference in mass and orientation. Several applications in electronics, signal generators, light sources, detectors, and solar energy harvesting are suggested. (author)

  1. Measurements of current density distribution in shaped e-beam writers

    Czech Academy of Sciences Publication Activity Database

    Bok, Jan; Horáček, Miroslav; Kolařík, Vladimír; Urbánek, Michal; Matějka, Milan; Krzyžánek, Vladislav

    2016-01-01

    Roč. 149, JAN 5 (2016), s. 117-124 ISSN 0167-9317 R&D Projects: GA ČR(CZ) GA14-20012S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : shaped e-beam writer * electron beam * current density Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.806, year: 2016

  2. On the estimation of the current density in space plasmas: Multi- versus single-point techniques

    Science.gov (United States)

    Perri, Silvia; Valentini, Francesco; Sorriso-Valvo, Luca; Reda, Antonio; Malara, Francesco

    2017-06-01

    Thanks to multi-spacecraft mission, it has recently been possible to directly estimate the current density in space plasmas, by using magnetic field time series from four satellites flying in a quasi perfect tetrahedron configuration. The technique developed, commonly called ;curlometer; permits a good estimation of the current density when the magnetic field time series vary linearly in space. This approximation is generally valid for small spacecraft separation. The recent space missions Cluster and Magnetospheric Multiscale (MMS) have provided high resolution measurements with inter-spacecraft separation up to 100 km and 10 km, respectively. The former scale corresponds to the proton gyroradius/ion skin depth in ;typical; solar wind conditions, while the latter to sub-proton scale. However, some works have highlighted an underestimation of the current density via the curlometer technique with respect to the current computed directly from the velocity distribution functions, measured at sub-proton scales resolution with MMS. In this paper we explore the limit of the curlometer technique studying synthetic data sets associated to a cluster of four artificial satellites allowed to fly in a static turbulent field, spanning a wide range of relative separation. This study tries to address the relative importance of measuring plasma moments at very high resolution from a single spacecraft with respect to the multi-spacecraft missions in the current density evaluation.

  3. High current density, cryogenically cooled sliding electrical joint development

    International Nuclear Information System (INIS)

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an ∼ 20 T toroidal field magnet with a flat top conductor current of ∼ 300 kA and a sliding electrical joint with a gross current density of ∼ 0.6 kA/cm 2 . A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025

  4. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    Science.gov (United States)

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Current trends in chloroplast genome research | Khan | African ...

    African Journals Online (AJOL)

    comprise of DOGMA for annotation, SCAN-SE, ARAGON and PREP suit for RNA analyses and CG viewer for circular map construction/comparative analysis. Faster algorithms for gene-order based phylogenetic reconstruction and bootstrap analysis have attracted the attention of research community. Current trends in ...

  6. Current densities in a pregnant woman model induced by simultaneous ELF electric and magnetic field exposure

    International Nuclear Information System (INIS)

    Cech, R; Leitgeb, N; Pediaditis, M

    2008-01-01

    The pregnant woman model SILVY was studied to ascertain to what extent the electric current densities induced by 50 Hz homogeneous electric and magnetic fields increase in the case of simultaneous exposure. By vectorial addition of the electric current densities, it could be shown that under worst case conditions the basic restrictions recommended by ICNIRP (International Commission on Non-Ionizing Radiation Protection) guidelines are exceeded within the central nervous system (CNS) of the mother, whereas in sole field exposure they are not. However, within the foetus the induced current densities do not comply with basic restrictions, either from single reference-level electric fields or from simultaneous exposure to electric and magnetic fields. Basic limits were considerably exceeded

  7. Transport critical current density in flux creep model

    International Nuclear Information System (INIS)

    Wang, J.; Taylor, K.N.R.; Russell, G.J.; Yue, Y.

    1992-01-01

    The magnetic flux creep model has been used to derive the temperature dependence of the critical current density in high temperature superconductors. The generally positive curvature of the J c -T diagram is predicted in terms of two interdependent dimensionless fitting parameters. In this paper, the results are compared with both SIS and SNS junction models of these granular materials, neither of which provides a satisfactory prediction of the experimental data. A hybrid model combining the flux creep and SNS mechanisms is shown to be able to account for the linear regions of the J c -T behavior which are observed in some materials

  8. Development of high current density neutral beam injector with a low energy for interaction of plasma facing materials

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Ueda, Yoshio; Goto, Seiichi

    1991-01-01

    A high current density neutral beam injector with a low energy has been developed to investigate interactions with plasma facing materials and propagation processes of damages. The high current density neutral beam has been produced by geometrical focusing method employing a spherical electrode system. The hydrogen beam with the current density of 140 mA/cm 2 has been obtained on the focal point in the case of the acceleration energy of 8 keV. (orig.)

  9. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    Chacon-Golcher, E.

    2002-01-01

    This dissertation develops diverse research on small (diameter ∼ few mm), high current density (J ∼ several tens of mA/cm 2 ) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield ( ) at different operating conditions are presented for K + and Cs + contact ionization sources and potassium aluminum silicate sources. Maximum values for a K + beam of ∼90 mA/cm 2 were observed in 2.3 (micro)s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (∼ 1 (micro)s), high current densities (∼ 100 mA/cm 2 ) and low operating pressures ( e psilon) n (le) 0.006 π mm · mrad) although measured currents differed from the desired ones (I ∼ 5mA) by about a factor of 10

  10. Numerical investigations on contactless methods for measuring critical current density in HTS: application of modified constitutive-relation method

    International Nuclear Information System (INIS)

    Kamitani, A.; Takayama, T.; Itoh, T.; Ikuno, S.

    2011-01-01

    A fast method is proposed for calculating the shielding current density in an HTS. The J-E constitutive relation is modified so as not to change the solution. A numerical code is developed on the basis of the proposed method. The permanent magnet method is successfully simulated by means of the code. A fast method has been proposed for calculating the shielding current density in a high-temperature superconducting thin film. An initial-boundary-value problem of the shielding current density cannot be always solved by means of the Runge-Kutta method even when an adaptive step-size control algorithm is incorporated to the method. In order to suppress an overflow in the algorithm, the J-E constitutive relation is modified so that its solution may satisfy the original constitutive relation. A numerical code for analyzing the shielding current density has been developed on the basis of this method and, as an application of the code, the permanent magnet method for measuring the critical current density has been investigated numerically.

  11. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    International Nuclear Information System (INIS)

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-01

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10 -4 Pa Xe (3.3x10 -6 Torr Xe) to 1.1x10 -3 Pa Xe (8.4x10 -6 Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures

  12. Quantifying uncertainty on sediment loads using bootstrap confidence intervals

    Science.gov (United States)

    Slaets, Johanna I. F.; Piepho, Hans-Peter; Schmitter, Petra; Hilger, Thomas; Cadisch, Georg

    2017-01-01

    Load estimates are more informative than constituent concentrations alone, as they allow quantification of on- and off-site impacts of environmental processes concerning pollutants, nutrients and sediment, such as soil fertility loss, reservoir sedimentation and irrigation channel siltation. While statistical models used to predict constituent concentrations have been developed considerably over the last few years, measures of uncertainty on constituent loads are rarely reported. Loads are the product of two predictions, constituent concentration and discharge, integrated over a time period, which does not make it straightforward to produce a standard error or a confidence interval. In this paper, a linear mixed model is used to estimate sediment concentrations. A bootstrap method is then developed that accounts for the uncertainty in the concentration and discharge predictions, allowing temporal correlation in the constituent data, and can be used when data transformations are required. The method was tested for a small watershed in Northwest Vietnam for the period 2010-2011. The results showed that confidence intervals were asymmetric, with the highest uncertainty in the upper limit, and that a load of 6262 Mg year-1 had a 95 % confidence interval of (4331, 12 267) in 2010 and a load of 5543 Mg an interval of (3593, 8975) in 2011. Additionally, the approach demonstrated that direct estimates from the data were biased downwards compared to bootstrap median estimates. These results imply that constituent loads predicted from regression-type water quality models could frequently be underestimating sediment yields and their environmental impact.

  13. BATTERY RECYCLING: EFFECT OF CURRENT DENSITY ON MANGANESE RECOVERY THROUGH ELECTROLYTIC PROCESS

    Directory of Open Access Journals (Sweden)

    E. R. R. Roriz

    Full Text Available Abstract This work aims to verify the possibility of using depleted batteries as a source of manganese dioxide applying the electrolytic process. An electrolyte solution containing the following metal ions was used: Ca (270 mgL-1, Ni (3.000 mgL-1, Co (630 mgL-1, Mn (115.3 mgL-1, Ti (400 mgL-1 and Pb (20 mgL-1. The production of electrolytic manganese dioxide (EMD was performed through electrolysis at 98 °C (± 2 °C applying different current densities (ranging from 0.61 A.dm-2 to 2.51 A.dm-2. The materials obtained were analyzed through X-ray fluorescence spectrometry, X-ray diffraction, specific surface area (BET and scanning electron microscopy (SEM. The best results regarding the current efficiency, purity grade and specific surface area were obtained with a current density ranging between 1.02 A.dm-2 and 1.39 A.dm-2. The allotropic εMnO2 variety was found in all tests.

  14. Tin Oxide Nanoparticles: Synthesis, Characterization and Study their Particle Size at Different Current Density

    Directory of Open Access Journals (Sweden)

    Karzan A. Omar

    2013-11-01

    Full Text Available Tin oxide nanoparticles are prepared by electrochemical reduction method using tetrapropylammonium bromide (TPAB and tetrabutylammonium bromide (TBAB as structure directing agent in an organic medium viz. tetrahydrofuran (THF and acetonitrile (ACN in 4:1 ratio by optimizing current density and molar concentration of the ligand. The reduction process takes place under an inert atmosphere of nitrogen over a period of 2 h. Such nanoparticles are prepared by using a simple electrolysis cell in which the sacrificial anode as a commercially available in tin metal sheet and platinum (inert sheet act as a cathode. The parameters such as current density, solvent polarity, distance between electrodes and concentration of stabilizers are used to control the size of nanoparticles. The synthesized tin oxide nanoparticles are characterized by using UV–Visible, FT-IR and SEM–EDS analysis techniques. UV-Visible spectroscopy has revealed the optical band gap to be 4.13, 4.16 and 4.24 ev for (8, 10 and 12 mA/cm2 and the effect of current density on theirs particle size, respectively.

  15. Measuring and Benchmarking Technical Efficiency of Public Hospitals in Tianjin, China: A Bootstrap-Data Envelopment Analysis Approach.

    Science.gov (United States)

    Li, Hao; Dong, Siping

    2015-01-01

    China has long been stuck in applying traditional data envelopment analysis (DEA) models to measure technical efficiency of public hospitals without bias correction of efficiency scores. In this article, we have introduced the Bootstrap-DEA approach from the international literature to analyze the technical efficiency of public hospitals in Tianjin (China) and tried to improve the application of this method for benchmarking and inter-organizational learning. It is found that the bias corrected efficiency scores of Bootstrap-DEA differ significantly from those of the traditional Banker, Charnes, and Cooper (BCC) model, which means that Chinese researchers need to update their DEA models for more scientific calculation of hospital efficiency scores. Our research has helped shorten the gap between China and the international world in relative efficiency measurement and improvement of hospitals. It is suggested that Bootstrap-DEA be widely applied into afterward research to measure relative efficiency and productivity of Chinese hospitals so as to better serve for efficiency improvement and related decision making. © The Author(s) 2015.

  16. Fast electron current density profile and diffusion studies during LHCD in PBX-M

    International Nuclear Information System (INIS)

    Jones, S.E.; Kesner, J.; Luckhardt, S.; Paoletti, F.

    1993-08-01

    Successful current profile control experiments using lower hybrid current drive (LCHD) clearly require knowledge of (1) the location of the driven fast electrons and (2) the ability to maintain that location from spreading due to radial diffusion. These issues can be addressed by examining the data from the hard x-ray camera on PBX-M, a unique diagnostic producing two-dimensional, time resolved tangential images of fast electron bremsstrahlung. Using modeling, these line-of-sight images are inverted to extract a radial fast electron current density profile. We note that ''hollow'' profiles have been observed, indicative of off-axis current drive. These profiles can then be used to calculate an upper bound for an effective fast electron diffusion constant: assuming an extremely radially narrow lower hybrid absorption profile and a transport model based on Rax and Moreau, a model fast electron current density profile is calculated and compared to the experimentally derived profile. The model diffusion constant is adjusted until a good match is found. Applied to steady-state quiescent modes on PBX-M, we obtain an upper limit for an effective diffusion constant of about D*=1.1 m 2 /sec

  17. Application of bootstrap sampling in gamma-ray astronomy: Time variability in pulsed emission from crab pulsar

    International Nuclear Information System (INIS)

    Ozel, M.E.; Mayer-Hasselwander, H.

    1985-01-01

    This paper discusses the bootstrap scheme which fits well for many astronomical applications. It is based on the well-known sampling plan called ''sampling with replacement''. Digital computers make the method very practical for the investigation of various trends present in a limited set of data which is usually a small fraction of the total population. The authors attempt to apply the method and demonstrate its feasibility. The study indicates that the discrete nature of high energy gamma-ray data makes the bootstrap method especially attractive for gamma-ray astronomy. Present analysis shows that the ratio of pulse strengths is variable with a 99.8% confidence

  18. Microstructure characterisation of solid oxide electrolysis cells operated at high current density

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Chen, Ming

    degradation of cell components in relation to the loss of electrochemical performance specific to the mode of operation. Thus descriptive microstructure characterization methods are required in combination with electrochemical characterization methods to decipher degradation mechanisms. In the present work......High temperature solid oxide cells can be operated either as fuel cells or electrolysis cells for efficient power generation or production of hydrogen from steam or synthesis gas (H2 + CO) from steam and CO2 respectively. When operated under harsh conditions, they often exhibit microstructural...... quantified using the mean linear intercept method as a function of current density and correlated to increases in serial resistance. The above structural changes are then compared in terms of electrode degradation observed during the co-electrolysis of steam and CO2 at current densities up to -1.5 A cm-2...

  19. The Components of Income Inequality in Belgium : Applying the Shorrocks-Decomposition with Bootstrapping

    NARCIS (Netherlands)

    Dekkers, G.J.M.; Nelissen, J.H.M.

    2001-01-01

    We look at the contribution of various income components on income inequality and the changes in this in Belgium.Starting from the Shorrocks decomposition, we apply bootstrapping to construct confidence intervals for both the annual decomposition and the changes over time.It appears that the

  20. Exact joint density-current probability function for the asymmetric exclusion process.

    Science.gov (United States)

    Depken, Martin; Stinchcombe, Robin

    2004-07-23

    We study the asymmetric simple exclusion process with open boundaries and derive the exact form of the joint probability function for the occupation number and the current through the system. We further consider the thermodynamic limit, showing that the resulting distribution is non-Gaussian and that the density fluctuations have a discontinuity at the continuous phase transition, while the current fluctuations are continuous. The derivations are performed by using the standard operator algebraic approach and by the introduction of new operators satisfying a modified version of the original algebra. Copyright 2004 The American Physical Society

  1. Inverse anisotropic conductivity from internal current densities

    International Nuclear Information System (INIS)

    Bal, Guillaume; Guo, Chenxi; Monard, François

    2014-01-01

    This paper concerns the reconstruction of a fully anisotropic conductivity tensor γ from internal current densities of the form J = γ∇u, where u solves a second-order elliptic equation ∇ · (γ∇u) = 0 on a bounded domain X with prescribed boundary conditions. A minimum number of n + 2 such functionals known on Y⊂X, where n is the spatial dimension, is sufficient to guarantee a unique and explicit reconstruction of γ locally on Y. Moreover, we show that γ is reconstructed with a loss of one derivative compared to errors in the measurement of J in the general case and no loss of derivatives in the special case where γ is scalar. We also describe linear combinations of mixed partial derivatives of γ that exhibit better stability properties and hence can be reconstructed with better resolution in practice. (paper)

  2. Critical current densities and vortex dynamics in FeTexSe1-x single crystals

    International Nuclear Information System (INIS)

    Taen, T.; Tsuchiya, Y.; Nakajima, Y.; Tamegai, T.

    2010-01-01

    The critical current density and the normalized relaxation rate are reported in FeTe 0.59 Se 0.41 single crystal. Critical current density is of order of 10 5 A/cm 2 , which is comparable to that in Co-doped BaFe 2 As 2 . In low temperature and low field region, the vortex dynamics of this system is well defined by the collective creep theory, which is quite similar to Co-doped BaFe 2 As 2 reported before. We also discuss the origin of the anomaly in the field dependence of the relaxation rate.

  3. A measurement of perpendicular current density in an aurora

    International Nuclear Information System (INIS)

    Bering, E.A.; Mozer, F.S.

    1975-01-01

    A Nike Tomahawk sounding rocket was launched into a 400-γ auroral substorm on February 7, 1972, from Esrange, Kiruna, Sweden. The rocket instrumentation included a split Langmuir probe plasma velocity detector and a double-probe electric field detector. Above 140-km altitude the electric field deduced from the ion flow velocity measurement and the electric field measured by the double probe agree to an accuracy within the uncertainties of the two measurements. The difference between the two measurements at altitudes below 140 km provides an in situ measurement of current density and conductivity. Alternatively, if values for the conductivity are assumed, the neutral wind velocity can be deduced. The height-integrated current was 0.11 A/m flowing at an azimuth of 276degree. The neutral winds were strong, exhibited substantial altitude variation in the east-west component, and were predominantly southward

  4. Using the Bootstrap Method for a Statistical Significance Test of Differences between Summary Histograms

    Science.gov (United States)

    Xu, Kuan-Man

    2006-01-01

    A new method is proposed to compare statistical differences between summary histograms, which are the histograms summed over a large ensemble of individual histograms. It consists of choosing a distance statistic for measuring the difference between summary histograms and using a bootstrap procedure to calculate the statistical significance level. Bootstrapping is an approach to statistical inference that makes few assumptions about the underlying probability distribution that describes the data. Three distance statistics are compared in this study. They are the Euclidean distance, the Jeffries-Matusita distance and the Kuiper distance. The data used in testing the bootstrap method are satellite measurements of cloud systems called cloud objects. Each cloud object is defined as a contiguous region/patch composed of individual footprints or fields of view. A histogram of measured values over footprints is generated for each parameter of each cloud object and then summary histograms are accumulated over all individual histograms in a given cloud-object size category. The results of statistical hypothesis tests using all three distances as test statistics are generally similar, indicating the validity of the proposed method. The Euclidean distance is determined to be most suitable after comparing the statistical tests of several parameters with distinct probability distributions among three cloud-object size categories. Impacts on the statistical significance levels resulting from differences in the total lengths of satellite footprint data between two size categories are also discussed.

  5. The use of vector bootstrapping to improve variable selection precision in Lasso models

    NARCIS (Netherlands)

    Laurin, C.; Boomsma, D.I.; Lubke, G.H.

    2016-01-01

    The Lasso is a shrinkage regression method that is widely used for variable selection in statistical genetics. Commonly, K-fold cross-validation is used to fit a Lasso model. This is sometimes followed by using bootstrap confidence intervals to improve precision in the resulting variable selections.

  6. MHD Equilibrium with Reversed Current Density and Magnetic Islands Revisited: the Vacuum Vector Potential Calculus

    Science.gov (United States)

    L. Braga, F.

    2013-10-01

    The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.

  7. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Golcher, Edwin [Univ. of California, Berkeley, CA (United States)

    2002-06-01

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K+ and Cs+ contact ionization sources and potassium aluminum silicate sources. Maximum values for a K+ beam of ~90 mA/cm2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm+) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (εn ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.

  8. Introduccción al Bootstrap: Desarrollo de un ejemplo acompañado de software de aplicación

    Directory of Open Access Journals (Sweden)

    Rubén Ledesma

    2008-09-01

    Full Text Available El bootstrap es un tipo de técnica de remuestreo de datos que permite resolver problemas relacionados con la estimación de intervalos de confianza o la prueba de significación estadística. Este enfoque puede resultar de interés para los investigadores en Psicología, no solo porque es menos restrictivo que el enfoque estadístico clásico, sino también porque es más general en su formulación y más simple de comprender en lo referente al procedimiento básico que subyace al método. En lugar de fórmulas o modelos matemáticos abstractos, el bootstrap simplemente requiere un ordenador capaz de simular un proceso de muestreo aleatorio de los datos. Sin embargo, y debido quizás a la escasa difusión de la técnica, los investigadores aún no han incorporado el bootstrap al repertorio habitual de herramientas de análisis de datos. En este trabajo realizamos una presentación conceptual del bootstrap, ilustramos la técnica mediante un ejemplo y revisamos algunas opciones disponibles en materia de software estadístico. El trabajo incluye además un programa para correr el ejemplo dentro de ViSta “The Visual Statistics System”, un sistema estadístico gratuito y abierto.

  9. Low mass diffractive dissociation in a simple t-dependent dual bootstrap model

    International Nuclear Information System (INIS)

    Bishari, M.

    1978-08-01

    The smallness of inelastic diffractive dissociation is explicitly demonstrated, in the framework of the '1/N dual unitarization' scheme, by incorporating a Deck type mechanism with the crucial planar bootstrap equation. Although both inelastic and elastic pomeron couplings are of the same order in 1/N, the origin for their smallness, however, is not identical. (author)

  10. Particle image velocimetry measurements and numerical modeling of a saline density current

    CSIR Research Space (South Africa)

    Gerber, G

    2011-03-01

    Full Text Available Particle image velocimetry scalar measurements were carried out on the body of a stably stratified density current with an inlet Reynolds number of 2,300 and bulk Richardson number of 0.1. These measurements allowed the mass and momentum transport...

  11. Critical current density and upper critical field of the PbMo6S8 Chevrel phase

    International Nuclear Information System (INIS)

    Seeber, B.; Decroux, M.; Fischer, O.

    1988-01-01

    A detailed discussion of critical current density and upper critical field for PbMo 6 S 8 (PMS) is given. It is shown that PMS bulk as well as wire samples can be prepared with sufficient quality to observe the scaling law for the volume pinning force. Using the scaling law an estimation for the critical current density as a function of field and temperature was made. The study also indicates that a substantial improvement of the critical current density can be expected by optimizing the upper critical field without changing the microstructure. It is shown that the availability of high quality samples of EuMo 6 S 8 , to which PMS is similar, makes it possible to study separately the different physical parameters which determine the upper critical field in PMS

  12. Effect of Current Density on Optical Properties of Anisotropic Photoelectrochemical Etched Silicon (110)

    Science.gov (United States)

    Amirhoseiny, M.; Hassan, Z.; Ng, S. S.

    2012-08-01

    Photoelectrochemical etched Si layers were prepared on n-type (110) oriented silicon wafer. The photoluminescence (PL), Fourier transformed infrared (FTIR) absorption and Raman spectroscopies of etched Si (110) at two different current densities were studied. Both samples showed PL peak in the visible spectral range situated from 650 nm to 750 nm. The corresponding changes in Raman spectra at different current density are discussed. The blue shift in the PL and Raman peaks is consequent of the quantum confinement effect and defect states of surface Si nanocrystallites complexes and hydrogen atoms of the photoelectrochemical etched Si (110) samples. The attenuated total reflection (ATR) results show both hydrogen and oxygen related IR modes in the samples which can be used to explain the PL effect.

  13. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    Science.gov (United States)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  14. Optimum extracted H- and D- current densities from gas-pressure-limited high-power hydrogen/deuterium tandem ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1993-01-01

    The tandem hydrogen/deuterium ion source is modelled for the purpose of identifying the maximum current densities that can be extracted subject to the gas-pressure constraints proposed for contemporary beam-line systems. Optimum useful extracted current densities are found to be in the range of approximately 7 to 10 mA cm -2 . The sensitivity of these current densities is examined subject to uncertainties in the underlying atomic/molecular rate processes; A principal uncertainty remains the quantification of the molecular vibrational distribution following H 3 + wall collisions

  15. Confinement bifurcation by current density profile perturbation in TUMAN-3M tokamak

    International Nuclear Information System (INIS)

    Lebedev, S.V.; Andreiko, M.V.; Askinazi, L.G.

    2001-01-01

    In the recent experiments performed on TUMAN-3M the possibility to switch on/off the H-mode by current density profile perturbations has been shown. The j(r) perturbations were created by fast Current Ramp Up/Down or by Magnetic Compression produced by a fast increase of the toroidal magnetic field. It was found that the Current Ramp Up (CRU) and Magnetic Compression (MC) are useful means for H-mode triggering. The Current Ramp Down (CRD) triggers H-L transition. The difference in the j(r) behavior in these experiments suggests the peripheral current density may not be the critical parameter controlling L-H and H-L transitions. Confinement bifurcation in the above experiments could be explained by the unified mechanism: variation of a turbulent transport resulting from radial electric field emerging near the edge in the conditions of alternating toroidal electric field Ej and different electron and ion collisionalities. According to the suggested model the toroidal field E φ arising in the periphery during the CRU and MC processes amplifies Ware drift, which mainly influences electron component. As a result the favorable for the transition negative (inward directed) E r emerges. In the CRD scenario, when E φ is opposite to the total plasma current direction, the mechanism should generate positive E r , which is thought to be unfavorable for the H-mode. The experimental data on L-H and H-L transitions in various scenarios and the results of the modeling of E r emerging in the CRU experiment are presented in the paper. (author)

  16. Service Mediation and Negotiation Bootstrapping as First Achievements Towards Self-adaptable Cloud Services

    Science.gov (United States)

    Brandic, Ivona; Music, Dejan; Dustdar, Schahram

    Nowadays, novel computing paradigms as for example Cloud Computing are gaining more and more on importance. In case of Cloud Computing users pay for the usage of the computing power provided as a service. Beforehand they can negotiate specific functional and non-functional requirements relevant for the application execution. However, providing computing power as a service bears different research challenges. On one hand dynamic, versatile, and adaptable services are required, which can cope with system failures and environmental changes. On the other hand, human interaction with the system should be minimized. In this chapter we present the first results in establishing adaptable, versatile, and dynamic services considering negotiation bootstrapping and service mediation achieved in context of the Foundations of Self-Governing ICT Infrastructures (FoSII) project. We discuss novel meta-negotiation and SLA mapping solutions for Cloud services bridging the gap between current QoS models and Cloud middleware and representing important prerequisites for the establishment of autonomic Cloud services.

  17. Lower hybrid heating and current drive in Iter operation scenarios and outline system design

    International Nuclear Information System (INIS)

    1994-11-01

    Lower Hybrid Waves (LHW) are considered a valid method of plasma heating and the best demonstrated current drive method. Current drive by LHW possesses the unique feature, as compared to the other methods, to retain a good current drive efficiency in plasma regions of low to medium temperature, or in low-β phases of the discharges. This makes them an essential element to realize the so called 'advanced steady-state Tokamak scenarios' in which a hollow current density profile (deep shear reversal) - established during the ramp-up of the plasma current - offers the prospects of improved confinement and an MHD-stable route to continuous burn. This report contains both modelling and design studies of an LHW system for ITER. It aims primarily at the definition of concepts and parameters for steady-state operation using LHW combined with Fast Waves (FW), or other methods of generating a central seed current for high bootstrap current operation. However simulations addressing the use of LHW for current profile control in the high current pulsed operation scenario are also presented. The outline design of a LHW system which covers the needs for both pulsed and steady-state operation is described in detail. (author). 28 refs., 49 figs

  18. Effect of current density on the microstructure and corrosion resistance of microarc oxidized ZK60 magnesium alloy.

    Science.gov (United States)

    You, Qiongya; Yu, Huijun; Wang, Hui; Pan, Yaokun; Chen, Chuanzhong

    2014-09-01

    The application of magnesium alloys as biomaterials is limited by their poor corrosion behavior. Microarc oxidation (MAO) treatment was used to prepare ceramic coatings on ZK60 magnesium alloys in order to overcome the poor corrosion resistance. The process was conducted at different current densities (3.5 and 9.0 A/dm(2)), and the effect of current density on the process was studied. The microstructure, elemental distribution, and phase composition of the MAO coatings were characterized by scanning electron microscopy, energy-dispersive x-ray spectrometry, and x-ray diffraction, respectively. The increment of current density contributes to the increase of thickness. A new phase Mg2SiO4 was detected as the current density increased to 9.0 A/dm(2). A homogeneous distribution of micropores could be observed in the coating produced at 3.5 A/dm(2), while the surface morphology of the coating formed at 9.0 A/dm(2) was more rough and apparent microcracks could be observed. The coating obtained at 3.5 A/dm(2) possessed a better anticorrosion behavior.

  19. Influence of the current density on the electrochemical treatment of concentrated 1-butyl-3-methylimidazolium chloride solutions on diamond electrodes.

    Science.gov (United States)

    Marcionilio, Suzana M L de Oliveira; Alves, Gisele M; E Silva, Rachel B Góes; Marques, Pablo J Lima; Maia, Poliana D; Neto, Brenno A D; Linares, José J

    2016-10-01

    This paper focuses on the influence of the current density treatment of a concentrated 1-butyl-3-methylimidazolium chloride (BMImCl) solution on an electrochemical reactor with a boron-doped diamond (BDD) anode. The decrease in the total organic carbon (TOC) and the BMImCl concentration demonstrate the capability of BDD in oxidizing ionic liquids (ILs) and further mineralizing (to CO2 and NO3 (-)) more rapidly at higher current densities in spite of the reduced current efficiency of the process. Moreover, the presence of Cl(-) led to the formation of oxychlorinated anions (mostly ClO3 (-) and ClO4 (-)) and, in combination with the ammonia generated in the cathode from the nitrate reduction, chloramines, more intensely at higher current density. Finally, the analysis of the intermediates formed revealed no apparent influence of the current density on the BMImCl degradation mechanism. The current density presents therefore a complex influence on the IL treatment process that is discussed throughout this paper.

  20. Conformal bootstrap, universality and gravitational scattering

    Directory of Open Access Journals (Sweden)

    Steven Jackson

    2015-12-01

    Full Text Available We use the conformal bootstrap equations to study the non-perturbative gravitational scattering between infalling and outgoing particles in the vicinity of a black hole horizon in AdS. We focus on irrational 2D CFTs with large c and only Virasoro symmetry. The scattering process is described by the matrix element of two light operators (particles between two heavy states (BTZ black holes. We find that the operator algebra in this regime is (i universal and identical to that of Liouville CFT, and (ii takes the form of an exchange algebra, specified by an R-matrix that exactly matches the scattering amplitude of 2+1 gravity. The R-matrix is given by a quantum 6j-symbol and the scattering phase by the volume of a hyperbolic tetrahedron. We comment on the relevance of our results to scrambling and the holographic reconstruction of the bulk physics near black hole horizons.